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ABSTRACT

Motivation: Recently, investigators have proposed state-of-the-art

Identity-by-descent (IBD) mapping methods to detect IBD segments

between purportedly unrelated individuals. The IBD information can

then be used for association testing in genetic association studies.

One approach for this IBD association testing strategy is to test for

excessive IBD between pairs of cases (‘pairwise method’). However,

this approach is inefficient because it requires a large number of per-

mutations. Moreover, a limited number of permutations define a lower

bound for P-values, which makes fine-mapping of associated regions

difficult because, in practice, a much larger genomic region is impli-

cated than the region that is actually associated.

Results: In this article, we introduce a new pairwise method ‘Fast-

Pairwise’. Fast-Pairwise uses importance sampling to improve effi-

ciency and enable approximation of extremely small P-values. Fast-

Pairwise method takes only days to complete a genome-wide scan. In

the application to the WTCCC type 1 diabetes data, Fast-Pairwise

successfully fine-maps a known human leukocyte antigen gene that

is known to cause the disease.

Availability: Fast-Pairwise is publicly available at: http://genetics.cs.

ucla.edu/graphibd.

Contact: eeskin@cs.ucla.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Identity by descent (IBD) is a fundamental concept in genetics.

Two individuals are IBD at a locus if they have identical alleles

inherited from a common ancestor. Investigators have put tre-

mendous efforts to map the IBD segments between purportedly

unrelated individuals (Browning and Browning, 2010; Gusev

et al., 2009; Purcell et al., 2007). The current state-of-the-art

methods such as GERMLINE (Gusev et al., 2009) and Beagle

(Browning and Browning, 2010, 2011) can detect even small

(several megabases) IBD segments shared between individuals.
One promising application of IBDmapping is to use discovered

IBD segments in the association testing (Purcell et al., 2007).

Investigators usually test single nucleotide polymorphisms

(SNPs) for association, but SNPs may not ‘tag’ low frequency

causal variations well (de Bakker et al., 2005). Imputation also

performs poorly on rare variants (Browning and Browning, 2009;

Marchini et al., 2007). Association testing based on the IBD in-

formation, or ‘IBD association testing’, can complement standard

association testing methods (Browning and Browning, 2011).
There are two categories of IBD association testing method.

The first method is the pairwise method (Purcell et al., 2007),

where one compares the IBD rate of case/case pairs with the back-

ground IBD rate to detect excessive IBD between cases. The ra-

tionale is that if a rare causal variation has occurred in a relatively

recent ancestor, cases will likely share an IBD segment containing

the causal variant. The second method is the clustering method

(Gusev et al., 2011), where one divides individuals into clusters

based on the IBD information and then test each cluster for as-

sociation assuming the cluster ‘tags’ a rare causal variation. In this

article, we focus on the pairwise method.
The pairwise method has two computational challenges. The

first challenge is computational efficiency. In the pairwise

method, one uses permutation to approximate P-values because

it is difficult to analytically obtain the asymptotic distribution of

the statistic. Because the P-value threshold for genome-wide

association studies (GWAS) is necessarily low due to multiple

testing (Browning and Thompson, 2012), one must perform a

large number of permutations, which can be computationally

demanding. The second challenge is fine-mapping. After one

identifies significant loci, it is important to pinpoint the most

significant peak within the loci to further follow up candidate

genes. The permutation is limited for this purpose because the

smallest P-value it can approximate is constrained by the number
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of permutations, often resulting in many SNPs having the same

minimal P-values in the region.
In this article, we present a new method, ‘Fast-Pairwise’,

to overcome the computational challenges of the traditional

pairwise method. Fast-Pairwise uses ‘importance sampling’

(Wasserman, 2004) to improve efficiency and to enable approxi-

mation of extremely small P-value. To devise an importance

sampling procedure, we introduce a new statistic that has two

properties; it can approximate the pairwise method statistic, and

it can be conveniently used for designing a sampling procedure.

We show that the new statistic has a close relationship with the

pairwise method statistic through the properties of the graph

representation of IBD.
Fast-Pairwise is efficient and takes only days to complete a

genome-wide scan. To demonstrate the utility in fine-mapping,

we apply our method to the type 1 diabetes dataset of the

Wellcome Trust Case Control Consortium (2007). In this dataset,

the traditional pairwise method can identify a significant region in

chromosome 6 (Browning and Thompson, 2012), but it gives the

sameminimalP-value for a wide region (26.7–35.5Mb), including

all eight classical human leukocyte antigen (HLA) genes. Among

these, Fast-Pairwise pinpoints HLA–DQB1, which is known to

cause the disease (Todd et al., 1987).
Fast-Pairwise is publicly available at http://genetics.cs.ucla.

edu/graphibd.

2 METHODS

2.1 IBD graph

Given N individuals, the IBD information at a genomic locus can be

represented as a graph with N vertices (Fig. 1). An edge exists between

a pair of vertices if the individuals are IBD.

2.2 Pairwise methods for IBD association mapping

We refer to a class of IBD association mapping methods as ‘pairwise

methods’ if they examine the relative number of edges in the IBD

graph at each locus. There are three different types of edges: edges that

connect two case individuals, edges that connect two control individuals

and edges that connect a case and a control individual. Pairwise methods

can be performed in two different ways. One way is to compare the

number of case/case pairs with control/control pairs. A second way is

to compare the number of case/case pairs with non-case/case pairs (union

of control/control pairs and case/control pairs). We will call the first

method CC and the second method CN. In this article, we mainly

focus on CN consistent with previous studies (Browning and

Thompson, 2012; Purcell et al., 2007). If we simply refer to the ‘pairwise

method’, we are referring to CN.

Suppose that we have Nþ cases and N� controls (Nþ þN� ¼ N). Let

Vþ be the set of case vertices andV� be the set of control vertices. Let Eþþ

be the set of all possible case/case vertex pairs,E�� be the set of all possible

control/control vertex pairs and Eþ� be the set of all possible case/control

vertex pairs. Let eij be 1 if there exists an edge between vertices i and j, and 0

otherwise. Then, the CC and CN statistics are defined as

SCC ¼ dIBDcase=case � dIBDcontrol=control

¼
X
ði, jÞ2Eþþ

eij
Nþ

2

� �� X
ði, jÞ2E��

eij
N�

2

� �
SCN ¼ dIBDcase=case � dIBDnon�case=case

¼
X
ði, jÞ2Eþþ

eij
Nþ

2

� �� X
ði, jÞ2E��[Eþ�

eij
N�

2

� �
þNþN�

The asymptotic distributions of these statistics are difficult to obtain ana-

lytically. This is because the statistics are based on the edges that depend

on each other. For this reason, statistical significance is assessed by per-

mutation. We assume a one-sided test, where IBD segments carry vari-

ants that are involved in disease (Browning and Thompson, 2012).

The relationship between CC and CN is worth noting. Under the con-

dition that the background IBD rates of control/control pairs and the

non-case/case pairs are equivalent (IBDcontrol=control ¼ IBDnon�case=case),

CN will be more powerful than CC owing to the additional NþN�

pairs it considers. We expect that, however, the relative ordering of the

two statistics is similar to each other (Fig. 2), as most of the pairs for both

CC and CN are the same. As we will show later, we will use this similarity

as the basis of increasing the computational efficiency of computing the

significance of SCN.

2.3 Permutation test

Permutation is the standard approach for assessing the significance of the

pairwise method. A single permutation can be thought of as a randomly

sampled a vector of case/control disease statuses. Let

v ¼ ðv1, . . . , vNÞ, 8vi 2 f0, 1g

be the vector of disease status of N individuals, where 0 denotes control

and 1 denotes case. The test statistic of pairwise method, SCN, is a func-

tion of v. Let v̂ be the case/control status that was originally observed in

the data. The standard permutation test is equivalent to sampling new v

from all possible permutations of v̂ assuming a uniform distribution. Let

B be the set of sampled v. The estimated P-value is

p̂ ¼
1

jBj

X
v2B

�ðSCNðvÞ � SCNðv̂ÞÞ ð1Þ

where � is the indicator function.

Fig. 2. High correlation between CC and CN statistics. We simulated

1000 studies under the alternative hypothesis (see Section 3.2). We then

permuted phenotypes to simulate the null hypothesis. Spearman � is 0.89

and 0.99 under the null and the alternative, respectively

Fig. 1. An example of IBD graph. IBD detection method provides IBD

information (Table). Then we build a graph where vertices are individuals

and edges are IBD relationships
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The drawback of the permutation test is that it is computationally

inefficient. If the true P-value is small, which is required in genome-

wide studies, we will need a large number of permutations. For example,

to assess a P-value p with standard error p/10, one needs approximately

100/p samples. For the genome-wide threshold of IBD association testing

[6� 10�6, Browning and Thompson (2012)],410 million permutations

are required.

2.4 Fast-Pairwise

We develop a new method ‘Fast-Pairwise’ that uses importance sampling

technique to speed up CN method (Wasserman, 2004). Unlike the stand-

ard permutation test that samples case/control status v from the uniform

distribution, we sample v non-uniformly. Specifically, we aim to sample v

from all permutations of v̂ such that, on average, SCNðvÞ will be similar to

SCNðv̂Þ. The intuition is that by intentionally sampling v that gives large

value of SCN, we can reduce the variance of the P-value estimate. Thus,

our goal is to design a sampling procedure that satisfies

EfðSCNðvÞÞ ¼ SCNðv̂Þ ð2Þ

where the expectation is with respect to f, our sampling distribution for v.

However, designing such a sampling procedure is not straightforward. To

this end, we leverage the fact that we can construct a simpler statistic that

approximates SCN, which we use for the sampling.

2.5 IBD-degreetype

To apply importance sampling, we must identify a statistic that roughly

approximates SCN but can be conveniently used for designing a sampling

procedure. Because we empirically have observed that SCC approximates

SCN (Fig. 2), we want to find a statistic that approximates SCC. Our

proposed statistic SSUM is related to SCC through a concept that we

introduce, called the IBD-degreetype, which is simply the degree of

each individual in the IBD graph. Obtaining the degrees of vertices is

equivalent to splitting all edges and counting how many split edges are

adjacent to each vertex (Fig. 3). Then we assign these numbers to the

vertices. Given this, we define the IBD-degreetype as conceptually similar

to a genotype where the allele of each individual equals to the degree of

the corresponding vertex in the IBD graph.

The IBD-degreetypes can be used for statistical testing for IBD asso-

ciation testing. The intuition is that if case/case pairs have an excessive

number of IBDs, then case vertices will have higher degrees than control

vertices. The test based on IBD-degreetype will be comparing the average

degrees between cases and controls,

SID ¼
X
i2Vþ

wi

Nþ
�
X
i2V�

wi

N�
ð3Þ

where wi is the IBD-degreetype of individual i, or equivalently the degree

of vertex i in the graph. We note that this statistic is conceptually similar

to the traditional association statistic, which compares the frequency of

the genotypes between the cases and controls. Here we instead compute

the difference between the case and controls of the IBD-degreetypes

(hence the name).

We are interested in the monotonic relationship between statistics

within the permutation procedure. Let v1 and v2 be the permuted case/

control status. We define ‘monotonic increasing relationship’ (MIR) as

follows.

DEFINITION 1. Two statistics S and T are in an MIR if, 8v1 6¼ v2, Sðv1Þ �

Sðv2Þ iff Tðv1Þ � Tðv2Þ.

It is clear that if two statistics are in MIR, they will give the same

P-value under permutation. It also follows that MIR is transitive

(if S and T are in MIR and T and U are in MIR, then S and U are

in MIR).

The IBD-degreetype test has the following relationship to the pairwise

CC method. Figure 3 illustrates this relationship with a toy example.

LEMMA 1. In a balanced study design (Nþ ¼ N�), CC and the IBD-

degreetype test are in MIR.

PROOF.

SID ¼
X
i2Vþ

wi

Nþ
�
X
i2V�

wi

N�
¼

1

Nþ

X
i2Vþ

wi �
X
i2V�

wi

( )

¼
1

Nþ
2

X
ði, jÞ2Eþþ

eij þ
X
ði, jÞ2Eþ�

eij

 !
� 2

X
ði, jÞ2E��

eij þ
X
ði, jÞ2Eþ�

eij

 !( )

¼
2

Nþ

X
ði, jÞ2Eþþ

eij �
X
ði, jÞ2E��

eij

( )

¼
2

Nþ
Nþ

2

� � X
ði, jÞ2Eþþ

eij
Nþ

2

� �� X
ði, jÞ2E��

eij
N�

2

� �
8>>><>>>:

9>>>=>>>;
¼

2

Nþ
Nþ

2

� �
SCC ¼ ðN

þ � 1ÞSCC

Because SID and SCC differ by a constant multiplication factor ðNþ � 1Þ,

they are in MIR.

We introduce another simple form of test statistic based on IBD-

degreetype. This sum statistic is the sum of IBD-degreetype alleles or

the degrees of the vertices in cases,

SSUM ¼
X
i2Vþ

wi

LEMMA 2. SID and SSUM are in MIR.

PROOF. Note thatX
ði, jÞ2Eþþ

eij þ
X
ði, jÞ2Eþ�

eij þ
X
ði, jÞ2E��

eij ¼ jej

where jej denotes the total count of edges. In addition, the sum of the

IBD-degreetypes over all vertices is equal to 2jej because each edge is

counted twice. X
i2Vþ

wi þ
X
i2V�

wi ¼ 2jej

Therefore,

SID ¼
X
i2Vþ

wi

Nþ
�
X
i2V�

wi

N�
¼

1

Nþ
þ

1

N�

� �X
i2Vþ

wi �
2jej

N�

¼
1

Nþ
þ

1

N�

� �
SSUM �

2jej

N�

Because 1
Nþ þ

1
N�

� �
40 and 2jej

N� is a constant, SSUM is a monotonic increas-

ing linear transformation of SID. Thus, they are in MIR.

Fig. 3. Equivalence of pairwise (CC) method and IBD-degreetype test in

a balanced study. Note that in pairwise CC method, the edge between

(D,F) pair is ignored, which would not be ignored in CN method
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2.6 Substitution strategy

Here we propose to use SSUM in sampling as a substitution to the pairwise

method statistic, SCN. The logical ground for this strategy comes from the

relationship between SCN and SSUM. We have empirically shown that SCN

and SCC are highly correlated (Fig. 2). Because SCC and SID are in MIR

in a balanced study (Lemma 1), we expect that they will be correlated in

general even in an unbalanced study, and we show this property through

a simulation experiment (Supplementary Fig. S1). SID is in MIR with

SSUM (Lemma 2). Thus, SSUM can be an approximation to SCN (Fig. 4).

Given this relationship between SCN and SSUM, our strategy is to

sample v such that SSUMðvÞ will be similar to SSUMðv̂Þ on average. Our

new goal can be described as

EfðSSUMðvÞÞ ¼ SSUMðv̂Þ ð4Þ

It turns out that this new goal is much easier to achieve. Note that SSUM

is used only for sampling. After the sampling is done, the sampled v is

used to approximate the P-value of CN method.

This substitution approach works because in importance sampling, the

sampling distribution need not guarantee optimality (the smallest vari-

ance of P-value estimate). Instead, a reasonably similar distribution to the

optimal distribution suffices. It is clear that this strategy will perform the

best if the balanced study condition is met. However, even if the condition

is not met, only the variance of P-value estimate is affected and not the

mean. The P-value estimate will still be unbiased, and it only means that

we will need a larger number of samples to obtain the same accuracy.

2.7 Sampling with replacement

In this section, we devise a sampling procedure satisfying Equation (4).

Such a sampling procedure will be the core part in our importance sam-

pling framework for speeding up CN method.

Sampling a random v from all permutations of v̂ can be thought of as

sampling Nþ of N individuals that will be assigned case status, or equiva-

lently, sampling Nþ case indices among 1, . . . ,N. Let a1, . . . , aNþ be the

sampled case indices. These are the indices in v that will be assigned ‘1’.

Sampling case indices is without-replacement sampling procedure; we

cannot sample the same index twice, so that exactly Nþ distinct indices

will be sampled at the end (8i 6¼ j, ai 6¼ aj). This way, we can restrict

sample space of v to the set of all permutations of v̂.

However, the design of sampling procedure satisfying Equation (4) is

considerably easier if we assume sampling case indices with replacement.

That is, we allow the same index can be sampled multiple times. Although

this assumption is not valid for our purpose, our strategy is to devise a

sampling approach satisfying Equation (4), assuming sampling with re-

placement first, and then extend the approach to the sampling without

replacement.

Suppose that we pick a1 among 1, . . . ,N with probability Pða1 ¼ kÞ ¼

gðkÞ,
PN

k¼1 gðkÞ ¼ 1. Because we assume sampling with replacement,

sampling a2 is no different from sampling a1; in fact, for any

1 � i � Nþ, ai is independent and identically distributed (IID) with dis-

tribution g. Now consider wa1 , the IBD-degreetype allele of a1. Let

Egðwa1 Þ be the expected value of wa1 with respect to g. Again, because

we assume sampling with replacement, Egðwa1 Þ ¼ . . . ¼ EgðwaNþ Þ.

Then, by the definition of SSUM, we can easily see that

EgðSSUMÞ ¼ NþEgðwa1 Þ

Thus, equation (4) can be described as

NþEgðwa1 Þ ¼ SSUMðv̂Þ

or

Egðwa1 Þ ¼
SSUMðv̂Þ

Nþ
ð5Þ

where the left side is the expected case IBD-degreetype allele in our dis-

tribution g and the right side is the average case IBD-degreetype allele in

the observation v̂. This shows that, if the P-value is highly significant (e.g.

the right side is large), we should pick a1 (and all ai) such that the expected

value of IBD-degreetype allele can be large.

Here we propose a new sampling procedure that satisfies condition (5).

We define distribution g as follows

Pða1 ¼ kÞ ¼ gðkÞ / tk where tk ¼ 1þ �wk

and

� ¼

NSSUMðv̂Þ

Nþ �
PN
k¼1

wk

PN
k¼1

w2
k �

SSUMðv̂Þ

Nþ

PN
k¼1

wk

ð6Þ

It is easy to show that this sampling procedure meets condition (5), as

condition (5) can be described as

Egðwa1 Þ ¼

PN
k¼1

tkwk

PN
k¼1

tk

¼

PN
k¼1

ð1þ �wkÞwk

PN
k¼1

ð1þ �wkÞ

¼
SSUMðv̂Þ

Nþ

and by solving this for �, we exactly have equation (6). If �50, then we

set � to 0 to prevent negative tk. Such a case is not of our interest at any

rate, as we focus on the one-sided test for detecting excess of case/case

IBD. We choose the most simple linear function for tk, which enables us

to calculate � easily. As a result, for any v̂, we can calculate � and com-

pletely define the distribution g. So far, we have successfully defined a

sampling procedure satisfying Equation (4), assuming sampling with

replacement.

2.8 Sampling without replacement

In this section, we extend the sampling procedure from the previous sec-

tion to the ‘sampling without replacement’. Here we propose to heuris-

tically apply the same sampling scheme based on t1, . . . , tN to the

without-replacement context. When we pick ai (ith case index), we pick

index k among f1, . . . ,Ngnfa1, . . . , ai�1g with probability

tk=
PN

j¼1 tj �
Pi�1

l¼1 tal

� �
. That is, we assume the same sampling probabil-

ity proportional to tk, but we exclude indices previously picked as cases

from our consideration.

However, this sampling procedure does not exactly satisfy Equation

(4) in the without-replacement sampling context. The indices with larger

IBD-degreetype alleles are likely to be picked as cases earlier in the pro-

cedure and removed. Thus, if we use � calculated assuming sampling with

replacement, the expected case IBD-degreetype allele [the left side of

Equation (5)] will be smaller than what we would obtain in the with-

replacement context. To compensate for this difference, we use the fol-

lowing heuristic. In the middle of sampling, we empirically assess the left

side of Equation (4) by examining the currently obtained samples. Then,Fig. 4. Relationship between different statistics
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we dynamically increment � until the left side of Equation (4) is close to

the right side. This simple heuristic is sufficient because, again, in import-

ance sampling, we only need to approximately satisfy Equation (4).

2.9 P-value calculation

By using the sampling procedure developed in the previous section, we

can obtain many sample v that approximately satisfy Equation (2). The

final step is to use these samples to assess the P-value of pairwise (CN)

method. In importance sampling, we must account for the fact that we

used a sampling distribution that is different from the original distribu-

tion. Our original distribution is the uniform distribution defined by the

standard permutation approach. The sampling distribution is defined by

the sampling procedure that we developed in the previous section.

For a given v, the probability of sampling v differs in the two distri-

butions as follows. To sample a v, we sample the case indices a1, . . . , aNþ .

The probability of sampling case indices in the standard uniform distri-

bution is

PUniformðvÞ ¼
1

N � � � ðN�Nþ þ 1Þ

On the other hand, the probability of sampling case indices in our sam-

pling procedure described in the previous section is

PNewðvÞ ¼
YNþ
k¼1

tak
� XN

j¼1

tj �
Xk�1
l¼1

tal

 !( )

This is because at each step we pick ith case index ai, we sample the index

with probability proportional to tai , where the previously picked indices

a1, . . . , aNþ are excluded from consideration. Using the standard formula

of importance sampling, we approximate the P-value

p̂ ¼
1

jBj

X
v2B

PUniformðvÞ

PNewðvÞ
� �ðSCNðvÞ � SCNðv̂ÞÞ

Note that we use the pairwise CN statistic in this formula. We use SSUM

only to facilitate the sampling of v, and then use the obtained samples for

CN method at the final step.

We can approximate the variance of p̂ with the following formula

1

jBj

X
v2B

PUniformðvÞ

PNewðvÞ

� �2

� �ðSCNðvÞ � SCNðv̂ÞÞ � p̂2

( )�
jBj

2.10 Adjusting for population structure

A simple correction for population structure has been previously pro-

posed (Browning and Thompson, 2012; Purcell et al., 2007) for the pair-

wise method. In this simple approach, the genomic average is subtracted

from each of the two contrasting terms of the statistic. For example, in

CN method, the genomic average of case/case IBD rate is subtracted

from the observed case/case IBD rate, and the genomic average of

non-case/case IBD rate is subtracted from the observed non-case/case

IBD rate before calculating the statistic. The same approach can be

applied to our Fast-Pairwise method.

3 RESULTS

3.1 Efficiency

To assess the efficiency gain of our Fast-Pairwise method, we use

the Wellcome Trust Case Control Consortium (WTCCC) data

(Wellcome Trust Case Control Consortium, 2007). We first run

Beagle FastIBD to detect IBD between individuals (Browning

and Browning, 2011). Then we test individual IBD segments for

associations. We perform IBD association testing using both

the traditional pairwise method based on permutation and our

Fast-Pairwise method. We perform 10 million permutations for

the traditional pairwise method. For our Fast-Pairwise method,

we perform importance sampling with 1000 samples and 10 000

samples. We implemented both methods in the Java program-

ming language.
Table 1 shows the estimated running time of both methods for

analyzing the whole genome data (500 000 SNPs) of a single

disease. The time is extrapolated from the estimated time for

chromosome 22. Our Fast-Pairwise method is several orders of

magnitude faster than the traditional pairwise method. It takes

only 4 days for the whole genome, whereas the traditional

method can take 13 000 days or 35 years of CPU time.
We can reduce the computation time for the traditional pair-

wise method by using an adaptive permutation approach. We

can terminate the permutation earlier if the P-value approxi-

mates to a non-significant value. Given a P-value p, we need

100/p permutations to obtain the standard error of � p=10.
Suppose that we sample 100/p permutations for each P-value

with upper limit of 10 millions. When we apply this adaptive

approach to the WTCCC type 1 diabetes data, the estimated

computation time is 474 days. Thus, Fast-Pairwise is still an

order of magnitude faster than the traditional pairwise method

with an adaptive permutation approach.

3.2 Accuracy

To assess the accuracy of our importance sampling, we use the

simulation framework similar to Browning and Thompson

(2012). Using the HapMap ENCODE regions (International

HapMap Consortium, 2005), we run HapGen2 to simulate

10 000 individuals (Su et al., 2011). These individuals define

our founder population. Then we simulate the first generation

by sampling 100000 individuals from the founders. Next we

simulate the second generation by sampling 100000 individuals

from the first generation. We repeat until we obtain the 25th

generation. Finally, we use the 25th generation to simulate a

case/control study. Within the ENCODE region, we randomly

select five causal variants among all rare variants (minor allele

frequency 51%). If a haplotype contains one or more causal

variants, it confers risk with relative risk selected from uniform

(3,10). We assume the disease prevalence of 0.1. Given this dis-

ease model, using the standard formula of the case and control

minor allele frequencies (Han et al., 2009), we sample 1500 cases

and 1500 controls from the 25th generation. The IBD informa-

tion between a pair of individuals is determined by tracking

whether they are descendants of the same founder. We repeat

Table 1. Running time for pairwise IBD association testing for the

WTCCC whole genome data

Traditional pairwise method Fast-Pairwise

107 permutations Adaptive permutations 104 samples 103 samples

35 years 474 days 40 days 4 days
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this simulation 100 times per each of the 10 ENCODE regions to

generate 1000 sets of case/control studies.
Given these case/control study sets, we assess the P-values of

pairwise (CN) method using both the standard permutation and

the importance sampling of Fast-Pairwise. We use 10000 sam-

ples for importance sampling and compare with 104, 105 and 106

permutations. Figure 5 shows that the P-values of two methods

track well within the P-value range that permutation can ap-

proximate (up to P-values of 10�4, 10�5 and 10�6, respectively).

Within this range, the Pearson correlation r2 of two log P-values

are 0.98, 0.94 and 0.99, respectively. This shows that our import-

ance sampling procedure obtains accurate P-values.

Moreover, Figure 5 emphasizes a fundamental difference be-

tween the two methods. In permutation, the range of P-values

one can obtain is limited by the number of permutations. Given

jBj permutations, if none of the permutations exceeds the

observed statistic, a conservative approximation of P-value is

1=jBj. In contrast, in Fast-Pairwise, the P-value range is not

bounded by the number of samples. With a relatively small

number of samples (10 000), Fast-Pairwise can obtain accurate

P-values comparable with the permutation test for a wide range

of P-values. We also performed extra permutations (4106) to

estimate P-values between 10�6 and 10�8. The P-values of the

two methods are still consistent within this P-value range (tri-

angles in Fig. 5C).

3.3 Application to WTCCC type 1 diabetes data

Browning and Thompson (2012) applied the pairwise (CN)

method to the WTCCC type 1 diabetes (T1D) data based on

the Beagle FastIBD IBD mapping results (Browning and

Browning, 2011). Using 5 million permutations, they found

that the major histocompatibility complex (MHC) region in

the chromosome 6 is statistically significant given the genome-

wide threshold 6� 10�6. Because the MHC association to T1D

has been historically known (Todd et al., 1987), this result was a

validation that IBD association testing can detect the true asso-

ciation signal.
The limitation of Browning and Thompson’s (2012) permuta-

tion approach is that although it is possible to determine whether

each test is significant (p56� 10�6) using 5 million permuta-

tions, it is not possible to approximate much smaller P-values.

Given 5 million permutations, the smallest P-value one can ap-

proximate is bounded to 2� 10�7. In the MHC region, because

of the strong signal and the long linkage disequilibrium, the lo-

cation of the top peak of P-value is important for interpreting

and fine-mapping the results. Figure 6A shows that the top peak

of P-value is stretched over a wide region (48Mb) including all

eight classical HLA genes. Therefore, it is difficult to interpret

which HLA gene is likely to be involved in the association.
We applied our Fast-Pairwise to the same dataset. Because

Fast-Pairwise is the same pairwise method with increased effi-

ciency, we expected to see the similar results as Browning and

Thompson (2012). We discovered significant associations within

the MHC region. However, the difference is that because our

method can approximate small P-values well beyond the

genome-wide threshold, it is possible to localize the statistical

signal to a single marker (Fig. 6B). The top hit is at SNP

rs241432 (p ¼ 7� 10�45) at the intron of TAP2 gene. Among

all major class I and II HLA genes, the closest gene to this

peak is HLA–DQB1 (150 kb upstream from the peak). It is his-

torically known that the main contributing gene for the MHC

association to T1D isHLA–DQB1 (Todd et al., 1987). Thus, this

result demonstrates that our Fast-Pairwise method can pinpoint

the causal gene among many HLA genes within the MHC

region, while the traditional pairwise method cannot.
One interesting observation is that the peak association of our

IBD association test is on the TAP2 gene that encodes antigen

peptide transporter 2 and has been shown to confer independent

risk to the T1D when conditioned on the DQ haplotypes (Qu

et al., 2007). Thus, the peak revealed by our Fast-Pairwise

method may imply the added effect of TAP2 in addition to the

primary effect of HLA–DQB1, which is in linkage

disequilibrium.

4 DISCUSSION

We have developed a new efficient method for pairwise IBD

association testing called ‘Fast-Pairwise’. Fast-Pairwise uses im-

portance sampling and can perform the pairwise method more

efficiently than the traditional method based on permutation.

Moreover, unlike permutation, Fast-Pairwise can approximate

extremely small P-values beyond the genome-wide threshold.

Using the WTCCC type 1 diabetes data, we show that Fast-

Pairwise can successfully pinpoint a gene known to be associated

to the disease within the MHC region.
The true utility of the IBD association testing is on finding

novel loci where there are potentially multiple rare variants that

cannot be found using single SNP tests (Browning and

Thompson, 2012). An important advantage of IBD association

testing is its wide applicability. The analysis can be performed

using the same genotype data collected for single SNP tests with-

out incurring additional cost. For this reason, we feel that many

investigators will apply our method to search for these additional

loci bearing rare causal variants. What is preventing researchers

from applying this approach is an efficient method for IBD as-

sociation testing, which we provide in this article. We expect that

A B C

Fig. 5. Accuracy of importance sampling. In simulations using the

HapMap ENCODE region, we assess the P-values of pairwise (CN)

method using both the standard permutation and Fast-Pairwise (import-

ance sampling). We compare 10 000 samples of Fast-Pairwise to (A)

10 000, (B) 100 000, and (C) 1 000 000 permutations. The vertical

dashed line denotes the lower bound of P-value that permutation can

approximate given the number of permutations. The dots along the ver-

tical line denote the simulations where none of the permutations exceeds

the observed statistic, and therefore the lower bound of P-value is re-

ported by the permutation test. The triangles in (C) are the P-values that

we performed extra permutations (4106)
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our new method will promote the wide use of IBD association

testing and facilitate further research on the power and utilities of

IBD association testing.
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