
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
PART I: SPECTRAL GEOMETRY OF THE HARMONIC GASKET PART II: NONLINEAR POISSON 
EQUATION VIA A NEWTON-EMBEDDING PROCEDURE

Permalink
https://escholarship.org/uc/item/104557jt

Author
Sarhad, Jonathan Jesse

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/104557jt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Part I: Spectral Geometry of the Harmonic Gasket

Part II: Nonlinear Poisson Equation via a Newton-embedding Procedure

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Jonathan Jesse Sarhad

June 2010

Dissertation Committee:

Dr. Michel L. Lapidus, Chairperson
Dr. John Baez
Dr. James P. Kelliher
Dr. Frederick Wilhelm



Copyright by
Jonathan Jesse Sarhad

2010



The Dissertation of Jonathan Jesse Sarhad is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I thank my advisor, Dr. Michel L. Lapidus for all of his encouragement, guid-

ance, and support throughout my graduate career. I thank Dr. James P. Kelliher, Dr.

Frederick Wilhelm, Dr. James Stafney, Dr. Scot Childress, and John Huerta for input

in PDE and fractal geometry. I thank Dr. Vicente Alvarez for help with the majority

of the figures in this dissertation. I thank Dr. Bruce Chalmers, Dr. Michael Anshele-

vich, and Dr. Marta Asaeda for sparking my interest in analysis. I thank Dr. Tim

Ridenour for his explanation of power grid theory. I thank Ricky Han for his input

on C∗-algebras. I thank Dr. Congming Li for initiating my research in PDE. I thank

the Fractal Research Group (FRG) and Mathematical Physics and Dynamical Systems

seminar (MPDS) at UC Riverside for providing support and a venue for sharing ideas

and improving research. Finally, I thank all of my friends and family.

iv



To my mother and father for all of their support.

v



ABSTRACT OF THE DISSERTATION

Part I: Spectral Geometry of the Harmonic Gasket

Part II: Nonlinear Poisson Equation via a Newton-embedding Procedure

by

Jonathan Jesse Sarhad

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2010

Dr. Michel L. Lapidus, Chairperson

Part I of this dissertation concerns the construction of a Dirac operator and

spectral triple on the harmonic gasket in order to recover aspects of Jun Kigami’s mea-

surable Riemannian geometry. In particular, we recover Kigami’s geodesic distance

function on the gasket as an example of a fractal analog to Connes’ theorem on a

compact Riemannian manifold which states that from the spectral triple on a compact

Riemannian manifold one can recover the geodesic distance on the manifold. Part I

builds on results of Michel L. Lapidus in collaboration with Christina Ivan and Eric

Christensen who have done work using Dirac operators and spectral triples to construct

geometries of some fractal sets built on curves including the standard Sierpinski gasket.

Part I is also related to the work of Jun Kigami who has constructed a prototype for a

measurable Riemannian geometry using the harmonic gasket. Kigami has related mea-

surable analogs of Riemannian energy, gradient, metric, volume, and geodesic distance

in formulas which are analogous to their counterparts in Riemannian geometry. In ad-

dition to recovering Kigami’s geometry, one of the spectral triple constructions we have

used can be generalized to a certain class of sets built on countable unions of curves in

Rn.
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Part II is an adaptation of an article I have written, nonlinear poisson

equation via a newton-embedding procedure, which has been accepted for pub-

lication in the journal Complex Variables and Elliptic Equations. Chapter 5 is a version

of the article, augmented to include some background on second order elliptic equations

and the Newton-embedding procedure.
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Spectral Geometry of the

Harmonic Gasket
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Chapter 1

Introduction

What is geometry? One might answer tautologically, stating that it is whatever

it is defined to be. A metric space and a Riemannian manifold may represent extreme

definitions, from the most general to the most restrictive, but certainly there is more

to the question. Should a metric space really be called a geometry? Should there be

meaningful paths in a space for it to be called a geometry? Should there be a shortest

path between any two points in the space? Should it be unique?

For example, if you stood on a mountaintop and saw another peak in the dis-

tance and wanted to know how far it was to get there you may consider many geometries.

Unless you are a bird, the geometry which views you as being in 3-dimensional Euclidean

space is not very useful. If you were a kangaroo you might consider how best to hop

your way to the other peak. The meaningful geometry for a hiker seems to come from

considering how to walk from one peak to the other and then considering the shortest

of all possible walking-paths. If there is a lake in the way, there may not be a unique

shortest path.
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To make things more complicated, suppose that two paths could have the same

length yet one of them is much more physically exerting than the other. In this case,

maybe the meaningful geometry is not the one you see with your eyes but something

completely different—a distorted or even broken version of the original space. To find

this geometry one must now consider human physiology in conjunction with the original

topography as the necessary and sufficient information encoding the geometry. Naively,

it seems reasonable that this information could be packaged into a suitable space of

functions on the original topography—functions which coordinatize the original space

into the desired space. This is one way of viewing Jun Kigami’s measurable Riemannian

geometry on the Sierpinski gasket.

The Sierpinski gasket is a fractal set which is not a smooth manifold nor even

a topological manifold. It is shown below Figure 1.1 as it is usually viewed, in Euclidean

metric. The Sierpinski gasket below has a natural metric structure induced by the Eu-

clidean metric in R2, given by the existence of a shortest path (non unique) between any

two points. These shortest paths are piecewise Euclidean segments and hence piecewise

differentiable, but in general not differentiable.

Jun Kigami uses a theory of harmonic functions on the Sierpinski gasket to

construct a new metric space that is example of the distortion mentioned above, but

does not do any breaking. In fact, the new metric space is homeomorphic to the Sier-

pinski gasket. This new space shown below Figure 1.2, called the harmonic gasket or

the Sierpinski gasket in harmonic coordinates, is actually given by a single harmonic

coordinate chart for the Sierpinski gasket.
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Figure 1.1: Sierpinski gasket

Figure 1.2: Harmonic gasket

The harmonic gasket has a C1 shortest path between any two points. It is in-

teresting to note that the harmonic coordinate chart smoothes out the Sierpinski gasket.

Kigami, building on work by Kusuoka, has found several formulas in the setting of the

harmonic gasket which are measurable analogous to their counterparts in Riemannian

geometry. In particular, he has found formulas for energy and geodesic distance involv-

ing measurable analogs to Riemannian metric, Riemannian gradient, and Riemannian

volume. For this reason, this geometry is appropriately called measurable Riemannian
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geometry.

Returning to the theme of defining a meaningful geometry, one might consider

that at the outset there is no space waiting to be altered. In contrast, could one start

with a space of functions and determine a geometry? If the function space is a commu-

tative C∗-algebra, then one can tease from it a topological space. This is a consequence

of Gelfand’s theorem. If that topological space is metrizable then more information is

needed to determine a metric. Knowledge of a certain Hilbert space of vector fields

on the space and a particular differential operator is enough to determine a metric in

many instances. This way of constructing a geometry is part of the broader theory of

noncommutative geometry.

Alain Connes proved that for a compact spin Riemannian manifold, M , a triple

of objects called a spectral triple encodes the geometry of M . The spectral triple consists

of the C∗-algebra of complex-continuous functions on M , the Hilbert space of L2-spinor

fields, and a differential operator called the Dirac operator. The Dirac operator is con-

structed from the spin connection associated to M and can be thought of as the square

root of the spin-Laplacian (mod scalar curvature).

Connes’, through a very simple formula, uses the information from the spectral

triple to recover the geodesic distance on M , and hence the geometry of M . In the ab-

sence of spin or even orientability, this result still holds, though the Dirac operator may

not be uniquely defined. The reason for the name noncommutative geometry is that the

arguments involved in this result do not rely on the commutivity of the C∗-algebra which

opens the door to the possibility of defining geometries on noncommutative C∗-algebras.
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The applications of noncommutative in Part I, however, stay within the context of the

commutative C∗-algebras of complex-continuous functions on fractal sets.

The work I have done in Chapter 4 of Part I is to recover Kigami’s measurable

Riemannian geometry using spectral triples. My work builds on the work of my advisor,

Michel L. Lapidus and his broader program to view fractals as generalized manifolds,

and in particular, as suitable noncommutative spaces. In particular, I have built on

his collaborative work with Christina Ivan and Eric Christensen which constructs ge-

ometries for several fractal sets built on curves using spectral triples [3]. In their work,

they construct spectral triples for finite unions of curves in a compact Hausdorff space,

parameterized graphs, infinite trees, and for the Sierpinski gasket in Euclidean metric.

For the case of the Sierpinski gasket, they recover the geodesic distance, renormalized

Hausdorff measure, and Hausdorff dimension from the spectral triple. The basis for the

construction of these spectral triples is the spectral triple for a circle. Finite and count-

able direct sums of the circle triples are used to construct the desired spectral triples.

I have constructed several spectral triples for the harmonic gasket, all of which

recover the geodesic distance on the harmonic gasket. As in [3], I use direct sums of

circle triples to construct the desired spectral triples. One of the constructions I have

used generalizes to a class of sets built on countable unions of curves in Rn.

In the concluding remarks of Chapter 4, I discuss work in progress which

includes an informal sketch of a vastly different construction of a Dirac operator and

spectral triple from the ones built from direct sums. This global Dirac operator is defined

directly from Kigami’s measurable Riemannian metric and gradient, giving it a stronger

6



resemblance to Connes’ Dirac operator on a compact Riemannian manifold. The Hilbert

space of the triple is constructed from Kigami’s L2-vector fields on the gasket, again

giving a stronger fractal analog to Connes’ theorem. In addition, the global construction

may prove a better starting point for showing that the Dirac operator squares to the

appropriate Laplacian in this setting, the Kusuoka Laplacian. I also discuss two open

problems. These problems, which are inherently linked, are the computation of the

spectral dimension and volume measure induced by the spectral triples for the harmonic

gasket.

Remark 1. The primary tool of noncommutative geometry used in Part I is the spectral

triple and since the work involves only commutative algebras, I will refer to the geometry

most often as spectral geometry.

1.1 Structure of Part I

The body of Part I consists of three chapters. Chapter 2 is an exposition

of measurable Riemannian geometry. Chapter 3 provides a description of methods in

noncommutative geometry and spectral geometry, emphasizing their applications to

fractal sets. Chapter 2 and Chapter 3 are in the service of giving context to the results

in Chapter 4. One of the main results in Chapter 4 is the recovery of the measurable

Riemannian geometry of the Sierpinski gasket using spectral triples.
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Chapter 2

Measurable Riemannian

Geometry of the Sierpinski

Gasket

2.1 Overview

The Sierpinski gasket, an example of a post critically finite fractal, has as part

of its definition, a metrizable compact topological structure. It is the particular exam-

ple, for N = 3, of N -Sierpinski space which, via a collection of contraction mappings,

can be embedded in RN−1. Sierpinski space is most commonly studied as the Sierpinski

gasket in the plane. It is by no means smooth and is not even a continuous manifold

(i.e. not locally Euclidean). So it is not possible to speak of Riemannian geometry on

the gasket in the classical sense.

It is possible though, to abstract several notions from the Riemannian geom-
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etry: Riemannian energy, volume, metric, and gradient. Measurable analogs to these

notions are constructed analytically from graph approximations of the gasket. Jun

Kigami gives a prototype for a ‘measurable’ Riemannian geometry in [12]. Kigami uti-

lizes earlier work by S. Kusuoka in [18] in which a quadratic ‘energy’ form E , a ‘volume’

measure ν, a ‘metric’ realized by a non-negative symmetric matrix Z, and a ‘gradient’

∇̃, operating on the domain of E (which consists of the continuous functions on the

gasket that admit finite energy) are shown to satisfy,

E(u) =

∫
K

(∇̃u, Z∇̃u)dv,

giving legitimacy to calling (ν, Z, E) a ‘measurable’ Riemannian structure on the Sierpin-

ski gasket K [18]. Attaching a geodesic distance function to the above structure would

further the analogy. As a way of achieving this, Kigami uses harmonic functions on K

as a coordinate system for K. This results in a homeomorphism Φ, between K and its

image under Φ, KH , the harmonic gasket (also called the Sierpinski gasket in harmonic

coordinates). With this definition, KH is a subset of the plane x + y + z = 0 in R3.

With respect to the R2-induced arclength metric onKH , Kigami proves the existence of a

C1 shortest path γ, in this context called a geodesic, between any two points in KH [12].

The length of this path yields a geodesic distance function on KH which can

be pulled back to K via Φ to yield for x, y ∈ K, with slight abuse of notation,

d∗(x, y) =

∫ 1

0

(
dγ

dt
, Z

dγ

dt

)
dt

which is called the harmonic shortest path metric on K. This is the notion of measurable

Riemannian geometry on K: d∗ is the geodesic distance associated to the measurable

9



Riemannian structure (ν, Z, ∇̃). One thing to pay attention to in the sections to follow

is that the harmonic functions are constructed via graph approximations of K, so are

independent of how K is initially embedded in R2. In this case, there is an intrinsic

quality to the measurable Riemannian geometry. For M a smooth manifold, the follow-

ing list compares Riemannian geometry on M with measurable Riemannian geometry

on K.
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

Riemannian Geometry Measurable Riemannian Geometry

metric g metric Z

non-neg. sym. matrix A non-neg. sym. matrix Z

varying smoothly on M defined in the measurable sense on K

gradient ∇ gradient ∇̃

(∇f, x)g = Dxf all x given by harmonic approximation

energy E energy E

E[u, v] =
∫
M (∇u,A∇v)dνg E [u, v] =

∫
K (∇̃u, Z∇̃v)dv

u, v smooth on M u, v continuous on K with finite energy

volume element dνg volume element dν

dνg =
√
det(A)dx ν is the Kusuoka measure on K

Laplacian ∆ Laplacian ∆ν

E[u, v] = −
∫
M v∆udvg E [u, v] = −

∫
K v∆νudν

each smooth v with compact support each v ∈ domE vanishing on ∂K

geodesic distance d geodesic distance d∗

d(x, y) =
∫ 1

0 (dγdt , A
dγ
dt )

1
2dt d∗(x, y) =

∫ 1
0 (dγdt , Z

dγ
dt )

1
2dt

γ is a geodesic in M γ is a geodesic in K

11



2.2 The Sierpinski Gasket

The most common and intuitive presentation of the Sierpinski gasket is as a

solid equilateral triangle which has a smaller equilateral triangle removed from its center,

and again an even smaller triangle removed from each of the three remaining triangles

and so on as seen in Figure 2.2 below.

Figure 2.1: Construction of the Sierpinski gasket by the removal of triangles

This is done a countable number of times, and the result is called the Sierpinski gasket.

The following Figure 2.2 is a high iteration approximation of the Sierpinski gasket.

Figure 2.2: Sierpinski gasket, K
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Considering the gasket in stages, or as approximations, is intuitive but also

fundamental to defining additional structure on the gasket. Graph approximations will

be the starting point for defining measure, operators, harmonic functions, etc. on the

gasket.

The Sierpinski gasket is well described analytically as the unique fixed point

of a certain contraction mapping on a metric space. The contraction mapping to be

defined is composed of three contraction mappings of R2 that will allow for analysis, not

just on graph approximations, but on arbitrarily small portions of the gasket, called cells.

Although continuity inherited from the Euclidean topology of the plane nat-

urally connects with the analysis of the gasket, it is not critical to the definitions of

measure, operators, harmonic functions, etc. (In fact, it turns out that harmonic func-

tions, defined exclusively in terms of graphs, will necessarily be continuous functions in

the Euclidean induced topology of the gasket.) To generate the desired structure on the

gasket, Euclidean neighborhoods are replaced with graph neighborhoods. To begin, we

define the following contractions on the plane:

Fix =
1

2
(x− pi) + pi

i = 1, 2, 3 ; pi is a vertex of a regular 3-simplex, P

Let Ξ be the set of nonempty compact subsets of R2. The Hausdorff metric,

dH(C,D) = max

{
sup
x∈C

inf
y∈D

d(x, y), sup
y∈D

inf
x∈C

d(x, y)

}

13



Figure 2.3: 3-simplex

for C,D ∈ Ξ and Euclidean distance, d , makes (Ξ, dH) a metric space. The assignment,

C →
3⋃
i=1

Fi(C)

from (Ξ, dH) to itself, is a contraction mapping. The Sierpinski gasket, K, is then defined

as the unique fixed point of the this mapping. In other words, it is the unique element

K ∈ Ξ such that

K =
3⋃
i=1

Fi(K)

Remark 1. N -Sierpinski space is defined analogously, using N contractions on RN−1.

Remark 2. K is a subset of the closed equilateral triangle given by the simplex in

Figure 2.2.

Remark 3. The fixed point of a contraction mapping F on a metric space can be found

as the limit of the sequence {F k(y)} for any y in the metric space. It is therefore inter-

esting to note that, starting with any nonempty compact subset of the plane, the iteration

14



of our contraction mapping on that set will yield K as the limit. In other words, one

could start with say, the iconical alien face of any size, pasted anywhere in the plane,

and the iterations of the contraction map will successively transform the alien toward

(in the Hausdorff metric) the gasket. For this reason, the fixed point of such a mapping

is often called an attractor.

For any integer m ≥ 1, let w be the multi-index given by

w = (w1, ..., wm), wj ∈ {1, 2, 3}

and Fw be given by

Fw = Fw1 ◦ · · · ◦ Fwm .

Then K satisfies

K =
⋃
|w|=m

Fw(K).

This is called the decomposition of K into m-cells, with Fw(K) being the m-cell given

by w. Fw(K) is a subset of K. A more intuitive description will be given, concluding

the following discussion of graph approximations.

The graph approximations of K and their associated vertices are central to all

further analysis of the gasket. The mth-level graph approximation Γm, is given by,

Γm =
⋃
|w|=m

Fw(P).
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Figure 2.4: Graph approximations of the Sierpinski gasket

The graphs for m = 1, 2, 3, 4 are shown in Figure 2.2.

The graph approximations are precisely graphs, thus consisting only of edges and ver-

tices. In contrast to the decomposition into m-cells, a graph approximation is not

regarded as a subset of K. The vertices are points of K and the edges viewed as lines in

the plane are also subsets of K, but the edges will not be used this way: The edges are

used only for defining an equivalence relation on vertices. Two vertices are equivalent

iff they are connected by an edge. Two vertices in the same equivalence class will be

said to be neighbors. With the exception of the vertices, p1, p2, p3, of the initial simplex,

which each have two neighbors, all vertices will have four neighbors, making each graph

approximation nearly a four-regular graph.

The transition from analysis on graphs to analysis on K is made easy by one

special fact: The collection of vertices unioned over all graph approximations is a dense

subset of K. This follows immediately from the definition of our contraction maps and

16



the density of the dyadic numbers in the unit interval. The functions on K that we will

consider will be continuous (in the Euclidean subspace topology) and therefore they will

be completely determined by their values on the collection of vertices. It is common in

analysis on a fractal to have the convieniant addressing system for points, inherited from

the contraction maps. In this way, points on the gasket will be given as words whose

letters are in the set 1, 2, 3. To formalize the above discussion, we have the following

terminology [12]:

Definitions

• 1. S ≡{1,2,3}

• 2. Σ ≡ SN

• 3. W0 ≡ {∅}, Wm ≡ Sm for m > 0, W∗ ≡
⋃
m≥0Wm

• 4. w ≡ w1, ..., wm ∈W∗

• 5. |w| ≡ m for w ∈W∗

• 6. Σw ≡ sequences in Σ with initial segment w1, ..., wm

• 7. Fw = Fw1 ◦ · · · ◦ Fwm

• 8. V0 ≡ {p1, p2, p3} ≡ ∂K, Vm ≡
⋃
w∈Wm

Fw(V0), V∗ ≡
⋃
m≥0 Vm

• 9. ∂w ≡ the triangle with side lengths 1
2m bordering the the m-cell Kw for |w| =

m > 0 and ∂w = ∂0 = P for |w| = 0.

• 10. Kw ≡ K for |w| = 0, Kw ≡ Fw(K) for |w| > 0

• 11. Γw ≡ P for |w| = 0, Γw ≡ Fw(P) for |w| > 0
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• 12. For x, y ∈ Vm, x ∼= y iff x and y share an edge in Γm.

Note that Σ is the collection of sequences {ai}∞i=1 with ai ∈ {1, 2, 3}. We refer

to Wm as the the set of words of length m and Vm as the set of level m vertices. Note

that V∗ is the collection of all of the vertices from all of the graph approximations. As

indicated above, V0 is considered the boundary of K.

Recalling the map Fi, it is evident that it maps any point in the plane to the

midpoint of segment joining that point to pi. Then it is clear that F1 maps Γ0 to the

subgraph Γ1, the left-lower equalteral triangle of Γ0. Similarly, F21 maps Γ0 to the upper

equilateral triangle of F1(Γ0). In general, Fw, following the multi index w = w1, ..., wm

from right to left, maps Γ0 to the according nested equilateral triangle. It should be

noted that the vertices V0 belong to Γ0, the vertices Vm belong to the union of the

subgraphs Fw(Γ0 for w = m, and Vm ⊂ Vm+1.

As mentioned before, K is a subset of the solid equilateral bounded by Γ0. In

order to make Kw more intuitive, notice that Kw is indeed the solid equilateral triangle

bounded by Γw intersected with the gasket K. In other words, it is that portion of the

gasket that lives inside the smaller equilateral triangle given by w. The last item in the

definition is the neighbor relation mentioned earlier.

The words described in the definition are useful also as an addressing scheme

for points in the gasket. Just as words track subgraphs and subsets of K, they can easily

be used to track points. Each vertex, v ∈ V∗ − V0, is given by a finite word w ∈ W∗ as

follows: If v ∈ Γm − Γm−1 for m > 1, then there is a unique vertex pi ∈ V0 and vertex
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q ∈ Γm−1, such that v is the midpoint of the segment joining pi and q. In other words,

v = Fi(q). Then i = w1.

Continuing in this manner, we determine w2, ...wm−1 uniquely, giving v =

Fw1,...wm−1(p) for some p ∈ Γ1. At this point the uniqueness breaks down, as it is clear

that p = Fj(pi) = Fk(pl) for pi, pl ∈ V0 with j 6= k and thus i 6= l. Therefore v can be

written correctly with the address w1, ..., wm−1, j; i or with the address w1, ..., wm−1, k; l.

The semicolon at the end of each address is used to emphasize the map indices from

the index of the final argument. The final argument’s index could be omitted as it is

uniquely determined by the rightmost map index. In this case, a vertex v ∈ Γm−Γm−1

has an address w, with |w| = m.

Points in K − V∗ are given by infinite words in Σ that do not terminate in an

infinite string of 1’s, 2’s, or 3’s (any such repeating word is just an element of V0). These

points have a unique infinite sequence addressing them. Consider Σ to have the standard

metric topology on sequences and K to have the Euclidean topology inherited from the

plane. To summarize the above, there exists the following continuous surjection [12]:

π : Σ→ K

such that

π(w) =
⋂
m≥0

Kw1,...,wm

and
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|π−1(x)| =


2, x ∈ V∗ − V0

1, otherwise

Remark 4. π glues together the two different addresses for each v ∈ V∗ − V0.

Remark 5. π respects the contractions, Fi, on K. Formally, if

σi : Σ→ Σ

is given by

σi(w1w2w3...) = iw1w2w3...,

then

π ◦ σi = Fi ◦ π.

2.3 Energy on K

Energy forms have roots in the field of partial differential equations. On one

hand, they are often used as a platform for defining weak solutions to, in particular,

elliptic boundary value problems. Taking the simple example of the Poisson equation,

−∆u = f(x)

on a domain Ω in Rn with Dirichlet boundary condition imposed on u, multiply both

sides of the equation by a smooth function, v, with compact support. Integrating both

sides, using Green’s theorem on the left side yields,
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E[u, v] ≡
∫

Ω
∇u · ∇vdx =

∫
Ω
fvdx.

The left side of the equation, E[u, v], is often called the energy form associated to the

equation, or more precisely, in this case, associated to the Laplacian. Informally, the

desired solution u is the function for which the above integral equation holds for all v.

This integral equation has the property that a solution u only have first derivatives, and

moreover, only weak first derivatives. Such a solution is a weak solution, which is a true

generalization of a classical solution in that if the original equation has a classical C2(Ω)

solution, the weak solution coincides with the classical solution. For a formal discussion

of energy and weak solutions, see [6].

Something interesting and curiously absent from many expositions in pure

mathematics, is why E[u, v] is called an energy form. To give a physical interpretation,

first consider E[u] ≡ E[u, u]. Suppose the original Poisson equation is modeling an

external force, f , applied to a taut membrane or drum where u is the displacement of

the membrane (away from flat).

The Poisson equation is then a force equation and states that the deformation

of the membrane is precisely given by the force applied. Now, to achieve the integral

equation, we have spatially integrated the force equation. Naively speaking, the integral

equation should be an energy equation. This is the case, and E[u] is the potential energy

due to the deformation of the membrane. The right side of the integral equation is the

potential energy due to the external force. In other applications, it is useful to move the

right side to the left side, in defining the energy form—in this case the energy becomes
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the total potential energy of the system.

For a domain Ω in Rn and u, v ∈ C1(R), the energy form and energy associated

to the Laplacian is exactly as in the above example. Similarly, for a domain Ω in a

Riemannian manifold (M,g) and u, v ∈ C1(Ω),

E[u, v] =

∫
Ω

(∇u,∇v)gdvg =

∫
Ω

(∇u,A∇v)dvg

where (·, ·) is Euclidean inner product and A is the matrix representation of g. As be-

fore, the energy of a function u is given by E[u] ≡ E[u, u].

The energy form on K is constructed from graph energies, independent of a

notion of Laplacian or differential operators of any kind. The graph energy form on Γm,

E [u, v], is given by

E [u, v] =

(
5

3

)m ∑
p∼=q:p,q∈Vm

(u(p)− u(q))(v(p)− v(q))

with

domE = {u ∈ C(K) | lim
m→∞

Em(u, u) <∞}.

The energy form, E [u, v], on K is then given by

E [u, v] = lim
m→∞

Em(u, v)

with the energy, E(u), on K given by

E(u) = E(u, u).
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Since Em is a non-decreasing sequence, the limit exists and is finite by design,

for all u, v ∈ domE . The form of the graph energies has several motivations. Kusuoka

in [17], and Goldstein in [10], have independently constructed the Brownian motion

on the Sierpinski gasket as a scaling limit of random walks. To view the energy as

an analytic counterpart to Brownian motion on the gasket, see [13], [18], [14]. Other

physical interpretations of the energy are seen electrical resistance networks as well as

in systems of springs attached to point masses assigned to graph vertices. The former

is described in Chapter 1, Section 5 of [30], by considering the energy,

E(u) =
∑
p∼=q

cpq(u(p)− u(q))2

where cpq are positive functions interpreted as conductances with their reciprocals,

rpq = 1
cpq

, considered as resistances. The values of u are interpreted as voltages at

the vertices. Here, a current of amperage (u(p)−u(q))
rpq

= cpq(u(p)−u(q)) flow through the

resistors, producing the energy of cpq(u(p)−u(q))2 from each resistor. The total energy

is achieved by summing over the neighbor relation.

In this exposition, in particular, one can see a motivation for the (5
3)m cor-

responding to the conductances cpq, when p and q are neighbors in the level-m graph

approximation. The key here is that resistors in series add their resistances, while resis-

tors in parallel add their conductances, and imposing that the resistances are equal to

1, the energy is recovered, with the appropriate coefficients. For the similar motivation

in spring systems, see Chapter 3, Section 3.1 of [27], where spring constants, replacing

resistances, follow the same rules for springs in series and parallel, as do resistances.
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In addition, in the following section, the (5
3)m scaling in the graph energy will

be motivated in terms of harmonic theory. The theory of harmonic functions, defined

in terms of graph energies, will provide the platform for constructing the gasket in the

‘harmonic metric’, as well as for the quantities and formulas relating measurable Rie-

mannian geometry to Riemannian geometry.

2.4 Harmonic Theory on the Gasket

The theory of harmonic functions on K is a generalization of classical harmonic

theory in which there are the standard equivalences:

• u is harmonic

• u is an energy minimizer, for given boundary values

• u has the mean value property

• ∆u = 0.

A suitable springboard for harmonic theory on K is that of energy minimiza-

tion. It will be the case that a harmonic function defined in this way will enjoy a mean

value property as well the Laplacian condition. Recall that the definition of the graph

energy, Em, only involves a function’s values at the vertices, Vm. The general idea is

to consider the mth graph energy of a function defined on Vm, and then extend that

function to Vm+1 without increasing the energy. To be precise, let

Em(u) =
∑

p∼=q:p,q∈Vm

(u(p)− u(q))2.
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Suppose u is defined on V0 and we desire an extension û to V1 which minimizes E1(u)

over all extensions of u. A trivial minimization of the quadratic form yields a unique

such û with

E0(u) =

(
5

3

)
E1(û).

Similarly, extending u from Vm to Vm+1 gives a unique minimizer û such that

Em(u) =

(
5

3

)
Em+1(û),

and therefore extending u from V0 to Vm gives a unique minimizer û such that

E0(u) =

(
5

3

)m
(û).

We call û the harmonic extension of u. Given values of a function u on V0, u can be

uniquely extended harmonically to Vm for any m and therefore can be extended to V∗.

û, defined in this way, is (uniformly) continuous on V∗ which is dense in K with respect

to the Euclidean inherited topology. In this case, û extends uniquely to a function u on

K, called a harmonic function on K.

Remark 6. Note that the harmonic function u, is uniquely determined by its boundary

value, u|V0.

Remark 7. Since Em(u) =
(

5
3

)m
Em(u) and E(u) = Em+1(u) = Em(u) = E0(u), for u

harmonic, u is indeed an energy minimizer.

The values of û were omitted in the minimization problem above but are worth

considering, at least in the extension from V0 to V1. Two perspectives on the minimiza-
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tion problem are of interest. First, Figure 2.4 below represents Γ1 with the vertices

labeled with their corresponding arbitrary function values.

Figure 2.5: 1st graph approx. with function values

Let u be a function defined on V0 with values a, b, c at the vertices p1, 2,and p3, respec-

tively. The values at the vertices in V1−V0 are labeled x, y, and z and are the unknown

values of û. Minimizing the quadratic form yields three linear equations:

x =
1

4
(b+ c+ y + z)

y =
1

4
(a+ c+ x+ z)

z =
1

4
(a+ b+ x+ y).

Thus û, the harmonic extension, yields values at the vertices in V1 − V0 which are the

average values of their four neighbors in Γ1. Similarly, this holds from Vm to Vm+1.
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Remark 8. This average value property for harmonic functions on Γm is the analog of

the standard mean value property of classical harmonic functions.

Taking a second look at the minimization from V0 V1, with the particular values

1, 0, and 0 at p1, p2, and p3 respectively, yields the values 2
5 ,

2
5 , and 1

5 for û. Since the

minimizing equations are linear, 1, 0, and 0 can be replaced with arbitrary a, b, and c to

yield values

x =
2

5
a+

2

5
b+

1

5
c

y =
2

5
a+

2

5
c+

1

5
b

z =
2

5
b+

2

5
c+

1

5
a.

The same holds for harmonic functions on Γm. In other words, for an unknown func-

tion value at a vertex in Vm+1 − Vm, it is only necessary to look at the graph cell, Γw

(|w| = m), it belongs to in Γm, weighting the values at the vertices of Γw just as they

were weighted above in Γ0. This relationship is referred to as the ‘2
5 −

1
5 ’ rule [30].

There are two quantities, the standard measure on K and the standard Lapla-

cian on K, relevant to this line of discussion, but not integral to the goals of chapter

2, nor the chapters to follow. We will mention them briefly for completeness. First,

the notion of a Laplacian on K is linked to the chosen measure on K and the energy

form E [u, v], analogous to the earlier discussion of energy on a Riemannian manifold.

Defining ∆µ(u) as a function, f , is exactly the Poisson equation. ‘Integrating by parts’
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with measure µ, against a compactly supported function, v, yields a ‘weak formulation’

of the Poisson equation,

∫
K
fvdµ =

∫
K
v∆µ(u)dµ = −E(u, v),

and a suitable generalized definition (by the second equality) above of the Laplacian

with respect to the measure µ when we impose that the above hold for all v (with zero

boundary value) in the domain of the energy .

Remark 9. The second equality above seems to skip a step—indeed, an integral (via

integration by parts) with the integrand as the product of the ‘gradients’ of u and v would

then make sense of the equality with the energy. Later we will see that due to Kusuoka,

Kigami, and Teplyaev, there are notions of gradient on K fulfilling this condition.

Note that each measure determines a different Laplacian. However, on page

41 in Chapter 2 of [30], one can find a proof of the fact that regardless of choice of

measure, µ, a function u on K is harmonic (in the energy sense) iff ∆µu = 0, so long as

u ∈ dom∆µ. In the proof of the converse, it is apparent that ∆µ(u) = 0 implies

∑
p∼=q:p,q∈Vm

(u(p)− u(q)) = 0

for all m which leans toward a pointwise definition of the Laplacian which falls in line

with classical harmonic theory. Define the mth-level graph laplacian, ∆m, by

∆m =
∑

p∼=q:p,q∈Vm

(u(p)− u(q)).
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∆µ is then defined in the limit, with a µ-dependent renormalizing constant.

Later on, the focus will be the Kusuoka measure but the most elementary measure is

the standard (self-similar) measure.

The standard measure is the most common measure for self-similar fractals like

the gasket. The standard measure is constructed by measuring the original simplex, or

equilateral triangle, at 1. The self-similarity of the fractal K makes for a natural self-

similar measure. The boundaries of the higher m-cells, ∂w, which are smaller equilateral

triangles, will all have measure 1
2m . Imposing additivity, the measure is extended to

finite collections of ∂w’s. The finite collections of ∂w’s form an algebra of sets from

which the Caratheodory extension theorem extends the measure uniquely to all of K.

In the the case of the standard measure, the Laplacian ∆ is then given by

∆u(x) =
3

2
lim
m→∞

5m∆mu(x).

Remark 10. With the construction of the Laplacian ∆µ on K, in light of the result

mentioned above, the analog of the equivalences of classical harmonic theory is complete.

Let the space of harmonic functions be denoted by H. Given the necessary con-

dition of the ‘2
5 −

1
5 ’ rule for a function u ∈ H, it is clear that u is completely determined

by its values on V0 = {p1, p2, p3}. In this case, H forms a 3-dimensional linear space

which we can identify with R3 by associating u ∈ H to the triple (u(p1), u(p2), u(p3)) in

R3. Moreover, modding out H by the constant functions on K,

H/{constant functions} ∼= R3/{span(1, 1, 1)}.

Note that the right side is the 2-dimensional subspace of R3,
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M0 ≡ {(x, , y, z) | x+ y + z = 0}.

Remark 11. 1. E(·, ·) gives H/{constant functions} an inner product structure.

2. (·, ·), the Euclidean product on R3 (restricted to M0), gives M0 an inner product

structure.

3. Though H/{constant functions} and M0 are isomorphic as linear spaces, they are

not, with the above products, identified as inner product spaces.

2.5 The Harmonic Gasket, KH

In this section, we will define the Sierpinski gasket with harmonic metric, KH .

KH is also referred to as the harmonic gasket. The two names refer to the same ob-

ject but hint at distinct perspectives. The former implies that K is in some category

of manifold, sans a metric. Seen this way, K is comparable to a sphere considered as

a smooth manifold. In the absence of a metric, a sphere is no different than a larger

sphere, or even an ellipsoid because there are diffeomorphisms between them.

The Sierpinski gasket is not a classical manifold but we can look at it as a space

to be geometrized. Of course K carries notions of geometry by the default of how it is

constructed in the Euclidean plane. But the point is that it can be much more general

than that. The analysis carried out so far on K has been independent of ‘how K sits’ in

the plane. Indeed, the analysis has been based on graphs and the neighbor relation so

that the bending, stretching, and twisting of K away from how it sits in the flat plane,

while preserving the neighbor relations of vertices, does not affect the analysis. So even
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though the standard visualization of K is in the plane, this perspective begs to see K

as a more abstract object, awaiting a metric.

In this section K is assigned or geometrized by the harmonic metric to become

the ‘geometric’ space KH , a particular geometric realization of K. The latter perspective

hints at K and KH as distinct spaces equipped with their own geometries: K with the

geometry implied by its specific manner of inclusion in the Euclidean plane, and KH with

the geometry implied by its configuration in the plane M0 in R3. Both perspectives are

explored in comparing measurable Riemannian geometry to the spectral geometries to

come. In particular, they are useful in understanding the meaning of such a comparison.

KH will be defined using the harmonic functions, H. Recall that a harmonic

function, h, is determined uniquely by its values on V0. Identifying H with R3, take

h1 = (1, 0, 0) h2 = (0, 1, 0) h3 = (0, 0, 1)

as a basis for H. In terms of the evaluation of harmonic function, this is equivalent with

hi(pj) = δij for j = 1, 2, 3 and pj ∈ V0.
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The final step in the construction of the harmonic gasket is to use h1, h2, and

h3 as a single ‘coordinate chart’ for K in the plane M0. Kigami defines the following

map,

Φ : K →M0

by Φ(x) =
1√
2




h1(x)

h2(x)

h3(x)

−
1

3


1

1

1



 ,

which is a homeomorphism onto its image [12]. Then K ∼= Φ(K) ≡ KH defines the

harmonic gasket or Sierpinski gasket in harmonic metric. Though KH is not a self-

similar fractal, it is self-affine and can be given as fixed point of certain contraction

mapping. Φ preserves compactness, so that KH is a compact subset of M0. To be

precise, let P be the orthogonal projection from R3 to M0. Let

qi =
P (ei)√

2
for i = 1, 2, 3

where {ei} is the standard basis for R3. The qi’s form a 3-simplex in M0. For each i,

choose fi such that

{
qi
|qi|

, fi

}
gives an orthonormal basis for M0. Define the maps Ji : M0 →M0 by

Ji(qi) =
3

5
qi and Ji(fi) =

1

5
fi

Using the Ji’s, define the following contractions Hi : M0 →M0 by
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Hi(x) = Ji(x− qi) + qi for i = 1, 2, 3.

Remark 12. The presence of two distinct scaling factors in the maps Ji, and therefore

in the contractions Hi, breaks from the self-similar structure of K where only 1
2 was

present in the contractions.

KH is then given as the unique nonempty compact subset of M0 such that

KH =

3⋃
i=1

Hi(KH).

To see how the contractionsHi are related to, or perhaps inherited from, the contractions

Fi used, for each i = 1, 2, 3, to define K, note that Φ commutes with the contractions

in the sense that

Φ ◦ Fi = Hi ◦ Φ.

The graph approximations of KH can be attained through Φ from the Fi’s or directly

from the Hi’s as in the case of K. A picture of a graph approximation of KH is given

below in Figure 2.6.

2.6 Measurable Riemannian Geometry

The primary ingredients of Kigami’s prototype for a measurable Riemannian

geometry are the measurable Riemannian structure and geodesic distance. The mea-

surable Riemannian structure is due to Kusuoka [18] and is a triple (ν, Z, ∇̃), where ν

is the Kusuoka measure, Z is a non-negative symmetric matrix, and ∇̃ is an operator
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Figure 2.6: Harmonic gasket, KH

analogous to the Riemannian gradient. More precisely, Kusuoka has shown that for any

u and v in the domain of the energy on the Sierpinski gasket, K,

E(u, v) =

∫
K

(∇̃u, Z∇̃v)dν,

where Z, ∇̃u, and ∇̃v, are ν-measurable functions defined ν-a.e. on K [12]. The equal-

ity above is analogous to its smooth counterpart in Riemannian geometry, and thus

gives validity to the title ‘measurable Riemannian structure’ for (ν, Z, ∇̃). Here, the

Kusuoka measure ν is the analog to the Riemannian volume and Z is the analog to

the Riemannian metric. In [12], Kigami furthers the likeness to Riemannian geometry

by introducing a notion of smooth functions on K, as well as a theorem relating the

Kusuoka gradient to the usual gradient on the Euclidean plane, and a notion of geodesic

distance on K, which is realized by a C1 path in the plane.

The Sierpinski gasket, in Euclidean or standard metric does not have C1 paths
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between points, in general. In order to get C1 paths, Kigami uses views the gasket in

harmonic coordinates, as the harmonic gasket described earlier. The harmonic gasket,

KH , does have C1 paths between any two points. Then via the homeomorphism, Ψ, a

geodesic distance, realized by a C1 path on KH , is attached to K.

2.6.1 Volume (Kusuoka Measure)

The Kusuoka measure will be the measurable analog to Riemannian volume.

The existence of the Kusuoka measure ν on K is due to Kusouka [18]. Specifically, for

any w ∈ W∗, there exists a unique Borel regular probability measure measure ν on Σ

such that

ν(Σw) =
1

2

(
5

3

)|w|
(||Jw||HS)2

for all w ∈ W∗, where ||X||HS denotes the Hilbert-Schmidt norm on a linear op-

erator from M0 to itself (if (a1, a2) is an orthonormal basis of M0, then ||X||HS =√
|Xa1|2 + |Xa2|2). It also holds that ν is non-atomic. Following Kigami in [12], define

π∗ν(A) = ν(π−1(A) for any Borel set A ⊂ K. Then π∗ν is a Borel probability measure

on K and π∗ν(Kw) for any w ∈ W∗. Note ν(V∗ = 0, so that (K,π∗ν) is naturally iden-

tified with (Σ, ν) as a measure space (recall that π−1(x) = 1 except when x ∈ V∗). For

this reason, in a slight abuse of notation, we will use ν in place of π∗ν for the Kusuoka

measure on K [12].

Another way of viewing the Kusuoka measure is as a specific energy measure.

As defined in [32], an energy measure, νf , is defined for an open set O ⊂ K, by
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νf (O) = lim
n→∞

(
5

3

)n ∑
y≡x:x,y∈Vn

⋂
O

(f(y)− f(x))2.

Thus E(f) = νf (K), and the term energy measure is appropriate. Let µ be the standard

self-similar measure on K. Theorem 4.1 in [32] cites the following results due to Kusuoka

[17], [18]: For {h1, h2}, an E-orthonormal basis of the two-dimensional space of harmonic

functions mod (constants), and ν = νh1 + νh2 (independent of the choice of basis),

1. The measure νf is absolutely continuous with respect to ν for any f ∈ DomE .

2. The measures ν and µ are mutually singular.

2.6.2 Metric

The measurable analog to the Riemannian metric, or the measurable Rieman-

nian metric Z, is also due to Kusuoka [18]. In Proposition 2.11 in [12], Kigami gives

the definition of Z as the following: Let w ∈Wm and define Zm(w) = J tw(Jw)/||Jw||2HS .

Then Z(w) = limm→∞ Zm(w1...wm) exist ν-a.e. for w ∈ Σ, rankZ(w) = 1 and Z(w) is

the orthoganol projection onto its image for ν-a.e. w ∈ Σ.

In order to get the metric defined on K, let Z∗(x) = Z(π−1(x)). Then Z∗

is well defined, has rank 1 and is the orthoganol projection onto its image for ν-a.e.

x ∈ K. Similar as with the Kusuoka measure, the ∗ is dropped and Z is used instead

of Z∗. It also holds that Z is well defined on V∗, since for x ∈ V∗ and π−1(x) = {w, τ},

Z(w) = Z(τ) [12].
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2.6.3 Gradient

There are a few characterizations of the gradient in the setting of the mea-

surable Riemannian structure. The first we will mention is due to Kusuoka [18]. In

Theorem 2.12 in [12], Kigami gives Kusuoka’s result which is the existence of an assign-

ment ∇̃ : DomE → {Y |Y : K →M0, Y is ν −measurable} such that

E(u, v) =

∫
K

(∇̃u, Z∇̃v)dν,

for any u, v ∈ DomE . To see the measure (∇̃u, Z∇̃v)dν as the energy measure of u

associated with the energy form E , see [12], page 8.

Kigami’s approach the gradient on K is to start with the usual gradient

on open subsets of the plane M0 which contain KH . More precisely, fixing an or-

thonormal basis for M0 and identifying M0 with R2, the gradient on M0 is given by

∇u =t (∂u/∂x1, ∂u/∂x2). In Proposition 4.6 in [12], Kigami has shown that if U is

an open subset of M0 which contains KH , v1, v2 ∈ C1(U), and v1|KH = v2|KH , then

(∇v1)|KH = (∇v2)|KH . In this sense the gradient of a smooth function on KH is well

defined by the restriction of the usual gradient to an open subset of M0. Then using Φ,

this theory can be pulled back to K. Precisely, in [12], Kigami defines

C1(K) = {u : u = (v|KH ) ◦ Φ, where v is C1 on an open subset of M0 containing KH}

and for u ∈ C1(K),

∇u = (∇v|KH ) ◦ Φ.

In Theorem 4.8 in [12], Kigami shows the following:
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1. C1(K) is a dense subset of domE under the norm ||u|| =
√
E(u, u) + ||u||∞;

2. ∇̃u = Z∇u for any u ∈ C1(K);

3. E(u, v) =

∫
K

(∇u, Z∇v)dν for any u, v ∈ C1(K).

Thus Kigami shows that his gradient, ∇, ‘essentially’ coincides with the Kusuoka gra-

dient, ∇̃—at least up to its role in the energy formula.

In [32], Teplyaev uses harmonic tangents to construct a gradient that essen-

tially coincides with both the Kusuoka gradient and the Kigami gradient. Teplyaev

defines the harmonic tangent of f at x ∈ K as Txf = limn→∞ hn,x where hn,x is a

unique harmonic function which coincides with f on the vertices of a graph cell Γn,x

containing x, of size 2−n (here the graph cells are indexed, in part, by n instead of a

word w of length n, since the triangles are necessarily nesting around x if x is not in V∗,

and basically doing the same, except from two ’directions’ when x is a vertex.

It follows that if Txf exists, it is clearly harmonic, and thus as stated by

Teplyaev, is a harmonic approximation to f at x. This is analogous to the usual deriva-

tive on Rn serving as a linear approximation. In fact, on the interval, harmonic approx-

imation and linear approximation coincide! Indeed, the harmonic tangent corresponds

to the usual tangent line to the graph of a differentiable function on the interval—the

harmonic functions on the interval are exactly the affine function on the interval.

Note that Txf , a harmonic function, can be viewed as a two dimensional vector

living in M0. Thinking about the directionality of the approximation, it can happen

that there are two ‘directional’ harmonic tangents at x ∈ V∗ [32]. Teplyaev gives two
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theorems, 2.2 and 2.3, in [32] regarding the existence and regularity of Txf . In particular,

in 2.2, he has shown that if µ is the standard measure on K and f is in the domain of

the standard Laplacian, then Txf exists for µ-a.e. x ∈ K and that Txf is continuous in

x for µ-a.e. x ∈ K. In 2.3, in particular, he has shown that if ~h = (h1, ...h2) where hk

are harmonic functions, f = F (~h) : K → R, and F ∈ C2(R2), then Txf exists for µ-a.e.

x ∈ K, and that

Txf(y) = f(x) +∇F (~h(x)) • (~h(y)− ~h(x)),

and hence that Tx is continuous in x.

Teplyaev discusses a class of fractals in harmonic coordinates in [31], of which

the Sierpinski gasket in harmonic metric is an example. The following definitions and

observations by Teplyaev in [31] will be interpreted as applying to the harmonic gasket,

though they actually have a broader scope. In Definition 4.4 in [31], Teplyaev defines

the space L2
Z as the Hilbert space of M0-valued functions on K with the norm given by

||u||2L2
Z

=

∫
K

(u, Zv)dν.

In [31] Teplyaev writes the Kigami energy formula as

E(u, u) = ||∇u||2L2
Z
,

for ∇u in the Kigami sense. This way of viewing the Kigami formula is a potential link

between the effective resistance metric (see Section 2.7 below) and the metric derived

from the spectral triples in Chapter 4 of this dissertation. The conjectured relationship

will be stated in the concluding remarks of Chapter 4.
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Teplyaev constructs another gradient [32]. In Remark 4.4 in [32] on page 141,

Teplyaev defines the essential gradient on K as

∇essf(x) = PxTxf,

where Px is an orthogonal projection. The motivation is that the metric Z = Z∗ ≥ 0

and TrZ = 1, so that ν-a.e. Px = Zx is an orthogonal projection. Teplyaev makes

note in Remark 4.4 [32] that the Kigami gradient is not equal to the essential gradient

as the former is continuous and the latter everywhere discontinuous and that Px can

be interpreted as an orthogonal projection, in harmonic coordinates, onto the tangent

line to K at x (see the reference to Teplyaev’s Theorem 4.7 in the next subsection).

Teplyaev does note, however, in Remark 4.4, that

E(u, u) =

∫
K
||∇essu||2dν,

showing that with respect to the energy form, ∇ess coincides with both Kigami’s and

Kusuoka’s gradients.

2.6.4 Geodesic Distance

The first important theorem regarding a geodesic, or segment, or shortest

path between two points on K, in the context of K in harmonic coordinates, is due

to Teplyaev. First, a boundary curve τ of the gasket in harmonic coordinates, is defined

by Teplyaev as a parameterization of a connected component of M0\KH . In Theorem

4.7 in [32], Teplyaev states the following:

1. τ is concave and is a C1 curve but is not a C2 curve,
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2. for any x ∈ K, such that Ψ(x) ∈ τ , the projection Px is, in harmonic coordinates,

the orthogonal projection onto the tangent line to τ .

Let h∗(p, q) = inf{(γ)|γ is a rectifiable curve in KH between p and q}, where

l(γ) is the length of the curve γ. Kigami makes use of the above results to prove Theorem

5.1 in [12] which states that for any p, q ∈ KH , there exists a C1 curve γ∗ : [0, 1]→ KH

such that γ∗(0) = p, γ∗(1) = q, Z(Φ−1(γ∗(t))) exists and dγ∗
dt ∈ ImZ(Φ−1(γ∗(t))) for

any t ∈ [0, 1], and

h∗(γ∗(a), γ∗(b)) =

∫ b

a

(
dγ∗
dt
, Z(Φ−1(γ∗(t)))

dγ∗
dt

) 1
2

dt

for any a, b ∈ [0, 1] with a < b. Note that due to Kigami’s result, the infimum in the

definition of h∗ can be replaced by the minimum. Kigami calls γ∗ a geodesic between

p and q. The proof of this theorem is lengthy with the majority of the work going into

proving Kigami’s Theorem 5.4 [12] which Kigami credits Teplyaev (Theorem 4.7 in [32])

for the result but gives his own proof.

Theorem 5.4 is a specific case of Theorem 5.1—precisely it gives the result of

Theorem 5.1 on one arc of the boundary of the initial graph cell of KH . From this he

argues in Lemma 5.5 in [12] that since any arc of a boundary of a graph cell at any level

together with the straight line segment connecting its endpoints is an affine transforma-

tion of one of the initial arcs (which forms a convex region with the straight line segment

between its endpoints), that this region induced by the graph cell is also convex. He

also states a well-know fact from convex geometry as Theorem 5.2 [12] which is that if

C and D are compact subsets of R2 with C ⊂ D, with C convex and ∂D a rectifiable

Jordan curve, then l(∂C) ≤ l(∂D).
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To make sense of the existence of a geodesic of KH , it is first easier to look at

K. If p is a vertex of K and q an arbitrary point in K, then a shortest path to q from

p is constructed by considering the lowest graph approximation which puts p and q in

separate cells. Now by a connectedness argument (there are only two vertices connecting

one cell to the other) and because a straight line exists from p (a side of the boundary

of cell p is in) to the cell q is in, and a straight line is the shortest path between two

points in R2, the first leg of the geodesic is the straight line segment from p to the cell q

is in. We have thus arrived at a vertex of a cell at this graph approximation, and repeat

this argument.

In the limit, since the vetices are dense in K, we arrive at q, and have con-

structed a geodesic, which is rectifiable since the sides of cells decrease at 1
2n on K. If

p and q are arbitrary points in K, they are connected by a vertex, and it is not hard to

use the previous argument applied to a vertex to p and then from that vertex to q.

Kigami uses an analogous argument which replaces that fact that a straight

line is the shortest distance in R2 with convexity. Indeed, for p a vertex and q arbitrary

in KH , consider the lowest graph approximation which puts the two points in different

cells, and note that by convexity, the shortest path to the next cell is along the side of

the boundary that p is in (of course the same connectedness argument is used here as

well). This process is iterated as before yield a path a shortest path connecting p and

q. For p and q arbitrary the same reasoning as with K holds. Since there is no simple

contraction ratio for KH , Kigami uses the fact that the highest eigenvalue of the maps

Ji is 3/5 to show that the path is rectifiable.
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This is only a rough sketch of Kigami’s proof as there is more machinery used,

and several lengthy calculations. Kigami’s Lemma 5.6 in [12] (which relies on Theorem

5.2 in [12]), is the technical foundation for the sketch I gave above. Kigami uses this

distance function h∗ to define the harmonic shortest path metric on K, d∗(., .), for

x, y ∈ K, as

d∗(x, y) = h∗(Φ(x),Φ(y)).

In the next subsection is a summary of the measurable Riemannian formulas given by

Kusuoka, Teplyaev, and Kigami, as well as a few other formulas involving the Laplacian.

2.6.5 Measurable Riemannian Formulas

The following are the three characterizations of the energy form on K in terms

of the measurable Riemannian constructs, encountered in this Chapter:

E(u, v) =

∫
K

(∇̃u, Z∇̃v)dν (Kusuoka)

E(u, v) =

∫
K

(∇u, Z∇v)dν (Kigami)

E(u, u) =

∫
K
||∇essu||2dν (Teplyaev)

The harmonic shortest path (or geodesic) distance on K is given by

d∗(x, y) = h∗(Φ(x),Φ(y)) (Kigami),

where
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h∗(γ∗(a), γ∗(b)) =

∫ b

a

(
dγ∗
dt
, Z(Φ−1(γ∗(t)))

dγ∗
dt

) 1
2

dt. (Kigami)

Remark 13. In the list of formulas presented in the beginning of Chapter 2, the mapping

Φ was ignored in the representation of h∗ as a slight abuse of notation for aesthetic

purposes.

Another important formula is characterization of the Laplacian, ∆ν in terms

of the energy form,

∫
K
v∆ν(u)dν = −E(u, v),

as the unique function ∆νu, such that this formula holds for all v (with boundary value

zero) in the domain of the energy.

A more general formulation (not requiring v have zero boundary value) is given

by Teplyaev in Theorem 4.10 in [32]. Also in this Theorem, Teplyaev shows that for

F ∈ C2(R2), f = F (h1, h2) : K → R, and (h1, h2) a basis of the harmonic functions

(mod constants), it holds that f ∈ dom∆ν and

∆νf = Tr(ZD2f),

where

D2f(x) =

∣∣∣∣ ∂2

∂hi∂hj
F ((h1(x), h2(x)))

∣∣∣∣2
i,j=1

.

44



2.7 Resistance Form on K

The energy form E is an example of a broader theory of resistance forms given

by Kigami in [13]. In particular, such resistance forms admit an effective resistance

between points of the underlying space. Applied to K, for any p, q ∈ V∗, the effective

resistance [31] is given by

sup

{
(u(p)− u(q))2

E(u, u)
: u ∈ DomE

}
.

This quantity is finite for all p and q and the supremum denoted by R(p, q), is called the

effective resistance between p and q. R is a metric on V∗ and any function in the domain

of the energy is R-continuous [31]. If S is the R-completion of V∗, then any u ∈ domE

has a unique R-continuous extension to S [31].

A conjecture is that the metric
√
R coincides with, or is at least equivalent

with d∗, Kigami’s geodesic distance on K. The motivation for this will be seen in the

discussion of Dirac operators on K in Chapter 4 of this thesis.
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Chapter 3

Spectral Triples,

Noncommutative Geometry, and

Fractals

3.1 Overview

Chapter 2 was dedicated to describing Jun Kigami’s measurable Riemannian

geometry. Chapter 3 surveys some of the tools of noncommutative geometry includ-

ing the Dirac operator and its associated spectral triple. Chapter 3, like Chapter 2,

presents necessary background for Chapter 4. As mentioned in the introductory chap-

ter, the Dirac operator associated to a compact spin Riemannian manifold has been

shown by Alain Connes [5] to encode much of geometric information of that manifold—

in particular, the geodesic distance and the volume form.

In the context of the Riemannian manifold, it is known that the metric of the
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manifold can be recovered from the geodesic distance ([34], P.388) and it is in this sense

that defining a Dirac operator on the manifold defines the geometry of the manifold.

Indeed, any smooth manifold, M , can be assigned a Riemannian metric g. The Meyers-

Steenrod theorem [23] is stated below:

Meyers-Steenrod Theorem. If (M, g) and (N,h) are Riemannian manifolds and

φ : M → N is a distance preserving bijection, then φ is a Riemannian isometry.

Suppose (M, g) and (M,h) admit the same geodesic distance function d = dg = dh. If we

define φ = IdM , then φ is clearly a distance preserving bijection. The Meyers-Steenrod

theorem says φ is an isometry, and therefore h = g and it is clear that the geodesic

distance function determines the metric and hence the geometry.

Thus, on one hand, if the manifold is spin compact and equipped with a Rie-

mannian metric, the metric determines the Dirac operator (which in turn recovers the

metric). On the other hand, any Dirac operator defined on a spin compact manifold

will determine a Riemannian metric on the manifold. The observation that the Dirac

operator defines the geometry is one of Connes’ contributions to the field of geometry

[34]. Indeed, it is a springboard for defining generalized manifolds and geometries in the

context of spaces which admit a meaningful generalization of the Dirac operator, but

not meaningful generalizations of smooth structure or metric or even paths in the space.

In the case of the Riemannian manifold, in the construction of the Dirac op-

erator and spectral triple, one encounters a commutative C∗-algebra of functions on

the manifold which act as ’coordinates’ for the manifold. However, none of the argu-

ments necessary to recover the geometry rely on the commutivity of the algebra. Thus,
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in considering the possible generalized geometries mentioned above, they can be parti-

tioned into two camps—commutative and noncommutative. Commutative when their

space admits a commutative C∗-algebra and noncommutative when their space admits

a non-commutative C∗-algebra. The term noncommutative geometry refers to either

case when the tools of noncommutative geometry—i.e. Dirac operators and spectral

triples—are used to construct the geometry.

An application of the methods of noncommutative geometry, central to this the-

sis, is to fractals. In [20], Michel Lapidus began a program in noncommutative fractal

geometry and in [3], Michel Lapidus, Christina Ivan, and Erik Christensen applied these

noncommutative methods to some fractal sets built on curves—including trees, graphs,

and the Sierpinski gasket. As will be seen in sections to follow, the work in [3] on the

more complex sets is based largely on the Dirac operator and spectral triple on the circle.

It is important to note that the work in [3] on the Sierpinski gasket is with

respect to the Sierpinski gasket in Euclidean metric as opposed to the treatment of the

Sierpinski gasket in harmonic metric in Chapter 4 of this thesis. Of many results in

[3], the application of noncommutative methods to the Sierpinski recovered the geodesic

distance, volume measure, and metric spectral dimension.

This chapter, in conjunction with the previous chapter, provides the neces-

sary framework for Chapter 4 which will be dedicated to exploring a fractal analog to

Connes’ theorem. Indeed, on one hand there is a target geometry that is a fractal ana-

log of Riemannian geometry—Kigami’s measurable Riemannian geometry. On the other

hand there are the noncommutative methods applied to fractals discussed in this chap-
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ter which can be used to recover Kigami’s geometry, namely through the Dirac operator.

The following exposition will be divided into five main parts: First, there

will be a brief overview of C∗-algebras; Second, we discuss an abstraction of some of

the elements of noncommutative geometry in the setting of Lipschitz seminorms and

compact metric spaces. Third, we will define the unbounded Fredholm module and

Spectral triple. Fourth, a summary of Connes’ approach will be given. Finally, the

methods and applications in [3] will be detailed.

3.2 C∗-algebras

A unital C∗-algebra is a Banach algebra, A, over C, with multiplicative identity

and an operation,

∗ : A→ A given by x 7−→ x∗,

satisfying the following properties:

1. x∗∗ = x

2. (ax+ by)∗ = âx∗ + b̂y∗

3. (xy)∗ = y∗x∗

4. ||x∗x|| = ||x∗||||x|| = ||x||2

The operation (∗) can be referred to as a conjugate-linear involution [5] satisfying (3) and

(4). The easiest example to think about is the set of complex numbers itself. Indeed, ∗

given by complex conjugation z 7−→ z∗ ≡ ẑ satisfies the conditions given above. Another

49



important example is C(X), the complex-continuous functions on a compact Hausdorff

space X. The operation ∗ is referred to as the adjoint operation. A representation π of

a C∗-algebra A on a Hilbert space H is a linear ∗-homomorphism,

π : A → B(H),

where B(H) is the set of bounded linear operators from H to H. The linear condition

on π is as usual; it must preserve linearity. To discuss what a ∗-homomorphism is, we

note that for any Hilbert space, H, B(H) has an adjoint operation, ∗. The following is

a well known fact: If (., .)H is the inner product on H, then for any T ∈ B(H) and for

all x, y ∈ H, there exists a unique F ∈ B(H) such that

(Tx, y)H = (x, Fy)H .

We define T ∗ = F , and say T ∗ is the adjoint of T . For π to be a ∗-homomorphism,

we require that π preserves the ∗ operation. Precisely, we require that if x 7−→ T ,

then x∗ 7−→ T ∗. It is also said that π is faithful if it is an injective map, and unital if

π(1A) = IdH .

A theorem, due to Gelfand and Naimark, usually referred to as Gelfand’s The-

orem [5] (or the Gelfand-Naimark Theorem [34]) states that every commutative C∗-

algebra is ∗-isomorphic (and homeomorphic) to C(X) for some compact Hausdorff space

X. It turns out that in proving this fact, one recovers an elegant description of X in

terms of the algebra A.

More precisely, X will be determined as the set of all pure states of A (also
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referred to as the spectrum or set of characters of A ), with the weak∗-topology as-

signed. Thus, if one starts with A = C(X) for some compact Hausdorff space X, the

Gelfand-Naimark theorem says that X is recovered as the space of pure states of A.

Note that if X is a compact metric space, then the weak∗-topology on the set of pure

states is metrizable.

The space of pure states will be denoted P(A). To give a brief sketch of the

Gelfand-Naimark theorem, let S(A) be the states of A. By a state, T , we mean a

positive complex valued linear functional on A with

||T || = sup
||x||=1

||Tx|| = 1 and T (1A) = 1C.

To define positive, we first define a positive element of A: For x ∈ A, x is positive if

spec(x) ⊂ R+. The spectrum of x, spec(x) is a generalization of the notion of eigenval-

ues of a matrix operator. For a matrix operator, its eigenvalues are defined in terms of

where the determinant is zero. For a matrix, the determinant is zero iff the matrix is

non-invertible. The definition of spec(x) is generalized from non-invertibility. The set of

eigenvalues of x, or spec(x), is the collection {λi} of elements of C such that (λiIdA−x)

is not invertible (i.e. does not have both left and right inverses).

A positive functional, T , on A, is then defined as taking positive elements of A

to the positive real line. Stated more precisely, if T is a positive functional then for any

positive element x ∈ A, Tx = a+ 0i with a ∈ R>0. For any T ∈ S(A), T is a bounded

linear functional with norm 1.
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The next objective is to put a topology on S(A). This can be done by using

the weak∗-topology of the functional dual of A, denoted by A′. Recall that there is a

natural isometric isomorphism φ : A → A′′ and thus φ[A] ⊂ A′′. The weak∗-topology

on A′ is the topology containing the fewest open sets making every element of φ[A] a

continuous functional on A′.

Since S(A) ⊂ A′, S(A) inherits the weak∗-topology from A′. It can be shown

that A′ is closed in A′ and convex and compact Hausdorff. By convexity, S(A) contains

extreme points. Let P (A) denote the (nonempty) set of extreme points of S(A). Con-

sider the weak∗-closure of P (A), called the pure state space of A and denoted as P(A).

The following are two facts regarding P(A):

• A linear functional, ρ, on a commutative C∗-algebra, is pure iff it is multiplicative,

i.e. ρ(xy) = ρ(x)ρ(y);

• P(A) is a closed subspace of S(A).

Remark 1. The first fact above, in particular, gives each pure state of A as a character

of A and vice versa.

Since a closed subspace of a compact Hausdorff space is also compact Hausdorff, it holds

that P(A) is compact Hausdorff. The punchline is then to set X = P(A) and prove that

there is a ∗-isomorphism between A and C(X), which is linear, multiplicative, preserves

the identity, and is a homeomorphism (actually an isometry when X is a compact metric

space). This isomorphism (a specific case of the Gelfand Representation) can be defined

from A → C(X) as follows:

x 7−→ x̂ where x̂(ρ) = ρ(x).
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The function x̂ : P(A) → C is sometimes referred to as the Gelfand Transformation of

x [34]. In particular, showing this map is onto can be done using the Stone-Weierstrass

theorem and injectivity can be shown using the Krein-Millman theorem. So it is the

case that the topology on X is recovered from A in the sense that the topology on X is

the weak∗-topology on X as a subset of S(A) ⊂ A′. Another way to say this is that two

unital commutative C∗-algebras are isomorphic iff their spaces of pure states (i.e. their

spectra) are homeomorphic [5].

A perspective to be gained in the above discussion of the Gelfand-Naimark

theorem is the possibility of partitioning topologies (or geometries) roughly through the

following correspondences:

1. commutative topologies/geometries (X) ⇐⇒ commutative C∗-algebras (C(X));

2. noncommutative topologies/geometries ⇐⇒ noncommutative C∗-algebras.

Since C(X) is commutative, we say X has a commutative topology or geome-

try. Thus we may consider noncommutative rings of functions on some ‘noncommutative

spaces’. Possibly the most mildly noncommutative example of a C∗-algebra is the space

of n × n matrices over C. Another example is B(H) where H is a Hilbert space. A

second, more general result due to Gelfand and Naimark is that any C∗-algebra can be

faithfully represented in B(H) for some Hilbert space H. The applications of noncom-

mutative geometry in this thesis fall within the commutative case, and in particular are

applications to fractal geometry. In this sense the realm of non-classical geometries is

not restricted to the noncommutative side.
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3.3 Compact Metrics, State Spaces, and Lipschitz Semi-

norms

Specifying a natural distance function on a set or space is central to noncom-

mutative geometry. In the context of C∗-algebras, it was first suggested by Connes that

from a suitable Lipschitz seminorm one obtains an ordinary metric on the state space

of the C∗-algebra [25]. Let X be a compact metric space with metric ρ. Defined on

real-valued or complex-valued functions on X, the Lipschitz seminorm, Lρ, determined

by ρ, is given by

Lρ(f) = sup

{
|f(x)− f(y)|

ρ(x, y)
: x 6= y

}
. (3.1)

The space of ρ-Lipschitz functions on X is comprised of those functions, f on X, with

Lρ(f) < +∞. One can recover the metric ρ, in a simple way, from Lρ, by the following

formula [25]:

ρ(x, y) = sup{|f(x)− f(y)| : Lρ(f) ≤ 1} (3.2)

.

Indeed, it is obvious that ρ ≤ sup{|f(x) − f(y)| : Lρ(f) ≤ 1}. For fixed y ∈ X,

the function a(x) = ρ(x, y), by the triangle inequality, is such that Lρ(a) = 1, and is

therefore witness to ρ ≥ sup{|f(x) − f(y)| : Lρ(f) ≤ 1}. (The formula (2) above is an

abstraction of what will be denoted Connes’ Formula 1 in Section 3.5 below.) Let S(X)

denote the space of probability measures on X. In [25], Rieffel notes that an extension

of (2) defines ρ̂ a metric on S(X) by

ρ̂(µ, ν) = sup{|µ(f)− ν(f)| : Lρ(f) ≤ 1}, (3.3)
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and that the topology ρ̂ defines on S(X) is exactly the weak∗-topology on S(X) when

S(X) is viewed as the state space, S(C(X)), of C(X). The formula (3) is referred to as

the Monge-Kantorovich metric on probability measures or the Hutchinson metric in the

theory of fractals [26]. Recall from the previous section, that via the Gelfand-Naimark

theorem, the points of X can be identified with P(C(X)), the pure state space of C(X).

It is also noted in [25] that ρ̂ and ρ coincide on X = P(C(X)), and thus the

formula 1 above can be interpreted as the fact that Lρ is recovered from the restriction

of ρ̂ on S(X) to P(C(X)). In [25] and [26], Rieffel treats the extension of this idea to

possibly noncommutative algebras, and characterizes when Lipschitz type seminorms

can be recovered in such a manner. He also discusses the effective resistance metric

associated to graphs, in the final section of [25]. Some of his ideas, as they might re-

late to the work on fractals in this thesis, will be discussed in the conclusion of the thesis.

3.4 Unbounded Fredholm Modules and Spectral Triples

In noncommutative geometry, a standard way to specify the suitable Lipschitz

seminorm mentioned in the beginning of Section 3, is via a Dirac operator. Dirac

operators have origin in Quantum mechanics, but will be described here in a branch of

their evolution which parallels the evolution of noncommutative geometry. In particular,

they will be defined in the context of unbounded Fredholm modules and spectral triples.

Following [3], we will use the following definitions:

Definition 1. let A be a unital C∗-algebra. An unbounded Fredholm module (H,D)

over A consists of a Hilbert space H which carries a unital representation π of A and
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an unbounded, self-adjoint operator D on H such that

i. the set {a ∈ A : [D,π(a)]is densely defined and extends to a bounded operator on H}

is a dense subset of A,

ii. the operator (I +D2)−1 is compact.

Definition 2. Let A be a unital C∗-algebra and (H,D) an unbounded Fredholm module

of A. If the underlying representation π is faithful, then (A, H,D) is called a spectral

triple [3]. In addition, D is called a Dirac operator.

Remark 2. We will refer to (A, H,D) as either a spectral triple or unbounded Fredholm

module whether or no π is faithful.

3.5 The Dirac operator and a Compact Spin Riemannian

Manifold

In the setting of compact spin Riemannian manifolds, there is the notion of

the Dirac operator. In other words as mentioned in the overview, such a manifold

determines the Dirac operator. Proving this requires a wealth of technical machinery

including Clifford algebras, spin geometry, and various connections on vector bundles.

These topics, for the most part will not be treated here. There are many references on

these topics, including [5] and [34]. In [5], Connes gives four formulas concerning the

Dirac operator and a compact spin Riemannian manifold, (M, g). Two of them will be

discussed in this section—Formula 1 and Formula 2.

Let M be a compact spin Riemannian manifold and S its prescribed spinor

module structure. If ∇s is the spin connection on S, then the Dirac operator on S is
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the operator /D given by

/D = −i(ĉ ◦ ∇s),

where ĉ is the Clifford action [34].

If M admits no spin structure, and even if M is not orientable, there is a more

general notion of Dirac operator. Let E be a self-adjoint Clifford module over a compact

Riemannian manifold M with Clifford connection ∇ and Clifford action ĉ. Following

[34] the generalized Dirac operator associated to ∇ and ĉ, is given analogously by

D = −i(ĉ ◦ ∇).

Remark 3. In the case of the generalized Dirac operator on a compact spin Riemannian

manifold, Proposition 9.10 in [34] states that the Dirac operator is related to any gener-

alized Dirac operator by a formula relating a Clifford connection to the spin connection.

Suppose E = S ⊗ F is a self-adjoint Clifford module over a compact spin Riemannian

manifold and that ∇E is a Clifford connection on E. Then there is a unique Hermitian

connection ∇F on F such that

∇E = ∇s ⊗ 1F + 1S ⊗∇F [34].

In both cases, the Dirac operator is constructed using a connection, hence it is

reasonable to think that it is a derivation (follows the Leibniz rule). Indeed, Proposition

9.11 on page 387 in [34] states for a ∈ C∞(M) identified with its representation as a

multiplication operator on the Clifford module E , and D a generalized Dirac operator,
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[D, a] = −ic(da),

where c is another way of writing the Clifford action and the relation between c and ĉ

is given by c(ν)s = ĉ(ν ⊗ s) for s ∈ E [34]. Here, da, is a section of the Clifford bundle

over M . To emphasize the dependence on the Leibniz rule, we look at the proof of

Proposition 9.11 in [34]:

i[D, a]s = ĉ(∇(as))− aĉ(∇s) = ĉ(∇(as)− a∇s) = ĉ(da⊗ s) = c(da)s.

The commutation relation, [D, a] = −ic(da), is crucial to the recovery of the geodesic

distance on M from the Dirac operator as well as giving the operator [D, a] as multipli-

cation by c(da).

Going back to the case whenM is spin compact, we have that (M, g) determines

/D via its spin structure. To describe the rest of the spectral triple, the C∗-algebra A

is chosen to be C(M). The spinor module S = Γ∞(S) is a pre-Hilbert space under the

following positive definite Hermitian form,

〈Φ|Ψ〉 =

∫
M

(Φ|Ψ)|νg|,

with |νg| as the Riemannian density on M ([34], p. 389). The completed Hilbert space,

denoted by L2(M,S), will be called the space of L2-spinors and is determined by the

spinor bundle S over M [34]. The Hilbert space of the spectral triple for M will be chosen

as this space of L2 spinors. Finally, the representation π of C(M) in B(L2(S,M)) will be

that which regards elements of C(M) as bounded multiplication operators on L2(S,M)

[34]. Then the triple,
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(C(M), L2(S,M), /D),

is a spectral triple [5], [34]. In particular, see Lemma 1 on page 543 in [5].

Let dg be the geodesic distance function on (M, g), a compact spin manifold.

The first of Connes’ formulas can now be stated ([5], p. 544):

Formula 1. For any points p, q ∈M ,

dg(p, q) = sup{|a(p)− a(q)| : ||[ /D, a]|| ≤ 1}.

The norm ||.|| in Formula 1 is the operator norm of [ /D, a] as a multiplication operator on

L2(S,M) and the supremum is taken over the elements a ∈ C(M) (of course, identified

as multiplication operators on L2(S,M)).

An interesting point Connes makes is that the knowledge of the algebra of

multiplication operators paired with the Hilbert space only yields information regarding

the dimension of M . Also he notes that similarly, the knowledge of the Dirac operator

and its pairing with the Hilbert space, yields information regarding the asymptotics of

the eigenvalues, and hence the dimension of M . Connes then remarks that the spectral

triple, however, is relevant to reconstructing the geometry on M ([5], p.543). This is

seen immediately in Formula 1 since all components of the triple are at work in defining

this distance function. In other words, the geometry of M is recovered from the inter-

action of the Dirac operator with the algebra of multiplication operators on the Hilbert

space of spinors.
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To see why Formula 1 holds, denote ρ = dg note that

||[ /D, a]|| = || − ic(da)|| = ||da|| = ||da||∞ = Lipρ(a) ([5],[34]) .

Then the proof of Formula 1 is exactly as with the analogous formula in Section 3.3.

Also, as was mentioned in Section 3.3, Connes uses the right hand side of Formula 1 to

define a metric,d, on the state space of the C∗-algebra as follows [5]:

d(Φ,Ψ) = sup{|Φ(a)−Ψ(a)| : ||[ /D, a]|| ≤ 1}.

An important point here is that, though the geodesic distance and the right hand side

coincide for the Riemannian manifold, they are quite different as a springboard into the

unknown. For the right hand side only involves the notion of functions on a space, as

opposed to paths in a space. This is significant, for instance, in quantum mechanics,

where there is no meaningful notion of a particle’s path in a space, but there is a wave

function assigned to that particle [5].

Remark 4. Though the Dirac operator associated to the spin structure is used in For-

mula 1, it is important to note that the attribute of the Dirac operator essential to the

validity of Formula 1, is the commutation relation from Theorem 9.11 in [34] mentioned

above. Indeed, this relation holds for the generalized Dirac operators, and therefore For-

mula 1 holds in the absence of spin, and even in the absence of orientability [34].

The second of Connes’ formulas to be discussed is the recovery of the Rieman-

nian volume form, from the data contained in the spectral triple defined above. It can

be referred to as the operator-theoretic replacement for integration [5]. It requires a
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technical tool called the Dixmier Trace, Trw. We refer the reader to Chapter IV.2.β in

[5] for background and a precise definition. Connes volume formula is given below:

Formula 2. For any f ∈ C(M),

∫
M
fdν = c(d)Trw(f | /D|−d),

where ν is the Riemannian volume measure, d is the dimension of M , and

c(d) = 2(d−(d/2))πd/2Γ

(
d

2
+ 1

)
.

As a convention, /D
−1

is defined to be 0 on the finite dimensional subspace, kerD [5].

In [5], Connes states that the right hand side of the integral formula in Formula

2 can be interpreted as the limit of the sequence,

1

logN

N∑
j=0

λj ,

where the λj are the eigenvalues of f | /D|−d (a compact operator). Connes also notes that

equivalently the right hand side can be interpreted as the residue at the point s = 1, of

ζ(s) = Tr(f | /D|−ds) (Re(s) > 1).

Remark 5. Formula 1 and Formula 2 are only part of theory described by Connes in [5].

In particular, the data contained in the spectral triple can describe cohomological aspects

of M , curvature of certain vector bundles over M , and the Yang-Mills functional.

We conclude this section with one more interesting formula which relates the

Dirac operator to the Laplacian via the scalar curvature. The following is given as

Theorem 9.16 in [34] and is due to Lichnerowicz:
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. On a compact spin Riemannian manifold, the Dirac operator /D, the spinor Laplacian

∆s, and the scalar curvature s are related by the following formula:

/D
2

= ∆s +
1

4
s.

Remark 6. In the case of the generalized Dirac operator for a compact spin Riemannian

manifold, Corollary 9.17 in [34] gives a similar relationship, though with an extra term

coming from the curvature of the connection ∇F , mentioned in Remark 3.

3.6 Spectral Triples For Some Fractal Sets Built On Curves

The work to come in Chapter 4 of this thesis is part of a broader program,

developed by my advisor Michel L. Lapidus, to view fractals as generalized manifolds,

and in particular, as suitable noncommutative spaces. This program is described in [21],

[20], and [3]. This section will summarize aspects of [3], Dirac operators and spectral

triples for some fractal sets built on curves, as they relate to—and serve as a platform

for—the work in Chapter 4.

The methods employed in [3] are those described in the previous section. In

particular, the objective is to recover the known geometry of some fractal sets using a

spectral triple. However, in contrast to the treatment of the general compact Rieman-

nian manifold, in which the Dirac operator is defined using the machinery of Geometric

algebra (i.e. Clifford modules, spin structures) and connections, the applications in [3]

will use the spectral triple on a circle as the basis for spectral triples on more complex

sets. As a result, the geometric algebra and connections are ‘invisible’ in the discourse

to follow—indeed, these structures collapse to triviality on the circle (which is a one
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dimensional manifold).

In [3], an additional definition associated to a spectral triple is used to define

the metric dimension of the spectral triple. This is a generalization of the dimension of

a manifold—and indeed, in the case of the compact Riemannian manifold, recovers the

dimension of the manifold [5]. As is noted in the previous section, this information is

contained in the pairing of the Dirac operator and the Hilbert space, in the form of the

asymptotics of the eigenvalues of the Dirac operator:

Definition 3. Let D be the Dirac operator associated to the spectral triple in Definitions

1 and 2. If Tr((I + D2)−p/2) < ∞ for some positive real number p, then the spectral

triple is called p-summable or just finitely summable. The number ∂ST , given by

∂ST = inf{p > 0 : tr(D2 + I)
−p
2 <∞},

is called the metric dimension of the spectral triple ([3]).

3.6.1 Circle Triple

Let Cr denote the circle with radius r > 0. In [3], the natural spectral triple

for the circle STn(Cr) = (ACr, Hr, Dr) is defined as follows:

I. ACr is the algebra of complex continuous 2πr-periodic functions on R;

II. Hr = L2([−πr, πr], (1/2πr)µ);

III. Dr = −i ddx ;

IV. The representation π sends elements of ACr to multiplication operators on Hr.
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Note that Hr has a canonical orthonormal basis given by exp
(
ikx
r

)
. The oper-

ator Dr is actually defined as the closure of the restriction of the above operator to the

linear span of the basis. Then Dr is self-adjoint and

[Dr, πr(f)] = πr(−if ′) or just − if ′.

for any C1 2πr-periodic function f on R. Thus the natural spectral triple is a spectral

triple, and the eigenvalues of the Dirac operator are given as λi = k/r for k ∈ Z.

To use the circle triple as basis for construction of spectral triples on more

complex sets, it will be necessary to take countable sums of circle triples. To avoid the

problem of having 0 as an eigenvalue with infinite multiplicity, the translated spectral

triple is constructed [3]:

1. Let Dt
r = Dr + 1

2rI.

2. STt(Cr) = (ACr, Hr, D
t
r) is called the translated spectral triple for the circle.

The set of eigenvalues becomes {(2k + 1)/2r : k ∈ Z}, but the domain of

definition stays the same and most importantly, as to not change the effect of the

spectral triple,

[Dt
r, πr(f)] = [Dr, πr(f)].

Let dc be the geodesic distance function on the circle. Theorem 2.4 in [3] gives

the following results:

• The metric induced by the spectral triple STn(Cr) coincides with the geodesic

distance on Cr, i.e.,
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dc(s, t) = sup{|f(t)− f(s)| : ||[Dr, πr(f)]|| ≤ 1};

• The circle triple is p-summable for any real s > 1 but not summable for s = 1,

thus the metric dimension of the spectral triple is 1, coinciding with the dimension

of a circle.

3.6.2 Interval Triple

The interval is studied by means of the circle—by taking two copies of the

interval and gluing the endpoints together. There is an injective homomorphism Φ from

the continuous functions on an interval [0, α] to the continuous functions on [−α, α]

defined by

Φα(f)(t) = f(|t|).

The circle triple (ACα/π, Hα/π, D
t
α/π) is then used to describe the spectral

triple for C([0, α]). The fact that the following definition indeed defines a spectral triple

follows immediately from the results on the circle:

For α > 0, the α-interval spectral triple STα = (Aα, Hα, Dα) is given by

the following:

i. Aα = C([0, 1]);

ii. Hα = L2([−α, α],m/2α), where m/2α is the normalized Lebesgue measure;

iii. the representation πα : Aα → B(Hα) is defined for f in Aα as the multiplication

operator which multiplies by the function Ψα(f);
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iv. an orthonormal basis {ek : k ∈ Z} for Hα is given by ek = exp(iπkx/α) and Dα

is the self-adjoint operator on Hα which has all the vectors ek as eigenvectors and

such that Dαek = (πk/α)ek for each k ∈ Z.

Let dα(s, t) = |s − t| be the geodesic distance for the α-interval. Results for

the α-interval spectral triple which follow immediately from the results for the circle are

stated in Theorem 3.3 in [3]:

• The metric induced by the α-interval triple coincides with the geodesic distance

for the α-interval, i.e.,

dc(s, t) = sup{|f(t)− f(s)| : ||[Dα, πα(f)]|| ≤ 1};

• The α-interval triple is p-summable for s > 1 but not summable for s = 1, thus it

has metric dimension 1, coinciding with the dimension of the α-interval.

3.6.3 Curve Triple

Let T be a compact Hausdorff space and r : [0, α] → T a continuous injective

mapping. The image in T will be called the continuous curve and r the parameteriza-

tion. The r-curve triple, STr, is given by the interval triple as follows:

Let r be as above and (Aα, Hα, Dα) be the α-interval spectral triple. Then

STr = (C(T ), Hα, Dα) is an unbounded Fredholm module with representation πr :

C(T )→ B(Hα) defined via a homomorphism φr of C(T ) onto Aα given by

a. For all f ∈ C(T ), for all t ∈ [0, α] : φr(f)(t) ≡ f(r(t));

b. For all f ∈ C(T ), πr(f) ≡ πα(φr(f)).
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As is expected, the curve triple is summable for s > 1 but not s = 1 so the

metric dimension is 1 (see Proposition 4.1 in [3]) One can recover a metric distance on

the image of the curve in T , of course dependent of parameterization, and pending a

metric already on T , and the desire or not to coincide with that metric (see Proposition

4.3 in [3]).

3.6.4 Sum of Curve Triples

The generalization of the result for a curve to a finite collection of curves in T

is achieved by a direct sum of spectral triples, with one possible obstruction, and that is

there may not exist a dense set of functions which have bounded commutators with the

Dirac operator simultaneously. This cannot happen if the curves do not overlap except

at finitely many points [3].

Suppose {ri}hi=1 is a finite collection of curves in T such that for each i 6= j,

the number of points in ri([0, αi])
⋂
rj([0, rj([0, αj ]) is finite. The triple for the sum of

curves is given by

h⊕
i=1

STri =

(
C(T ),

h⊕
i=1

,
h⊕
i=1

)
.

Proposition 5.1 in [3] states that
⊕h

i=1 STri is an unbounded Fredholm module for C(T ).

If in addition
⋃h
i=1 ri([0, αi]) = T , then the representation will be faithful.

3.6.5 Trees and Graphs

Definition 6.3 in [3], defines a spectral triple on a weighted graph with param-

eterization in a compact metric space T . If P is the collection of points of the graph
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then the direct sum of spectral triples for the edges is an unbounded Fredholm module

over C(T ) and a spectral triple for C(P ).

Proposition 6.4 in [3] states that the distance function induced by the spectral

triple/unbounded Fredholm module coincides with the geodesic distance function on the

graph, inherited from the metric on T .

The authors of [3] point out that if the graph is not a tree, then it contains

at least one cycle. A spectral triple can be added for each cycle without changing the

the distance function induced by the sum of triples. This augmented triple induces an

element in the K-homology of the graph—an element of the K-homology group will

be able to measure the winding number of a nonzero continuous function around the

circle—taking one such summand for each cycle allows one to keep track of the connect-

edness type of the graph [3], [5].

In [3], an analogous result holds for finitely summable or p-summable trees.

Infinite trees in general can not be summed up as above, but the summability hypothesis

allows for an analogous result as Proposition 6.4 in (See Theorem 7.9 in [3]).

3.6.6 Sierpinski Gasket

The construction of the spectral triple on the Sierpinski gasket comes directly

from the circle triple. Indeed, the Sierpinski gasket is naturally decomposed into trian-

gles. In fact, for each graph approximation, there are 3n equilateral triangles, each of

length (1
2)n. The spectral triple for each triangle can be obtained readily from the circle
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triple. In [3], Definition 8.1 gives the precise definition of each circle triple used, and

the definition of the countable direct sum of these triples. Let the Sierpinski gasket be

K. The idea is for each triangle in the gasket, ∆n,i (n ∈ N, 1 ≤ i ≤ 3n), to construct

the unbounded Fredholm module for C(K),

STn,i(K) = (C(K), Hn,i, Dn,i),

based on the isometry of the circle of radius 2−n onto ∆n,i for each i. Here Hn,i = H2−nπ

for all i and Dn,i = Dt
2−nπ for all i. As usual the continuous functions on this circle

are given by C([−2−nπ, 2−nπ]) and the mapping from the interval onto the triangle

induces a surjective homomorphism of C(K) onto C([−2−nπ, 2−nπ]). This defines a

representation πn,i : C(K)→ B(Hn,i). Theorem 8.2 in [3] states that the countable sum

of these triples,

⊕
n,i

STn,i =

C(K),
⊕
n,i

Hn,i,
⊕
n,i

Dn,i

 ,

is a spectral triple for the Sierpinski gasket.

Dimension

Theorem 8.2 also states that STK is summable iff s > log3/log2 (see also The-

orem 8.4 in [3]). Therefore its metric dimension is log3/log2 which coincides with the

Minkowski and Hausdorff dimensions of the Sierpinski gasket.

69



Volume

Let µ is the Hausdorff probability measure on K and DK =
⊕

n,iDn,i. To

recover the volume form or integration on K, the Dixmier trace is used and Theorem

8.7 in [3] states that if τ is the functional on C(K) given by

τ(f) = Trω

(
πK(f)|DK |−

log3
log2

)
,

then for any f ∈ C(K),

τ(f) =

[
4

log3
ζ

(
log3

log2

)]∫
K
f(x)dµ(x).

Distance

Let dK be the geodesic distance on K (i.e. the Euclidean induced distance on

K). Theorem 8.13 in [3] states that

dK(p, q) = sup{|f(p)− f(q)| : ||[DK , πK(f)]|| ≤ 1},

and hence the metric induced by the spectral triple coincides with the geodesic distance

metric.
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Chapter 4

Spectral Triples and Measurable

Riemannian Geometry

4.1 Overview and Notation

The objective of this chapter is to extend the methods of Chapter 3 to KH ,

the harmonic gasket. In particular, we want to recover Kigami’s geodesic distance on

KH . There will be two distinct constructions of a spectral triple on KH , both of which

will recover Kigami’s geodesic distance. One construction will be analogous to that on

the Sierpinski gasket in Chapter 3—that is a construction which is essentially a count-

able sum of circle triples. The other will be countable sum of curve triples. The curve

triple construction will generalize readily to a certain class of sets built on curves in R2.

Chapter 4 will conclude with a discussion of work in progress and future directions.

In order to construct a Dirac operator and Spectral triple on the harmonic

gasket as a countable sum of triples, it is necessary to recall some notation as well as

add some more notation. For q1, q2, and q3, the boundary points of KH , and x ∈ KH ,
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our integrated function system is given by

Hi(x) = Ti(x− qi) + qi for i = 1, 2, 3.

which yields the relation,

KH =

3⋃
i=1

Hi(KH).

Equivalently, we have KH given by the harmonic coordinate chart for the Sierpinski

gasket, K,

Φ(x) =
1√
2




h1(x)

h2(x)

h3(x)

−
1

3


1

1

1



 ,

where KH = Φ[K]. Recall that Γ0 is the initial graph approximation to K. For any

word w ∈ (1, 2, 3)N, Γw = Fw[Γ0] is the wth-graph cell of K. Let the initial graph

approximation to KH be Φ[Γ0] and the wth-graph cell of KH be given by Φ[Γw], or

equivalently by Hw[Φ[Γ0]].

The term graph is used less restrictively in this setting as the curves which are

the edges carry more information than abstract graph edges. Nevertheless, we will refer

to these objects as graph cells of KH and define the following notation: T0 = Φ[Γ0],

Tw = Hw[Φ[Γ0]]. For |w| = n, the union of the 3n graph cells of KH form the nth-level

graph approximation to KH . Analogously to K, KH is then given by the closure of the

union of the graph cells over n ∈ N and 1 ≤ i ≤ 3n. This decomposition of KH will

be mirrored in the construction of the spectral triple on KH from the countable sum of
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spectral triples on the graph cells of KH .

There is an aesthetic to this type of construction as mentioned in [3] with

respect to the analogous construction of a spectral triple on K in that it keeps track

of all of the holes in K. Since KH is homeomorphic to K, the same will be true for

the spectral triple on KH . This being said, it will be convenient to decompose KH a

little further due to the lack of self-similarity of KH . For Γ0, identifying a left side L,

a right side R, and a bottom side B, yields the natural notation Γ0,s for s ∈ {L,R,B}.

Similarly, Γw,s will be the sth side of Γw.

Note that Fw[Γ0,s] = Γw,s for any side s. This observation allows one to la-

bel the three constituent curves connecting the three vertices of Tw by defining Tw,s =

Φ[Γw,s] (or equivalently by Tw,s = Hw[Φ[Γ0,s]]). Tracking the vertices is therefore useful.

Let U0 = {q1, q2, q3}, Uw = Hw(U0), and Un =
⋃
|w|=n Uw. Then Uw is exactly the set

of vertices of Tw, so that the curve Tw,s can be associated to two of the three vertices of

Tw, say Hw(qi) and Hw(qj), where i 6= j.

Finally, since several of Jun Kigami’s results in [12] will be used during this

chapter, it is useful to include some of his notation relevant to those results. Let J be

the convex hull of U0 (i.e. the regular triangle with vertices U0) and Jw = Hw(Jw) and

KH,w = Hw(KH), called a w-cell of KH (note that in contrast with a graph cell, KH,w

is an affine transformation of the entire harmonic gasket). Let p, q ∈ Uw with p 6= q

and define p̂q by p̂q = Φ(p∗q∗), where p∗ = Φ−1(p) and q∗ = Φ−1(q) and xy is the

(Euclidean) line segment between x and y. Note that Tw,s = p̂q for some p, q ∈ Uw.
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4.2 Unbounded Fredholm Module on the Graph Cell Tw

The spectral triple on Tw will be constructed from spectral triples on its three

constituent edge curves. Namely, Tw =
⋃
s∈{L,R,B} Tw,s and we consider the curve Tw,s

parameterized by its arclength, αw,s, in M0 (i.e. the copy of R2 where KH lives). The

collection of edges is countable, so when it is convenient, we will refer to Tw,s as TEi for

i ∈ N. Since Tw,s = p̂q for p, q ∈ Uw, we have that αw,s is finite by Lemma 5.5 in [12].

Remark 1. Lemma 5.5 follows immediately from Theorem 5.4 in [12], which shows

that q̂1q2 (where q1, q2 ∈ U0), is such that q̂1q2
⋃
q1q2 is a closed curve which bounds

a convex region. Since the region associated to arbitrary vertices p and q is an affine

transformation of the former region, the result follows. Theorem 5.4 is proven in [12]

but it is noted by Kigami that the results were previously announced by Teplyaev in [32].

Following the construction in Proposition 4.1 in [3], let rw,s be a paremateriza-

tion of Tw,s, by its arclength, αw,s. The (w, s) subscripts will be suppressed temporarily

for simplicity. In this case, r : [0, α] → KH is a continuous (in fact, C1; again by

Theorem 5.4 in [12]) and injective mapping. Note that KH is a compact metric space.

Let (Aα,Hα, Dα) be the α-interval spectral triple in [3]. Recall that for α > 0, the

α-interval spectral triple as defined in Definition 3.1 in [3] is given by:

1. Aα = C([0, 1]);

2. Hα = L2([−α, α],m/2α), where m/2α is the normalized Lebesgue measure;

3. the representation πα : Aα → B(Hα) is defined for f in Aα as the multiplication

operator which multiplies by the function Ψα(f);
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4. an orthonormal basis {ek : k ∈ Z} for Hα is given by ek = exp(iπkx/α) and Dα

is the self-adjoint operator on Hα which has all the vectors ek as eigenvectors and

such that Dαek = (πk/α)ek for each k ∈ Z.

Remark 2. Ψα : C([0, α]) → C([−α, α]) is an injective homomorphism given by

Ψα(f)(t) = f(|t|), for each f ∈ C([0, α]) and each t ∈ [−α, α]. The Dirac operator, Dα,

is the closure of the restriction of the operator 1
i
d
dx to the linear span of {ek : k ∈ Z}.

Also note in (4) above that the set of eigenvalues of the Dα, is {πk/α : k ∈ Z}.

Consider the triple defined by STr = (C(KH),Hα, Dα) with representation

πr : C(KH)→ B(Hα) defined via a homomorphism φr of C(KH) onto Aα as follows:

1. for all f ∈ C(KH), for all t ∈ [0, α] : φr(f)(t) ≡ f(r(t));

2. for all f ∈ C(KH), πr(f) ≡ πα(φr(f)).

.

By Proposition 4.1 in [3], STr is a spectral triple, with a slight abuse–the representation

is not faithful since two continuous functions can agree on T but not on all of KH .

Technically, it is an unbounded Fredholm module. This could be addressed by using

C(r[0, α]) instead of C(KH) but is not necessary. Ultimately, the images of these curves

will be KH and the resulting representation will be faithful.

By Proposition 4.3 in [3], the metric, dr, induced by the spectral triple on T ,

is given for x 6= y ∈ T , by

dr(x, y) = |r−1(x)− r−1(y)|.
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Suppose p and q are the vertices in Uw such that T=p̂q. Let Dpq be the compact convex

region bounded by p̂q
⋃
pq. Let p̃q be any rectifiable Jordan curve in KH , connecting p

and q and take D′pq to be the compact region bounded by p̃q
⋃
pq. Since Φ is a home-

omorphism and thus preserves the holes, and hence the interior and exterior of K—we

have that (Dpq − p̂q)
⋂
KH is empty.

It therefore holds that Dpq ⊂ D′pq and by Theorem 5.2 in [12], with respect to

R2, the arclength of p̂q
⋃
pq is less than or equal to the arclength of p̃q

⋃
pq. Subtract-

ing off the segment, pq, the two boundaries have in common, yields the result that the

arclength of p̂q is less than or equal to the arclength of p̃q.

The same argument holds for arbitrary p and q on T . In short, Kigami’s

harmonic shortest path or geodesic between any two points on T is a path on T . By

design, r is a parameterization of T by its arclength α. Therefore, for any points x, y ∈ T

|r−1(x)− r−1(y)| = lT (x, y) = dgeo(x, y),

where lT is the R2-induced arclength between points on T and dgeo is Kigami’s geodesic

distance metric. It is worth noting that reproducing the arclength metric of T in R2

using a spectral triple readily gives the first equality but it is only due to the special

convexity properties of the cells of KH that the second equality holds.

Regarding the eigenvalues of Dα, we note that 0 is an eigenvalue of Dα. We

will eventually have a countable sum of Dirac operators, all of which have 0 for an

eigenvalue, leading to 0 having infinite multiplicity as an eigenvalue of the Dirac oper-
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ator on KH . Following [3], this can be avoided by translating the Dirac operator to

Dt
α = Dα + (1/2α)I.

Since the commutator eliminates the (1/2α)I, we have [Dt
α, πα(f)] = [Dα, πα]

and thus ||[Dt
α, πα(f)]|| = ||[Dα, πα]||, so that the only effect on the triple the translate

has is that the set of eigenvalues of Dt
α is given by {(2k + 1)π/2α : k ∈ Z}. In this case

0 is not an eigenvalue.

Recalling that the definition of metric or spectral dimension, ∂ST , in [3] is

∂ST = inf{p > 0 : tr(D2 + I)
−p
2 <∞},

it follows from Proposition 4.1 in [3] the spectral dimension of Tw,s is 1. Of course,

this is clear since the eigenvalues of Dt
α have multiplicity one so that the trace of their

reciprocals forms a harmonic series.

Remark 3. Earlier, to emphasize the relationship of the length α of a curve, we kept

the α subscript and suppressed the (w, s) subscripts. Now we will do the opposite, since

(w, s) determines αw,s, so long as it is understood that we are always parameterizing by

arclength.

Summarizing the results for the edge curves, Tw,s, we have the following:

Proposition 1. The triple STT w,s = (C(KH),Hw,s, Dt
w,s) associated to Tw,s is an un-

bounded Fredholm module with the following properties:

1. The spectrum of the Dirac operator, Dt
w,s is given by {(2k + 1)π/2αw,s : k ∈ Z}.

2. The metric induced by STT w,s on Tw,s coincides with the geodesic distance on KH .
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3. The spectral dimension of Tw,s is 1.

For the first of two constructions of a triple on the graph cell Tw, we will use

the three edge triples, whose associated edges form Tw. To construct the unbounded

Fredholm module on Tw, we define the triple

STT w =

C(KH),
⊕

s∈{L,R,B}

Hw,s,
⊕

s∈{L,R,B}

Dt
w,s

 ,

with representation πw =
⊕

s∈{L,R,B} πw,s. By Proposition 5.1 in [3], STT w is an un-

bounded Fredholm module, but it also follows from Proposition 1 above. Indeed, the

real-valued linear functions on R2, restricted to KH separate points of KH and therefore

are dense in C(KH). By the Stone-Wierstrass theorem, these functions are dense in

C(KH).

Let f(x, y) = ax + by for a, b ∈ R and x, y ∈ R2. Let Tw be parameterized

by its arclength by r : [0,Σs∈{L,R,B}αw,s] → Tw and be given by r(τ) = (x(τ), y(τ)).

Then r is C1, except at possibly the three points where the curves are glued together.

Thus ||r′(τ)|| is defined and ||r′(τ)|| = 1 except at possibly those three points. Let Dw =⊕
s∈{L,R,B}D

t
w,s and ||.||∞ be the essential supremum of functions on [0,Σs∈{L,R,B}αw,s].

Using the fact that the operator norm of a multiplication operator is given by

its essential supremum as a function, we compute

||[Dw, πw(f)]|| = ||Dw(f)|| = ||Dw(f)||∞ =

∣∣∣∣∣∣∣∣1i dfdτ
∣∣∣∣∣∣∣∣
∞

= ||a(x′(τ)) + b(y′(τ))||∞

≤ |a|+ |b|,
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where the last inequality follows from |x′(τ)| ≤ 1 and |y′(τ)| ≤ 1. Therefore the linear

real-valued functions are dense in C(KH) and have bounded commutators with Dw. To

see that the operator (D2
w + I)−1 is compact we note that the eigenvalues of Dw are the

disjoint union of the eigenvalues of Dt
w,s. Applying the spectral theorem, the eigenvalues

of (D2
w + I)−1 are given by

[(
(2k + 1)π)

2αw,s

)2

+ 1

]−1

,

for k ∈ Z and s ∈ {L,R,B}. Arranged in nonincreasing order, these eigenvalues go to

zero( the multiplicities are at most 3). In this case the image of the unit ball of our

Hilbert space under (D2
w + I)−1 is totally bounded and therefore pre-compact. Hence,

(D2
w + I)−1 is compact and STT w is the unbounded Fredholm module associated to the

graph cell Tw.

We now consider the metric distance on Tw induced by the spectral triple, given

by

dw(p, q) = sup{|f(p)− f(q)| : ||[Dw, πw(f)]|| ≤ 1}.

By previous calculations, this can be rewritten as

dw(p, q) = sup{|f(p)− f(q)| : ||[Dw(f)||∞ ≤ 1}.

Let lT w(p, q) for p, q ∈ Tw be the R2 induced arclength distance on Tw, or in other words

the geodesic distance on Tw. Let Lipl(f) be the Lipschitz norm on the restriction of

functions in C(KH) to Tw with respect to the metric lT w(p, q), i.e.,
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Lipl(f) = sup

{
|f(p)− f(q)|
lT w(p, q)

: p, q ∈ Tw
}
.

Note that ||Dw(f)||∞ = Lipl(f). The distance induced by the spectral triple is then

given by

dw(p, q) = sup{|f(p)− f(q)| : Lipl(f) ≤ 1},

and it is immediately clear that dw ≤ lT w. Conversely, fix any p ∈ Tw and let

f(x) = lT w(p, x). Then Lipl(f) ≤ 1 by the triangle inequality for lT w (also note that

letting p = x, it is clear that Lipl(f) = 1). Therefore f is witness to dw ≥ lT w and it is

shown that dw = lT w.

To compute the spectral dimension of Tw, we note that it is the same situation

as with Tw,s, except that the eigenvalues may have multiplicities up to 3. In this case the

harmonic sum becomes at most 3 harmonic sums, and therefore the spectral dimension

of Tw is 1. Letting Hw =
⊕

s∈{L,R,B}Hw,s, we have the following result:

Proposition 2. The triple STT w = (C(KH),Hw, Dw) associated to Tw is an unbounded

Fredholm module with the following properties:

1. The spectrum of the Dirac operator, Dw, is given by

{[(
(2k + 1)π

2αw,s

)]
: k ∈ Z, s ∈ {L,R,B}

}
.

2. The metric dw induced by STT w on Tw coincides with the R2 induced arclength

metric lT w on Tw;

3. The spectral dimension of Tw is 1.
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Remark 4. Proposition 2 does not state that the dw coincides with Kigami’s geodesic

metric on KH , because in general it will not. Points on different sides of Tw will be

connected by a geodesic that does not lie completely on Tw and thus dw ≥ dgeo. However,

when p1 and p2 belong to the same edge of a graph cell, it is clear from Proposition 1

and Proposition 2, that dw(p1, p2) = dgeo(p1, p2).

4.3 Alternate Construction of the Tw Triple

Another way to construct a spectral triple on Tw is to carry the spectral triple

on a circle directly to Tw as is done in [3] for an arbitrary graph cell of the Sierpinski

gasket. Let r be the radius of a circle. Since it is the complex continuous functions

on the circle that are of interest, we make the natural identification with the complex

continuous 2πr-periodic functions on the real line. Let the R2 induced arclength of Tw

be αw.

Considering a circle of radius αw, the appropriate algebra of functions are the

complex continuous 2παw-periodic functions on the real line. Let rw : [−παw, παw] →

Tw be an arclength parameterization of Tw, counterclockwise, with rw(0) equal to the

vertex joining the bottom and right sides of Tw. The mapping rw induces a surjective

homomorphism Ψw of C(KH) onto C([−παw, παw]) by

Ψw(f)(τ) = f(rw(τ)),

for f ∈ C(KH) and τ ∈ [−παw, παw] by Definition 8.1 in [3]. Let

Hw = L2([−παw, παw], (1/2παw)m),
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where m is the Lebesgue measure on [−παw, παw] and let Πw : C(KH)→ B(Hw) be the

representation of f in C(KH) as the multiplication operator which multiplies by Ψw(f).

We will again use the translated Dirac operator and define Dw = Dt
αw.

The triple STT w = (C(KH),Hw,Dw) is an unbounded Fredholm module with

representation Πw. In addition it has properties analogous STT w that are mentioned

in the following proposition. The results in the proposition follow from the results

regarding the spectral triple on a circle in Section 2 of [3]. In fact, the interval spectral

triple used above is built in [3] from the circle triple, by gluing two copies of the interval

together at the endpoints.

Proposition 3. The triple STT w = (C(KH),Hw,Dw) associated to Tw is an unbounded

Fredholm module with the following properties:

1. The spectrum of the Dirac operator, Dw, is given by{[(
(2k + 1)π

2αw

)]
: k ∈ Z

}
.

2. The metric dw induced by STT w on Tw coincides with the R2 induced arclength

metric lT w on Tw.

3. The spectral dimension of Tw is 1.

Remark 5. Please note that these results mimic the results in Proposition 2, except

for the eigenvalues of the Dirac operator in each case. Dw has eigenvalues that are

proportional to the reciprocals of the side lengths, αw,s, of Tw, while Dw has eigenvalues

that are proportional to the reciprocal of αw, the length of Tw. It is not known if the

two sets of eigenvalues coincide—i.e. the ratios of the side lengths to each other is not

known. The lack of self-similarity of KH makes this question hard to answer.
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Remark 6. Note that the remark following Proposition 2 holds here, and in particular,

by Proposition 1 and Proposition 3, the spectral distance is greater than or equal to

Kigami’s geodesic distance but they coincide when restricted to edges of graph cells.

4.4 Spectral Triple on KH via the Countable Sum of the

STT w Triples

In this section, we construct the countable sum of the STT w triples. More

precisely, for each n ∈ N there are 3n words such that |w| = n, each word w corresponding

to a graph cell triple STT w. For the countable sum of triples we will use the following

notation:

1. HKH =
⊕n∈N
|w|=nHw

2. πKH =
⊕n∈N
|w|=n πw

3. DKH =
⊕n∈N
|w|=nDw

The countable sum of graph cell triples is defined as STKH = (C(KH),HKH , DKH ). To

see that STKH is a spectral triple we first note that a function in the image of πKH

is densely defined on KH , so that the representation is faithful. It is clear, as before,

that the real-valued linear functions on R2 restricted to KH , are dense in C(KH). Also,

from Proposition 2, it is clear that for any real-valued linear function, f(x, y) = ax+ by,

restricted to the graph cell Tw, has a bounded commutator with Dw. In particular the

bound is

||[Dw, πw(f)]|| ≤ |a|+ |b|.
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Note that the bound |a|+|b| is independent of w. Therefore f has a bounded commutator

with all of the Dirac operators, Dw, simultaneously. This shows that ||[DKH , πKH (f)]|| ≤

|a|+ |b| and hence the real-valued linear functions on R2, restricted to KH , form a dense

subset of C(KH) which have bounded commutators with DKH . To see that the operator

(D2
KH

+ I)−1 is compact, we look at the collection of eigenvalues of DKH which are the

disjoint union of eigenvalues of all of the Dw’s, which in turn are the disjoint union of

eigenvalues of all of the Dw,s’s whose eigenvalues are

{(2k + 1)π/2αw,s : k ∈ Z},

for w with |w| = n, n ∈ N, s ∈ {L,R,B}, and k ∈ Z. Thus the eigenvalues of

(D2
KH

+ I)−1 are readily arranged in a non-increasing sequence which goes to zero and

therefore (D2
KH

+ I)−1 is compact. In addition, one verifies that the operator is sym-

metric on its eigenvectors, so that it is self-adjoint.

Let dgeo be Kigami’s geodesic distance metric on KH and Lipg be the Lipschitz

norm on C(KH) with respect to dgeo. The spectral triple induced distance, dspec is given

by

dspec(p, q) = sup{|f(p)− f(q)| : ||[DKH , πKH (f)]|| ≤ 1}.

As before, we have that the multiplication operator norm of the commutator

||[DKH , πKH (f)]|| = ||Df || coincides with ||DKHf ||∞,KH so that dspec is equivalently

given by

dspec(p, q) = sup{|f(p)− f(q)| : ||DKHf ||∞,KH ≤ 1}.
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The following lemma will be useful in comparing dgeo with dspec:

Lemma 1. For any function f in the domain of DKH ,

||DKH ||∞,KH = Lipg(f).

Proof. Let E represent the side of a cell given by w, s. Then

||DKHf ||∞,KH = sup
E
{||DEf ||∞,E} = sup

E

{∣∣∣∣∣∣∣∣1i dfdx
∣∣∣∣∣∣∣∣
∞,E

}

= sup
E

{
sup
p,q∈E

{
|f(p)− f(q)|
dgeo(p, q)

}}
≤ Lipg(f).

The last inequality is clear since Lipg(f) is the supremum over all possible non-diagonal

pairs of points on the gasket which includes the non-diagonal pairs of points which are

restricted to belonging to the same side of a given graph cell.

To get the inequality in the other direction, note that for p 6= q, and for p ∈ V∗,

the set of vertices of KH , we have a sequence of points (possibly infinite), (pn), such that

p0 = p and either pN = q for some N ∈ N, or lim(pn) = q with the property that the

geodesic from p to q is a concatenation of the geodesic from p0 to p1 with the geodesic

from p1 to p2 and so on. Moreover, with the exception of possibly q, the pn’s can be

taken to be in V∗, the set of vertices of KH . Let Ei denote the edge connecting pi to

pi+1. Then

|f(p)− f(q)| =

∣∣∣∣∣∑
i∈N

f(pi)− f(pi+1)

∣∣∣∣∣ ≤∑
i∈N
|f(pi)− f(pi+1)|
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≤
∑
i∈N

(dgeo(pi, pi+1)||DEif ||∞,Ei) ≤ (||DKHf ||∞,KH )
∑
i∈N

dgeo(pi, pi+1)

= ||DKHf ||∞,KHdgeo(p, q).

Therefore,

|f(p)− f(q)|
dgeo(p, q)

≤ ||DKHf ||∞,KH .

For the case when neither p nor q are assumed to be in V∗, the geodesic between p and

q contains as an intermediate point, a vertex r ∈ V∗. Moreover, we have a sequence

(ri) ∈ V∗ lying on the geodesic between p and q such that r0 = r and lim(ri) = q. Then

by the result for a vertex to an arbitrary point we have

|f(p)− f(ri)|
dgeo(p, ri)

≤ ||DKHf ||∞,KH for all i ∈ N.

By the continuity of the functions f(x) and a(x) = dgeo(p, x), we have

|f(p)− f(q)|
dgeo(p, q)

≤ ||DKHf ||∞,KH .

and since p and q were arbitrary distinct points in KH ,

Lipg(f) ≤ ||DKHf ||∞,KH .

Let p, q ∈ KH . To compare dgeo(p, q) with dspec(p, q), note that for any f such

that ||DKHf ||∞,KH ≤ 1, we have by the lemma above, that Lipg(f) = ||DKHf ||∞,KH

and therefore,
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|f(p)− f(q)|
dgeo(p, q)

≤ 1.

In this case |f(p) − f(q)| ≤ dgeo(p, q), and it holds that dspec(p, q) ≤ dgeo(p, q). To get

the inequality in the other direction, define the the function h(x) = dgeo(p, x). Then

Lipg(h) = 1 and

|h(p)− h(q)| = |0− dgeo(p, q)| = dgeo(p, q).

Therefore h is witness to dgeo(p, q) ≤ dspec(p, q), and we have shown that dspec(p, q) =

dgeo(p, q).

The following theorem summarizes the results for the spectral triple STKH =

(C(KH),HKH , DKH ). Let dKH denote the spectral dimension of KH with respect to

STKH .

Theorem 1. The triple STKH = (C(KH),HKH , DKH ) associated to KH is a spectral

triple with the following properties:

1. The spectrum of the Dirac operator, DKH , is given by

n∈N⋃
|w|=n

{[(
(2k + 1)π

2αw,s

)]
: k ∈ Z, s ∈ {L,R,B}

}
.

2. The metric distance dspec induced by STKH coincides with Kigami’s geodesic dis-

tance, dgeo.

3. The spectral dimension dKH is the infimum of all p > 0 such that

∑
w,s,k

[(
(2k + 1)π

2αw,s

)]−p
<∞.
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4.5 Spectral Triple on KH via the Countable Sum of the

STT w Triples

We now consider a similar construction of a spectral triple on KH , this time

using the countable sum of triples STT w = (C(KH),Hw,Dw). Recall that this triple

comes directly from the spectral triple on the circle, as opposed to STT w which is built

from its three edge triples. Also recall that Proposition 3 shows that the triples induce

the same ‘geometry’ of the graph cell, though the eigenvalues of Dw are related to the

eigenvalues of Dw, but are not the same. In a sense, this is the natural construction of

with respect to its holes and connectedness.

To be precise, this construction yields a spectral triple for each closed path, or

cycle, in the space. Following the line of reasoning on page 23 of [3], each of these spec-

tral triples associated to a cycle induces an element in the K-homology of each graph

approximation of KH . Each of these members of the K-homology group measures the

winding number of a nonzero continuous function around the cycle to which it is asso-

ciated, keeping track of the connectedness type of the graph approximation.

To formally construct the countable sum of STT w triples, we will use the

following notation:

1. HKH =
⊕n∈N
|w|=nHw

2. ΠKH =
⊕n∈N
|w|=n Πw

3. DKH =
⊕n∈N
|w|=nDw.

The countable sum of the STT w triples is defined as STKH = (C(KH),HKH ,DKH ).
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Showing that STKH is a spectral triple follows the argument used to show that STKH

is a spectral triple. Indeed, a function in the image of ΠKH is densely defined on KH ,

so that we have a faithful representation.

Again, the real-valued linear functions on R2 restricted to KH , are dense in

C(KH) and for any real-valued linear function, f(x, y) = ax+by, restricted to the graph

cell Tw, has a bounded commutator with Dw with bound |a| + |b|, independent of w.

Thus ||[DKH , πKH (f)]|| ≤ |a| + |b| and hence the real-valued linear functions on R2,

restricted to KH , form a dense subset of C(KH) which have bounded commutators with

DKH .

To see that the operator (D2
KH

+ I)−1 is compact, we look at the eigenvalues

of DKH which are given by the disjoint union of eigenvalues of all of the Dw’s,

{(2k + 1)π/2αw},

for w with |w| = n, n ∈ N, and k ∈ Z. As mentioned before, the αw’s are the lengths

of the boundaries of the w-cells. In this case, the eigenvalues of (D2
KH

+ I)−1 go to

zero and therefore it is compact. In addition, one verifies that DKH is symmetric on its

eigenvectors, so that it is self adjoint.

To compare the spectral distance function induced by STKH with dgeo, in light

of previous arguments, we have the following analog to Lemma 1, which characterizes

||DKH ||∞,KH in terms of dgeo.

Lemma 2. For any function f in the domain of DKH ,
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||DKH ||∞,KH = Lipg(f).

Proof. To prove the first inequality, note that

||DKHf ||∞,KH = sup
w
{||Dwf ||∞,T w} = sup

w

{∣∣∣∣∣∣∣∣1i dfdx
∣∣∣∣∣∣∣∣
∞,T w

}

= sup
w

{
sup

p,q∈T w

{
|f(p)− f(q)|
dw(p, q)

}}
≤ sup

w

{
sup

p,q∈T w

{
|f(p)− f(q)|
dgeo(p, q)

}}

≤ Lipg(f),

since dw ≥ dgeo. The last inequality holds since Lipg(f) is the supremum over all possible

non-diagonal pairs of points on the gasket which includes the non-diagonal pairs of points

restricted to belonging to the same graph cell. To achieve the reverse inequality, we note

that the critical inequality used to get this direction in Lemma 1 was

|f(pi)− f(pi+1)| ≤ dgeo(pi, pi+1)||DEif ||∞,Ei

where the pi’s represent the decomposition of the geodesic constructed in Lemma 1, and

Ei is the edge connecting pi to pi+1. Recalling the second remark following Proposition

3, we have that the spectral distance induced on Tw by STw coincides with dgeo when

restricted to edges. This is of course a sufficient condition to replace Ei with w in the

above inequality. Indeed, for pi and pi+1 belonging to the same edge,

|f(pi)− f(pi+1)|
dgeo(pi, pi+1)

=
|f(pi)− f(pi+1)|
dw(pi, pi+1)

≤ ||Dwf ||∞,T w.

Therefore, as promised,
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|f(pi)− f(pi+1)| ≤ dgeo(pi, pi+1)||Dwf ||∞,T w.

Now it follows from the argument in Lemma 1 that for an arbitrary point q and a vertex

p,

|f(p)− f(q)|
dgeo(p, q)

≤ ||DKHf ||∞,KH .

The extension to the case when p and q are both allowed to be arbitrary points in KH

is exactly as in Lemma 1 so it follows that

Lipg(f) ≤ ||DKHf ||∞,KH .

Let hspec be the distance function induced by STKH and let bKH be the spectral

dimension of KH with respect to STKH . Just as Lemma 1 gives dspec = dgeo, Lemma

2 gives hspec = dgeo. The following theorem, an analog to Theorem 1, summarizes the

results for the spectral triple STKH = (C(KH),HKH ,DKH ).

Theorem 2. The triple STKH = (C(KH),HKH ,DKH ) associated to KH is a spectral

triple with the following properties:

1. The spectrum of the Dirac operator, DKH , is given by

n∈N⋃
|w|=n

{[(
(2k + 1)π

2αw

)]
: k ∈ Z

}
.

2. The metric distance hspec induced by STKH coincides with Kigami’s geodesic dis-

tance, dgeo.
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3. The spectral dimension bKH is the infimum of all p > 0 such that

∑
w,k

[(
(2k + 1)π

2αw

)]−p
<∞.

The corollary to follow compares the geometries of the Sierpinski gasket induced

by STKH and STKH :

Corollary 1. For dspec, hspec, dKH , and bKH , as defined above, the following equalities

hold:

1. dspec = hspec.

2. dKH = bKH .

Proof. The first fact follows immediately from Theorem 1 and Theorem 2. The second

fact is true since

αw =
∑

s∈{L,R,B}

αw,s

.

4.6 The Direct Sum of STKH
and STKH

In this section we note the the two spectral triples on KH , STKH and STKH ,

constructed above can be summed together giving a spectral triple that also recovers

Kigami’s distance on KH . This construction has the refinement of the curve triple

construction and also keeps track of the holes in KH .

Theorem 3. Let ST⊕ = STKH ⊕STKH . Then ST⊕ is a spectral triple for KH and the

distance, d⊕, induced by ST⊕ on KH coincides with Kigami’s distance.
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Proof. It is clear from the proofs of Theorems 1 and 2 that the for any real-valued linear

function, f(x, y) = ax+ by on KH ,

||[DKH , πKH (f)]|| ≤ |a|+ |b| and ||[DKH , πKH (f)]|| ≤ |a|+ |b|.

Since D⊕ = DKH ⊕DKH , we have

||D⊕, π⊕(f)]|| ≤ |a|+ |b|.

Thus the real-valued linear functions on KH have bounded commutators with D⊕ and

hence the dense subalgebra condition is satisfied.

The operator, (D2
⊕+ I)−1 is compact, as the eigenvalues of D⊕ are the disjoint

union of the eigenvalues of DKH and DKH . In short, the union is countable and can be

arranged in a nonincreasing order in which eigenvalues go to zero and the same argu-

ment as in Theorem 1 holds. The self-adjointedness of D⊕ is also clearly inherited from

its summands.

To prove the claim of recovery of Kigami’s distance we need to verify that

||D⊕f ||∞,KH = Lipg(f).

Indeed, by Lemma 1 and Lemma 2,

||D⊕f ||∞,KH = max{||DKH ||∞,KH , ||DKH ||∞,KH} = Lipg(f).

It follows immediately that d⊕ = dgeo.

93



4.7 Sets Built on Curves in Rn

Let R =
⋃
j∈NRj where Rj is a curve in Rn. Let R denote the closure of R in

Rn. Suppose the following conditions on R hold:

R1. R is a pre-compact space in Rn;

R2. Rj is a rectifiable C1 curve in Rn;

R3. The arclengths of the Rj ’s go to zero at a geometric rate;

R4. For any two points in R, there exists a rectifiable piecewise-C1 path, γ, connecting

the points, whose arclength, L(γ), is a minimum of the arclengths of all paths

connecting them. Moreover, γ can be given as a (possibly infinite) concatenation

of the Rj ’s.

For p, q ∈ R and γ as in (R4), we will define the geodesic distance, dgeo, by dgeo(p, q) =

L(γ).

Theorem 4. Suppose R =
⋃
j∈NRj satisfies conditions R1-R4. Then the countable sum

of Rj-curve triples is a spectral triple for R and if dR is the distance function induced

by the spectral triple then dR = dgeo.

Proof. The construction of the spectral triple from the Rj-curve triples is exactly as in

Theorem 2. Let each of the Rj ’s be parameterized by its arclength and let STR be given

by

STR =

C(R),
⊕
j∈N

Hj ,
⊕
∈N

Dj

 ,

where Hj and Dj represent the Hilbert space and Dirac operator corresponding to the

Rj-curve triple. We will have the representation π as the sum of the representations
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for each Rj . The argument for a dense subset of C(R) having bounded commutators

with the Dirac operator D =
⊕

∈NDj , is again given by the real functionals on Rn.

C(R). Let f(x1, ..., xn) = a1x1 + ... + anxn an arbitrary real functional. Let Rj be

parameterized by arclength in the variable τ . Then

||[Dj , πj(f)]|| = ||Dj(f)|| = ||Dj(f)||∞ =

∣∣∣∣∣∣∣∣1i dfdτ
∣∣∣∣∣∣∣∣
∞

= ||a1(x′1(τ)) + ...+ an(x′n(τ))||∞

≤ |a1|+ ...+ |an|.

Since this bound is not dependent on j, we have

||[D,π(f)]|| = sup
j
{||[Dj , πj(f)]||} ≤ |a1|+ ...+ |an|.

Therefore the real linear functionals on Rn suffice as our dense subset of C(R) which

have bounded commutators with D.

The eigenvalues of Dj are given in Proposition 1—in particular by L(Rj).

Since the eigenvalues of D are are the disjoint union of the eigenvalues for the Dj ’s, and

L(Rj) → 0, we have that (D2 + I)−1 is a compact operator. The self-adjointedness of

D follows from Dj being self-adjoint for each j.

Let Lipg(f) denote the Lipschitz norm with respect to dgeo. To show that the

spectral distance, dR = dgeo, it suffices to show ||Df ||∞,R = Lipg(f). (The remainder

of this proof is exactly as in the proof of Lemma 1). Note that

||Df ||∞,R = sup
j

{
||Djf ||∞,Rj

}
= sup

j

{∣∣∣∣∣∣∣∣1i dfdx
∣∣∣∣∣∣∣∣
∞,Rj

}
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= sup
j

{
sup
p,q∈Rj

{
|f(p)− f(q)|
dgeo(p, q)

}}
≤ Lipg(f).

The last inequality is clear, just as in Lemma 1, since Lipg is the supremum over all

p 6= q, not just those p 6= q restricted to being in the same Rj .

The inequality in the other direction will come from R4—precisely from the

fact that the geodesic γ between p and q is a concatenation of the Rj ’s. Let {pj} the

sequence of endpoints tracking the Rj curves along γ and note,

|f(p)− f(q)| = |
∑
j∈N

f(pj)− f(pj+1)| ≤
∑
i∈N
|f(pj)− f(pj+1)|

≤
∑
j∈N

(
dgeo(pj , pj+1)||Djf ||∞,Rj

)
≤
(
||Df ||∞,R

)∑
j∈N

dgeo(pj , pj+1)

= ||Df ||∞,Rdgeo(p, q).

Therefore Lipg(f) ≤ ||Df ||∞,R.

The spectral distance, dR, is thus given by

dR = sup{|f(p)− f(q)| : Lipg(f) ≤ 1}.

It follows as before that dR ≤ dgeo and for fixed p, the function f(x) = dgeo(p, x) is

witness to dR ≥ dgeo.

96



4.8 Work in Progress and Future Directions

4.8.1 Uniqueness of Dirac Operators

One of the main observations of the results of this chapter is that there are

multiple Dirac operators which induce the same geometry of the harmonic gasket. In

particular, they induce Kigami’s measurable Riemannian geometry. This gives rise to

questions of the Dirac operator versus a Dirac operator, as well as to what suitable

equivalences of Dirac operator might be. Part of my current work is to shed light on

such questions.

4.8.2 Self-Affinity, Spectral Dimension, and Volume Measure

Another observation is that self-affinity of the harmonic gasket has posed a

challenge in computing its spectral dimension explicitly. This is in contrast to the case

of the Sierpinski gasket which is a self-similar fractal whose spectral dimension is com-

puted in [20] using the fact that every triangle in the Sierpinski gasket is a copy of the

original simplex, scaled by 1/2n.

The spectral dimension of the harmonic gasket is an open question, but it is

conjectured by Michel L. Lapidus to be 1 [19]. There is evidence of this fact, including

Vicente Alvarez’s numerical analysis of the spectrum of the Kusuoka Laplacian in [2]. A

closely related question to the spectral dimension is the volume measure induced by the

spectral triple. For the Sierpinski gasket, the volume measure induced by the spectral

triple was computed as the renormalized Hausdorff measure in [20]. I am currently

working to better understand the asymptotics of eigenvalues of the Dirac operators for

the harmonic gasket in order to compute the spectral dimension as well as the volume
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measure induced by the spectral triples. This direction of research is in part in the

service of building connections with work done by Jun Kigami and Michel L. Lapidus

in [15] and [16].

4.8.3 Global Dirac Operator

Computing the spectral dimension and volume measure induced by the spectral

triples constructed is still only a portion of the story arc I wish to complete. I would like

to have a Dirac operator on the harmonic gasket which recovers Kigami’s geometry and

whose square is the Kusuoka Laplacian. In this case the spectral dimension associated

to the Dirac operator on the harmonic gasket is 1 if and only if the spectral dimension

associated to the Kusuoka Laplacian is 1. Assuming that any suitable notion of scalar

curvature of the harmonic gasket yields zero scalar curvature, then this construction of

a Dirac operator would be a stronger analog to Connes’ theorem on a Riemannian man-

ifold. Using the countable sums, it is not obvious how to connect the Dirac operators

with the Kusuoka Laplacian.

One possible way around the countable sum constructions is to construct a

global Dirac operator and spectral triple using elements of Kigami’s measurable Rie-

mannian geometry—in particular a Dirac operator which is constructed from a deriva-

tion on Kigami’s L2
Z Hilbert space of vector fields on the harmonic gasket. Morally,

this derivation, D, restricted to Kigami’s C1 functions on the gasket would be given

by Df = −iZ∇̃f , where ∇̃ is the harmonic tangent operator and Z is the measurable

Riemannian metric. Then, informally, ||[D, f ]|| = ||Df || as a multiplication operator on

L2
Z and thus ||[D, f ]|| = ||Df ||∞.

Using Kigami’s theorems with the Kigami gradient ∇ it follows that Z∇̃f =
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∇f , the restriction of the usual gradient of a function on the plane to the harmonic

gasket. Thus ||[D, f ]|| coincides with ||∇f ||∞, which in turn coincides with the Lipsh-

chitz (with respect to Kigami’s geodesic distance) norm of f . It would remain to prove

that this Dirac operator squares to the Kusuoka Laplacian. I am currently working to

formalize these arguments, which includes a notion of a measurable vector bundle and

co-bundle and a measurable connection on the bundle. It should be noted that aside from

squaring to the Kusuoka Laplacian, this Dirac operator would be constructed directly

from the measurable Riemannian metric and therefore be the basis of an even stronger

measurable Riemannian analog to Connes’ theorem on a Riemannian manifold.

4.8.4 Effective Resistance Metric

If the argument in the previous section can be formalized, the spectral geomet-

ric approach may prove a link between the effective resistance metric on the Sierpinski

gasket and the measurable Riemannian geometry of the Sierpinski gasket. The effective

resistance metric is described with oscillating springs between vertices of the gasket in

an identical manner as which it is described with an electrical network on the gasket.

Since the harmonic gasket is the Sierpinski gasket in a harmonic coordinate chart, it

reasonable to think that the effective resistance metric on the Sierpinski gasket must be

related to Kigami’s geodesic distance. The following conjectured relationship is inspired

by conversations with Michel L. Lapidus in [19] and comments by Marc Rieffel in [25].

Connes’ Formula 1 and Kigami’s effective resistance metric formula in con-

junction with the proposed global Dirac operator mentioned above may be a way of

formalizing this relationship. Indeed, the square root of the effective resistance metric

is
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√
R(p, q) = sup

{
|u(p)− u(q)|√
E(u, u)

: u ∈ DomE

}
.

Using Kigami’s theorem, this becomes

√
R(p, q) = sup

{
|u(p)− u(q)|
||∇u||L2

Z

: u ∈ DomE

}
.

Connes’s Formula 1 with the global Dirac operator becomes

d(p, q) = sup{|u(p)− u(q)| : ||∇u||∞ ≤ 1}.

The formulas are similar. I am working to formulate a precise relationship between d

and
√
R.

4.8.5 Countable Unions of Curves

Theorem 4 in this chapter is a generalization of the methods used for the

harmonic gasket. Though it applies to a large class of sets including the Sierpinski

gasket and the harmonic gasket, my goal is to replace condition R4 with a more geometric

condition. The concatenation condition which applies to both gaskets is the result of

connectedness and a certain type of convexity for the harmonic gasket and connectedness

and straight line segments for the Sierpinski gasket. The goal is to abstract something

from these conditions in order to eliminate the concatenation condition.

4.8.6 Quantum Graphs and Ecology

The spectral triple approach to these sets built on curves shares many similar-

ities with the theory of quantum graphs. Quantum graphs essentially share two parts

in common with spectral triples—the Hilbert spaces and the differential operator. The
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difference is that in quantum graphs, choices of boundary conditions replace the algebra

of continuous functions on the space. The quantum graph is constructed to directly

admit a theory of differential equations on the space. I am working to apply such quan-

tum graphs to model population dynamics in ecological systems in dendritic stream and

river systems.
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Part II

Nonlinear Poisson Equation via a

Newton-embedding Procedure
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Chapter 5

The Nonlinear Poisson Equation

via a Newton-embedding

Procedure

5.1 Introduction

In Chapter 5 we solve the nonlinear Poisson boundary value using a Newton-

embedding procedure. The focal point of the project is, of course, the collection of

hypotheses imposed on the nonlinear forcing term. As will be discussed later in this

chapter, the Newton-embedding procedure yields a linear elliptic partial differential

boundary value problem at each iteration in the procedure. Convergence in the proce-

dure relies on, in particular, some uniform control over the norm of the solution at each

iteration and most of the hypotheses on the nonlinear forcing term are influenced by the

necessity of this norm control.
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5.1.1 Structure of Part II

The two sections to follow are, respectively, brief primers on second order el-

liptic equations and the Newton-embedding procedure. In Section 3 of this chapter, we

state the problem formally and list the results. The remainder of Chapter 5 is primarily

dedicated to proving those results. The chapter concludes with a discussion of a class

of nonlinear functions allowable in the procedure and possible future projects based on

certain observations.

5.2 Second Order Elliptic Equations and the

Newton-embedding Procedure

5.2.1 Second Order Elliptic Equations

Let Ω be a domain in Rn and f : Ω → R. Consider the following boundary

value problem,


Lu = f in Ω

u|Γ = 0 on Γ = ∂Ω,

where L is a second order differential operator given by

Lu = −Σn
i,jaij(x)uxixj + Σn

i=1b
i(x)uxi + c(x)u

Assume for now that aij , bi, c ∈ L∞(Ω). We say that L is elliptic if there exists a

constant α > 0 such that

Σn
i,j=1a

i,j(x)βiβj ≥ α|β|2
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for Lebesgue-a.e. x ∈ Ω and all β ∈ Rn [6]. In other words, the matrix given by (aij(x))

is positive definite with smallest eigenvalue greater than or equal to α [6]. Second or-

der elliptic equations often model physical phenomena, and this is true of the simplest

elliptic problem given by −∆u = f , u = 0, called the Poisson problem.

One of many applications is when the Poisson equation is modeling an external

force, f , applied to a taut membrane or drum where u is the displacement of the mem-

brane (away from flat). The Poisson equation is then a force equation and states that the

deformation of the membrane is precisely given by the force applied. In the exposition

to follow, we will address the nonlinear form of this problem where the forcing function

f is replaced with f(u) = f ◦ u. We will do this using using an approximation method

which in essence linearizes the problem, or more specifically, allows for a solution via

iteratively solving linear second order elliptic problems. This linear problem has a fairly

simple form as well and is given by


−∆u+ q(x)u = g(x) in Ω

u|Γ = 0 on Γ,

It is necessary to explain what is meant by a solution in this setting. Suppose

f ∈ L2(Ω) and we multiply both sides of Lu = f by a smooth function v with compact

support in Ω. Integrating by parts reduces this second order equation to first order,

with boundary terms vanishing because of the compact support of v, to find

∫
Ω

Σn
i,j=1a

ijuxivxj + Σn
i=1b

iuxiv + cuvdx =

∫
Ω
fvdx

It is clear by density that u need only be in the Sobolev space H1
0 (Ω) for this process

to make sense. The energy form B associated to the operator L is given by
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B[u, v] =

∫
Ω

Σn
i,j=1a

ijuxivxj + Σn
i=1b

iuxiv + cuvdx

which is defined for u, v ∈ H1
0 . We say that u is a weak solution to Lu = f if B[u, v] =

(f, v) for all v ∈ H1
0 (Ω), where (/, /) is the inner product on L2(Ω) [6]. In this work, we

will be concerned with elliptic operators where c > 0, bi ≡ 0, and aij ≡ δij . In this case

B[u, v] is an inner product on H1
0 (Ω) and the Riesz representation theorem provides

existence and uniqueness. This frames the notion of a solution in the linear elliptic

equations. I have avoided a weak solution formulation for the nonlinear equation. What

I will call a solution to the nonlinear equation is an H1
0

⋂
H2 which solves the nonlinear

problem almost everywhere.

Another important feature of elliptic equations, especially important in the

Newton-embedding procedure, is regularity. In other words, what can the structure of

an elliptic operator say about the solution to the associated boundary value problem? L.

Evans in [6] gives an elegant motivation for regularity. The problem −∆u = f in Ω with

zero on the boundary condition, has a unique solution in H1
0 (Ω), as discussed above.

But as the following computation illustrate, there is reason to believe the solution is at

least two weak derivatives smoother than f . To see this, assume that u is smooth and

vanishes on the boundary of Ω. In [6], L. Evans computes

∫
Ω
f2dx =

∫
Ω

(∆u)2dx = Σn
i,j=1

∫
Ω
uxixiuxjxjdx = −Σn

i,j=1

∫
Ω
uxixixjuxjdx

= Σn
i,j=1

∫
Ω
uxixjuxixjdx =

∫
Ω
|D2u|2

In this case the second derivatives of u are controlled by the L2-norm of f . Substituting

an H1
0 assumption for smooth sets up a technically more difficult argument, but the
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intuition is correct. Theorem 1 in 6.3.1 and Theorem 4 in 6.3.2 in [6] show that, under

suitable assumptions, the H1
0 solution of an elliptic problem, is indeed in H2, with its

H2-norm controlled by the L2-norm of f . This norm control is what we refer to as a

regularity estimate.

For the purpose of the Newton-embedding procedure, such regularity estimates

are crucial as will be seen in Section 7 addressing the convergence results in the proce-

dure. Note also, that given the regularity lifting to H2, the weak solution will also solve

the linear differential equation almost everywhere. This will extend, via the Newton-

embedding procedure, to an H1
0

⋂
H2 function which solves the nonlinear Poisson prob-

lem almost everywhere.

5.2.2 Newton-embedding Procedure

The Newton-embedding procedure is a variant of the classical Newton’s method

used to approximate a zero of a function, taught in a first year calculus course. One

makes an initial guess, evaluates the derivative at the point, and then intersects the

tangent line at that point with the x-axis. The derivative is then evaluated at the in-

tersection point with the new tangent line intersecting the x-axis and so on. This forms

a sequence of points on the x-axis whose limit is hopefully a zero of the function.

One problem with the classical Newton’s method is that the initial guess must

be close enough to a zero for the iterations to converge. One way of getting around this

obstacle is to embed the equation to be solved, say, f(x) = 0 into a one-parameter family

of equations, ft(x) = 0 for t ∈ [0, 1] where a solution is known at t = 0 and the desired

solution is the one corresponding to t = 1. An example would be f(x) = x2−2x = 0 em-
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bedded into the family ft(x) = x2− t2x = 0. Here the solution x = 0 is known for t = 0.

The idea is then to push the solution along with a finite number of increasing times,

performing Newton’s method at each time. With convergence in Newton’s method at

tj ∈ [0, 1], the limit point is then used as the initial guess for Newton’s method at time

tj+1 ∈ [0, 1].

This is exactly the method of the Newton-embedding procedure used in the

work to follow, with the exception that we are not performing calculus on the real line,

but on a Hilbert space of functions. Because of this, each iteration in Newton’s method

at time t will be given by a differential equation and the limit point will be given by a

function as will be seen in Section 6. Also, the classical derivative is replaced with the

Frechet derivative, which is explained and computed in Section 6.

5.3 Statement of the Problem and Theorems

The goal of this chapter is to find suitable hypotheses on a function f ∈ C2(R)

related to attaining a solution to the semilinear boundary value problem given by

(∗)


−∆u = f(u) in Ω

u = φ on Γ = ∂Ω,

using the Newton-embedding procedure that is applied in [11]. Here, Ω is assumed to

be a bounded domain in Rn (n > 2) with smooth boundary Γ and f(u) is defined as

f ◦ u. In order to distinguish between f as a real-valued function on R and as a map

from a space of real-valued functions on Ω to another space of real-valued functions on

Ω via composition, we will define the derived function as f̃ , an operator between spaces
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of real-valued functions on Ω. More precisely, if f is a real-valued function on R and A

and B are spaces of real-valued functions on Ω, then

f̃ : A→ B is defined by f̃(u) = f ◦ u.

for u ∈ A. Note that the definition of f̃ is consistent with the notation used in (∗), since

f̃(u) = f ◦ u = f(u). In addition, Hk(Ω) is defined as the L2 functions on Ω having

(weak) derivatives up to order k which are L2 functions on Ω. This is the Hilbert space

notation substituted for the Sobolev space notation W k,2(Ω). The space of real-valued

functions on Ω which are Hölder continuous with exponent α will be denoted Cα(Ω̄).

The author of [11] constructs an H2 solution when Ω is a domain in R3 and Γ is smooth,

provided the following assumptions on f hold:

(i) f̃ is a continuous map from H2(Ω) to L2(Ω);

(ii) f̃ ′ and f̃ ′′ are continuous maps from H1(Ω) to Cα(Ω̄), α ∈ (0, 1
2 ];

(iii) f̃ , f̃ ′, and f̃ ′′ are bounded maps;

(iv) f ′ < 0 on R.

An additional condition in [11] is the choice of a uniform width of time intervals in

the procedure that ensures convergence, which exists as a consequence of the above

assumptions. However, we prove the following theorems in Sections 2 and 3 of this

article:

Theorem 1. If f : R→ R and f̃ : H1(Ω)→ C0(Ω̄) and Ω is a domain in Rn (n > 2),

then f is a constant function.

Theorem 2. Let h : R→ R, 1 ≤ p ≤ ∞, and Ω be a domain in Rn. If h̃ is a bounded

map from H2(Ω)
⋂
H1

0 (Ω) to Lp(Ω), then h is a bounded map from R to R.
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By Theorem 1, the assumption in (ii) that f̃ ′ maps H1 to Cα forces f ′ to be a

constant function. Theorem shows that the bound on f̃ in assumption (iii) forces f to

be a bounded function on R. Thus f is shown to be linear and bounded on R, and is

therefore a constant function, reducing the scope of the procedure in [11] to the family

of problems given by −∆u = const.

In Section 2, Theorem 1 is proven. In Section 3, Theorem 2 is proven using

a sequence of smooth ‘bump’ functions in H2. As a consequence of Theorem 2, the

bounds imposed in (iii) on f̃ ′ and f̃ ′′ imply that f ′ and f ′′ are also bounded functions

on R.

In the remaining sections of this article, we apply the Newton-embedding pro-

cedure to the zero boundary value case of the problem (∗), given the following hypotheses

on f ∈ C2(R):

(I) f̃ is a continuous map from H2(Ω) to L2(Ω);

(II) f̃ ′ and f̃ ′′ are continuous maps from H1(Ω) to Ln(Ω);

(III) there exists a constant M > 0 such that

|f | ≤M, |f ′| ≤M, and |f ′′| ≤M ;

(IV) f ′ < 0.

In Section 7, given (I)− (IV ), the main result of this article is proven:

Theorem 4. With Ω a bounded domain in R3 with smooth boundary and assumptions

(I)-(IV), the semilinear boundary value problem,
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(∗′)


−∆u = f(u) in Ω

u = 0 on Γ = ∂Ω,

has a unique solution in H2(Ω)
⋂
H1

0 (Ω), and hence a continuous solution, which can

be approximated by the Newton-embedding procedure.

In our application of the Newton-embedding procedure used to construct the

solution to (∗′), each k-th step of the procedure yields a linear boundary value problem

of the form

(∗∗)


−∆u+ q(x)u = g(x) in Ω

u = 0 on Γ.

The functions g and q will be different at each step, but ultimately derive from f . Due

to the assumptions (I)− (IV ) on f , it is the case that g is in L2(Ω), q is in Ln(Ω), and

q > 0—and this is sufficient to make (∗∗) well-posed:

Theorem 3. Let Ω be a bounded domain in Rn (n > 2) with smooth boundary Γ. Then

for g ∈ L2(Ω), q ∈ Ln(Ω), and q > 0, the linear boundary value problem

(∗∗)


−∆u+ q(x)u = g(x) in Ω

u = 0 on Γ,

has a unique solution u ∈ H2(Ω)
⋂
H1

0 with

||u||H2(Ω) ≤ C(||g||L2(Ω)),

where C depends only on Ω, n, and q.
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Remark 1. Theorem 3 is a standard result, however, for completeness and lack of an

explicit reference it will be proved in Sections 5 and 6.

5.4 The Mesa Function

Let Ω be a domain in Rn with n > 2 and let c ∈ Ω. We start by constructing a

function that is radially symmetric about c, which we will use in the proof of Theorem

1, and call a mesa function. The notation ‘⊂⊂’, used throughout Sections 2 and 3,

denotes compactly contained. Let T > 0 such that B(c, T ) ⊂⊂ Ω, where B(c, T ) de-

notes the open ball of radius T about c. Also let a, b ∈ R with a < b, and α ∈ (0, n−2
2 ).

In order to define the function, it is necessary to decompose the interval [0, T ] as follows:

If we let r+
1 =

T

2
, then there is an s+

1 such that

1

(s+
1 )α
− 1

(r+
1 )α

= b− a.

In particular, 0 < s+
1 < r+

1 . Setting s−1 =
s+

1

2
allows for an r−1 such that

1

(r−1 )α
− 1

(s−1 )α
= b− a.

In particular, 0 < r−1 < s−1 . Continuing in this manner, set r+
m+1 =

r−m
2

.

Note that r+
m+1 > 0 for all m and r+

m+1 goes to zero with
1

2m
.

Using the above notation, let U : Ω → R be the radially symmetric piecewise

function defined inductively by
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Figure 5.1: Artist’s depiction of a mesa function with r = |x− c|

U(x) =



0 , |x− c| ≥ T

(−2a
T )|x− c|+ 2a , r+

1 ≤ |x− c| ≤ T

1
|x−c|α −

1
(r+m)α

+ a , s+
m ≤ |x− c| ≤ r+

m

b , s−m ≤ |x− c| ≤ s+
m

b− ( 1
|x−c|α −

1
(s−m)α

) , r−m ≤ |x− c| ≤ s−m

a , r+
m+1 ≤ |x− c| ≤ r−m.

We will call U(x) a mesa function with exponent α. Figure Figure 5.1 is a sketch of a

mesa function whose partition points have been altered to show more ‘mesas’.

U is bounded and has compact support, so is trivially in L2(Ω). It remains to

show that it has (weak) first derivatives in L2(Ω). The proposed first derivatives are

given by
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Uxi(x) =



0 , |x− c| ≥ T

−2a
T , r+

1 ≤ |x− c| ≤ T

−αxi
|x−c|α+2 , s+

m ≤ |x− c| ≤ s+
m

0 , s−m < |x− c| ≤ s+
m

αxi
|x−c|α+2 , r−m < |x− c| ≤ s−m

0 , r+
m+1 < |x− c| ≤ r−m.

Away from zero, on each annulus of the decomposed Ω, the expressions in Uxi are

classical derivatives of their corresponding expressions in U(x). Let φ ∈ C∞0 (Ω) and

fix N . Integrating Uφxi by parts over the annuli given by [r+
1 , T ], [s+

m, r
+
m], [s−m, s

+
m],

[r−m, s
−
m], and [r+

m+1, r
−
m] for m = 1, ..., N and recalling that U ≡ 0 for |x− c| ≥ T , gives

∫
Ω−B(c,r+N+1)

Uφxidx = −
∫

Ω−B(c,r+N+1)
Uxiφdx+

∫
∂B(c,r+N+1)

UφρidS,

where ρ = (ρ1, ..., ρn) is the inward pointing normal on ∂B(c, r+
N+1).

Let u(x) =
1

|x− c|α
. Note that |Uxi | ≤ |uxi |, so that |DU | ≤ |Du|. Following

the line of argument [1, p.246] given by L. Evans, since α < n−1, |Du| = α

|x− c|α+1
∈ L1(Ω)

and therefore |DU | ∈ L1(Ω). Letting N →∞ (and thus r+
N+1 → 0),

∣∣∣∣∣
∫
∂B(c,r+N+1)

UφρidS

∣∣∣∣∣ ≤ ‖ Uφ ‖∞
∫
∂B(c,r+N+1)

ρidS ≤ M(r+
N+1)n−1 → 0.

This implies
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∫
Ω
Uφxidx = −

∫
Ω
Uxiφdx,

and therefore Uxi is a (weak) derivative of U . Moreover, since α <
n− 2

2
, following the

argument in [1, p.246], | Du |∈ L2(Ω) and thus |DU | ∈ L2(Ω) and U(x) ∈ H1(Ω). The

following lemma summarizes the above discussion:

Lemma 1. If Ω is a domain in Rn with n > 2, and U(x) is a mesa function with

exponent α ∈
(

0,
n− 2

2

)
, then U(x) ∈ H1(Ω).

Using Lemma 1, we give the proof of Theorem 1:

Proof of Theorem 1. Suppose on the contrary, that f is not constant and assumes dis-

tinct values at a and b. Without loss of generality, assume that a < b. Let c ∈ Ω and

T be such that B(c, T ) ⊂⊂ Ω. Since n > 2, there exists α such that 0 < α < n−2
2 .

Let U(x) be the mesa function centered at c, with exponent α, support in B(c, T ), and

prescribed maximum and minimum, b and a, respectively. By Lemma 1, U(x) is in

H1(Ω). Using the notation in the previous section for the domain of U(x), it holds that

for any δ > 0 there exists an N such that [s−N , s
+
N ] ⊂ B(c, δ) and [r+

N+1, r
−
N ] ⊂ B(c, δ).

Note that f ◦ U ≡ f(b) on [s−N , s
+
N ] and f ◦ U ≡ f(a) on [r+

N+1, r
−
N ]. Since the measure

of the above intervals is strictly positive, f ◦ U has no continuous representative. In

other words, the oscillations of f ◦ U do not diminish in any neighborhood of c. This

contradicts the hypothesis that f̃ maps U to a continuous function.

5.5 Uniform bounds

In this section we prove Theorem 2, showing that bounding h̃ results in bound-

ing h:
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Proof of Theorem 2. Let p < ∞. Suppose on the contrary, that h is not bounded red

and that the bound on h̃ is M . Then there exists a sequence, {xk}∞k=1 in R such that

|h(xk)| > k. Let y0 ∈ Ω and r be such that B = B(y0, r) ⊂⊂ Ω. Set B 1
2

= B(y0,
r
2).

Choose a smooth function, γ, such that γ ≡ 1 on B 1
2
, γ ≡ 0 on Ω− B, and 0 ≤ γ ≤ 1.

Define the smooth function uk on Ω by uk = xkγ. Then uk ∈ H2(Ω)
⋂
H1

0 (Ω) for all k

and

||h̃(uk)||Lp(Ω) = ||h(uk)||Lp(Ω) ≥ ||h(uk)||Lp(B 1
2

) = ||h(xk)||Lp(B 1
2

) > k|B 1
2
|
1
p .

Choosing k0 large enough such that k0|B 1
2
|
1
p > M gives a contradiction. If p = ∞, a

similar computation holds, choosing k0 > M .

Remark 2. Since Cα is embedded in L∞, Theorem 2 with p =∞ suffices to show that

a uniform bound on ||h(u)||Cα implies h is bounded. Therefore the assumptions made

in [11], imply that f , f ′, and f ′′ are bounded functions. Moreover, under the same

assumptions, as shown in the previous section, f is linear. In this case f is a constant,

reducing the scope of the procedure to problems given by −∆u = const.

5.6 Newton-embedding Procedure

The Newton-embedding procedure we wish to apply to

(∗′)


−∆u = f(u) in Ω

u = 0 on Γ = ∂Ω,

has two parts. It is well described in [11], but recalled here for clarity. The procedure

first embeds the problem in a one-parameter family of problems,
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−∆u = tf(u) in Ω

with u = 0 on Γ and parameter t ∈ [0, 1]. We set

Ft(u) = ∆u+ tf(u).

Solving (∗′) is then a matter of solving F1(u) = 0.

Let u(x, t) be the solution to Ft(u) = 0. Starting with t0 = 0, the problem

is solved with solution u(x, 0) in Ω. Observe that with boundary value zero imposed,

u(x, 0) is uniquely determined as u(x, 0) ≡ 0. To solve Ft1(u) = 0, u(x, 0) is taken as an

initial approximation and the standard Newton’s method is applied. With convergence,

the solution u(x, t1) to Ft1(u) = 0 is achieved. The function u(x, t1) is then used as

an initial approximation for Ft2(u) = 0 and so on for increasing times tj . Thus the

solutions are pushed along with increasing times using Newton’s method with the goal

of reaching t = 1 in finitely many time shifts.

Let u0(x, tj) = u(x, tj−1), the initial approximation for Ftj (u) = 0, and um(x, tj)

be the mth iteration of Newton’s method at time tj . In the following discussion, the

argument of the um’s will be suppressed. We will also temporarily use the symbol D for

the Frechet derivative in contrast to its usual use as the gradient. The Frechet derivative

is a generalization of the derivative of an operator from Rk to Rl that is used to derive

an operator between Banach spaces. In this setting we have an operator F which will

map from L2(Ω) to L2(Ω). The Frechet derivative is given, for u,w ∈ L2 and h ∈ R, by,
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DF (u)[w] = lim
h→0

F (u+ hw)− F (u)

h
.

Note that

DFtj (um)[w] = ∆w + tjDf̃(um)[w] and Df̃(um)[w] = f̃ ′(um)w = f ′(um)w

for w ∈ H2(Ω) and that the (m+ 1)th iterate in the Newton approximation is given by

DFtj (um)[um+1 − um] = −Ftj (um).

To see this we can compute the Frechet derivative as follows (when there is no confusion,

we will drop the ‘tilde’ notation on f):

DF (u)[w] = lim
h→0

∆(u+ hw) + tf(u+ hw)−∆u− tf(u)

h

= lim
h→0

h∆w + t(f(u+ hw)− f(u))

h
= ∆w + t lim

h→0

f(u+ hw)− f(u)

h

= ∆w + tDf(u)[w].

To compute Df(u)[w], let x ∈ Ω and recall that f : R→ R:

(Df(u)[w])(x) = lim
h→0

(
f(u(x) + hw(x))− f(u(x))

h

)(
w(x)

w(x)

)

= lim
h→0

(
f(u(x) + hw(x))− f(u(x))

hw(x)

)
w(x) = f ′(u(x))w(x)
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where f ′ is used to denote the derivative of f as a function from R to R. Thus Df(u) =

f ′(u) acts on L2(Ω) through multiplication. Applied to um and tj we have,

DFtj (um)[w] = ∆w + tjf
′(um)w.

As a consequence, the (m+ 1)th iterate in the Newton approximation at time tj is given

by

DFtj (um)[um+1 − um] = −Ftj (um).

Computing each side of the equation above, we have

∆um+1 −∆um + tjf
′(um)(um+1 − um) = −∆um − tjf(um).

In this case, the (m+ 1)th iteration at time tj yields the following linear problem:

(∗∗)


−∆um+1 + (−tjf ′(um))(um+1) = tj(f(um)− f ′(um)um) in Ω

um+1 = 0 on Γ.

This is the problem

(∗∗)


−∆u+ q(x)u = g(x) in Ω

u = 0 on Γ,

stated in the introduction with

q = −tjf
′
(um), g = tj [f(um) + f

′
(um)um], and u = um+1.

Initially, a weak solution in H1
0 is desired, so it makes sense that u be in H1

0

and that f and f ′ should be defined on H1
0 . However, as will be shown in Section 6, an
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H1
0 solution to (∗∗) is also in H2

⋂
H1

0 . In light of this, f and f ′ need only be defined

on H2
⋂
H1

0 . Note that if f maps H2 to L2 and f ′ maps H2 to Ln, then g is in L2 for

all dimensions n > 2, via the Sobolev embedding theorem. Indeed, since u is in H1, u

is again in L
2n
n−2 and the Hölder inequality gives

∫
Ω

[f ′(u)u]2 ≤ C||f ′(u)||2Ln ||u||2
L

2n
n−2

.

To fulfill the positivity condition on q in (∗∗), we impose that f ′ < 0. Now, at each time

tj > 0 and for all m, the mth step in the iteration at time tj is a model for (∗∗).

For the remainder of the article, we assume Ω is a bounded domain in Rn

(n > 2) with smooth boundary Γ and make the following assumptions (I)-(IV) on the

nonlinear function f ∈ C2(R):

(I) f̃ is a continuous map from H2(Ω) to L2(Ω);

(II) f̃ ′ and f̃ ′′ are continuous maps from H1(Ω) to Ln(Ω);

(III) there exists a constant M > 0 such that

|f | ≤M, |f ′| ≤M, and |f ′′| ≤M ;

(IV) f ′ < 0.

Remark 3. There is a redundancy and lack of ‘sharpness’ in assumptions (I) and (II),

given (III). Indeed, if the functions f , f ′, and f ′′ are bounded, they naturally map to

bounded functions on Ω, and hence to L∞(Ω) which is contained in Lp(Ω) for all p ≥ 1

since Ω is bounded. The reason for stating L2 explicitly is that it is a familiar assumption

for framing weak solutions to linear elliptic problems. The bounds on the functions are
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not necessary to existence and uniqueness in (∗∗), nor to the regularity lifting of the

H1
0 solution to H2 . Moreover, the L2 hypothesis on f and the Ln hypothesis on f ′ are

sufficient for existence and uniqueness and the regularity lifting. For a more general

treatment of elliptic equations with measurable coefficients, see [33].

5.7 Existence and Uniqueness

For this section, we assume (I), (II), and (IV). To prove existence and unique-

ness for (∗∗) in H1
0 (Ω) (H1 functions with zero on the boundary), the Riesz Representa-

tion theorem is sufficient. We seek a unique solution in H1
0 (Ω). The associated energy

form for (∗∗) is

B(u, v) =

∫
Ω
DuDv + quv.

It is well defined on H1
0 (Ω). Indeed, since n > 2 and u, v ∈ H1

0 (Ω), then u, v ∈ L
2n
n−2 (Ω)

by the Sobolev embedding theorem. Also since Ω is bounded, if q ∈ Ln(Ω), then

q ∈ L
n
2 (Ω). Note that

2

n
+
n− 2

2n
+
n− 2

2n
= 1.

Therefore by Hölder’s inequality, quv is integrable over Ω with

∫
Ω
|quv| ≤ ||q||

L
n
2
||u||

L
2n
n−2
||v||

L
2n
n−2

.

This inequality combined with the Sobolev inequality

‖|u||
L

2n
n−2
≤ C||u||H1

0

gives
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|B(u, v)| ≤ C||u||H1
0
||v||H1

0

where C > 0 is dependent on Ω, n, and ||q||
L
n
2

but not on u and v. By the Poincaré

inequality and the positivity of q, we have

||u||2H1
0
≤ C

∫
Ω
|Du|2 ≤ C

∫
Ω
|Du|2 + qu2 = CB(u, u) (5.1)

where C > 0 is dependent on n and Ω but not on u. Since f ∈ L2(Ω), it is a bounded

linear functional on H1
0 (Ω) [6]. Since B(u, v) is an inner product on H1

0 , the Riesz

Representation theorem provides a unique u∗ ∈ H1
0 (Ω) such that

B(u∗, v) =

∫
Ω
fv for all v ∈ H1

0 .

In other words, u∗ is the unique weak solution to (∗∗) in H1
0 .

5.8 Regularity

With the same hypotheses as in the previous section, we wish to lift the reg-

ularity of the unique solution to (∗∗) from H1
0 to H2, with the estimate controlled by

the L2 norm of g(x). Theorem 6.3.4 (Boundary H2-regularity) in [6] gives the desired

regularity lifting of a solution to (∗∗) when q ∈ L∞. However, the L∞ condition is only

used in factoring out ||q||L∞ from the following integral to find, for u, v ∈ H1 and ε > 0

in Cauchy’s inequality,

∫
|quv| ≤ ||q||L∞

∫
|uv| ≤ C

(
1

2ε
||u||2L2 +

ε

2
||v||2L2

)
.

The Ln hypothesis on q provides,
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∫
|quv| ≤ 1

2ε
||cu||2L2 +

ε

2
||v||2L2 ≤

1

2ε

(
||q||2Ln ||u||2

L
2n
n−2

)
+
ε

2
||v||2L2

≤ C
( ε

2
||u||2H1 +

ε

2
||v||2L2

)
≤ C

( ε
2
||Du||2L2 +

ε

2
||v||2L2

)
by Hölder’s inequality, the Sobolev embedding theorem and Poincaré’s inequality. By

the above estimates, we have also

∫
(cu)2 ≤M ||Du||2L2 .

Following the line of reasoning in [6], the result for q ∈ Ln is a sufficient replacement for

the estimate for L∞ to get the regularity estimate,

||u||H2(Ω) ≤ C
(
||g||L2(Ω) + ||u||H1(Ω)

)
where C depends only on Ω and n and q. Now, recalling the second energy estimate (1)

in Section 5,

||u||2H1(Ω)(Ω) ≤ CB(u, u) = C

∫
Ω
gu ≤ C

(
1

2
||g||2L2(Ω) +

1

2
||u||2L2(Ω)

)
,

since u is a weak solution to (∗∗). The last inequality is given by Cauchy’s inequality

with ε = 1. Also since u is a unique solution, the L2 norm of u is controlled by the L2

norm of g by Theorem 6.2.6 in [6]. Therefore,

||u||H2(Ω) ≤ C||g||L2(Ω),

123



where C depends only on Ω, n, and more significantly, q. The above estimate, in

conjunction with the existence and uniqueness result in Section 5, completes the proof

of Theorem 3.

5.9 Convergence

In this section we complete the proof of Theorem 4. In the previous two

sections, it was shown that (∗∗) is uniquely solvable in H1 and the solution is a priori

in H2 with estimate controlled by the forcing term g. Recalling that (∗∗) represents

an arbitrary iteration of Newton’s method at time tj , the linear equation solved by the

difference, um+1 − um for m > 1, is given by

−∆(um+1 − um) + (−tjf ′(um))(um+1 − um)

= tj(f(um)− f(um−1)− f ′(um−1)(um − um−1)) in Ω

um+1 − um = 0 on Γ.

This is (∗∗) with

u = um+1 − um, q = −tjf ′(um),

g = tj(f(um)− f(um−1)− f ′(um−1)(um − um−1)),

and a zero boundary condition. Indeed, using the same argument as at the end of

Section 5, it is clear that g ∈ L2. For m = 0, by the definition of u0 at time tj , the

problem satisfied by u1 − u0 is

−∆(u1 − u0) + (−tjf ′(u0))(u1 − u0)
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= (tj − tj−1)f(u0) in Ω

u1 − u0 = 0 on Γ,

and is again a model for (∗∗). To facilitate the convergence estimates to follow, it will

be helpful to use Taylor’s theorem to simplify g. Similar to the application of a mean

value theorem used in [11], for m > 1, g can be written as

g = tj(um − um−1)2

∫
(0,1)

f ′′(τum + (1− τ)um−1)(1− τ)dτ.

Theorem 3 and the boundedness of f ′′ give the estimate,

||um+1 − um||H2 ≤ C||tj(um − um−1)2

∫
(0,1)

f ′′(τum + (1− τ)um−1)(1− τ)dτ ||L2

≤ CtjM

2
||(um − um−1)2||L2

≤ CtjM

2
||(um − um−1)||2L4 .

Before progressing with the estimate, it is important to discuss the dependence

on dimension. For dimensions n = 3 and n = 4, the L4 norm is controlled by the H1

norm, by the Sobolev embedding theorem, which in turn is controlled by the H2 norm.

For dimensions n = 5, 6, 7,and 8, the L4 norm is controlled by the H2 norm, via the

more general Sobolev inequality [1,p.270]. The subsequent calculations do not depend

on which dimension n ∈ (3, 4, 5, 6, 7, 8) is assumed. However, only in dimension n = 3

does the general Sobolev theorem assure that our H2 solution is indeed continuous. For

n = 5, 6, 7, and 8, the H2 solution is respectively, L10, L6, L
14
3 , and L4. To continue

with the convergence estimate, for n ∈ (3, 4, 5, 6, 7, 8), we have
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CtjM

2
||(um − um−1)||2L4 ≤

CtjMCs
2

||(um − um−1)||2H2

where Cs is the constant from the Sobolev theorem and only depends on Ω and n.

Since in Theorem 3, C depends on ||f ′(um(x, tj))||Ln and hence m and tj , we invoke the

boundedness of f ′. Therefore ||f ′(um(x, tj))||Ln is bounded by some constant C > 0,

uniformly over m and tj . Let K = CMCs
2 . Inductively,

||um+1 − um||H2 ≤ (tjK||u1 − u0||H2)2m−1||u1 − u0||H2

and therefore for s ∈ N,

||um+s − um||H2 ≤ [a2m+s−1−1 + ...+ a2m−1]||u1 − u0||H2

where a = tjK||u1−u0||H2 . If tj is chosen such that a < 1, then the positive expression

in brackets above is bounded from above by the tail end of a convergent geometric series,

and therefore goes to zero as m→∞. We have now shown that um is a Cauchy sequence

in the Banach space H2(Ω), and therefore converges to some u∗ ∈ H2(Ω). As stated in

[11], due to the continuity of f̃ and the boundedness of f ′, it is clear that u∗ satisfies

(∗′)


−∆u = tjf(u) in Ω

u = 0 on Γ

almost everywhere and that the uniqueness of the solution u∗ follows from the unique-

ness of the solution um(x, tj) to (∗∗) for each m and tj .

We now show that, given hypotheses (I)− (IV ), we can choose tj sufficient for

convergence as above, for each j, in a manner such that for some N ∈ N, tN = 1. In
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other words, the solution to (∗′) can be constructed after a finite number of applications

of Newton’s method. To make this precise we look at the problem satisfied by u1 − u0

at time tj and apply Theorem 3 and the boundedness of f and f ′ to estimate,

||u1 − u0||H2 ≤ C||(tj − tj−1)f(u0)||L2

≤ C(tj − tj−1)||f(u0)||L2 ≤MC(tj − tj−1).

If A = MC, then A depends on the bounds on f and f ′, the volume of Ω, and n, but

not on tj . In the following inequality,

Ktj ||u1 − u0||H2 ≤ KAtj(tj − tj−1) < 1,

the condition for convergence at time tj was that the leftmost expression be < 1. Since

tj ≤ 1 for all j, it suffices to impose, for each j ≥ 1, that

tj − tj−1 <
1

KA
.

As KA only depends on Ω, p = 2, n, and M , (and in particular, not j), KA gives a

uniform bound on the time intervals, and therefore t = 1 is attainable after finitely many

applications of Newton’s method. When Ω is a domain in R3, the H2 solution is then

continuous by the general Sobolev embedding theorem, and thus the proof of Theorem

4 is completed.

5.10 Conclusion

The goal for improving this procedure is to weaken the assumptions on f and

f ′. In particular, we would like to eliminate the boundedness or equivalently the uniform
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boundedness of f(u) and f ′(u). To do this requires a function f such that f(um(x, t))

does not grow too fast in L2 norm as t increases and such that f ′(um(x, t)) does not

grow too fast in Ln norm as m and t increase. If the boundedness of f is dropped from

the assumptions, a linear function would be allowed, but assumption (IV) would force

it to be decreasing. Since the spectrum of −∆ is positive, (∗′) is then solved uniquely

with u ≡ 0 (which is achieved vacuously in the procedure). An example of a function

satisfying (I)-(IV) is

f(x) = cot−1(x)

whose derivatives are

f ′(x) =
−1

1 + x2
and f ′′(x) =

2x

(1 + x2)2
.

Similarly, if ε > 0, A > 0, and h, k ∈ R, then

Acot−1

(
x− h
ε

)
+ k

represents a family of functions, each of which satisfy (I)-(IV). A subset of this family,

given by

fε(x) =
1

π
cot−1(

x

ε
)− 1,

is of interest since

fε(x)→ −H as ε→ 0

f ′ε(x) =
−ε

ε2 + x2
→ −δ as ε→ 0,
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where H is the Heaviside function and δ is the Dirac delta function and the arrows imply

at least pointwise convergence and possibly a more refined limit. It is natural to ask

whether the Newton-embedding procedure can be carried out in a distributional setting

with f = −H and whether fε produces a meaningful approximation to the Heaviside

function for small ε. More generally, if P is the class of functions which satisfy (I)-(IV),

it is of interest as to which functions exist in a suitable closure of P. In this case,

‘suitable closure’ can be taken to mean one whose functions allow for the application of

the Newton-embedding procedure in possibly a distributional or more general setting,

and produce a solution which can be approximated by applying the procedure to a

function in P.
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