
Lawrence Berkeley National Laboratory
LBL Publications

Title
Event-Join Optimization in Temporal Relational Databases

Permalink
https://escholarship.org/uc/item/1039286t

Authors
Segev, A
Gunadhi, H

Publication Date
1989

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1039286t
https://escholarship.org
http://www.cdlib.org/

"-.'

"

LBL-26600

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

To be presented at the Fifteenth International Conference on
Very Large Data Bases, Amsterdam, The Netherlands,
August 22-25, 1989, and to be published in the Proceedings

Event-Join Optimization in Temporal
Relational Databases

A. Segev and H. Gunadhi

January 1989

Prepared for the U.s. Department of Energy under Contract Number DE·AC03·76SF00098.

+n o r .
""'i""'i 0

n D
ruJ;:Z
~p.on
m o
mm-u
;;o;:"lfI-<
lfI

tV
0..

10

U1
0

r
crn
""'i 0
fIIU
""'i"<
"< . ru

r
tV
r
I

ru
cr·
cr·
0
0

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any walTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of aut~ors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

_ Event-Join Optimization in Temporal
Relational Databases

Arie Segev and Himawan Gunadhi

School of Business Administration
University of California

and

Computing Science Research & Development
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California 94720

January 1989

LBL-26600

,

Proceedings of the 15th International Conference on Very Large Data Bases,
Amsterdam, The Netherlands, August 22-25, 1989

This work was supported by the Director, Office of Energy Research, Applied Mathematical
Sciences Research Program, of the U.S. Department of Energy under Contract No. DE-AC03-
76SFOO098.

LBL-26600

-
EVENT-JOIN OPTIl\1IZATION IN TEMPORAL RELATIONAL DATABASES

Arie Segev and Himawan Gunadhi

School of Business Administration and
Computer Science Research Dept, Lawrence Berkeley Lab

University of California
Berkeley, Ca., 9-1720

Abstract

An Event-Join is mostly used to group several temporal attributes of an. entity into
a single relation. It combines temporal equi-join and outerjoin components into one
operation. The temporal outerjoin component is different than a non-temporal one
because of a time interval predicate, and it consists of two asymmetric temporal outer
join operations. In this paper, we motivate the need to support the efficient processing
of event-joins, and introduce several optimization algorithms, both for a general data
organization and for specialized organizations (sorted and append-only databases). For
the append-only database we introduce a new data structure, that can improve the per
formance of event-joins as well as other queries. Finally, we evaluate the performance of
the proposed algorithms.

This research was supported by the Applied Mathematics Sciences Research Program of the
Office of Energy Research U.S. Department of Energy under contract DE-AC03-76SFOOO9S.

1

1. INTRODUCTION AND MOTIVATION

Temporal data models are designed to capture the complexities of many time-dependent

phenomena, something that traditional approaches, like the relational model, were not intended to do.

Many new operators are needed in order to exploit the full potential of temporal data models in enhancing

the retrieval power or a database management system (DBMS). Many temporal operators have been

introduced in the literature, (e;g. [Adiba & Quang 86, Clifford & Tansel 85, Clifford & Croker 87,

Snodgrass 87]), yet with rew exceptions (e.g., [Lum et al 84, Rotem & Segev 87, Snodgrass & Abn 88]), the

issue or perrormance and optimization has not been a major focus so far. In a previous paper [Gunadhi &

Segev 88bJ, we identified a set or temporal joins and carried out preliminary investigation into their

optimization. In this paper, we extend that work rurther by studying in detail the optimization or one

type of temporal join -the event -join.

The event-join operator was first introduced by [Segev & Shoshani 88aJ; it is unique in that it com-

bines temporal join and outerjoin [Date 82J components into a single operation. It is used primarily to

group temporal attributes of an entity into a single relation; temporal attributes belonging to the same

entity, but which are not synchronous in their event points, are likely to be stored in separate relations.

Many queries require that they be grouped together as one relation, but differences in their behavior over

time brings up the possibility that nuU values are involved in. the operands and the join result.

This paper deals with optimizing event-joins in temporal relational' databases. Its contributions are

the rallowing:

• Motivating and demonstrating the need to support the efficient processing or event-joins .

• As traditional processing cannot support event-joins, we have developed optimization algorithms for

various situations, including static sorted databases, and dynamic databases with general data organiza-

tion and append-only organization.

• In the context or the append-only database, we have developed a new data structures called the AP
I

Tree (Append -On/, Tree). This tree is a variation or an [SAM and a B+-tree combination, and is userul

for other temporal queries besides event- joins.

• We compare the proposed algorithms by evaluating their costs and present some computational results.

The paper is organized as Collows: in the next section, we discuss the relational representation oC

temporal data. In section 3, the event-join operator is defined and explained through an an example. Sec-

tion 4 explores the optimization oC event-joins Cor data that is sorted and data in a generalized setting; an

algorithm Cor each is described in this section. Section 5 deals with the third main type oC data: append-

only databases, Cor which we propose two algorithms to optimize the event-join operator Cor such a data- ,.

base. The new indexing structure Cor append-only databases - the AP -tree is introduced in section 6.

Section 7 presents the derivations or the cost oC each oC the Cour algorithms, and a comparison between

them. Conclusions and directions Cor rurther research are given in section 8.

2. RELATIONAL REPRESENTATION OF TEMPORAL DATA

A convenient way to look at temporal data. is through the concepts oC Time Sequenc~6 (TS) and

Time Sequence Collection (TSC) [Segev & Shoshani 87J. A TS represents a history or a temporal

attribute{s) associated with a particular instance oC an entity or a relationship. The entity or the relation-

ship are identified by a surrogate (or equivalently, the time -invariant key [Navathe & Ahmed 861). For

example, the salary history oC employee *1 is a TS. A TS is characterized by several properties, such as

the time granularity, liCespan, type, and interpolation rule to derive data values Cor non-stored time

points. In this paper, we are concerned with two types - depwue CORatant and ducrete . Stepwise con-

stant (SWC) data represents a state variable whose values are determined by events and remain the same

between events; the salary attribute represents SWC data. Discrete data represents an attribute ot the

event itself, e.g. number oC items sold. Time sequences oC the same surrogate and attribute types can be

grouped into a time sequence collection (TSC), e.g. the salary history ot all employees Corms a TSC.

There are various ways to represent temporal data in the relational model; detailed discussion can

be round in [Segev &: Shoehani 88al. In this paper we assume first normal Corm relations (INF). Table 1

shows two ways or representing SWC data. The representations can be different at each level (external,

conceptual, physical), but we are concerned with the tuple representation at the physical level. The
I

representation in Table l(b) stores data only Cor event points and requires explicit storage or null values

to indicate the transition or the state variable into a non-existence state. Also, the tuples should be

ordered by time in order to determine the values between two consecutive event points. Both

I.')

"

3

representations require the use of the lifespan metadata; it is required for the time-interval representation

since we do not store non-existence nulls explicitly, for example; the lifespan is needed in order to

correctly answer the query "what was the commission rate of E2 at time 12?". In order to generalize the

analysis, we assume SWC data using the time-interval representation; the event-join algorithms can be

greatly simplified for a. time-point representation of SWC data and for discrete data. t

MANAGER E# MGR Ts TE COMMISSION E# CRATE Ts TE
E1 TOM 1 5 E1 - 10% 2 7
E1 MARK 9 12 E1 12% 8 20
E1 JAY 13 20 E2 8% 2 7
E2 RON 1 18 E2 10% 8 20
E3 RON 1 20

(a) time-interval representation

MANAGER E* MGR T COMMISSION ~ CJlATE T
E1 TOM 1 E1 e 1
E1 e 6 E1 10% 2
E1 MARK 9 E1 12% 8
E1 JAY 13 E2 0 1
E2 RON 1 E2 8% 2
E2 0 19 E2 10% 8
E3 RON 1

(b) time-point representation .

Table 1: Representing Step-Wlse Constant Data with Lifespan = [1, 20]

We will point to cases where simplified algorithms can be used when we describe the event-join operation.

We use the terms 6urrogate, temporal attribute, and time attn'hte when referring to attributes of a

relation. For example, in Table 1. the surrogate of the MANAGER relation t is E*. MGR is a temporal

attribute. and Ts and Tg are time attributes. We assume that all relations are in first temporal normal

form (lTNF) [Segev & Shoehani 88a]. ITNF requires that (or each combination or surrogate instance.

time point in the lifespan. and temporal attribute (or attributes) there is at most one temporal value (or a

t For diserete data, using time-inte"ais is superftuous sinee the stitt time Ts is equal to the end time T E
ror each tu pie

4

unique combination of temporal values). Note that l~F does not im.ply 1 T~F, for example, the relation

COivL\-llSSION in Table l(a) would not be in 1 TNF if for any surrogate instance there ·were two tuples

with the same commission rate value and intersecting time interv".Is.

3. EVENT JOINS

An Event -Join groups several temporal attributes of an entity into a single relation. This operation

is extremely important because due to normalization, temporal attributes are likely to reside in separate

relations. To illustrate this point, consider an employee relation in a conventional database. If the data-

base is normalized we are likely to find all the attributes of the employee entity in a single relation. If we

now define a subset of the attributes to be temporal (e.g., salary, job-code, manager, commission-rate,

etc.) and they are stored in a single relation, a tuple will be created whenever an event affects at least one

of those attributes. Consequently, grouping temporal attributes into a single relation should be done if

their event points are synchronized. Regardless of the nature of temporal attributes, however, a physical

database design may lead to storing the temporal attributes of a given entity in several relations. The

analogy in a conventional dat~base is that the database designer may create 3NF tables, but obviously,

the user is allowed to join them and create an unnormalized result.

Let r; (R;) be a relation on scheme R; = {S;, A; I, ..• , A;"" Ts, Tg}. In many instances we illus-

trate the concepts using a single temporal attribute, that is, m = 1; all apply to any m > '. Also, when

the two surrogate type. S; of R j and Sj or R j are the same, we simply use S . Instances of surrogate S

are denoted by , 1, '2, We use zt to rerer to an arbitrary tuple of r; ; Z; (A) is the value or attri-

bute A in tuple %j. In order to describe the event-join between r 1 and r2, we first present two basic

operations TE -JOIN and TE -OUTERJOIN. TE-JOIN is the temporal equivalent of a standard equi-

join; two tuples % 1 E r 1 and %2 E r2 are concatenated t if their join attribute's values are equal and the

intersection of their time intervals is non-empty; the Ts and Tg of the result tuple correspond to the

intersection interval. Semantically, this join condition is "where the join values are equal at the same

t We rerer to the data construct. as a 'relation', but we mean a 'temporal relation'. It is different rrom a stan
dard relation because or the associated meta-datL

t It is not a standard concatenation since onl1 one pair or Ts and T g is part. or the result tuples.

"

.j

time". Optimization issues in executing general TE-JOINs are discussed in [Gunadhi & Segev 88b]. In the

case of event-joins, we are concerned only with a special case of TE-JOINs where the joining attribute is

the surrogate. A TE-OUTERJOIN is a directional operation from r 1 to r2 (or vice versa). For a given

tuple %1 e rlr outerjoin tuples are generated for all points t such that [zl(Ts), %I(TE)] and there does

not exist %2 e r2 such that %2(S) = Z I(S) and t e [z~Ts), Z~TE)J. Note that all consecutive points t

that satisfy the above condition generate a single outerjoin tuple. Using those operations the event-join is

done as follows.

r 1 EVENT-JOm r 2:

tempi - rl TE-JOIN r2 on S

temp2 - rl TE-OUTERJOIN r2 on S

temp3 - r2 TE-OUTERJOIN r 1 on S

result - tempi U temp2 U temp3

The above operations are illustrated in the example of Table 2, where an event-join is performed

between the MANAGER and COMMISSION relations of Table 1.

The most troublesome components of the event-join are the outer-joins. The situation is further

complicated by the time interval predicate associated with the TE-outerjoin, preventing the usage of

non-temporal outerjoin procedures [Rosenthal & Reiner 84, Dayal' 81J. An easy solution that comes to

mind is to store all non-existence tuples explicitly, e.g., tuples like (I, 0, 6, 8) are added to the

MANAGER relation 'of Table 1. In that case the outerjoin components disappear, and the problem

reduces to a TE-JOIN on S. Unfortunately, there are many situations 'where such a 'fue' will degrade

overall performance rather than improve it. For example, if the whole Sj domain is represented in relation

rj, representing all non-existence data explicitly will in the worst case double the size of the table (this is

the case of alternating state transitions between existence and non-existence). A much worse problem may

arise when a relation contains only a fraction of the S -domain values, e.g., if on the average, only ,% of

the employees of a large corporation earn commissions, adding to the non-existence data for the 95%

other employees to the commission relation will add to storage cost, querying cost (including event joins),

and maintenance of the commission relation and any of its associated secondary indexes.

6

~'fA1'\lAGER TE-JOIN CO~L\fISSION ON E#

tempI E# MGR C_RATE Ts TE
El TOM 10% 2 5
El MARK 12% 9 12
E1 JAY 12% 13 20
E2 RON 8% 2 1
E2 RON 10% 8 18

MANAGER TE-OUTERJOIN COMMISSION ON E#

temp2 E# MGR CRATE Ts TE
El TOM 0 1 1
E2 RON 0 1 1
E3 RON 0 1 20

COMMISSION TE-OUTERJOIN MANAGER ON E#

temp3 E# MGR C...R,ATE Ts TE
El 0 10% 6 7
El 0 12% 8 8
E2 0 10% 19 20

MANAGER EVENT-JOIN COMMISSION

result E* MGR CRATE Ts Te
E1 TOM 0 1 1
E1 TOM 10% 2 5
El 0 10% 6 7
El 0 12% 8 8
El MARK 12% ·9 12
El JAY 12% 13 20
E2 RON 0 1 1
E2 RON 8% 2 7
E2 RON 10% 8 18
E2 e 10% 19 20
E3 RON e 1 20

Table 2: Event-Jom Derivation

Consequently, we divide event-joins into two types - 'easy' and 'difficult'. Easy cases are those

where the relations contain explicit tuples Cor all non-existence data and are sorted by (S , Ts) (the sorted

case i:5 detailed in the next section). Other cases are regarded difficult. In the remainder oC the paper we

o

..

7

are mostly concerned with the difficult cases.

4. EVENT-JOIN OPTIMIZATION

In this section we discuss the optimization of event-joins where the relations are either sorted or

unsorted. Before we proceed with details of the algorithms, the important concept of tuple covering,

which is used throughout the discussions, is presented first.

4.1. Concept or Tuple Covering

We first introduce the notion of eovering which is used in all the event-join algorithms. To illustrate

the concept, consider the example of Table 3.

rt r" Covering of % • Modified %.

, 1, 4,5, 15 , 1, 6, 1,2 None '1, 4,5, 15

, 1, e, 3, 7 '1, 4, e, 5, 7 '1, 4,8, 15

, 1, d, 9, 12 '1, 4,0,8,8
, 1, 4 , d, 9, 12 '1, 4, 13, 15

'1, e, 16,20 , 1, 4, O, 13, 15 Fully eovered

Table 3, Example or Tuple Covering

Relation r 1 has a scheme R 1 =- (S, All Ts, TE) and a single tuple <'1, 4,5, 15>. "2 has a &cheme
. . .

R 2 =- (S , A 2. Ts. TE) and rour tuples as shown in the table. During the event-join, % 1 e ,. 1 has to be

compared with tuples %2 e r2; assume that. the order or comp~DS is as shown in the table (top-down).

be derived. where Ie S; [% l(Ts), % 1(T E)1. Ie can· be viewed as a covered portion or % l' The 'modified % l'

column in the table represents t.he uncovered portion of Z l' Note that in the covering process we have

relied on the ordering of r 2 by time in deriving the outerjoin tuples (those with z iA 2) = 0). Also, the
!

covering column of t he table contains only a subset of the final result since the covering of r 2'S tuples is

incomplete. The remaining result tuples should be derived Crom TE-outerjoin r2 by "1' In this particular

example, the remaining result tuples are <, 1, 0,6,1,2>, <" 1,0, e, 3,4> and <" 1, 0, e, 16,20>.

8

Determining and maintaining the information about the covered portion of a tuple is substantially

different if the relations are not sorted by Ts. In the sorted case we can determine outerjoin tuples as the

scanning progresses and the information about the covered portion of the tuple is maintained by simply

modifying its Ts. In the general case, the covered subintervals can be encountered in a random order;

moreover, an outerjoin result tuple associated with % 1 E r 1 can be determined only when the scanning of

r 2 is complete . We first present an algorithm for the case where r 1 and r 2 are sorted by S (primary

order) and by Ts (secondary order). In the next subsection we discuss the general case. As can be seen

from the above example, the particular values of A 1 and A 2 are immaterial as far as the logic of the

event-join is concerned; we are only interested in existence or non-existence of these attributes. Conse

quently, in the remainder or the paper, whenever convenient, we use examples with relation schemas or

(S" Ts, TE), but the reader should keep in mind that at least one Ai attribute is part or the actual

tuples. Also, the algorithms presented in this paper involve lots of housekeeping details. For lack of space

we omit the details and provide only an outline of the algorithms. The logic of all algorithms is described

ignoring blocking of tuples; it is trivially extended to handle blocking. The cost analysis in Section 7 take

into consideration the blocking factor.

4.2.. Event-Jom Sort-Merse Alsorithm

The Event -Join Sort -Merge algorithm processes the event-join by taking advantage of the fact

that both relations are in sort order. Unlike a conventional relation whicn requires only primary key order

for sorting, the temporal relation needs to be sorted 'on S as the primary order and Ts as the secondary

order. The event-join sort-merge algorithm, which will be referred to as Algorithm One, scans each rela- .

tion just once in order to produce the result relation. At each iteration, two tuples (possibly with modified

Ts), z 1 E r 1 and z 2 E r 2, are compared to each other and one or two result tuples will be produced

based on the relationship between the tuples on their surrogate values and time intervals.

The first comparison in Algorithm One is on the surrogate value - if they are unequal, it means that

the tuple with the lower S value, say r 11 does not have any matching surrogates in the other relation,

this implies that z 1 is fully covered, an outerjoin result tuple is generated, and the next % 1 tuple is read.

..

..

Algorithm One

(1). Read z 1 and ;12' Repeat steps 2 to -4 until End-of-File (EOF). If EOF occurred for ri, gen
erate outerjoin tuples for the remainder of rj 's tuples (including the current tuple if not fully
covered).

(2). Ie %i (5) < % j (5), generate an outerjoin result tuple for %i •

(3). For the situation where % 1(5) = %2(5), there are three cases to consider (see Figure 1):
Case 1: %;(Ts) = %j (Ts). Write an intersection result tuple.
Case 2: %i (Ts) < % j (Ts) and %i (T E) 2:: % j (Ts). Write one outerjoin tuple for %i and one inter
section tuple. Modify % 1 and % 2 and read next tuples(s).
Case 3: z;{ TE) < Zj (Ts). Write an outerjoin tuple for Zi'

(4). Modify Z 1 and z2 and read next tuple{s) (see Figure 1).

9

If on the other hand Z 1(5) = z2(5), there are many possible relationships that can exist between

the time intervals of the two tuples; but there are just three distinct possibilities in terms of result tuples

that have to be generated. The three cases are identified in Step 3 of Algorithm One. Figure 1 illustrates

the above points: it shows the time intervals of original pair of tuples and their relative positions to one

. another, the time intervals of result tuples, the modified tuples which consist of the original tuples with

Ts modified to represent the uncovered portion, and finally t.he action taken with respect to which

tuple{s} are read next. The next tuple of ,., is read only when the current tuple has been Cully covered.

Note that whenever we use the subscripts i and i in Algorithm One, i = 1 and i = 2 or i =2 and

i = 1. Also an intersection result tuple is equivalent to a TE-JOIN result. tuple.

4.3. Event-Join Nested-Loops Algorithm

The Nested-Loops method described below does not assume any kind of ordering among the tuples

in either relation. The event-join is achieved in two stages, the first of which is nested loops with "1 and

"2 being the inner and outer relations respectively. Tuples produced in the fiI'!t stage are the result ot

either inteI'!ectioIlS or outerjoins from r 1 to ,. 2' In the second stage, the order ot relations are now

reversed Cor another nested loop, but the only result tuples created here will be outerjoins Crom "2 to r l'

I

Unlike the sorted case, maintaining the information about the covered portion of Zj 's time interval

cannot be done by simply modifying Ts, and the Collowing procedure is followed. In the first nested loop,

whenever a tuple Z 1 from r 1 is first read, a list U is initialized with the pair ot time-stamps associated

"

Original tuples Modified tuples
Xj Xl Result tuple{s) 1 j Read next tupl e

I I T
I
I j ~

-I *

I I
T
I
I 1, j
I * *

..L

I I
T
I
I 1 ~

* I

I I
I -r j -1...

I *

I I

I T
* *

1, j
I
I
~

I I ,

I T
I I -

* I

I I
I I

I
*

* full y covered

Intersection result tup.le

outerjoln result tuple

Note: a time interval of original tuples, result tuples, and modified tuples can be a point.

Figure 1: Producing Event-Join Tuples (or Algorithm One

..

10

with :rl. This list corresponds to the uncovered portions of :rl·· For each tuple zz, the algorithm applies

the test of equality on the surrogate values and a non-null intersection over time. The second condition is

needed because if two tuples share a common surrogate value but are disjoint over time, no conclusion

can be derived (in contrast to the sorted case) as to whether an outerjoin is appropriate, unless the EOF

for r 2 has been reached. Thus, while scanning r z, the covering of :r I is achieved only through interval

intersections, and for each %2, at most one intersection result tuple will be produced. Once this is accom

plished, the uncovered subintervals associated with % I are determined, and appropriate outerjoin result

tuples are generated. At the end of r 2'S scan the interval of % I will either be completely covered, has one

uncovered segment, or at most two segments. For each uncovered segment, the time pair representing

them are inserted into U in place of the original entry. This ensures that U remains an ordered list; the

ordering within U helps the search for the appropriate interval that is relevant for a TE-JOIN in subse

quent iterations through r2. Regardless of the number of entries in the list, any tuple %2 can only inter

sect with one entry, otherwise it would mean that there are two or more tuples in r2 having the same

surrogate value and overlap in time. This implies that the condition of ITNF has not been satisfied.

Unlike conventional nested-loops procedures, we need not retrieve all the tuples of the outer rela

tion, since an empty U indicates that the original % 1 has been fully covered. In the event that the loop

terminates because the end of file r 2 is reached, either the whole, or parts of % l'S time interval were left

uncovered. An outerjoin result tuple is generated from each time pair ~ U; the time pair determines the

time-start and time-end of the result tuple.

The second nested-loops differs from the first in that it produces only outerjoin tuples from r 2. Thus.

no result tuple duplicating a tuple already produced in the first stage is created. In order to reduce the

number of unnecessary scans of rj, the Algorithm uses a I&tul& - / ilter [Bloom 70] created during the first

stage as follows: when r2 is scanned, each time an %2 is found that participates in a TE-JOIN, the hash

filter is updated for that tuple. The hash-filter maintains H bits to represent Nr2 tuples, where H ~ N'2·

The hash-filter entries corresponding to 1& (% 2)' where 1& is the hash-function, are initialized to 0, and

whenever an % 2 generate an intersection result tuple for the current :r 11 h (% z) is set to 1. This table is

kept in main memory, and in the best case scenario when there is sufficient memory to maintain one bit

11

per tuple, the hash function is the count of :Eo;! tuples already accessed, and the table is a one dimensional

array indexed by this count.

During the second stage, for each tuple in the inner relation r2, if it hashes to a value of 0, then an

outerjoin tuple is produced without scanning rj. Otherwise, as in the first nested-loops, we carry out the

same updates on the coverage of %2, although no intersection tuples are produced As before, outerjoin

tuples are produced when it can be determined that no % 1 exists to cover the current %2. Below we out-

line the steps of the algorithm, labeled as Algorithm Two. Ui denotes the list U Cor %j, i =1, 2.

Algorithm Two

(I). [Nested-Loops-ll For each tuple in r 1: read r2 and execute Step 2 until EOF Cor r2 or %1 is
fully covered. II EOF, Cor r2, produce outerjoin tuples Cor % 1 based on Uland initialize U 1·

(2). II % 1(5) = %2(5) and the two time intervals intersect, then do: write an intersection result
tuple. Update U I . Set hash-filter entry for %2 to 1.

(3). [Nested-Loops-21 For each tuple %2 of r2: if hash-filter bit = 0 produce outerjoin tuple im
mediately, an read next %2. Otherwise read rl and execute Step 4 until EOF for rl or%2 is Cully
covered.

(4). if %:z(5) = %1(5) and the two time intervals intersect then update U2•

In the case of having space for a second bit for each of r2's tuples, Algorithm Two can be further

improved if a second filter is used. During the first stage, while covering %1 it is possible that the time

interval of z 2 contains that of z 1. In that case we set the c~;·responding filter entry to 1. Then, in Step 3

we also avoid the scan of r 1 if the first filter bit is 1 and the second filter bit is 1.

5. APPEND-ONLY DATABASES

In the case of static history databases, one can store the data sorted by (5, Ts) and then apply

Algorithm One; this provides the maximum efficiency for event-joins. For a dynamic temporal database, it

may be too inefficient to keep the data sorted by (5 I Ts), and consequently, either the operands are

sorted prior to the application of Algorithm One, or Algorithm Two is used. II the database is append
!

only, the event-join algorithms can utilize this fact to enhance their efficiency.

There are several variations of append-only databases, some of which are not 'truly' append-only. As

far as event-joins are concerned ~e view a database to be append-only if tuples are inserted at the end of

12

the file and in order oC the events that generated them. The tuples can have open-end or closed-end time

intervals. To illustrate these points, consider Figure 2 that shows the time sequences for three surrogate

instances with liCe-spans oC [1, NOW]; each event point corresponds to the generation oC a new tuple for

the surrogate (we are not concerned with the values of the temporal attributes). Let relation ri represent ..
that data; the states of that relation are shown in Table 4. Note that such data is inappropriate for a

WORM device since insertions also cause updates; for example, the event at time 10 led to updating

(" 2,1, NOW) to (" 2,1,9) and appending the tuple (" 2, 10, NOW). If the representation of the data in

this example would use time points instead of time intervals, it would be truly append-only.

s 1

s2

53

10 IS 20

TIme

x . event poInt

Figure 2: Time Sequences for Three Surrogates with Lifespana = [1, NOW]

Deletions in append-only temporal databases are significantly different than in conventional data-

bases. In our case, they are storage management activities rather than user transactions. From a logical

point of view deletions are a result of a change in the lifespan t, i.e. an increase in the value ot·

LS.START. An example isa 'moving-window' lifespan [NOW - I, NOW] where I is the length oC his-

tory. In the case of step-wise constant sequences, deletion oC data to reflect the new liCespan is not

guaranteed to be contiguous; Table 5 illustrates this issue. The table shows the state oC rj at t = 21

(reproduced Crom Table 4) a:nd the effect of changing the lifespan at t = 22 from [1, NOW] to
I

[1, NO W] . .A3 can be seen Crom the table a new liCespan can cause updates and deletions at any point in

t We use LS.START and LS.END ~ rerer ~ the,boundary points or the Iirespan.

13

Snapshot at Time Stateofrj: {Sj, Ts , TE }

(A· is omitted)

"1,1, NOW
1 ::::; t < 5 ,,2,1, NOW

,,3,1, NOW

" 1, 1, 4
5::::; t < 1 ,,2,1, NOW

83,1, NOW
"1.5. NOW

; 1, 1,4
82,1, NOW

1 ::::; t <9 ,,3,1, NOW
- 81,5,6

81,1, NOW

" 1, 1, 4
82, 1,9

10 ::::; t < 20 83,1, NOW
81,5,6
81,1, NOW
,2,10, NOW

'1, 1, 4
,2, 1,9
,3, 1, 19

20 :S t < Next Event Point 81,5,6
81,1, NOW
,2,10, NOW
,3,20, NOW

Table 41 Pl"ogresaion ot an Append-Only Database States

the file. Although this example used open-end time intervals, the same problem occurs for any step-wise

constant data regardless or its representation. It also demonstrates that maintaining the lifespan for an

active database with small time granularity on a real-time basis can be prohibitively expensive. For-
,,.

tunately, these updates and deletions can be done periodically without affecting the logical view of the

data, that is, the physical lifespan can be different than the logical lifespan provided that the first contains

the latter. For discrete data, the situation is much simpler and implementing a change in the lifespan can

be done by simply updating a begin-of-file pointer to the first tuple whose time value is greater than or

equal to the new LS.START.

State of rj: {5j , Ts , TE }

Tuple Number Lifespan = [1, NOW] Lifespan = [7, NOW]
t = "21 t = 22

1 81, 1,4 deleted

2 82, 1,9 82,7,9
"-

3 83, 1, 19 83,7,19

4 ,1,5,6 deleted

5 81,7, NOW 31,7, NOW

6 ,2,10, NOW 82,10, NOW

7 83,20, NOW ,3,20, NOW

Table 5: Effect of Modifying the Lifespan of rj at t = 22

IC,. is an append-only relat.ion the order oC its t.uples corresponds t.o t.he order oC t.heir event.s, thus,

they are ordered by Ts. UnCortunately, the event-join needs the primary order to be by 5, and t.he surra-

gate instances oC,. can be in an arbitrary order. Nevertheless, we can take advantage oC the ordering by

Ts. We assume that iC retroactive corrections to the history are necessary, they are done in batch mode

ofHine and the file is reorganized to preserve the Ts -order; this is a reasonable course oC action in most

environments where the normal mode oC operation is not error-correction. Another solution is to use an

overftow area to store the 'correction records'; iC t.heir number is small (~elat.ive to the data file) they will

not afl'ect the performance oC t.he event-join algorithms.

We present two event-join algorithms in this section. The first algorithm, stated as Algorithm Three

below, Collows the logic oC the Nested Loops algorithms, but is different in two important ways. First,

when %1 is compared against tuples oC '2 we do not necessarily have to complete '2'S scan - since r2 is

append-only it Collows that % 1 is Cully covered it % 1(5.) = % 2! 5 2) and % 2 Cully covers Z II or iC

%1(SI)" %2!S 2) and %2!Ts) > %1(TE). Second, as in the sorted case, the covered portions oC %1 are
,

always contiguous and thus we can maintain that inCormation by updating % 1(Ts) as was done in Alga-

rithm One. Unlike the sorted case we cannot write outerjoin tuples for %2 when '2 is scanned to cover % I

(see Step 3 ot Algorithm Three). We refer to the first append-only database algorithm as Algorithm

·

..

Three, and outline the procedures below.

Algorithm Three

(1). [Nested-Loops-I] For each XI: read'2 and execute Step 2 untilz i is fully covered or EOF for
r2 is reached. IC EOF, generate outerjoin tuple for ZI'

(2). There are four cases to consider in this :;tep.
Case 1: zl(Ts) > zz(TE) - no result tuple is generated.
Case 2: z 1(5) ~ z ~ 5) and % 2(Ts) > % I(TE) - generate an outerjoin tuple for ZI'

Case 3: % 1(5) ~ % ~5) and Z2(Ts) $ X I(TE) - no result tu: Ie is generated.
Case 4:%1(5) = z~5) and %1(Ts) $ %2(TE) - do Step 3.

(3). Execute Step 3 or Algorithm One, except that no outerJolD tuple is written for % 2 if
% 2(Ts) < % I(Ts), and the hash filter is updated whenever the time intervals or z I and % 2 inter
sect.

(4). [Nested-Loops-2J The procedure is similar to Steps 1 to 3, except that
i I(hash-filter entry ror % 2 is 0, produce an outerjoin tuple without scanning r I'

ii Do not produce any intersection tuples.
iii No filter updates occur and on EOF for r 2 ~he algorithm stops.

15

The second algorithm, stated as Algorithm Four below, avoids the final outerjoin from r2 to r 1 by

writing updated time-intervals ror r2's tuples while they are scanned for each % 1 tuples. This is achieved

by creating a copy or , 2 which is updated during the first nested-loops. The benefit or this approach is

that the second nested-loops is replaced by a single scan through r 2 in order to determine which tuples

require outerjoins where no tuple has been round in r 1 with matching surrogates. The updating procedure

for tuples in , 1 and , 2 is similar to that or Algorithm One.

Algorithm FoUl'

(I). Create a working copy or '2, "and call it '2' .

(2). [Nested-Loops-II Procedure is the same as Steps 1 to 3 ~r Algorithm Three, except:
i Step 3 is done exactly as in Algorithm One, that is, we write outerjoin tuples for %2'

ii %2' is updated by writing in place its modified Ts. IC Z2' is fully covered its Ts is set to
TE + 1.
iii No hash-filter is used.

(3). Read '2' in a single scan, and for those tuples where Ts $ TE , produce an outerjoin result
tuple.

Note that Step 1 of Algorithm Four can be done while scanning r 2 ror the first Z I tuple; subsequent

Z I tuples scan r 2' . Both or the above algorithms contains a nested loop component to cover Z 1 tuples by

". , "'~

16

scanning r 2, This component is the most expensive part of the algorithms, and reducing the number of

r 2'S tuples scanned for each .r 1 is very important. The append-only property helps in achieving that

objective but we may further improve the performance by using a secondary index as described in the

next section.

8. THE APPEND-ONLY TREE

Let r I and r2 be append-only relations. We use a second subscript Zj whenever we need to identify

specific tuples, that is, Zjj is the tuple Zj in location i (note that there is a one-to-one correspondence

between tuple number and location number). We know that it i I > i 2, then Zjj I(Ts) ~ Zjj 2(Ts)· Let Z 1

be an arbitrary tuple oC r I and assume we know the location of z 21' where j' is the i that attains

m~{z2j(Ts) I z2j(Ts)!5 zl(Ts) and ZiS2) = ZI(SI)}' Then, we can start a backward scan oC r2
I

Crom location "1 until Z I is covered. Location "1 can be identified using an index on (S, Ts). Such an

index, however, ir not available to support other queries, may be too expensive for a dynamic database. In

this section 'we describe an index on Ts which is Car cheaper to maintain compared to an S or (S, Ts)

index. We will rerer to ttiat index (described below) as Ai' -tree (Append-only Tree). Since the index

points to records based on Ts , we omit the requirement that z 2J (S 2) = z I(S I), and thus start from the

tuple who has the desired Ts and is the Carthest (towards the end of the file). Figure 3 illustrates the pro-

cess or covering z 1 when the AP -tree is used. A3 a specific example, consider the tuples of relation rj in

Table 4 at t ~ 20. Let a tuple or rj be (, 1, 6, 7). To cover this tuple, only tuples of rj with Ts ~ 7

should be examined. It we use an AP-tree, the tuple (,1,7, NOW) oC rj can be accessed directly, and

Collowing a backward scan the latest tuple to be read is (, 1, 5, 6). Without the index, we would have to

scan rj from the beginning and read 5 tuples (compared to two tuples with the index). In deciding

whether or not to use the index, the cost of accessing it should also be taken into consideration. Using the

index may be beneficial since the worst case oC the backward scan is processing all the way to the begin-

ning oC the relation, e.g. ir the first tuple of rj in the above example would have been (, 1, 1, NOW). The

main property that affects the usefulness of the index is the uniformity of event rate among surrogates of

the outer relation. To illustrate this point consider the example of Figure 4. This figure shows the optimal

l7

)(,

r===I8:1======1
BegIn of r

2
. End of r 2

r 2 tuple

lost tuple ned

Figure 3: Covermg Tuple z 1 Uamg AP -tree

behavior or surrogates: the events corresponding to the temporal attributes or all surrogates occur at the

same time points. In the context or this example, assume that tuple (" 2, 16, 18) oC rj has to be covered.

Using an AP -tree, tuple number 12 is accessed and the backward scan ends wi~h tuple number 11; a total

or two tuples compared with eleven Cor a Corward scan. IC we change the event rates to be as shown in . .

Figure 5, the AP -tree will lead us to tuple number 12, and the backward scan will end with tuple number

2, a total or eleven tuples compared with two tuples Cor the Corward scan.

Note that a uniCorm rate or events Cor an outer relation r 2 does not imply that the AP -tree need

.. not be used Cor all z 1 e r 1. Those z 1 tuples who are closer to the beginning oC the file may benefit more

Crom a Corward scan. Currently, iC the event rate is not uniCorm among the surrogates oC r 2, an z 1 e r 1 is

likely to benefit from using the AP -tree iC z 1(S 1) is a very active surrogate in both r 1 and r 2.

We will now describe the basics of the AP -tree (more details can be found in [Gunadhi & Segev

89]). Consider the data of relation rj in Figure 4. An AP -tree indexing rj on Ts is shown in Figure 6.

This tree is a hybrid oC an [SA}.! index and a B + -tree. The leaves or the tree contain all the Ts values

18

(10) (13)

s 1
(14)

s2
(15)

s3

5 14 20

TIm.

x = event poInt

(n) = nth tuple In r.

Figure 4: Example or Optimal Behavior of Time Sequences

s 1

(15)
s2

s3

5 8 9 11 14 16 1920 23

TIm.

x = ev.nt poInt

(n) = n til tuple In r.

Figure 5: Example of Sub-Optimal Behavior or Time Sequences

'''' r.; for each Ts value, the leaf' points to the last (towards the end of the file) tuple with the specific Ts

value. Each non-leaf' node indexes nodes at the next level. Note that the pointf:r associated with a non-leaf

key value points to a node at the next level having this key value as the smallest node value. The
I

significance of this decision is explained later on. Access to the tree is either through the root or through

the right-most leaf. The AP -tree is different than the B + -tree in several respects. First, if the tree is of

degree 2d , there is no const.raint that a node must. have at least. d keys. Second, there is no node splitting

..

19

when a node gets full. Third, the online maintenance of the tree is done by accessing the right-most leaf.

Given the premise that deletions are treated as offline t storage management, only the right-hand

side of the tree can be affected. The only online transactions that affects the Ts values in an append-only

database is appending a new t~ple. In most cases, just the ri~ht-most Jeaf is affected, either a pointer is

updated or a new key-pointer pair is added, but if it is full a new leaf has to be created to its right, and in

the worst case nodes are added along the path from the root to the right-most node and a new root node

has to be created. In Figure 6 we show the effect of new tuples on the tree. We omit here the statements

of the maintenance procedures for insertions and deletions, but it should be noted that there are several

str:ltegies to handle the right-hand side of the tree, e.g., rather than increasing the height of the tree

online, one can have an indicator that there are non-indexed tuples (to the right of the tuple pointed to by

the right-most-leaf pointer); for details see [Gunadhi & Segev 89].

Recall that in the case of event-joins, an AP-tree on f2 is used in the process of covering Zl E rl'

Therefore, we need to get to the leaf node pointing to Z 2j" The following procedure is followed (ti is a

key value):

Procedure AP

1 Start at the root of AP -tree.

2 ForeacbnOde visited, follow the pointer corresponding to v+ ~ m~{v I 11 ~ %1(TE n.
Several notes are in oder. First, the fact that non-leaf nodes index lower level nodes based on the

smallest rather than the largest key value assures that only one leaf node is visited. U the tree ot Figure 6.

is organized baaed on the largest Ieey value and % 1('PE) = 18, tI + will not be found in the visited leaf

node and the leal node to ita left has to be examined aa well. It turns out, also, that the maintenance or

the tree is significantly cheaper than when the indexing is baaed on the smallest key value. The reason is

that an ad~i~ion ot ~ :uple with a new Ts causes that Ts value to become the new largest value in an

unfilled right-~ostieaf node; th~ smallest key value in a node is tinchanged as a result of appending new

t Reorganizing the tree t.o reftect deletiona C&II be done during idle periods or low load periods. All the pro
cedures function correctly regardless of the timing; the only issue is performance.

AP-tree

(I) (2) (3) (4) (5) (6) (7) (6) (9) (10) (11) (12) (13) (14) (15)] Data .

(n) = nth tuple in r t

- = Pointer

Right-hand sfde of tree after appending tuples (16) through (18)

(1 5) (16) (17) (18)

Figure 8: Example ot AP -tree Before and Arter an Insertion

,:,':

20

tuples

In step 2 oC Procedure, we assumed that a v + exists. It is easy to see that a v + exists Cor all nodes

except possibly Cor nodes on the path from the root to the left-most node. This c.ase can be identified prior

to accessing the AP -tree and thus prevents unnecessary index search. In order to identity this case and an

additional case where the index search should be avoided we associate two numbers with a relation rj,

LS.END (rj) and Ts-(rj) = min{Ts }. When % 1 has to be covered, before the index is accessed the Collow-

ing rules are checked:

Rule 1: If %1(TE) < Ts-(r2)' do not access index; %j is Cully covered (Cor %1 should be generated outer-

join tuple).

Rule 2: If :r 1(Ts) ~ LS.END (r 2), do not access index; :r 1 and all remaining tuples oC r 1 are Cully covered

(outerjoin tuples should be generated Cor them).

Rule 3: It :r 1(Ts) < Ts -<, 2) and rule 1 is not satisfied, do not access the index; perform a sequential scan

oC '2 Crom the beginning oC the file.

If any or the rules is satisfied, an index search will be interior to the alternatives specified.

1. COST ANALYSIS

In this section, the costs or the Cour algorithms presented in Sections 4 and 5 will be analyzed in

detail, and comparisons between them are made where appropriate .. Below, we define basic variables that

will be used in subsequent discussions.

w, , width (bytes) Cor each tuple in 'j

N, , number or tuples in 'j
~,

B page size (bytes)

~,

Prj number or pages used Cor 'j == f(N" X W,) / B 1
M size (pages) oC main memory available Cor an algo~thm

0,. (j) cost in disk I/Os oC step i or algorithm i

NEJ number oC tuples resulting Crom the event join oC 'j and r j

21

number or pages to hold the result or event join between rj and·
rj = r(NEJ X W'E) / B l where rEJ denotes the joined relation

Qj percentage or tuples in rj that produce outerjoin tuples in rEJ

selectivity or the hash-filter on the tuples or rj that require outerjoins

"Yi , "Yi' average scan length through relation ri when rj is the inner relation

1.1. Algorithm One Costs

If the two relations are already sorted, the cost is P'l + P" + PElt which is the disk I/O time to

join the two relations. For the case where the data need to be sorted first, each relation rj is first sorted

into into F, files, each M pages in size, where F,. is the number or files needed Cor the sort, and is calcu-
• •

lated as [p,j / M 1- The F'j files are then merged together, and the total cost Cor the sorting/merging is

2(MF" + p,J We are assuming that (1) P'j ~ M, and (2) the system allows F'i files to be opened

simultaneously. If one or both or these assumptions are unsatisfied, the I/O costs will be greater. The

total cost expressions are thus

it rj and rj are already sorted, and

= 2M(F'l + F,J + 3(P'1 + p,J + PEJ

where sorting is required.

1.2. Algorithm Two Coeta

(1.1)

(1.2)

Assume that the hash-filter is kept in main memory and maintains one bit per tuple. This means

that the selectivity (actor pj represents the portion of tuples in rj with no matching surrogate values to

be Cound in "j. Take r 1 as the inner relation in the first nested-loop procedure. We present the cost of

the algorithm in terms or its two nested-loop procedures which we label here as Ntl and Nt2; thererore,

{2.1}

22

The first term represents the cost oC reading in r 1, the second t~rm is the number oC pages oC result

tuples written, the third term reflects the average number oC reads in order to produce result tuples where

% 1 is Cully covered by r2, and finally the last component is the cost oC producing outerjoin tuples Cor r 1,

which requires complete iteration through r2 Cor every!,vI pages or r 1. A3 ror NL2,

(2.2)

The first two components are the one time read cost oC r 2 and the write cost Cor the outerjoin result

tuples for r2; the third subexpression is the cost of producing the outerjoin tuples with the help oC the

hash-filter; the fourth is the average cost of reads over the outer relation to determine that r2 tuples are

fully covered; and tlie last item is the cost oC exhaustive search related to producing outerjoin tuples.

1.3. Algorithm Three Costa

For the first case or the append-only nested-loops, the hash filter is also employed; thus we assume

that one bit per tuple is used. The diJference in cost between Algorithms Three and Two are:(1) outerjoins

can be performed on average as cheaply as covered tuples in terms of disk reads Cor Algorithm Three; (2)

the average length or a scan through the outer relation, "Yi' , is likely to be better than the "Yi of Algo-

rithm Two, since there is a clustering of tuples on Ts. Like before, C 3(total) = C 3(NL 1) + C ~NL 2),

where

O,(NL 1) = P" + r (1 • ~NEJ 1 + ",' f ~. k. (3.1) .

where the second expression denotes the cost or iterating through r 2. For the second nested-loops,

(3.2)

1.4. Algorithm Four Coate

The final algorithm differs Curther Crom the previous two nested-loop algorithms. The second part oC

the algorithm needs only a single scan through r2" Although a temporary file needs to be created, it can

23

be done during the first iteration through '2 in order to save I/Os. Thus the total cost expression is:

(4)

The way the cost is estimated is as follows: the first eression (in brackets), represent the total cost

oC reading in the relations when they are the inner relations, plus the additional overhead oC creating '2'

The second component is the write cost oC event-join tuples during the first loop plus the cost oC updating

'2' . The third component is the cost of generating the outerjoin result tuples during the second nested-

loop. The Courth term in the cost is that oC scanning through , 2 to produce the other result tuples.

1.S. Comparisons Among Algorithms

It is clear that Algorithm One is superior it the relations are already sorted, because the cost consists

oC the minimum possible access to the relations. Also, the append-only algorithms dominate the algorithm

Cor the general case. The interesting question is whether the relations, it not sorted, should be sorted, and

then Collowed by the application oC Algorithm One. Figure 1 shows some preliminary results. It should be

noted that we have assumed Cavorable conditions Cor the sorting, e.g., no limit on the number or files that

can be opened simultaneously during a sort-merge procedure; iC this is not the case, the results will make

Algorithms Three and Four more attractive.

Figure 1 shows the total I/O cost or the algorithms as a Cunction or "'fi' We set the other parameters , .

to be equal, i.e. Pr , = 100,000 pages, Pr61 =- 200,000 pages, at =- 0.1, and Pi = 0.5. Additionally, we

assumed that "'fi' is. equal to "'fi'· "'fi measures the percentage or block.s in the relation that has to be

scanned. The graph in Figure 1(a) shows the perCormance or all Cour methods when "'fi was varied between·

0.001 to 0.01. It shows that Algorithm Two does' worst among the algorithms, while Algorithm Four's

efficiency increases as the scan length gets shorter. It is better than Algorithm One at at approximately

"'fi - 0.001. Note that "'fi may be much more selective than 0.001 Cor an append-only database, since

measured in disk I/Os, 0.001 is 100 blocks, which is still a large Jlumber. Figure 1 (b) highlights just the

three best algorithms, so that a better comparison can be made at lower values oC "'fi'

The value oC the parameters described above reftect the filter selectivity and the number oC tuples

scanned Cor each inner relation tuple. It should be noted that these are not all the parameters that affect

'.' ..

24

the relative performance, and additional computational experiments are needed. Nevertheless, it validates

our conjecture that one can do better than sorting in the append-only environment.

1I0s ('000)

16000

14000

12000

10000

II0s ('000) 8000

8000

4000

2000

j .•. Alg1 ·0· AIg2 .• - Alg3 ·0- Alg4

35000 0 /'
7

~o

0
0/

0

30000

25000

20000

15000

.~I
• • .~I~

10000

5000! 1 1 ____ Y I
o Qi~==========C~I==::::::::~~:===========~'~========~'
0.001

•

0.005 0.01 0.05
Mean Scan length of Relations

Flgur. 7(41

l/
/'

I
/0

~.

/ /
V /'

/.

/ • • • •

0.1

o +-----------~----------_4------------~--------__4
0.001 0,005 0.01

Mean Scan Length of Relations

I·" Alg 1 -0- Alg3 .•• Alg4

Flgur. 7(b)

0.05

, Flgur. 7. Comparlaon of Algorithms Over Gamma

0.1

25

2. Summary and Future Research

In this paper, we have addressed the problem oC optimizing event-joins in a relational temporal

database. Event-joins are important because normalization conside,rations are likely to split the temporal

attributes oC an entity among several relations. The event-join combines a temporal equi-join component

and a temporal outer-join component. Unlike a conventional outer-join, the temporal counterpart consists

oC two asymmetric outer-joins, a Cact that complicates the optimization. The complexity oC processing

event-joins strategy depends on the nature oC the data, its organization, and whether or not all non

existing data is represented explicitly. We have distinguished between the step-wise-constant and discrete

data; discrete data is easier to handle since all the inCormation contents oC the tuple pertains to a single

time point; Cor step-wise-constant data a decision regarding a tuple oC one relation is Crequently based on

multiple tuples oC the other relation.

& Cor the data organization we addressed three cases; these are (in increasing order oC complexity)

sorted by surrogate and time, appe~d-only, and general optimization. For th'e sorted case (appropriate Cor

static databases), the processing 01 an event-jojn is the most efficient since each relation haa to be read

only once. The append-only database is an appropriate organisation lor many dynamic temporal data

bases and an event-join algorithm can take advantage 01 the time ordering. For the append-only case' we

have introduced a Dew data stnicture: the AP-Tree. This index is used to reduce the cost 01 scanning an

outer relation in a nested-loops procedure. The AP-Tree oft'ers advantages oC a B+-tree in terms oC utili

zation an,d. access and maintenance cost. It is abo useCul Cor queries other than event-joins that can

benefit Crom time indexing.

Managing non-existence nulls is more important in temporal databases than in 'current state' ones '

because Cor a long history one is likely to encoun~r transactions oC state variables between existence and

non-existence states. U all non-existence data is represented explicitly, the outer-join component oC the

event-join is eliminated and it reduces to a temporal equi-join operation where the joining attribute is the

surrogate. This special case oC the event-join is much simpler than the general case. & was discussed in

the paper, however, storing all non-existence data explicitly is likely to be prohibitively expensive in many

situations.

26

In section 7, we have presented a cost analysis of the proposed algorithms. The algorithm for the

sorted case (Alg. One) obviously dominates all the others. The append-only algorithms (Algs. Three &;

Four) dominate the general nested-loops algorithm (Alg. Two); this is also expected. The interesting ques

tions are whether, tor the non-sorted case, the data should be sorted and then Algorithm One applied.

For the general case, the answer is yes (under the favorable sorting conditions that we assumed). For the

append-only case the answer is dependent on the selectivity of the filter and the number ot tuples scanned

Cor each inner-loop tuple. Also, it the inner relation is significantly smaller than the outer relation, and the

selectivity tactors associated with the append-only algorithms are small, sorting will be less Cavorable. We

currently work on a comprehensive simulation test to validate our initial finding.

Finally, it should be noted that many o(the concepts presented in this paper are applicable to other

queries; in particular other joins since the concept ot covering is applicable to other temporal joins. In

current and tuture research we try to devise more elaborate rules on when to use the AP-Tree. Also, as

evident (rom the eost equations, estimation o(several parameters are required.

References

[Adiba &; Quang 86] Adiba, M, Quang, N.B., Historieal Multi-Media Databases, Proceeding. of the Inter

national Conference on Ve,., Largc Data Ba.u, 1986, pp. 63-70.

[Ariav et al 84] Ariav, G., Beller, A., Morgan, H., A Temporal Data Model, Technieal Report, New York

University, Dee. 1984.

[Bernstein et al 81] Bernstein, P.A, Goodman, N., Wong, E., Reeve, C.L., Rothnie, J.B., Query Proe~ .

ing in a System tor Distributed Databases (SDD-1), ACM Tran4IJctioM on Datab".e S,defM, 6, 4,

Deeember 1981, pp. 602-625.

[Bloom 70] Bloom, B.H., Space/Time Trade-offis in Hash Coding with Allowable Errors, Communicatioru

of t/ae ACM, 13, 7, Jull970.
I

[Clifford &; Croker 871 The Historical Relational Data Model (HRDM) and Algebra Based on Lifespans,

Proceeding. of t/ae International Conference on Data Engineen'ng, Feb. 1987, pp. 528-537.

•

27

[Clifford & Tansel 85] Clifford, J., Tansel, A., On an Algebra (or Hjstorical Relational Databases: Two

Views, Proceeding' 0/ ACM SIGMOD International Con/erence on Management 0/ Data, May 1985,

pp.247-265.

[Date 83] Date, C.J., The Outer Join, Proceeding' 0/ the Second International Con/erence on Databases,

1983.

[Dayal 87] Dayal, U., or Nests and Trees: A Unified Approach to Processing Queries That Contain Nested

Subqueries, Aggregates, and Quantifiers, Proceeding' 0/ the International Con/erence on Very Large

Data Ba,e" 1987, pp. 197-208.

[Gunadhi & Segev 88aJ Physical Design or Temporal Databases, Lawrence Berkeley Lab Technical Report

LBL-24578, January 1988.

[Gunadbi& Segev 88bJ A Framework (or .Query Optimization in Temporal Databases, Lawrence Berkeley

Lab Technical Report LBL-26417, December 1989 .

. [Gunadbi & Segev 89) Indexing Struct~ Cor Temporal Database, In Progress.

[tum et al 84) Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H., Woodfill,

J., Designing DBMS Support ror the Temporal Dimension, Proceeding' 0/ tlae ACM SIGMOD Inter

national Con/erence on Management 0/ D4ta, June 1984, pp. U5-130.

[Klopproge &: Lockemann 83) Klopproge, M.R., Lockemann, P.C., Modeling Information Preserving Data

bases: Consequences or the Concepts or Time, Proceeding' 0/ tlae Internation41 Con/erence on Ve,.,

L4rge Dat4 Buu, 1983, pp. 399-416.

[Navathe " Ahmed 86) A Temporal Relational Model and a Query Langu~e, UF-CIS Technical Report

TR-85-16, Univ or Florida, April 1986 .

[Rosenthal" Reiner 84J Rosenthal, A, Reiner, D., Extending the Algebraic Framework or Query Proce88-

ing to Handle Outerjoina Proceeding. 0/ the International Con/erence on Ve.., Large Data Ba,es,

Aug. 1984, pp. 334-343.

[Rotem &: Segev 87J Rotem, D., Segev, A, Physical Organization or Temporal Data, Proceeding, 0/ the

International Con/erence on Data Engineering, pp. 547-553.

28

[Segev & Shoshani 871 Segev, A., Shoshani, A., Logical Modeling or Temporal Databases, Proceeding8 of

tlae ACM SIGMOD International Conference on Management of Data, May 1987, pp. 454-466.

[Segev It. Shoshani 88aJ Segev, A., and Shoshani, A., The Representation or a Temporal Data Model in the

Relational Environment, Lecture Notu in Computer Science, Vol 339, M. RaCanelli, J.C. Klensin,

and P. Svensson (eds.), Springer-Verlag, 1988, pp 39-61.

[Segev It. Sh06hani 88b] Functionality or Temporal Data Models and Physical Design Implementations,

IEEE Data Engineen·ng, vol. 11, 4 (Dec. 1988), pp. 38-45.

[Selinger et al 79] Selinger, P.G., Astrahan, M.M., Chamberlain, D.O., Lorie, R.A., Price, T.G., Access

Path Selection in a Relational Database System, Proceeding8 of ACM SIGMOD International

Conference on Management of Data, May 1979.

[Shoshani & Kawagoe 86] Shoshani, A., Kawagoe, K., Temporal Data Management, Proceeding8 of tlae

Interflatioflol COflfereflce Ofl Very Large Data Buu, August 1986, pp. 79-88.

[Snodgrass 87] Snodgrass, R., The Temporal Query Language TQuel, ACM Trafluctiofl8 Ofl DtJtiJ6tJ8e 5,.
tema, June 1987, pp. 247-298.

[Snodgrass & Abn 85J Snodgrass, R., Abo, I., A Taxonomy or Time in Databases, Proceediflg8 of AOM

SIGMOD IflterntJtioflai COflfereflce Ofl MtJfltJgemeflt of DtJta , May 1985, pp. 236-246.

[Snodgrass & Abn 88] Snodgrass, R., Abo, I., Performance Analysis or T~mporal Queries,' IflfoTmatiofl Sci

efltU, forthcoming.

.- ~ - .-

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

-"' ~

