
UC San Diego
UC San Diego Previously Published Works

Title
Testing the parametric model for self-interacting dark matter using matched halos in 
cosmological simulations

Permalink
https://escholarship.org/uc/item/1065t63v

Authors
Yang, Daneng
Nadler, Ethan O
Yu, Hai-Bo

Publication Date
2025

DOI
10.1016/j.dark.2025.101807

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1065t63v
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


F

T
h
D
a

b

c

d

e

A

W
h
t
v
i
a
e

1

a
f
d
t
o
2
d
a
b
4
e
i
s
o
c
t
b
S
s
c
b

h
R

Physics of the Dark Universe 47 (2025) 101807 

A
2

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

ull length article

esting the parametric model for self-interacting dark matter using matched
alos in cosmological simulations
aneng Yang a,b ,∗, Ethan O. Nadler c,d,e,∗, Hai-Bo Yu b,∗

Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
Department of Astronomy & Astrophysics, University of California, San Diego, La Jolla, CA 92093, USA
Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA
Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90007, USA

B S T R A C T

e systemically evaluate the performance of the self-interacting dark matter (SIDM) halo model proposed in Ref.Yang et al. (2023) with matched halos from
igh-resolution cosmological CDM and SIDM simulations. The model incorporates SIDM effects along mass evolution histories of CDM halos and it is applicable
o both isolated halos and subhalos. We focus on the accuracy of the model in predicting halo density profiles at 𝑧 = 0 and the evolution of maximum circular
elocity. We find the model predictions agree with the simulations within 10%–50% for most of the simulated (sub)halos, 50%–100% for extreme cases. This
ndicates that the model effectively captures the gravothermal evolution of the halos with very strong, velocity-dependent self-interactions. For an example
pplication, we apply the model to study the impact of various SIDM scenarios on strong lensing perturber systems, demonstrating its utility in predicting SIDM
ffects for small-scale structure analyses. Our findings confirm that the model is an effective tool for mapping CDM halos into their SIDM counterparts.
. Introduction

Elastic self-interactions of dark matter particles can dynamically
ffect dark matter halos, leading to phenomena such as halo core
ormation and collapse [1–11]. This characteristic of self-interacting
ark matter (SIDM) provides a compelling framework for explaining
he diverse internal structures observed across a broad mass range
f galaxies [12,13], from satellite galaxies of the Milky Way [14–
5] to galaxy clusters [26–33], including ultra-diffuse galaxies and
warfs [24,25,34,35], as well as spiral galaxies in the field [36–38]
nd elliptical galaxies [39–41]. The interplay between SIDM halos and
aryons can further amplify the diversity in these systems [27,30,37,
1–52]. To robustly constrain or detect SIDM signatures, dedicated
fforts to search for these effects are crucial. For instance, Ref. [53]
nvestigated the signatures of a perturbed strong-lens image [54–56],
uggesting it could be attributed to a core-collapsing subhalo. At the
pposite end of the spectrum, Ref. [25] demonstrated that the unique
haracteristics of Crater-II, one of the faintest satellites observed in
he Milky Way [57–62], align with predictions from SIDM models
ut are challenging to explain in CDM. Moreover, velocity-dependent
IDM models are increasingly recognized for their potential to reconcile
mall-scale observational discrepancies [19,27,33,43–47,63–69]. The
ore collapsed SIDM halos could also provide seeds for supermassive
lack holes [70–76].

∗ Corresponding authors.Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA.
E-mail addresses: yangdn@pmo.ac.cn (D. Yang), enadler@carnegiescience.edu (E.O. Nadler), haiboyu@ucr.edu (H.-B. Yu).

The evolution of SIDM halos has been studied using various meth-
ods. N-body simulations can provide detailed and realistic representa-
tions of SIDM halos, but they are computationally expensive. A high
resolution is typically required to accurately model the inner halo
regions, where the SIDM effects are expected to be most prominent [28,
37,65,69,77–95]. In comparison, the conducting fluid model allows
for a more efficient alternative for simulating SIDM halos [14,32,48,
67,73,96–99]. It employs a set of fluid-like equations to model the
dynamical properties of an isolated SIDM halo, enabling a theoretical
understanding within the fluid framework referred to as gravothermal
evolution. As a further simplification, a semi-analytic method, based on
self-consistently adding an isothermal core to the Navarro-Frenk-White
(NFW) profile [100], has been proposed to model the thermalization of
inner halo regions, which is most suitable for core-forming halos [32,
36,38,44,87,88,101–104].

Recently, Ref. [68] introduced a parametric model that offers a
universal solution to modeling gravothermal evolution of SIDM halos.
The model employs a parametric density profile and its time evolution
is calibrated using high-resolution N-body simulations. The parametric
model builds on two key ingredients. First, the gravothermal evolution
of isolated halos under constant cross sections reveals a universal
pattern, allowing halo evolution to be parameterized through a single
set of equations [66,68]. Second, differential cross sections that have
angular and velocity dependencies can be effectively approximated by
ttps://doi.org/10.1016/j.dark.2025.101807
eceived 28 June 2024; Received in revised form 8 December 2024; Accepted 3 Ja
vailable online 10 January 2025 
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Fig. 1. A visual representation of the parametric model illustrating gravothermal
evolution through a single parametric density profile, which is normalized using the
nitial NFW scale parameters (𝜌𝑠,0, 𝑟𝑠,0) and the core collapse time (𝑡𝑐 ). The surface
s colored based on the values of the density: high (low) densities correspond to red
blue) colors. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

an equivalent constant cross section for a given halo. This is achieved
y integrating out the velocity (𝑣) and angular (𝜃 for the polar an-
le) dependencies using a 𝑣5 sin2 𝜃 kernel, tailored to the velocity
istribution of the halo [65,67].

In Fig. 1, we present the evolution of the parametric density profile,
hich is normalized using the initial NFW scale parameters (𝜌𝑠,0, 𝑟𝑠,0)
nd the core collapse time (𝑡𝑐). The gravothermal evolution of the SIDM
alo starts with an NFW initial condition at 𝑡 = 0 Gyr, and its inner

density decreases first, reaching a minimum at approximately 0.2𝑡𝑐 ,
nd subsequently increase rapidly, particularly around 𝑡𝑐 . It illustrates
he universal behavior in the gravothermal evolution of SIDM halos, a
rucial feature that enables parametric modeling of the evolution [48,

52,66,68].
Ref. [68] proposed two approaches to map CDM halos into their

IDM counterparts for a given particle physics realization of SIDM. The
asic approach takes only the maximum circular velocity (𝑉max) and
he corresponding radius at which 𝑉max is achieved (𝑅max) of a CDM
alo at 𝑧 = 0 as input and provides a smooth evolution history of
ts SIDM counterpart. It is accurate for isolated halos that have yet
o undergo strong accretion and tidal events since their formation.
he integral approach utilizes the entire accretion history of a CDM
alo and integrates SIDM effects throughout its evolution. This method
uccessfully accounts for both mass loss and accretion, proving to be
ffective for modeling the evolution of both isolated halos and subhalos.
ore recently, the parametric model has been implemented into the
ASHIMI semi-analytic subhalo modeling program [105]. It has also
een extended to incorporate the effect of baryons [52].

In this study, we comprehensively test the parametric model in-
troduced in Ref. [68] by applying it to a series of halos matched in
oth CDM and SIDM simulations. While the original study focused
n statistical tests with the Milky Way simulation in Ref. [24], this

work tests the model on a halo-by-halo basis. We evaluate the model’s
accuracy for both basic and integral approaches, considering a diverse
range of masses and effective cross sections. Additionally, we apply the
model to group-scale simulations featuring extreme cross sections, as
discussed in Ref. [53]. This allows us to explore the limits of the model’s
2 
accuracy and identify numerical challenges in N-body simulations.
We further demonstrate the model’s utility in generating predictions
for strong lensing perturber systems under various SIDM scenarios.
Building upon the initial findings of Ref. [68], our work offers a more
ystematic and extensive assessment of the parametric model using a

larger sample of resolved halos within the simulations.
The rest of the paper is organized as follows. In Section 2, we revisit

the parametric model, discussing its application to simulated halos.
Section 3 provides a detailed description of the simulation data used
in this study, including the method for matching simulated CDM halos
to their SIDM counterparts. The accuracy of the parametric model is
evaluated in Section 4, where both the basic and integral approaches
are examined. In Section 5, we apply the model to a simulated group
system, considering an exceptionally large SIDM cross section. An
example application concerning lensing perturber systems within the
group simulation is presented in Section 6. Finally, the paper concludes

ith a summary and discussion in Section 7.

2. The parametric model

The parametric model comprises an SIDM halo that evolves from its
nitial NFW profile to a later time. The parameters of the profile, after
ppropriate normalization, have no explicit dependence on the initial
alo parameters and the SIDM cross section. Ref. [68] considered two
nalytical forms for the evolving SIDM density profile, i.e., the 𝛽4 and
ead profiles. The 𝛽4 profile takes the following form

𝜌𝛽4(𝑟) =
𝜌𝑠

(

𝑟4+𝑟4𝑐
)1∕4

𝑟𝑠

(

1 + 𝑟
𝑟𝑠

)2
, (1)

where 𝜌𝑠, 𝑟𝑠, and 𝑟𝑐 are three parameters that evolve in time. The Read
profile, which was originally proposed in Refs. [106,107], takes a more
complicated form but has the advantage that the mass profile can be
obtained analytically. For clarity, we mainly focus on the 𝛽4 profile and
provide numerical results for this profile in the main text. We provide
in Appendix A details of the Read profile and show that the two profiles
yield almost the same results when used in the parametric model.

The evolution of the profile parameters can be put in a univer-
al form and extracted from high-resolution N-body simulation, see
ef. [68] for details. For the 𝛽4 profile, their evolution trajectories are
𝜌𝑠(𝜏)
𝜌𝑠,0

= 2.033 + 0.7381𝜏 + 7.264𝜏5 − 12.73𝜏7 + 9.915𝜏9

+(1 − 2.033)(ln 0.001)−1 ln (𝜏 + 0.001) ,
𝑟𝑠(𝜏)
𝑟𝑠,0

= 0.7178 − 0.1026𝜏 + 0.2474𝜏2 − 0.4079𝜏3

+(1 − 0.7178)(ln 0.001)−1 ln (𝜏 + 0.001) ,
𝑟𝑐 (𝜏)
𝑟𝑠,0

= 2.555
√

𝜏 − 3.632𝜏 + 2.131𝜏2 − 1.415𝜏3 + 0.4683𝜏4, (2)

where 𝜏 ≡ 𝑡∕𝑡𝑐 is a normalized evolution time that incorporates the
IDM dependence, and the subscript ‘‘0’’ denotes the corresponding

value of the initial NFW profile. We have chosen the functional forms
such that 𝜌𝑠∕𝜌𝑠,0 = 1, 𝑟𝑠∕𝑟𝑠,0 = 1, and 𝑟𝑐∕𝑟𝑠,0 = 0 at 𝜏 = 0. The core
collapse time

𝑡c =
150
𝐶

1
(𝜎∕𝑚)𝜌𝑠𝑟𝑠

1
√

4𝜋 𝐺 𝜌𝑠
, (3)

where 𝐶 = 0.75 is a constant that can be calibrated with N-body
simulations [14,67,97,98]. The 𝜌𝑠 and 𝑟𝑠 are scale density and radius
of NFW halos computed using more conveniently and accurately de-
termined quantities 𝑉max and 𝑅max as 𝜌𝑠 = (𝑉max∕(1.648𝑟𝑠))2∕𝐺 and
𝑟𝑠 = 𝑅max∕2.1626. In Eq. (3), 𝜎∕𝑚 refers to a constant SIDM cross section
per particle mass.

Fig. 2 (left) depicts the normalized density profiles at 𝑡∕𝑡𝑐 = 0, 0.2,
and 1, based on the 𝛽4 (dotted) and Read (dashed) profiles. Fig. 2
(right) illustrates the evolution of the inner densities at three specific
profile radii: 𝑟 ∕𝑟 = 0.01, 0.1, and 0.2. We derive these results using
in 𝑠
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Fig. 2. Left: Normalized 𝛽4 (dotted) and Read (dashed) density profiles at 𝑡∕𝑡𝑐 = 0, 0.2, and 1. Right: Densities at 𝑟in∕𝑟𝑠 = 0.01, 0.1, and 0.2 as a function of 𝑡∕𝑡𝑐 for the normalized
𝛽4 (dotted) and Read (dashed) density profiles.
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analytic equations, such as Eqs. (1) and (2) for the 𝛽4 profile. We see
he agreement between 𝛽4 and Read profiles are excellent, within the

level of a few percent.
The parametric model presented so far (Eqs. (1) and (2)) works only

for SIDM models with constant cross sections and isotropic scatterings.
For dark matter velocity- and angular-dependent scatterings, we use the
effective cross section in estimating the collapse time in equation [65,
67], which is calculated as

𝜎ef f =
2 ∫ 𝑑 𝑣𝑑 cos 𝜃 𝑑 𝜎

𝑑 cos 𝜃 sin
2 𝜃 𝑣5𝑓MB(𝑣, 𝜈ef f )

∫ 𝑑 𝑣𝑑 cos 𝜃 sin2 𝜃 𝑣5𝑓MB(𝑣, 𝜈ef f )
(4)

where 𝑣 denotes the relative velocity between the two incoming parti-
cles, 𝜃 refers to the polar angle that takes values in [0, 𝜋], and

𝑓MB(𝑣, 𝜈ef f ) ∝ 𝑣2 exp

[

− 𝑣2

4𝜈2ef f

]

, (5)

is a Maxwell–Boltzmann velocity distribution that approximates the
dark matter velocity distribution. We have used 𝜈ef f = 0.64𝑉max,NFW ≈
1.05𝑟𝑠

√

𝐺 𝜌𝑠 as a characteristic velocity dispersion for the inner halo
region, which has been found to perform well in several studies [65,
66]. The above integration kernel coincides with that of the heat
onductivity of a fluid in the short-mean-free-path (SMFP) regime.
his is an intriguing result that can be interpreted as follows: the
cattering probability is microscopically determined, depending on an
IDM model, while the subsequent evolution of energy transfer after
cattering is solely governed by gravity and remains independent of
he SIDM model, as discussed in [65]. Note that the SMFP regime is

only relevant to central regions of a halo and at very late times in the
gravothermal evolution, where the run-away collapse would result in
the formation of a black hole [71–73,75,76,108,109]. The inner region
rofiles in the SMFP regime, if needed, could be approximated through
xtrapolation assuming a power-law behavior 𝑟−𝑢 with 𝑢 ≈ 2.21 [108].

For applying the parametric model, we focus on the density profile in
the long-mean-free-path (LMFP) regime.

2.1. The basic approach

The basic approach allows for efficient estimation of the SIDM effect
n isolated halos. For a given halo, one computes the halo mass and
FW scale parameters 𝜌𝑠,0, 𝑟𝑠,0, using 𝑉max,0 and 𝑅max,0 at 𝑧 = 0. With

hese parameters, the core collapse time, 𝑡 , is calculated using Eq. (3)
𝑐

3 
and an estimated halo formation time. The halo formation time 𝑡𝑓
s defined as the current age of the universe (approximately 14 Gyr)
inus the lookback time to its formation. Here we use a simplified

quation provided in Ref. [68] for an estimate. We first compute
the halo formation redshift as 𝑧𝑓 = −0.0064

(

log10
( 𝑀vir,0
1010 M⊙

))2
−

0.1043 log10
( 𝑀vir,0
1010 M⊙

)

+ 1.4807, where 𝑀vir,0 is the halo mass at 𝑧 = 0.

hen we compute the halo formation time (𝑡𝑓 ) as the current age of the
niverse (about 14 Gyr) minus the lookback time at 𝑧𝑓 .

To obtain the density profile at a lookback time 𝑡𝐿 ≤ 𝑡𝐿(𝑧𝑓 ), one
valuates Eq. (2) at 𝜏 = (𝑡𝐿(𝑧𝑓 ) − 𝑡𝐿)∕𝑡𝑐 and plugs in 𝜌𝑠,0, 𝑟𝑠,0 to obtain
he 𝜌𝑠, 𝑟𝑠 and 𝑟𝑐 at that time. If 𝑡𝐿∕𝑡𝑐 > 1, the halo rapidly transitions
nto SMFP and Eq. (2) may not be applicable. In such extreme cases,
he calculations are truncated at 𝜏 = 1.

2.2. The integral approach

The integral approach aims to obtain more accurate predictions for
halos with realistic growth histories. One first obtains the evolution of
𝑉max and 𝑅max in the parametric model using Eq. (2). For the 𝛽4 profile,
it reads
𝑉max
𝑉max,0

= 1 + 0.1777𝜏 − 4.399𝜏3 + 16.66𝜏4 − 18.87𝜏5 + 9.077𝜏7 − 2.436𝜏9

𝑅max
𝑅max,0

= 1 + 0.007623𝜏 − 0.7200𝜏2 + 0.3376𝜏3 − 0.1375𝜏4. (6)

Next, we integrate the SIDM effect along the evolution histories of
𝑉max,CDM and 𝑅max,CDM in CDM to obtain the SIDM predictions at a time
𝑡

𝑉max(𝑡) = 𝑉max,CDM(𝑡ℎ) + ∫

𝑡

𝑡ℎ
𝑑 𝑡′ 𝑑 𝑉max,CDM(𝑡′)

𝑑 𝑡′ + ∫

𝑡

𝑡ℎ

𝑑 𝑡′
𝑡𝑐 (𝑡′)

𝑑 𝑉max,Model(𝜏′)
𝑑 𝜏′

𝑅max(𝑡) = 𝑅max,CDM(𝑡ℎ) + ∫

𝑡

𝑡ℎ
𝑑 𝑡′ 𝑑 𝑅max,CDM(𝑡′)

𝑑 𝑡′ + ∫

𝑡

𝑡ℎ

𝑑 𝑡′
𝑡𝑐 (𝑡′)

𝑑 𝑅max,Model(𝜏′)
𝑑 𝜏′ , (7)

where 𝑡ℎ = (14 Gy r − 𝑡𝐿(𝑧𝑓 ))∕2 = 𝑡𝑓∕2 is a halo formation time
arlier than 𝑡𝑓 , which is chosen sufficiently early while being after
he exponential accretion phase to reduce numerical uncertainties in
odeling the accretion history. Only the last terms on the right-hand

ides are relevant for capturing the SIDM effect, and the CDM evo-
ution is recovered by removing these terms. The 𝑑 𝑉max,Model(𝜏)∕𝑑 𝜏

and 𝑑 𝑅 (𝜏)∕𝑑 𝜏 terms are obtained by taking derivatives of the
max,Model
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corresponding functions of Eq. (6), with the 𝑉max,0 and 𝑅max,0 being
replaced by 𝑉max,CDM(𝑡′) and 𝑅max,CDM(𝑡′), respectively.

After obtaining 𝑉max(𝑡) and 𝑅max(𝑡) from Eq. (7), we need to establish
the corresponding SIDM halo profile at time 𝑡. This can be done by
etermining 𝑉max,0(𝑡) and 𝑅max,0(𝑡) for an NFW profile that reproduces

the given 𝑉max(𝑡) and 𝑅max(𝑡) at 𝜏(𝑡). Once these are found, we can
directly compute the corresponding NFW scale parameters, 𝜌𝑠,0(𝑡) and
𝑠,0(𝑡). In practice, we obtain 𝑉max,0(𝑡) and 𝑅max,0(𝑡) by solving Eq. (6)
ith the known values of 𝑉max(𝑡), 𝑅max(𝑡), and 𝜏(𝑡) = (𝑡− 𝑡ℎ)∕𝑡𝑐 (𝑡). Then,

the SIDM profile at 𝑡 is obtained using Eq. (2) with the 𝜌𝑠,0(𝑡), 𝑟𝑠,0(𝑡)
nd 𝜏(𝑡). Conceptually, it is important to note the distinction between
he quantities 𝜌𝑠,0(𝑡) and 𝑟𝑠,0(𝑡) reconstructed from 𝑉max(𝑡), 𝑅max(𝑡), and

the ones coming from the CDM evolution history. In practice, such a
istinction has a minor effect in dark matter-only cases. We perform
 quantitative comparative study in Appendix C. In the presence of
aryons, the distinction can become more noticeable, see Appendix B
f Ref. [52] for details.

In our study, we reconstruct the evolution histories of 𝑉max,CDM(𝑡)
nd 𝑅max,CDM(𝑡) using the Rockstar [110] and consistent-trees [111]
lgorithms, and tabulate them at discrete snapshots. To effectively
btain the model predictions at all times, we take advantage of the fact

that the integrals in Eq. (7) can be obtained by summing over discrete
contributions from divided time intervals.

The number of timesteps should be chosen such that the change
n gravothermal evolution is always small during any increment of the
volution. The choice depends on the complexity of accretion histories,
nd typically, a few hundred steps should be sufficient for reaching
he convergence over a smooth evolution history. For spiky accretion
istories, some of the small wiggles are numerical fluctuations that arise
rom reconstruction, while the larger ones could be physical. Smoothing
ut the small wiggles would enable the use of fewer timesteps. In this
ork, we take a high number of timesteps of 104 to retain all details

rom the reconstructed accretion history and ensure converged results.
ven with the high timestep count, our computational framework
llows the completion of these calculations within a few seconds.

For halos that have evolved to 𝜏 > 1, we truncate their 𝑉max and
max evolution under SIDM, but still allow for their evolution under

CDM, i.e., we set the last two terms in the right-hand sides in Eq. (7)
o zero.1 For the sake of numerical stability, we also stop the 𝑉max

and 𝑅max evolution under SIDM when their values drop below their
esolution thresholds. For the studies in this work, we consider 𝑉max >
2 k m∕s and 𝑅max > 0.1 k pc, which are chosen to be slightly below the
resolution limits of these variables.

2.3. Subhalos

Subhalos have density profiles distinct from the NFW profile at large
radii. We introduce a tidal radius to smoothly truncate the density
profile as

𝜌t SIDM(𝑟) = 𝜌𝛽4(𝑟, 𝜌𝑠, 𝑟𝑠, 𝑟𝑐 )
(

1 +
(

𝑟
𝑟𝑡

)2−𝑢
)1+3𝑢

, (8)

where 𝑢 = 0.25 is a fixed constant. Ref. [68] found that 𝑢 has a
inor dependence on the halo concentration. In this work, with more
atched halos, we have checked that the dependence cannot be dis-

inguished from other modeling uncertainties and we take the fixed
alue for simplicity. The chosen form of Eq. (8) implies that the same
arametric model in the integral approach can be applied to subhalos,
rovided that 𝑟𝑡 exceeds 𝑟𝑠. However, in extreme cases where 𝑟𝑡 is

comparable to 𝑟𝑠 or 𝑟𝑐 , SIDM-induced core formation may enhance tidal

1 In practice, this truncation can be extended to 𝜏 = 1.1, as we have
validated the performance of the parametric model through a prolonged
simulation up to that point.
4 
mass loss, thereby reducing the precision of our model predictions. We
will illustrate such an example later (Fig. 14). Additionally, subhalos

ith small pericentric passages are expected to develop an anisotropic
elocity dispersion profile, as particles on more radial orbits are more
ikely to extend beyond the tidal radius and be stripped [112]. For

modeling this effect in CDM, see, e.g., Ref. [113]. In SIDM, the self-
interactions tend to erase this anisotropy, pushing the system towards
a more isotropic velocity dispersion [114]. However, tidal heating
and stripping can counteract this process, reintroducing anisotropy.
These two competing effects differ from what occurs in CDM. We leave

odeling this secondary effect for future work.
In Fig. 3, we illustrate these procedures of the applications. It

outlines the basic and integral approaches in the upper and lower
sections, respectively. In the basic approach, it starts with the NFW
parameters at 𝑧 = 0 for an isolated halo, then calculates the effective
ross section, halo formation time, and core collapse time. This leads
o the application of the parametric density model equations. For the
ntegral approach, it begins with the NFW parameters at a given time
′ = 𝑡𝐿(𝑧𝑓 ) − 𝑡𝐿. It then effectively captures the SIDM effect on the halo
or a small timestep forward, providing the SIDM halo density profile
t the incremented timestep. If the incremented time reaches 𝑧 = 0, the
resent-day density profile is obtained.

3. Simulation data

We use the CDM and SIDM simulation data from Refs. [24,53]. In
Ref. [24], we performed high-resolution cosmological zoom-in SIDM
and CDM simulations with a particle mass of 5 × 104 M⊙, a Plummer-
equivalent gravitational softening length 𝜖 = 114 pc, and the main halo
is 1012𝑀⊙, similar to the Milky Way halo. The SIDM effect is modeled
considering a Rutherford-like scattering cross section [115,116]
𝑑 𝜎

𝑑 cos 𝜃
=

𝜎0𝑤4

2
[

𝑤2 + 𝑣2 sin2(𝜃∕2)
]2
, (9)

where 𝜎0∕𝑚 = 147.1 cm2∕g and 𝑤 = 24.33 k m∕s. The cross section,
hereafter ‘‘MilkyWaySIDM’’, has a high value in halos hosting satellite
galaxies, while being significantly suppressed at the mass scale of the
Milky Way halo. In Ref. [53], we performed a zoom-in simulation for a
host halo on group mass scales, 1013 M⊙, with a minimum simulation
particle mass of 4 × 105 M⊙ and a Plummer-equivalent gravitational
softening length 𝜖 = 243 pc. The ‘‘GroupSIDM’’ cross section used there
has 𝜎0∕𝑚 = 147.1 cm2∕g and 𝑤 = 120 k m∕s, and the simulation is based
on a viscosity cross section, with the angular dependence averaged
using a sin2 𝜃 kernel [117]. Compared to the MilkyWaySIDM model, the
GroupSIDM model has a much higher cross section towards the higher
halo mass, and hence more halos would be in the collapse phase. For
example, for a halo with 𝑉max ≈ 100 k m∕s, 𝜎ef f∕𝑚 ≈ 0.3 cm2∕g and
20 cm2∕g for the former and latter, respectively; see Fig. 1 of Ref. [53]
for details. The GroupSIDM cross section represents an extreme case,
resulting in a large population of core collapsed halos. The cosmological
parameters used in both the simulations are 𝛺𝑀 = 0.286, 𝛺𝛬 = 0.714,
𝑛𝑠 = 0.96, ℎ = 0.7, and 𝜎8 = 0.82 [118].

For a given simulated SIDM halo, we find its CDM counterpart by
xamining their evolution trajectories and the success rate for matching
he pair is 98%. For subhalos of the main halo in the MilkyWaySIDM
imulation, we consider halos of virial masses at 𝑧 = 0 higher than
.43 × 108 M⊙. The virial mass 𝑀vir is defined according to [119],

corresponding to a density contrast of 𝛥vir ≈ 99 times the critical
density of the universe at 𝑧 = 0. This selection yields a sample of 102
matched pairs of subhalos. For isolated halos, we require them to reside
at 0.3–3 Mpc from the Milky Way halo analog and find 620 matched
pairs. For the GroupSIDM simulation, we consider subhalos of the group
main halo of masses higher than 109 M⊙∕h, and there are 50 pairs. We
require isolated halos to reside at 0.8–6 Mpc from the group main and
have masses at least 6 × 109 M , and find 317 pairs.
⊙
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Fig. 3. This flow chart delineates the two approaches of the parametric model for SIDM halos: the upper section for the basic approach and the lower section for the integral
approach. It traces each step from initial parameters to final results, with references to key equations in the main text at relevant stages. The arrows for the basic and integral
approaches are distinctly color-coded in blue and green, respectively. Detailed explanations of each step are provided in Section 2. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. The model-predicted (dashed) vs. simulated (dotted) density profiles for isolated halos (left), subhalos with 𝑉max,CDM smaller (middle) and larger (right) than 25 k m∕s, in the
Milky Way CDM simulation of Ref. [24]. The relative difference between each pair of simulated (Sim) and model-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim),
with the ±1𝜎 band of the results shaded in gray.
The parametric model in the CDM limit gives predictions for CDM
halos. Before examining the performance for SIDM halos, we check the
predictions of the parametric model in the CDM limit and ensure that
they are consistent with the simulations. Fig. 4 illustrates the compar-
ison between model predictions and simulations for CDM halos in the
Milky Way simulation of Ref. [24]. We quantify the relative difference
between simulated (Sim) and model-predicted (Mod) density profiles
as 2(Mod − Sim)∕(Mod + Sim). It works even if the value in a bin is very
small or even zero, which could occur due to simulation fluctuations.
Additionally, the ±1𝜎 bands of these relative differences are indicated
with gray shading. We see that the model predictions align closely
with the simulation results for the CDM isolated halos with 25 k m∕s <
5 
𝑉max,CDM < 45 k m∕s (left) and subhalos with 𝑉max,CDM ≥ 25 k m∕s
(right). However, for the subhalos with 𝑉max,CDM < 25 k m∕s (middle),
we observe a systematic overestimation in the inner densities by up to
50% at around 𝑟∕𝑅vir = 0.01. The deviation is likely because the inner
density profile of the subhalos is shallower than 𝜌 ∝ 𝑟−1 due to tidal
stripping. One may consider using the Einasto profile [120–124] for
better fits, but it goes beyond our current parametric model framework.
Aside from this, the overall agreement is within 10% around 𝑟∕𝑅vir ≈
0.04, with the relative difference widening towards both the inner and
outer regions. At the innermost region shown (𝑟∕𝑅vir = 0.01), the 1𝜎
difference reaches approximately 25%. At radii larger than those shown
in the figure, the uncertainty continues to increase slightly. However,
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Fig. 5. The model-predicted (dashed) vs. simulated (dotted) density profiles for isolated halos (left) and subhalos (right) in the Group CDM simulation of Ref. [53]. The relative
difference between each pair of simulated (Sim) and model-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded in gray.
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this uncertainty is tied to the accuracy of the NFW profile in modeling
ensity distributions and is not related to SIDM.

Fig. 5 shows comparisons for isolated (left) and subhalos (right)
from the Group CDM simulation [53]. The agreement is similar to that
found for the halos in the Milky Way CDM simulation. However, in
the subhalo case, the systematic shift is reduced, falling within the ±1𝜎
band and thus aligning with zero. In this test, we find two isolated CDM
halos demonstrate exceptionally large deviations and exclude them
from our study.

When applying the integral approach, several cases in the simula-
ion undergo numerical instabilities and are excluded. These instabili-
ies are largely due to insufficient accuracy in modeling the accretion
istory, and hence, it is an issue with the simulations (including the

halo finding and merger tree algorithms) rather than the model. For
simplicity, we excluded such cases in this study. However, we note
that excluding specific points with abrupt and significant changes in
the accretion history of, e.g., 𝑅max,CDM, can bypass such instabilities.

4. Model validation

In this section, we evaluate the performance of both basic and
ntegral approaches of the parametric model, using the matched pairs of
alos in the Milky Way zoom-in simulations of Ref. [24]. Building upon

the initial validation performed in Ref. [68], we extend the previous
ork by systematically matching and testing the majority of simulated
alos. We mainly focus on the evolution of 𝑉max,SIDM and the density

profile of halos at 𝑧 = 0. As in the CDM cases discussed in the
previous section, we quantify the relative differences between each pair
of matched simulated (Sim) and model-predicted (Mod) halos using the
formula 2(Mod − Sim)∕(Mod + Sim) and shade the ±1𝜎 bands of these
curves in gray.

Fig. 6 shows the evolution of 𝑉max,SIDM for the isolated halos in
20 k m∕s < 𝑉max,CDM < 25 k m∕s (left), 25 k m∕s < 𝑉max,CDM < 35 k m∕s
(middle), and 35 k m∕s < 𝑉max,CDM < 45 k m∕s (right). The 𝑉max,SIDM
evolution is shown as a function of normalized time 𝑡∕𝑡𝑐 ,0, where 𝑡 is the
time since the halo formation and 𝑡𝑐 ,0 in Eq. (3) is evaluated using the
halo parameters at 𝑧 = 0. We see that the relative differences remain
small when 𝑡∕𝑡𝑐 ,0 ≲ 0.2, at the level of a few percent. After that, the
differences increase. However, even for the cases with 𝑡∕𝑡𝑐 ,0 ∼ 1, where
he halo enters the phase of deep collapse, the deviation is ∼10%.
 F

6 
Fig. 7 shows the evolution of 𝑉max,SIDM for the subhalos with
𝑉max,CDM < 25 k m∕s (left), 25 k m∕s ≤ 𝑉max,CDM < 35 k m∕s (middle), and
𝑉max,CDM ≥ 35 k m∕s (right). The performance of the model for subhalos
is similar to that of isolated halos, but with more subhalos evolving to
𝑡∕𝑡𝑐 ,0 ∼ 1 in the 𝑉max,CDM < 25 k m∕s case, where the relative difference
could reach to 10–20%. We observe tidal stripping to accelerate the
gravothermal evolution in these cases.

In Figs. 8 and 9, we show the density profiles from the model
rediction (solid) and the simulation (dotted), based on the basic and
ntegral approaches, respectively. The halos are divided into three
max,CDM bins as in Fig. 6. We find that the relative differences in

both approaches are comparable, averaging around 10% near the scale
adii but increasing to about 50% in the inner and outer regions. Both

approaches do not exhibit any noticeable systematic shifts across all
radii.

Fig. 10 shows the comparison for the density profiles of the subha-
los. The agreement level with the model decreases slightly compared
o the isolated halos, with a notable 𝑉max dependency. For 𝑉max,CDM <
5 k m∕s, the relative difference within about 25% for 𝑟∕𝑅vir > 0.05
ut overall increase towards smaller radii. A similar upward systematic
hift appears in the CDM case, as shown in Fig. 4 (middle). This suggests

that the analytical density profile in Eq. (1) may overestimate the inner
density of the CDM subhalos in the low 𝑉max bin, which could also result
in an overestimation of their SIDM counterparts. For larger 𝑉max, the
greement becomes better, especially in the 𝑉max,CDM > 35 k m∕s case,
here performance is comparable to that of isolated halos. This trend
ay be related to the fact that the most massive subhalos often accreted

nto the host recently (see the left panel of Fig. 17 in Appendix B), such
hat the inner halo profiles have not been significantly affected by tidal
tripping.

We have provided a comprehensive analysis of the evolution histo-
ries and density profiles of both isolated halos and subhalos, from the
Milk Way CDM and SIDM simulations in Ref. [24]. From Figs. 6 to 10,
we have demonstrated that the parametric model can effectively cap-
ure the key features of the SIDM halos. For the density profiles of
he isolated halos, the agreement between the model prediction and
he simulation is well within 50% for all radii, and the small de-
iation is not systematic. For the subhalos, while the overall trends
re similar, the model accuracy decreases somewhat, especially in
he lowest 𝑉max,CDM bin, suggesting areas for further improvement.
or example, the systematic upward shift in the lowest 𝑉 bin
max,CDM
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Fig. 6. The 𝑉max as a function of normalized evolution time for isolated halos with 𝑉max,CDM ∈ [20, 25], [25, 35], and [35, 45] k m∕s, in the MilkyWaySIDM simulation of Ref. [24].
The solid and dotted curves denote the prediction of the parametric model and the simulation, respectively. In both cases, the evolution time starts at the estimated halo formation
ime and is normalized by the core collapse time estimated using 𝑧 = 0 halo properties. The relative difference between each pair of simulated (Sim) and model-predicted (Mod)
urves is measured as 2(Mod − Sim)∕(Mod + Sim).
Fig. 7. The 𝑉max as a function of normalized evolution time for subhalos with 𝑉max,CDM < 25 k m∕s, 𝑉max,CDM ∈ [25, 35] k m∕s, and 𝑉max,CDM > 35 k m∕s, in the MilkyWaySIDM
imulation of Ref. [24]. The solid and dotted curves denote the prediction of the parametric model and the simulation, respectively. In both cases, the evolution time starts at the

estimated halo formation time and is normalized by the core collapse time estimated using 𝑧 = 0 halo properties. The relative difference between each pair of simulated (Sim) and
model-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim).
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could be fixed by adjusting the analytical density profile. With this
analysis, we have quantified the relative difference between the model
nd the simulation, which should be taken into account in practical
pplications.

5. Matched halos with an extreme cross section

The GroupSIDM simulation presented in Ref. [53] explores an ex-
reme SIDM scenario at group scales, 1013 M⊙. The cross section has the

same normalization 𝜎0∕𝑚 = 147.1 cm2∕g as in MilkyWaySIDM, but with
 larger transition velocity of 𝑤 = 120 k m∕s. This larger 𝑤 shifts the

suppression of the cross section due to the velocity dependence to more
assive halos, and significantly increases the effective cross section

or halos with typical velocity scales greater than 𝑤 = 24.33 k m∕s in
he MilkyWaySIDM case. In MilkyWaySIDM, there are 9 subhalos with
𝜏0 > 1 in the matched samples. No isolated halos have 𝜏0 > 1. In
GroupSIDM, there are many such cases: 45 out of 106 for isolated halos;
38 out of 46 for subhalos. Since the parametric model is calibrated with
 c

7 
the SIDM simulation within 𝜏0 < 1, and we will select halos from the
GroupsSIDM simulation with 𝜏0 < 1.

We also incorporate the ram-pressure evaporation (RPe) effect fol-
lowing the procedures in Refs. [125,126]. Generally, the RPe is in-
ignificant for halos in both our SIDM simulations because the large
elative velocities between subhalo and host halo particles suppress the
ross section to the 1 cm2∕g level. However, certain cases with long
volutionary trajectories in the host halo can have a non-negligible
ffect, which we will illustrate with examples in Appendix B.

In Fig. 11, we compare the integral model’s predictions (dashed)
with the simulated (dotted) density profiles of isolated halos from the

roupSIDM simulation. We consider three selection criteria: halos with
0 = ∫ 𝑡0

𝑡ℎ
𝑑 𝑡∕𝑡𝑐 (𝑡) < 1 (left), |𝑀CDM −𝑀SIDM|∕𝑀CDM < 10% (middle),

nd halos with 2(Mod − Sim)∕(Mod + Sim) < 1 and 𝜏0 < 1 (right).
verall, the model predictions align less well with the simulation

esults compared to the Milky Way simulation. As shown in the left
anel, in the innermost regions (𝑟∕𝑅vir = 0.01), the relative differences
an be as large as 100%. Aside from the 𝜏 < 1 requirement, we
0



D. Yang et al.

t
w

2

m
t
2
w
w

|

t
2
s
s

(

Physics of the Dark Universe 47 (2025) 101807 
Fig. 8. The density profiles from the parametric model with the basic approach (solid) and the simulation (dotted) for isolated halos with 𝑉max,CDM ∈ [20, 25], [25, 35], and
[35, 45] k m∕s, in the MilkyWaySIDM simulation of Ref. [24]. In both cases, the evolution time starts at the estimated halo formation time and is normalized by the core collapse
ime estimated using 𝑧 = 0 halo properties. The relative difference between each pair of simulated (Sim) and model-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim),
ith the ±1𝜎 band of the results shaded in gray.
Fig. 9. The density profiles from the parametric model with the integral approach (solid) and the simulation (dotted) for isolated halos with 𝑉max,CDM ∈ [20, 25], [25, 35], and
[35, 45] k m∕s, in the MilkyWaySIDM simulation of Ref. [24]. The relative difference between each pair of simulated (Sim) and model-predicted (Mod) curves is measured as
(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded in gray.
s
t
e

(

i
e
l

l
i

also test the |𝑀CDM −𝑀SIDM|∕𝑀CDM < 0.1 criterion, given that the
parametric model conserves the halo mass. Interestingly, the perfor-

ance after applying this mass difference requirement is similar to
hat obtained from requiring 𝜏0 < 1. In the right panel, we enforce
(Mod − Sim)∕(Mod + Sim) < 1 and find a subgroup of candidates
ith significantly better agreement, displaying relative differences well
ithin a ±50% band, see Fig. 11 (right) for an illustration. These cases

have more continuous and simpler accretion histories than others.

Fig. 12 shows similar results for subhalos within the group main
halo, following the same criteria as in Fig. 11. For the 𝜏0 < 1 and
𝑀CDM −𝑀SIDM|∕𝑀CDM < 0.1, the model performance is comparable to
he corresponding isolated halo cases. Additionally, when the condition
(Mod − Sim)∕(Mod + Sim) < 1 and 𝜏0 < 1 are combined, only one
ubhalo meets these criteria, exhibiting remarkable agreement between
imulations and model predictions.

We pick two halos satisfying the combined criteria 2(Mod − Sim)∕
Mod + Sim) < 1 and 𝜏0 < 1, shown in the right panels of Figs. 11 and 12.

Fig. 13 (top) shows the evolution of 𝑉 (left), 𝑅 (middle), and 𝑀
max max vir i

8 
(right) of isolated core-collapsing halos from the integral approach (or-
ange) and the Group CDM (black) and SIDM (magenta) simulations. We
see that the model prediction agrees with the GroupSIDM simulation at
almost all times in the evolution history of this halo. Fig. 13 (bottom)
shows a similar case, but for a subhalo. These examples highlight the
uccessful application of the integral model in these cases. Aside from
he 𝑧 = 0 density profiles in the right panels of Figs. 11 and 12, their
volution histories also match the SIDM simulation results quite well.

We further present the evolutionary histories of two example cases
in Fig. 14 to illustrate the challenges. We depict the evolution of 𝑉max
left), 𝑅max (middle), and 𝑀vir (right) for both simulated (magenta) and

integral model-predicted (orange) SIDM, together with the evolution of
ts CDM counterpart (dashed black). The top panels illustrate a boosted
volution in the SIDM simulation at early times (𝑡𝐿 > 8 Gyr). This
eads to the highest density being reached around 𝑡𝐿 = 7 Gyr. After

this point, core collapse ceases, and 𝑉max begins to decrease. This is
ikely due to the numerical issues associated with N-body simulations
n the deeply collapsed regime and the energy conservation condition
s violated [48,127–129]. Interestingly, the halo masses in CDM and
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Fig. 10. The density profiles from the parametric model with the integral approach (solid) and the simulation (dotted) for subhalos with 𝑉max,CDM < 25 k m∕s, 𝑉max,CDM ∈ [25, 35] k m∕s,
and 𝑉max,CDM > 35 k m∕s, in the MilkyWaySIDM simulation of Ref. [24]. The relative difference between each pair of simulated (Sim) and model-predicted (Mod) curves is measured
as 2(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded in gray.
Fig. 11. The density profiles from the parametric model with the integral approach (dashed) and the simulation (dotted) for isolated halos in the GroupSIDM simulation in Ref. [53].
From left to right, the results are presented considering three conditions: cases with 𝜏0 = ∫ 𝑡0

𝑡ℎ
𝑑 𝑡∕𝑡𝑐 (𝑡) < 1 (left), cases with the relative mass difference |𝑀CDM −𝑀SIDM|∕𝑀CDM within

10% (middle), and cases with 𝜏0 = ∫ 𝑡0
𝑡ℎ

𝑑 𝑡∕𝑡𝑐 (𝑡) < 1 with the additional requirement that the relative differences be smaller than one (right). The relative difference between each
pair of simulated (Sim) and model-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded in gray.
t

i

SIDM start to diverge from each other early on at 𝑡𝐿 > 10 Gyr, poten-
ially causing the parametric model prediction to become inaccurate.
he bottom panels correspond to a subhalo with multiple pericenter
assages, indicated by steep decreases in the 𝑉max evolutions. In SIDM,

when the core size becomes comparable to the tidal radius, especially
at pericenter passages, tidal stripping is enhanced, causing the subhalo
mass to be smaller than its CDM counterpart. This decrease occurred in
this halo early on at 𝑡𝐿 ≈ 8 Gyr. Subsequent pericenter passages further
accelerate the mass loss, amplifying the difference between the SIDM
imulation and the model prediction.

These examples illustrate that applying the parametric model to ha-
os with large effective cross sections and complex late mergers requires

caution. In the GroupSIDM simulation, the accretion histories of halos
are generally more noisy than those in the MilkyWaySIDM simulation,
as more massive halos tend to form later. Additionally, merger events

ay induce secondary effects beyond the scope of our current paramet-
ric model, altering the gravothermal state of an SIDM halo. Therefore, it
is crucial to inspect the CDM and predicted evolutionary trajectories to
9 
rule out numerical inaccuracies and explore potential secondary effects
through matched SIDM halos in the simulation. Additionally, the 𝜏0 > 1
regime deserves dedicated study, and it would be interesting to extend
the parametric model for 𝜏0 > 1. In future work, we plan to address
hese issues explicitly.

6. Implications for observing strong lensing perturbers

We now demonstrate the utility of our model by applying it to
predict the inner density profiles of subhalos relevant for strong grav-
tational lensing analyses. Several strong-lensing perturbers have been

detected through the gravitational imaging technique [54,55]. Intrigu-
ingly, some of these systems are significantly denser than standard
CDM predictions [56,130]. Ref. [53] demonstrated that the GroupSIDM
model produces substructure in excellent agreement with the proper-
ties of the SDSSJ0946+1006 perturber; however, this study relied on
the Group zoom-in simulation described above, which is numerically
expensive and evaluated for a single SIDM cross section. The ability
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Fig. 12. The density profiles from the parametric model with the integral approach (dashed) and the simulation (dotted) for subhalos (bottom) in the GroupSIDM simulation in
Ref. [53]. From left to right, the results are presented considering three conditions: cases with 𝜏0 = ∫ 𝑡0

𝑡ℎ
𝑑 𝑡∕𝑡𝑐 (𝑡) < 1 (left), cases with the relative mass difference |𝑀CDM −𝑀SIDM|∕𝑀CDM

within 10% (middle), and cases with 𝜏0 = ∫ 𝑡0
𝑡ℎ

𝑑 𝑡∕𝑡𝑐 (𝑡) < 1 with the additional requirement that the relative differences be smaller than one (right). The relative difference between
ach pair of simulated (Sim) and model-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded in gray.
Fig. 13. Evolution of 𝑉max (left), 𝑅max (middle), and 𝑀vir (right) for halos in the GroupSIDM simulation (magenta) and as predicted by the integral model (orange), compared to
he curves for CDM (dashed black). The top panels feature a core-collapsing halo from the right panel of Fig. 11, whose relative difference is smaller than one. The bottom panels
how the core-collapsing subhalo from the right panel of Fig. 12, also with a relative difference smaller than one. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
to rapidly generate such predictions for a range of SIDM models is
therefore timely, as upcoming facilities will drastically increase the
strong lens sample sizes [131–133].

As an example application of the parametric model, we explore
eatures of the density profiles under the three SIDM scenarios as

characterized by Eq. (9): 𝜎0∕𝑚 = 147.1 cm2∕g, 𝑤 = 24.33 k m∕s
(MilkyWaySIDM); 𝜎0∕𝑚 = 147.1 cm2∕g, 𝑤 = 120 k m∕s (GroupSIDM);
and 𝜎 ∕𝑚 = 70 cm2∕g, 𝑤 = 120 k m∕s. We apply the integral approach
0

10 
described in Section 2 to the CDM subhalos of the most massive
main halo in the Group simulation and obtain their SIDM counterparts
for the three SIDM scenarios. The top panels of Fig. 15 show the
SIDM (colored) and CDM (gray) density profiles, illustrating how SIDM
diversifies inner halo structure by producing both core-forming and -
collapsing subhalos. In the MilkyWaySIDM scenario, there are more
core-forming subhalos than collapsing ones, and the overall density
profiles are shallower compared to CDM. In GroupSIDM, the trend is
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Fig. 14. Evolution of 𝑉max (left), 𝑅max (middle), and 𝑀vir (right) for halos in simulated (magenta) and model-predicted (orange; integral approach) SIDM, alongside CDM evolution
urves (dashed black). The case corresponding to the top panels has a halted core collapse, the case corresponding to the bottom panels demonstrates an enhanced decrease in
𝑉max. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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opposite and most subhalos are collapsed. The third SIDM scenario has
maller 𝜎0∕𝑚, while the same 𝑤 compared to GroupSIDM, and hence
he number of collapsed subhalos decreases, but is still higher than that
n MilkyWaySIDM.

We further compute the projected logarithmic density profile slope
2D ≡ 𝑑 ln𝛴∕𝑑 ln𝑅, averaged over 0.75 k pc < 𝑟 < 1.25 k pc, and the

enclosed projected mass within 1 kpc 𝑀2D(1 k pc). The projected surface
ass densities are computed as [53,134]

𝛴(𝑅) = ∫

𝑅vir

−𝑅vir

𝜌(
√

𝑅2 + 𝑧2)𝑑 𝑧. (10)

Fig. 15 (bottom) shows the 𝑀2D(1 k pc)–𝛾2D distribution for SIDM
red) and CDM (blue) subhalos in the group host across the three
IDM scenarios. In the MilkyWaySIDM scenario, the number of core-
orming subhalos dominates, and the overall 𝛾2D value shifts upwards;
nly a few SIDM subhalos have a steeper density slope than their
DM counterparts. Conversely, GroupSIDM is characterized by a large
opulation of core-collapsing subhalos, which have lower 𝛾2D values
han their CDM counterparts, leading to a systematic downward shift

in the 𝛾2D distribution. The third SIDM scenario exhibits a trend of
the 𝛾2D distribution in between MilkWaySIDM and GroupSIDM, as ex-
pected. The comparison demonstrates that dark matter self-interactions
iversify the inner density profiles of subhalos, and the significance is
trongly correlated with the size of the cross section.

More specifically, the CDM subhalos have −1.5 ≲ 𝛾2𝐷 ≲ −0.5.
In contrast, for 𝜎0∕𝑚 = 70 cm2∕g–147 cm2∕g and 𝑤 = 120 k m∕s, a
onsiderable number of SIDM subhalos have 𝛾2D ≲ −1.5, and some of
hem reach 𝛾2D ≈ −2. This lower limit is due to the analytical density
rofile we assume in Eq. (1), where the density scales as ∝ 𝑟−3 in the

steepest limit, with both 𝑟𝑐 and 𝑟𝑠 shrinking to small values. Thus, the
projected surface mass density is
𝛴(𝑅) ∝ (

𝑅2 + 𝑧2
)−3∕2 𝑑 𝑧 ∝ 𝑅−2.
∫

11 
We see that 𝛾2𝐷 cannot fall below −2. Compared with the simulated
SIDM halos, we found that some core-collapsing halo profiles can
exhibit distortions at the 10% level in the density profile, which are not
currently accounted for in our density profile models. For instance, the
core-collapsing halo with the highest inner density in the left panel of
Fig. 12 shows an inner density slope steeper than the parametric model
rediction. Incorporating these distortions could enhance the precision
f the predicted 𝛾2D values. Nevertheless, the parametric model success-
ully reproduces the major trend in the 𝑀2D(1k pc)–𝛾2D distribution of
he GroupSIDM subhalos illustrated in Fig. 2 of [53]. With the current

model, we can still differentiate between different SIDM scenarios and
estimate the spread in inner densities. The parametric model provides
a conservative estimate of the downward shifts, which is useful for
exploring strong lensing systems.

7. Conclusions

In this study, we conducted a comprehensive evaluation of the
arametric SIDM model introduced in Ref. [68], utilizing matched halo
airs from CDM and SIDM simulations. Our analysis primarily focused

on the SIDM simulation of the Milky Way analog (Ref. [24]), examining
both isolated halos and subhalos. These halos, predominantly in the
tages of gravothermal evolution with 𝑡∕𝑡𝑐 < 1, exhibit mass evolution

histories akin to those in CDM simulations, making them ideal cases for
testing the parametric model.

We showed the 𝑉max evolution from the parametric model is well
onsistent with that from the N-body simulation. In examining the
ensity profiles at redshift 𝑧 = 0, we noted that relative differences are
redominantly within 50% in the inner regions, decreasing to below

10% around 𝑟∕𝑅vir ∼ 0.04, and then moderately rising again. Overall,
we observed no systematic shifts in density profiles of isolated halos
from either the basic or integral approaches. Thus, the parametric
model accurately predicts the full diversity of (sub)halo density profiles
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Fig. 15. Top: Density profiles of CDM (gray) and SIDM (colored) of subhalos of the group host halo. Bottom: The projected logarithmic density profile slope 𝛾2D, averaged
over 0.75 k pc < 𝑟 < 1.25 k pc, vs. enclosed projected mass within 1 kpc for subhalos of the group host halo. We consider the following three SIDM scenarios. The MilkyWaySIDM

odel [24] has 𝜎0∕𝑚 = 147 cm2∕g and 𝑤 = 24 k m∕s (left). The GroupSIDM model [53] features 𝜎0∕𝑚 and 𝑤 = 120 k m∕s (middle). An intermediate model is set at 𝜎0∕𝑚 = 70 cm2∕g
and 𝑤 = 120 k m∕s (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in our simulations, with a spread that strictly exceeds CDM.
Modeling halos that are deeply collapsed is challenging. As these

halos evolve, their 𝑡∕𝑡𝑐 approaches unity, it is necessary to use finer
timesteps to accurately resolve the escalating inner densities. This
requirement substantially slows down the simulation process. In the
GroupSIDM simulation of Ref. [53], the effective cross section exceeds
00 cm2∕g for typical dwarf galaxy halos, causing many of them to enter
he deeply core collapsed phase. Nevertheless, the model performs well
or halos with 𝜏0 < 1. By freezing the SIDM-induced gravothermal
volution once 𝜏0 = 1, the model can still provide reasonable SIDM
redictions for comparing model predictions and identifying potential
ignatures. We presented an example application for lensing perturber
ystems in three SIDM scenarios, demonstrating that they produce
istinguishable signatures on the 𝑀2D(1k pc)–𝛾2D plane.

In conclusion, the parametric SIDM halo model provides an efficient
tool for making predictions for given SIDM scenarios and CDM halos. It
has recently been implemented into the semi-analytic model program
SASHIMI-SIDM, for phenomenological SIDM studies down to very low
masses, relevant for, e.g., stellar stream perturbations, indirect detec-
tion, and direct detection. It has also been extended to incorporate the
effect of baryons [52], enabling more realistic theoretical predictions
for halos hosting massive galaxies. Moreover, the model’s efficiency
nd flexibility make it suitable for predicting galaxy rotation curves,
ased on which one can explore a wider parameter space and different

SIDM scenarios, see, e.g., Ref. [135]. Additionally, using the parametric
model’s results as leading-order predictions provides a starting point
for investigating new SIDM signatures across cosmic environments. We
leave these investigations for future work.

We provide example scripts for applying the parametric model at:
https://github.com/DanengYang/parametricSIDM
12 
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Fig. 16. Testing the Read profile based model predictions for isolated halos (left) with 𝑉max,CDM ∈ [25, 45] k m∕s and subhalos (right) with 𝑉max,CDM > 25 k m∕s. The density profiles
rom the parametric model using the integral approach (solid) and from the simulation (dotted) are plotted. The relative difference between each pair of simulated (Sim) and
odel-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded in gray.
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Appendix A. Performance of the read profile compared with the
𝜷𝟒 profile

The Read profile proposed in Refs. [106,107] has the same per-
formance as the 𝛽4 one in obtaining the model predictions. The Read
profile is formulated based on the NFW profile,

𝜌Read(𝑟) = 𝑓 𝑛𝜌NFW +
𝑛𝑓 𝑛−1(1 − 𝑓 2)

4𝜋 𝑟2𝑟𝑐
𝑀NFW, (A.1)

where 𝑟𝑐 is the core radius, 𝑓 (𝑟) = t anh(𝑟∕𝑟𝑐 ), and 𝑛 is a parameter in
the range 0 < 𝑛 ≤ 1. The NFW density and mass profiles are

𝜌NFW(𝑟) = 𝜌𝑠
𝑟
𝑟𝑠

(

1 + 𝑟
𝑟𝑠

)2
, 𝑀NFW(𝑟) = 4𝜋 𝜌𝑠𝑟3𝑠

[

ln
(

1 + 𝑟
𝑟𝑠

)

− 𝑟
𝑟 + 𝑟𝑠

]

.

(A.2)

The enclosed mass follows the relation 𝑀Read = 𝑓 𝑛(𝑟)𝑀NFW(𝑟). For
 ≫ 𝑟𝑐 , 𝑓 𝑛(𝑟) = 1, and 𝑀Read = 𝑀NFW(𝑟). In the limit of 𝑟𝑐 → 0, 𝑓 → 1
nd 𝜌Read(𝑟) → 𝜌(𝑟)NFW. In this work, we fix 𝑛 = 1.

The evolution trajectories of the parameters 𝜌𝑠, 𝑟𝑠, and 𝑟𝑐 in the Read
profile are described by the following equations [68],
𝜌𝑠
𝜌𝑠,0

= 1.335 + 0.7746𝜏 + 8.042𝜏5 − 13.89𝜏7 + 10.18𝜏9

+(1 − 1.335)(ln 0.001)−1 ln (𝜏 + 0.001) ,
𝑟𝑠
𝑟𝑠,0

= 0.8771 − 0.2372𝜏 + 0.2216𝜏2 − 0.3868𝜏3

+(1 − 0.8771)(ln 0.001)−1 ln (𝜏 + 0.001) ,
𝑟𝑐
𝑟𝑠,0

= 3.324
√

𝜏 − 4.897𝜏 + 3.367𝜏2 − 2.512𝜏3 + 0.8699𝜏4, (A.3)

where the subscript ‘‘0’’ denotes the corresponding value of the initial
NFW profile. We found the same functional forms of Eq. (2) work well
for the Read profile, with the adjustment of the coefficients. Note that
the fitted values of 𝜌𝑠, 𝑟𝑠, and 𝑟𝑐 of the Read profile are different from
those of our cored profile in Eq. (1).
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For applying the integral model, we present the fitting functions for
the 𝑉max and 𝑅max evolution, based on the Read profile modeled by
Eq. (A.3).
𝑉max
𝑉max,0

= 1 + 0.2289𝜏 − 5.018𝜏3 + 17.75𝜏4 − 19.35𝜏5 + 8.953𝜏7 − 2.364𝜏9

𝑅max
𝑅max,0

= 1 − 0.6026𝜏 + 1.043𝜏2 − 1.484𝜏3 + 0.5263𝜏4, (A.4)

where 𝜏 = 𝑡∕𝑡𝑐 .
We apply the integral approach with the Read profile to obtain

redictions for the halos in the Milky Way simulation (Ref.[24]). In
Fig. 16, we show the obtained results for isolated halos with 𝑉max,CDM
values between 25 and 45 k m∕s (left), and subhalos with 𝑉max,CDM
greater than 25 k m∕s (right). The results closely mirror those obtained
using the 𝛽4 profile.

Appendix B. Incorporating the ram-pressure evaporation

We follow the procedures in Refs. [125,126], with minor adjust-
ments, to model the ram-pressure evaporation (RPe) effect induced
by the collisions between subhalo and host halo particles. First, we
estimate an escape velocity assuming an NFW potential at 𝑟𝑠, 𝑣esc =
√

−2𝛷NFW(𝑟𝑠) =
√

8𝜋(ln 2)𝐺 𝜌𝑠𝑟2𝑠 . We also compute the 1D velocity
dispersion 𝜎1D,host (𝑑) of the host halo assuming an NFW halo at the
osition of the subhalo, which has a distance 𝑑 from the host halo.

The 1D velocity dispersion 𝜎NFW(𝑟) can be obtained analytically
as [136].

𝜎NFW(𝑟) =
√

4𝜋 𝐺 𝜌𝑠𝑟2𝑠𝐹 (𝑟∕𝑟𝑠),

with

𝐹 (𝑥) = 1
2
𝑥(𝑥 + 1)2

(

6Li2(−𝑥) +
(

1
𝑥2

− 2
𝑥 + 1 − 4

𝑥
+ 1

)

log(𝑥 + 1) (B.1)

1 6 1 2 2
)

−
𝑥
−

𝑥 + 1 −
(𝑥 + 1)2 + 3 log (𝑥 + 1) − log(𝑥) + 𝜋 .
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Fig. 17. Left: Scatter for subhalo orbital length in the host halo vs. ratio of masses with and without the RPe effect. Middle: The same as Fig. 15 (upper right), except that the
subhalo density profiles are obtained without incorporating the RPe effect. Right: Subhalo mass distribution with (shaded lines) and without (shaded dots) the RPe effect. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Based on the 𝑣esc and 𝜎1D,host (𝑑), we compute the evaporation fraction
𝜒𝑒 as

𝜒𝑒 =
1 − 𝑦2

1 + 𝑦2
, (B.2)

where 𝑦 = 𝑣esc∕
√

𝑣2sub + 𝜎21D,host (𝑑) and 𝑣sub refers to the magnitude of
the subhalo’s velocity. In a given timestep, the mass change rate due to
ram-pressure evaporation can be computed as
(

𝑑 ln𝑀sub
𝑑 𝑡

)

RPe
= −𝜒𝑒

𝜎𝑉 (𝑣𝑟)
𝑚

𝑣sub𝜌ℎ(𝑑), (B.3)

where 𝜎𝑉 (𝑣𝑟)∕𝑚 refers to the viscosity cross section evaluated at 𝑣𝑟 =
√

𝑣2sub + 𝜎21D,host (𝑑) and 𝜌ℎ(𝑑) is the host halo density at radius equals 𝑑.
The viscosity cross section averages over the angular distribution of a
differential cross section as [117]

𝜎𝑉 = 3
2 ∫ 𝑑 cos 𝜃 sin2 𝜃 𝑑 𝜎

𝑑 cos 𝜃
. (B.4)

We convert the mass change rate into that of 𝑉max and 𝑅max assum-
ing 𝑀sub ∝ 𝑉 3

max and 𝑀sub ∝ 𝑅2
max which we have tested using the

simulated CDM halos. It follows that
(

𝑑 𝑉max
𝑑 𝑡

)

RPe
=

𝑉max,CDM

3

(

𝑑 ln𝑀sub
𝑑 𝑡

)

RPe
(B.5)

(

𝑑 𝑅max
𝑑 𝑡

)

RPe
=

𝑅max,CDM

2

(

𝑑 ln𝑀sub
𝑑 𝑡

)

RPe
. (B.6)

To better illustrate the RPe effect, we apply the parametric model to
subhalos within a group host, considering the GroupSIDM cross section.
In the left panel of Fig. 17, we show the ratio of masses with and
without the RPe effect vs. the orbital length of a subhalo as it evolves
in the host halo. The data points are color-coded by the mass at 𝑧 = 0,
revealing that more massive subhalos tend to have lower evaporated
masses and shorter orbital lengths. This observation can be attributed
to the tidal mass loss of subhalo progenitors: extensive orbital evolution
removes most of their mass, rendering them lighter. In the middle
panel, we plot density profiles of CDM (blue) and SIDM (red) subhalos
of the group host halo, without incorporating the RPe effect. Compared
with the results that include the RPe effect shown in the upper right
panel of Fig. 15, we find the profiles of some lowest density subhalos
at around 𝑟∕𝑅vir ≈ 0.1 are shifted to higher values. In the right panel,
we compare the subhalo mass distribution with and without the RPe
effect. We find that approximately 10% of halos with masses greater
than 109 M⊙∕h without the RPe effect are shifted below this threshold
when the RPe effect is included. We have checked the reduction in
the mass function found in the GroupSIDM simulation [53] is more
14 
significant than that estimated using the RPe model. This suggests that
the effect of enhanced tidal striping due to SIDM core formation may
have a stronger impact than the RPe effect, and we will leave it for
future study.

Appendix C. A hybrid method for approximating integral approach
results

In this section, we explore a subtle aspect of the integral approach
and introduce a hybrid method that approximates its results. We pro-
pose using the following equation to replace Eq. (7) in the integral
approach

𝑉max(𝑡) = 𝑉max,CDM(𝑡ℎ) + ∫

𝑡

𝑡ℎ
𝑑 𝑡′ 𝑑 𝑉max,CDM(𝑡′)

𝑑 𝑡′ + ∫

𝜏(𝑡)

0
𝑑 𝜏′ 𝑑 𝑉max,Model(𝜏′)

𝑑 𝜏′

𝑅max(𝑡) = 𝑅max,CDM(𝑡ℎ) + ∫

𝑡

𝑡ℎ
𝑑 𝑡′ 𝑑 𝑅max,CDM(𝑡′)

𝑑 𝑡′

+∫

𝜏(𝑡)

0
𝑑 𝜏′ 𝑑 𝑅max,Model(𝜏′)

𝑑 𝜏′ , (C.1)

where 𝜏(𝑡) = ∫ 𝑡
0 𝑡′∕𝑡𝑐 (𝑡′) can be computed independently. The pri-

mary distinction relative to Eq. (7) lies in the interpretation of the
integral terms for SIDM. For the cases without accretion histories,
these measures converge; however, they are different conceptually: 𝑡′
indicates the duration of halo evolution, whereas 𝜏′ denotes the halo’s
gravothermal state at time 𝑡′. This difference reflects a potential ‘‘mem-
ory effect’’, representing how much a halo’s current state depends on its
accretion history. Theoretically, the differences between the fictitious
CDM halo and the simulated CDM halo stem from the mass changes
in the progenitor halos during the integration over 𝜏. Consequently,
only halos that have experienced significant mass and gravothermal
evolution exhibit a clear differentiation in the dark matter-only case. By
exploring this subtle effect, we could better understand the influence of
accretion histories on gravothermal evolution.

We perform such a comparison for the subhalos in the Milky Way
simulation [24]. As illustrated in Fig. 18, both methods produce almost
identical results. This similarity is anticipated, given that the differ-
ences are suppressed by the rate of change of 𝑡𝑐 and an additional
multiplicative factor involving 𝑡𝑐 .

Moreover, we evaluate the accuracy of approximating the results
of the integral approach by disregarding the differences between the
fictitious CDM halo and the simulated CDM halo. This simplifica-
tion reduces the integrals in Eq. (C.1) to a simple evaluation of the
gravothermal phase [52,68]

𝜏(𝑡) =
𝑡 𝑑 𝑡′ ,
∫𝑡ℎ 𝑡𝑐 [𝜎ef f (𝑡′)∕𝑚, 𝜌𝑠(𝑡′), 𝑟𝑠(𝑡′)]
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Fig. 18. Comparison of the integral approach results, obtained considering Eq. (7) (left) and Eq. (C.1) (right), respectively. We consider subhalos with 𝑉max,CDM > 25 k m∕s and
adopt the 𝛽4 profile for obtaining the predictions. The density profiles from the parametric model using the integral approach (solid) and from the simulation (dotted) are plotted.
The relative difference between each pair of simulated (Sim) and model-predicted (Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded
in gray.
Fig. 19. Model-predicted density profiles (solid) obtained using the hybrid approach, for subhalos in the Milky Way simulation (left) and isolated halos in the Group simulation
(right). Their counterparts from the N-body SIDM simulations (dotted) are shown for comparison. The relative difference between each pair of simulated (Sim) and model-predicted
(Mod) curves is measured as 2(Mod − Sim)∕(Mod + Sim), with the ±1𝜎 band of the results shaded in gray.
where 𝑡ℎ refers to the halo formation time and 𝑡𝑐 (𝑡′) is the core collapse
time computed at time 𝑡′ as in the original integral approach. The SIDM
information is assumed to be entirely encoded by the gravothermal
phase 𝜏. Due to its position as an intermediary between the integral
and basic approaches, we refer to this as the hybrid approach.
15 
In Fig. 19, we test the hybrid approach for subhalos in the Milky-
WaySIDM simulation (left) and isolated halos in the GroupSIDM sim-
ulation (right), respectively. In both cases, the performances are close
to the original integral approach, supporting the effectiveness of the
hybrid approach in dark matter-only simulations.



D. Yang et al.

b
b
u

Physics of the Dark Universe 47 (2025) 101807 
It is important to note, however, that in scenarios with a growing
aryonic content, the differences between these two approaches may
ecome more pronounced. In such cases, the integral approach contin-
es to provide the most accurate theoretical predictions. For a detailed

comparison of these effects, see Appendix B of Ref. [52].

Data availability

Data will be made available on request.
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