
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
3D Motifs as Signatures of Protein Function and Evolution

Permalink
https://escholarship.org/uc/item/1061t12w

Author
Polacco, Benjamin John

Publication Date
2007-07-24

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1061t12w
https://escholarship.org
http://www.cdlib.org/

3D Motifs as Signatures of Protein Function and Evolution

by

Benjamin John Polacco

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biological and Medical Informatics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

ii

Copyright (2007)

by

Benjamin Polacco

iii

Acknowledgments

I would like to thank my research advisor Patricia Babbitt for her support and insight;

both were essential for the completion of this work. The members of the Babbitt lab were

always ready to help when asked, and offered much feedback through formal group

meetings as well as informal discussions.

Thanks are also due to my orals and thesis committee for their guidance and criticisms of

my ideas when I presented them. Several good ideas contained here can be attributed to

the insights of my committee, while all the questionable ideas are strictly my own.

While I often think this could have been completed more quickly without the

responsibilities of being a father to my family, these years would have been much less

fulfilling without them. I especially thank my wife for her support of me emotionally, and

the family financially throughout this work.

This dissertation is divided into an introduction, four chapters, and a conclusion. Three

chapters are based on work that is either published already or expected to published soon.

Chapter 1 is entirely my work, though some of its findings were published together with

the work of Elaine Meng in the journal Proteins. The text of Chapter 2 is a reprint of the

material as it appears in the journal Bioinformatics. The coauthor listed in that publication

directed and supervised the research that forms the basis for this chapter. Chapter 4, is a

manuscript that will be submitted for publication in a peer-reviewed journal.

Meng, E. C., B. J. Polacco and P.C. Babbitt. (2004). "Superfamily active site templates."
Proteins 55(4): 962-76.

Polacco, B. J. and P. C. Babbitt (2006). "Automated discovery of 3D motifs for protein
function annotation." Bioinformatics 22(6): 723-30.

iv

Abstract: 3D Motifs as Signatures of Protein Function and Evolution

Benjamin Polacco

The ability to predict a protein's function from its structure is becoming more important

with the increasing pace at which international structural genomics projects make

structures available for proteins with no known function. The function of a protein is

frequently determined by relatively small regions in an overall structure. This dissertation

investigates signature 3D motifs, or small subsets of a protein's residues, that capture the

critical structural determinants of function shared by an entire group of proteins. First,

with an investigation of randomly selected 3D motifs I show that motifs built from

important functional residues are better at identifying proteins to a superfamily with a

common functional mechanism than any other motifs. Next I develop a genetic

algorithm, named GASPS, that chooses a motif based on its ability to identify a group of

proteins. I demonstrate its effectiveness on four divergent superfamilies, and a

convergent group of serine proteases. Again, I demonstrate that the best motifs, as chosen

by GASPS this time, contain known functional residues. Chapter 3 investigates the use of

a geometrical statistical model to predict the number of expected random matches to a

motif. This simple geometrical model performs very well overall, but it under-predicts

matches to motifs that are the result of general physical and chemical characteristics of

proteins, such as disulfide bridges and hydrophobic clusters. This model is rejected for its

use in GASPS in favor of the original empirical method. Finally, I report a broad survey

of signature 3D motifs, generated by applying GASPS to all available functionally

similar and homologous groups of proteins. Motifs are mostly restricted to homologous

groups, with a higher chance of a better motif in homologous and isofunctional groups. I

v

report on general trends in structural conservation and find that catalytic, ligand binding,

disulfide, and stabilized charged residues are over-represented among conserved motifs.

Additionally, I find that glycines appear to be the most frequently conserved residue,

especially important in ligand binding sites. This collection of motifs is useful for

identification of function in unknown proteins, as well as describing trends in protein

evolution.

vi

Table of Contents

Introduction...1
Chapter 1 Summary...3
Chapter 2 Summary...4
Chapter 3 Summary...4
Chapter 4 Summary...5
Conclusions ...7
References ...8

Chapter 1: Random Motifs and Superfamily Active Site Templates10
Introduction...10
Materials and Methods...11

Motif Searches...11
Structure Libraries ...12
Calculating Conservation ...12

Results...13
Scores of randomly generated motifs ...13
Substitutions in random motifs...16
Limiting Residue Types in Random Motifs..18
Important Residues in Motifs ...19

Discussion ...22
References ...24

Introduction to Chapter 2 ...26

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation....27
Abstract ...27
Introduction...28
Methods...30

Motif Representation and Matching ...30
GASPS ..31
Structure Library..33
Positive and Negative Sets ...33
Cross-Validation ..34
PSI-BLAST and CE Libraries ..35

Results...36
Validation of GASPS...36
Detection of Key Functional Residues..41

Discussion ...47
Using GASPS for Function Identification ..47
Location of Functional Information..48
Inference of Function for Diverse Groups ..50
Future Applications..50

Acknowledgements ...51
References ...51

vii

Supplementary Materials for Chapter 2...54
Significance of Optimized GASPS Scores ...54
Sources of Variability ..54
Detection of New Unidentified Structures..57
Allowing Substitutions in Motifs ...57
References ...58

Chapter 3: An analysis of computed expectations for random matches to 3D motifs

..63
Introduction...63
Results...64

Modifying the GASPS scoring function. ..64
Expectation values compared. ..67
GASPS scores compared..70
GASPS with Gc on Random Groups...71
Composition of motifs ...72
Accuracy of motifs at identifying homologous groups..74

Discussion ...78
References ...78

Introduction to Chapter 4 ...80

Chapter 4: An exhaustive survey of 3D motifs. ..81
Abstract ...81
Introduction...82
Methods...86

GASPS ..86
Protein groups..86
Searching motif libraries with proteins...87

Results...89
Quality of Motifs ...89
Patterns of conservation in 3D..94
Residue types in motifs ..98
Annotation of protein structures ...101
Homology models..103

Discussion ...105
References ...108

Conclusion..111

Appendix 1: GASPS Package..114
ReadMe ...114
GASPS.py ...116
polacco/BlastXML.py..143
polacco/Data.py...147
polacco/MultiAlign.py...149
polacco/Spasm.py..165
polacco/XML.py..178
polacco/utils.py..181

viii

test/astral_1.65_SF.lib (partial) ..183
test/d2mnr_1.fasta ...184
test/d2mnr_1.fasta.psiblast.xml.faln (partial)..184
test/d2mnr_1.pdb (partial)..185
test/enolase.lib (partial)..185
test/enolase.list ..186

Appendix 2: GASPSdb CGI scripts ..187
GASPSdb ..187
jsonMotif...209

Appendix 3: GASPSdb Web Interface..213
GASPSdb Home Page ...213
GASPSdb Search Page ..214
GASPSdb Browsing Page..215
GASPSdb Group Description Page ..216
GASPSdb Search Results Page ..217
GASPSdb Help Page ...218

About GASPSdb..218
GASPSdb References Page..220

References ...220

ix

List of Figures

Chapter 1

Figure 1. Cumulative histograms of scores of randomly generated motifs.14

Figure 2. Cumulative histograms of scores of conserved and close random motifs.16

Figure 3. Cumulative histograms of scores of random motifs with allowed substitutions.
..18

Figure 4. Cumulative histograms of scores of random motifs with only polar residues. ..19

Figure 5. Residues that contribute to motif scores. ...21

Figure 6. Scores of partial motifs based on the functional site.21

Chapter 2

Figure 1. Generality of GASPS motifs based on sensitivity from two experiments: cross-
validation and detection of newer structures. ..37

Figure 2. Sensitivity of GASPS motifs compared with other techniques.........................39

Figure 3. Scores and functional significance of GASPS motifs.43

Chapter 2 Supplementary Materials

Figure i. Distributions of GASPS scores on artificial and real groups.............................60

Figure ii. Stochasticity of GASPS results. ..61

Figure iii. GASPS motifs for 2hlc, a trypsin-like serine protease....................................62

Chapter 3

Figure 1. Relation between "ROC Credit", P Values, and Expected False Positives.67

Figure 2. Empirical counts of false positives versus computed expectation values..........70

Figure 3. GASPS scores (G) compared between empirical and computed methods.71

Figure 4. Distributions of motifs by GASPS with Gc on random groups.........................72

Figure 5. Composition of motifs generated by GASPS with computed G scores.73

Figure 6. SCOP superfamilies identified by motifs generated by empirical G scores
compared to computed G scores...76

Figure 7. SCOP families identified by motifs generated by empirical G scores compared
to computed G scores...77

Chapter 4

Figure 1. Distribution of motif G-scores on SCOP groups..91

Figure 2. Distribution of motif G-scores on Gene Ontology and SCOP groups...............91

Figure 3. Number of distinct EC classes at first position in each SCOP group................94

x

Figure 4. Number of distinct EC classes at first two positions in each SCOP group........94

Figure 5. Residue interactions captured by motifs. ...97

Figure 6. Dominance of residue types, compared against background residue frequency,
and at different G-scores. ...101

Figure 7. Coverage of GASPSdb compared to other 3D motif libraries and PSI-BLAST.
..103

Appendix 3

Figure 1. Home page of GASPSdb...213

Figure 2. GASPSdb Search Page. ..214

Figure 3. GASPSdb Browse Page. ...215

Figure 4. GASPSdb Group description page, partial...216

Figure 5. Search results table for search of 1rvk against SCOP superfamily motifs.217

xi

List of Tables

Chapter 2

Table 1. Functionally Similar Protein Groups ..35

Chapter 2 Supplementary Materials

Table i. Improvements in GASPS by using substitutions on Crotonase and HAD
superfamilies..59

Chapter 3

Table 1. Overlap of significant motifs with catalytic sites in CSA..................................74

Chapter 4

Table 1. Group and motif counts by classification..88

Introduction
1

Introduction

As proteins are the major gene products that act in living cells, understanding the

functions of proteins is a critical step in translating genomic sequences into useful

biological knowledge relevant to the health sciences. With today’s efforts in structural

genomics that aim to provide for each protein a model of its shape or structure in a cell

(Blundell et al. 2000), knowledge of a protein’s structure is becoming a more common

starting point for determining a protein’s function (Teichmann et al. 2001; Watson et al.

2007). As different functions can be performed by proteins that have very similar overall

structures and folds (Chothia 1992; Todd et al. 1999), it is clear that we have to look at

fine-scale details or local protein structure to accurately describe a protein’s function.

Over evolutionary time, identical proteins can diverge to have very different sequences

by the accumulation of random neutral changes that do not change function (neutral

drift), but these proteins will still share whatever structural components have been critical

to their function. Additionally, as proteins evolve to perform new functions they can

make use of existing local structural features that contribute the same partial function to

both the new and old functions (Gerlt et al. 2001; Bartlett et al. 2003). This explains, for

the most part, why all members of a diverse group of proteins often make use of the same

configuration of a small number of amino acids that can be directly related to function.

We can use these clusters of amino acids, called three dimensional (3D) motifs, as

signatures of function. This work investigates these signature 3D motifs to show how the

identification and understanding of protein function can be advanced through these

repeated structural elements.

Introduction
2

Because 3D motifs are closely tied to the evolution of function, a study of 3D motifs also

describes the manner in which protein function evolves. The evolution of new function

proceeds through one of two paths tied to the existence of 3D motifs. First, as

descendants of a single protein diverge in function, existing functional components can

be entirely replaced by new functional components so that no 3D motif will persist

between modern day proteins. On the other hand, as new functions evolve, proteins can

make use of existing functional components to perform one or more components in the

overall function. If across these different functions, the same functional component is

reused, a 3D motif will persist in modern day proteins. 3D motifs can also be present in

convergent proteins, those that perform the same function but have no common ancestor

(Dodson et al. 1998). If we observe frequent cases of convergent motifs this is evidence

that the possible ways any proteins can evolve to perform a single function are limited.

Much work has been done by others examining 3D motifs. Studies have shown their

effectiveness on a handful of cases (Wallace et al. 1996; Fetrow et al. 1998; Russell

1998), tools have been developed that can search protein structures for matches to motifs

(Artymiuk et al. 1994; Kleywegt 1999; Barker et al. 2003), and motifs are being collected

from literature descriptions of enzyme active sites (Torrance et al. 2005). Still, no study

has yet systematically asked on how many and on what types of various protein groups

can we use signature 3D motifs. This dissertation extends our knowledge of 3D motifs by

inventing a novel method for discovering signature 3D motifs and applying this method

to a large set of protein groups. This generates a set of motifs that are not only useful for

protein annotation, but because they were systematically generated, provide an even and

unbiased picture of the distribution of 3D motifs and patterns within them. Specifically,

Introduction
3

we see that homology is the most important generator of signature 3D motifs, but

functional diversity also plays a role. Though groups with diverse functions and signature

3D motifs are not uncommon, homologous groups with many varied functions are less

likely to have a signature motif.

Chapter 1 Summary

The work I describe in Chapter 1 lays the foundation for my method, and demonstrates

how significant findings and research paths are often stumbled upon by accident. I

worked together with Elaine Meng, who was investigating signature 3D motifs in the

active sites of enzyme superfamilies (Meng et al. 2004). While Elaine assembled motifs

from residues known to be functionally important for the superfamilies, I performed the

control study to showed that motifs based on this expert knowledge identified the

superfamily better than motifs assembled from randomly chosen residues. To make a

more compelling comparison, I tested constraining the residues in the random motifs by

distance from each other, then conservation, and then residue type. I added an automated

system for allowing position specific substitutions based on a multiple sequence

alignment. While these increased the quality of the randomly generated motifs, the

published result from this work remained that the motifs built from functional knowledge

always outperformed the automatically generated random motifs (Meng et al. 2004). This

same result viewed from a slightly different angle would provide the inspiration that led

to this entire dissertation: with a few simple constraints, a random guess could produce

motifs that begin to approach the quality of expert derived motifs.

Introduction
4

Chapter 2 Summary

This earliest work not only provided the insight that would lead to the development of my

method, but also provided most of the software development. My method was given the

acronym GASPS for Genetic Algorithm Search for Patterns in Structures. A genetic

algorithm develops solutions to problems by choosing from among a set of guesses the

best ones, then making new guesses by adding to, deleting from, or recombining the best

guesses made so far. Using most of the random motif generation system I presented in

Chapter 1 to create the first guesses, I added a method for measuring performance of

motifs, a system to alter and recombine motifs, and an iterative process. This resulted in a

version of GASPS that I described in a published manuscript (Polacco et al. 2006),

included here as Chapter 2. As an alternative to building motifs from often-limited expert

knowledge, GASPS identifies patterns of 3 to 10 residues that maximize function

prediction. The unbiased approach of GASPS allowed us to test the assumption that

residues that provide function are the most informative for predicting function. I applied

GASPS to superfamilies with varied functions as well as the serine proteases, an example

of convergent evolution of active sites (Dodson et al. 1998). The motifs found by GASPS

are as good at function prediction as 3D motifs based on expert knowledge. The GASPS

motifs with the greatest ability to predict protein function consist mainly of known

functional residues.

Chapter 3 Summary

In an effort to improve GASPS, I investigated the theoretical statistics of random matches

to 3D motifs, or false positives. GASPS seeks to find a motif for a group where all group

Introduction
5

members match within a deviation threshold stringent enough to make random matches

to unrelated proteins rare. The original GASPS determines this threshold empirically, by

searching for matches to each candidate motif among all non-group proteins that it should

not match. The work described in Chapter 3, answers whether this empirical distribution

of matches is necessary or instead is a theoretical statistical model of matches to 3D

motifs sufficient. Computing the empirical distribution takes more time than any other

GASPS step, so if it could be replaced it would significantly reduce the computing time

necessary to generate motifs with GASPS. I show how the scoring function that GASPS

uses to rank motifs can be modified to use a statistical model of motif matches developed

by Stark et al. (2003). Qualitatively, motifs generated by this faster GASPS are very

similar to the original GASPS, with similar rates of overlap with functionally significant

residues. However, these motifs fail to identify new structures to the appropriate group

with the same accuracy. This decreased accuracy is due more to false positives than false

negatives, indicating the motifs are not as unique as the model would predict. This results

from the use of a solely geometrical model that cannot account for common physically

favorable interactions frequently observed across various protein groups, such as salt

bridges or disulfides. This makes the faster GASPS a useful tool for discovering a motif

that is well conserved by a group, but not for generating motifs useful for annotation of

new structures. This faster GASPS was not used for any other work described here.

Chapter 4 Summary

The pieces are now in place to apply GASPS across as much of the protein universe as

possible in order to generate as many signature 3D motifs as possible. Doing so allows

for an examination of the evolution of fine scale protein structure by determining how

Introduction
6

widespread are conserved 3D motifs, and what structural features tend to be conserved. I

apply GASPS to homologous superfamilies and families in the Structural Classification

of Proteins (SCOP) (Murzin et al. 1995), as well as isofunctional groups defined by the

Gene Ontology (GO) (Ashburner et al. 2000). I find that non-homologous but

isofunctional groups do not commonly share a motif. This suggests that most protein

functions, at least as they are commonly described, can be accomplished by very different

means in unrelated proteins. Homologous groups more often share a conserved motif,

with about one third of all SCOP groups showing a strongly conserved motif. Many of

these superfamilies with strong motifs have very diverse functions, revealing where

evolution has reused functional components to produce different overall reactions. The

remaining two thirds of groups with less-conserved motifs reveal that evolution of new

functions in homologous groups is not usually constrained to maintain the positions of a

critical set of residues.

These motifs also allow us to examine what features are among the most conserved.

Again, we see a strong relationship between motifs and function. The motifs frequently

overlap with known catalytic, metal and other ligand binding sites. Additionally,

disulfides as well as stabilized charged residue pairs are frequent components of the most

conserved motifs. Residue distribution among the motifs is mostly as expected based on

these common features: cysteine, histidine, aspartate and glutamate are among the most

frequent. More surprisingly, glycine, leucine and proline are ranked first, fourth and

seventh, respectively, among the most frequent motif residues. The dominant role of

leucine can be attributed mostly to its high frequency among the entire proteins. Glycine

is well conserved where its unique backbone angles and space allowances (Jornvall et al.

Introduction
7

1984; Dym et al. 2001) are critical for function. The unique geometry afforded glycine

seems especially important at binding sites: glycines in motifs show the greatest rate of

non-metal ligand interaction among all residue types.

To maximize the impact of this work, I have made available the motifs generated in this

broad study via a web resource named GASPSdb (http://gaspsdb.rbvi.ucsf.edu). The

motifs at this site can be searched, browsed or downloaded. One search capability enables

users to search for matches to the GASPS motifs among a protein structure they can

provide or choose from the Protein Data Bank (PDB) (Berman et al. 2000). Because each

motif is generated to be a signature motif for a functional or homologous group, a

matching motif indicates that the new structure is a likely member of the group, and the

matched residues are likely to be important for the protein’s function. I show that the

GASPSdb resource provides a greater coverage than other available 3D motif resources

(Stark et al. 2003; Torrance et al. 2005). It also proves effective on low quality structural

models computed from homology. This effectiveness on homology models is very

important for the description of function in the homology models that structural genomics

aims to make possible (Blundell et al. 2000).

Conclusions

This study has grown from its beginnings where its goal was to merely show the

ineffectiveness of randomly chosen motifs, to show how when combined with an

effective selection and recombination process those same random motifs can become

useful signatures of protein function and evolution. While I generated a large number of

signature motifs that will enable us to more accurately annotate structures, I find that not

Introduction
8

all groups can be identified by a signature motif. The distributions of these signature

motifs represent just a single but useful view on the evolution of protein structure and

function at a fine scale. We observe that evolution has used both schemes I presented

regarding function and local structure. I identify both the homologous groups that have

re-used functional features for multiple different overall functions, as well as groups

which keep no single functional feature as they evolve to perform new overall functions.

There are many known (and probably unknown) protein groups with insufficient

structures for GASPS to work on effectively. As new structures are solved, an automated

process like GASPS is well suited to continue to analyze new groups and new structures.

References

Artymiuk, P. J., A. R. Poirrette, et al. (1994). "A graph-theoretic approach to the
identification of three-dimensional patterns of amino acid side-chains in protein
structures." J Mol Biol 243(2): 327-44.

Ashburner, M., C. A. Ball, et al. (2000). "Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium." Nat Genet 25(1): 25-9.

Barker, J. A. and J. M. Thornton (2003). "An algorithm for constraint-based structural
template matching: application to 3D templates with statistical analysis."
Bioinformatics 19(13): 1644-9.

Bartlett, G. J., N. Borkakoti, et al. (2003). "Catalysing new reactions during evolution:
economy of residues and mechanism." J Mol Biol 331(4): 829-60.

Berman, H. M., J. Westbrook, et al. (2000). "The Protein Data Bank." Nucleic Acids Res
28(1): 235-42.

Blundell, T. L. and K. Mizuguchi (2000). "Structural genomics: an overview." Prog
Biophys Mol Biol 73(5): 289-95.

Chothia, C. (1992). "Proteins. One thousand families for the molecular biologist." Nature
357(6379): 543-4.

Dodson, G. and A. Wlodawer (1998). "Catalytic triads and their relatives." Trends
Biochem Sci 23(9): 347-52.

Dym, O. and D. Eisenberg (2001). "Sequence-structure analysis of FAD-containing
proteins." Protein Sci 10(9): 1712-28.

Introduction
9

Fetrow, J. S. and J. Skolnick (1998). "Method for prediction of protein function from
sequence using the sequence-to-structure-to-function paradigm with application to
glutaredoxins/thioredoxins and T1 ribonucleases." J Mol Biol 281(5): 949-68.

Gerlt, J. A. and P. C. Babbitt (2001). "Divergent evolution of enzymatic function:
mechanistically diverse superfamilies and functionally distinct suprafamilies."
Annu Rev Biochem 70: 209-46.

Jornvall, H., H. von Bahr-Lindstrom, et al. (1984). "Extensive variations and basic
features in the alcohol dehydrogenase-sorbitol dehydrogenase family." Eur J
Biochem 140(1): 17-23.

Kleywegt, G. J. (1999). "Recognition of spatial motifs in protein structures." J Mol Biol
285(4): 1887-97.

Meng, E. C., B. J. Polacco, et al. (2004). "Superfamily active site templates." Proteins
55(4): 962-76.

Murzin, A. G., S. E. Brenner, et al. (1995). "SCOP: a structural classification of proteins
database for the investigation of sequences and structures." J Mol Biol 247(4):
536-40.

Polacco, B. J. and P. C. Babbitt (2006). "Automated discovery of 3D motifs for protein
function annotation." Bioinformatics 22(6): 723-30.

Russell, R. B. (1998). "Detection of protein three-dimensional side-chain patterns: new
examples of convergent evolution." J Mol Biol 279(5): 1211-27.

Stark, A. and R. B. Russell (2003). "Annotation in three dimensions. PINTS: Patterns in
Non-homologous Tertiary Structures." Nucleic Acids Res 31(13): 3341-4.

Stark, A., S. Sunyaev, et al. (2003). "A model for statistical significance of local
similarities in structure." J Mol Biol 326(5): 1307-16.

Teichmann, S. A., A. G. Murzin, et al. (2001). "Determination of protein function,
evolution and interactions by structural genomics." Curr Opin Struct Biol 11(3):
354-63.

Todd, A. E., C. A. Orengo, et al. (1999). "Evolution of protein function, from a structural
perspective." Curr Opin Chem Biol 3(5): 548-56.

Torrance, J. W., G. J. Bartlett, et al. (2005). "Using a Library of Structural Templates to
Recognise Catalytic Sites and Explore their Evolution in Homologous Families."
J Mol Biol 347(3): 565-81.

Wallace, A. C., R. A. Laskowski, et al. (1996). "Derivation of 3D coordinate templates
for searching structural databases: application to Ser-His-Asp catalytic triads in
the serine proteinases and lipases." Protein Sci 5(6): 1001-13.

Watson, J. D., S. Sanderson, et al. (2007). "Towards fully automated structure-based
function prediction in structural genomics: a case study." J Mol Biol 367(5):
1511-22.

Chapter 1: Random Motifs and Superfamily Active Site Templates
10

Chapter 1: Random Motifs and Superfamily Active Site

Templates

Introduction

When this work was started there were already multiple studies showing that specific

active site 3D motifs could be used successfully to identify specific protein functions

(Artymiuk et al. 1994; Wallace et al. 1997; Fetrow et al. 1998; Russell 1998; Kleywegt

1999). A major appeal of 3D motifs is that they provide a direct link between structural

details and function in a way that sequence based or whole protein fold-based

comparisons could not. In addition to a detailed view on structure, accurately describing

the linkage between structure and function can benefit from a detailed view of protein

function. Instead of treating an enzyme’s function as a single unit, it can be broken down

into smaller mechanistic steps, and superfamilies of enzymes can share one or more

functional steps (Gerlt et al. 2001; Babbitt 2003). The work I present here was my part of

a collaboration to show that superfamilies of enzymes, and therefore just the smaller

element of function that they share can be identified by a single motif (Meng et al. 2004).

Superfamily active site template was the name given to a 3D motif that is shared among

members of a diverse superfamily that are responsible for the superfamily’s shared

function. While previous studies of 3D motifs have constructed motifs based on

knowledge of functional residues, none looked specifically at the question of whether

there were other informative residues—residues that uniquely identified the group of

proteins. Investigating this question was my contribution to the study. While my

collaborator did the traditional motif-building jobs of compiling lists of functional

Chapter 1: Random Motifs and Superfamily Active Site Templates
11

residues and their similarities between related proteins, I constructed thousands of motifs

at random to determine whether the functional residues were required or whether there

were other residues that were conserved in three dimensions across a superfamily.

The work I present in this chapter is an important component of the published

superfamily study. Additionally, it provides an analysis of random motifs that would

guide the development of my technique, named GASPS, described in Chapter 2. With

GASPS I make use of random guesses in a genetic algorithm, so the knowledge of which

constraints can lead to better random guesses and the ways in which partial solutions

score compared to an overall solution are important.

Portions of this work were published previously in the journal Proteins (Meng et al.

2004).

Materials and Methods

Motif Searches

Active site template searching was performed with SPASM (Kleywegt 1999). A motif is

supplied to SPASM as a file containing the atomic coordinates of the residues of interest.

These coordinates are taken from the original Protein Data Bank (PDB) (Berman et al.

2000) file of each source structure. SPASM allows explicit specification of the residue

types that can match each motif residue, referred to as substitutions later. The -carbon

(CA) and computed side-chain centroid (SC) are used to describe each motif residue.

The internal CA-CA and SC-SC distances of the motif and each candidate match are

compared, and candidate matches are pruned if they exceed user-specified maximum

deviations, in our case the maximum CA-CA distance deviation was set to 5.0 Å, and the

Chapter 1: Random Motifs and Superfamily Active Site Templates
12

maximum SC-SC distance deviation was 3.8 Å. The remaining candidate matches are

reoriented onto the motif and those fulfilling a user-specified RMSD cutoff are saved (3.2

Å). Thus, the input parameters include motif coordinates, allowed substitutions, a

maximum CA-CA deviation cutoff, a maximum SC-SC deviation cutoff, a maximum

RMSD cutoff, and what database to search. SPASM-searchable databases are derived

directly from PDB files, but have been preprocessed down to the CA and computed SC

coordinates for each residue. The preprocessing program, MKSPAZ, is available along

with SPASM from the Uppsala Software Factory (http://xray.bmc.uu.se/usf/index.html).

Structure Libraries

Motif sensitivity and specificity was evaluated by searching a sequence-unique subset of

the PDB; this database, spasm100, can be downloaded from the Uppsala Software

Factory (http://xray.bmc.uu.se/usf/index.html). The July 2002 version of spasm100 (8255

entries, including 22 true positive enolase superfamily members) was used.

Calculating Conservation

Conservation of positions in a protein structure were calculated from a multiple sequence

alignment generated by BLAST (Altschul et al. 1997) with default values against a non

redundant protein sequence database, nrdb90 (Holm et al. 1998). Conservation was

calculated from the multiple sequence alignment by a method that weights to reduce the

effects of redundancy, considers conservative substitutions based on a substitution

matrix, and penalizes gaps (Valdar 2002).

Chapter 1: Random Motifs and Superfamily Active Site Templates
13

Results

Scores of randomly generated motifs

The superfamily motif derived from knowledge of functionally important residues from

mandelate racemase (PDB id 2mnr) performed better than motifs from other available

structures at identifying superfamily members with high sensitivity and specificity (Meng

et al. 2004). Did the functional information identify the best residues for a motif, or could

other motifs perform as well? To answer this, I generated motifs at random by selecting

five residues entirely at random from the mandelate racemase structure. Each motif was

scored by calculating the area under an ROC plot to 10 false positives based on the root

mean squared deviation (RMSD) between the motif and its match in the structure

(ROC10). All scores were normalized so that the maximum allowable ROC10 score was

set to 1.0, the score that implies all superfamily structures match at a lower RMSD than

any false positive. The vast majority of about 500 randomly generated motifs do not have

an ROC10 area greater than 0.18 (Figure 1). This score corresponds to matching only the

four superfamily structures that are most similar to 2mnr.

Most of the above randomly generated motifs appear very different from what commonly

used 3D motifs look like. In an effort to make a more compelling comparison between

randomly generated motifs, and those based on expert knowledge, I tested applying

constraints on the generation of motifs. 3D motifs are typically composed of residues that

are known to interact, so they must be close in space. The first constraint I applied to

make the random motifs look more like typical motifs was therefore to restrict the

residues to a 7.5 Å neighborhood, measured at their -carbon, of an initial chosen

Chapter 1: Random Motifs and Superfamily Active Site Templates
14

residue. By itself, this restriction offered only a slight improvement to the ROC10 scores

of the generated motifs.

A good 3D motif is maintained by evolution in all group structures, therefore its residues

cannot be among the most variable in close relatives. The next constraint I tested was

then to eliminate the most variable or least conserved residues observed in close

homologs. Just eliminating residues with conservation below 0.6 showed a significant

improvement in ROC10 areas, with no other constraints.

Figure 1. Cumulative histograms of scores of randomly generated motifs.

The red line, “All Random”, represents 5331 motifs of five residues chosen entirely at
random from a single mandelate racemase structure. The green line, “Spatially Close”,
represents 237 similar motifs with the only constraint that residues within a single motif
are restricted to lie within a 7.5 Å neighborhood. The blue line, “Conserved”, represents
2825 random motifs with the only constraint that all residues must have a conservation
score (see Methods) greater than 0.6.

While the spatial constraint by itself showed little effect, putting the conservation and

spatial constraints together resulted in an even greater improvement in ROC10 areas

(Figure 2). This effect is strongest when the residues are maintained within a 7.5 Å

Chapter 1: Random Motifs and Superfamily Active Site Templates
15

neighborhood, compared with larger neighborhoods. By enforcing such a small

neighborhood, I significantly decrease the number of possible random motifs because

each residue only has a very limited set of residues it could build a motif with. This

greatly minimizes the number of motifs that many conserved residues could be a part of

because they do not cluster spatially with large numbers of other conserved residues.

Others have actually used clusters of sequence-conserved residues on a protein structure

to identify functionally important residues (Lichtarge et al. 1996). These constraints used

here significantly enrich the available residues with functional residues, which can

explain the increase in ROC10 areas for the smaller neighborhoods.

Chapter 1: Random Motifs and Superfamily Active Site Templates
16

Figure 2. Cumulative histograms of scores of conserved and close random motifs.

The black line, labeled “Conserved”, is identical to the same-labeled data shown in
Figure 1. The remaining lines show the effects of adding an additional constraint that all
residues must lie in a 7.5, 10, or 15 Å neighborhood. These lines represent 51, 496 and
3093 motifs, respectively.

Substitutions in random motifs

While the simple constraints show improvement in the scores of random motifs, none

performed as well as the motif based on expert knowledge. This difference is, in large

part, due to the position-specific substitutions allowed in the expert motif. Three of the

five residues in the expert derived motif allow a specific list of substitutions, and these

substitutions are important for the high score of the motif. Not allowing these

substitutions lowers its ROC10 area from 0.97 to 0.27. To provide randomly generated

motifs this same flexibility, I allowed for position-specific substitutions chosen from the

same multiple sequence alignment I used to measure conservation. Positions with poor

conservation would have a very long allowable substitution list and could match most

any residue in any protein, so it only makes sense to use conserved residues with this

Chapter 1: Random Motifs and Superfamily Active Site Templates
17

substitution scheme. Choosing substitutions from the BLAST-generated multiple

sequence alignments showed a large shift in the middle of the distribution to higher

ROC10 areas, but it did not change the maximum score (Figure 3). The sequences in the

BLAST alignment are all much more similar than the most distant relatives of mandelate

racemase in the superfamily. These substitutions allow more frequent matching of the

relatively close structures, but not the more distant ones. Capturing the substitutions

necessary to match more distant relations will require a multiple sequence alignment that

includes sequences that are more distant. Alignments of entire superfamilies are not

accurately generated by automatic methods, but the use of a manually curated multiple

sequence alignment (Babbitt et al. 1996) shows an increase in the maximum scores

achieved by randomly generated motifs.

Chapter 1: Random Motifs and Superfamily Active Site Templates
18

Figure 3. Cumulative histograms of scores of random motifs with allowed

substitutions.

Red, “No subs.” line is identical to blue “Conserved w/in 7.5 Ang.” line in Figure 2. All
motifs shown are constrained by conservation and spatial proximity (7.5 Å
neighborhood). Green, “Blast subs.” line is the identical set of motifs with substitutions
chosen from a BLAST-generated alignment. Blue, “Expert subs.” line represents 260
motifs generated identically except that the alignment is a manually curated superfamily
alignment.

Limiting Residue Types in Random Motifs

One notable feature of the distributions of motifs based on very diverse sequence

alignments is the number of motifs with ROC10 areas at 0. Most of these motifs are

sensitive enough to match the four structures that are very similar to 2mnr with low

RMSD, but they also match many false positives at equivalently low or lower RMSD.

Inspection of these motifs shows that these are composed mostly of hydrophobic residues

that are freely substituted by other hydrophobic residues, especially at great evolutionary

distances. It appears that matching a hydrophobic cluster is very easy among unrelated

proteins. Furthermore, most previously described motifs and catalytic sites are composed

of polar residues. As a final constraint to test, I restricted the motifs to use only the polar

Chapter 1: Random Motifs and Superfamily Active Site Templates
19

residues. This eliminated the large number of motifs that score at 0.0, and shifted the

entire distribution to the higher ROC10 areas.

Figure 4. Cumulative histograms of scores of random motifs with only polar

residues.

All motifs were generated with conservation and spatial proximity constraints (12 Å), as
well as substitutions chosen from a manually curated superfamily multiple sequence
alignment. The motifs represented by the blue, “Polar residues” line were further
constrained to include only polar residues.

Important Residues in Motifs

The analysis so far has focused mostly on the scores of motifs and less on the features of

the motifs that contribute to the score. I have shown that no randomly generated motifs

have classification ability as high as a motif based on the functional site, but many still

have high classification ability. Are there other regions of the protein with high

classification ability that are not in the active site? I examined the residues used in motifs

constrained by only conservation to find other residues that could contribute to high

scores. Figure 5 shows each residue and an ROC10 area for each motif that contains it.

While a functional residue is not sufficient for a high scoring motif–the spread of scores

Chapter 1: Random Motifs and Superfamily Active Site Templates
20

for all positions goes from close to zero to near the maximum for that position, at least

some functional residues appear necessary for the highest scoring motifs. The highest-

scoring randomly generated templates were very similar to the manually chosen template;

all included at least one of the metal ligands, and most included two. Three of the five

residues in the expert motif appear among the top scoring motifs, two metal binding

ligands and a base. Six other residues appear in top-scoring motifs. Half are close

sequence neighbors of these three functional residues. The remaining three top scoring

residues are glycines that are more distant from the active site, though they always occur

in top scoring motifs with at least one of the expert motif residues. As a final

demonstration of the importance of these three functional residues to high scoring motifs,

the ROC10 score for motifs built with only four of the expert motif residues show the

greatest decline when the left-out residue is one of these three (Figure 6).

Chapter 1: Random Motifs and Superfamily Active Site Templates
21

Figure 5. Residues that contribute to motif scores.

For each motif among the 2825 motifs labeled “Conserved” in Figure 1, their ROC10
area score is plotted against each motif residue (red dots). The gray vertical lines show
the residues that make up the motif based on functional knowledge, Lys 164, Asp 195,
Glu 221, Glu 247 and His 297. The top score for each residue is circled in black.

Figure 6. Scores of partial motifs based on the functional site.

Shown are the scores of five motifs made by leaving one residue out of the motif based
on functional knowledge. The ROC10 area for the entire five-residue motif is shown by
the dotted line labeled “All five residues”.

Chapter 1: Random Motifs and Superfamily Active Site Templates
22

Discussion

The original purpose of this work was to show that expert knowledge of functionally

important residues generated unique and concise 3D motifs in enzyme superfamilies. I

have shown that very few randomly generated motifs approach the ability of active site

motifs to uniquely identify a whole superfamily. Even when motifs are chosen based on

constraints to make them more like active site motifs, randomly generated motifs only

approach the ability of the expert motif when they contain most of the residues in an

expert motif. It should be pointed out that these results are from a very limited data set:

all analysis is based on motifs from just one structure in one group of proteins. While

preliminary analysis of another structure (1ebh) in the enolase superfamily revealed

similar trends (data not shown here), other proteins in other groups could potentially

generate very different conclusions.

A major factor explaining the inability of any of the random motifs to match the

effectiveness of the expert motif is the allowed substitutions at each position. While I

tried different multiple sequence alignments for choosing allowed substitutions, I could

not recreate the list of allowed substitutions that can be generated by detailed manual

analysis. Part of the problem is inherent to residue-based motifs. Because multiple amino

acids can provide the same chemical capabilities, and a single amino acid can provide

multiple different chemical capabilities, residue based motifs are a simplified model of

functional protein elements. On the other hand, the residues are the ‘atoms’ of protein

evolution: individual changes are at the level of individual residues, not chemical groups.

Nevertheless, the requirements of function often allow residues to be replaced based on

the chemical requirements. For example, when a glutamate is required for its carboxylate

Chapter 1: Random Motifs and Superfamily Active Site Templates
23

group, often an aspartate can serve as well in the same location. In this simple case, the

use of substituting residue types can adequately describe the system, but there are cases

that are more complex. For example, two residues in one structure might interact to

perform the role of a single residue in a different structure, as a His-Asp dyad serves the

role of a lysine in some members of the enolase superfamily (Babbitt et al. 1996). Active

site descriptions that use chemical groups or physical and chemical descriptions could

avoid this issue.

These results suggest that an automated method to choose a motif could easily be

developed based on optimization of random guesses. It is promising that motifs that

contain only a fraction of the most important residues, together with other less important

residues, produce an intermediate score (see Figures Figure 5 and Figure 6). This could

allow an optimization to incrementally learn the best motif through small changes. In my

later work, I chose to optimize these motifs through a genetic algorithm (described in

Chapter 2), and these results helped guide the development of that genetic algorithm. As

a genetic algorithm relies on random guesses, making better random guesses could help

reach a solution faster. It is important to recognize a balance though between applying

constraints that provide useful limits as opposed to restrictive limits. As functional

residues or simply residues that are useful classifiers should always be less variable than

residues under no selective pressure, requiring a minimal level of conservation for motif

residues was a useful limit. Requiring close spatial proximity of residues, on the other

hand, could be an overly restrictive limit, even though it provides for a higher rate of high

scoring guesses. While I see the best enrichment in high scoring guesses by restricting

motif residues to a 7.5 Å neighborhood, this would eliminate the best observed motifs in

Chapter 1: Random Motifs and Superfamily Active Site Templates
24

some cases. For my genetic algorithm, I only restrict initial guesses to a 12 Å

neighborhood and allow the optimizations to ignore residue distances. Likewise, for the

final version of my genetic algorithm the restriction by residue type to polar residues was

not used.

References

Altschul, S. F., T. L. Madden, et al. (1997). "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs." Nucleic Acids Res 25(17):
3389-402.

Artymiuk, P. J., A. R. Poirrette, et al. (1994). "A graph-theoretic approach to the
identification of three-dimensional patterns of amino acid side-chains in protein
structures." J Mol Biol 243(2): 327-44.

Babbitt, P. C. (2003). "Definitions of enzyme function for the structural genomics era."
Curr Opin Chem Biol 7(2): 230-7.

Babbitt, P. C., M. S. Hasson, et al. (1996). "The enolase superfamily: a general strategy
for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids."
Biochemistry 35(51): 16489-501.

Berman, H. M., J. Westbrook, et al. (2000). "The Protein Data Bank." Nucleic Acids Res
28(1): 235-42.

Fetrow, J. S. and J. Skolnick (1998). "Method for prediction of protein function from
sequence using the sequence-to-structure-to-function paradigm with application to
glutaredoxins/thioredoxins and T1 ribonucleases." J Mol Biol 281(5): 949-68.

Gerlt, J. A. and P. C. Babbitt (2001). "Divergent evolution of enzymatic function:
mechanistically diverse superfamilies and functionally distinct suprafamilies."
Annu Rev Biochem 70: 209-46.

Holm, L. and C. Sander (1998). "Removing near-neighbour redundancy from large
protein sequence collections." Bioinformatics 14(5): 423-9.

Kleywegt, G. J. (1999). "Recognition of spatial motifs in protein structures." J Mol Biol
285(4): 1887-97.

Lichtarge, O., H. R. Bourne, et al. (1996). "An evolutionary trace method defines binding
surfaces common to protein families." J Mol Biol 257(2): 342-58.

Meng, E. C., B. J. Polacco, et al. (2004). "Superfamily active site templates." Proteins
55(4): 962-76.

Ponomarenko, J. V., P. E. Bourne, et al. (2005). "Assigning new GO annotations to
protein data bank sequences by combining structure and sequence homology."
Proteins 58(4): 855-65.

Chapter 1: Random Motifs and Superfamily Active Site Templates
25

Russell, R. B. (1998). "Detection of protein three-dimensional side-chain patterns: new
examples of convergent evolution." J Mol Biol 279(5): 1211-27.

Valdar, W. S. (2002). "Scoring residue conservation." Proteins 48(2): 227-41.

Wallace, A. C., N. Borkakoti, et al. (1997). "TESS: a geometric hashing algorithm for
deriving 3D coordinate templates for searching structural databases. Application
to enzyme active sites." Protein Sci 6(11): 2308-23.

Introduction to Chapter 2
26

Introduction to Chapter 2

The work described in Chapter 2 is a natural progression on the work of Chapter 1. With

the knowledge of how to make the best randomly derived motifs, I next sought to

optimize the best random motifs to build towards motifs as good as or better than expert-

built motifs at identifying a group of proteins with similar functions. For the

optimization, I chose to use a genetic algorithm. Genetic algorithms discover optimized

solutions to problems by randomly modifying and combining the best observed guesses

in an iterative process. In my case, solutions are 3D motifs, or simply a collection of

residue coordinates chosen from a protein structure. They can be modified by adding or

removing residues, and recombined by taking a random subset of the combination of two

motifs. It was a straightforward step to take my programming work used in Chapter 1 to

generate random guesses, and put it together with these simple modification and

recombination routines together with a slightly modified scoring function to generate a

simple but effective genetic algorithm. The results, as described in more detail in the

body of the chapter, show that while the expert built motifs still showed advantages for

certain structures in certain groups, the genetic algorithm can build useful and

functionally related motifs that are often as good as the expert built motifs.

The remainder of this chapter represents a verbatim copy of this manuscript, including

the supplementary materials, in the journal Bioinformatics (Polacco et al. 2006).

Polacco, B. J. and P. C. Babbitt (2006). "Automated discovery of 3D motifs for protein
function annotation." Bioinformatics 22(6): 723-30.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
27

Chapter 2: Automated Discovery of 3D Motifs for Protein

Function Annotation

Abstract

Motivation: Function inference from structure is facilitated by the use of patterns of

residues (3D motifs), normally identified by expert knowledge, that correlate with

function. As an alternative to often limited expert knowledge, we use machine-learning

techniques to identify patterns of 3 to 10 residues that maximize function prediction. This

approach allows us to test the assumption that residues that provide function are the most

informative for predicting function.

Results: We apply our method, GASPS, to the haloacid dehalogenase, enolase,

amidohydrolase and crotonase superfamilies and to the serine proteases. The motifs

found by GASPS are as good at function prediction as 3D motifs based on expert

knowledge. The GASPS motifs with the greatest ability to predict protein function

consist mainly of known functional residues. However, several residues with no known

functional role are equally predictive. For four groups, we show that the predictive power

of our 3D motifs is comparable to or better than that of approaches that use the entire fold

(CE) or sequence profiles (PSI-BLAST).

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
28

Introduction

The increasing availability of structural data for proteins of unknown function creates a

demand for in silico methods to infer the function of these proteins using structural

information (Teichmann et al. 2001). But while comparison of overall structures can

extend homology detection to evolutionary distances where sequence similarity is

undetectable (Chothia et al. 1986), fold comparison often does not identify similarities

among functionally significant residues or atoms involved in a protein function's

mechanism. Together, the coordinates of these residues or atoms can define a 3D motif.

There are many available motif-matching methods that can be used to identify a protein

with a matching motif and thus a similar function and mechanism (for example,

Artymiuk et al. 1994; Fetrow et al. 1998; Barker et al. 2003). Such methods offer useful

complements to fold-based homology comparisons, especially in cases where homologs

have diverged in function.

In earlier studies, 3D motifs have typically been chosen based on expert knowledge of

functionally important residues in enzyme active sites such as the catalytic triad of the

serine proteases. These motifs have been successful at identifying specific enzymatic

activities (Torrance et al. 2005), binding relationships (Artymiuk et al. 1994), and

superfamily membership (Meng et al. 2004). However, in the absence of a large data

source of functional information, accumulation of motifs is slow. The catalytic site atlas

(CSA) is a new effort to create a comprehensive database of functional information

gleaned from the literature (Porter et al. 2004). It currently provides 147 non-redundant

active site motifs for enzymes (Torrance et al. 2005). Similarly, Arakaki et al. (2004)

presented an automated method that used the functional information in feature records of

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
29

the Swiss-Prot database to construct 3D motifs for 162 different enzymes. Even this

method is limited by the shortage of functional information in Swiss-Prot. There are

numerous other examples of computational approaches to predict functionally important

residues (for example, Zvelebil et al. 1988; Elcock 2001; Wangikar et al. 2003), but these

may not be accurate enough to translate to useful motifs (see Discussion).

An alternative is the use of automated 3D motif detection methods. These have shown

some success, though none has mapped motifs to specific protein functions with the

design goal of characterizing novel proteins with high accuracy. PINTS detects repeated

patterns of sidechains between pairwise comparisons of diverse structures, and has

generated a large set of repeated motifs (Russell 1998). A similar data-mining approach

that compares all patterns across an entire library of structures finds the catalytic triads of

proteases along with metal binding sites, salt bridges and similar structural features

(Oldfield 2002). Although such general structural features do not provide much specific

functional information, they dominate the databases of motifs generated by these types of

methods.

We present here a new approach for automated 3D motif generation named GASPS

(Genetic Algorithm Search for Patterns in Structures). GASPS was developed with two

basic design goals. First, for any specified group of proteins, GASPS should find the

motif most useful for identifying the group. Second, GASPS should rely as little as

possible on knowledge about what is likely a predictive or functionally important residue.

We validate the effectiveness of GASPS on four highly divergent groups of enzymes: the

convergent serine proteases (SP), the amidohydrolase superfamily (AHS), the enolase

superfamily (ES), and the haloacid dehalogenase superfamily (HADS). These motifs

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
30

verify that many, but not all of the previously known functionally important residues are

the best predictive residues (along with additional unexpected residues). We describe the

crotonase superfamily (CS) as an example of a group that is not well suited for

characterization by 3D motifs as they are typically defined.

Methods

Motif Representation and Matching

As an initial test of principle, we adopted the motif model and matching algorithm of

SPASM (Kleywegt 1999), although GASPS can be adapted for use with other motif

matching algorithms as well. A motif is a small set of residues (<10 for this study) taken

from a single chain, here called the query chain. For each position, SPASM requires a

matching residue to be of the identical type with no substitutions. Alternatively, a unique

set of residues at each position may be specified that can be substituted with no penalty,

though in the course of our study we were unable to use this feature effectively (see

Supplementary Materials). SPASM models each residue with just two points, backbone

Ca and the sidechain geometrical center. SPASM computes a superposition root-mean-

squared deviation (RMSD) for each match it finds within user-defined thresholds of

RMSD, sidechain distance deviations (SCD), and C distance deviations (C D). For this

study, thresholds were set to RMSD=3.2Å, SCD=3.8Å, and C D=5.0Å. SPASM allows

the use of several additional constraints that were not used for this study. Only the match

with the best RMSD is considered from each structure.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
31

GASPS

GASPS generates motifs by selecting residues from a single query chain. Here, functional

sites and motifs that span more than one chain are not directly addressed. These motifs

are scored for their ability to accurately discriminate the positive from the negative sets.

There are four main components to a GASPS run: query processing, initial guesses,

scoring, and refined guesses.

Query Processing To limit the search space, only the 100 most conserved residues in

the query chain are considered for inclusion in a motif. Conservation is calculated from a

multiple sequence alignment by weighting sequences to reduce the effects of redundancy,

considering conservative substitutions based on a substitution matrix, and to penalize

gaps (Valdar 2002). All multiple sequence alignments were generated by a two-iteration

PSI-BLAST (Altschul et al. 1997) search against nrdb90 (Holm et al. 1997) built in

February, 2004.

Initial Guesses Fifty candidate motifs are initially chosen spread equally across the

linear sequence of the query chain to provide coverage of all regions. For each random

guess, a first residue is selected from the query chain and then four other residues are

randomly chosen such that each -carbon is within 12Å of the first -carbon.

Scoring Function Candidate motifs are scored for their ability to discriminate

between the positive and negative proteins based on the best RMSD matches from a

SPASM search. The query structure, which is always a perfect match to the motif, is

excluded from the positive set. The scoring function is primarily the normalized area

under a receiver-operator characteristic (ROC) plot to five false positives (a false positive

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
32

rate of ~0.001). If the sorted RMSD scores for structures in the negative set are (f1, f2,

f3,…fn), then this area, called R, can be computed explicitly as:

R =
1

5

T(fi)

Tmaxi=1

5

where T(f) is the number of true positives with a better RMSD match than a given false

positive and Tmax is the size of the positive set. R ranges from 0 to 1. Because R is based

on discrete counts, different motifs will frequently have identical R scores. To avoid ties,

we include an additional term in the GASPS scoring function. This term, S, is the

normalized difference in median RMSD between the true positives and false positives,

only considering those that score better than the fifth false positive (f5). This can be

explicitly defined as:

S =
median(f1 5) median(t1 m)

median(f1 5)

where t1-m is the set of RMSDs from the true positive matches that are better (less) than

the fifth false positive (f5). When no true positives are hit (R=0), S is set to zero. The

overall GASPS score (G) is then the sum of S and R weighted to emphasize the ROC

score, and is composed:

G =1.0R + 0.1S

Refined Guesses The 16 highest scoring motifs of any round are included in the next

round and used as parents for constructing 36 novel motifs via one random process:

deletion, insertion, mutation or recombination. The only restriction on the new motifs is

that they contain at least 3 residues and at most 10. Deletions and insertions generate a

new motif by removing or adding a residue to a single parent motif. A mutation is a

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
33

combination of a deletion and an insertion. A recombination is a random subset of the

combination of two parent motifs. The top-scoring motif after fifty rounds of refinement

is considered the final winner. Most GASPS runs in this study took between 12 and 18

hours on a single 2.667 GHz Intel Xeon processor. Most of this time was spent

completing the SPASM searches against the negative set, which time scales directly with

the number of proteins in the negative set.

Structure Library

Most analyses in this study used a set of structures selected from the Protein Data Bank

(PDB) (Berman et al. 2000) to represent all families in The Structural Classification of

Proteins (SCOP) version 1.65 (Murzin et al. 1995). The selection algorithm treats each

SCOP family individually and has three main goals: 1) mutant removal based on text

matching PDB fields, 2) sequence redundancy filter to 40% identity, and 3) favoring the

highest quality structures based on resolution. No distinction is made between apo and

holo structures. The entire corresponding PDB chains for each of the SCOP domains are

included, regardless of similarities at other domains. On SCOP version 1.65, this

selection results in 5440 unique domains on 4243 unique chains.

Positive and Negative Sets

We chose five well-characterized positive groups so that all members within each group

share a similar function, and this shared function is dependent on known functional

residues (Table 1). Definitions for the four superfamilies were taken from the Structure-

Function Linkage Database (SFLD) (Pegg et al. 2005). However, the SFLD as yet

contains only a few superfamilies, so to mimic a more typical usage of GASPS on less

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
34

than perfect classifications, for all five groups of proteins studied here, a positive set of

structures was selected based on SCOP superfamily and family classifications (given in

Table 1). Each positive set is a subset of the structure library with the modification that

all chains within a PDB structure file are included. Sequence identities between all pairs

of homologous chains used as query chains range from 14% to 40%. The negative set is

the entire structure library, excluding all chains that contain at least one domain meeting

the criteria for inclusion in the positive set.

Cross-Validation

Complete rounds of leave-one-out cross-validation were performed for several query

structures in each group. For the smaller groups, each structure in the positive set was

used once as a query structure. For the larger groups, AHS and SP, a randomly selected

subset of the structures was used. For each query structure, all possible positive training

sets were produced by excluding one other (non-query) positive structure. The

corresponding positive test sets each contained just the excluded structure. Similarly, the

negative set was equally divided to produce as many negative test sets as positive test

sets. The corresponding negative training sets are simply the entire negative set excluding

a negative test set. Using ES as an example, this procedure required 42 runs of GASPS (7

query structures multiplied by 6 left-out positive structures). The reported sensitivity on

the test sets is the portion of GASPS runs where the final GASPS motif from each

training run was able to discriminate the left-out positive member from the left-out

negative test set at an RMSD threshold equal to the RMSD of the fifth-best false positive

match on the training sets. Those runs for which the final trained GASPS motif did not

score significantly on the training set were excluded.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
35

Table 1. Functionally Similar Protein Groups

Group SCOP

groups

N1 Known Functional

Residues

Amidohydrolase
Superfamily

c.1.9 16 (1a4m) H15 H17 H214 H238 D295

Enolase

Superfamily

c.1.11 7 (2mnr) K160 D191 E219 D244 K268

Crotonase

Superfamily

c.14.1.3 7 (1mj3) backbone A98 G141

Haloacid

Dehalogenase
Superfamily

c.108.1 12 (1fez) D12 T126 R160 D186 D190

Serine Proteases b.47.1.1, b.47.1.2,
b.47.1.3, c.41.1.1

38 (2hlc) H57 D102 S195

1) Number of non-redundant structures in positive set.

PSI-BLAST and CE Libraries

For BLAST (Altschul et al. 1997) and PSI-BLAST comparisons with GASPS the

libraries were the set of unique chains from the same PDB files used in the positive and

negative sets for GASPS (described above). For the Combinatorial-Extension algorithm

(CE) (Shindyalov et al. 1998), to avoid computing all-by-all pairwise comparisons, the

negative sets were reduced to the likely high-scoring members for each positive group.

For most groups, this meant limiting the negative set to those chains with the same SCOP

fold as a catalytic domain in the positive set. However, according to SCOP, HADS is the

only superfamily of the HAD-like fold, so its negative set for CE was chosen based on

CATH (Orengo et al. 1997) instead. For SP, there were an insufficient number of same-

fold structures that were not serine proteases to provide negative sets for both the

subtilisins and trypsins. An additional SCOP fold (b.43: Reductase/isomerase/elongation

factor common domain) was included in the library that commonly scored highly against

SP folds according to the CE internet database (http://cl.sdsc.edu/ce.html).

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
36

Results

Validation of GASPS

Significance of Optimized GASPS Scores. To determine whether any GASPS

motif likely represents more than a chance co-occurrence of residues, we computed

significance cutoffs from empirical distributions of GASPS motifs due to chance alone.

To ensure that any motif was due to chance, artificial positive groups were generated by

randomly selecting structures from the structure library, each with a different fold. Based

on these distributions, provided in Supplementary Materials, we can set GASPS score

thresholds for moderate significance (p < 0.01): for groups of approximately 5 structures

motifs must score greater than 0.55 and in larger groups of 10 or more structures they

must score above 0.4.

Cross-Validation Studies. To estimate the performance of GASPS on new proteins,

leave-one-out cross-validation studies were completed on each of the groups in Table 1.

RMSD thresholds were chosen for each top GASPS motif to give a false positive rate of

approximately 0.0013 (5 false positives) on the training set. With the exception of CS,

sensitivity is high and there is a close correspondence between the training and test sets

(Figure 1). Sensitivity on the test sets for most cases is approximately 90% of that on the

training cases. The false positive rate (and its complement, sensitivity) shows an even

tighter correspondence with an average rate of 0.0014 on the test cases. The fact that CS

is one of the smallest groups and also that it lacks highly conserved sidechains in the

active site, as described below, likely contribute to the poor performance of GASPS for

this superfamily.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
37

Figure 1. Generality of GASPS motifs based on sensitivity from two experiments:

cross-validation and detection of newer structures.

Black filled circles show average sensitivities of motifs from leave-one-out runs on the
cross-validation training (x-axis) and test (y-axis) sets. Gray triangles show sensitivities
of motifs generated on the full training sets (all motifs in Figure 3) when used to detect
structures in the full training set (x-axis) compared with novel structures solved after the
training set was established (y-axis).

Detection of New Structures. Across all groups, we identified 12 new structures in

the PDB that were not yet classified by SCOP (as of version 1.65, December 2003), by a

combination of searches based on literature, annotation and sequence similarity, along

with communications with collaborators. These 12 proteins all share less than 40%

sequence identity with each other or with any protein in the original training set. Motifs

generated on the full training set, one for each query structure (shown in Figure 3), were

tested for their ability to match the appropriate new structures within the RMSD

thresholds determined on the full training set. For these 12 structures, the group-based

average rate of matches is 68% compared with 81% on the structures included in the full

training set. If CS is excluded, the group-based average rate of matches is 75%, compared

to 79% on the training set (Figure 1). This is an average across all motifs in each group

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
38

including those with insignificant scores and very poor match rates. The expected match

rate for any given motif appears linked to its original GASPS score. Excluding CS, no

top-scoring motifs in any one group missed any of the new structures, and only 1 of 9

insignificantly scoring motifs matched any new structures. No new structures, CS

included, failed to match any motif in their group.

Comparisons with other 3D motif methods. A key benefit of GASPS is that it

requires no knowledge of functionally important residues. However, even on groups

where functionally important residues are known, GASPS is still useful if it is able to

select a more sensitive motif. We constructed motifs built from the functionally important

residues (see Table 1) for all possible query structures and compared their sensitivity to

GASPS motifs. For all groups except SP, the GASPS motifs have higher sensitivity than

simply using these functional residues (Figure 2, “FUN”).

Of other available techniques, the closest to GASPS in principle, is DRESPAT

(Wangikar et al. 2003) that detects similar patterns of residues within a group of

structures. We used DRESPAT with previously published parameters and a pattern size

of four residues to generate patterns for the groups in our data set. The resulting top

ranked patterns identify some functionally important residues for all groups in this study

except for CS (not shown). However, they fail to identify superfamily members with

similar specificity and sensitivities to those of GASPS motifs (Figure 2). It may be

possible to adjust the parameters and desired pattern size to improve the performance on

a case-by-case basis, but the DRESPAT technique is not designed to automate or aid such

a procedure.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
39

Figure 2. Sensitivity of GASPS motifs compared with other techniques.

Sensitivity shown for GASPS is measured by cross validation (Fig. 1). For all other
techniques, the sensitivity is measured at the threshold of the fifth false positive. Other
techniques are DRESPAT (DRE.) motifs, motifs built from functional residues (FUN.),
CE, PSI-BLAST (PB.) and BLAST. Plus signs (+) indicate significantly better sensitivity
than GASPS within the protein group, and minus signs indicate significantly worse
performance at p < 0.05. Double signs (++ or --) indicate a greater degree of statistical
significance (p < 0.0001). CS results are not shown because no 3D motif methods were
able to characterize it effectively

Two other 3D motif libraries have recently been used to identify functional or

homologous relationships, the motifs used by PINTS and the CSA. As these libraries

were not specifically constructed to identify members of the groups in this study, it is

impossible to run a parallel experiment for a direct comparison with the techniques

shown in Figure 2. PINTS has been used to confirm superfamily membership and binding

relationships of structural genomics proteins by finding matches to motifs derived from

proximity to ligands or SITE annotations in PDB records (Stark et al. 2004). We tested

this same technique (made available at http://www.russell.embl.de/pints/) by asking

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
40

whether the structures used in our study matched with high specificity those motifs that

came from other non-redundant (<40% sequence identity) group members. The measured

sensitivities of GASPS motifs (Figures 1 and 2) greatly outperform PINTS for all five

groups at similar or even much lower rates of specificity. To be generous, PINTS could

adequately serve its purpose if for any query structure it only detects a single true positive

motif and ranks it highest among all matches. Even using this much less stringent

definition of sensitivity for PINTS than used for GASPS, only for SP does PINTS score

better than our reported sensitivities for GASPS motifs.

The motifs derived from functional knowledge in the CSA are available for searching by

the program Jess (Barker et al. 2003) at their website (http://www.ebi.ac.uk/thornton-

srv/databases/CSA/). We used each of the structures in our positive sets to search the

CSA with Jess and scored true positives according to whether the motif originated from

the same group (defined in Table 1) as the original query. Maintaining similar specificity

as required for GASPS, we should require that JESS, with only 147 motifs, identify true

positives with greater E-value than any false positive. Only structures from SP reliably

matched any true positives. Outside of SP, only three structures (one each from AHS, ES

and HADS) matched any CSA motif, but all three of these motifs came from structures

that shared more than 40% sequence identity with the query. Relaxing the specificity to

five false positives only allowed two other HADS structures to match the haloacid

dehalogenase motif. Even though several of the false positive matches had E-values that

suggested significance (~10-4), none correctly predicted the function or group

membership of the original query. These high quality motifs in the CSA are useful for

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
41

detecting certain specific functions, but they cannot adequately detect the diverse

functions or distant relationships covered by the superfamilies studied here.

Prediction Ability Compared to Whole-Chain Tools. We compared the

sensitivity of GASPS motifs (as estimated by cross validation) with other tools that use

the whole protein chain including the sequence-based tools BLAST and PSI-BLAST

(Altschul et al. 1997) and the fold comparison tool CE (Shindyalov et al. 1998). All

members of all positive groups were used as queries for each of the methods, and these

were searched against the appropriate library as described in Methods. All sensitivities

were measured by counting the fraction of positives that scored better than the fifth best-

scoring negative for each query (Figure 2). No single method is better than all other

methods for all of the groups in this study. CS is easily grouped by most methods with

the exception of GASPS motifs. The fold comparison tool CE performs well on groups

with unique folds such as HADS. AHS and ES, on the other hand, share the common

(/)8 fold with many other superfamilies, which may help explain why CE performs

worse than GASPS in these cases. PSI-BLAST performs better than GASPS only for the

least divergent superfamilies considered, ES and CS, where PSI-BLAST performs

perfectly. With the exception of CS, GASPS motifs outperform BLAST on all groups.

Detection of Key Functional Residues

An advantage of our method is that the selection of the residues in a motif is unbiased

towards any preconceived notions of functionally important residues except indirectly via

our exclusion of the least conserved residues. This allows us to ask if there is a

relationship between the residues that discriminate proteins of related function and the

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
42

residues that we know from experimental studies provide function. Table 1 shows the

residues that are known to be directly involved in shared function or used in previous

functional motif studies. These are used as our gold standard of key functional residues.

Every positive structure was used once as a query structure except for SP from which

only a diverse subset of structures was chosen. The best motifs from each of these runs

are presented in detail in Figure 3. There is a clear trend for the proportion of functional

residues in a motif to increase as the motif score rises.

As a stochastic search method, GASPS can be expected to produce different motifs in

identically configured runs, and we expect several of the lower scoring motifs presented

in Figure 3 are not the best motif a given query can provide. The results of repeated runs

for several configurations are presented in Supplementary Materials. Clearly, multiple

GASPS runs per group are necessary to ensure that an optimal motif is found for any

group. For some single query structures, however, repeated runs suggest there is no

combination of residues that provide a useful motif. Meanwhile, the optimal motifs for

the majority of other query structures are highly similar. Taken together, these results

suggest that to generate a set of the most useful and inclusive motifs for any group of

proteins, limited resources are better spent on running GASPS on many different query

structures than on running GASPS multiple times on the same structure.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
43

Figure 3. Scores and functional significance of GASPS motifs.

The results of a single GASPS run are presented for each named query structure.
Residues in the motif that correspond to previously identified functional residues or
known active-site motif residues are darkly shaded. All other residues are lightly shaded
regardless of subsequent determination of their functional significance. For the serine
proteases, query structures are labeled “T:” to denote trypsin-like folds or “S:” for
subtilisin-like folds.

Amidohydrolase Superfamily The amidohydrolase superfamily (AHS) is a

functionally diverse superfamily composed of homologs with a (/)8 (TIM) barrel fold

that share a conserved mechanistic step mediated by a conserved set of active site

residues (Holm et al. 1997; Gerlt et al. 2003). All known members of the superfamily are

metal-dependent and require either one or two divalent metal ions. Five conserved metal

ligands comprising four histidines and an aspartic acid have been identified as

functionally important in all groups within the superfamily. Only one GASPS run on this

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
44

superfamily resulted in a motif with an insignificant score and no overlap with any of

these metal ligands (Figure 3a). The remaining runs all resulted in motifs that contained

at least three of the five conserved ligands. The other residues in the significant motifs are

all distant from the metal ligands and thus probably not directly involved in the enzyme’s

active site.

Enolase Superfamily Like the amidohydrolase superfamily, the enolase superfamily

(ES) is made up of homologs with a C-terminal (/)8 barrel fold plus an N-terminal

domain representing a unique fold. All functionally diverse members share a common

mechanistic step (Babbitt et al. 1996; Gerlt et al. 2005). Past studies have carefully

documented conserved elements responsible for the shared aspects of mechanism, and

motifs based on this functional information have been generated with success (Meng et

al. 2004). In this study, the conserved residues considered to play a functional role consist

of three divalent metal ligands and two basic residues. All motifs resulting from GASPS

runs contained at least the same two metal ligands, and one run contained one of the basic

residues (Figure 3b). The remaining metal ligand and both basic residues are known to

have variable residue types across members of the superfamily, possibly explaining why

GASPS has trouble locating them. A highly conserved residue among the GASPS motifs

that has not been identified as functionally important is a proline that is two positions

downstream from the second metal ligand. Here called the “downstream proline”, it

appears in all ES motifs.

Haloacid Dehalogenase Superfamily The haloacid dehalogenase superfamily

(HADS) comprises enzymes with diverse functions, yet all members share a common

mechanistic step associated with hydrolytic nucleophilic substitution via a conserved

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
45

aspartate and a few other residues (Allen et al. 2004). The HADS fold is unique

according to SCOP, though CATH divides it into two domains: a common Rossman fold

domain and a domain unique to the superfamily. Our laboratory has previously developed

motifs in a manual process based on expert knowledge (Meng et al. 2004), and the

residues in these motifs are here considered the conserved functional residues. While the

catalytic roles may be conserved at each of these positions, all but the obligate aspartate

are substituted in diverse members of the superfamily, as apparently required to

accommodate differences in their specific mechanisms and overall functions. Despite

these substitutions, most GASPS runs still contain three of the five functional residues

(Figure 3d). The nucleophilic aspartate appears in all significant motifs where possible.

(The 1l7m structure contains two alternate conformations listed for this aspartate, D11,

which precluded it from inclusion in a motif.) Nearly as frequent as the nucleophilic

aspartate is another aspartate two positions downstream that has been implicated by

others in binding and protonation of the substrate (Allen et al. 2004).

Serine Protease Families The serine proteases (SP) are a polyphyletic group

consisting mainly of two non-homologous families: the subtilisins and trypsins. They are

grouped together by virtue of their common functions and use of a structurally similar

catalytic triad in their active sites that appear to be the result of convergent evolution

(Dodson et al. 1998). Slightly more than half of the motifs and the highest scoring (10 of

19) included the entire triad (Figure 3c). Most triad-containing motifs included only one

additional residue: a glycine involved in formation of the conserved oxyanion hole (for

example, 2hlc G193) in trypsins. Though this glycine matches a conserved glycine in the

subtilisins, the NH group in the subtilisins points away from the active site cavity. Of the

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
46

nine remaining motifs, four had insignificant scores, three included partial catalytic

triads, and one was built from a heparin binding protein (1a7s) that, despite its homology

to the trypsins, does not contain the catalytic triad or perform protease activity. Many

significant runs seemed to be distracted by a disulfide bridge and neighboring alanine

near the active site (C42-C58, A55, see Figure 3c and Supplementary Materials), which

are well conserved among the trypsins but not the subtilisins.

Crotonase Superfamily Members of the crotonase superfamily (CS) display great

catalytic diversity, yet all are unified by a common structure-based stabilization of an

enolate anion intermediate of acyl-CoA substrates (Holden et al. 2001). Unlike the other

groups given in Table 1, however, this shared chemistry is not performed by sidechains

but by two structurally conserved NH groups of the peptide backbone that function as

part of an oxyanion hole. The sidechains of these residues are not strictly conserved

across the superfamily nor are there any other sidechains known or predicted to act in

catalysis that are conserved across the entire superfamily. The crotonase superfamily

therefore provides a test of GASPS and sidechain-based motifs on a group that may not

contain a structural motif focused on sidechains. As expected, an insignificant number of

residues in the motifs (1 of 33, for all motifs) is involved in the formation of the

characteristic oxyanion hole (Figure 3e). The common residues in the motifs that do

discriminate this superfamily seem unlikely to play a direct role in the enzyme’s function,

based on their distance from the active site. Examples include a conserved phenylalanine

(1hnu F66) that is buried but lines an interior cavity and an aspartate (1hnu D135)

involved in a conserved salt bridge.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
47

Discussion

Using GASPS for Function Identification

The performance of GASPS-generated motifs is comparable to that of 3D motifs

generated based on expert knowledge of functional sites in other proteins (Artymiuk et al.

1994; Wallace et al. 1997; Fetrow et al. 1998; Kleywegt 1999; Torrance et al. 2005).

Furthermore, GASPS motifs improve the coverage of protein functions offered by

publicly available sources of 3D motifs (Stark et al. 2003; Porter et al. 2004). Searching

with protein fragments in three-dimensional motifs developed by GASPS was also found

to be comparable or better than commonly used methods of annotation transfer that use

an entire protein chain such as PSI-BLAST or CE. Unlike these methods that use an

entire protein or domain, GASPS is able to focus on the features of protein structure most

likely to tell us the most about protein function. GASPS therefore provides a method of

generating motifs useful for function or superfamily prediction in an automated fashion

with no prior knowledge of mechanistic details. Such motifs can be used to verify

similarity of active sites in proteins in which only similarity of fold has been previously

identified. For example, GASPS motifs could be used for distinguishing functional

differences among families of (/)8 proteins.

GASPS requires only a prior grouping of related proteins, so GASPS is limited only to

groups with sufficient available structures. We cannot say for certain how many

structures are required, but it appears to depend on the variability among the available

structures. In the current study, all structures shared less than 40% sequence identity, and

GASPS still was able to find general motifs for groups with as few as seven structures.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
48

While only 14% of superfamilies and 6% of families in the structure library used here

have this many structures, these superfamilies and families make up the majority of

protein structures (60% and 32%, respectively). Theoretically, it would seem possible for

two highly diverged structures to share only their unique functional motif. However, for

most proteins, even of different folds, it appears that sharing similar residues in 3D space

occurs frequently enough by chance alone to require more than two structures to produce

a trusted motif (Wangikar et al. 2003).

SPASM (and therefore GASPS, as used in this study) considers only a single point for

each Ca and sidechain. With most catalysis carried out by sidechains (Bartlett et al.

2002), we believe the inclusion of the sidechains allows for better characterization of

functional sites than if only the backbone placement were considered. Motifs could be

represented with more precision by using the location of chemical groups, or even

individual functional atoms. However, given the variability in placements of functional

atoms in crystallographic structures, (DePristo et al. 2004; Torrance et al. 2005),

approximating the entire sidechain by a single rigid point may be more appropriate.

Location of Functional Information

GASPS makes no assumptions about the location of functional information except that it

can be resolved to individual residues and that it will be relatively well conserved. The

observed correspondence between information useful for classification and functionally

significant residues is a result of the choice of positive sets based on shared chemical

activities used in this study. The use of GASPS on sets based on other shared

characteristics, such as homology, binding partners, or cofactors, may identify the

residues most attributable to those shared characteristics.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
49

It should be noted that the motifs generated by GASPS may not be the only, or even the

most informative structural features. GASPS is expected to miss informative structural

features if the features are either inconsistent between members of the group, such as the

substituted residues in HADS, or if the features are not based on individual sidechains

such as backbone interactions or helix dipoles. The CS results provide a case in point.

In addition to the previously identified functionally important positions, other positions

occur with high frequency among the motifs for these groups. These positions may, for

example, merely provide a simple geometric positioning constraint for the other motif

residues that aids specificity. However, based on their conservation in 3D space, these

positions are likely to play an important role for the protein, especially when located in

the active site. For example, when the conserved “downstream proline” in the enolase

superfamily is mutated to alanine in the muconate lactonizing enzyme from

Pseudomonas putida (equivalent to structure 1muc) it results in an insoluble protein, (R.

Nagatani and P. Babbitt, personal communication,) suggesting that this proline may be

important for folding or stability of the soluble globular protein.

Based on its ability to identify at least a subset of the functionally important residues,

GASPS appears similar to the fully automated DRESPAT, which successfully locates

functionally important residues by identifying shared structural patterns in a set of

functionally similar protein structures (Wangikar et al. 2003). The main differences

between GASPS and DRESPAT are that GASPS compares patterns with a negative set

and chooses patterns based on their predictive ability. Wangikar et al.(2003) suggest that

DRESPAT patterns may represent useful 3D motifs. However, in the course of this study

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
50

we found that when DRESPAT patterns were converted to motifs for use by the search

tool SPASM, they were not as accurate as those motifs generated by GASPS.

Inference of Function for Diverse Groups

Four of the five groups in this study have been described as “mechanistically diverse

superfamilies” (Gerlt et al. 2001) consisting of divergent enzymes that perform many

different overall biochemical functions, but utilize a common mechanistic step such as a

partial reaction. Any motifs that identify proteins to these groups will therefore identify

the shared mechanistic step but not the overall biochemical function. By mapping a

specific mechanistic step to specific structural elements, we are using a finer-resolution

view of protein function than overall biochemical function, but one that is more

appropriate for such diverse groups (Babbitt 2003).

Future Applications

If applied to an exhaustive functional classification of proteins, GASPS has the potential

to generate an unbiased set of 3D motifs that can aid in function prediction for novel

proteins. In addition to aiding protein classification, the collection of 3D motifs can

represent hypotheses about determinants of function shared among related proteins. In

this regard, the high-scoring motifs can serve as starting points for studies attempting to

link function to structure, especially in a superfamily context. Additionally such a study

would systematically investigate the utility of 3D motifs at identification of functions

other than catalysis, such as ligand binding.

For groups with few experimental structures available, especially those coming from

structural genomics initiatives, GASPS would have insufficient structures without the use

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
51

of predicted structures, generated by homology modeling, for example. Past work has

specifically demonstrated the effectiveness of predicted structures for matching

previously determined functional motifs (Arakaki et al. 2004). It remains unclear whether

predicted structures can be used reliably for generating motifs. Work is ongoing in our

laboratory to investigate this issue.

Acknowledgements

We thank Elaine Meng for her useful discussions and careful reading of an earlier version

of the manuscript. This work was supported by NSF grant DBI-0234768.

References

Allen, K. N. and D. Dunaway-Mariano (2004). "Phosphoryl group transfer: evolution of a
catalytic scaffold." Trends Biochem Sci 29(9): 495-503.

Altschul, S. F., T. L. Madden, et al. (1997). "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs." Nucleic Acids Res 25(17):
3389-402.

Arakaki, A. K., Y. Zhang, et al. (2004). "Large-scale assessment of the utility of low-
resolution protein structures for biochemical function assignment."
Bioinformatics 20(7): 1087-96.

Artymiuk, P. J., A. R. Poirrette, et al. (1994). "A graph-theoretic approach to the
identification of three-dimensional patterns of amino acid side-chains in protein
structures." J Mol Biol 243(2): 327-44.

Babbitt, P. C. (2003). "Definitions of enzyme function for the structural genomics era."
Curr Opin Chem Biol 7(2): 230-7.

Babbitt, P. C., M. S. Hasson, et al. (1996). "The enolase superfamily: a general strategy
for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids."
Biochemistry 35(51): 16489-501.

Barker, J. A. and J. M. Thornton (2003). "An algorithm for constraint-based structural
template matching: application to 3D templates with statistical analysis."
Bioinformatics 19(13): 1644-9.

Bartlett, G. J., C. T. Porter, et al. (2002). "Analysis of catalytic residues in enzyme active
sites." J Mol Biol 324(1): 105-21.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
52

Berman, H. M., J. Westbrook, et al. (2000). "The Protein Data Bank." Nucleic Acids Res
28(1): 235-42.

Chothia, C. and A. M. Lesk (1986). "The relation between the divergence of sequence
and structure in proteins." Embo J 5(4): 823-6.

DePristo, M. A., P. I. de Bakker, et al. (2004). "Heterogeneity and inaccuracy in protein
structures solved by x-ray crystallography." Structure (Camb) 12(5): 831-8.

Dodson, G. and A. Wlodawer (1998). "Catalytic triads and their relatives." Trends
Biochem Sci 23(9): 347-52.

Elcock, A. H. (2001). "Prediction of functionally important residues based solely on the
computed energetics of protein structure." J Mol Biol 312(4): 885-96.

Fetrow, J. S. and J. Skolnick (1998). "Method for prediction of protein function from
sequence using the sequence-to-structure-to-function paradigm with application to
glutaredoxins/thioredoxins and T1 ribonucleases." J Mol Biol 281(5): 949-68.

Gerlt, J. A. and P. C. Babbitt (2001). "Divergent evolution of enzymatic function:
mechanistically diverse superfamilies and functionally distinct suprafamilies."
Annu Rev Biochem 70: 209-46.

Gerlt, J. A., P. C. Babbitt, et al. (2005). "Divergent evolution in the enolase superfamily:
the interplay of mechanism and specificity." Arch Biochem Biophys 433(1): 59-
70.

Gerlt, J. A. and F. M. Raushel (2003). "Evolution of function in (beta/alpha)8-barrel
enzymes." Curr Opin Chem Biol 7(2): 252-64.

Holden, H. M., M. M. Benning, et al. (2001). "The crotonase superfamily: divergently
related enzymes that catalyze different reactions involving acyl coenzyme a
thioesters." Acc Chem Res 34(2): 145-57.

Holm, L. and C. Sander (1997). "An evolutionary treasure: unification of a broad set of
amidohydrolases related to urease." Proteins 28(1): 72-82.

Kleywegt, G. J. (1999). "Recognition of spatial motifs in protein structures." J Mol Biol
285(4): 1887-97.

Meng, E. C., B. J. Polacco, et al. (2004). "Superfamily active site templates." Proteins
55(4): 962-76.

Murzin, A. G., S. E. Brenner, et al. (1995). "SCOP: a structural classification of proteins
database for the investigation of sequences and structures." J Mol Biol 247(4):
536-40.

Oldfield, T. J. (2002). "Data mining the protein data bank: residue interactions." Proteins
49(4): 510-28.

Orengo, C. A., A. D. Michie, et al. (1997). "CATH--a hierarchic classification of protein
domain structures." Structure 5(8): 1093-108.

Pegg, S. C., S. Brown, et al. (2005). "Representing structure-function relationships in
mechanistically diverse enzyme superfamilies." Pac Symp Biocomput: 358-69.

Chapter 2: Automated Discovery of 3D Motifs for Protein Function Annotation
53

Porter, C. T., G. J. Bartlett, et al. (2004). "The Catalytic Site Atlas: a resource of catalytic
sites and residues identified in enzymes using structural data." Nucleic Acids Res
32 Database issue: D129-33.

Russell, R. B. (1998). "Detection of protein three-dimensional side-chain patterns: new
examples of convergent evolution." J Mol Biol 279(5): 1211-27.

Shindyalov, I. N. and P. E. Bourne (1998). "Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path." Protein Eng 11(9): 739-47.

Stark, A. and R. B. Russell (2003). "Annotation in three dimensions. PINTS: Patterns in
Non-homologous Tertiary Structures." Nucleic Acids Res 31(13): 3341-4.

Stark, A., A. Shkumatov, et al. (2004). "Finding functional sites in structural genomics
proteins." Structure (Camb) 12(8): 1405-12.

Teichmann, S. A., A. G. Murzin, et al. (2001). "Determination of protein function,
evolution and interactions by structural genomics." Curr Opin Struct Biol 11(3):
354-63.

Torrance, J. W., G. J. Bartlett, et al. (2005). "Using a Library of Structural Templates to
Recognise Catalytic Sites and Explore their Evolution in Homologous Families."
J Mol Biol 347(3): 565-81.

Valdar, W. S. (2002). "Scoring residue conservation." Proteins 48(2): 227-41.

Wallace, A. C., N. Borkakoti, et al. (1997). "TESS: a geometric hashing algorithm for
deriving 3D coordinate templates for searching structural databases. Application
to enzyme active sites." Protein Sci 6(11): 2308-23.

Wangikar, P. P., A. V. Tendulkar, et al. (2003). "Functional sites in protein families
uncovered via an objective and automated graph theoretic approach." J Mol Biol
326(3): 955-78.

Zvelebil, M. J. and M. J. Sternberg (1988). "Analysis and prediction of the location of
catalytic residues in enzymes." Protein Eng 2(2): 127-38.

Supplementary Materials for Chapter 2
54

Supplementary Materials for Chapter 2

Significance of Optimized GASPS Scores

As a way of determining whether any GASPS motif and its score are significant and

likely represent more than a chance co-occurrence of residues, we computed empirical

distributions of the scores of refined GASPS motifs due to chance alone. To ensure that

the motifs were due to chance alone, artificial positive groups were generated by

randomly selecting structures from the structure library, each with a different fold. The

distributions of final GASPS scores on these artificial positive groups of size 5 and 10

structures are shown in the histograms in Figure i. As expected, these chance motifs do a

better job of discriminating the smaller groups (have higher GASPS scores), though in

both cases the discrimination is far from perfect. Using these distributions we can set

GASPS score thresholds for moderate significance (p < 0.01): motifs found in groups of

approximately 5 structures must score greater than 0.55 and in larger groups of 10 or

more structures they must score above 0.4.

Sources of Variability

As a stochastic search method, GASPS generates some variability in GASPS scores by

producing different motifs in identically configured runs. However, it is clear from other

observations that some variability stems from variation between query structures.

Recently, Torrance et al.(2005) reported variation above 1.0Å RMSD at active site motifs

for 20% of protein pairs in a set of proteins with less than 20% sequence identity. This

variation causes corresponding motifs from different query structures to provide different

Supplementary Materials for Chapter 2
55

scores. For example, the GASPS score for the catalytic triad of trypsin-like structure

1hpg is 0.83, but the same motif from another trypsin-like protein, 1agj, is 0.92. To

determine how much of the variation seen across GASPS results is due to the query

structure or the stochastic nature of the genetic algorithm, the best, worst, and the two

queries scoring closest to the median were chosen from each of these groups and run

through GASPS five additional times.

Figure ii plots the GASPS scores for these runs (along with histograms of insignificant

GASPS scores, as in Figure ii for reference). It is encouraging that the highest scores for

each query structure seem to be the most frequent in most cases, especially for AHS and

HADS. We also note that there are runs for which a high-scoring motif exists as indicated

by other successful runs with the same query, but GASPS fails to locate it or any other

significant motif; see for example 1hzy from AHS, and 1one and 1kko from ES in Figure

ii. There are also structures that seem poorly suited for motif generation with GASPS, see

1itu (AHS), 1cqz(HADS) and 1bef(SP) in Figure ii. Manual examination of these

structures suggests the active sites and other structurally conserved sites of these

structures may be relatively deformed.

In many cases, while GASPS may fail to find the most significant motif, it can still find a

significant motif. For example, three of the six GASPS runs with 2mnr (mandelate

racemase from ES) as the query structure do not find the two metal ligands that all top-

scoring 2mnr motifs contain, but they do find the conserved lysine (K164) and a nearby

lysine (K166) in the active site, along with a distant pair of glycines (G44 and G47)

located in the non-catalytic N-terminal domain. Similarly, two runs with 1one (enolase

from ES) find another lysine (K345) important for catalysis in enolase(Babbitt et al.

Supplementary Materials for Chapter 2
56

1996) and a glutamine (Q167) that is very close to the active site. As an example from

SP, the disulfide bridge near the active site occurred in all less optimal motifs for 1bqy

and 2hlc (C42 and C58), usually along with one or more members of the catalytic triad

(Figure iii b). Likewise, the less optimal motif for 1nrw in HADS still shares two

functional aspartates in common with the best motif (D7 and D237), but matches a

different third functional residue (D241 instead of K214) along with three other nearby

residues (G42, G236, and A248). Thus, these suboptimal motifs may be useful for

identifying additional residues that are potentially important for protein function.

In some cases, however, a suboptimal motif is best viewed as incomplete progression

towards the optimal motif. For example, three different motifs that were found for 1ec7

(glucarate dehydratase from ES) all have similar scores and share the two most common

metal ligands (D235 and E260). They differ by whether they include either a distant

glycine (G115) located in the N-terminal domain, or the “downstream proline” (P262, see

the Enolase Superfamily section above) with a glycine (G333) located at the N-terminal

end of the barrel along with another distant N-terminal glycine (G74) in the third case.

Similarly, the less than optimal motif for SP member 1fn8 (catalytic triad plus G196 and

G197) is very close to the optimal motifs (catalytic triad plus G193), and GASPS likely

would have settled on the optimal motif in this case with a few more rounds of

optimization.

Taken together, these observations suggest that to generate a set of the most useful and

inclusive motifs, limited resources are better spent on running GASPS on many different

query structures than on running GASPS multiple times on the same structure.

Supplementary Materials for Chapter 2
57

Detection of New Unidentified Structures

The GASPS motifs in Figure 3 were used to search for additional group members among

a non-redundant (<50% sequence identity) subset of the complete PDB in late September,

2004. Ten structures, previously unidentified by the authors, were identified by these

GASPS motifs and later confirmed as group members by consulting the literature or

expert collaborators: 7 from HADS, 2 from SP, and 1 from CS. The rate of new false

positives at the chosen thresholds was also consistent with expectations. Thresholds were

chosen based on a false positive rate of 0.0012 on the training set (5 false positives from

among the original library of 4243 structures), and the rate on the newer subset of the

PDB was identical within rounding errors (average 8.0 false positives from 6673

structures).

Allowing Substitutions in Motifs

In an attempt to improve the ability of GASPS to identify functionally important residues

and identify motifs useful for classifying protein structures, we tested a scheme for

allowing position-specific substitutions. Allowed substitutions were chosen based on the

multiple sequence alignment used to measure conservation, and were fixed for a position

throughout the GASPS run.

The introduction of substitutions allows GASPS to achieve much higher scores on the

randomly generated, unrelated groups, though only for HAD and Crotonase superfamilies

are statistically significant increases in GASPS scores observed (Wilcoxon ranked sum

test(Hollander 1973), p < 0.001 and p < 0.01, respectively. Data not shown.) However,

the improvements did not hold up to a full set of cross-validation analyses using all

Supplementary Materials for Chapter 2
58

structures as queries and test structures (Table i). It appears that allowing substitutions

raises GASPS scores for some families, especially when substitutions help to identify a

few more functionally important residues. However, in its most simple current

implementation, allowing substitutions in GASPS appears to be more prone to

overfitting. Thus, we cannot say that allowing substitutions in the current scheme

provides for more general motifs.

References

Babbitt, P. C., M. S. Hasson, et al. (1996). "The enolase superfamily: a general strategy
for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids."
Biochemistry 35(51): 16489-501.

Hollander, M. D. A. W. (1973). Nonparametric statistical inference. New York, John
Wiley & Sons.

Torrance, J. W., G. J. Bartlett, et al. (2005). "Using a Library of Structural Templates to
Recognize Catalytic Sites and Explore their Evolution in Homologous Families."
J Mol Biol 347(3): 565-81.

Supplementary Materials for Chapter 2
59

Table i. Improvements in GASPS by using substitutions on Crotonase and HAD

superfamilies.

 Average

Training Scores

Average Test

Scores

Number of test

structures

matched

 Subs No Subs Subs No Subs Subs No Subs

CS 1.06 0.98 0.35 0.33 14 14

HADS 0.85 0.63 0.5 0.45 70 59 p=0.22a

(a) Fisher’s exact test on count data for HADS alone.

Supplementary Materials for Chapter 2
60

Figure i. Distributions of GASPS scores on artificial and real groups.

GASPS scores on randomly selected artificial groups of 10 and 5 structures are presented
as histograms. GASPS scores on real groups (corresponding to motifs in Figure 2) are
presented as scatter plots arranged by group; within groups the vertical placement is
randomly chosen to avoid overlaps. Each point is a single GASPS run using a unique
query chain. The counts on the y-axis are relevant only to the histograms.

Supplementary Materials for Chapter 2
61

Figure ii. Stochasticity of GASPS results.

For each of the five groups, data are presented from six repeated GASPS runs on four
query chains indicated by their PDB identifier. Stacked points (triangles) represent
identical GASPS results for the query chain. Histograms are redundant with Error!

Reference source not found., but included here for reference. The counts on the left y-
axis are relevant only to the histograms. The right y-axis and its connecting horizontal
lines identify the query structure used to generate the GASPS scores that stack on each
line.

Supplementary Materials for Chapter 2
62

Figure iii. GASPS motifs for 2hlc, a trypsin-like serine protease.

Residues in motifs are highlighted in red or in cyan if the residue is also part of the
catalytic triad. (a.) The top-scoring GASPS motif from among all runs includes the entire
catalytic triad (H57, D102, S195) and a nearby glycine (G193). (b.) The top-scoring
motif from an identically configured, but lower scoring, GASPS run includes D102 of the
catalytic triad, and a nearby disulfide bridge and alanine (C42, C58, A55). (c.) Residues
highlighted in panels (a) and (b) are shown relative to the entire domain.

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
63

Chapter 3: An analysis of computed expectations for

random matches to 3D motifs

Introduction

The scientific evaluation of any hypothesis requires a method to evaluate the likelihood

that observations could be explained by an alternative, usually simpler and less

interesting, hypothesis. For searches of biological databases, in our case protein structures

or 3D motifs, the hypothesis of interest is that any match is the result of a meaningful

biological relationship, such as shared ancestry or function, and the alternative that a

match is the result of chance placements of residues within the physical and chemical

constraints of protein structure. For GASPS motifs, the biological relationship of interest

is a group of proteins, defined by homology or functional similarity (Polacco et al. 2006).

GASPS seeks to find a motif where all group members match within a deviation

threshold stringent enough to make matches to non-group proteins rare. The original

GASPS determines this threshold empirically, by searching for matches to each candidate

motif among all non-group proteins that it should not match. Each run of GASPS on a

single modern processor can take as long as 20 hours, and the repeated searches of a

structure database take approximately 98% of this time. To see if this step could be

replaced by a quicker approach, I evaluated a more theoretical approach to calculating the

expected number of random matches to any motif. This is not solely a practical, statistical

inquiry. If motifs are adequately scored by a theoretical model based only on geometry,

this indicates conserved elements are products solely of the unique functional constraints

of a group. Instead, I show evidence for the alternative, that the conserved elements of

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
64

protein structures are often not unique to a group, so that general physical or chemical

constraints of protein structure can lead to similar arrangements of residues in unrelated

proteins.

Results

Modifying the GASPS scoring function.

GASPS was designed to find a motif that discriminates between a group of proteins that

share a trait of interest (such as the serine proteases) and all other proteins. In effect,

GASPS chooses a motif that is matched by all of the group proteins within an RMSD

stringent enough to make random matches to other proteins rare. By searching each

candidate motif against the background structure library, GASPS empirically computes

an expectation for each true positive match based on its relative RMSD. This time-

consuming step in GASPS can be replaced by the use of an accurate model that can be

used to compute the likelihood of a match within any RMSD threshold. Stark et al.

(2003) have developed a method for computing the expected number of matches to a

motif based only on the number of residues in the motif, abundance of residues in the

database, and number of atoms used per residue in the motif. We compare here the

accuracy of using the computed expectation numbers (Ec) with actual expectations, or

counts of false positives, computed empirically (Ee).

The majority of the GASPS score of a motif is based on the number of random matches

that are expected at better or equal RMSD than to its matches to group proteins. This

score is based on the area under an ROC curve to five false positives and so can be

computed by summing the vertical “columns” on an ROC plot (Equation 1).

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
65

Equation 1

Area =
1

5

T(f i)

Tmaxi=1

5

T(fi) is the count of true positives with scores better than false positive fi, and Tmax is the

maximum number of true positives, i.e. the number of proteins in the positive set. For

purposes of this explanation, it will be clearer to instead take the equivalent area by

summing the “rows” (Equation 2).

Equation 2

Area =
1

Tmax
1

F(ti)

5

i=1

Tmax

F(ti) is the number of false positive matches with an RMSD equal to or better than that of

a given true positive match, ti, and is assigned a maximum value of five for the equation

above. F(t) is treated here as the empirical expectation value (Ee). The summed term (1-

F(ti)/5), is the “credit” granted to each true positive match ti by an ROC area calculation.

If a true positive matches better than any false positive, it is given full credit (1-0/5), with

partial credit granted if it matches worse than only a few (x) false positives (1-x/5), and

no credit (1-5/5) if it matches worse than 5 or more false positives. Traditionally, a

probability (P) value can be assigned to any match from an expectation value according

to Equation 5. This ROC credit term is approximately equivalent to this P value

subtracted from 1 (see Figure 1), so for explanatory purposes we define an “empirical

probability” Pe by Equation 3.

Equation 3

Pe (t) =
F(t) /5 for F(t) 5

1 for F(t) > 5

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
66

The ROC area component of the G score calculated by Equation 2 is then just the average

of (1-Pe) for the best match for each protein in the positive set. With the GASPS scoring

function now viewed in terms of P values, a theoretical system for computing P values

can easily be substituted for the empirical system. Because a theoretical computation of P

values should be continuous, the second term used in the empirical scoring function,

which served mainly to break ties when the discrete Pe gave identical scores, is not

necessary.

 The computed expectation, Ec, is the expected number of matches in the negative set and

can be computed at any RMSD (R) by Equation 4.

Equation 4

Ec (R) = DA a3
NR2.93N 5.88[c2R

2]N

In this formula, taken form Stark et al. (2003), D is the number of proteins in the

database, N is the number of residues in the motif, is the products of abundances (as

percentages) of residue types, and the remaining parameters are empirically derived

constants: A=3.70 106, a3=1.79 10-3, c=0.196. The expected number of matches is

converted to a P value using Equation 5, which depends on a Poisson distribution of

matches among the protein structures.

Equation 5

P =1 e E

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
67

Figure 1. Relation between "ROC Credit", P Values, and Expected False Positives.

These two plots are intended to demonstrate the similarity between calculating a P value
based on a Poisson distribution and continuous expectation values, and ‘P values’ based
on number of observed false positives (1- ‘ROC Credit’). The top plot shows the
distributions of true positive and false positive matches to an actual motif from a serine
protease. It is drawn so that its RMSD values roughly correspond to the E values on the
lower plot. For both systems of scoring true positives, the majority of true positives
(black dots) are scored equivalently. Those on the left are given a score of 1, or
approximately 1, and those on the right are given a score of 0, or approximately 0. For
this case, only the three true positives near E=1 will be treated differently.

Expectation values compared.

Figure 1 shows that values of Pe and Pc are nearly identical given the same expectation

values. Therefore, GASPS modified to use a computed score as opposed to an empirical

score should provide a similar result as long as Ec accurately tracks Ee. One important

difference between Ec (Stark et al. 2003) and Ee as defined here is that Ec predicts the

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
68

total number of matches, including multiple non-independent matches in the same

protein, whereas Ee counts only the number of proteins with one or more matches1.

Multiple matches to a motif frequently occur within the same protein and make use of

some of the same residues, but only the best match is usually biologically significant

(Meng et al. 2004). Coincident motifs occur more often than expected by chance:

assuming 5 matches are assorted randomly across 4000 proteins, the likelihood of any

coincident match in any protein is 0.002 (by ‘Birthday Paradox’ arguments). Forty

percent of motifs with 6 residues, when searched against the negative set used in Chapter

2, have repeated proteins among their best 5 matches. For smaller motifs, this becomes

less of a problem with the same percentages being 22%, 9%, and 5% for motifs with 5, 4

and 3 residues, respectively.

I examined the actual relation between Ee and Ec by computing Ec for each false positive

match to a set of motifs, and computing Ee by counting the number of actual false

positive matches that score with the same or lower RMSD. The motifs used were the

high-scoring “surviving” motifs from each round of a single GASPS run for two

randomly chosen structures from each of the five groups studied in Chapter 3. Figure 2

shows that while Ee and Ec tend to agree, there is a large degree of variation in both

directions: Ec can both underestimate and overestimate Ee depending on the motif. Some

of this discrepancy has been previously reported and is not unexpected: motifs that

include physically favorable relationships such as salt bridges or disulfide bridges are

1 Equation 5, which is used to compute a P value (the probability of any random match) from an expectation value (the average
number of random matches) is based on a Poisson distribution, which assumes independence of counted objects. Repeat matches in
the same structure are usually not independent and it would be best to not count them. Regardless, the difference is minor at low
expectation values.

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
69

expected to occur with greater frequency than a model based solely on geometry would

predict. There is an association with motif sizes—matches to the larger motifs are

predicted to be more numerous than are actually observed (Ec > Ee). This is due in part to

the fact that Ec counts similar matches within the same protein, but also because GASPS

restricts single atom-pair distance deviations between match and motif to reasonable

distances (sidechain-sidechain deviation < 3.8 Å; -carbon - -carbon deviation < 5.0 Å).

Relaxing both the sidechain and -carbon distance deviations to 15 Å allows for many

more matches at the same RMSD giving a closer correspondence between Ee and Ec, but

we feel that deviations up to 15 Å cannot represent true correspondences. It appears from

this that GASPS with computed scores would favor smaller motifs as compared to

GASPS with empirical scores because Equation 4 tends to over-predict the numbers of

false positives for the larger motifs.

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
70

Figure 2. Empirical counts of false positives versus computed expectation values.

Each point represents a single false positive match to a motif sampled by GASPS. E
empirical is the count of false positives that match with equal or better RMSD, and E
computed is calculated based on Equation 4. The solid line is the equivalence point where
Ee = Ec. Points are shaded by the number of residues in the motif.

GASPS scores compared.

The above discussion of expectation values focuses on the expectation values at values of

RMSD from false positives alone. The computation of G scores, both by empirical (Ge)

and computational (Gc) methods, depends on the expectation values of true positive or

group member matches. While the correspondence should hold between expectations of

true positives as it does for false positives, the relevant expectation values are at values

that are too low to compare accurately by an analysis like Figure 2. We directly compared

the Ge and Gc values for each of the motifs used in the above Ee and Ec comparisons.

While we see the same overall correspondence, the main difference being that Gc has a

range of 0-1.0 and Ge a range of 0-1.1, there are two noteworthy trends: First we see the

expected trend for Gc to be an underestimate of Ge for the larger motifs. Second, there

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
71

appears to be more distant outliers above the line than there are below. These motifs are

predicted to occur very often by Gc but in fact occur much less often than expected.

These may represent motifs that are usually physically unfavorable, but are necessary for

a unique characteristic of function. For the enolase and amidohydrolase superfamilies,

these outliers (Ge > 0.9 AND Gc < 0.6) are small motifs dominated by very close

negatively charged residues that act as metal ligands.

Figure 3. GASPS scores (G) compared between empirical and computed methods.

Points are drawn as numbers which describe the number of residues in a motif. The color
indicates the group: amidohydrolase superfamily (amdh), crotonase superfamily (crot),
enolase superfamily (eno), halo-acid dehalogenase (had) or serine proteases (sp). Colored
lines are lines fit by linear least-squares regression on the data split by groups.

GASPS with Gc on Random Groups

The significance of a motif found by GASPS is measured by comparing it against the

distribution of motifs generated on randomly constructed groups. For an accurate

comparison I used the same randomly constructed groups as used previously for GASPS

that used Ge (Chapter 2, Supplementary Materials). Here we see the first major difference

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
72

in results given by using Gc instead of Ge. GASPS with Gc generates motifs with higher

scores for unrelated proteins (Figure 4). The biggest peak for the distributions of groups

with 5 and 10 structures corresponds to matching two or three other structures in addition

to the query structure. It appears that three unrelated structures chosen at random often

share a motif by chance alone. For groups of 10 structures we can set a significance

cutoff at approximately Gc=0.5 and for groups of 5 structures the same threshold is as

high as Gc=0.75.

Figure 4. Distributions of motifs by GASPS with Gc on random groups.

Composition of motifs

I next made use of Gc in an updated version of GASPS on the same set of superfamilies

and structures as used in Chapter 2. While the new GASPS was much faster, both the

distributions of scores and the makeup of motifs were similar (see Figure 5; compare with

Chapter 2, Figure 3). I show only the result of a single run of GASPS for each query

structure so differences at the level of individual motifs are not significant. Surprisingly

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
73

we do not see the expected trend for smaller motifs to be favored by Gc. Instead, we

actually see larger motifs. This is likely the result of trends at very low expectation

values, which cannot be adequately represented by the data in Figure 2.

Figure 5. Composition of motifs generated by GASPS with computed G scores.

The results of a single GASPS run are presented for each named query structure.
Residues in the motif that correspond to previously identified functional residues or
known active-site motif residues are darkly shaded. All other residues are lightly shaded
regardless of subsequent determination of their functional significance. For the serine
proteases, query structures are labeled “T:” to denote trypsin-like folds or “S:” for
subtilisin-like folds.

On 92 groups of enzymes defined by the Enzyme Commission (EC) enzyme naming

scheme (International Union of Biochemistry and Molecular Biology. Nomenclature

Committee. et al. 1992), I asked whether the degree of overlap with catalytic residues

was different depending on the method of computing G scores. I used the Catalytic Site

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
74

Atlas (CSA) as the source of catalytic residues (Porter et al. 2004). Only the motifs that

were considered significant by the G thresholds discussed above were counted. There

was no significant difference in the number of overlaps with residues called catalytic by

the CSA (see Table 1).

Table 1. Overlap of significant motifs with catalytic sites in CSA.

 CSA overlap No overlap % with CSA overlap

Empirical 88 59 60%

Computed 93 46 67%

Chi-squared = 1.237, df=1, p-value = 0.2660

Accuracy of motifs at identifying homologous groups

The final test of using GASPS with Gc scores was to test the effectiveness of the

generated motifs at identifying new protein structures to groups. I chose to use

homologous groups, the families and superfamilies in the Structural Classification of

Proteins (SCOP) version 1.65 (Murzin et al. 1995), because these groups produced higher

scoring motifs than available classifications based on function. These motifs are tied to

function and are useful at identifying function (see Chapter 4). Only groups with at least

7 structures, after removing redundancy at a threshold of 25% sequence identity, were

included. One motif was generated for each structure in each group for both GASPS with

Gc and GASPS with Ge. The domains newly added in SCOP version 1.67, compared to

version 1.65, were searched against libraries of generated motifs with the program

RIGOR (Kleywegt 1999). Only the first match to all motifs by each new domain were

counted. Each match was given a P value using Equation 4 and 5, and both sets of motifs

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
75

matched family or superfamily members at the same rates (true positives), but the motifs

generated by computed G scores matched non-group members (false positives) at higher

rates, significantly decreasing accuracy. Clearly, the motifs generated using computed G

scores are not as specific to the group as those generated by empirical G scores. Several

factors may account for this loss of specificity. Computed G scores allow for motifs that

may identify a broader homologous class: fold instead of superfamily, or superfamily

instead of fold, or they may simply consist of a very general protein motif such as

disulfides or hydrophobic clusters. Most of the GASPS with Gc runs that resulted in a

much higher scoring motif than the corresponding run with Ge included disulfides or

hydrophobic clusters, especially leucines.

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
76

Figure 6. SCOP superfamilies identified by motifs generated by empirical G scores

compared to computed G scores.

In all plots, the P value and G score axes are treated as thresholds. All matches with
higher G scores or lower P values are counted and plotted at that location. The true
positives and false positives are reported as the base 2 logarithms of the count. The x-
axis is a logarithmic scale that decreases from left to right.

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
77

Figure 7. SCOP families identified by motifs generated by empirical G scores

compared to computed G scores.

See legend for Figure 6.

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
78

Discussion

I tested a new scoring function that could potentially make the running of GASPS much

faster. It uses a geometrical model to predict the expected number of random matches to a

motif to identify how significant are the true positive matches. Motifs generated with this

scoring function appeared to be very similar to those generated with the empirical scoring

function. Functional residues were identified with similar rates. As a tool to find a

conserved structural pattern within a group, this faster scoring function appears adequate,

and future studies should consider using the faster approach. I have discovered two

significant shortcomings of this new scoring. First, motifs discovered by the new scoring

function have to achieve a much higher score to stand out as significant. This problem is

made greater by the fact that Ge scores tend to be greater than Gc scores overall (see

Figure 3). Second, the specificity of motifs made using Gc have lower specificity. To

make these motifs as useful as possible for annotation of new protein structures I need to

eliminate as many false positives as possible. These problems with Gc were serious

enough that I chose to not use it for further analysis here.

 References

International Union of Biochemistry and Molecular Biology. Nomenclature Committee.
and E. C. Webb (1992). Enzyme nomenclature 1992: recommendations of the
Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology on the nomenclature and classification of enzymes. San Diego,
Published for the International Union of Biochemistry and Molecular Biology by
Academic Press.

Kleywegt, G. J. (1999). "Recognition of spatial motifs in protein structures." J Mol Biol
285(4): 1887-97.

Meng, E. C., B. J. Polacco, et al. (2004). "Superfamily active site templates." Proteins
55(4): 962-76.

Chapter 3: An analysis of computed expectations for random matches to 3D motifs
79

Murzin, A. G., S. E. Brenner, et al. (1995). "SCOP: a structural classification of proteins
database for the investigation of sequences and structures." J Mol Biol 247(4):
536-40.

Polacco, B. J. and P. C. Babbitt (2006). "Automated discovery of 3D motifs for protein
function annotation." Bioinformatics 22(6): 723-30.

Porter, C. T., G. J. Bartlett, et al. (2004). "The Catalytic Site Atlas: a resource of catalytic
sites and residues identified in enzymes using structural data." Nucleic Acids Res
32 Database issue: D129-33.

Stark, A., S. Sunyaev, et al. (2003). "A model for statistical significance of local
similarities in structure." J Mol Biol 326(5): 1307-16.

Introduction to Chapter 4
80

Introduction to Chapter 4

All the work described in previous chapters sets the stage for a broad application of

GASPS across as many proteins as possible. To understand the benefit of these generated

motifs it is important to remember the two main scientific functions that motifs serve.

First, motifs provide a way to classify proteins to groups, so such a broad study seeks to

generate the maximum impact that GASPS can provide in this area. Beyond this, it also

can provide an assessment of how broadly and on what groups the technique of 3D

motifs can be effective. Second, motifs represent the most conserved elements in protein

structures. The distribution of these motifs among protein groups can answer questions

about how local protein structure has evolved. Without a shift in overall function, how

often does the evolution of proteins maintain the same set of critical residues? As

functions change, how often do proteins make use of existing functional components?

Furthermore, the composition of the motifs provides information about what features of

proteins tends to be the most conserved and therefore the most critical for maintaining the

function of proteins as they evolve. The distribution of these motifs and features among

different types of proteins and different types of classifications indicate trends in

evolution.

This chapter forms the basis of a manuscript that will be submitted for publication to a

peer-reviewed journal.

Chapter 4: An exhaustive survey of 3D motifs.
81

Chapter 4: An exhaustive survey of 3D motifs.

Abstract

Knowledge of local protein structure, such as individual residues or clusters of interacting

residues, is essential for understanding how protein structure delivers function, and

especially how structure and function evolve together.

Here we examine the evolution of fine scale protein structure by determining the

distribution of conserved 3D motifs, and what structural features tend to be conserved.

We apply GASPS, which identifies the most conserved and unique motif from an input

group of protein structures, to SCOP superfamilies and families as well as isofunctional

groups defined by the Gene Ontology.

We find that homologous relationships are more important than functional relationships

for the presence of a highly conserved motif. Non-homologous but isofunctional groups

do not commonly share a motif. This suggests that protein functions, as they are

commonly described, are usually accomplished by different means in unrelated proteins.

About one third of all SCOP groups show a strongly conserved motif. The lack of a

conserved motif in the remaining two thirds of groups reveals that evolution of new

functions is commonly not constrained to maintain the positions of a critical set of

residues.

We describe the patterns of structural elements and residue types among motifs to reveal

trends in conservation of local structure. As expected, the motifs from all groups show a

strong link to function, frequently overlapping with known catalytic, metal and other

Chapter 4: An exhaustive survey of 3D motifs.
82

ligand sites. Additionally, disulfides as well as stabilized charged residue pairs are

overrepresented among the most conserved motifs. Residue distribution among the motifs

is mostly as expected based on these common elements: cysteine, histidine, aspartate and

glutamate are among the most frequent. More surprisingly, glycine is the most common

motif residue and glycine in motifs has the greatest rate of non-metal ligand interaction

among all other motif residues.

The motifs generated in this study are available via a web resource named GASPSdb,

which is effective for annotating protein structures as well as highlighting important

residues in new structures. Using these motifs, we show that 3D motifs offer promise for

annotating low quality homology models built on distantly related templates.

Introduction

With the recognition that diverse and varied proteins can make use of the same overall

fold, recent efforts in computational protein structural biology have shifted from

examining large-scale features such as an entire sequence or fold, to a more focused

examination of fine-scale features such as the orientations of a small number of

sidechains. While the large-scale approach is useful for identifying homology, the fine

scale approach allows for the identification of shared and distinct functional differences

not apparent from the wider, large-scale view (Watson et al. 2007). One fine-scale

approach, the use of 3D or structural motifs (sometimes called templates), relies on the

cataloging of functionally related structural components comprised of the types and

orientations of a small number of residues or their functional atoms (Fetrow et al. 1998;

Laskowski et al. 2005; Torrance et al. 2005). Because these motifs normally contain the

Chapter 4: An exhaustive survey of 3D motifs.
83

elements that actually deliver function, finding these motifs in newly solved or modeled

structures can imply a likely function for the protein and a hypothesis at where and how

the function is performed.

The development and investigation of this fine-scaled 3D motif approach requires two

main components. First, we need tools that can search for matches among protein

structures. There are already many well developed available motif search methods (for

example, Artymiuk et al. 1994; Fetrow et al. 1998; Barker et al. 2003). Second, we need

to know what motifs are indicators of what function. In other words, we need knowledge

about how the requirements of function constrain fine scale protein structure, and

whether the constraints are strong enough so that the same fine-scale structure will be

conserved over great evolutionary distances. While there are observed cases of 3D motifs

being tied to a specific function over great evolutionary distances (Meng et al. 2004), no

study has yet shown how common such motifs are among a broad cross section of the

protein universe.

Here we use our previously described technique named GASPS (Polacco et al. 2006), to

describe the patterns of motifs from all groups of proteins, defined by homology and/or

function, restricted only by available structures. Such a broad collection of these fine

scale motifs provides a resource to aid annotation of protein structures, answers how

universally we might be able to apply these focused 3D motif methods, and provides us

with a source of more basic biological knowledge. Each motif is a hypothesis about

which residues are so important for the function of a protein as to be irreplaceable. These

critical residues can provide, for example, a specific step in a catalytic mechanism (Gerlt

et al. 2001), a very specific orientation of a binding partner, an important stabilization of

Chapter 4: An exhaustive survey of 3D motifs.
84

an active site, or a specific geometry of the peptide backbone (Dym et al. 2001), to name

just a few. Having a broad collection will also allow us to answer what types of residues

and structural features tend to be most rigidly conserved. Knowing this can inform future

studies of the evolution of protein function within families.

By considering groups defined by homology and function, we recognize that the

mechanism of protein function and other conserved details of protein structure can be

products of both natural selection and evolutionary history. By examining groups defined

by function alone, we are testing the hypothesis that natural selection to perform the same

function on unrelated proteins can shape similar functional sites. For groups defined by

homology alone, presence of a motif, especially when it is clearly related to functional

sites, supports the hypothesis that an existing functional component can be recruited to

perform new overall functions. In these cases, the motif cannot indicate a protein’s

overall function, but instead can indicate a conserved functional step. For example, this

might be a single step in an enzyme’s reaction pathway, or simply the binding of a metal

ligand (Gerlt et al. 2001). Finally when we examine the most specific groups, those that

are both homologous and isofunctional, we allow for the detection of motifs in cases

where a new function evolved with a new set of critically important residues with no

need for ancestral residues.

Ours is not the first publicly available collection of motifs (Stark et al. 2003; Torrance et

al. 2005), but it does provide new coverage and a new emphasis on classification ability.

Moreover, our technique is a protein-group driven approach that lets us find motifs, if

they exist, for all protein groups. Other motifs have typically been chosen based on

available prior knowledge of functionally important residues such as the catalytic triad of

Chapter 4: An exhaustive survey of 3D motifs.
85

the serine proteases. These motifs have been shown successful at identifying specific

enzymatic activities (Torrance et al. 2005), binding relationships (Artymiuk et al. 1994),

and superfamily membership (Meng et al. 2004). The catalytic site atlas (CSA) is a

database of high quality catalytic residue designations gleaned from the literature (Porter

et al. 2004). It currently provides 147 non-redundant active site motifs for enzymes

(Torrance et al. 2005). In lieu of a literature search, a faster method, though more error-

prone, is to use the information imbedded directly in protein coordinate files, such as

SITE records, or proximity to ligands. This technique has been used by PINTS (Stark et

al. 2003) and others (Artymiuk et al. 1994; Kleywegt 1999; Laskowski et al. 2005). Our

approach, GASPS, is automated, unbiased and applicable to any group of proteins with

sufficient structures (Polacco et al. 2006). It seeks to choose motifs with a high degree of

classification ability, measured by a motif’s tendency to match group members with high

sensitivity and specificity. While it is not biased by accepted trends of functionally

important residues, the motifs it finds have been shown to overlap with known functional

sites.

We describe here the motifs generated by applying GASPS to isofunctional groups

defined by Gene Ontology (GO) molecular function terms (Ashburner et al. 2000),

homologous groups defined by the Structural Classification of Proteins (SCOP)

superfamilies and families (Murzin et al. 1995), and by homologous isofunctional groups

defined by both GO terms and SCOP superfamily. For purposes of protein annotation, we

find that GASPS motifs can provide coverage of proteins unavailable in existing motif

libraries. Moreover, we find that while the motifs, for the most part, can be related to

Chapter 4: An exhaustive survey of 3D motifs.
86

known functional sites, homology is more important than function for determining the

presence of a high-scoring motif.

Methods

GASPS

GASPS (Genetic Algorithm Search for Patterns in Structures) takes as input a group of

proteins, the positive group, and a background set of other proteins. It seeks to choose the

coordinates of a set of residues from a single positive group member that is well matched

by all other members of the positive group, and not matched by members of the

background set. Further details are described in an earlier publication (Polacco et al.

2006). GASPS was run once for each member (chain or domain) of each protein group,

generating as many motifs for each group as there are members.

Protein groups

For each classification, no groups of proteins were allowed with fewer than seven

structures when reduced to a non-redundant set based on a 40% sequence identity cutoff.

Where possible without going below seven structures, those groups with sufficient

structures and diversity were further reduced based on a 25% sequence identity cutoff.

This generated two sets of groups, those that could be reduced to a 25% sequence identify

cutoff and those that could not. Homologous groups were created by gathering all

domains in SCOP (version 1.65) families and superfamilies. Isofunctional groups were

defined by gathering all protein chains that share a single GO molecular function term,

including the terms implied by the “is a” hierarchy of GO. It is desirable to limit GO

Chapter 4: An exhaustive survey of 3D motifs.
87

terms to those that are not so general as to make highly improbably any motif. To

generate motifs for all suitable terms, and eliminate the obvious artificial groupings (such

as all structures sharing GO term 5488, “Binding”), groups were discarded if they had

greater than 50 non-redundant structures. Isofunctional homologous groups were

generated by gathering all protein chains that shared at least one homologous domain as

defined by SCOP superfamilies, then generating unique, but not mutually exclusive,

groups defined by GO molecular function terms. Table 1 gives the counts of groups and

generated motifs.

Searching motif libraries with proteins

We use the program RIGOR (Kleywegt 1999) to search the libraries of GASPS motifs.

RIGOR returns all matches between a protein and each motif that satisfy a superposition

RMSD threshold and a maximum distance deviation threshold. Because smaller motifs

match randomly with much greater frequency than large motifs, the RMSD threshold was

set per motif based on a computation of the number of expected random matches (E-

value). GASPS uses relative RMSD between false positive and true positive matches to

the same motif to determine the quality of the motif. When we compare matches

involving different motifs, the RMSD becomes less meaningful. Random matches to a

motif comprising three leucines are much more likely than to a motif with five

tryptophans. We computed an E-value based on a slight modification of the method of

Stark et al. (Stark et al. 2003) that accounts for residue background frequency, number of

residues, and distance between atoms in each residue:

E = a0 a3
NRM

2.93N 5.88 RM
2

d
r

2
!gly

.

Chapter 4: An exhaustive survey of 3D motifs.
88

Here, is the product of residue frequencies as percentages, N is the number of residues,

and RM is the rmsd. All other variables are experimentally determined constants. The

constant a0 accounts for the size of search space; we used a0=1.57x1010 for all searches.

While using the same value for a0 regardless of database size can lead to inaccurate

estimates of true expectation values, doing so generates an accurate score that reflects the

strength of a pairwise match, allowing for direct comparison of matches between

different searches. The right-most product is over each non-glycine residue in the motif,

and corrects for the two-atom nature of GASPS and RIGOR non-glycine residues: an -

carbon and a sidechain centroid. Individual factors in this product are ignored when the

ratio Rm/dr, where dr is the average distance between side chain centroid and -carbon for

a residue type r, is greater than 1. The value for a3 was taken directly from Stark et al.

(2003) at 0.00179.

Table 1. Group and motif counts by classification.

Classification Groups
Redundancy
Filter # Groups # Motifs

Avg # Motifs
per Group

 272 4385

25 PID 177 2593 14.6

Gene Ontology Molecular Function

(7 < n < 50)

40 PID 95 1792 18.9

 323 3599

 186 2259

25 PID 131 1801 13.7

Superfamilies

40 PID 55 458 8.3

 137 1340

25 PID 64 670 10.5

SCOP

Families

40 PID 73 670 9.2

 376 4581

25 PID 231 3318 14.4

GO and SCOP Superfamilies

40 PID 145 1263 8.7

Chapter 4: An exhaustive survey of 3D motifs.
89

Results

Quality of Motifs

One goal of the current work is to study the broad applicability of 3D motifs across

different types of proteins and different types of classifications. A motif’s quality is

described by its G score, short for GASPS score, which indicates the motif’s ability to

identify all other group members with high specificity. Ranging from 0 to 1.1, its main

component is the area under a shortened receiver-operator characteristic (ROC) plot. The

other component is the relative separation between true and false positive matches and

accounts for only 0 to 0.1 of the total G-score. Therefore, most G-scores above 1.0 imply

perfect separation in an ROC plot (ROC area = 1.0) though any score above 0.7 is highly

significant and scores below about 0.4 are highly suspect. G-scores can give us a sense of

how well groups of proteins can be identified by motifs. A high scoring motif for a group

is evidence of a unique evolutionary constraint on that group. For homologous groups,

the G-scores tell us whether there is a single structural pattern that evolution has not been

able to alter, presumably without a loss of protein function. For non-homologous,

functionally similar groups, high G-scores indicate convergent evolution where

independent inventions of the same function required a common pattern of residues.

Previous work with GASPS showed it to be very effective on a small number of well-

studied superfamilies. In this study we included all SCOP-defined superfamilies and

families with sufficient structures (see Methods) as well as groups defined by common

Gene Ontology (GO) annotations. Figure 1 and Figure 2 show the distribution of the

highest scoring motif for each group in SCOP, GO and the GO/SCOP groupings. While a

Chapter 4: An exhaustive survey of 3D motifs.
90

large number of SCOP families and superfamilies have very high G-scores, the majority

of protein groups produce motifs with G-scores lower than for the previously well-

studied superfamilies (top G-score for haloacid dehalogenase superfamily is 0.8, (Polacco

et al. 2006). However, the evolutionary distance between members in a group is

important. Those groups composed of members that all share less than 25% sequence

identity have significantly lower scores (median G-score = 0.54) than those where we

permitted up to 40% sequence identity (median G-score = 0.90). Evolutionary distance

measured by sequence identity is even more important than is the evolutionary distance

implied by SCOP hierarchy depth: the superfamily and family distributions are much

more similar than are the distributions grouped by sequence identity. Because group size

is correlated with G-scores, and the groups where we allowed 40% sequence identity

were smaller, this could also be a result of group size effects. However, a linear model fit

to this data to predict G-scores with parameters for group size, SCOP hierarchy and

percent identity, shows the greatest effect to come from percent identity, the second

greatest from group size, and finally the effect from SCOP hierarchy depth is nearly

insignificant.

Chapter 4: An exhaustive survey of 3D motifs.
91

Figure 1. Distribution of motif G-scores on SCOP groups.

Figure 2. Distribution of motif G-scores on Gene Ontology and SCOP groups.

For groups defined by GO molecular function annotations, the G-scores were even lower

than for homologous groups. This is the result of GO defined groups containing unrelated

proteins that perform the same molecular function, but doing so in a different way with a

Chapter 4: An exhaustive survey of 3D motifs.
92

different set of important residues. Even when GO groups are matched by a high-scoring

motif, the groups are made up of, or at least dominated by, a single homologous group

that accounts for the high G-score (not shown). The frequency with which evolution has

invented new ways of performing the same function indicates that most protein functions

can be performed in many different ways.

If we further subdivide the SCOP superfamilies by GO molecular function annotations,

we see an improvement in G-scores over both SCOP superfamilies and GO groups. This

shift to higher scores is not simply the result of chance due to the use of dividing the

superfamilies in to smaller groups. In fact, the groups in this classification are larger on

average owing to the groups not being mutually exclusive. For each superfamily, multiple

overlapping groups can be defined depending on the precision of the GO annotations

assigned to the individual structures. For example, SCOP superfamily “FAD/NAD(P)-

binding domain” (c.3.1) has a group for GO term 16491 “oxidoreductase activity” as well

as a group for GO term 15036 “disulfide oxidoreductase activity” that is a subset of the

other. This actually results in a larger average group size compared to SCOP

superfamilies (see Table 1). The larger groups are over-represented compared to the

smaller groups because there are more ways to divide them.

The results on the GO/SCOP groups indicate that groups with more functional diversity

are less likely to have a conserved motif. To investigate this finding in more detail, we

counted the number of distinct enzyme commission (EC) (International Union of

Biochemistry and Molecular Biology. Nomenclature Committee. et al. 1992) classes at

the first and second positions for each superfamily and family in SCOP. This measure of

functional diversity is an underestimate because it only counts the enzyme functions and

Chapter 4: An exhaustive survey of 3D motifs.
93

only those given an EC number. Figure 3 and Figure 4 show the expected trend that the

most functionally diverse are more likely to have a lower G-score, but there are still many

groups with highly significant G-scores and significant functional diversity. Among these

groups are the well known enolase (Babbitt et al. 1996), haloacid dehalogenase (Allen et

al. 2004), and amidohydrolase superfamilies (Holm et al. 1997). The remainder are also

good candidates for superfamilies that have evolved according to a similar evolutionary

model.

Chapter 4: An exhaustive survey of 3D motifs.
94

Figure 3. Number of distinct EC classes at first position in each SCOP group.

Each vertical bar shows the count of distinct EC codes, only counting the first position, in
a SCOP group (superfamilies and families). The SCOP groups are sorted along the x axis
by the G-score of their best motif. G-scores are indicated by the dashed gray line.

Figure 4. Number of distinct EC classes at first two positions in each SCOP group.

Each vertical bar shows the count of distinct EC codes, only counting the first two
positions, in a SCOP group (superfamilies and families). Remaining is as in Figure 3.

Patterns of conservation in 3D

The motifs generated by GASPS are chosen for both their conservation in 3D space and

their uniqueness, or lack of matches among unrelated protein structures. It appears from

Chapter 4: An exhaustive survey of 3D motifs.
95

this study, that repeated patterns between isofunctional but unrelated proteins are rare.

Instead, most well conserved 3D structural patterns of more than two residues are the

results of homology and are unlikely to be repeated in a non-homologous group (two

residue motifs such as disulfide bridges are frequently conserved but not unique). While

the results of chapter 3 indicate the opposite, that some sensitive motifs are not specific to

a group, these motifs can be made more specific by the addition of one or two local

residues without significantly changing the composition of the motif. Uniqueness

therefore plays less of a role, so that GASPS motifs across broad protein groups describe

primarily the patterns of conservation in 3D space.

It is well recognized that functionally significant residues are well conserved in both

sequence and structure. It follows then that we can expect a large number of motifs

generated by GASPS to contain residues that are known to be functional. Using the

Catalytic Site Atlas (CSA) as an independent source of functional residue information,

we do see significant overlap with GASPS motifs and CSA entries. In fact, 63% of

protein groups in this study with representatives in the CSA have a motif with one or

more residues directly involved in catalysis. As the name implies, the CSA limits its

scope to enzymes and uses a strict definition of residues directly involved in catalysis, so

that many residues involved in stabilizing or binding in a functional site are not included.

Important binding sites from non-enzymes, such as the iron binding site in the ferritin

superfamily, or the heme binding sites in globins, as well as binding sites for metals or

other cofactors involved in catalysis (such as the metal binding sites in the enolase and

amidohydrolase superfamilies) occur with high frequency among the GASPS motifs

(Figure 5). We identified motif residues that interact with ligands by identifying residue

Chapter 4: An exhaustive survey of 3D motifs.
96

atoms that are within 4 Å of an atom described by a ‘HETATM’ record. Nearly half of

the highest scoring motifs are associated with a ligand. The number is lower for the lower

scoring motifs, confirming that G-scores correlate with functional significance, and that

the association with ligands is not due to random sampling of protein residues.

Approximately 1/4 of all motif ligand interactions are to metal ligands. This number goes

as high as 1/3 for the highest scoring motifs revealing that metal binding sites are among

the best conserved structural features, and the most reliable to match by structural motifs.

It is important to keep in mind that these computed frequencies of ligand interactions by

GASPS motifs necessarily underestimate the actual number of motif residues that interact

with a ligand biologically. The structures may not have been solved in the presence of a

ligand (only two thirds of PDB files used in this study included any HETATM record),

and if present, the ligands may have been unresolved. Furthermore, any static description

of structure cannot fully represent the dynamic range of biologically relevant protein

motions.

Chapter 4: An exhaustive survey of 3D motifs.
97

Figure 5. Residue interactions captured by motifs.

Another large group of features found in GASPS motifs are stabilizing residue

interactions such as salt bridges or disulfide bridges. Salt bridges were identified by

finding acidic (glutamate or aspartate) and basic (histidine, lysine, or arginine) sidechain

atoms (O and N) within 4.0 Å. Disulfide bridges were identified by finding cysteine S

atoms within 3 Å of each other. While a single such pair of residues is not unique to any

group, when paired up with other neighboring conserved residues or other pairs of

stabilizing residues they often become useful identifiers. Only 8% of all motifs include at

least one cysteine involved in a disulfide bridge, however, the presence of a disulfide

bridge is highly correlated with G-score. The motifs with the highest G-scores are twice

as likely to contain at least one disulfide partner (13%) as those with the lowest G-scores

(6%). Almost as common as the previously discussed ligand interactions are stabilized

charged residues or salt bridges. These are also correlated with G-scores, though to a

lesser degree.

Chapter 4: An exhaustive survey of 3D motifs.
98

Residue types in motifs

Other studies with 3D motifs often focus on discovering functional sites, and therefore

limit their analysis to those polar and charged residues assumed to be most likely

functional. GASPS makes no such distinctions, so that any residue can be included in a

motif provided it is conserved in 3D space in relation to other conserved residues. Our

approach allows us to ask which residues dominate the motifs, tend to be the most

conserved, and provide the most classification information. Indirectly this can tell us how

critical to protein function is each residue’s unique role. Residue prevalence in motifs

was normalized by group size and motif size, so that larger groups or larger motifs would

not bias the results. We also split the motifs by G-score to observe trends as classification

ability increases. In detail, for each G-score range and residue, the normalized residue

frequency for any residue type (ft) was calculated as:

ft =
1

ng

1

nm

nt
nrmotifsgroups

where nt is the number of residues of type t in a motif, nr is the number of total residues in

a motif, nm is the total number of motifs in a group, and ng is the total number of groups.

The distributions of dominant amino acids in the highest scoring motifs shows some

patterns that are expected from the previous discussion of common structural features,

but also indicate that we have not yet described all important structural trends captured by

motifs (Figure 6). The presence of cysteine, aspartate, histidine and glutamate among the

top seven amino acids are expected from the previous discussion of catalytic sites,

ligand–especially metal–sites, and salt bridges. Less expected is the dominance of

glycine, and prominent role of leucine. The prevalence of cysteines is not surprising

Chapter 4: An exhaustive survey of 3D motifs.
99

given their unique role in disulfide bridges, catalytic sites and metal binding sites, all of

which are well represented among motifs. Likewise, histidine and aspartate frequently

play a role in metal binding sites and catalytic sites. The prevalence of leucine among

motifs, on the other hand, may simply be a result of the high overall frequency of leucine

in the entire proteins. The frequency of a residue type among the motifs is compared in

Figure 6 to its frequency among the entire set of residues allowed by GASPS, the

background frequency. The frequency of leucine among the high scoring motifs is

actually reduced compared to this background frequency. Glycine also has a high

background frequency, second only to leucine, but its prevalence among the high-scoring

motifs is increased over this background. What accounts for glycine’s high prevalence?

While it has no sidechain to interact with ligands, a relatively high proportion of the

glycines in motifs are within interaction distances of ligands. In fact, glycines in motifs

rank fourth behind only histidine, cysteine and aspartate for their rate of interaction with

ligands. Most ligand-interacting glycines interact with phosphate containing compounds,

the most common being FAD, NAD and ADP. A smaller number of glycines interact

with sulfur containing compounds, mostly sulfate. Most inter-atom (non hydrogen)

distances for interactions with glycines are between 3 and 4 Å (median=3.25 Å), so that

many are outside of the range of a typical hydrogen bond. Instead, the presence of

glycine in binding pockets may provide for the tight bending of loops around ligands as

well as space for a ligand to bind (Jornvall et al. 1984; Dym et al. 2001). Similarly,

proline’s unique backbone angles may account for its seventh highest frequency among

high-scoring motifs. While the majority of prolines as well as many glycines are not

within interaction distance of ligands, they are often near residues that do interact. Still,

Chapter 4: An exhaustive survey of 3D motifs.
100

not all of these conserved glycines and prolines are near known functional sites in motifs,

and likely serve to stabilize an overall fold rather than the fine-scale geometries in a

catalytic or binding site. Examples of these glycines can be found in motifs from the

enolase superfamily (SCOP c.1.11; 2mnr, Gly291), and amylase families (SCOP c.1.8.1;

1esw, chain a, Gly40).

Chapter 4: An exhaustive survey of 3D motifs.
101

Figure 6. Dominance of residue types, compared against background residue

frequency, and at different G-scores.

See text for computations of residue dominance that is shown here calculated for motifs
pooled to three different groups by G-score. The column labeled BG. for background
refers to the frequency of the residue type among all residues considered by GASPS for
inclusion in any motif.

Annotation of protein structures

Beyond a survey of structural conservation among diverse protein groups, the outcome of

this study provides for a set of motifs that can be used to help annotate novel protein

structures. We have packaged the motifs generated in this study together with structure

matching and browsing tools as a web resource named GASPSdb

(http://gaspsdb.rbvi.ucsf.edu). We demonstrate the benefit of GASPSdb by showing that

its search results provide additional coverage with similar or better accuracy compared to

Chapter 4: An exhaustive survey of 3D motifs.
102

other available libraries of 3D motifs, CSA and PINTS described earlier. Between SCOP

version 1.65 (used by GASPSdb) and SCOP version 1.69, an additional 1612 domains

were added that were less than 40% identical to each other or earlier domains. GASPSdb

contains superfamily motifs for about half of these new domains (790 domains, 49%).

For the comparison, we used these 790 new domains as queries and for each search, we

considered only the most significant match. Figure 7 shows how often these first matches

identified a motif from the correct superfamily, and how often the first matches with

significant scores (E < 0.001) were true. No difference was found in the rate of matching

structures labeled as “putative” in their “Structure Title” or “Structure Description”

fields, suggesting that motifs perform as well on structures for which we have little prior

knowledge.

By identifying functional sites and functional residues, the fine-scale information of 3D

motifs from GASPSdb provides functional details that homology detection methods that

use an entire protein such as PSI-BLAST(Altschul et al. 1997) cannot provide. On the

other hand, PSI-BLAST is able to give accurate homology predictions for more proteins

than 3D motifs generated by any method. Working together though, GASPSdb can

extend the annotation power of PSI-BLAST by corroborating low-significance PSI-

BLAST hits. On the same set of 790 domains from superfamilies with motifs in

GASPSdb, 83% of PSI-BLAST searches return a sequence with the correct superfamily

as the most significant match. However, the effectiveness of 3D motifs is mostly

independent from sequence similarity, so that 3D motifs can complement homology

searches. Considering only those proteins above where PSI-BLAST yields an ambiguous

result (first match E > 1e-3), only 57 of 184 PSI-BLAST first matches yield a true hit. A

Chapter 4: An exhaustive survey of 3D motifs.
103

GASPSdb RIGOR search can corroborate the true match 19 times (33%), not

significantly different (chi-squared test, p = 0.46) from its performance on the larger set

(see Figure 7), and with only 4 false positives at E<0.001.

Figure 7. Coverage of GASPSdb compared to other 3D motif libraries and PSI-

BLAST.

The percentage on the y-axis is the number of structures giving true or false positives as
their first hit when searched against the sequence or motif database on the x-axis.

Homology models

A tool to annotate protein structures would be most useful if it worked on low quality

structures, such as homology models generated from distant templates (e.g., less than

30% sequence identical), as well as structures solved empirically. We tested the

performance of GASPSdb together with the homology-modeling tool MODELLER (Sali

et al. 1993) used to model structures for the 790 new domains in SCOP 1.69 discussed

previously. We generated models using only the new domain's sequence and an existing

structure from the same superfamily in SCOP 1.65 as a template. To simulate the

conditions of low-quality models, we required template structures to match the sequence

Chapter 4: An exhaustive survey of 3D motifs.
104

with a PSI-BLAST E-value worse than 10-5. The sequence-template pairs were

automatically aligned and modeled using MODELLER with default settings and its built-

in align2d program. Of the 618 resulting model-able pairs, 88 (14%) of the homology

models were correctly annotated by GASPSdb motifs, while only 277 (45%) of the actual

crystal structures were correctly annotated by any GASPSdb motif. These homology

models are of sufficient quality to match a motif 32% (88/277) as often as their actual

crystal structure. In another experiment, by purposely choosing a falsely homologous

decoy template at similar PSI-BLAST E-values, we find that the rate of false positive

motif matches to the decoy superfamily is only 0.005. Accuracy of homology models is

known to be highly dependent on alignment accuracy (Martin et al. 1997; Venclovas et

al. 2005), and this experiment included the simplest alignment protocol, with many

expected alignment errors. Nevertheless, these low quality homology models are accurate

enough to match the appropriate motif 32% (88 of 277) as often as their crystal structure.

When applied to the large number of unknown sequences in available databases, even

this relatively low proportion could prove useful.

The success of GASPS motifs on homology models is not due simply to the overall

accuracy of homology modeling, but the tendency for GASPS to choose motifs that are

accurately modeled. Among a set of homology models made for structures in GASPSdb,

approximately 80% of the randomly generated motifs (those chosen before the first round

of GASPS optimization) match with less significant E-values than the final GASPS-

optimized motifs.

Chapter 4: An exhaustive survey of 3D motifs.
105

Discussion

Chosen only for their sensitivity and specificity, yet with frequent overlaps with

functional sites, motifs presented in the GASPSdb make a useful tool to describe function

and highlight likely functional residues of novel protein structures. These motifs are

chosen for their ability to identify a group of proteins. Any protein that matches the motif

is expected to share the same function, at least to the extent that function is shared among

the original group that produced the motif. An alternative approach that does not require

a mapping between motifs and specific functions is to find any significant similarity in

local 3D structure between two proteins (Oldfield 2002; Laskowski et al. 2005). One

challenge of this technique is the high number of false positives produced by these

randomly chosen motifs. The method of Laskowski et al.(Laskowski et al. 2005), to

further filter matches based on similarity of residues in the local structure of the motif

source and its match, can effectively weed out the false positives and identify true

homology between protein structures. While generally useful, these pairwise

relationships do not identify to what extent the functions of two proteins is similar. The

motifs generated here, like other motifs designed to identify specific groups of proteins,

such as EC numbers (Torrance et al. 2005), can provide a useful complement to this

pairwise motif technique.

In addition to this immediate practical application, taken together, the motifs generated

here provide a view into the trends in evolutionary constraints on function. As discussed

earlier, the high-scoring motifs provide evidence of evolutionary constraints. It is not

surprising, then, that the high scoring motifs are mostly restricted to homologous groups.

While cases of convergent evolution exist that can be described by a structural motif,

Chapter 4: An exhaustive survey of 3D motifs.
106

these cases are rare, and any common motif shared by two convergent groups may be

washed out by additional isofunctional but independently evolved groups that do not

share the motif. It is notable, though, that while the literature provides cases of diverse

superfamilies and families matching a single motif, most groups with sufficient

evolutionary distance do not share a single motif as defined here. This does not

necessarily imply that the 3D motif approach to annotating function and identifying

functional residues has limited application. While a single motif may not exist, subgroups

within the larger group can share a common motif. Instead, it has more bearing on how

function constrains protein structure. When function remains the same despite the lack of

a shared motif, the diverse proteins must discover a new way of completing the function,

or at least make do with a different set of residues. When these proteins evolve to

perform new functions they do so without maintaining a superfamily-conserved set of

residues. It is worth noting that the current study requires identical residue types. In many

cases, while a recognized active site architecture is maintained, the roles such as acidic or

basic side-chain, can be adequately performed by multiple residue types.

We have described common trends for evolutionary constraints on residue type and

simple residue interactions. One interpretation is that the strongest constraints are on

those residue types that perform unique roles: cysteines provide disulfides, histidines

provide labile acid-base chemistry, glycines and prolines provide for unique backbone

angles, and glycines’ missing sidechains maximize available space. On the other hand,

3D motif methods require residues to be relatively unmoved across various proteins and

the various experimental conditions used to solve the structures. Therefore, GASPS

should favor features that confine sidechains to a specific position. As examples, metal

Chapter 4: An exhaustive survey of 3D motifs.
107

ions bind their ligands very tightly. Together with their functional importance, this

explains why they were common features among motifs. This trend is observed at the

residue level as well. The residues that frequently coordinate metal ions, cysteine,

histidine, glutamate and aspartate, are among the most frequent. While this effect is not

necessarily restricted to metal ligands, they seem to have the strongest effect. Both lysine

and arginine in the motifs bind ligands (though not metals) with similar or greater rates as

the negative charged and metal-binding aspartate and glutamate. However, the positive-

charged residues rank several places below both negatively charged residues in their

overall prevalence in motifs.

While this study provides one view on constraints on protein evolution, it is a view that is

limited by the mechanics of GASPS. GASPS identifies just the strongest motif or

constraint on each run. While repeated runs may reveal less well-conserved motifs, these

secondary motifs can easily be missed, so that GASPS often cannot reveal all constraints

on a protein group, but only the strongest. Similarly, GASPS looks for motifs that match

all proteins in a group, and will give lower scores to those motifs that match only a

fraction of the structures even at very high significance. Some of the moderately low G-

scores seen here may simply represent a very well conserved motif, but only among

members of a subgroup of the larger group. However, the trends for residue distributions

of lower-scoring motifs to more closely match background distributions implies that

many of the low scoring motifs are at least partially due to simple chance. As mentioned

previously, GASPS requires identical residues at each position. It does not even consider

conservative substitutions such as aspartate/glutamate. We previously examined

modifying GASPS to allow for position-specific substitutions, but found little

Chapter 4: An exhaustive survey of 3D motifs.
108

improvement when applied to groups with already moderately high-scoring motifs.

Whether this substitution scheme allows for motifs with improved G-scores for the low

scoring groups here is an open question.

GASPS requires sufficient diversity in available protein structures to weed out motifs that

exist by chance or recent shared ancestry instead of by their importance to a shared

function. As more structures are made available, the range of GASPS’ effectiveness will

extend to more groups. An automated method like GASPS can easily keep abreast of the

latest developments.

References

Allen, K. N. and D. Dunaway-Mariano (2004). "Phosphoryl group transfer: evolution of a
catalytic scaffold." Trends Biochem Sci 29(9): 495-503.

Altschul, S. F., T. L. Madden, et al. (1997). "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs." Nucleic Acids Res 25(17):
3389-402.

Artymiuk, P. J., A. R. Poirrette, et al. (1994). "A graph-theoretic approach to the
identification of three-dimensional patterns of amino acid side-chains in protein
structures." J Mol Biol 243(2): 327-44.

Ashburner, M., C. A. Ball, et al. (2000). "Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium." Nat Genet 25(1): 25-9.

Babbitt, P. C., M. S. Hasson, et al. (1996). "The enolase superfamily: a general strategy
for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids."
Biochemistry 35(51): 16489-501.

Barker, J. A. and J. M. Thornton (2003). "An algorithm for constraint-based structural
template matching: application to 3D templates with statistical analysis."
Bioinformatics 19(13): 1644-9.

Dym, O. and D. Eisenberg (2001). "Sequence-structure analysis of FAD-containing
proteins." Protein Sci 10(9): 1712-28.

Fetrow, J. S. and J. Skolnick (1998). "Method for prediction of protein function from
sequence using the sequence-to-structure-to-function paradigm with application to
glutaredoxins/thioredoxins and T1 ribonucleases." J Mol Biol 281(5): 949-68.

Chapter 4: An exhaustive survey of 3D motifs.
109

Gerlt, J. A. and P. C. Babbitt (2001). "Divergent evolution of enzymatic function:
mechanistically diverse superfamilies and functionally distinct suprafamilies."
Annu Rev Biochem 70: 209-46.

Holm, L. and C. Sander (1997). "An evolutionary treasure: unification of a broad set of
amidohydrolases related to urease." Proteins 28(1): 72-82.

International Union of Biochemistry and Molecular Biology. Nomenclature Committee.
and E. C. Webb (1992). Enzyme nomenclature 1992: recommendations of the
Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology on the nomenclature and classification of enzymes. San Diego,
Published for the International Union of Biochemistry and Molecular Biology by
Academic Press.

Jornvall, H., H. von Bahr-Lindstrom, et al. (1984). "Extensive variations and basic
features in the alcohol dehydrogenase-sorbitol dehydrogenase family." Eur J
Biochem 140(1): 17-23.

Kleywegt, G. J. (1999). "Recognition of spatial motifs in protein structures." J Mol Biol
285(4): 1887-97.

Laskowski, R. A., J. D. Watson, et al. (2005). "Protein function prediction using local 3D
templates." J Mol Biol 351(3): 614-26.

Martin, A. C., M. W. MacArthur, et al. (1997). "Assessment of comparative modeling in
CASP2." Proteins Suppl 1: 14-28.

Meng, E. C., B. J. Polacco, et al. (2004). "Superfamily active site templates." Proteins
55(4): 962-76.

Murzin, A. G., S. E. Brenner, et al. (1995). "SCOP: a structural classification of proteins
database for the investigation of sequences and structures." J Mol Biol 247(4):
536-40.

Oldfield, T. J. (2002). "Data mining the protein data bank: residue interactions." Proteins
49(4): 510-28.

Polacco, B. J. and P. C. Babbitt (2006). "Automated discovery of 3D motifs for protein
function annotation." Bioinformatics 22(6): 723-30.

Porter, C. T., G. J. Bartlett, et al. (2004). "The Catalytic Site Atlas: a resource of catalytic
sites and residues identified in enzymes using structural data." Nucleic Acids Res
32 Database issue: D129-33.

Sali, A. and T. L. Blundell (1993). "Comparative protein modelling by satisfaction of
spatial restraints." J Mol Biol 234(3): 779-815.

Stark, A. and R. B. Russell (2003). "Annotation in three dimensions. PINTS: Patterns in
Non-homologous Tertiary Structures." Nucleic Acids Res 31(13): 3341-4.

Stark, A., S. Sunyaev, et al. (2003). "A model for statistical significance of local
similarities in structure." J Mol Biol 326(5): 1307-16.

Chapter 4: An exhaustive survey of 3D motifs.
110

Torrance, J. W., G. J. Bartlett, et al. (2005). "Using a Library of Structural Templates to
Recognise Catalytic Sites and Explore their Evolution in Homologous Families."
J Mol Biol 347(3): 565-81.

Venclovas, C. and M. Margelevicius (2005). "Comparative modeling in CASP6 using
consensus approach to template selection, sequence-structure alignment, and
structure assessment." Proteins 61 Suppl 7: 99-105.

Watson, J. D., S. Sanderson, et al. (2007). "Towards fully automated structure-based
function prediction in structural genomics: a case study." J Mol Biol 367(5):
1511-22.

Conclusion
111

Conclusion

This work has focused on signature 3D motifs. These motifs are conserved within a

group of proteins and can be used to identify the group. Through the development and

application of GASPS, I have identified a large number of these signature 3D motifs that

represent conserved functional components within protein structures. I have shown that

these 3D motifs can be used to help annotate the functions of proteins but also that

signature motifs are not a universally useful tool that can be used for all groups of

proteins we may wish to classify. Many groups examined here provided no useful motif.

In many cases, this can be attributed to the classification system used to define any

particular group. While the group defined by the classification may not all share a motif,

a natural sub-group may have. It may be that no perfect classification exists. The

accepted classification of biological entities at any level is constantly changing. As long

as there are new genomes to sequence, there will likely always be newly discovered

protein structures that do not faithfully match any previously discovered group motif.

The distribution of these 3D motifs and the patterns of residues within them also describe

how local protein structure evolves. While we see a strong relationship between

conserved elements and a protein’s function, a protein’s evolutionary history appears

more important for determining local structure than just function alone. We see very few

cases of convergent evolution here, where a single function has required the same set of

residues in unrelated proteins. More often, we see that a 3D motif and the elements of a

protein’s function that the motif represents have been adopted from an ancestral function,

even when the overall function has evolved to be different. This phenomenon is identified

Conclusion
112

here by homologous groups of proteins with diverse functions and well-conserved 3D

motifs that are directly involved in a protein’s function.

As more structures become available, I expect the automated method of GASPS can be

used to generate motifs for protein groups that did not have enough structures to be

included in this study. The motifs available in GASPSdb can therefore be a constantly

growing resource available to the biological community. While I present some work here

evaluating and discarding alternative techniques for GASPS, I expect that GASPS could

be improved by other methods. GASPS was built to require no similarity in folds so that

motifs could be detected even when overall folds could not be aligned. One of the

conclusions of this work, however, is that cases of motifs across different folds are very

rare. With this knowledge, a faster method could use a structural alignment to first

identify conserved regions that can identify the group with high sensitivity, and, if

necessary, adjustments can be made to ensure specificity. Such a system may be better

able to deal with the added degrees of freedom provided by a method that allows

substitutions at specific positions. Another alternative is to build motifs from single

atoms, chemical groups, or physical and chemical descriptors instead of residues.

In many ways, the development of this work parallels both the evolution of protein

structure and function, as well as the genetic algorithm that provided the majority of the

results for my work. All three systems make use of fortuitous occurrences with trial and

error, leverage existing resources, and culminate in a successful product. The main

fortuitous occurrence (there are plenty of others that were less successful) that

contributed to this dissertation was the opportunity to collaborate with the initial

superfamily active site templates project, described in Chapter 1. Just as today’s proteins

Conclusion
113

recruited functional components that originally may have provided a different overall

function, GASPS makes use of many Python functions written for the work of Chapter 1.

In fact, my using a genetic algorithm as opposed to other techniques for building motifs,

is a result of its development history, when other techniques may be equally, if not more,

appropriate (see above). Finally, while I suggest above that the parallel includes a

successful end-product of my work, I leave the evaluation of the success of this

dissertation to the scoring or fitness functions that my readers bring with them.

Appendix 1: GASPS Package
114

Appendix 1: GASPS Package

This appendix contains the text files included in the GASPS software package. This

package was distributed as a gzipped, tar-formatted archive to other researchers

requesting the source code for GASPS.

ReadMe

1| ____ _____ _ ____ __ __ _____
2| | _ \| ____| / \ | _ \| \/ | ____|
3| | |_) | _| / _ \ | | | | |\/| | _|
4| | _ <| |___ / ___ \| |_| | | | | |___
5| |_| ______/_/ _____/|_| |_|_____|
6|
7|
8|
9| This package should contain all the python code that is necessary to

run GASPS. In addition you will need the motif searching tool SPASM
and MKSPAZ to generate your own libraries. Together with their
manuals, these can be downloaded from:

10|
11| http://alpha2.bmc.uu.se/usf/spasm.html
12|
13| Just in case we need to say it: We are not responsible, nor hold any

ownership for any of the SPASM and MKSPAZ software available from
the above site.

14|
15| GASPS.py can construct a multiple sequence alignment by running PSI-

BLAST if it is so instructed. To use this you will need a copy of
the blastpgp program and sequence database available from NCBI:

16|
17| http://www.ncbi.nlm.nih.gov/BLAST/download.shtml
18|
19| Again: We are not responsible, nor hold any ownership for any of the

NCBI software.
20|
21| Minimally, once SPASM is installed you are ready to go. GASPS can be

controlled via many different command line arguments. The following
is a typical command and makes a reasonable test of your
installation. It should run from the GASPS_package directory with
the files located in test/. Any errors should result in a failed
execution within the first few minutes. A sequence of happy SPASM
messages to stderr "..Toodle Pip.." indicates that things are
probably running properly. Running to completion may take a few
hours or more depending on your system's speed. As configured (--
writeTables=1), it will probably use about 30MB or more to store the
output of all its SPASM runs, turn this off (--writeTables=0) if
you're tight on disk space.

22|
23|

Appendix 1: GASPS Package
115

24| [~/GASPS_package] % python GASPS.py --pdbFile=test/d2mnr_1.pdb --
chain=' ' --filesPath=2mnr.test --tpFile=test/enolase.list --
trueLibrary=test/enolase.lib --lengthTrueLibrary=7 --
doNotCountQuery=d2mnr_1 --falseLibrary=test/astral_1.65_SF.lib --
alignFile=test/d2mnr_1.fasta.psiblast.xml.faln --refRowName=d2mnr_1
--writeTables=1 --useFileNames

25|
26|
27| For more information on the purpose of the specific command line

arguments, read the GASPS.py file. Most useful output will appear
in 2mnr.test_log.txt, and the files used to run SPASM will all be in
2mnr.test/*. The log.txt file will contain at least one line for
each motif attempted and its GASPS score. The winning motif can be
located near the end of the file. Additionally, the residues that
appear frequently among the top scoring motifs are given a score
that is simply the number of top scoring motifs they appear in. When
these residues are described, the potential list of substitutions
are listed at each of these positions regardless of wether
substitutions were turned on (--noSubs=0).

28|
29| Running GASPS from any other directory may require configuring your

python environment to find my modules located in
GASPS_package/polacco/. If you need help and don't know where to
look, try a web search for PYTHONPATH. For example:

30|
31| http://www.google.com/search?q=pythonpath.
32|
33| Additionally, if the spasm and blastpgp binaries (or databases) are

not in your shell's search paths, you may have to modify the
following lines in GASPS.py to point to the absolute paths of these
files:

34|
35| __spasmBinaryPath = "spasm"
36| __blastpgpPath = "blastpgp"
37| __blastDB = "nrdb90"
38|
39|
40|
41| The files in test/ are typical files that GASPS depends on for a

typical run:
42| files in test/
43|
44|
45| d2mnr_1.fasta Sequence file corresponding to
46| 2mnr.pdb. use:
47| --generateAlign=d2mnr_1.fasta
48|
49| d2mnr_1.fasta.psiblast.xml.faln Multiple sequence alignment

already
50| generated by GASPS. use:
51| --

align=d2mnr_1.fasta.psiblast.xml.faln
52|
53| d2mnr_1.pdb Structure file as a source of

motif
54| coordinates. use: --

pdbFile=d2mnr_1.pdb
55|

Appendix 1: GASPS Package
116

56|
57| astral_1.65_SF.lib A short MKSPAZ-formatted library

of
58| structures, one per SCOP
59| superfamily. use:
60| --

falseLibrary=astral_1.65_SF.lib
61|
62| enolase.lib A library of 7 representative
63| structures from the enolase
64| superfamily. use:
65| --trueLibrary=enolase.lib
66|
67| enolase.list A list of all structures in the
68| enolase family. These will be
69| excluded from 'falseLibrary' to
70| result in a library where all

hits
71| will truly be false positives.

use:
72| --tpFile=enolase.list
73|
74|
75|
76|
77| This software (GASPS.py and polacco/*.py) was developed for ongoing

research purposes, and mostly my own private use. To make things a
bit less confused, I attempted to remove those sections of code that
were not directly of use to a functioning GASPS.py, but I easily
could have broken something that I did not have the time to test.
Should anything not work as you expect, please let me know.

78|
79| If you use GASPS in your work, please cite:
80|
81| Polacco BJ, Babbitt PC. Automated discovery of 3D motifs for protein

function annotation. Bioinformatics. 2006 Mar 15;22(6):723-30.
82|
83| We are pretty certain this software does no harm to your system

under typical usage. However, we offer no warranties of any kind and
so can not be held accountable if it does.

84|
85| Any comments, questions, suggestions, complaints can be directed my

way by email:
86| polacco@cgl.ucsf.edu
87|
88| -Ben Polacco
89| March 30, 2006
90|

GASPS.py

1| #! /sw/bin/python
2|
3| #
4| # ____ _ ____ ____ ____
5| # / ___| / \ / ___|| _ \/ ___| _ __ _ _

Appendix 1: GASPS Package
117

6| # | | _ / _ \ ___ \| |_) ___ \ | '_ \| | | |
7| # | |_| |/ ___ \ ___) | __/ ___) || |_) | |_| |
8| # ____/_/ _____/|_| |____(_) .__/ __, |
9| # |_| |___/

10| #
11| #
12| #
13| #
14| # There are many, many options that can be set from the command

line. This results
15| # in some very long commands. The following is a typical basic

command.
16| #
17| # GASPS.py --pdbFile=test/2mnr.pdb --chain=' ' --filesPath=2mnr.test

--tpFile=test/enolase_1.65All.list --trueLibrary=test/enolase.lib --
lengthTrueLibrary=7 --doNotCountQuery=2mnr --
falseLibrary=test/astral_1.65_noMutants_SF_pid0.lib --
alignFile=test/2mnr.fasta.psiblast.xml.faln --refRowName=2MNR:_ --
writeTables=1

18| #
19| # Those arguments explained here:
20| #
21| # --pdbFile=2mnr.pdb PDB file to

pull coordinates from
22| # --chain=' ' Which chain

in PDB file to use. (A, B, C, ' ')
23| # --filesPath=2mnr.test Directory

name where most output files should go.
24| # --tpFile=enolase_1.65All.list List of true

positives that should be ignored from the so-called falseLibrary.
25| # --trueLibrary=enolase.lib Spasm library

containing only true positive structures.
26| # --lengthTrueLibrary=7 Number of

structures in lengthTrueLibrary; e.g., grep -c PDB enolase.lib
27| # --doNotCountQuery=2mnr Name of query

structure, don't count it towards computing GASPS scores.
28| # --falseLibrary=astral_1.65_noMutants_SF_pid0.lib Spasm library

containing the background structures, may include true positives,
use

29| # tpFile to list those that
should be ignored in this file.

30| # --alignFile=2mnr.fasta.psiblast.xml.faln Multiple
sequence alignment, must contain a sequence corresponding to pdbFile

31| # --refRowName=2MNR:_ Name in
multiple sequence alignment of corresponding (pdbFile) sequence

32| # --writeTables=1 Boolean,
should GASPS write out meaningful files showing matches for each
motif.

33| #
34| #
35| # To get an idea of other options use: GASPS --help
36| # To get an idea of what these options control, examine comments in

function SetDefaults
37| # The existence of some of the more puzzling options may simply be a

side-effect of my development process.
38|
39| import string, random, os, os.path, sys, time, math, getopt, copy
40|

Appendix 1: GASPS Package
118

41| #
42| # May have to move polacco/*.py to a directory listed in PYTHONPATH
43| # or modify PYTHONPATH to include parent directory of polacco/*.py
44| import polacco.Spasm, polacco.MultiAlign, polacco.utils
45| #
46|
47| # Trouble locating these, you may have to use absolute path here.
48| __spasmBinaryPath = "spasm"
49| __blastpgpPath = "blastpgp"
50| __blastDB = "nrdb90"
51|
52|
53| def DescribeMembers (info, openFile):
54| kees = info.__dict__.keys()
55| kees.sort()
56| for key in kees:
57| openFile.write("%30s\t:\t%s\n" % (key, info.__dict__[key]))
58| openFile.flush()
59|
60| def FileExists (filePath):
61| try:
62| fp = open (filePath)
63| fp.close()
64| return 1
65| except IOError:
66| return 0
67|
68| def PatternSampled (info, subset):
69| directory = os.path.join (info.filesPath, string.join (subset,

"_"))
70| doneFile = os.path.join (directory, "spasm.table")
71| return FileExists (doneFile) or FileExists (doneFile + ".gz")
72|
73| def WriteLog (logFile, string, newLine = 1):
74| fp = open (logFile, 'a')
75| fp.write (string)
76| if newLine:
77| fp.write ("\n")
78| fp.close()
79|
80| def ChooseConservationCutoff (conservationScores, numWanted,

referenceRow=None, allowedResidues=None):
81| cons = []
82| for i in range (len (conservationScores)):
83| if referenceRow.chars[i] in allowedResidues:
84| cons.append (conservationScores[i])
85|
86| if numWanted < 1.0 and numWanted > 0.0:
87| # User is asking for a fraction,
88| # convert it to a number of residues based on number of

allowed residues
89| numWanted = numWanted * len (cons)
90|
91| numWanted = int (numWanted)
92| if numWanted > len (cons):
93| print "After removing gaps and unwanted residues:Only %d

residues to choose from (wanted %d)" % (len (cons), numWanted)
94| return 0.0

Appendix 1: GASPS Package
119

95|
96| cons.sort()
97| cons.reverse()
98| return cons[numWanted-1]
99|

100|
101| def GetAvailableResidues(pdbFile, chain=None, model=1):
102| chains = {}
103| fp = open (pdbFile)
104| lastRes = ''
105| lastChain = ''
106| index = 0
107| models = 0
108| curModel = None
109| while (1):
110| line = fp.readline()
111| if (line == ''):
112| break
113|
114|
115| if line[0:5] == 'MODEL':
116| models+=1
117| curModel = int(line[11:16])
118| continue
119| elif line[0:6] == 'ENDMDL':
120| if curModel == model:
121| break
122| curModel = None
123| continue
124| elif line[0:4] != 'ATOM':
125| continue
126|
127| if curModel and curModel != model:
128| continue
129|
130| curChain = line[21]
131| if (chain and curChain != chain):
132| if not chain in '?*': #special cases, ? is first and * is

all
133| continue
134| res = string.strip(line[22:27])
135| atom = line[13:16]
136|
137| if (res == lastRes and curChain == lastChain):
138| if locatedCA:
139| continue
140| else:
141| locatedCA = 0
142| recorded = 0
143|
144| if not recorded:
145| try:
146| c = chains[curChain]
147| except KeyError:
148| index = 0
149| c = chains[curChain] = {}
150| c[res] = ()
151| recorded = 1

Appendix 1: GASPS Package
120

152|
153| if not locatedCA and atom == "CA ":
154| locatedCA = 1
155| x = float (line[32:38])
156| y = float (line[40:46])
157| z = float (line[48:55])
158| type = line[17:20]
159|
160| chains[curChain][res] = (x,y,z,index, type)
161| index += 1
162| lastChain = curChain
163| lastRes = res
164| fp.close()
165| if chain and not chain in '?*':
166| return chains[chain]
167| elif chain == '?':
168| assert len(chains) == 1
169| return chains[chains.keys()[0]]
170| else:
171| return chains
172|
173|
174| #simple Needleman-Wunsch to map the alignment sequence on to the

structure sequence
175| def Needleman(s1, s2, scoreMatch=1.0, scoreMismatch=-3.0, scoreGap=-

1.0):
176| m = []
177| for i1 in range(len(s1) + 1):
178| m.append((len(s2) + 1) * [0.0])
179|
180| for i1 in range(len(s1)):
181| for i2 in range(len(s2)):
182| if s1[i1] == s2[i2]:
183| best = m[i1][i2] + scoreMatch
184| else:
185| best = m[i1][i2] + scoreMismatch
186| skip = m[i1][i2+1] + scoreGap
187| if skip > best:
188| best = skip
189| skip = m[i1+1][i2] + scoreGap
190| if skip > best:
191| best = skip
192| m[i1+1][i2+1] = best
193| i1 = len(s1)
194| i2 = len(s2)
195| matchList = []
196| while i1 > 0 and i2 > 0:
197| best = m[i1-1][i2-1]
198| action = 0 # match
199| if m[i1][i2-1] > best:
200| best = m[i1][i2-1]
201| action = 1 # skip i2
202| if m[i1-1][i2] > best:
203| best = m[i1-1][i2]
204| action = 2 # skip i1
205| if action == 0:
206| matchList.append((i1-1, i2-1))
207| i1 = i1 - 1

Appendix 1: GASPS Package
121

208| i2 = i2 - 1
209| elif action == 1:
210| i2 = i2 - 1
211| else:
212| i1 = i1 - 1
213| return matchList
214|
215|
216| def GetAvailableConservedResidues (info, pdbFile, chain, multiAlign,

referenceRow,
217| minConservation = 0.0,

allowedResidues = "FILVPAGMCWYTSQNEDHKR", numResiduesAllowed = -1):
218| print "Processing multiple sequence alignment..."
219| #first load all residues from the pdbFile
220| allResidues = GetAvailableResidues (pdbFile, chain)
221| residueNames = allResidues.keys()
222| #reconstruct their order
223| namesInOrder = []
224| typesInOrder = []
225| for i in range (len(residueNames)):
226| namesInOrder.append ('?')
227| typesInOrder.append ('???')
228|
229| for name in residueNames:
230| #print name
231| if len (allResidues[name]) < 5:
232| print "Warning: Trouble reading information from pdb for

residue %s" % (name)
233| WriteLog (info.logFile, "Warning: Trouble reading

information from pdb for residue %s" % (name))
234| continue
235| (index, type) = allResidues[name][3:5]
236| try:
237| namesInOrder[index] = name
238| except IndexError, data:
239| print data
240| print index
241| print namesInOrder
242| print typesInOrder
243| print pdbFile
244| print allResidues
245| sys.exit(0)
246| typesInOrder[index] = type
247|
248| #align pdbSequence with referenceRow
249| pdbSeq = (polacco.utils.SeqAA3to1(typesInOrder))
250| refChars, refIndexes = referenceRow.GetCharsAndIndexesNoGaps()
251| matches = Needleman (pdbSeq, refChars)
252|
253| #compute conservation
254| vc = polacco.MultiAlign.ValdarConservation (multiAlign)
255| conservations = vc.Compute()
256| if numResiduesAllowed > 0:
257| minConservation = ChooseConservationCutoff (conservations,

numResiduesAllowed, referenceRow, allowedResidues)
258| print "Using conservation cutoff = %6.4f" % minConservation
259| #get possible substitutions per position
260| #subs = multiAlign.GetLettersPerColumn ()

Appendix 1: GASPS Package
122

261| subs = multiAlign.GetDominantLettersPerColumn(0.1)
262|
263| #generate list of user requested residues from user requested

motifs.
264| #these are forced to be included (with all their substitutions!)

regardless of their conservation
265| userRequestedResidues = []
266| for motif in info.motifs:
267| for res in motif:
268| if not res in userRequestedResidues:
269| userRequestedResidues.append (res)
270|
271| #map conservation scores to pdbSeq and return result
272| conResidues = {}
273| for match in matches:
274| name = namesInOrder[match[0]]
275| conservation = conservations[refIndexes[match[1]]]
276|
277| if name in userRequestedResidues:
278| pass
279| elif not pdbSeq[match[0]] in allowedResidues:
280| continue
281| elif conservation < minConservation:
282| continue
283|
284| if not refChars[match[1]] in subs[refIndexes[match[1]]]:
285| subs[refIndexes[match[1]]].append (refChars[match[1]])
286|
287| conResidues[name] = (allResidues[name] + (conservation,

polacco.utils.SeqAA1to3(subs[refIndexes[match[1]]])))
288|
289|
290| return conResidues
291|
292| def EucDistance (a, b):
293| sumSquares = 0.0
294| for i in range (len (a)):
295| sumSquares += math.pow(a[i]-b[i], 2)
296| return math.sqrt(sumSquares)
297|
298| def GetDistanceMatrix (allResidueLocations):
299| mat = {}
300| for res in allResidueLocations.keys():
301| mat[res] = {}
302| for other in allResidueLocations.keys():
303| if res == other:
304| continue
305| mat[res][other] =

EucDistance(allResidueLocations[res][0:3],
allResidueLocations[other][0:3])

306| return mat
307|
308|
309| def MatChooseSpatiallyCloseSubset (allResidueLocations,

distanceMatrix, numResidues, maxRadius, res = None):
310| numResidues = int (numResidues)
311| chosen = []
312| next = None

Appendix 1: GASPS Package
123

313| i = 0
314| resNames = allResidueLocations.keys()
315| center = None
316| while (i < numResidues):
317| while (1):
318| if not center:
319| if not res:
320| next = random.choice (resNames)
321| else:
322| next = res
323| if maxRadius != 99.9:
324| possibleOthers = [x for x in

distanceMatrix[next].keys() if distanceMatrix[next][x] < maxRadius]
325| else:
326| possibleOthers = distanceMatrix[next].keys()
327| if len (possibleOthers) < numResidues-1:
328| if res:
329| return None
330| else:
331| continue
332| center = allResidueLocations[next][0:3]
333| else:
334| next = random.choice (possibleOthers)
335| if EucDistance (center, allResidueLocations[next][0:3])

> maxRadius:
336| continue
337| if not next in chosen:
338| break
339| chosen.append (next)
340| i += 1
341| return chosen
342|
343| #mostly for debugging:
344| def DescribePossibilities (distanceMatrix, cutoff, number, info):
345| WriteLog (info.logFile, 'From %d residues at distance cutoff = %d

requiring %d neighbors' % (len (distanceMatrix.keys()), cutoff,
number))

346| num = int (number) - 1
347| for res in distanceMatrix.keys():
348| l = len ([x for x in distanceMatrix[res].values() if x <

cutoff])
349| if l >= num:
350| WriteLog (info.logFile, '%s %s %s' % (res, l, [x for x in

distanceMatrix[res].keys() if distanceMatrix[res][x] < cutoff]))
351|
352| def GenerateMotifFile (pdbFile, chain, residues, directory,

allResidues = None):
353| motifPath = os.path.join (directory, "motif.pdb")
354| motfp = open (motifPath, "w")
355| pdbfp = open (pdbFile)
356| resTypes = []
357| lastres = ''
358| models = 0
359| for line in pdbfp:
360| if line[0:5] == 'MODEL':
361| models = 1
362| continue
363| if models and line[0:6] == 'ENDMDL':

Appendix 1: GASPS Package
124

364| break
365| if line[0:4] != 'ATOM':
366| continue
367| curChain = line[21]
368| if chain == '?':
369| chain = curChain
370| if (curChain != chain):
371| continue
372| res = string.strip(line[22:27])
373| if res in residues:
374| motfp.write (line)
375| if res != lastres:
376| try:
377| if allResidues and len (allResidues[res]) > 6:
378| resTypes.append (allResidues[res][6])
379| else:
380| resTypes.append ((line[17:20],))
381| except KeyError:
382| #res not found in allResidues, must be a user

supplied motif
383| resTypes.append ((line[17:20],))
384| lastres = res
385|
386|
387| # add remark indicating the allowed substitutions we expect:

SPASM and GASPS do not use this!
388| motfp.write ("REMARK * For note only, spasm does not use

this!\n")
389| motfp.write ("REMARK * restypes:")
390| for resType in resTypes:
391| motfp.write (" %s" % string.join (resType, "/"))
392| motfp.write ("\n")
393| motfp.close()
394| pdbfp.close()
395| #print resTypes
396| return (motifPath, resTypes)
397|
398|
399|
400| def GenerateSpasmRunFile (motifFile, resTypes, directory, library =

"", runPath = 'spasm.com', outPath = 'spasm.out', info = None):
401| spasmBinaryPath = __spasmBinaryPath
402|
403| maxHits = 100000 # set this arbitrarily high so that SPASM never

stops early
404| maxRMSD = 3.2
405| maxCADiff = 5.0
406| maxSCDiff = 3.8
407| scOnly = 0
408| if info:
409| maxRMSD = info.maxRMSD
410| maxCADiff = info.maxCADiff
411| maxSCDiff = info.maxSCDiff
412| scOnly = info.scOnly
413|
414| maxResolution = 999.9
415| maxResidues = 9999
416|

Appendix 1: GASPS Package
125

417| subStrings = []
418| for subList in resTypes:
419| subStrings.append (string.join (subList, " "))
420|
421| substituteString = string.join (subStrings,"\n")
422|
423| fp = open (runPath, "w")
424| if scOnly:
425| spasmRunFileString = polacco.Spasm.runFileStringSTDOUT_scOnly
426| else:
427| spasmRunFileString = polacco.Spasm.runFileStringSTDOUT
428|
429| fp.write (spasmRunFileString % (
430| spasmBinaryPath,
431| maxHits,
432| library,
433| motifFile,
434| 'rand',
435| maxRMSD,
436| maxCADiff,
437| maxSCDiff,
438| maxResolution,
439| maxResidues,
440| 5,
441| substituteString))
442| fp.close()
443| os.chmod (runPath, 0755)
444| return runPath
445|
446|
447| def LoadTrueHash (tpFile):
448| tpHash = {}
449| if tpFile:
450| fp = open (tpFile)
451| while (1):
452| item = string.strip (fp.readline())
453| if item == '':
454| break
455| item = item.upper()
456| tpHash[item] = 1
457| fp.close()
458| print "Loaded %d unique identifiers from %s" %

(len(tpHash.keys()), tpFile)
459| return tpHash
460|
461| def SetupSpasmFiles (info, subset, allResidues):
462| directory = os.path.join (info.filesPath, string.join (subset,

"_"))
463| if info.scratchPath:
464| spasmTrueOutFile = os.path.join (info.scratchPath,

string.join (subset, "_") + "true_spasm.out")
465| spasmFalseOutFile = os.path.join (info.scratchPath,

string.join (subset, "_") + "false_spasm.out")
466| else:
467| spasmTrueOutFile = os.path.join (directory,

"true_spasm.out")
468| spasmFalseOutFile = os.path.join (directory,

"false_spasm.out")

Appendix 1: GASPS Package
126

469|
470|
471| spasmTableFile = os.path.join (directory, "spasm.table")
472| try:
473| os.makedirs (directory)
474| except OSError, data:
475| WriteLog (info.logFile, "Error (ignored) while generating

directory: %s" % directory)
476| WriteLog (info.logFile, data.strerror)
477| if info.noSubs:
478| (motif, resTypes) = GenerateMotifFile (info.pdbFile,

info.chain, subset, directory, 0)
479| else:
480| (motif, resTypes) = GenerateMotifFile (info.pdbFile,

info.chain, subset, directory, allResidues)
481| runFileTrue = os.path.join (directory, "true_spasm.com")
482| runFileFalse = os.path.join (directory, "false_spasm.com")
483| GenerateSpasmRunFile (motif, resTypes, directory,

info.falseLibrary, runFileFalse, spasmFalseOutFile, info)
484| GenerateSpasmRunFile (motif, resTypes, directory,

info.trueLibrary, runFileTrue, spasmTrueOutFile, info)
485| return info, runFileFalse, runFileTrue, spasmTableFile
486|
487|
488| def DoSpasmRuns (info, runFileFalse, runFileTrue, spasmTableFile,

writeOutFile = 0):
489| fpFalseSpasm = os.popen ("csh %s" % runFileFalse)
490| falseSearch = polacco.Spasm.SpasmSearch (1)
491| falseSearch.titleFromFileName = info.useFileNames
492| falseSearch.ParseSpasmHits (fpFalseSpasm)
493| fpFalseSpasm.close()
494|
495| fpTrueSpasm = os.popen ("csh %s" % runFileTrue)
496| trueSearch = polacco.Spasm.SpasmSearch (1)
497| trueSearch.titleFromFileName = info.useFileNames
498| trueSearch.ParseSpasmHits (fpTrueSpasm)
499| fpTrueSpasm.close()
500|
501| returnAsString = 1
502| tableFileString =

polacco.Spasm.Convert2SpasmSearchesToSortedAndScoredTable
(trueSearch, falseSearch,

503| spasmTableFile,
info.trueHash,info.useDistanceRmsd, returnAsString,

504| writeOutFile,
info.trueSkipHash, info.falseSkipHash)

505| return tableFileString
506|
507| def ScoreMotifs (info, population, allResidues, scores = {}):
508| for subset in population:
509| info, runFileFalse, runFileTrue, spasmTableFile =

SetupSpasmFiles (info, subset, allResidues)
510|
511| WriteLog (info.logFile, "guess %3d %40s" % (info.round,

string.join(subset, "_")), 0)
512|
513| if not info.testing:

Appendix 1: GASPS Package
127

514| tableFileString = DoSpasmRuns(info, runFileFalse,
runFileTrue, spasmTableFile, info.writeTables)

515| if not tableFileString:
516| WriteLog (info.logFile, " WARNING!: No table file string

generated for guess %3d %40s; score set to 0.0" % (info.round,
string.join(subset, "_")))

517| print ("WARNING!: No table file string generated for
guess %3d %40s; score set to 0.0" % (info.round, string.join(subset,
"_")))

518| score = 0.0
519|
520| elif info.rocArea:
521| score = polacco.Spasm.ComputeAreaFromTableFile

(spasmTableFile, info.maxFalse, tableFileString,
info.useDistanceRmsd)

522| else:
523| score =

polacco.Spasm.ComputeSeparationScoreFromTableFile3 (spasmTableFile,
info.maxFalse,

524| info.maxRMSD, info.lengthTrueLibrary,
info.sepScoreImportance, info.useDistanceRmsd, tableFileString)

525| else:
526| score = random.random ()
527| scores[tuple(subset)] = score
528|
529| WriteLog (info.logFile," %8.4f" % (score))
530|
531| return scores
532|
533| def GetResTypesFromMotifFile (motifFile):
534| fp = open (motifFile, "r")
535| restypes = []
536| while (1):
537| #"REMARK 1 restypes:"
538| line = fp.readline()
539| if line == '':
540| break
541| if line[0:6] == 'REMARK' and line[12:21] == "restypes:":
542| for res in line[21:].strip().split(' '):
543| res = res.strip()
544| if len(res) >= 3:
545| restypes.append (res.split('/'))
546| fp.close()
547| return restypes
548|
549| def GetResTypesFromSpasmRunFile (runFile):
550| resList = polacco.utils.aa3to1.keys()
551| fp = open (runFile, "r")
552| restypes = []
553| while (1):
554| line = fp.readline()
555| if line == '':
556| break
557| words = line.strip().split (" ")
558| if words[0] in resList:
559| restypes.append (words)
560| fp.close()
561| return restypes

Appendix 1: GASPS Package
128

562|
563| def TestMotif (directory, trueLibrary, falseLibrary):
564| testTrueOutFile = os.path.join (directory,

 "testTrue_spasm.out")
565| testFalseOutFile = os.path.join (directory,

"testFalse_spasm.out")
566|
567| testTableFile = os.path.join (directory, "test.table")
568| motifFile = os.path.join (directory, "motif.pdb")
569|
570| #load allowed residue types from motifFile
571| resTypes = GetResTypesFromMotifFile (motifFile)
572| if not resTypes:
573| print "WARNING! restypes not found in motif file!"
574| resTypes = GetResTypesFromSpasmRunFile (os.path.join

(directory, "false_spasm.com"))
575| if not resTypes:
576| print "Failed again reading from run file!"
577| print resTypes
578| runFileFalse = os.path.join (directory, "testFalse_spasm.com")
579| runFileTrue = os.path.join (directory, "testTrue_spasm.com")
580|
581| GenerateSpasmRunFile (motifFile, resTypes, directory,

falseLibrary, runFileFalse, testFalseOutFile)
582| GenerateSpasmRunFile (motifFile, resTypes, directory,

trueLibrary, runTrueFalse, testTrueOutFile)
583| print runFileFalse
584| os.spawnlp (os.P_WAIT, "sh", "sh", runFileFalse)
585| print runFileTrue
586| os.spawnlp (os.P_WAIT, "sh", "sh", runFileTrue)
587|
588| polacco.Spasm.Convert2SpasmFilesToSortedAndScoredTable

(testTrueOutFile, testFalseOutFile, testTableFile)
589| return testTableFile
590|
591|
592| def IsSuperSet (super, other):
593| for item in other:
594| if not item in super:
595| return 0
596| else:
597| return 1
598|
599| def RemoveSameScoringSupersets (info, motifScores, motifHash,

upForRemoval):
600| toRemove = []
601| for mot in upForRemoval:
602| score = motifScores[mot]
603| otherMots = motifHash[score]
604| for otherMot in otherMots:
605| if otherMot == mot:
606| continue
607| if IsSuperSet (mot, otherMot):
608| WriteLog (info.logFile, "Removing the same scoring

superset: %s (%s : %d)" % (mot, otherMot, score))
609| toRemove.append (mot)
610| break
611| for mot in toRemove:

Appendix 1: GASPS Package
129

612| score = motifScores[mot]
613| del (motifScores[mot])
614| motifHash[score].remove (mot)
615| if len (motifHash[score]) == 0:
616| del (motifHash[score])
617|
618| def GetTopScorers (info, number, motifScores, previousTop):
619| topScorers = {}
620| motHash = {}
621| #reverse the score hash:
622| for mot in motifScores.keys():
623| try:
624| motHash[motifScores[mot]].append(mot)
625| except KeyError:
626| motHash[motifScores[mot]] = [mot]
627|
628| RemoveSameScoringSupersets (info, motifScores, motHash,

previousTop.keys())
629|
630| scores = motHash.keys()
631| scores.sort()
632| scores.reverse()
633|
634| for score in scores:
635| if score == 0.0:
636| break
637| motifs = motHash[score]
638| if len(topScorers) >= number:
639| break
640| if len(topScorers)==0 or

len(topScorers)+len(motifs)<=number*2:
641| for mot in motifs:
642| topScorers[mot] = score
643| else:
644| break
645| return topScorers
646|
647| def MakeRandomGuessesWithCoverage (info,distanceMatrix, allResidues,

numGuesses, population = []):
648| if numGuesses==0:
649| return population
650| allRes = allResidues.keys()
651| lenAllRes = len(allRes)
652| if lenAllRes > numGuesses:
653| skip = lenAllRes/numGuesses
654| else:
655| skip = 1
656|
657| for i in range (0, lenAllRes, skip):
658| res = allRes[i]
659| subset = MatChooseSpatiallyCloseSubset (allResidues,

distanceMatrix, info.numResidues, info.maxNeighborhood, res)
660| if not subset:
661| continue
662| subset.sort()
663| if subset in population:
664| continue
665|

Appendix 1: GASPS Package
130

666| if PatternSampled (info, subset):
667| continue
668| population.append (subset)
669|
670| return population
671|
672| def MakeRandomGuesses (info, distanceMatrix, allResidues,

numGuesses, population = []):
673| totalSize = len (population) + numGuesses
674| while (len (population) < totalSize):
675| for i in range (10000): #TODO set up a better check to make

sure there are choices left before continuing the loop.
676| subset = MatChooseSpatiallyCloseSubset (allResidues,

distanceMatrix, info.numResidues, info.maxNeighborhood)
677| subset.sort()
678| if subset in population:
679| continue
680| if PatternSampled (info, subset):
681| continue
682| population.append (subset)
683| break
684| else:
685| WriteLog (info.logFile ,"Could not find a random guess not

already tried after 10000 tries!")
686| break
687| return population
688|
689|
690| def MakeMutations (survivors, allResidues, info, numMutations,

population):
691| resNames = allResidues.keys()
692| totalSize = len (population) + numMutations
693|
694| allMutations = []
695| for parent in survivors:
696| for pres in parent:
697| for mres in resNames:
698| if mres in parent:
699| continue
700| newMotif = list (parent)
701| newMotif.remove (pres)
702| newMotif.append (mres)
703| newMotif.sort()
704| allMutations.append (newMotif)
705| while (allMutations and len (population) < totalSize):
706| newMotif = random.choice (allMutations)
707| allMutations.remove (newMotif)
708| if newMotif in population:
709| continue
710| if newMotif in survivors:
711| continue
712| if PatternSampled (info, newMotif):
713| continue
714| population.append (newMotif)
715| return population
716|
717|

Appendix 1: GASPS Package
131

718| def MakeInsertions (survivors, allResidues, info, numInsertions,
population):

719| resNames = allResidues.keys()
720| totalSize = len (population) + numInsertions
721|
722| allInsertions = []
723| for parent in survivors:
724| if len (parent) >= info.maxResidues:
725| continue
726| for res in resNames:
727| if res in parent:
728| continue
729| newMotif = list (parent)
730| newMotif.append (res)
731| newMotif.sort()
732| allInsertions.append (newMotif)
733|
734| while (allInsertions and len (population) < totalSize):
735| newMotif = random.choice (allInsertions)
736| allInsertions.remove (newMotif)
737| if newMotif in population:
738| continue
739| if newMotif in survivors:
740| continue
741| if PatternSampled (info, newMotif):
742| continue
743| population.append (newMotif)
744| return population
745|
746| def MakeDeletions (survivors, info, numDeletions, population):
747| totalSize = len (population) + numDeletions
748| allDeletions = []
749| for parent in survivors:
750| if len (parent) <= info.minResidues:
751| continue
752| for res in parent:
753| newMotif = list (parent)
754| newMotif.remove (res)
755| allDeletions.append (newMotif) # allDeletions may have

duplicates, but only a finite number so its okay
756|
757| while (allDeletions and len (population) < totalSize):
758| newMotif = random.choice (allDeletions)
759| allDeletions.remove (newMotif)
760| if newMotif in population:
761| continue
762| if newMotif in survivors:
763| continue
764| if PatternSampled (info, newMotif):
765| continue
766| population.append (newMotif)
767| return population
768|
769| def MakeRecombinations (parents, info, numRecombinations,

population):
770| totalSize = len (population) + numRecombinations
771| attempts = 0
772| while (len (population) < totalSize and attempts < 10000):

Appendix 1: GASPS Package
132

773| attempts = attempts + 1
774| if not parents:
775| break
776| #first choose parents
777| mom = random.choice (parents)
778| tmp = parents[:]
779| if len (tmp) > 1:
780| tmp.remove(mom)
781| dad = random.choice (tmp)
782| # choose contributions
783| all = list(mom)
784| for res in dad:
785| if res in mom:
786| all.remove(res)
787| all = all + list(dad)
788| newMotif = []
789| maxLen = min (info.maxResidues, len(all))
790| newLen = random.randrange (3, maxLen+1)
791| while (len (newMotif) < newLen):
792| newMotif.append (random.choice(all))
793| all.remove (newMotif[-1])
794|
795| newMotif.sort()
796| if newMotif in population:
797| continue
798| if newMotif in parents:
799| continue
800| if PatternSampled (info, newMotif):
801| continue
802| population.append (newMotif)
803| if (attempts >= 10000): #lazy but sufficient:
804| WriteLog (info.logFile, "WARNING: Couldn't find a

recombination that hasn't been tried in 10000 tries!")
805| return population
806|
807| def EvolveNextPopulation (survivors, info, allResidues,

distanceMatrix):
808| nextPop = []
809| l = len (nextPop)
810| if info.motifs:
811| nextPop.extend (info.motifs)
812| info.motifs = []
813| WriteLog (info.logFile, "**User specified starting motifs**")
814| PrintPopulation (info, nextPop[l:])
815| l = len (nextPop)
816|
817| if len (survivors) < info.popFromPrevious/2: # no population

bottlenecks
818| nextPop = MakeRandomGuessesWithCoverage (info, distanceMatrix,

allResidues, info.populationSize, nextPop)
819| WriteLog (info.logFile, "**Random Guesses With Coverage")
820| PrintPopulation (info, nextPop[l:])
821|
822|
823| l = len (nextPop)
824| nextPop = MakeRandomGuesses (info, distanceMatrix,

allResidues, info.populationSize - len(nextPop), nextPop)
825| WriteLog (info.logFile, "**Random Guesses")

Appendix 1: GASPS Package
133

826| PrintPopulation (info, nextPop[l:])
827|
828|
829| else:
830| nextPop = MakeRandomGuesses (info, distanceMatrix,allResidues,

info.popFromRandom, nextPop)
831| WriteLog (info.logFile, "**Random Guesses")
832| PrintPopulation (info, nextPop[l:])
833|
834| l = len (nextPop)
835| nextPop = MakeMutations (survivors, allResidues, info,

info.popMutations, nextPop)
836| WriteLog (info.logFile, "**Mutations")
837| PrintPopulation (info, nextPop[l:])
838|
839| l = len (nextPop)
840| nextPop = MakeInsertions (survivors, allResidues, info,

info.popInsertions, nextPop)
841| WriteLog (info.logFile, "**Insertions")
842| PrintPopulation (info, nextPop[l:])
843|
844| l = len (nextPop)
845| nextPop = MakeDeletions (survivors, info, info.popDeletions,

nextPop)
846| WriteLog (info.logFile, "**Deletions")
847| PrintPopulation (info, nextPop[l:])
848|
849| l = len (nextPop)
850| nextPop = MakeRecombinations (survivors, info,

info.populationSize - len(nextPop), nextPop)
851| WriteLog (info.logFile, "**Recombinations")
852| PrintPopulation (info, nextPop[l:])
853| return nextPop
854|
855|
856| def PrintPopulation (info, population):
857| for mot in population:
858| WriteLog (info.logFile, string.join (mot, '_'))
859|
860| def PrintMotifScores (info, motifScores, finalStats=0):
861| scorePairs = []
862| total = 0.0
863| maxScore = None
864| minScore = 2.0
865| meanScore = 0.0
866| count = 0
867|
868| for mot in motifScores.keys():
869| count += 1
870| total = total + motifScores[mot]
871| maxScore = max (maxScore, motifScores[mot])
872| minScore = min (minScore, motifScores[mot])
873| scorePairs.append ((motifScores[mot], string.join (mot, '_')

))
874|
875| if not count:
876| WriteLog (info.logFile, "WARNING: No top scorers found to

describe!")

Appendix 1: GASPS Package
134

877| return
878|
879| meanScore = total/count
880| scorePairs.sort()
881| #loop again to print, and calculate variance
882| total = 0.0
883| for pair in scorePairs:
884| total += math.pow (pair[0]-meanScore, 2)
885| if not finalStats:
886| WriteLog (info.logFile,"topScorer %d %40s %8.4f" %

(info.round, pair[1], pair[0]))
887| if count > 2:
888| variance = total/(count - 1)
889| else:
890| variance = 0.0
891| if finalStats:
892| label = "finalTopScoreStats"
893| else:
894| label = "topScoreStats"
895|
896| WriteLog (info.logFile, "%s %d %6.4f %6.4f %6.4f %10.8f" %

(label, info.round, meanScore, maxScore, minScore,
math.sqrt(variance)))

897|
898| def GetTopScorer (motifScores):
899| scorePairs = []
900| for mot in motifScores.keys():
901| scorePairs.append ((motifScores[mot], string.join (mot, '_')

))
902| topPair = max (scorePairs)
903| return topPair
904|
905|
906|

907| def SummarizeResiduesInMotifScores (info, motifScores,
allResidues, finalSummary = 0):

908| ress = {}
909| for mot in motifScores.keys():
910| for res in mot:
911| try:
912| ress[res] += 1
913| except KeyError:
914| ress[res] = 1
915| pairs = []
916| for res in ress.keys():
917| pairs.append ((ress[res], res))
918| pairs.sort()
919| pairs.reverse()
920| if not finalSummary:
921| for score,res in pairs:
922| if len (allResidues[res]) > 6:
923| resTypes = (allResidues[res][6])
924| else:
925| resTypes = []
926| subString = string.join (resTypes, ",")
927|
928| WriteLog (info.logFile, "resScore %d %8s.%s %3d # %s" %

(info.round, res, allResidues[res][4], score, subString))

Appendix 1: GASPS Package
135

929| else:
930|
931| summaryString = ""
932| for score,res in pairs:
933| summaryString += "%s.%s(%02d); "% (res,

allResidues[res][4], score)
934| WriteLog (info.logFile, "finalResidues " + summaryString)
935|
936|
937| def PrintFinalSummary (info, motifScores, allResidues):
938| #first print top score stats:
939| PrintMotifScores (info, motifScores, 1)
940| #now single line for final residues
941| SummarizeResiduesInMotifScores (info, motifScores, allResidues,

1)
942|
943|
944|
945| # The meat of GASPS work is performed here.
946|
947| def DoGASpasm (info):
948| try:
949| os.makedirs (os.path.split (info.logFile)[0])
950| except OSError:
951| pass #most likely directory already exists.
952|
953| WriteLog (info.logFile, "\n\nGASpasm started at %s" %

time.ctime(time.time()))
954| # First get information from multi align file if appropriate
955| if info.alignFile:
956| ma = polacco.MultiAlign.MultiAlign([])
957| WriteLog (info.logFile, "Opening multialign file at %s" %

info.alignFile)
958| fp = open (info.alignFile)
959| if (string.upper (info.alignFormat) == 'FASTA'):
960| ma.read_fasta (fp)
961| elif (string.upper (info.alignFormat) == 'CLUSTAL'):
962| ma.read_clustal (fp, 0) # 0 sets to not force strict

clustal: first line "CLUSTAL..." is optional
963| else:
964| print "Unrecognized align format: %s " % info.alignFormat
965| sys.exit(0)
966| fp.close()
967| WriteLog (info.logFile, "Finished align file at %s" %

time.ctime(time.time()))
968|
969| if info.alignRange:
970| (start,stop) = info.alignRange.split(':')
971| if start:
972| start = int (start)
973| else:
974| start = ma.FIRST_POSITION
975| if stop:
976| stop = int (stop)
977| else:
978| stop = ma.FIRST_POSITION + ma.length()
979|

Appendix 1: GASPS Package
136

980| WriteLog (info.logFile, "Restricting alignemnt to %s and
%s" % (start, stop))

981| ma = ma.getMultiAlignBlock (start, stop)
982|
983| refRow = ma.get_row_by_name (info.refRowName)
984| ma.protectedRows.append (refRow)
985| if info.numSeqsInAlign > 0:
986| WriteLog (info.logFile, "Shrinking Multiple alignment")
987| ma.ShrinkByRemovingRedundancy_Efficient

(info.numSeqsInAlign)
988|
989| allResidues = GetAvailableConservedResidues (info,

info.pdbFile, info.chain, ma, refRow, info.minConservation,
info.allowedResidues, info.numTopConservedResidues)

990| else:
991| allResidues = GetAvailableResidues (info.pdbFile, info.chain)
992|
993| distanceMatrix = GetDistanceMatrix (allResidues)
994| #mostly for debugging purposes:
995| DescribePossibilities (distanceMatrix, info.maxNeighborhood,

info.numResidues, info)
996|
997| topX = {}
998| motifScores = {}
999| for round in range (info.numRounds):

1000| info.round = round
1001| WriteLog (info.logFile, "Round %3d started at %s" % (round,

time.ctime(time.time())))
1002| population = EvolveNextPopulation (topX.keys(), info,

allResidues, distanceMatrix)
1003| motifScores = ScoreMotifs (info, population, allResidues,

motifScores)
1004| topX = GetTopScorers (info, info.popFromPrevious, motifScores,

topX)
1005| WriteLog (info.logFile, "New Top Scorers:")
1006| PrintMotifScores (info, topX)
1007| WriteLog (info.logFile, "Residue scores:")
1008| SummarizeResiduesInMotifScores (info, topX, allResidues)
1009|
1010| PrintFinalSummary (info, topX, allResidues)
1011| if info.xValidate:
1012| score, motif_ = GetTopScorer (topX)
1013| directory = os.path.join (info.filesPath, motif_)
1014| ValidateDirectory (info, directory)
1015|
1016| if info.writeTables:
1017| score, motif_ = GetTopScorer (topX)
1018| tableFile = os.path.join (info.filesPath, motif_,

"spasm.table.gz")
1019| localName = info.filesPath + motif_ + "_table.gz"
1020| cmd = 'cp %s %s' % (tableFile, localName)
1021| os.system(cmd)
1022|
1023| WriteLog (info.logFile, "Finished at %s" %

(time.ctime(time.time())))
1024|
1025|
1026| def ValidateDirectory (info, directory):

Appendix 1: GASPS Package
137

1027| testTrueOutFile = os.path.join (directory,
 "testTrue_spasm.out")

1028| testFalseOutFile = os.path.join (directory,
"testFalse_spasm.out")

1029|
1030| testTableFile = os.path.join (directory, "test.table")
1031| motifFile = os.path.join (directory, "motif.pdb")
1032| #load allowed residue types from motifFile
1033| resTypes = GetResTypesFromMotifFile (motifFile)
1034| if not resTypes:
1035| print "WARNING! restypes not found in motif file!"
1036| resTypes = GetResTypesFromSpasmRunFile (os.path.join

(directory, "false_spasm.com"))
1037| if not resTypes:
1038| print "Failed again reading from run file!"
1039| runFileFalse = os.path.join (directory, "testFalse_spasm.com")
1040| runFileTrue = os.path.join (directory, "testTrue_spasm.com")
1041|
1042| GenerateSpasmRunFile (motifFile, resTypes, directory,

info.xFalseLibrary, runFileFalse, testFalseOutFile)
1043| GenerateSpasmRunFile (motifFile, resTypes, directory,

info.trueLibrary, runFileTrue, testTrueOutFile)
1044|
1045| fpFalseSpasm = os.popen ("csh %s" % runFileFalse)
1046| falseSearch = polacco.Spasm.SpasmSearch (1)
1047| falseSearch.ParseSpasmHits (fpFalseSpasm)
1048| fpFalseSpasm.close()
1049|
1050| fpTrueSpasm = os.popen ("csh %s" % runFileTrue)
1051| trueSearch = polacco.Spasm.SpasmSearch (1)
1052| trueSearch.ParseSpasmHits (fpTrueSpasm)
1053| fpTrueSpasm.close()
1054|
1055|
1056| trueSkipHash = LoadTrueHash (info.xTrueSkipFile)
1057|
1058| returnAsString = 1
1059| writeOutFile = 1 #always write out this file, the most

interesting one!
1060| tableFileString =

polacco.Spasm.Convert2SpasmSearchesToSortedAndScoredTable
(trueSearch, falseSearch,

1061| testTableFile, info.trueHash,
info.useDistanceRmsd, returnAsString,

1062| writeOutFile, trueSkipHash)
1063| if info.rocArea:
1064| score = polacco.Spasm.ComputeAreaFromTableFile (testTableFile,

info.maxFalse, tableFileString)
1065| else:
1066| lengthTrueLibrary = 1
1067| score = polacco.Spasm.ComputeSeparationScoreFromTableFile3

(testTableFile, info.maxFalse,
1068| info.maxRMSD, lengthTrueLibrary, info.sepScoreImportance,

info.useDistanceRmsd, tableFileString)
1069|
1070| WriteLog (info.logFile,"Cross-Validate Result %s %8.4f" %

(directory , score))
1071|

Appendix 1: GASPS Package
138

1072| def SetDefaults(info):
1073| info.chain = ' '
1074| info.numResidues = 5 # first guesses motif size, min and max

specify that allowed during optimization
1075| info.maxResidues = 10 # spasm won't display ca-ca or sc-sc

matrices if this is any higher than 10
1076| info.minResidues = 3
1077| info.maxNeighborhood = 12 # in angstroms, initial guess motifs

are built from residues within this distance
1078| info.alignFile = None #if alignment exists already, read it

here.
1079| info.alignFormat = 'FASTA' # format of above, alternative is

CLUSTAL
1080| info.minConservation = 0.6 # conservation necessary for inlc
1081| info.filesPath = None
1082| info.allowedResidues = 'FILVPAGMCWYTSQNEDHKR'
1083| info.logFile = None
1084| info.tpFile = None
1085| info.falseSkipFile = None #these specify which items in the true

or fales libraries should be skipped.
1086| info.trueSkipFile = None
1087|
1088| info.populationSize = 36
1089| info.popFromPrevious = 16
1090| info.popFromRandom = 0
1091| info.popInsertions = 8
1092| info.popMutations = 12
1093| info.popDeletions = 8
1094| info.noSubs = 1 # true or false indicating wether to turn off

substitutions (beware double negative!)
1095| info.maxFalse = 5 # cut off for computing ROC scores
1096| info.numRounds = 50 # number of rounds to complete before

stopping
1097| info.testing = 0
1098| info.rocArea = 0 #binary indicating what kind of scoring to use

(rocArea, vs separation score)
1099| info.numSeqsInAlign = -1 #if greater than zero this determines

the size of the multi-align to use
1100| info.numTopConservedResidues = 100 #if greater than 0 this

determines the number of positions in the multialign to choose as
conserved residues

1101| #if less than 1 it specifies
fraction to accept, if greater than 1 it represents the number of
residues to accept

1102| info.alignRange = ':' #specifies a range of columns to limit the
multialign

1103|
1104| info.trueLibrary = None
1105| info.falseLibrary = None
1106|
1107| info.validateDirectory = None
1108|
1109| info.lengthTrueLibrary = None
1110| info.sepScoreImportance = 0.1
1111|
1112| info.useDistanceRmsd = 0
1113|
1114| info.motifs = []

Appendix 1: GASPS Package
139

1115| info.scratchPath = ''
1116|
1117| info.xValidate = 0 #perform cross validation at the end of a

completed run.
1118| #reuse tp library, but give different exclude list
1119| #must give new fp library.
1120| info.xTrueSkipFile = None
1121| info.xFalseLibrary = None
1122|
1123| info.doNotCountQuery = None # used to pass the name of the query

in the the spasm library
1124| # so that matches to itself can be

ignored.
1125|
1126| info.writeTables=0 #write out spasm output tables from each

run. Eats disk space.
1127| info.useFileNames=0 #use the file name given in the spasm

library to describe the matched structure.
1128| # the alternative is to use the four

character pdb-style code given in the spasm library.
1129| # if turned on, this will use "d1qcrd2"

from /pdbstyle-1.63/qc/d1qcrd2.ent
1130| # used by

polacco.Spasm.SpasmHit.ReadOpenFile()
1131|
1132| info.generateAlignment = None #file to use as input to psiblast

for generation of alignment
1133|
1134|
1135| info.maxRMSD = 3.2 #thresholds to be passed to spasm
1136| info.maxCADiff = 5.0
1137| info.maxSCDiff = 3.8
1138|
1139| info.scOnly = 0 #use spasm in sidechain-only mode; ignore alpha

carbons
1140|
1141|
1142|
1143|
1144| def PrintUsage(short, long):
1145| for i in range (len(short)):
1146| print '%s %s' % (short[i], long[i])
1147|
1148| def SetUpSkipHashes(info):
1149|
1150| if info.trueSkipFile:
1151| info.trueSkipHash = LoadTrueHash (info.trueSkipFile)
1152| WriteLog (info.logFile, "loaded %d items to skip from %s" %

(len (info.trueSkipHash.keys()), info.trueSkipFile))
1153| else:
1154| info.trueSkipHash = {}
1155| if info.doNotCountQuery:
1156| info.trueSkipHash[string.upper(info.doNotCountQuery)] = 1
1157| if info.falseSkipFile:
1158| info.falseSkipHash = LoadTrueHash (info.falseSkipFile)
1159| WriteLog (info.logFile, "loaded %d items to skip from %s" %

(len (info.falseSkipHash.keys()), info.trueSkipFile))
1160| else:

Appendix 1: GASPS Package
140

1161| info.falseSkipHash = {}
1162|
1163| def GenerateAlignment (info):
1164| import polacco.BlastXML
1165|
1166| psiBlastFile = info.generateAlignment + ".psiblast.xml"
1167| info.alignFile = psiBlastFile + ".faln"
1168| print "Looking for " + info.alignFile
1169| if FileExists (info.alignFile):
1170| print "Found align file, not repeating psiblast."
1171| return
1172|
1173| cmd = "%s -d %s -i %s -o %s -m7 -j2" % (__blastpgpPath,

__blastDB, info.generateAlignment, psiBlastFile)
1174| print cmd
1175| os.system (cmd)
1176|
1177| polacco.BlastXML.GetAlignmentFromPsiBlastFile (psiBlastFile,

info.alignFile)
1178|
1179| os.remove (psiBlastFile)
1180|
1181|
1182| # dummy class mostly to allow me to easily store any number of

configuration variables
1183| class struct:
1184| pass
1185|
1186| def main():
1187| info= struct()
1188| #display the next line unwrapped for an easy mapping from short

option to long option, or simply do GASPS.py -h
1189| shortList = ['h', 'p:', 'H:', 'r:',

'n:', 'a:', 'A:', 'F:',
'c:', 'o:', 'R:', 'l:',
't:', 'i:', 'P:', 'T', 'O:' ,'m:'
,'s:' ,'C:' ,'N:' , 'G:'
, 'U:' , 'X:' , 'v:' , 'b:'
, 'S:' , 'D:' , 'M:' , 'z:'
, 'k:' , '' , 'x' , '' ,
'' , '' ,'' , '' , ''
, '' , '']

1190| longOptions = ['help', 'pdbFile=', 'chain=', 'numResidues=',
'maxNeighborhood=', 'alignFile=', 'refRowName=', 'alignFormat=',
'minConservation=', 'filesPath=', 'allowedResidues=',
'logFile=','tpFile=','iterations=','popSize=','testing',
'rocArea=','maxFalse=','numSeqsInMA=','numTopConservedResidues=','no
tTpFile=', 'alignRange=', 'trueLibrary=', 'falseLibrary=',
'validateDirectory=', 'lengthTrueLibrary=', 'sepScoreImportance=',
'useDistanceRmsd=', 'motifs=', 'scratchPath=', 'trueSkipFile=',
'falseSkipFile=', 'xValidate', 'xTrueSkipFile=', 'xFalseLibrary=',
'maxResidues=','doNotCountQuery=', 'noSubs', 'writeTables=',
'useFileNames', 'generateAlignment=', 'maxRMSD=', 'maxCADiff=',
'maxSCDiff=', 'scOnly']

1191|
1192| shortOptions = string.join (shortList, '')
1193| opts, args = getopt.getopt (sys.argv[1:], shortOptions,

longOptions)

Appendix 1: GASPS Package
141

1194|
1195| SetDefaults (info)
1196|
1197| for o,a in opts:
1198| if o in ('-h', '--help'):
1199| PrintUsage (shortList, longOptions)
1200| sys.exit(0)
1201| elif o in ('-p', '--pdbFile'):
1202| info.pdbFile = a
1203| elif o in ('-H', '--chain'):
1204| if a == 'space':
1205| a = ' '
1206| info.chain = a
1207| elif o in ('-r', '--numResidues'):
1208| info.numResidues = int (a)
1209| elif o in ('-n', '--maxNeighborhood'):
1210| info.maxNeighborhood = float (a)
1211| elif o in ('-a', '--alignFile'):
1212| info.alignFile = a
1213| elif o in ('-A', '--refRowName'):
1214| info.refRowName = a
1215| elif o in ('-F', '--alignFormat'):
1216| info.alignFormat = a
1217| elif o in ('-c', '--minConservation'):
1218| info.minConservation = float (a)
1219| elif o in ('-o', '--filesPath'):
1220| info.filesPath = a
1221| elif o in ('-R', '--allowedResidues'):
1222| if a == "NOTBORING":
1223| info.allowedResidues = "GSTCMPDNEQKRHFYW"
1224| else:
1225| info.allowedResidues = string.upper (a)
1226| elif o in ('-l', '--logFile'):
1227| info.logFile = a
1228| elif o in ('-t', '--tpFile'):
1229| if a != 'none':
1230| info.tpFile = a
1231| elif o in ('-i', '--iterations'):
1232| info.numRounds = int(a)
1233| elif o in ('-P', '--popSize'):
1234| info.populationSize = int(a)
1235| elif o in ('-T', '--testing'):
1236| print "TESTING, no spasm runs will be attempted. Scores

chosen randomly!!!!"
1237| info.testing = 1
1238| elif o in ('-L', '--library'):
1239| pass
1240| elif o in ('-O', '--rocArea'):
1241| info.rocArea = int (a)
1242| elif o in ('-m', '--maxFalse'):
1243| info.maxFalse = int (a)
1244| elif o in ('-s', '--numSeqsInMA'):
1245| info.numSeqsInAlign = int (a)
1246| elif o in ('-C', '--numTopConservedResidues'):
1247| info.numTopConservedResidues = float (a)
1248| elif o in ('-N', '--notTpFile'):
1249| info.notTpFile = a
1250| elif o in ('-G', '--alignRange'):

Appendix 1: GASPS Package
142

1251| info.alignRange = a
1252| elif o in ('-U', '--trueLibrary'):
1253| info.trueLibrary = a
1254| elif o in ('-X', '--falseLibrary'):
1255| info.falseLibrary = a
1256| elif o in ('-v', '--validateDirectory'):
1257| info.validateDirectory = a
1258| elif o in ('-b', '--lengthTrueLibrary'):
1259| info.lengthTrueLibrary = int(a)
1260| elif o in ('-S', '--sepScoreImportance'):
1261| info.sepScoreImportance = float (a)
1262| elif o in ('-D', '--useDistanceRmsd'):
1263| info.useDistanceRmsd = int (a)
1264| elif o in ('-k', '--trueSkipFile'):
1265| info.trueSkipFile = a
1266| elif o in ('--falseSkipFile',):
1267| info.falseSkipFile = a
1268| elif o in ('-x', '--xValidate'):
1269| info.xValidate = 1
1270| elif o == '--xTrueSkipFile':
1271| info.xTrueSkipFile = a
1272| elif o == '--xFalseLibrary':
1273| info.xFalseLibrary = a
1274| elif o == '--maxResidues' :
1275| info.maxResidues = int (a)
1276| elif o == '--doNotCountQuery':
1277| info.doNotCountQuery = a
1278| elif o in ('-M', '--motifs'):
1279| motifs = a.split (",")
1280| for mot in motifs:
1281| mot = mot.split("_")
1282| mot.sort()
1283| info.motifs.append (mot)
1284| elif o in ('-z', '--scratchPath'):
1285| info.scratchPath = a
1286| try:
1287| os.makedirs (a)
1288| except OSError, data:
1289| print ("Error (ignored) while generating scratchPath:

%s" % a)
1290| print (data.strerror)
1291|
1292| elif o == '--noSubs':
1293| print "ATTENTION: No substitutions will be allowed."
1294| info.noSubs = 1
1295| elif o == '--writeTables':
1296| info.writeTables = int (a)
1297| elif o == '--useFileNames':
1298| info.useFileNames = 1
1299| elif o == '--generateAlignment':
1300| info.generateAlignment = a
1301|
1302| elif o == '--maxRMSD':
1303| info.maxRMSD = float (a)
1304| elif o == '--maxCADiff':
1305| info.maxCADiff = float (a)
1306| elif o == '--maxSCDiff':
1307| info.maxSCDiff = float (a)

Appendix 1: GASPS Package
143

1308| elif o == '--scOnly':
1309| info.scOnly = 1
1310|
1311| else:
1312| print "Unrecognized option: %s : %s, use '-h' for list of

possible arguments" % (o,a)
1313| sys.exit(0)
1314|
1315| if info.motifs:
1316| print ("Loaded %d motifs from input" % len (info.motifs))
1317|
1318|
1319| if not info.logFile:
1320| info.logFile = info.filesPath+"_log.txt"
1321|
1322|
1323| if info.tpFile:
1324| info.trueHash = LoadTrueHash (info.tpFile)
1325| else:
1326| info.trueHash = {}
1327| SetUpSkipHashes(info)
1328|
1329| print " Settings from command line and defaults: "
1330| DescribeMembers (info, sys.stdout)
1331|
1332| if info.generateAlignment:
1333| GenerateAlignment(info)
1334|
1335| if info.doNotCountQuery:
1336| info.lengthTrueLibrary -= 1
1337|
1338| if info.validateDirectory:
1339| print TestMotif (info.validateDirectory, info.trueLibrary,

info.falseLibrary)
1340| else:
1341|
1342| DoGASpasm (info)
1343|
1344| if __name__ == "__main__":
1345| main()
1346|
1347|

polacco/BlastXML.py

1| import polacco.XML, polacco.MultiAlign
2| import string, sys
3|
4|
5| # ____ _ _ __ ____ __ _
6| # | __)| | __ _ ___| |_\ \/ / \/ | | _ __ _ _
7| # | _ \| |/ _` / __| __|\ /| |\/| | | | '_ \| | | |
8| # | |_) | | (_| __ \ |_ / \| | | | |___ _| |_) | |_| |
9| # |____/|_|__,_|___/__/_/__| |_|_____(_) .__/ __, |

10| # |_| |___/
11|

Appendix 1: GASPS Package
144

12|
13| # Despite it's name, it works equally well with the XML output of

both blastall and blastpgp.
14|
15|
16| class PsiBlastXMLFile (polacco.XML.XML_tree) :
17|
18| def __init__ (self, openFileIn):
19| self.maxEValue = 0
20| self.minHitOverlapFraction = 0.0
21|
22| polacco.XML.XML_tree.__init__(self, openFileIn)
23| self.queryLength = self.GetQueryLength()
24|
25|
26| def SetMaxEValue (self, maxEValue):
27| self.maxEValue = float(maxEValue)
28| def SetQueryLength (self, queryLength):
29| self.queryLength = int (queryLength)
30| def SetMinHitOverlapFraction (self, minHitOverlapFraction):
31| self.minHitOverlapFraction = float (minHitOverlapFraction)
32|
33| def GetHits (self, iteration = -1):
34| hits = self.rootNode.subNodes['BlastOutput_iterations'][-

1].subNodes['Iteration'][iteration].subNodes['Iteration_hits'][-
1].subNodes['Hit']

35| return hits
36|
37| def GetQueryLength (self):
38| return int (self.rootNode.subNodes['BlastOutput_query-len'][-

1].value)
39|
40| # returns tuples of id, accession, hitDef, evalue
41| def GetSimpleHits (self, iteration = -1):
42| simpleHits = []
43| hits = self.GetHits(iteration)
44|
45| for hit in hits:
46| accession = hit.subNodes['Hit_accession'][-1].value
47| id = hit.subNodes['Hit_id'][-1].value
48| hitDef = hit.subNodes['Hit_def'][-1].value
49|
50| #now pick best evalue from all hsps
51| hsps = hit.subNodes['Hit_hsps'][-1].subNodes['Hsp']
52| eValue = max ([hsp.subNodes['Hsp_evalue'][-1].value for

hsp in hsps])
53| simpleHits.append ((id, accession, hitDef, eValue))
54|
55| return simpleHits
56|
57| def GetMultiAlignment (self, iteration = -1):
58| hits = self.GetHits (iteration)
59| multiAlign = None
60|
61| queryName = self.rootNode.subNodes['BlastOutput_query-def'][-

1].value
62|
63| for hit in hits:

Appendix 1: GASPS Package
145

64| accession = hit.subNodes['Hit_accession'][-1].value
65| id = hit.subNodes['Hit_id'][-1].value
66| hitDef = hit.subNodes['Hit_def'][-1].value
67|
68| hsps = hit.subNodes['Hit_hsps'][-1].subNodes['Hsp']
69| #I don't want to assume these are already sorted by evalue,

so sort them by evalue
70| tempToSort = [(hsp.subNodes['Hsp_evalue'][-1].value, hsp)

for hsp in hsps]
71| tempToSort.sort()
72| tempToSort.reverse()
73| hsps = [row[1] for row in tempToSort]
74|
75| #determine which hsps are worth keeping (IMHO)
76| #keep the most significant that do not overlap with any

others on either the query or match sequence
77| goodHsps = []
78| def _QueryOverLap (hsp1, hsp2):
79| if hsp1.subNodes['Hsp_query-to'][-1] <

hsp2.subNodes['Hsp_query-from'][-1]:
80| return 0
81| elif hsp1.subNodes['Hsp_query-from'][-1] >

hsp2.subNodes['Hsp_query-to'][-1]:
82| return 0
83| else:
84| return 1
85| def _MatchOverLap (hsp1, hsp2):
86| if hsp1.subNodes['Hsp_hit-to'][-1] <

hsp2.subNodes['Hsp_hit-from'][-1]:
87| return 0
88| elif hsp1.subNodes['Hsp_hit-from'][-1] >

hsp2.subNodes['Hsp_hit-to'][-1]:
89| return 0
90| else:
91| return 1
92|
93| for hsp in hsps:
94| for goodHsp in goodHsps:
95| if _QueryOverLap(hsp, goodHsp) and _MatchOverLap

(hsp, goodHsp):
96| break
97| else:
98| goodHsps.append (hsp)
99|

100| hsps = goodHsps
101|
102| if len(hsps) > 1:
103| print "More than one hsp found and used for %s %s" %

(accession, id)
104| #print summaries of overlaps.
105| for hsp in hsps:
106| sys.stdout.write ("query:")
107| for i in range (0, hsp.subNodes['Hsp_query-from'][-

1], 5):
108| sys.stdout.write (".")
109| for i in range (hsp.subNodes['Hsp_query-from'][-1],

hsp.subNodes['Hsp_query-to'][-1], 5):
110| sys.stdout.write ("Q")

Appendix 1: GASPS Package
146

111| sys.stdout.write ('\n')
112|
113| sys.stdout.write ("hit :")
114| for i in range (0, hsp.subNodes['Hsp_hit-from'][-1],

5):
115| sys.stdout.write (".")
116| for i in range (hsp.subNodes['Hsp_hit-from'][-1],

hsp.subNodes['Hsp_hit-to'][-1], 5):
117| sys.stdout.write ("H")
118| sys.stdout.write ('\n')
119|
120| #hsp = hsps[0]
121| i = 0
122| for hsp in hsps:
123|
124| #make sure e value is significant
125| if float(hsp.subNodes['Hsp_evalue'][-1].value) >

self.maxEValue:
126| continue
127| #make sure we are aligning to a significant fraction of

the query
128| alignQueryLength = int(hsp.subNodes['Hsp_query-to'][-

1].value) - int(hsp.subNodes['Hsp_query-from'][-1].value)
129| if float(alignQueryLength)/self.queryLength <

self.minHitOverlapFraction:
130| continue
131|
132| hitName = accession
133| if i > 0:
134| hitName = hitName + ".%d" % i
135| i+=1
136|
137| if not multiAlign:
138| parentRow = polacco.MultiAlign.AlignRow (queryName ,

int(hsp.subNodes['Hsp_query-from'][-1].value), list
(hsp.subNodes['Hsp_qseq'][-1].value))

139| multiAlign = polacco.MultiAlign.MultiAlign
([parentRow])

140|
141| master = polacco.MultiAlign.AlignRow (queryName ,

int(hsp.subNodes['Hsp_query-from'][-1].value),
list(hsp.subNodes['Hsp_qseq'][-1].value))

142| #slave = polacco.MultiAlign.AlignRow (hitDef[0:50],
int(hsp.subNodes['Hsp_hit-from'][-1].value),
list(hsp.subNodes['Hsp_hseq'][-1].value))

143| slave = polacco.MultiAlign.AlignRow (hitName,
int(hsp.subNodes['Hsp_hit-from'][-1].value),
list(hsp.subNodes['Hsp_hseq'][-1].value))

144|
145| try:
146| multiAlign.addPair (master, slave)
147| except "AlignmentOutOfRange":
148| raise "AlignmentOutOfRange"
149|
150| print "Success reading alignment from (psi)blast file!"
151| return multiAlign, parentRow
152|
153|

Appendix 1: GASPS Package
147

154|
155|
156|
157|
158| def GetAlignmentFromPsiBlastFile (fileName, outFileName = None):
159| fp = open (fileName)
160|
161| pbFile = PsiBlastXMLFile (fp)
162| fp.close()
163| if not outFileName:
164| outFileName = fileName + ".faln"
165|
166| pbFile.SetMaxEValue (1.0e-10)
167| #pbFile.SetQueryLength (355)
168| pbFile.SetMinHitOverlapFraction (0.5)
169|
170| ma,parentRow = pbFile.GetMultiAlignment()
171| del (pbFile)
172|
173| ma.protectedRows.append(parentRow)
174| ma.ShrinkByRemovingRedundancy_Efficient(50)
175| ma.RemoveGappedColumns()
176| ma.DashifyGapCharacters()
177| fpout = open (outFileName, "w")
178| ma.simple_print (fpout)
179| fpout.close()
180| return outFileName
181|
182|
183| if __name__ == '__main__':
184| GetAlignmentFromPsiBlastFile (sys.argv[1])
185|
186|
187|
188|
189|
190| def test():
191| fp = open ("longtest.xml")
192| pbtree = PsiBlastXMLFile (fp)
193|
194| ma = pbtree.GetMultiAlignment()

polacco/Data.py

1| ###
2| #
3| # ____ _
4| # | _ \ __ _| |_ __ _ _ __ _ _
5| # | | | |/ _` | __/ _` | | '_ \| | | |
6| # | |_| | (_| | || (_| |_| |_) | |_| |
7| # |____/ __,_|____,_(_) .__/ __, |
8| # |_| |___/
9| #

10| #
11| #

Appendix 1: GASPS Package
148

12| # Things were done to save typing time, not necessarily program
running time

13| ###
14| import string
15|
16| global PET91_matrix
17| PET91_matrix = None
18|
19| def GetPET91_matrix():
20| global PET91_matrix
21| if PET91_matrix:
22| return PET91_matrix
23|
24| aaOrder = "ARNDCQEGHILKMFPSTWYV"
25| PET91_matrix = {}
26|
27| # PET91 matrix for 120 PAM (Jones, Thornton and Taylor)
28| temp = {}
29| temp["A"] = string.split (" 6 -3 -1 -2 -3 -3 -2 0 -4

-1 -4 -4 -2 -6 0 2 2 -7 -7 1")
30| temp["R"] = string.split (" -3 8 -2 -4 -1 2 -3 -1 2

-6 -5 4 -4 -8 -2 -2 -3 -1 -5 -6")
31| temp["N"] = string.split (" -1 -2 8 3 -3 -1 -1 -1 2

-4 -6 1 -4 -6 -3 2 1 -8 -2 -5")
32| temp["D"] = string.split (" -2 -4 3 8 -7 -1 5 0 -1

-7 -8 -2 -7 -9 -5 -2 -3 -10 -4 -5")
33| temp["C"] = string.split (" -3 -2 -3 -7 14 -6 -8 -3 -2

-5 -5 -6 -5 -2 -5 0 -3 0 2 -3")
34| temp["Q"] = string.split (" -3 2 -1 -1 -6 9 2 -4 4

-6 -3 2 -4 -7 0 -3 -3 -6 -4 -6")
35| temp["E"] = string.split (" -2 -3 -1 5 -8 2 8 -1 -3

-7 -8 0 -6 -10 -5 -3 -4 -8 -7 -5")
36| temp["G"] = string.split (" 0 -1 -1 0 -3 -4 -1 8 -4

-6 -8 -4 -6 -9 -4 0 -3 -3 -8 -4")
37| temp["H"] = string.split (" -4 2 2 -1 -2 4 -3 -4 11

-6 -4 -1 -5 -2 -1 -2 -3 -6 4 -6")
38| temp["I"] = string.split (" -1 -6 -4 -7 -5 -6 -7 -6 -6

7 2 -6 3 -1 -5 -3 0 -7 -5 5")
39| temp["L"] = string.split (" -4 -5 -6 -8 -5 -3 -8 -8 -4

2 7 -6 3 2 -2 -3 -4 -4 -4 1")
40| temp["K"] = string.split (" -4 4 1 -2 -6 2 0 -4 -1

-6 -6 8 -4 -10 -4 -3 -2 -6 -7 -6")
41| temp["M"] = string.split (" -2 -4 -5 -7 -5 -4 -6 -6 -5

3 3 -4 10 -2 -4 -3 0 -6 -6 2")
42| temp["F"] = string.split (" -6 -8 -6 -9 -2 -7 -10 -9 -2

-1 2 -9 -2 11 -5 -3 -6 -3 5 -2")
43| temp["P"] = string.split (" 0 -2 -3 -5 -5 0 -5 -4 -1

-5 -2 -4 -5 -5 9 1 0 -8 -6 -4")
44| temp["S"] = string.split (" 2 -2 2 -2 0 -3 -3 0 -2

-3 -3 -3 -3 -3 1 5 2 -5 -3 -3")
45| temp["T"] = string.split (" 2 -3 1 -3 -3 -3 -4 -2 -3

0 -4 -2 0 -6 0 2 6 -7 -6 0")
46| temp["W"] = string.split (" -8 -1 -8 -9 0 -6 -9 -3 -6

-7 -4 -6 -6 -3 -8 -5 -7 17 -2 -6")
47| temp["Y"] = string.split (" -7 -5 -2 -4 2 -4 -7 -8 4

-5 -4 -7 -6 5 -7 -3 -6 -2 12 -6")
48| temp["V"] = string.split (" 1 -6 -5 -5 -3 -6 -5 -4 -6

5 1 -6 2 -2 -4 -3 0 -6 -6 7")

Appendix 1: GASPS Package
149

49| #temp["B"] = string.split (" 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0")

50|
51| for aaRow in aaOrder:
52| PET91_matrix[aaRow] = {}
53| for i in range (len (aaOrder)):
54| PET91_matrix[aaRow][aaOrder[i]] = int(temp[aaRow][i])
55|
56| #now do specials
57|
58|
59| return PET91_matrix
60|
61|

polacco/MultiAlign.py

1| #! /sw/bin/python
2|
3|
4| # __ __ _ _ _ _ _ _
5| # | \/ |_ _| | |_(_) / \ | (_) __ _ _ __ _ __ _ _
6| # | |\/| | | | | | __| | / _ \ | | |/ _` | '_ \ | '_ \| | | |
7| # | | | | |_| | | |_| |/ ___ \| | | (_| | | | |_| |_) | |_| |
8| # |_| |_|__,_|_|__|_/_/ __|_|__, |_| |_(_) .__/ __, |
9| # |___/ |_| |___/

10|
11|
12|
13| from string import *
14| import sys, copy, math, string
15|
16|
17|
18| def is_gap(char):
19| if (char == '-' or char == '.' or char == '?'):
20| return 1
21| else:
22| return 0
23|
24| def is_ambiguous (char):
25| if (char in 'XBUxbu'):
26| return 1
27| else:
28| return 0
29|
30|
31| class MultiAlign:
32| def __init__(self, rows = None):
33| if not rows:
34| self.rows = []
35| else:
36| self.rows = rows
37| self.FIRST_POSITION = 1 #how should the API call the first

position (0 or 1)
38| self.protectedRows = [] #these are rows that are of special

interest, see ShrinkByRemovingRedundancy_Efficient

Appendix 1: GASPS Package
150

39|
40| def LoadFromFastaFile (self, fastaFile):
41| fp = open (fastaFile, "r")
42| self.read_fasta (fp)
43| fp.close()
44|
45|
46| def read_fasta(self, fasta_file):
47| if len (self.rows) > 0:
48| print "WARNING: Blindly adding new fasta alignment to

current alignment!"
49|
50| name = ''
51| lines = []
52|
53| for line in fasta_file.readlines():
54| if line[0] in (">"):
55| #we're done with previous row
56| if name:
57| #first join lines, then split and join to remove

spaces, then repeat to remove \n, then make list
58| chars = list (join(split(join (split(join (lines,

''), " "),''), "\n"),""))
59| self.rows.append(AlignRow (name, offset, chars))
60| lines = []
61| slash_split = split (line[1:-1], '/')
62| if (len (slash_split) > 1):
63| name = join(slash_split[:-1], '')
64| try:
65| offset = int (split (slash_split[-1], '-')[0])
66| except ValueError:
67| offset = 1
68|
69| else:
70| offset = 1
71| name = slash_split[0]
72| else:
73| lines.append(line)
74| else:
75| #if everything went well we have to add the last sequence.
76| if lines:
77| chars = list (join(split(join (split(join (lines, ''), "

"),''), "\n"),""))
78| self.rows.append(AlignRow (name, offset, chars))
79|
80|
81| def LoadFromClustalFile (self, clustalFile, strictCLUSTAL = 1):
82| print "Loading alignment from %s" % clustalFile
83| fp = open (clustalFile, 'r')
84| self.read_clustal (fp, strictCLUSTAL)
85| fp.close()
86|
87|
88|
89| def read_clustal (self, clustal_file, strictCLUSTAL = 1):
90| if len(self.rows) > 0:
91| print "WARNING: Blindly adding new fasta alignment to

current alignment! Current row names:"

Appendix 1: GASPS Package
151

92| print [row.name for row in self.rows]
93| partsHash = {}
94| inorder = []
95| fileStarted = 0
96| while (1):
97| line = clustal_file.readline()
98| if line == '':
99| break

100| words = line.split()
101| if (len (words) == 0):
102| continue
103|
104| elif (not fileStarted):
105| if words[0] == "CLUSTAL":
106| fileStarted = 1
107| continue
108| if strictCLUSTAL:
109| continue
110| else:
111| fileStarted = 1
112|
113| elif (words[0][0] in ":.*"):
114| if len (partsHash.keys()) == 0:
115| print "WARNING: unexpected location of conservation

line, possibly illegal first character for sequence name?"
116| print line
117| #looks like a line indicating conservation, skip it
118| continue
119|
120| try:
121| partsHash[words[0]].append (string.join (words[1:], ''))
122| except KeyError:
123| inorder.append (words[0])
124| partsHash[words[0]] = [string.join (words[1:], '')]
125|
126| length = -1
127| #error checking: make sure file was started. and make sure we

have same number of parts for all
128| for key in inorder:
129| parts = partsHash[key]
130| if length < 0:
131| length = len (parts)
132| elif len (parts) != length:
133| print "Current: " + key
134| print "Parts mismatch: %d with %d" % (len(parts),

length)
135| print inorder
136| print parts
137| raise "Bad Alignment Read!"
138| chars = list (string.join(parts, ""))
139| #see if we can get the offset from the name (key)
140| slash_split = split (key, '/')
141| if (len (slash_split) > 1):
142| name = join(slash_split[:-1], '')
143| try:
144| offset = int (split (slash_split[-1], '-')[0])
145| except ValueError:
146| offset = 1

Appendix 1: GASPS Package
152

147| else:
148| offset = 1
149| name = slash_split[0]
150| self.rows.append(AlignRow (name, offset, chars))
151|
152|
153| # very simple FASTA format
154| def simple_print(self, outfile):
155| for row in self.rows:
156| outfile.write (">%s\n"%(row.description()))
157| outfile.write ("%s\n" % join(row.chars, ''))
158|
159| # roughly clustal format
160| def PrettyPrint (self, outfile, columns = 60, nameWidth = 20):
161| minLength = self.min_length()
162| nameFormatString = '%%-%ds' % nameWidth
163|
164| i = 0
165| while (i < minLength):
166| end = i+ columns
167| for row in self.rows:
168| outfile.write (nameFormatString %

row.name.split()[0][0:nameWidth])
169| outfile.write (" %s\n" % string.join

(row.chars[i:end], ''))
170| i = end
171| if i >= minLength:
172| break
173| outfile.write ("\n\n")
174|
175|
176| def get_row_by_name (self, name):
177| for row in self.rows:
178| if row.name == name:
179| return row
180| else:
181| print "row not found among: "
182| print map((lambda row: row.name), self.rows)
183| return 0
184|
185| def remove_row_by_name(self, name):
186| for row in self.rows:
187| if row.name == name:
188| self.rows.remove(row)
189| break
190| else:
191| raise ValueError
192|
193|
194| def get_column (self, position):
195| column = {}
196| if position >= self.FIRST_POSITION:
197| for row in self.rows:
198| column[row] = (row.chars[position-self.FIRST_POSITION])
199| elif position < 0:
200| for row in self.rows:
201| column[row] = (row.chars[position])
202| else:

Appendix 1: GASPS Package
153

203| raise "Illegal MultiAlign Position"
204|
205| return column
206|
207| def get_column_aslist (self, position):
208| column = []
209| if position >= self.FIRST_POSITION:
210| for row in self.rows:
211| column.append(row.chars[position-self.FIRST_POSITION])
212| elif position < 0:
213| for row in self.rows:
214| column.append(row.chars[position])
215| else:
216| raise "Illegal MultiAlign Position"
217|
218| return column
219|
220|
221| def insert_gap (self, position):
222| self.insertColumnIndex (position)
223|
224| if position == -1:
225| for row in self.rows:
226| if row.chars[-1] == '.':
227| row.chars.append ('.')
228| else:
229| row.chars.append('-')
230|
231| else:
232| position = position - self.FIRST_POSITION
233| for row in self.rows:
234| if position == 0 or row.chars[position - 1] == '.':
235| row.chars[position:position] = ['.']
236| else:
237| row.chars[position:position] = ['-']
238|
239| def max_length (self):
240| if len (self.rows) == 0:
241| return 0
242| return max (map (lambda r : len (r.chars), self.rows))
243|
244| def min_length (self):
245| if len (self.rows) == 0:
246| return 0
247| return min (map (lambda r : len (r.chars), self.rows))
248|
249| #only use if you KNOW that minlength and maxlength are the same
250| def length (self):
251| minim = self.min_length()
252| maxim = self.max_length()
253| assert (minim == maxim)
254| return maxim
255|
256|
257| def getMultiAlignBlock (self, start_column, stop_column):
258| subrows = []
259| for row in self.rows:

Appendix 1: GASPS Package
154

260| subrows.append (row.subRow (start_column -
self.FIRST_POSITION,

261| stop_column - self.FIRST_POSITION
+1)) #+1 includes the stop_column

262|
263| return MultiAlign (subrows)
264|
265| def MAPositionFromSeqPosition (self, refRow, rowPosition):
266| numChars = refRow.num_chars_at_offset (rowPosition)
267|
268| return numChars + self.FIRST_POSITION
269|
270|
271| def ComputePIDTable (self):
272| pidTable = {}
273| for seqRow in self.rows:
274| pidTable[seqRow] = {}
275| for seqCol in self.rows:
276| try:
277| pidTable[seqRow][seqCol] = pidTable[seqCol][seqRow]
278| except KeyError:
279| pidTable[seqRow][seqCol] = seqRow.PercentIdentity

(seqCol)
280| return pidTable
281|
282| def ComputePIDList (self, rows = None):
283| if not rows:
284| rows = self.rows
285| pidList = []
286| done = []
287| for seq1 in rows:
288| done.append(seq1)
289| for seq2 in rows:
290| if seq2 in done:
291| continue
292| pidList.append ([seq1.PercentIdentity (seq2), seq1,

seq2])
293| return pidList
294|
295| def GetHighestPIDPair (self, pidList):
296| max = 0.0
297| topPair = None
298|
299| for pair in pidList:
300| if (pair[1] in self.protectedRows and pair[2] in

self.protectedRows):
301| continue
302| if pair[0] > max:
303| max = pair[0]
304| topPair = pair
305| if topPair == None:
306| print "Warning: All pairs are protected!"
307|
308| return topPair
309|
310| # At least it's more efficient than my last one which is now

deleted. No other
311| # claims are made to its efficiency!

Appendix 1: GASPS Package
155

312| def ShrinkByRemovingRedundancy_Efficient (self, maxSeqs):
313| if maxSeqs >= len (self.rows):
314| print "No shrinking needed (%d, %d)" % (maxSeqs, len

(self.rows))
315| return
316| #compute initial pidlist
317| #print "Computing initial PIDList"
318| keepRows = []
319| for row in self.protectedRows:
320| if row in self.rows and not row in keepRows:
321| keepRows.append (row)
322|
323|
324| i = 0
325| for row in self.rows:
326| if len (keepRows) >= maxSeqs:
327| break
328| if not row in keepRows:
329| keepRows.append (row)
330| i = i + 1
331|
332|
333| pidList = self.ComputePIDList(keepRows)
334|
335| #find highest identity, and rows that give it
336| topPidPair = self.GetHighestPIDPair (pidList)
337| #print topPidPair
338|
339| #for each row not yet in keep, find if it is more similar than

highest identity in keep to any
340| #if it is, then skip it
341| #if it is not then add it, and its pidList
342| #then remove one or the other row of highest scoring pair
343| removed = [] # we have to keep a running tally of these to

remove when we're don, because we can't change self.rows while we're
iterating over it

344| for candidate in self.rows[i:]:
345| if candidate in self.protectedRows:
346| continue
347| candPidList = []
348|
349| for row in keepRows:
350| pid = row.PercentIdentity (candidate)
351| candPidList.append ([pid,candidate, row])
352| if pid >= topPidPair[0]:
353| #print "Removing row: %s because it is %6.4f

identical to %s compared to running high of %6.4f (%s and %s) " %
(candidate.name, pid, row.name, topPidPair[0], topPidPair[1].name,
topPidPair[2].name)

354| removed.append (candidate)
355| break
356| else: #it was not more similar than topPercentIdentity to

anything else, then we need to add it
357| #first remove other
358| length = [0,0,0]
359|
360| length[1] = topPidPair[1].numCharsNoGaps()
361| length[2] = topPidPair[2].numCharsNoGaps()

Appendix 1: GASPS Package
156

362|
363| #they can't both be in protectedRows because the

GetHighestPIDPair function prevents it
364| if topPidPair[1] in self.protectedRows:
365| keep = 1
366| elif topPidPair[2] in self.protectedRows:
367| keep = 2
368| elif length[1] >= length[2] :
369| keep = 1
370| else:
371| keep =2
372|
373| if keep == 1:
374| rem = 2
375| else:
376| rem = 1
377|
378|
379| removed.append (topPidPair[rem])
380| #print "Removing row: %s (%d chars) to keep %s with (%d

chars); similarity = %6.4f" % (topPidPair[rem].name, length[rem],
topPidPair[keep].name,length[keep], topPidPair[0])

381|
382| #now combine pidList and remove old entries
383| pidList = pidList + candPidList
384| toRemove = []
385| for pair in pidList:
386| if pair[1] == topPidPair[rem] or pair[2] ==

topPidPair[rem]:
387| toRemove.append(pair)
388| for r in toRemove:
389| pidList.remove (r)
390|
391| #now update keepRows
392| keepRows.remove (topPidPair[rem])
393| keepRows.append (candidate)
394|
395| #find new highest identity, and rows that give it
396| topPidPair = self.GetHighestPIDPair (pidList)
397|
398|
399| print "Removing %d rows to keep %d rows that have at most

%6.4f sequence identity (%s)" % (len (removed), len(keepRows),
topPidPair[0], self.rows[0].name)

400| #now do actual removing from self
401| #print [r.name for r in removed]
402| for r in removed:
403| #print "Removing %s" % r.name
404| self.rows.remove (r)
405|
406| #done?
407|
408| def RemoveGappedColumns(self):
409| toRemove = []
410|
411| for i in range (self.length()):
412| for j in range (len (self.rows)):
413| if not is_gap (self.rows[j].chars[i]):

Appendix 1: GASPS Package
157

414| break
415| else:
416| toRemove.append(i)
417|
418| toRemove.reverse()
419| for i in toRemove:
420| self.RemoveColumnBySimpleIndex (i)
421|
422| def RemoveColumnBySimpleIndex (self, index):
423| for i in range (len (self.rows)):
424| self.rows[i].chars[index:index+1] = []
425|
426| def DashifyGapCharacters (self):
427| for row in self.rows:
428| row.DashifyGapCharacters()
429|
430| def GetDominantLettersPerColumn (self, minFraction = 0.1):
431| seqLetters = []
432| numRows = len (self.rows)
433| for i in range (self.length()):
434| columnLetters = {}
435| domLetters = []
436| for row in self.rows:
437| if is_gap (row.chars[i]):
438| continue
439| try:
440| columnLetters[row.chars[i]]+=1.0
441| except KeyError:
442| columnLetters[row.chars[i]] = 1.0
443| for char in columnLetters.keys():
444| if columnLetters[char]/numRows > minFraction:
445| domLetters.append (char)
446| seqLetters.append(domLetters)
447| return seqLetters
448| def addPair (self, master, slave):
449| return self.addMultiAlign (MultiAlign ([master, slave]))
450|
451| ##
452| # The next four functions deal with adding or aligning two multiple
453| # alignments to each other. These alignments must share one row
454| # with the same name and with an identical overlapping region. No

aa
455| # mismatches are allowed. anchor refers to that row in the self

alignment
456| # tether refers to that row in the otherAlign.
457| ###
458|
459| # Only generates a map of columns in one align to columns in the

other
460| # No alignments (except temporary copies) should be modified
461| def MapColumns2OtherAlign (self, otherAlign):
462| (tether, anchor) = self.FindTetherAndAnchor(otherAlign)
463|
464| #do all work on a copy of anchor and tether
465| anchor = AlignRow (anchor.name, anchor.offset, anchor.chars)
466| tether = AlignRow (tether.name, tether.offset, tether.chars)
467|

Appendix 1: GASPS Package
158

468| #set up dummy clones of MultiAligns to keep track of
columnIndeces

469| otherAlign2 = MultiAlign ([tether])
470| otherAlign2.index = copy.deepcopy(otherAlign.columnIndex)
471| self2 = MultiAlign ([anchor])
472| self2.index = copy.deepcopy (self.columnIndex)
473|
474| map = self.align2Aligns (self2, otherAlign2, tether, anchor)
475|
476|
477| return (map, self2)
478|
479| # This does the work of inserting gaps and extensions necessary so

that 2 alignments
480| # can be directly compared or added by simply stacking
481|
482| def align2Aligns (__self, firstAlign, otherAlign, tether,

anchor):
483| #print "Before dealing with offsets"
484| #pretty_print ([join(anchor.chars,''), join(tether.chars,

'')], 60)
485|
486| #we're about to rely on offset values (a bad idea), so fix the

anchor's offset
487| #print anchor.offset, tether.offset
488| anchor.fixOffset (tether)
489| #print anchor.offset, tether.offset
490| #first deal with cases where the left end of tether begins

after anchor
491| if tether.offset > anchor.offset:
492| split = anchor.num_chars_at_offset (tether.offset)
493| if split > len (anchor.chars):
494| sys.stderr.write ("alignment out of range, shares two

non overlapping regions of %s\n" % (anchor.name))
495| raise "AlignmentOutOfRange"
496| i = split
497| while i:
498| otherAlign.insert_column(otherAlign.FIRST_POSITION, '.')
499| i = i - 1
500| tether.chars[0:split] = anchor.chars[0:split]
501| tether.offset = anchor.offset
502|
503| #now deal with cases where the beginning of row is to the

right of beginning of master
504| if anchor.offset > tether.offset:
505| split = tether.num_chars_at_offset (anchor.offset)
506| if split > len (tether.chars):
507| sys.stderr.write ("alignment out of range, shares two

non overlapping regions of %s\n" % (anchor.name))
508| raise "AlignmentOutOfRange"
509| i = split
510| while i:
511| firstAlign.insert_column (firstAlign.FIRST_POSITION,

'.')
512| i = i - 1
513|
514| anchor.chars[0:split] = tether.chars[0:split]
515| anchor.offset = tether.offset

Appendix 1: GASPS Package
159

516|
517| #print "After dealing with offsets..."
518| #pretty_print ([join(anchor.chars,''), join(tether.chars,

'')], 60)
519|
520|
521| i=0
522| minlength = min (len (anchor.chars), len (tether.chars))
523| while (i < minlength):
524| empty = ('.-')
525| #print "mas: %s row: %s" % (master.chars[i], row.chars[i])
526| if (anchor.chars[i] == tether.chars[i]):
527| # print "=",
528| i = i + 1
529| continue
530| elif (anchor.chars[i] in empty) and (tether.chars[i] in

empty):
531| # print "g",
532| tether.chars[i] = anchor.chars[i] = '-'
533| i = i + 1
534| continue
535|
536| elif (tether.chars[i] in empty) and (anchor.chars[i] not in

empty):
537| # print "^",
538| firstAlign.insert_column (firstAlign.FIRST_POSITION + i,

tether.chars[i])
539| elif (anchor.chars[i] in empty) and (tether.chars[i] not in

empty):
540| # print "v",
541| otherAlign.insert_column (otherAlign.FIRST_POSITION + i,

anchor.chars[i])
542|
543| elif (tether.chars[i] == 'X'):
544| # print "x",
545| tether.chars[i] = anchor.chars[i]
546| elif (anchor.chars[i] == 'X'):
547| # print "X",
548| anchor.chars[i] = tether.chars[i]
549|
550| else: # (row.chars[i] != master.chars[i]):
551| pretty_print ([join(anchor.chars,''),

join(tether.chars, '')], 60)
552| print "WARNING!: tether sequence in foreign alignment

does not match corresponding anchor sequence in firstAlign
alignment! (%s %s)" % (anchor.chars[i], tether.chars[i])

553| firstAlign.simple_print(sys.stdout)
554| print "\notherAlign:\n"
555| otherAlign.simple_print(sys.stdout)
556| raise "exception"
557| i = i + 1
558| minlength = min (len (anchor.chars), len (tether.chars))
559|
560| #pretty_print ([join(anchor.chars,''), join(tether.chars,

'')], 60)
561|
562| #now deal with the trailing end
563| diff = len(anchor.chars) - len (tether.chars)

Appendix 1: GASPS Package
160

564| if diff > 0:
565| for c in anchor.chars[-diff:]:
566| otherAlign.insert_column (-1, '.')
567| tether.chars[-1] = c
568| elif diff < 0:
569| for c in tether.chars[diff:]:
570| firstAlign.insert_column (-1, '.')
571| anchor.chars[-1] = c
572| #pretty_print ([join(row.chars,''), join(master.chars,

''), join(slave.chars, '')], 60)
573|
574| #pretty_print ([join(anchor.chars,''), join(tether.chars,

'')], 60)
575|
576| assert (len(anchor.chars) == len(tether.chars)),

(len(anchor.chars) ,len (tether.chars))
577| assert (join(anchor.chars) == join (tether.chars)), "\n%s\n%s"

% (join(anchor.chars, ''), join(tether.chars, ''))
578|
579| #this does the work of finding the actual rows that are the

tether and anchor. It chooses
580| # the first it finds, not necessarily the best.
581| def FindTetherAndAnchor (self, otherAlign, taName = None):
582| otherNames = [row.name for row in otherAlign.rows]
583| anchor = 0
584| for row in self.rows:
585| if taName and taName != row.name:
586| continue
587| if row.name in otherNames:
588| anchor = row
589| for r in otherAlign.rows:
590| if r.name == anchor.name:
591| tether = r
592| break
593| break
594| else:
595| #corresponding master row not found, give warning
596| raise "Error finding an anchor and tether %s" %

(otherNames), [row.name for row in self.rows]
597| return (tether, anchor)
598|
599| # This will add otherAlign to the self alignment.
600| def insert_column (self, position, char):
601| if (len(char) > 1):
602| raise "insert too long", char
603| if position == -1:
604| for row in self.rows:
605| row.chars.append(char)
606| else:
607| position = position - self.FIRST_POSITION
608| for row in self.rows:
609| row.chars[position:position] = [char]
610|
611| def addMultiAlign (self, otherAlign, taName = None):
612| (tether, anchor) = self.FindTetherAndAnchor (otherAlign,

taName)
613| #print "Using %s (%s) as tether and anchor sequences" %

(tether.name, anchor.name)

Appendix 1: GASPS Package
161

614| self.align2Aligns (self, otherAlign, tether, anchor)
615| #otherAlign.rows.remove(tether)
616| self.rows.extend(otherAlign.rows)
617| self.rows.remove (tether)
618|
619| #
620| #---------------------
621|
622| #-------------------
623| #
624| # used by MultiAlign
625|
626| class AlignRow:
627| def __init__(self, name, offset, chars):
628| self.name = name
629| self.offset = offset
630| self.chars = chars
631|
632| def fixOffset (self, referenceRow):
633| minMatch = 20 # the reference row must minimally overlap by

this many characters.
634| # the larger it is the faster it is with obvious

problems if its too large
635| selfChars = self.GetCharsNoGaps()
636| reference = referenceRow.GetCharsNoGaps()
637|
638| correction = minMatch - len (selfChars)
639| sub1Start = -correction
640| sub1End = len (selfChars)
641| sub2Start = 0
642| sub2End = minMatch
643|
644| # find alignment by looking for matching substrings
645| # "slide" one sequence across the other and look for matching

substrings where substrings
646| # are the overlapping regions.
647| while (correction < len(reference) - minMatch):
648| sub1 = selfChars[sub1Start:sub1End]
649| sub2 = reference[sub2Start:sub2End]
650| if sub1 == sub2:
651| #print correction
652| #print sub1
653| #print sub2
654| break
655|
656| #update for next iteration
657| if sub1Start > 0:
658| sub1Start = sub1Start - 1
659| else:
660| sub2Start = sub2Start + 1
661| if sub1End + correction == len(reference):
662| sub1End -= 1
663| else:
664| sub2End = sub2End + 1
665| correction = correction + 1
666|
667| self.offset = self.offset + correction - (self.offset -

referenceRow.offset)

Appendix 1: GASPS Package
162

668|
669|
670|
671| def GetCharsNoGaps (self):
672| ch = []
673| for char in self.chars:
674| if not is_gap(char):
675| ch.append (char)
676| return ch
677|
678| def GetCharsAndIndexesNoGaps (self):
679| ch = []
680| indexes = []
681| for i in range (len (self.chars)):
682| if not is_gap(self.chars[i]):
683| ch.append (self.chars[i])
684| indexes.append (i)
685| return ch, indexes
686|
687| def num_chars_at_offset (self, offset):
688| num=0
689| if offset < self.offset and offset > 0:
690| return offset-self.offset
691| offset = offset - self.offset
692|
693| for char in self.chars:
694| if not is_gap(char):
695| if offset == 0:
696| return num
697| offset = offset - 1
698| num+=1
699| else:
700| return len (self.chars) + 1
701|
702| def numCharsNoGaps(self):
703| count = 0
704| for char in self.chars:
705| if not is_gap(char):
706| count = count + 1
707| return count
708|
709|
710| def initial_gap_chars(self):
711| count = 0
712| for char in self.chars:
713| if is_gap(char):
714| count+=1
715| else:
716| break
717| return count
718|
719| def terminal_gap_chars(self):
720| count = 0
721| pointer = -1
722| try:
723| while (1):
724| if is_gap(self.chars[pointer]):
725| count = count + 1

Appendix 1: GASPS Package
163

726| pointer = pointer - 1
727| else:
728| break
729| except IndexError:
730| pass
731| return count
732|
733| def description(self):
734| title = split (self.name, "\n")[0]
735| title = split (title, " ")[0]
736| desc = "%s/%03d" % (title, self.offset)
737| return desc
738|
739| def subRow (self, start_index, stop_index):
740| return AlignRow (self.name, self.offset + start_index,

self.chars[start_index:stop_index])
741|
742|
743| def PercentIdentity (self, other):
744| seq1 = self.chars
745| seq2 = other.chars
746| numAligned = 0.0
747| ids = 0.0
748| acceptable = "ACDEFGHIKLMNPQRSTVWY"
749|
750| for i in range (len (seq1)):
751| if seq1[i] not in acceptable and seq2[i] not in acceptable:
752| continue
753| #if is_gap (seq1[i]) or is_gap (seq2[i]):
754| # continue
755| #if is_ambiguous (seq1[i]) or is_ambiguous (seq2[i]):
756| # continue
757| numAligned = numAligned + 1.0
758| if seq1[i] == seq2[i]:
759| ids = ids + 1.0
760| if numAligned == 0:
761| print "Warning:

polacco.Mulitalign.AlignRow.PercentIdentity, can't compare two
seqeunces because no meaningful characters align. pid set to 0."

762| return 0
763| return ids/numAligned
764|
765| def DashifyGapCharacters (self):
766| for i in range(len(self.chars)):
767| if is_gap (self.chars[i]):
768| self.chars[i] = '-'
769|
770|
771|
772| class ValdarConservation:
773| def __init__(self, multiAlign):
774| self.align = multiAlign
775| self.vMat = None
776|
777| def Compute (self, multiAlign = None):
778| if not multiAlign:
779| multiAlign = self.align
780|

Appendix 1: GASPS Package
164

781| if not self.vMat:
782| import polacco.Data
783| self.SetValdarMutMatrix (polacco.Data.GetPET91_matrix())
784| #first calculate sequence distance matrix
785| self.ComputeSequenceDistanceMatrix()
786| #second calculate sequence weights
787| self.ComputeSequenceWeights()
788| #calculate the normalizing denominator
789| self.ComputeTotalWeightProducts()
790| #finally calculate the conservation
791| conScores = []
792| numSeqs = len (self.align.rows)
793| for i in range (self.align.length()):
794| score = 0.0
795| for j in range (numSeqs):
796| seqji = self.align.rows[j].chars[i].upper()
797| for k in range (j+1, numSeqs):
798| seqki = self.align.rows[k].chars[i].upper()
799| if is_gap (seqji) or is_gap (seqki) or is_ambiguous

(seqji) or is_ambiguous(seqki):
800| score = score + 0.0
801| else:
802| score += (self.seqWeights[self.align.rows[j]] *

self.seqWeights[self.align.rows[k]]) * self.vMat[seqji][seqki]
803| conScores.append(score/self.sumProducts)
804| self.conScores = conScores
805| return conScores
806|
807|
808| def SetValdarMutMatrix (self, mutMatrix):
809| self.vMat = {}
810| aas = mutMatrix.keys()
811| #first find min and max
812| minimum = maximum = None
813| for aaRow in aas:
814| minimum = min (minimum, min (mutMatrix[aaRow].values())) or

min (mutMatrix[aaRow].values())
815| maximum = max (maximum, max (mutMatrix[aaRow].values()))
816| range = float(maximum - minimum)
817| for aaRow in aas:
818| self.vMat[aaRow] = {}
819| for aaCol in aas:
820| self.vMat[aaRow][aaCol] = (mutMatrix[aaRow][aaCol] -

minimum)/range
821| return self.vMat
822|
823| def ComputeSequenceDistanceMatrix(self):
824| self.seqDistances = {}
825| for seqRow in self.align.rows:
826| self.seqDistances[seqRow] = {}
827| for seqCol in self.align.rows:
828| try:
829| self.seqDistances[seqRow][seqCol] =

self.seqDistances[seqCol][seqRow]
830| except KeyError:
831| self.seqDistances[seqRow][seqCol] = self.SeqDistance

(seqRow.chars, seqCol.chars)
832|

Appendix 1: GASPS Package
165

833| def SeqDistance (self, seq1, seq2):
834| acceptable = "ACDEFGHIKLMNPQRSTVWY"
835| numAligned = 0
836| sumScores = 0.0
837| for i in range (len (seq1)):
838| if seq1[i] not in acceptable or seq2[i] not in acceptable:
839| continue
840| #if is_gap (seq1[i]) or is_gap (seq2[i]):
841| # continue
842| #if is_ambiguous (seq1[i]) or is_ambiguous (seq2[i]):
843| # continue
844|
845| sumScores = sumScores + self.vMat[seq1[i]][seq2[i]]
846| numAligned = numAligned + 1
847| if numAligned == 0:
848| print "Warning:

polacco.Mulitalign.Valdarconservation.SeqDistance, can't compare two
seqeunces because no meaningful characters align. Distance set to
1."

849| return 1
850| return 1 - (sumScores/numAligned)
851|
852| def ComputeSequenceWeights(self):
853| self.seqWeights = {}
854| count = len (self.align.rows) - 1
855| for seq in self.align.rows:
856| self.seqWeights[seq] = 0.0
857| for other in self.align.rows:
858| if seq is other:
859| continue
860| self.seqWeights[seq] = self.seqWeights[seq] +

self.seqDistances[seq][other]
861| self.seqWeights[seq] = self.seqWeights[seq] / count
862|
863| def ComputeTotalWeightProducts (self):
864| self.sumProducts = 0.0
865| for j in range (len (self.align.rows)):
866| for k in range (j+1, len (self.align.rows)):
867| self.sumProducts += (self.seqWeights[self.align.rows[j]]

* self.seqWeights[self.align.rows[k]])
868|

polacco/Spasm.py

1| #! /sw/bin/python
2| import string, sys, os.path, math, StringIO, gzip
3|
4| ##
5| # ____
6| # / ___| _ __ __ _ ___ _ __ ___ _ __ _ _
7| # ___ \| '_ \ / _` / __| '_ ` _ \ | '_ \| | | |
8| # ___) | |_) | (_| __ \ | | | | |_| |_) | |_| |
9| # |____/| .__/ __,_|___/_| |_| |_(_) .__/ __, |

10| # |_| |_| |___/
11| ##
12| class SpasmSearch:
13| def __init__(self, lowMemory = 0):

Appendix 1: GASPS Package
166

14| self.hits = []
15| self.caMatrix = None
16| self.scMatrix = None
17| self.lowMemory = lowMemory
18| self.titleFromFileName = 0
19|
20| def ParseSpasmHits (self, openfile, loadInMemory = 1, outFile =

None):
21| line = openfile.readline()
22| hit = None
23| while (1):
24| if line == '':
25| break
26| #read until we find a " ==> HIT : (1CLX) " line
27| if len (line) < 8 or (line[:8] != " ==> HIT" and line[:8]

!= " ==> TRY"):
28| if len (line) > 6 and line[1:6] == 'ERROR':
29| print "Error found in current file"
30| print line
31| if (hit):
32| print "File: " + hit.fileName
33| line = openfile.readline()
34| continue
35| else:
36| hit = SpasmHit(self)
37| line = hit.ReadOpenFile (line, openfile)
38| if loadInMemory:
39| self.hits.append (hit)
40| else:
41| self.hits = (hit)
42| if outFile:
43| self.WriteOutTable (outFile)
44|
45| if loadInMemory and outFile:
46| self.WriteOutTable (outFile)
47|
48| def GetBestMatchesPerHit (self, useDistanceRmsd=0):
49| #get best match (residues) for each hit (pdb)
50| matches = []
51| for hit in self.hits:
52| matches.append (hit.GetBestRMSDMatch(useDistanceRmsd))
53| #save a reference to the hit
54| matches[-1].hit = hit
55|
56| if useDistanceRmsd:
57| indexedMatches = [(m.distanceRmsd, m) for m in matches]
58| else:
59| indexedMatches = [(m.rmsd, m) for m in matches]
60| indexedMatches.sort()
61| matches = [m[1] for m in indexedMatches]
62|
63|
64| # def __matchSort (a,b):
65| # if a.rmsd < b.rmsd:
66| # return -1
67| # elif a.rmsd > b.rmsd:
68| # return 1
69| # else:

Appendix 1: GASPS Package
167

70| # return 0
71| # matches.sort (__matchSort)
72| return matches
73|
74|
75| def WriteOutTable (self, openFile):
76| #every class writes out its prefix on the line.
77| prefix = ""
78| for hit in self.hits:
79| hit.WriteOutTable (openFile, prefix)
80|
81|
82| def WriteOutScoredSortedTable (self, openFile, trueHash,

useFileName = 0, notTrueHash = None):
83| matches = self.GetBestMatchesPerHit()
84|
85| if not notTrueHash:
86| notTrueHash = {}
87|
88| for match in matches:
89| if useFileName:
90| name = os.path.splitext(os.path.basename

(match.hit.fileName))[0]
91| else:
92| name = match.hit.title
93| try:
94| trueHash[name]
95| pre = '1' # a true positive
96| except KeyError:
97| try:
98| notTrueHash[name]
99| pre = '*'

100| except KeyError:
101| pre = "0" # a false positive
102| match.WriteOutTable (openFile,

match.hit.GetTablePrefix(pre))
103|
104|
105| #use to convert spasm to table with a small memory footprint
106| def ConvertToTable (self, openfile, outOpenFile):
107| doNotLoad = 0
108| self.ParseSpasmHits (openfile, doNotLoad, outOpenFile)
109|
110|
111|
112| class SpasmHit:
113| def __init__(self, search):
114| self.search = search
115| self.fileName = None
116| self.lowMemory = search.lowMemory
117| self.bestRMSD = 99999.9
118| self.titleFromFileName = self.search.titleFromFileName
119|
120|
121| def ReadOpenFile (self, titleLine, fp):
122| if self.titleFromFileName:
123| self.title = "noFileName!" #yet, will be set later
124| else:

Appendix 1: GASPS Package
168

125| self.title = titleLine.split(":")[1].strip()
126| self.title.strip
127| if self.title[0] == '(': # strip () if necessary
128| self.title = self.title[1:-1]
129|
130| self.matches = []
131| line = fp.readline()
132| while (1):
133| if len (line) > 8 and line[:8] == " MATCH #":
134| match = SpasmMatch(self.search)
135| line = match.ReadOpenFile (line, fp)
136|
137| if self.lowMemory: #only store the best scoring match

here
138| if self.matches and match.rmsd > self.bestRMSD:
139| match = None
140| continue
141| else:
142| self.bestRMSD = match.rmsd
143| self.matches = []
144| self.matches.append (match)
145| elif line == '':
146| break
147|
148| elif len (line) > 5 and (line[:5] == " File"):
149| self.fileName = line.split()[2]
150| if self.fileName[0] == "(":
151| self.fileName = self.fileName[1:-1]
152| if self.titleFromFileName:
153| #want d1qcrd2 from /pdbstyle-1.63/qc/d1qcrd2.ent
154| self.title = string.upper

(os.path.basename(self.fileName))
155| #remove extension:
156| try:
157| self.title = self.title

[:string.rindex(self.title, ".")]
158| except ValueError:
159| #no periods, leave title alone
160| pass
161|
162| line = fp.readline()
163|
164| elif len (line) > 8 and (line[:8] == " ==> HIT" or line[:8]

== " ==> TRY"):
165| break
166| else:
167| #blank lines and others that we will ignore?
168| line = fp.readline()
169|
170| return line
171|
172| def WriteOutTable (self, openFile, pre):
173| prefix = self.GetTablePrefix (pre)
174|
175| for match in self.matches:
176| match.WriteOutTable (openFile, prefix)
177|
178| def GetTablePrefix (self, pre):

Appendix 1: GASPS Package
169

179| return pre + " %s %s" % (self.title, self.fileName)
180|
181| def GetBestRMSDMatch(self, useDistanceRmsd = 0):
182| best = None
183| if useDistanceRmsd:
184| for match in self.matches:
185| if not best or match.distanceRmsd < best.distanceRmsd:
186| best = match
187| else:
188| for match in self.matches:
189| if not best or match.rmsd < best.rmsd:
190| best = match
191| return best
192|
193|
194| class SpasmMatch:
195| def __init__(self, search):
196| self.id = None
197| self.rmsd = None
198| self.scRmsd = None
199| self.caRmsd = None
200| self.distanceRmsd = None
201| self.numatoms = None
202| self.scMatrix = None
203| self.caMatrix = None
204| self.search = search
205| self.chain = ''
206|
207| def ReadOpenFile (self, idLine, fp):
208| idwords = idLine.split()
209| self.id = idwords[2]
210|
211| assert (idwords[4] == "RMSD")
212| self.rmsd = float(idwords[5])
213| self.numatoms = int (idwords[8])
214|
215| #load the diff matrices
216| line = fp.readline()
217| while (1):
218| words = line.split()
219| if len(words) > 3 and words[3] == "matrix":
220| matrix = SpasmMatrix()
221| if words[1] == "SC":
222| if words[0] == "Target":
223| if self.search.scMatrix == None:
224| self.search.scMatrix = matrix
225| else:
226| matrix.dummy = 1
227| else:
228| self.scMatrix = matrix
229| elif words[1] == "CA":
230| if words[0] == "Target":
231| if self.search.caMatrix == None:
232| self.search.caMatrix = matrix
233| else:
234| matrix.dummy = 1
235| else:
236| self.caMatrix = matrix

Appendix 1: GASPS Package
170

237| line = matrix.ReadOpenFile (fp)
238| elif line == '' or (len(words) > 1 and (words[0] == "MATCH"

or words[0] == "==>")):
239| break
240| else: #skip blank lines and other unexpected things
241| line = fp.readline()
242| if not self.search.scMatrix:
243| print "WARNING! Did not read a scMatrix for : %s" % (

self.id)
244| if not self.search.caMatrix:
245| print "WARNING! Did not read a caMatrix for : %s" % (

self.id)
246|
247| #calculate distance rmsd
248| if self.scMatrix and self.search.scMatrix:
249| self.scRmsd = self.scMatrix.CalculateRMSD

(self.search.scMatrix)
250| if self.caMatrix and self.search.caMatrix:
251| self.caRmsd = self.caMatrix.CalculateRMSD

(self.search.caMatrix)
252|
253| if self.scRmsd != None and self.caRmsd != None:
254| self.distanceRmsd = (self.scRmsd + self.caRmsd)/2
255| else:
256| self.distanceRmsd = self.scRmsd
257| if self.distanceRmsd == None:
258| self.distanceRmsd = self.caRmsd
259| if self.distanceRmsd == None:
260| self.distanceRmsd = 9.99
261|
262| return line
263|
264| def CalcDiffs (self):
265| self.scDiffMatrix = SpasmMatrix()
266| self.caDiffMatrix = SpasmMatrix()
267|
268| if self.scMatrix and self.search.scMatrix:
269| self.scDiffMax =

self.scDiffMatrix.SetAsDifference(self.search.scMatrix,
self.scMatrix)

270| else:
271| self.scDiffMax = 0.0
272|
273| if self.caMatrix and self.search.caMatrix:
274| self.caDiffMax =

self.caDiffMatrix.SetAsDifference(self.search.caMatrix,
self.caMatrix)

275| else:
276| self.caDiffMax = 0.0
277|
278| def WriteOutTable (self, outFile, pre):
279| self.CalcDiffs()
280| # if self.distanceRmsd != None:
281| # calcRmsd = self.distanceRmsd
282| # else:
283| # calcRmsd = -1.0
284| calcRmsd = self.distanceRmsd
285|

Appendix 1: GASPS Package
171

286| outFile.write ("%6s %3s %3s %5.2f %5.2f %3d %4.1f %4.1f RES: "
%

287| (pre, self.id,
string.join(self.caMatrix.GetChains(), ''),

288| self.rmsd, calcRmsd, self.numatoms,
self.caDiffMax, self.scDiffMax))

289|
290| outFile.write (self.caMatrix.OneLineResidues())
291|
292| outFile.write ("\n")
293|
294| class SpasmMatrix:
295| def __init__(self):
296| self.dummy = 0
297|
298| def ReadOpenFile (self, fp):
299| if not self.dummy:
300| self.rows = []
301| self.residues = []
302| numRows = -1
303| totalRows = 0
304| while (numRows < totalRows):
305| line = fp.readline()
306| if not self.dummy:
307| res = SpasmResID (line[1:11])
308| row = map (float, line[12:].split())
309| self.rows.append (row)
310| self.residues.append (res)
311|
312| if not totalRows: #we're on the first row, so set number

of rows
313| totalRows = len(line[12:].split())
314| numRows = 1
315| else:
316| numRows = numRows + 1
317|
318| return fp.readline()
319|
320| def GetChains (self):
321| chains = []
322| for res in self.residues:
323| if res.chain in chains:
324| continue
325| else:
326| chains.append (res.chain)
327| if len (chains) == 0:
328| chains.append ('-')
329| return chains
330|
331| def SetAsDifference (self, reference, other):
332| assert(len (reference.rows) == len (other.rows))
333| self.rows = []
334| self.residues = other.residues
335| maxDiff = -1
336| for i in range (len (other.rows)):
337| row = []
338| for j in range (len (other.rows)):
339| diff = other.rows[i][j] - reference.rows[i][j]

Appendix 1: GASPS Package
172

340| maxDiff = max (maxDiff, abs(diff))
341| row.append (diff)
342| self.rows.append (row)
343| return maxDiff
344|
345| def OneLineResidues (self):
346| return string.join (map (lambda a: "%s_%s_%s"%(a.type,

a.chain, a.position), self.residues), " ")
347|
348| def CalculateRMSD (self, otherMatrix):
349| i = 0
350| sumSquareDevs=0
351| numSquareDevs=0
352| matSize = len (self.rows)
353| assert (matSize == len (otherMatrix.rows))
354| for i in range (0, matSize):
355| for j in range (i+1, matSize):
356| dev = self.rows[i][j] - otherMatrix.rows[i][j]
357| sumSquareDevs = sumSquareDevs + (dev * dev)
358| numSquareDevs = numSquareDevs + 1
359| return math.sqrt (sumSquareDevs/numSquareDevs)
360|
361|
362| class SpasmResID:
363| def __init__ (self, idString):
364| #string is "HIS A 339" or "HIS_A_339"
365| self.type = string.strip (idString[:3])
366| if idString[4] != " ":
367| self.chain = string.strip (idString[4])
368| else:
369| self.chain = string.strip ('-')
370| if idString[5] == '_':
371| self.position = string.strip (idString[6:])
372| else:
373| self.position = string.strip (idString[5:])
374|
375|
376| def dummy___runFileStrings ():
377| pass
378|
379| ##
380| # Formalized contents of a spasm *.com run file:
381| #
382| #
383| #
384| # use like:
385| # spasmRunFileString % (
386| # spasmBinaryPath,
387| # maxhits,
388| # libpath,
389| # motifPath,
390| # fourLetterCode,
391| # maxRMSD,
392| # maxCADiff,
393| # MaxSCDiff,
394| # maxResolution,
395| # maxResidues,
396| # substitutionsAllowed, # 5 for user defined

Appendix 1: GASPS Package
173

397| # substitutionsString) #multi line
398| #
399| #
400| ##
401| runFileStringSTDOUT = """#automatically generated by Spasm.py
402| %s maxhits %d<<EOI
403| %s
404| %s
405| %s
406| %f
407| %f
408| %f
409| %f
410| %d
411| %d
412| %s
413| n
414| n
415| n
416| y
417| n
418| n
419| 1
420| n
421| n
422| n
423| n
424| n
425| EOI
426| """
427|
428|
429| runFileStringSTDOUT_scOnly = """#automatically generated by Spasm.py
430| %s maxhits %d<<EOI
431| %s
432| %s
433| %s
434| %f
435| %f
436| %f
437| %f
438| %d
439| %d
440| %s
441| n
442| n
443| n
444| y
445| n
446| n
447| 2
448| n
449| n
450| n
451| n
452| n
453| EOI
454| """

Appendix 1: GASPS Package
174

455| def Convert2SpasmFilesToSortedAndScoredTable (trueSpasm, falseSpasm,
tableFile, trueHash = None, useDistanceRmsd=0, returnString = 0):

456| fp = open (trueSpasm)
457| trueSearch = SpasmSearch (1)
458| trueSearch.ParseSpasmHits (fp)
459| fp.close()
460|
461| fp = open(falseSpasm)
462| falseSearch = SpasmSearch (1)
463| falseSearch.ParseSpasmHits (fp)
464| fp.close()
465|
466|
467| return Convert2SpasmSearchesToSortedAndScoredTable (trueSearch,

falseSearch, tableFile, trueHash, useDistanceRmsd, returnString)
468|
469|
470| def Convert2SpasmSearchesToSortedAndScoredTable (trueSearch,

falseSearch, tableFile, trueHash = None, useDistanceRmsd=0,
471| returnString = 0,

writeFile=1, trueSkipHash=None, falseSkipHash=None):
472| if not trueHash:
473| trueHash = {}
474| if not trueSkipHash:
475| trueSkipHash = {}
476| if not falseSkipHash:
477| falseSkipHash = {}
478|
479| if returnString:
480| stringFile = StringIO.StringIO()
481| fp = stringFile
482| else:
483| fp = open (tableFile, "w")
484|
485| trueMatches = trueSearch.GetBestMatchesPerHit(useDistanceRmsd)
486| if falseSearch:
487| falseMatches =

falseSearch.GetBestMatchesPerHit(useDistanceRmsd)
488| else:
489| falseMatches = []
490| trueIndex = 0
491| for fm in falseMatches:
492| while (1):
493| if useDistanceRmsd:
494| if not (trueIndex < len (trueMatches) and

trueMatches[trueIndex].distanceRmsd < fm.distanceRmsd):
495| break
496| else:
497| if not (trueIndex < len (trueMatches) and

trueMatches[trueIndex].rmsd < fm.rmsd):
498| break
499|
500| if trueSkipHash.has_key (trueMatches[trueIndex].hit.title):
501| pre = "*"
502| else:
503| pre = "1"
504|

Appendix 1: GASPS Package
175

505| trueMatches[trueIndex].WriteOutTable (fp,
trueMatches[trueIndex].hit.GetTablePrefix(pre))

506| trueIndex += 1
507|
508| name = fm.hit.title
509|
510| #check that the false match isn't one that is marked as true

(lets me not have to remove these from false library)
511| if trueHash.has_key (name):
512| continue
513| #
514| # try:
515| # trueHash[name]
516| # continue
517| # except KeyError:
518| # pass
519|
520| if falseSkipHash.has_key (name):
521| pre = "#"
522| else:
523| pre = "0"
524| fm.WriteOutTable (fp, fm.hit.GetTablePrefix(pre))
525| #finally write any remaining true positives, important in cases

where no false positives were hit
526| while trueIndex < len (trueMatches):
527| if trueSkipHash.has_key (trueMatches[trueIndex].hit.title):
528| pre = "*"
529| else:
530| pre = "1"
531|
532| trueMatches[trueIndex].WriteOutTable (fp,

trueMatches[trueIndex].hit.GetTablePrefix(pre))
533| trueIndex += 1
534|
535| if returnString:
536| compressFileName = tableFile + ".gz"
537| fp = gzip.open (compressFileName, "w")
538| if writeFile:
539| fp.write (stringFile.getvalue())
540| else:
541| #still have to maintian file for how gasps checks which

motifs its tried already!
542| fp.write (":-)")
543| fp.close
544| return stringFile.getvalue()
545| else:
546| fp.close()
547|
548| def ComputeAreaFromTableFile (filePath, maxFalse, fileString = '',

useDistanceRMSD = 0):
549| if fileString:
550| fp = StringIO.StringIO (fileString)
551| else:
552| fp = open (filePath)
553| numFalse = 0
554| scoreHash = {}
555| #first load the lines we need in to scoreHash
556| while (numFalse < maxFalse):

Appendix 1: GASPS Package
176

557| line = fp.readline()
558| if line == '':
559| break
560| if line[0] == '#':
561| continue
562| elif line[0] == '*':
563| continue
564| elif line[0] == '0':
565| numFalse = numFalse + 1
566| if useDistanceRMSD:
567| score = float (line.split()[6])
568| else:
569| score = float (line.split()[5])
570| try:
571| scoreHash[score].append (line[0])
572| except KeyError:
573| scoreHash[score] = [line[0]]
574| fp.close()
575| numFalse = 0
576| numTrue = 0
577| area = 0
578| # print scoreHash
579| #next calculate area one false positive at a time.
580| # if one score has several hits, false postives are counted

before true positives.
581| scores = scoreHash.keys()
582| scores.sort()
583| # print scores
584| for score in scores:
585| hits = scoreHash[score]
586| newTrue = 0
587| for hit in hits:
588| if hit == '1':
589| newTrue = newTrue + 1
590| elif hit == '0':
591| numFalse = numFalse + 1
592| area = area + numTrue
593| numTrue = numTrue + newTrue
594|
595| if numFalse > maxFalse:
596| break
597|
598| #if we don't have enough false positives assume all other hits

would be false.
599| while (numFalse < maxFalse):
600| print "Assuming a false positive"
601| area = area + numTrue
602| numFalse = numFalse + 1
603|
604| return area
605|
606| def ComputeSeparationScoreFromTableFile3 (filePath, maxFalse,

maxRMSD, maxTrue, sepScoreImportance, useDistanceRmsd, fileString =
''):

607|
608| if fileString:
609| fp = StringIO.StringIO (fileString)
610| else:

Appendix 1: GASPS Package
177

611| fp = open (filePath)
612| numFalse = 0
613| trueScores = []
614| falseScores = []
615| #read the relevant scores for true and false positives
616| while (numFalse < maxFalse):
617| line = fp.readline()
618| if line == '':
619| break
620| if line[0] == '#':
621| continue
622| elif line[0] == '*':
623| continue
624| elif line[0] == '0':
625| numFalse += 1
626| if useDistanceRmsd:
627| falseScores.append(float(line.split()[6]))
628| else:
629| falseScores.append(float(line.split()[5]))
630| elif line[0] == '1':
631| if useDistanceRmsd:
632| trueScores.append (float(line.split()[6]))
633| else:
634| trueScores.append (float(line.split()[5]))
635|
636| #get score to assign to false positives that don't show up in

list.
637| if maxRMSD:
638| dummyFalseScore = maxRMSD
639| else:
640| dummyFalseScore = 0
641| if trueScores:
642| dummyFalseScore = trueScores[-1]
643| if falseScores:
644| dummyFalseScore = max (dummyFalseScore, falseScores[-1])
645| dummyFalseScore += 0.01
646|
647| #fill out false positive list
648| while len(falseScores) < maxFalse:
649| falseScores.append (dummyFalseScore)
650|
651| #remove trueScores that could just as easily have come after the

last false positive because they score equivalently
652| while (falseScores and trueScores and trueScores[-1] ==

falseScores[-1]):
653| del (trueScores[-1])
654|
655|
656| #calculate medianFP, relies on falseScores being sorted already
657| if len(falseScores) % 2:
658| #odd number just grab central scores
659| medianFP = falseScores[len(falseScores)/2]
660| else:
661| #even number, take center of two central scores
662| medianFP = falseScores[len(falseScores)/2] +

falseScores[len(falseScores)/2-1]
663| medianFP = medianFP/2
664|

Appendix 1: GASPS Package
178

665|
666| #calculate meanFP while we also calculate rocArea
667| meanFP = 0.0
668| rocArea = 0.0
669| for fs in falseScores:
670| meanFP += fs/maxFalse
671| for ts in trueScores:
672| if ts < fs:
673| rocArea += 1.0
674| #normalize to 1
675| rocArea = rocArea/(maxFalse*maxTrue)
676|
677|
678| if trueScores:
679| #calculate medianTP
680| if len (trueScores) % 2:
681| medianTP = trueScores[len(trueScores)/2]
682| else:
683| medianTP = trueScores[len(trueScores)/2] +

trueScores[len(trueScores)/2-1]
684| medianTP = medianTP/2
685|
686| sepScore = (medianFP - medianTP)/medianFP # max 1, min 0
687| if sepScore < 0:
688| sepScore = 0
689|
690|
691| maxSepScore = (maxRMSD - 0.0) * len (trueScores) #potentially

undesirable; should use max number of trueScores instead?
692|
693| #normalize:
694| sepScore = sepScore * sepScoreImportance
695|
696| else:
697| sepScore = 0
698|
699| return sepScore + rocArea
700|

polacco/XML.py

1|
2| # __ ____ __ _
3| # \ \/ / \/ | | _ __ _ _
4| # \ /| |\/| | | | '_ \| | | |
5| # / \| | | | |___ _| |_) | |_| |
6| # /_/__| |_|_____(_) .__/ __, |
7| # |_| |___/
8| #
9|

10| # A VERY simple XML module. This was developed specifically to read
XML files as

11| # output by ncbi blastall or blastpgp programs, and processed by
BlastXML.py

12| # Many xml features may be poorly dealt with, if at all, if they do
not occur in

Appendix 1: GASPS Package
179

13| # the output of the ncbi programs. Consider yourself warned if you
try to use this

14| # as a full-featured XML parser.
15|
16|
17|
18| import string
19| class XML_node:
20| def __init__ (self):
21| self.name = None
22| self.subNodes = {}
23| self.variables = {} #not common in blast output if any, these

are name value pairs within the first < >
24| self.value = None
25| self.parentNode = None
26|
27| # builtins to get at the value :
28| def __int__(self):
29| return int (self.value)
30| def __str__(self):
31| return self.value
32| def __float__(self):
33| return float (self.value)
34|
35|
36| def keys(self):
37| return self.subNodes.keys()
38|
39| def LoadFromOpenFile (self, openFileIn, startTag):
40| words = startTag[1:-1].split()
41|
42| #get name from opening tag
43| self.name = words[0]
44|
45| #get variableStrings -- this can be elaborated if anybody uses

them
46| self.variableStrings = words[1:]
47| if self.variableStrings:
48| for vs in self.variableStrings:
49| name,value = vs.split("=")
50| self.variables[name] = value[1:-1] #remove thequotes
51|
52| #read value if any
53| valueBuffer = []
54| char = ''
55| while char != '<':
56| valueBuffer.append (char)
57| char = openFileIn.read(1)
58| if char == "":
59| raise "Unexpected end of XML file %s" % (self.name)
60| self.value = string.join (valueBuffer, '')
61|
62| #now start reading subnodes
63| tagType = ''
64| while tagType != '/':
65| tagType, tag = readXMLTag (openFileIn, char)
66| char = ''
67| if tagType == '':

Appendix 1: GASPS Package
180

68| nextNode = XML_node()
69| nextNode.LoadFromOpenFile (openFileIn, tag)
70| nextNode.parentNode = self
71| try:
72| self.subNodes[nextNode.name].append (nextNode)
73| except KeyError:
74| self.subNodes[nextNode.name] = [nextNode]
75| elif tagType != '/':
76| raise "Unexpected tag type %s in middle of file (%s)" %

(tagType, self.name)
77|
78| # tagType and tag should correspond to the closing tag for the

current node. verify it!
79| closingName = tag[2:-1]
80| if closingName != self.name:
81| raise "closingName doesn't match self.name: %s != %s" %

(closingName, self.name)
82|
83|
84| def readXMLTag (openFileIn, firstChar = ''):
85| tagBuffer= [firstChar]
86| type = ''
87|
88| #first get opening carrot if we need to
89| if tagBuffer[-1] == '<':
90| started = 1
91| else:
92| char = ''
93| while (char != '<'):
94| char = openFileIn.read(1)
95| if char =="":
96| raise "Unexpected end of XML file."
97| tagBuffer.append (char)
98|
99| #get special first characters

100| char = openFileIn.read(1)
101| if char in '/?!':
102| type = char
103| else:
104| type = ''
105|
106| tagBuffer.append (char)
107| done = 0
108| #get rest of tag
109| while (not done):
110| char = openFileIn.read(1)
111| if char == '>':
112| done = 1
113| if char in '\n\r':
114| continue
115| tagBuffer.append (char)
116|
117| tag = string.join (tagBuffer, '')
118| #print tag
119|
120| return type, tag
121|
122|

Appendix 1: GASPS Package
181

123| class XML_tree:
124| def __init__ (self, openFileIn):
125| self.rootNode = None
126| self.xmlVersionString = None
127| self.doctype_string = None
128|
129| if not openFileIn:
130| return
131|
132| while(1):
133| char = openFileIn.read(1)
134| if char == '<':
135| type,tag = readXMLTag (openFileIn, char)
136| if type != '':
137| if type == '?':
138| self.xmlVersionString = tag[2:-2]
139| elif type == '!':
140| self.doctype_string = tag[2:-1]
141| else:
142| raise "Unexpected tag type at start of file: %s" %

type
143|
144| else: #found the start of the root node
145| self.rootNode = XML_node()
146| self.rootNode.LoadFromOpenFile (openFileIn, tag)
147| break
148|
149|
150|
151|
152| def test():
153| f = open ("longtest.xml")
154| xtree = XML_tree (f)

polacco/utils.py

1| ##3
2| # _ _ _ _
3| # _ __ ___ | | __ _ ___ ___ ___ _ _| |_(_) |___
4| # | '_ \ / _ \| |/ _` |/ __/ __/ _ \| | | | __| | / __|
5| # | |_) | (_) | | (_| | (_| (_| (_) | |_| | |_| | __ \
6| # | .__/ ___/|_|__,_|_________(_)__,_|__|_|_|___/
7| # |_|
8| ###
9|

10| import string
11|
12|
13|
14| # This function will read a sequence in FASTA format up to and

including the '>'
15| # character signifying the start of the next sequence. If I knew

how to peek
16| # at this of put it back on the stream I would. If the first non-

white character

Appendix 1: GASPS Package
182

17| # in the file is not '>' this function assumes that line is the name
of the sequence.

18| # This never returns the first '>' on a line. If for some reason
you have two, then you can expect one.

19|
20| def GetNextFASTASeq (seqFile):
21| firstChar = " "
22| while firstChar in string.whitespace:
23| firstChar = seqFile.read (1)
24| if firstChar == '':
25| return ('', '')
26| if firstChar != '>':
27| name = string.rstrip (firstChar + seqFile.readline())
28| else:
29| name = string.strip (seqFile.readline())
30| parts = []
31| firstChar = seqFile.read(1)
32| while firstChar not in ('>', ''):
33| parts.append (string.strip (firstChar + seqFile.readline()))
34| firstChar = seqFile.read(1)
35| seq = string.join (parts, '')
36| return (name, seq)
37|
38|
39| def WriteFastaSeq (fileName, seqName, sequence):
40| fp = open (fileName, "w")
41| fp.write (">%s\n%s\n" % (seqName, sequence))
42| fp.close()
43|
44|
45| aa3to1 = {
46| "PHE" : 'F',
47| "ILE" : 'I',
48| "LEU" : 'L',
49| "VAL" : 'V',
50| "PRO" : 'P',
51| "ALA" : 'A',
52| "GLY" : 'G',
53| "MET" : 'M',
54| "CYS" : 'C',
55| "TRP" : 'W',
56| "TYR" : 'Y',
57| "THR" : 'T',
58| "SER" : 'S',
59| "GLN" : 'Q',
60| "ASN" : 'N',
61| "GLU" : 'E',
62| "ASP" : 'D',
63| "HIS" : 'H',
64| "LYS" : 'K',
65| "ARG" : 'R',
66| "GAP" : '-',
67| # non standard that we might run in to:
68| "MSE" : 'M',
69| "MME" : 'M',
70| "???" : 'X'
71|
72| }

Appendix 1: GASPS Package
183

73| aa1to3 = {
74| 'F' : "PHE",
75| 'I' : "ILE",
76| 'L' : "LEU",
77| 'V' : "VAL",
78| 'P' : "PRO",
79| 'A' : "ALA",
80| 'G' : "GLY",
81| 'M' : "MET",
82| 'C' : "CYS",
83| 'W' : "TRP",
84| 'Y' : "TYR",
85| 'T' : "THR",
86| 'S' : "SER",
87| 'Q' : "GLN",
88| 'N' : "ASN",
89| 'E' : "GLU",
90| 'D' : "ASP",
91| 'H' : "HIS",
92| 'K' : "LYS",
93| 'R' : "ARG",
94| '-' : "GAP"
95| }
96|
97| def AA3to1 (aaa):
98| return aa3to1[string.upper(aaa)]
99|

100| def AA1to3 (a):
101| return aa1to3[string.upper (a)]
102|
103| def SeqAA3to1 (aaas):
104| as = []
105| for aaa in aaas:
106| as.append (AA3to1 (aaa))
107| return as
108|
109| def SeqAA1to3 (as):
110| aaas = []
111| for a in as:
112| try:
113| aaas.append (AA1to3 (a))
114| except KeyError:
115| aaa = a + a + a
116| aaas.append (aaa)
117| return aaas

test/astral_1.65_SF.lib (partial)

1| ! Created by MKSPAZ V. 040618/2.3.3 at Thu Jan 27 10:13:05 2005 for
ben

2| !
3| PRO A6M_
4| PDB /Users/ben/tmp_NoBackup/pdbstyle-1.65/a6/d1a6m__.ent
5| RES 1.00
6| CMP
7| VAL 1 -3.526 15.758 14.900 -4.746 16.634 16.149

Appendix 1: GASPS Package
184

8| LEU 2 -0.689 14.190 16.862 1.731 14.740 15.905
9| SER 3 -1.487 12.495 20.143 -1.027 10.685 20.278

10| GLU 4 0.324 13.366 23.335 -0.274 15.439 25.046
11| GLY 5 2.196 10.084 23.022 2.196 10.084 23.022
12| GLU 6 3.317 10.981 19.508 1.056 10.123 17.224
13| TRP 7 4.502 14.431 20.597 2.977 17.247 18.818
14| GLN 8 6.475 12.812 23.418 7.581 10.572 24.982
15| LEU 9 8.296 10.604 20.915 7.311 8.231 20.426
16| VAL 10 9.019 13.628 18.670 7.839 14.702 17.503
17| LEU 11 10.311 15.860 21.464 8.655 17.799 21.829
18| HIS 12 12.315 13.068 23.090 13.323 10.588 24.655
19| ...
20| GLY A 74 1.747 -16.568 2.419 1.747 -16.568 2.419
21| ARG A 75 4.859 -15.859 0.292 3.334 -18.781 -0.441
22| VAL A 76 6.216 -12.816 -1.561 6.009 -11.548 -0.047
23| GLU A 77 9.002 -11.725 -3.902 9.730 -10.534 -6.922
24| ARG A 78 12.003 -10.462 -1.910 15.682 -10.880 -2.598
25| SER A 79 11.298 -6.719 -1.500 9.563 -6.804 -2.269
26| END
27| !
28| ! total residues 204251
29| ! total proteins 1247

test/d2mnr_1.fasta

1| >d2mnr_1 c.1.11.2 (133-359) Mandelate racemase {Pseudomonas putida}
RESOLUTION: 1.900000

2| pvqaydshsldgvklateravtaaelgfravktkigypaldqdlavvrsirqavgddfgimvdynqsl
dvpaaikrsqalqqegvtwieeptlqhdyeghqriqsklnvpvqmgenwlgpeemfkalsigacrlam
pdamkiggvtgwirasalaqqfgipmsshlfqeisahllaatptahwlerldlagsvieptltfeggn
avipdlpgvgiiwrekeigkylv

test/d2mnr_1.fasta.psiblast.xml.faln (partial)

1| >d2mnr_1/001
2| PVQAYD----S-H---S-LDGVKLATE---RA-VTA---A---EL---------GFRAV-KT-----

KI------G------------------YPA---------L------------------DQ--------
-------DL----------------AVVR-----------------SIRQAV----------GDDF--
G---I-----MVD-Y------------------NQS-L------D-------V-P-------AA-
IKRSQAL-QQ---E-------G---VT------W--IEE--PT-LQ----HD----YEGHQ------
R------I-QSKL---N-----V-P-----VQM-GE-NW--L---GP-------------------E-
EMFKA-LS-IGAC----RL--AMPDAMKIGGVTGWIRASALAQ--Q--FG---I-P-M------S-S-
----H----------LF------Q-------E------IS-------AHL-----LA---------
AT-----PT------A----------H----W----LE----R-------------L-----------
-------DL----A----------G-----SV--I-----E--P--------------T------
LTFE-G-G--N--AV----I-P--D--LP--GVGIIWREKEIGKYLV

3| >886661/143
4| ---AWT----L-A---S-GDTARDIAE---AE-QML---E---AR---------RHRIF-KL-----

KI------G------------------ANP---------L------------------EQ--------
-------DL----------------KHVV-----------------AIKKAL----------GERA--
S---V-----RVD-V------------------NQY-W------D-------E-S-------QA-
IRGCRVL-GD---N-------G---ID------L--IEQ--PI-SR----VN----RSGQI------
R------L-NQRS---L-----A-P-----IMA-DE-SI--E---SV-------------------E-
DAFSL-AA-DGAA----SV--FALKIAKNGGPRAVLRTAQIAE--A--AG---I-A-L------Y-G-
----G----------TM------L-------E------GS-------VGT-----LA---------

Appendix 1: GASPS Package
185

SA-----HA------FLTLRQLTWDTE----L----FG----P-------------L-----------
-------LL----T----------E-----DI--V-----T--E--------------R------
PQYR-D-F--H--LH----I-P--R--TP--GLGLTLDEERLARFR-

5| ...

test/d2mnr_1.pdb (partial)

1| HEADER SCOP/ASTRAL domain d2mnr_1 [29245] 21-NOV-03 0000
2| REMARK 99
3| REMARK 99 ASTRAL ASTRAL-version: 1.65
4| REMARK 99 ASTRAL SCOP-sid: d2mnr_1
5| REMARK 99 ASTRAL SCOP-sun: 29245
6| REMARK 99 ASTRAL SCOP-sccs: c.1.11.2
7| REMARK 99 ASTRAL Source-PDB: 2mnr
8| REMARK 99 ASTRAL Source-PDB-REVDAT: 31-JAN-94
9| REMARK 99 ASTRAL Region: 133-359

10| REMARK 99 ASTRAL ASTRAL-SPACI: 0.52
11| REMARK 99 ASTRAL ASTRAL-AEROSPACI: 0.52
12| REMARK 99 ASTRAL Data-updated-release: 1.61
13| ATOM 954 N PRO 133 26.117 28.195 19.354 1.00 16.42

2MNR1142
14| ATOM 955 CA PRO 133 26.550 27.070 20.183 1.00 17.39

2MNR1143
15| ATOM 956 C PRO 133 25.646 25.856 19.887 1.00 17.79

2MNR1144
16| ATOM 957 O PRO 133 24.432 26.050 19.690 1.00 15.27

2MNR1145
17| ATOM 958 CB PRO 133 26.423 27.575 21.607 1.00 16.88

2MNR1146
18| ATOM 959 CG PRO 133 26.217 29.084 21.431 1.00 18.48

2MNR1147
19| ATOM 960 CD PRO 133 25.391 29.164 20.163 1.00 16.15

2MNR1148
20| ATOM 961 N VAL 134 26.203 24.632 19.793 1.00 14.37

2MNR1149
21| ATOM 962 CA VAL 134 25.376 23.431 19.550 1.00 13.11

2MNR1150
22| ATOM 963 C VAL 134 25.512 22.524 20.760 1.00 10.74

2MNR1151
23| ATOM 964 O VAL 134 26.639 22.219 21.178 1.00 10.65

2MNR1152
24| ATOM 965 CB VAL 134 25.822 22.626 18.293 1.00 14.98

2MNR1153
25| ATOM 966 CG1 VAL 134 24.813 21.481 18.039 1.00 15.66

2MNR1154
26| ATOM 967 CG2 VAL 134 25.879 23.546 17.071 1.00 18.17

2MNR1155

test/enolase.lib (partial)

1| ! Created by MKSPAZ V. 040618/2.3.3 at Wed Jul 20 10:14:20 2005 for
ben

2| !
3| PRO ONEA
4| PDB scopc.1.11/d1onea1.pdb
5| RES 1.80

Appendix 1: GASPS Package
186

6| CMP
7| SER A 142 3.954 -21.471 10.866 3.132 -23.070 10.341
8| PRO A 143 6.317 -20.493 9.738 6.437 -19.927 7.955
9| TYR A 144 8.244 -18.231 11.988 8.330 -19.865 15.458

10| VAL A 145 9.753 -15.108 10.378 8.597 -13.779 9.428
11| LEU A 146 13.368 -14.050 10.947 14.866 -16.299 11.239
12| PRO A 147 14.071 -10.342 10.694 14.559 -10.674 12.458
13| VAL A 148 16.213 -8.369 8.330 15.891 -7.404 6.671
14| PRO A 149 18.854 -6.741 10.645 19.911 -8.202 10.014
15| PHE A 150 19.145 -2.899 10.152 16.286 -2.033 8.574

test/enolase.list

1| d1onea1
2| d1kkoa1
3| d1fhua1
4| d1muca1
5| d1ec7a1
6| d2mnr_1
7| d1jpma1

Appendix 2: GASPSdb CGI scripts
187

Appendix 2: GASPSdb CGI scripts

This appendix contains the scripts written in the python programming language that ran

on the UCSF Resource for Biological Visualization and Informatics web server. The

GASPSdb file contained the vast majority of the code to run the backend and interface

with the database. The jsonMotif file’s sole responsibility was to describe a requested

motif so that the pages delivered by GASPSdb could show a motif in a popup window.

GASPSdb

1| #!/usr/local/bin/python2.4
2|
3|
4|
5| import cgi, urllib
6| import sys, tempfile, os, string, stat
7| sys.path.insert(0, "/mol/sfld/gaspsdb/py.packages")
8| import polacco.Rigor
9|

10| def LibraryLookup():
11| libs = {"scop3" :"/mol/sfld/gaspsdb/lib/scop3.emp.25and40.rig",
12| "scop4" :"/mol/sfld/gaspsdb/lib/scop4.emp.25and40.rig",
13| "GO" :"/mol/sfld/gaspsdb/lib/go.emp.25and40.rig",
14| "goScop":"/mol/sfld/gaspsdb/lib/goScop.emp.25and40.rig"}
15| return libs
16|
17| def DrawMainForm():
18| print"""
19| <!-- DrawForm -->
20| <p> This search relies on RIGOR

which
21| is freely provided by its creator, Gerard Kleywegt, for use by

private
22| individuals, schools, academics, and not-for-profit institutions.
23| The use of this search by others is not allowed.

Contact us
24| if you wish to use our motifs, and contact Gerard Kleywegt if you

wish to
25| use RIGOR.
26|
27| <table border=1>
28| <tr><th> Coordinates in PDB format:</th><th>Select a

library</th><th>Click to start search</th></tr>
29| <form action="./GASPSdb" enctype="multipart/form-data"

method="post">
30| <input type="hidden" name="do" value="rigor">
31| <tr>

Appendix 2: GASPSdb CGI scripts
188

32| <td>Enter a PDB code (e.g., '2mnr')<input type = "text"
name="pdb" size = "6">

33|
or select a file to upload:
34|
<input type="file" name="fileUpload" size="20"></td>
35| <td>
36| <input name="lib" type="radio" value="scop3"> SCOP Superfamilies
37|
 <input name="lib" type="radio" value="scop4"> SCOP Families
38|
 <input name="lib" type="radio" value="GO"> Gene Ontology

(GO)
39|
 <input name="lib" type="radio" value="goScop"> SCOP

Superfamilies / GO
40| </td
41| <td>
42| <input type="submit" value="Send">
43| </td></tr>
44| </form>
45| </table>
46| """
47|
48|
49| def DrawKeyWordSearchForm(instructions=True):
50| if instructions:
51| print"""
52| <p> To look for a specific group, enter keywords below.

Separate words are automatically joined with 'AND'.
53| """
54| print"""
55| <p><form action="./GASPSdb" method="get">
56| <input type="hidden" name="do" value="keySearch">
57| <input name="keywords" type="text" size="40">
58| <button type="submit" id="Search">Search</button>
59| </form>
60| """
61| def DrawStructSearchForm (instructions = True):
62| if instructions:
63| print"""
64| <p> To find groups that contain a structure, enter its PDB id

below. Multiple IDS are automatically joined with 'OR'.
65| """
66| print"""
67| <p><form action="./GASPSdb" method="get">
68| <input type="hidden" name="do" value="structSearch">
69| <input name="structs" type="text" size="40">
70| <input name="hideMotifs" type="hidden" value="TRUE">
71| <button type="submit" id="Search">Search</button>
72| </form>
73| """
74|
75| def DrawSearchPage ():
76| print "<h2> Find motifs that match your structure.</h2>"
77| DrawMainForm()
78| print "<hr>"
79| print "<h2> Find groups by key word.</h2>"
80| DrawKeyWordSearchForm()
81| print "<hr>"
82| print "<h2> Find groups and motifs by PDB ID</h2>"
83| DrawStructSearchForm()
84|

Appendix 2: GASPSdb CGI scripts
189

85| def GetLocalPDBFile(pdbCode):
86| pdbCode = string.lower (pdbCode)
87| fp = None
88| if len (pdbCode) == 4:
89| path = "/databases/mol/pdb/%s/pdb%s.ent" % (pdbCode[1:3],

pdbCode)
90| try:
91| fp = open (path)
92| except IOError:
93| fp = None
94| else:
95| print "<p> PDB codes must be four characters long, '1one', for

example."
96| if not fp:
97| print "<p> There was an error retrieving the coordinates for

pdb %s. Please try to upload the coordinates." % pdbCode
98| return None
99| else:

100| return fp
101|
102| def GetFile(form):
103| pdbFile = None
104| pdbCode = form.getfirst ("pdb", "")
105| if pdbCode:
106| pdbFile = GetLocalPDBFile (pdbCode)
107| fileName = pdbCode
108| if not pdbFile:
109| try:
110| uploadedFile = form["fileUpload"]
111| fileName = uploadedFile.filename
112| pdbFile = uploadedFile.file
113| except KeyError:
114| print "<p> No file uploaded."
115| return None
116| lib = form.getfirst ("lib", "")
117| if pdbFile:
118| #set up a temporary file to write the uploaded file to:
119| fd, localFileName = tempfile.mkstemp (prefix= fileName +

"_",suffix = "_"+lib, dir="/var/tmp/gaspsdb/rigorRuns")
120| lineCount = 0
121| atomCount = 0
122| model = 0
123| endmdl = 0
124| for line in pdbFile:
125| if line[0:6] == "ATOM ":
126| atomCount+=1
127| lineCount +=1
128| if line[0:6] == "MODEL ":
129| model += 1
130| if model and line[0:6] == "ENDMDL":
131| endmdl = 1
132| if not (model and endmdl):
133| os.write (fd, line)
134| os.close (fd)
135| os.chmod (localFileName, stat.S_IROTH | stat.S_IRUSR |

stat.S_IRGRP)
136| if atomCount:

Appendix 2: GASPSdb CGI scripts
190

137| print "<p>Received %d lines describing %d atoms from %s" %
(lineCount, atomCount, fileName)

138| if model and endmdl:
139| print "<p>Uploaded file contained %d models, only the first

model will be searched." % (model)
140| if atomCount < 100:
141| print "<p>Warning: The uploaded file (%s) seemed to

only contain %d atom records. This may not produce usable results."
% (uploadedFile.filename, atomCount)

142| return localFileName
143| else:
144| print "<p> fileUpload did not appear to be a file."
145| return None
146|
147| def HTMLRedirectHead_DoRigor (code):
148| print """
149| <html>
150| <meta HTTP-EQUIV="REFRESH" content="0;

url=http://babbittlab.ucsf.edu/cgi-
bin/GASPSdb?do=retrieveResults&code=%s">

151| </html>
152| """ % code
153|
154| def DrawFormatResultsForm (code = None, first=1, last=100):
155| print """
156| <form action="./GASPSdb" enctype="application/x-www-form-

urlencoded" method="get">
157| <table width=600 border=1>
158| <tr><th> Click to format the results.</th><th> To view results

from a previous run, enter its code below.</th><tr>
159| <input type="hidden" name="do" value="retrieveResults">
160| <tr><td align="center"><input type="submit" value="Get

Results!"></td>
161| <td> <input type="text" name="code" size="40" value="%s"></td>
162| </tr>
163| <tr>
164| <td colspan="2" align="center">
165| Options:
166| </td>
167| </tr>
168| <tr>
169| <td> Which hits:</td>
170| <td><table>
171| <tr><td>First: <input type="text" name="first" size="8"

value="%d"></textarea></td><td>Last: <input type="text" name="last"
size="8" value="%d"><small> Enter 'all' to show all.</small> </tr>

172| </table>
173| </td>
174| </tr>
175| </table>
176| </form>
177| """ % (code, first, last)
178|
179|
180| def DoRigor(form):
181| localUploadFile = GetFile(form)
182| if not localUploadFile:
183| # HTMLHead()

Appendix 2: GASPSdb CGI scripts
191

184| # DrawNavBar (form)
185| print "<p> There was an error storing your uploaded file.

Can't run rigor."
186| return
187|
188| lib = form.getfirst ("lib")
189| if not lib:
190| print "<p> You must select a motif library."
191| return
192| libraryPath = LibraryLookup()[form.getfirst("lib")]
193| rigorPath = "/mol/sfld/gaspsdb/al_rigor"
194| #files that will be written to by Rigor.py
195| rigorErr = localUploadFile + ".err"
196| rigorOut = localUploadFile + ".out"
197| rigorRun = localUploadFile + ".run"
198| pid = polacco.Rigor.RigorRun (localUploadFile, libraryPath,

rigorPath, rigorErr,
199| rigorOut, rigorRun,

useSubprocess=True)
200| #print "<p> rigor run started with pid %d." % pid
201| print "<p> Searching for matching motifs...<p> This run has been

given the code: ", os.path.split(localUploadFile)[1], ""
202| DrawFormatResultsForm (os.path.split (localUploadFile)[1])
203| # HTMLRedirectHead_DoRigor (os.path.split (localUploadFile)[1])
204| # DrawNavBar(form)
205| # print "Starting RIGOR run with code %s" % (os.path.split

(localUploadFile)[1])
206|
207| class TooManyHits (Exception):
208| pass
209|
210|
211|
212|
213|
214|
215| def FixGroupName (group):
216| #two choices, the second char is a "." then this is a scop id
217| #(i.e., a.1.2.3) no need to fix
218| #otherwise the first is a number of a go id and needs a couple of

zeros prepended to it
219| if group[1] == ".":
220| return group
221| elif group[0] in "0123456789":
222| return "000" + group
223|
224|
225|
226| def DrawRigorHitsTable (hits, lib, code,first=0, last=None):
227| scores = hits.keys()
228| scores.sort()
229|
230| if first > 1:
231| print '<p>NOTE: Hits before hit #%d are not shown

below.' % first
232|
233| ToolTipScripts()
234| ToolTipDiv()

Appendix 2: GASPSdb CGI scripts
192

235|
236| print '<p><table class="smallTable">'
237|
238| if lib in ("scop3", "scop4", "goscop"):
239| domainHead = "Domain"
240| elif lib =="go":
241| domainHead = "Chain"
242| else:
243| domainHead = "Structure"
244|
245| print

'<th>#</th><th>E</th><th>RMSD</th><th>Group</th><th>%s</th><th>G-
score</th><th>Residues</th><th>Matches</th><th></th>' % domainHead

246| rowSwitcher = TableRowGenerator()
247| count = 0
248| try:
249| for s in scores:
250| evText = "%4.1e" % s
251| if s<1e-4:
252| evText = Green (evText)
253| elif s<5e-2:
254| evText = Yellow(evText)
255| else:
256| evText = Red(evText)
257| for h in hits[s]:
258| motParts = h[0].split()
259| if len (motParts) == 3:
260| motGroup, motDomain, motScore = motParts
261| elif len (motParts) == 2:
262| motGroup, motDomain = motParts
263| motScore = ""
264| else:
265| motGroup, motDomain, motScore = "* * *".split()
266|
267| if motScore and False: #currently broken so skip it for

now
268| opString = h[5]
269| imageLink = '<a

href="./MatchImage?code=%s&op=%s&group=%s&struct=%s"
target="_blank"> Image'% (code, opString, motGroup, motDomain)

270| else:
271| imageLink = ''
272| motGroup = FixGroupName(motGroup)
273| groupName = motGroup
274| structName = motDomain
275|
276| motGroup = '%s' %
(motGroup, motGroup)

277| if lib in ("scop3", "scop4"):
278| # motGroup = '<a

href="http://scop.berkeley.edu/search.cgi?ver=1.65&key=%s"
target="_blank">%s' % (motGroup, motGroup)

279| motDomain = '<a
href="http://scop.berkeley.edu/search.cgi?ver=1.65&key=%s"
target="_blank">%s' % (motDomain, motDomain)

280| elif lib =="GO":

Appendix 2: GASPSdb CGI scripts
193

281| # motGroup = '<a href="http://www.godatabase.org/cgi-
bin/amigo/go.cgi?action=replace_tree&search_constraint=terms&query=G
O:%07d" target="_blank">%s' % (int(motGroup), motGroup)

282| pdbID = motDomain[0:4]
283| chain = motDomain[4]
284| motDomain = '<a

href="http://www.pdb.org/pdb/navbarsearch.do?inputQuickSearch=%s"
target="_blank">%s%s' % (pdbID, pdbID, chain)

285|
286| elif lib == "goScop":
287| scop = string.join (motGroup.split(".")[0:3], ".")
288| go = int (motGroup.split (".")[3])
289| # motGroup = """ <a

href="http://scop.berkeley.edu/search.cgi?ver=1.65&key=%s"
target="_blank">%s

290| # <a
href="http://www.godatabase.org/cgi-
bin/amigo/go.cgi?action=replace_tree&search_constraint=terms&query=G
O:%07d" target="_blank"> %07d

291| # """ % (scop, scop, go, go)
292| pdbID = motDomain[0:4]
293| chain = motDomain[4]
294| motDomain = '<a

href="http://www.pdb.org/pdb/navbarsearch.do?inputQuickSearch=%s"
target="_blank">%s%s' % (pdbID, pdbID, chain)

295|
296| # if altColor:
297| # print'<tr class="row2">'
298| # altColor = False
299| # else:
300| # print'<tr class="row1">'
301| # altColor = True
302| # residues=[]
303| # resTypes = h[3].split(",")
304| # resNames = h[4].split(",")
305| # for i in range (len (resTypes)):
306| # residues.append (resNames[i]+resTypes[i])
307| # resString = string.join (residues, "&res=")
308|
309| count +=1
310| if count >= first:
311| print TableRow (TableData(count, evText, h[1]) +
312| ToolTipGroupName_td(motGroup,

groupName, structName=structName) +
313| TableData(motDomain, motScore, h[3],

h[4], imageLink),
314| rowSwitcher.next())
315| if last and count >= last:
316| raise TooManyHits
317| print "</table>"
318|
319| except TooManyHits:
320| print "</table>"
321| print " List of hits truncated after hit number %d

Modify 'first' and 'last' below to see other hits" %
last

322| DrawFormatResultsForm(code, first, last)
323|

Appendix 2: GASPSdb CGI scripts
194

324|
325| def RetrieveResults (form):
326| code = form.getfirst ("code")
327| if not code:
328| print "<p> Please enter a valid run code."
329| DrawFormatResultsForm()
330| return
331|
332| last = form.getfirst ("last")
333| if not last:
334| last = "100"
335| try:
336| last = int (last)
337| except ValueError:
338| last = 0
339|
340| first=form.getfirst ("first")
341| if not first:
342| first = "0"
343| try:
344| first = int (first)
345| except ValueError:
346| first = 0
347|
348|
349| rigorErr = os.path.join ("/var/tmp/gaspsdb/rigorRuns/", code +

".err")
350| try:
351| ferr = open (rigorErr)
352| except IOError:
353| print "<p> %s does not appear to be a valid code." % code
354| DrawFormatResultsForm (code)
355| return
356| for line in ferr:
357| #if line[0:4] == "STOP":# ... Toodle pip ... statement

executed"
358| if line[0:18] =="... Toodle pip ...":
359| ferr.close()
360| break
361| else:
362| ferr.close()
363| print "<p> Run %s not yet completed. Please try again in a few

seconds." % code
364| DrawFormatResultsForm (code)
365| return
366|
367|
368| rigorOut = os.path.join ("/var/tmp/gaspsdb/rigorRuns/", code +

".out")
369| fp = open (rigorOut)
370| hits,errorMessages = polacco.Rigor.SimpleRigorTranslate (fp,

silent=1)
371| fp.close()
372|
373| lib = string.lower(code.split("_")[-1])
374| pdb = code.split ("_")[0]
375| if lib == "scop3":
376| library = "SCOP superfamilies"

Appendix 2: GASPSdb CGI scripts
195

377| elif lib == "scop4":
378| library = "SCOP families"
379| elif lib == "go":
380| library = "GO annotations"
381| elif lib == "goscop":
382| library = "SCOP superfamilies subdivided by GO annotations"
383| else:
384| library = "selected motifs"
385| print ("<h2> Matches to %s among motifs from %s</h2>(code: %s)"

% (pdb, library, code))
386|
387| if errorMessages:
388| print "<hr><p> Warning: The following error message(s)

was encountered while completing the rigor run."
389| for message in errorMessages:
390| print "<p>", message
391| print "<hr>"
392| DrawRigorHitsTable (hits, lib, code, first, last)
393|
394| def DrawDescribeForm ():
395| DrawBrowseChoices(title=False)
396| #print "<p> l a z y ."
397|
398| def GetCursorFromDatabase():
399| import MySQLdb
400| db = MySQLdb.connect (“””#### marked out for security ######”””)
401| c = db.cursor()
402| return c
403|
404| def LibrarySort (toSort, index = None):
405| if index != None:
406| toSort = [(string.split(l[index], "."), l) for l in toSort]
407| else:
408| toSort = [(string.split(l, "."),l) for l in toSort]
409|
410| for item in toSort:
411| for i in range (len (item[0])):
412| try:
413| item[0][i] = int(item[0][i])
414| except ValueError:
415| pass
416| toSort.sort()
417| return [item[1] for item in toSort]
418|
419|
420| def DrawBrowseChoices (title=True):
421| if title:
422| print"""
423| <div align="center" id="titleDiv">
424| <h1> Browse the Motifs </h1>
425| </div>
426| """
427| print"""
428| <p>
429| You can browse the motifs generated on
430|

Appendix 2: GASPSdb CGI scripts
196

431| <a href="/cgi-
bin/GASPSdb?do=browse&class=scop&depth=4">SCOP
families

432| <a href="/cgi-
bin/GASPSdb?do=browse&class=scop&depth=3">SCOP
superfamilies

433| GO
annotations

434| <a href="/cgi-
bin/GASPSdb?do=browse&class=goscop">SCOP superfamilies
subdivided by GO annotations

435|
436| """
437| DrawKeyWordSearchForm()
438|
439| def KeySearch (form):
440| c = GetCursorFromDatabase()
441| keyWords = form.getfirst ("keywords")
442| if not keyWords:
443| DrawKeyWordSearchForm()
444| return
445| words = string.split (keyWords)
446| whereList = ["description like '%%%s%%'"%word for word in words]
447| where = string.join (whereList ," AND ")
448|
449| query = 'select g.name, g.description from groups g where

%s'%where
450| c.execute (query)
451| groups = c.fetchall()
452|
453|
454| print "<h2>Groups matching %s</h2>" % keyWords
455| if not groups:
456| print "No Groups Found!"
457| else:
458| print "Motif details can be viewed by clicking a group name."
459|
460| print "<table>"
461| print TableHeader ("Group", "# Motifs", "Top G-Score",

"Description")
462| for (groupName, groupDesc) in groups:
463| c.execute ('select struct, gScore from motifs where

groupName = "%s" order by gScore' % groupName)
464| motifs = c.fetchall()
465| motCount = len (motifs)
466| if motifs:
467| topScore = motifs[-1][1]
468| else:
469| topScore = "NA"
470| groupName = '<a href ="./GASPSdb?do=describeGroup&group=%s"

>%s' % (groupName, groupName)
471| print TableRow (TableData (groupName, motCount, topScore,

groupDesc))
472| print "</table>"
473| DrawKeyWordSearchForm()
474|
475| def StructSearchGroups (form):
476| imagePath = "/images/"

Appendix 2: GASPSdb CGI scripts
197

477| c = GetCursorFromDatabase()
478| structs = form.getfirst ("structs")
479| if not structs:
480| DrawStructSearchForm()
481| return
482| hideMotifs = form.getfirst ("hideMotifs")
483| if hideMotifs and string.upper (hideMotifs) == "TRUE":
484| hideMotifs = True
485| else:
486| hideMotifs = False
487|
488| if hideMotifs:
489| toggle = "FALSE"
490| else:
491| toggle = "TRUE"
492| toggleMotifsURL = "./GASPSdb?" + urllib.urlencode

({"do":"structSearch", "structs":structs, "hideMotifs":toggle})
493| structs = string.split (structs)
494| ignore = []
495| for struct in structs:
496| if len (struct) != 4:
497| print "Structure %s excluded from search, pdb identifiers

should be at least four characters long."
498| ignore.append (struct)
499| for struct in ignore:
500| structs.remove (struct)
501|
502| whereList = ["s.name like '%%%s%%'"%struct for struct in structs]
503| where = string.join (whereList, " OR ")
504| query = 'select g.name, g.description, s.name from groups g inner

join group_struct gs on g.name = gs.groupName inner join structs s
on gs.structName = s.name where %s' %where

505| #print query
506| c.execute (query)
507| groups = c.fetchall()
508|
509| print "<h2>Groups containing motifs from pdbs: %s</h2>" %

string.join (structs, " OR ")
510| if not groups:
511| print "No Groups Found!"
512| else:
513| print "Motif details can be viewed by clicking a group name."
514|
515| print '<table class="smallTable">'
516| if hideMotifs:
517| print TableHeader ("Group", "Description", "Structure", 'Show Motifs'%toggleMotifsURL)
518| else:
519| print TableHeader ("Group", "Description", "Structure",

"G-Score", "Motif", "Image")
520| tableRows=[]
521| rowSwitcher = TableRowGenerator()
522| for (groupName, groupDesc, matchStruct) in groups:
523| #get the motifs for each structure
524| c.execute ('select id, gScore from motifs where groupName =

"%s" and struct="%s"' % (groupName, matchStruct))
525| motifs = c.fetchall()

Appendix 2: GASPSdb CGI scripts
198

526| groupNameLinked = '%s' % (groupName,
groupName)

527| if motifs:
528| for motRow in motifs:
529| #
530| # #get the residues for each motif
531| # c.execute ('select pdb, chain, name, resType from

motifs m inner join motif_residue mr on m.id = mr.motifID inner join
residues r on mr.resID = r.id where m.id = %d order by name' %
motRow[0])

532| # residues = c.fetchall()
533| # try:
534| # resToSort = [(int(resRow[2]), resRow) for resRow

in residues]
535| # resToSort.sort()
536| # residues = [row[1] for row in resToSort]
537| # except ValueError:
538| # pass
539| # resTable = '\n<table class="residue">' + string.join

([TableRow(TableData (resRow[3], resRow[2], resRow[1]), resRow[3])
for resRow in residues], "\n") +" </table>"

540| imageName = imagePath +
groupName+"_"+matchStruct+".r3d.png" #group_struct.r3d.png

541| imageTag = '<img src="'+imageName+'" alt="Motif
Image" width="240" height="192">'

542| try:
543| gScore = float (motRow[1]) #gScore
544| except TypeError:
545| gScore = 0.0 #Acdtually these should simply be

skipped
546| # but leave them in so I have a chance

of finding them!
547| #check http://babbittlab.ucsf.edu/cgi-

bin/GASPSdb?do=describeGroup&group=00008236
548| #first item in each item enables sorting on that item

(gScore)
549| if hideMotifs:
550| tableRows.append ((gScore, TableData

(groupNameLinked, groupDesc, matchStruct, "")))
551| else:
552| resTable = GetResTableByMotifID (c, motRow[0])
553| tableRows.append ((gScore, TableData

(groupNameLinked, groupDesc, matchStruct, "%5.3f"%gScore, resTable,
imageTag)))

554| else:
555| if hideMotifs:
556| tableRows.append ((0.0, TableData (groupNameLinked,

groupDesc, matchStruct, "")))
557| else:
558| tableRows.append ((0.0, TableData (groupNameLinked,

groupDesc, matchStruct, "", "", "No Motif Generated")))
559| #if not motifs are found, still report a matching

group....
560| for row in tableRows:
561| print TableRow (row[1], rowSwitcher.next())
562| print "</table>"
563|

Appendix 2: GASPSdb CGI scripts
199

564|
565|
566|
567|
568|
569|
570| def Browse (form):
571| c = GetCursorFromDatabase()
572|
573| minGScore = float (form.getfirst ("minGScore", "0.0"))
574|
575| classification = form.getfirst ("class")
576|
577| if not classification:
578| DrawBrowseChoices()
579| return
580|
581| where = 'where r.classification = "%s"' % classification
582| depth = form.getfirst ("depth")
583|
584| if depth:
585| try:
586| depth = int(depth)
587| except ValueError:
588| depth = 3
589| where = where + " and r.depth = %d" %depth
590|
591| orderBy = ""
592| orderBy = form.getfirst ("orderBy", "")
593| if orderBy:
594| if orderBy == 'gScore':
595| orderBy = 'm.gScore'
596| else:
597| orderBy = ''
598| if orderBy:
599| orderBy = "order by " + orderBy
600|
601| showMotifs= form.getfirst ("showMotifs", '')
602| c.execute ('select g.name, g.description, m.id, m.struct,

m.gScore, m.numMotifs from groups g inner join runs r on g.runID =
r.id inner join topMotifs m on g.name = m.groupName %s %s' % (where,
orderBy))

603| groups = c.fetchall()
604|
605| if not groups:
606| print "<p>Invalid classification</p><hr>"
607| DrawBrowseChoices()
608| return
609|
610|
611| #sort groups in an intuitive manner:
612| if not orderBy:
613| groups = LibrarySort (groups, 0)
614|
615| classification = string.lower (classification)
616| if classification == "scop":
617| if depth == 3:
618| description = "SCOP Superfamilies"

Appendix 2: GASPSdb CGI scripts
200

619| elif depth == 4:
620| description = "SCOP Families"
621| else:
622| description = "SCOP groups"
623| elif classification == "go":
624| description = "GO Annotations"
625| elif classification == "goscop":
626| description = "SCOP Superfamilies subdivided by GO

annotations"
627| else:
628| description = "Selected Groups"
629|
630| ToolTipScripts()
631| ToolTipDiv()
632| print "<h2>Browsing %s</h2>" % description
633| print "Hover over a group name to view a sample

motif."
634| print "
Click a group name to view all motifs

for a group."
635|
636| print "<table>"
637| print TableHeader ("Group", "# Motifs", "Top G-Score",

"Description")
638| for (groupName, groupDesc, motifID, struct, topScore, motCount)

in groups:
639| # c.execute ('select struct, gScore, id from motifs where

groupName = "%s" order by gScore' % groupName)
640| # motifs = c.fetchall()
641| # motCount = len (motifs)
642| # if motifs:
643| # topScore = motifs[-1][1]
644| # motifID = motifs[-1][2]
645| # else:
646| # topScore = "NA"
647| # motifID = ""
648| # if topScore == "NA" or topScore < minGScore:
649| # continue
650| groupNameHTML = '%s' % (groupName,
groupName)

651| if showMotifs:
652| groupDesc = '<table><th colspan=2>'+groupDesc+"</th>" +

TableRow(TableData(GetResTableByMotifID (c, motifID), GetImageTag
(groupName, struct))) + "</table>"

653| print TableRow (ToolTipGroupName_td (groupNameHTML,
groupName, motifID) + TableData (motCount, topScore, groupDesc))

654| print "</table>"
655|
656|
657| def GetImageTag (groupName, struct):
658| imagePath = "/images/"
659| imageName = imagePath + groupName+"_"+struct+".r3d.png"

#group_struct.r3d.png
660| imageTag = '<img src="'+imageName+'" alt="Motif Image"

width="240" height="192">'
661| return imageTag
662|
663|

Appendix 2: GASPSdb CGI scripts
201

664| def ToolTipGroupName_td (groupNameHTML, groupName, motifID=None,
structName=None):

665| if not motifID:
666| motifID=""
667| if not structName:
668| structName=""
669| td = """
670| <td id = "%s" onmouseover="getGroupDataWithTO(this, '%s', '%s');"

onmouseout="cancelGroupData();">
671| %s
672| </td>
673| """ % (groupName, motifID, structName, groupNameHTML)
674| return td
675|
676| def ToolTipDiv ():
677| print """
678| <div style="position:absolute;" id="popup" bgcolor="CFCFCF">
679| <table id="popupTable" bgcolor="CFCFCF" border="0"

cellspacing="0" cellpadding="0">
680| <thead>
681| <tr><th id ="popupStatus" bgcolor = "CFCFCF"></th>
682| <th id = "popupHeader" bgcolor = "CFCFCF" colspan="2"

align="left"></th></tr>
683| </thead>
684| <tbody id = "popupTableBody"></tbody>
685| </table>
686| </div>
687| """
688|
689| def ToolTipScripts():
690| print """
691| <script SRC="/js/MochiKit.js" TYPE="text/javascript"></script>
692| <script type = "text/javascript">
693| var lastDeferred;
694| var lastTO;
695|
696| function getGroupDataWithTO (element, motifID, structName){
697| _doit = function(){
698| getGroupData (element, motifID, structName);
699| }
700| lastTO = setTimeout ("_doit();", 500);
701| }
702|
703| function getGroupData(element, motifID, structName){
704| var url = "/cgi-bin/jsonMotif?group=" + escape (element.id) +

"&motifID=" + escape (motifID) + "&struct=" + (escape(structName));
705| var d = loadJSONDoc (url);
706| d.addCallback (partial (showMotifTable, element, motifID));
707| lastDeferred = d;
708| showToolTip (element, status="loading...");
709| }
710|
711| function cancelGroupData(){
712| document.getElementById ("popupHeader").innerHTML = "";
713| document.getElementById ("popupStatus").innerHTML = "";
714| if (lastDeferred) {
715| lastDeferred.cancel();
716| lastDeferred = null;

Appendix 2: GASPSdb CGI scripts
202

717| }
718| if (lastTO){
719| clearTimeout(lastTO);
720| }
721| clearData();
722| }
723|
724| function showToolTip (element, status){
725| clearData();
726| setOffsets(element);
727| document.getElementById ("popupStatus").innerHTML = status;
728| document.getElementById ("popupTableBody").innerHTML= '<TR><td

width= "400" height="200" align="center"></td></TR>'
729| }
730|
731|
732| function showMotifTable (element, motifID, result){
733| document.getElementById ("popupStatus").innerHTML = "";
734| document.getElementById ("popupTableBody").innerHTML =

result["html"];
735| document.getElementById ("popupHeader").innerHTML =

result["group"]
736| }
737|
738| function clearData(){
739| document.getElementById ("popupTableBody").innerHTML = "";
740| document.getElementById ("popup").style.border = "none";
741|
742| document.getElementById

("popupTable").setAttribute('cellPadding',0);
743| document.getElementById

("popupTable").setAttribute('cellSpacing',0);
744| }
745|
746|
747| function calculateOffset (field, attr) {
748| var offset = 0;
749| while (field){
750| offset += field[attr];
751| field = field.offsetParent;
752| }
753| return offset;
754| }
755|
756| function onTop (element) {
757| var height = 250;
758| var scrollTop = document.body.scrollTop;
759| var top = element.offsetHeight + calculateOffset (element,

"offsetTop");
760| return ((top - height) > scrollTop);
761| }
762|
763|
764| function setOffsets(element){
765|
766| var end = element.offsetWidth + calculateOffset (element,

"offsetLeft");

Appendix 2: GASPSdb CGI scripts
203

767| var top = element.offsetHeight + calculateOffset (element,
"offsetTop");

768| dataDiv = document.getElementById ("popup");
769| dataDiv.style.bgcolor = "CFCFCF";
770| dataDiv.style.border = "black 1px solid";
771| dataDiv.style.left = end + 15 + "px";
772| var ot = onTop(element)
773| if (ot)
774| {dataDiv.style.top = top - 250 + "px";}
775| else
776| {dataDiv.style.top = top + 5 + "px";}
777|
778| document.getElementById ("popupTable").setAttribute

('cellPadding', 2);
779| document.getElementById ("popupTable").setAttribute

('cellSpacing', 2);
780|
781| }
782| </script>
783| """
784|
785| def GetResTableByMotifID (c, motifID):
786| #get the residues for each motif
787| # c.execute ("""SELECT r.pdb, r.chain, r.name, r.resType,

l.shortLigandName, b.type, o.name
788| # FROM motifs m
789| # INNER JOIN motif_residue mr on m.id = mr.motifID
790| # INNER JOIN residues r on mr.resID = r.id
791| # LEFT JOIN ligandInts l on r.id = l.motResId
792| # LEFT JOIN (SELECT * FROM bridges WHERE type="disulfide")

b on r.id = b.motResId
793| # LEFT JOIN residues o on o.id = b.otherResId
794| # WHERE m.id = %d ORDER BY r.name""" % motifID)
795| c.execute ("""SELECT r.pdb, r.chain, r.name, r.resType,

l.shortLigandName, b.type, o.name
796| FROM motifs m
797| INNER JOIN motif_residue mr on m.id = mr.motifID
798| INNER JOIN residues r on mr.resID = r.id
799| LEFT JOIN ligandInts l on r.id = l.motResId
800| LEFT JOIN bridges b on r.id = b.motResId
801| LEFT JOIN residues o on o.id = b.otherResId
802| WHERE m.id = %d ORDER BY r.name""" % motifID)
803| residues = c.fetchall()
804| try:
805| resToSort = [(int(resRow[2]), resRow) for resRow in residues]
806| resToSort.sort()
807| residues = [row[1] for row in resToSort]
808| except ValueError:
809| pass
810|
811| resTableRows = []
812| for resRow in residues:
813| if resRow[4]:
814| ligand = '~' + resRow[4]
815| else:
816| ligand = ''
817| if resRow[5] == 'disulfide':
818| bridge = "SS-"

Appendix 2: GASPSdb CGI scripts
204

819| if resRow[6]:
820| bridge = bridge + resRow[6]
821| elif resRow[5] == 'salt':
822| bridge = "+-"
823| if resRow[6]:
824| bridge = bridge + resRow[6]
825| else:
826| bridge = ''
827| resTableRows.append (TableRow(TableData (resRow[3],

resRow[2], resRow[1], ligand, bridge), resRow[3]))
828|
829| return '\n<table class="residue">' + string.join (resTableRows,

"\n") +" </table>"
830|
831|
832|
833|
834|
835| def DescribeGroup (form):
836| imagePath = "/images/"
837| c = GetCursorFromDatabase()
838| # import MySQLdb
839| # c = db.cursor()
840|
841| # get group id
842| # c.execute ('select id from groups where name = "%s";' %

groupName)
843| # groupIDs = c.fetchall()
844| # if not groupIDs:
845| # print" <p> Group name %s not recognized. Please enter a valid

group name."
846| # DrawDescribeFrom()
847| # return
848| # #ignore the possibility of two or more groups with identical

names.
849| # groupID = int(groupIDs[0][0])
850|
851| # don't be confused by the dummy for loop. It's basically a

trick
852| # to make easier coding. Basically a failure at any if

statements sends you to
853| # the same else statement.
854| for i in (1,):
855| groupName = form.getfirst ("group")
856| if groupName:
857| c.execute ('select description from groups where name =

"%s"' % groupName)
858| groupDesc = c.fetchone()
859| if groupDesc:
860| break
861| else:
862| print "<p> Please enter a valid group name, or browse the

groups below."
863| DrawDescribeForm ()
864| return
865|
866| #get all structures in a single group

Appendix 2: GASPSdb CGI scripts
205

867| c.execute ('select s.name, s.pdb, s.chain, s.description,
s.species, s.ec from structs s inner join group_struct gs on s.name
= gs.structName where gs.groupName="%s"'% groupName)

868| structures = c.fetchall()
869|
870| print '<h2> Group: %s; %s </h2>' % (groupName, groupDesc[0])
871| print '<table class="smallTable">'
872| print TableHeader ("Structure", "G-score", "Motif", "Image")
873| tableRows = []
874| rowSwitcher = TableRowGenerator()
875| for structRow in structures:
876| # get the motifs if any for each structure
877| c.execute ('select id, gScore from motifs where groupName =

"%s" and struct="%s"' % (groupName, structRow[0]))
878| motifs = c.fetchall()
879| for motRow in motifs:
880| resTable = GetResTableByMotifID (c, motRow[0])
881| imageName = imagePath +

groupName+"_"+structRow[0]+".r3d.png" #group_struct.r3d.png
882| imageTag = '<img src="'+imageName+'" alt="Motif Image"

width="240" height="192">'
883| try:
884| gScore = float (motRow[1]) #gScore
885| except TypeError:
886| gScore = 0.0 #Acdtually these should simply be skipped
887| # but leave them in so I have a chance of

finding them!
888| #check http://babbittlab.ucsf.edu/cgi-

bin/GASPSdb?do=describeGroup&group=00008236
889|
890| tableRows.append ((gScore, TableData (

DescribeStruct(structRow[0], structRow[3], structRow[4],
structRow[5]), "%5.3f"%gScore, resTable, imageTag)))

891| tableRows.sort()
892| tableRows.reverse()
893|
894| for row in tableRows:
895| print TableRow (row[1], rowSwitcher.next())
896|
897| print "</table>"
898|
899| def HotLinkStructName (structName):
900|
901| #two choices 1a4ma and d1a4ma1
902| if len (structName) == 7:
903| return '<a

href="http://scop.berkeley.edu/search.cgi?ver=1.65&key=%s"
target="_blank">%s <a href = "http://www.ebi.ac.uk/thornton-
srv/databases/cgi-
bin/pdbsum/GetPage.pl?pdbcode=%s&template=protein.html&l=1"
target="pdbSum">pdbSum' % (structName, structName,
structName[1:5])

904| elif len (structName) == 5:
905| return '<a

href="http://www.pdb.org/pdb/explore/explore.do?structureId=%s"
target="_blank">%s%s' % (structName[0:4], structName[0:4],
structName[4])

906|

Appendix 2: GASPSdb CGI scripts
206

907| def DescribeStruct (structName, description="", species="", ec=""):
908| if len (structName) ==7:
909| pdbID= structName[1:5]
910| chainID = structName[5]
911| astralName = structName
912|
913| elif len (structName) == 5:
914| pdbID = structName[0:4]
915| chainID = structName[4]
916| astralName = None
917|
918| if description:
919| descriptionLine = TableRow ("<td colspan=2>"+Bold(description)

+ "</td>")
920| else:
921| descriptionLine = ""
922| if species:
923| speciesLine = TableRow (TableData(Bold('Organism'), species))
924| else:
925| speciesLine=""
926|
927| if ec:
928| ecLine = TableRow (TableData (Bold('EC'), ec))
929| else:
930| ecLine = ""
931|
932| pdbLine = TableRow (TableData (Bold('pdb'), '<a

href="http://www.pdb.org/pdb/explore/explore.do?structureId=%s"
target="_blank">%s chain %s' % (pdbID, pdbID, chainID)))

933| otherLinks = TableRow (TableData (Bold('links'), """<a href =
"http://www.ebi.ac.uk/thornton-srv/databases/cgi-
bin/pdbsum/GetPage.pl?pdbcode=%s&template=protein.html&l=1"
target="pdbSum">pdbSum

934|
 <a
href="http://scop.berkeley.edu/search.cgi?key=%s"
target="scop">SCOP """ % (pdbID, pdbID)))

935| if astralName:
936| scopLine = TableRow (TableData (Bold('scop'), '<a

href="http://scop.berkeley.edu/search.cgi?ver=1.65&key=%s"
target="_blank">%s' % (astralName, astralName)))

937| else:
938| scopLine = ""
939|
940| return '<table class="smallTable">' + descriptionLine + ecLine +

speciesLine + pdbLine + scopLine + otherLinks + "</table>"
941|
942|
943| def TableRowGenerator():
944| switch = False
945| while True:
946| switch = not switch
947| if switch:
948| yield ("row1")
949| else:
950| yield ("row2")
951|
952|
953| def TableRow (text, type = None):

Appendix 2: GASPSdb CGI scripts
207

954| if type:
955| first = "<tr class=\"%s\">" %type
956| else:
957| first = "<tr>"
958| return first + text + "</tr>"
959|
960|
961| def TableData (*cells):
962| cells = ["%s" % s for s in cells]
963| return '<td>' + string.join (cells, '</td><td>') + '</td>'
964| def TableHeader (*cells):
965| return '<th>' + string.join (cells, '</th><th>') + '</th>'
966|
967| def Bold (text):
968| return '' + text+""
969| def Green (text):
970| return ''+text+""
971| def Yellow (text):
972| return ''+text+""
973| def Red (text):
974| return ''+text+""
975|
976|
977|
978| def HTMLHead():
979| print """<html><HEAD>
980| <link rel=STYLESHEET type="text/css" href="/style.css">
981| <title>GASPS Motif Database</title>
982| </HEAD>
983| <body>
984| """
985|
986| def DrawNavBar (form):
987| print"""
988| <div id="header" class="header">
989| <map name="ucsfnosearch">
990|
991| <area shape="rect" alt="UCSF home page" coords="38,3,84,27"

href="http://www.ucsf.edu/">
992| <area shape="rect" alt="UCSF home page" coords="93,11,288,19"

href="http://www.ucsf.edu/">
993| <area shape="rect" alt="About UCSF" coords="306,11,368,19"

href="http://www.ucsf.edu/about_ucsf/">
994| <area shape="rect" alt="UCSF Medical Center"

coords="387,11,498,19" href="http://www.ucsfhealth.org/" >
995|
996| </map>
997|
998| <table border="0" width="100%" cellpadding="0" cellspacing="0"

summary="table used for layout purposes only">
999| <tr bgcolor="#666666">

1000| <td><img src="/graphics/ucsfgraynosearch.gif" alt="UCSF
navigation bar" width="537" height="30" border="0"
usemap="#ucsfnosearch" ></td>

1001| <td style="padding-top:5px; padding-right: 10px; vertical-
align:middle; text-align:right;">

1002| <img src="/graphics/GASPSdb_small.jpg"
alt="GASPSdb" border="0" style="vertical-align: center;">

Appendix 2: GASPSdb CGI scripts
208

1003| <img
src="/graphics/RBVI_logo_small.png" alt="RBVI" border="0">

1004| </td>
1005| </tr>
1006| </table>
1007|
1008| <!-- GASPSDB Nav Bar -->
1009| <table border="0" width="100%" cellpadding="0" cellspacing="0" >
1010| <tr bgcolor="#661166" style="text-align:center; color: white;

font-family: arial,sans-serif; font-weight: bold;" >
1011| <td>Main</td>
1012| <td><a href="/cgi-bin/GASPSdb?do=drawForm"

class="bigbutton">Search</td>
1013| <td><a href="/cgi-bin/GASPSdb?do=retrieveResults"

class="bigbutton">Get Results</td>
1014| <td><a href="/cgi-bin/GASPSdb?do=browse"

class="bigbutton">Browse Motifs</td>
1015| <td><a href="/downloads.html" class =

"bigbutton">Downloads</td>
1016| <td align="right">
1017| <table cellpadding="5px" >
1018| <tr>
1019| <td><a href="/help.html"

class="smallbutton">Help</td>
1020| <td><a href="/references.html"

class="smallbutton">References</td>
1021| </tr>
1022| </table></td>
1023| </tr>
1024| </table>
1025| </div>
1026|
1027| <!-- Main body of page starts here -->
1028|
1029| <div class = "body">
1030| """
1031|
1032| def HTMLTail():
1033| print "</div></body></html>"
1034| sys.exit(0)
1035|
1036| def main():
1037|
1038| print "Content-Type: text/html" # HTML is following
1039| print # blank line, end of headers
1040|
1041| form = cgi.FieldStorage()
1042|
1043| debug = form.getfirst ("debug", "")
1044| if debug == "mince":
1045| import cgitb; cgitb.enable()
1046|
1047|
1048| do = form.getfirst ("do", "")
1049| if not do:
1050| do = "drawForm"
1051|
1052| # if do=="rigor":

Appendix 2: GASPSdb CGI scripts
209

1053| # DoRigor(form)
1054| # else:
1055| # #main switch function:
1056| HTMLHead()
1057| DrawNavBar (form)
1058| if do == "drawForm" or do == "search":
1059| DrawSearchPage()
1060| # DrawMainForm()
1061| # elif do == "search":
1062| elif do == "rigor":
1063| DoRigor(form)
1064| elif do == "retrieveResults":
1065| RetrieveResults(form)
1066| elif do == "describeGroup":
1067| DescribeGroup (form)
1068| elif do == "describeMotif":
1069| DescribeMotif (form)
1070| elif do == "browse":
1071| Browse(form)
1072| elif do == "keySearch":
1073| KeySearch(form)
1074| elif do == "structSearch":
1075| StructSearchGroups (form)
1076|
1077| else:
1078| print "<p> Unrecognized do command", do, ". Try again."
1079| print "<hr>"
1080| DrawMainForm()
1081| HTMLTail()
1082|
1083|
1084|
1085| if __name__ == "__main__":
1086| main()

jsonMotif

1| #!/usr/local/bin/python2.4
2|
3| import cgi, string
4|
5| imagePath = "/images/"
6|
7| def GetCursorFromDatabase():
8| import MySQLdb
9| db = MySQLdb.connect ("""#### marked out for security #####""")

10| c = db.cursor()
11| return c
12|
13| def TableRow (text, type = None):
14| if type:
15| first = "<tr class=\"%s\">" %type
16| else:
17| first = "<tr>"
18| return first + text + "</tr>"
19|

Appendix 2: GASPSdb CGI scripts
210

20|
21| def TableData (*cells):
22| cells = ["%s" % s for s in cells]
23| return '<td>' + string.join (cells, '</td><td>') + '</td>'
24|
25| def GetResTableByMotifID (c, motifID):
26| #get the residues for each motif
27| # c.execute ("""SELECT r.pdb, r.chain, r.name, r.resType,

l.shortLigandName, b.type, o.name
28| # FROM motifs m
29| # INNER JOIN motif_residue mr on m.id = mr.motifID
30| # INNER JOIN residues r on mr.resID = r.id
31| # LEFT JOIN ligandInts l on r.id = l.motResId
32| # LEFT JOIN (SELECT * FROM bridges WHERE type="disulfide")

b on r.id = b.motResId
33| # LEFT JOIN residues o on o.id = b.otherResId
34| # WHERE m.id = %d ORDER BY r.name""" % motifID)
35| c.execute ("""SELECT r.pdb, r.chain, r.name, r.resType,

l.shortLigandName, b.type, o.name
36| FROM motifs m
37| INNER JOIN motif_residue mr on m.id = mr.motifID
38| INNER JOIN residues r on mr.resID = r.id
39| LEFT JOIN ligandInts l on r.id = l.motResId
40| LEFT JOIN bridges b on r.id = b.motResId
41| LEFT JOIN residues o on o.id = b.otherResId
42| WHERE m.id = %d ORDER BY r.name""" % motifID)
43| residues = c.fetchall()
44| try:
45| resToSort = [(int(resRow[2]), resRow) for resRow in residues]
46| resToSort.sort()
47| residues = [row[1] for row in resToSort]
48| except ValueError:
49| pass
50|
51| resTableRows = []
52| for resRow in residues:
53| if resRow[4]:
54| ligand = '~' + resRow[4]
55| else:
56| ligand = ''
57| if resRow[5] == 'disulfide':
58| bridge = "SS-"
59| if resRow[6]:
60| bridge = bridge + resRow[6]
61| elif resRow[5] == 'salt':
62| bridge = "+-"
63| if resRow[6]:
64| bridge = bridge + resRow[6]
65| else:
66| bridge = ''
67| resTableRows.append (TableRow(TableData (resRow[3],

resRow[2], resRow[1], ligand, bridge), resRow[3]))
68|
69| return '\n<table class="residue">' + string.join (resTableRows,

"\n") +" </table>"
70|
71|
72|

Appendix 2: GASPSdb CGI scripts
211

73| def DescribeMotif (groupName, motifID=None, struct=None,
debug=False):

74| c = GetCursorFromDatabase();
75| if not motifID:
76| c.execute ('select id from motifs where groupName = "%s" and

struct = "%s"' % (groupName, struct))
77| motifIDS = c.fetchall()
78| assert len (motifIDS) == 1
79| motifID = motifIDS[0][0]
80|
81| c.execute ("select groupName, struct, gScore from motifs where id

= %s" % motifID)
82| groupName, struct, gScore = c.fetchone()
83| resTable = GetResTableByMotifID (c, int(motifID))
84| # c.execute ("""select resType, name, chain from residues r
85| # inner join motif_residue mr on mr.resID = r.id
86| # where mr.motifID = %s""" % motifID)
87| #
88| # residues = c.fetchall()
89| #
90| # try:
91| # resToSort = [(int(resRow[1]), resRow) for resRow in residues]
92| # resToSort.sort()
93| # resPairs = [row[1] for row in resToSort]
94| # except ValueError:
95| # pass
96| # resTable = '\n<table class="residue">' + string.join

([TableRow(TableData (resRow[0], resRow[1], resRow[2]), resRow[0])
for resRow in residues], "\n") +" </table>"

97| imageName = imagePath + groupName+"_"+ struct +".r3d.png"
#group_struct.r3d.png

98| imageTag = '<img src="'+imageName+'" alt="Motif Image"
width="240" height="192"/>'

99| try:
100| gScore = float (gScore) #gScore
101| except TypeError:
102| gScore = 0.0 #Acdtually these should simply be skipped
103| # but leave them in so I have a chance of finding

them!
104| #check http://babbittlab.ucsf.edu/cgi-

bin/GASPSdb?do=describeGroup&group=00008236
105|
106| textTable = """<table>
107| %s
108| %s
109| </table>
110| """%(TableRow (TableData

("Structure:", struct)),
111| TableRow (TableData ("G-

Score:", "%5.3f" % gScore)))
112|
113| html = TableRow (TableData (textTable, resTable, imageTag))
114|
115| c.execute ('select description from groups where name = "%s";' %

(groupName))
116| description = c.fetchall()
117| if len (description) == 1:
118| groupName = groupName + " : " + description[0][0]

Appendix 2: GASPSdb CGI scripts
212

119| if debug:
120| print "Content-Type: text/html"
121| print
122| print html
123| return
124|
125| print "Content-Type: text/javascript"
126| print
127| print dict(html = html, group=groupName)
128|
129| def main():
130| form = cgi.FieldStorage()
131| group = form.getfirst ("group", "")
132| motifID = form.getfirst ("motifID", "")
133| struct = form.getfirst ("struct", "")
134| debug = form.getfirst ("debug", "")
135| if debug:
136| import cgitb; cgitb.enable()
137|
138| DescribeMotif (group, motifID, struct, debug)
139|
140|
141| if __name__ == "__main__":
142| main()
143|
144| """
145| http://gaspsdb.rbvi.ucsf.edu/cgi-

bin/jsonMotif?group=c.37.1&struct=d1in4a2&motifID=
146| http://gaspsdb.rbvi.ucsf.edu/cgi-bin/jsonMotif?group=&struct=d1efva1
147| """

Appendix 3: GASPSdb Web Interface
213

Appendix 3: GASPSdb Web Interface

Shown here are screen shots and text from http://gaspsdb.rbvi.ucsf.edu.

GASPSdb Home Page

Figure 1. Home page of GASPSdb.

Appendix 3: GASPSdb Web Interface
214

GASPSdb Search Page

Figure 2. GASPSdb Search Page.

Appendix 3: GASPSdb Web Interface
215

GASPSdb Browsing Page

Figure 3. GASPSdb Browse Page.

Currently browsing scop superfamilies. The popup window is showing the top-scoring
motif from the Calmodulin-like family in response to the pointer hovering over its group
ID.

Appendix 3: GASPSdb Web Interface
216

GASPSdb Group Description Page

Figure 4. GASPSdb Group description page, partial.

Showing the first three motifs from a group in the GO and SCOP combination groupings.
The full page shows additional entries for each remaining motif in the group.

Appendix 3: GASPSdb Web Interface
217

GASPSdb Search Results Page

Figure 5. Search results table for search of 1rvk against SCOP superfamily motifs.

The popup window is displaying the first matched motif because the pointer is hovering
over its group id.

Appendix 3: GASPSdb Web Interface
218

GASPSdb Help Page

About GASPSdb

Where do these motifs come from?

These motifs were generated using an entirely automated method given the acronym

GASPS. For specific details please refer to the GASPS reference on the References Page.

In short, GASPS chooses a motif from a single structure that best separates related

structures from all other structures. The GASPS score or G score measures the degree of

this separation. For the motifs here, we used several different systems to define related

structures. In all cases, the set of structures was reduced to exclude mutants as well as

sequence-redundant structures at the level of 40% or 25% identity.

SCOP version 1.65

 Members of the the same superfamily or family are grouped together.

Gene Ontology

 Structures are grouped according to their molecular function terms,
automatically assigning parent terms where appropriate so that groups can be
defined at any level in the GO hierarchy. Terms that give redundant groups to
terms lower in the hierarchy are ignored as well as groups that appear to be too
general (those with more than 50 structures.)

SCOP superfamilies subdivided by GO annotations

 In an attempt to get isofunctional, homologous groups, SCOP superfamilies
were subdivided by all assigned and implied GO molecular function terms. Terms
that give redundant groups were ignored.

GASPS uses SPASM (see References) to identify matches, so that each residue is

modeled as two points in space: one representing the alpha carbon, and one representing

the side chain centroid.

Appendix 3: GASPSdb Web Interface
219

How does the search work?

We are indebted to others who have published and made available their motif searching

tools for our use. Specifically Gerard Kleywegt and his RIGOR tool (see References).

Our search receives your structure file in PDB format and finds all motifs in the specified

library that have a close match in the PDB file.

How do I interpret the search results?

The search results on the search page are ranked according to an expectation value (E).

The expectation value is computed according to the model generated by Stark et al. (see

References), and is based on the RMSD as well as the type and number of residues in the

motif. The G score may also help decide wether a match represents a significant

similarity.

What is the G score?

Each motif is given a G score by GASPS. This is the score that GASPS tries to maximize

as it constructs motifs. In short, a G score indicates how well conserved the motif is

across the group, and how unique it is among unrelated proteins. This score has a

theoretical range of 0-1.1, though any score near 1.0 is highly significant, and scores

below about 0.4 are highly suspect. In cases with marginal E values, the G score may

provide additional support.

In slightly more detail the G score is the sum of two components, the largest is the

normalized area under an ROC style plot to a false positive rate of approximately 0.001,

and the other component is the relative distance between true positive and false positive

RMSD distributions. This latter component accounts for only 0 to 0.1 of the total G score,

Appendix 3: GASPSdb Web Interface
220

so that most G scores above 1.0 imply perfect separation in an ROC style plot (ROC area

= 1.0).

What do the motif images show?

The motif images attempt to show the relative orientation of motifs and the local

secondary structure and ligands in the protein. Residues in the motif are drawn as

lopsided barbells. The smaller white sphere represents the alpha carbon and the larger

colored sphere represents the side chain centroid. Side chains are colored according to

residue type based on Bob Fletterick's 'shapely models' color scheme. Local secondary

structure and ligands are drawn transparently to not mask the motifs.

These images are generated automatically with no effort to find a decent viewable

orientation. With over 12,000 images, doing so by hand was not feasible.

GASPSdb References Page

References

Several tools provided by us and others have been instrumental in getting this resource

online. Where possible, the tool names link to the relevant web sites.

GASPS

Genetic Algorithm Search for Patterns in Structures Responsible for generation of
all motifs:

Polacco, Benjamin J. and Patricia C. Babbitt (2006) Automated discovery of 3D
motifs for protein function annotation." Bioinformatics 22(6), 723-30.

SPASM

Provided by Gerard Kleywegt. This motif search tool was instrumental in
calculating the scoring function for the above Genetic Algorithm.

Kleywegt, G. J. (1999). "Recognition of spatial motifs in protein structures." J
Molecular Biology 285(4), 1887-97.

Appendix 3: GASPSdb Web Interface
221

RIGOR

Sister program to SPASM. Simply does the reverse search of the above. Our
search feature relies on RIGOR. Refer to citation above.

Raster3D

For final rendering of motif images (and GASPSdb logo!)

Merritt, Ethan A. and Bacon, David J. (1997). "Raster3D: Photorealistic
Molecular Graphics" Methods in Enzymology 277, 505-524.

Molscript

Generated ribbon descriptions for rendering by Raster3D

Kraulis, Per J. (1991). "MOLSCRIPT: A Program to Produce Both Detailed and
Schematic Plots of Protein Structures." Journal of Applied Crystallography 24,
946-950.

Statistical Model

The model described in the reference below was used to calculate the expectation
values of matches to the motifs.

Stark, A., S. Sunyaev, et al. (2003). "A model for statistical significance of local
similarities in structure." J Molecular Biology 326(5): 1307-16.

222

	Master2.PressQuality1.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

