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Division of Research, Oakland, California, USA.

Abstract

Longitudinal electronic health records on 99,785 Genetic Epidemiology Research on Adult Health 

and Aging (GERA) cohort individuals provided 1,342,814 systolic and diastolic blood pressure 

measurements for a genome-wide association study on long-term average systolic, diastolic, and 

pulse pressure. We identified 39 novel among 75 significant loci (P≤5×10−8), most replicating in 

the combined International Consortium for Blood Pressure (ICBP, n=69,396) and UK Biobank 

(UKB, n=152,081) studies. Combining GERA with ICBP yielded 36 additional novel loci, most 

replicating in UKB. Combining all three studies (n=321,262) yielded 241 additional genome-wide 

significant loci, although for these no replication sample was available. All associated loci 

explained 2.9%/2.5%/3.1% of systolic/diastolic/pulse pressure variation in GERA non-Hispanic 

whites. Using multiple BP measurements in GERA doubled the variance explained. A normalized 

risk score was associated with time-to-onset of hypertension (hazards ratio=1.18, P=10−44). 

Expression quantitative trait locus analysis of BP loci showed enrichment in aorta and tibial artery.
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Blood pressure (BP) is an important cardiovascular risk factor1, with estimated 30-50% 

heritability2,3. Over the past several years, genome-wide association studies (GWAS) have 

identified 85 BP SNPs4–22. However, the heritability explained remains less than other 

quantitative cardiovascular traits, e.g., lipids23. Three strategies to identify additional 

variants are the use of: larger sample sizes, more precise measurements, and more extensive 

imputation panels. To date, all large studies have used measurements from research 

protocols rather than clinical records. There is little doubt that the phenotype observed in 

observational research or randomized trials is similar to a clinical encounter, but clinical 

measures may be influenced by somewhat different circumstances and measurements may 

be obtained under a less stringent protocol24. However, studies using clinical measurements 

from electronic health records (EHR) permit not only very large sample sizes, but also a 

long-term average of multiple independent clinical measurements from many different visits, 

yielding reduced phenotype variance (as shown by simulation and experimental data)7. We 

therefore reasoned a large-sample BP GWAS with longitudinal EHR-based measures would 

provide improved statistical power and understanding of BP genomic architecture, which we 

show theoretically (Online Methods) and through data application.

Results

GERA cohort

We conducted primary discovery in the Genetic Epidemiology Research on Adult Health 

and Aging (GERA) cohort (n=99,785 for this study) that is composed of non-Hispanic 

whites (81%; 80,792), Latinos (8%; 8,231), East Asians (7%; 7,243), African Americans 

(3%; 3,058), and South Asians (1%; 461) (Table 1). GERA is part of the Kaiser Permanente 

Research Program on Genes, Environment, and Health (RPGEH), whose participants are 

members of an integrated health care delivery system. The average follow-up time was 4 

years, beginning at age 60.9, leading to high prevalence of hypertension and anti-

hypertensive therapy. Figure 1 describes the EHR extraction and study design (Online 
Methods). Multiple BP measurements (1,342,814 total) were available for many 

participants: 46.4% had at least one untreated measurement and 62.6% had at least one 

treated measurement. We included all individuals who had at least one (untreated or treated) 

BP measurement. The multiple measurements enabled the use of a long-term average to 

increase accuracy7. There were differences in anthropometric and BP values at the first visit 

among the race/ethnicity groups (Table 1): African Americans and Latinos had the highest 

BMI, while South Asians had the lowest, although this group was on average the youngest. 

Untreated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were highest in 

African Americans followed by non-Hispanic whites; South Asians had lower values 

(Figure 2). Untreated BPs were higher in males than females across groups, as also found 

previously25.

To further investigate covariate effects, we assessed age, sex, BMI, and genetic ancestry on 

SBP, DBP, and pulse pressure (PP) within each race/ethnicity group (Supplementary Table 
1). Age and age2 accounted for substantial SBP variation as expected, ranging from 10.6% 

(African Americans) to 29.0% (South Asians; although this large number may simply reflect 

small sample size). Age explained little DBP variance in any group. BMI explained 
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moderate SBP variance, ranging from 2.1% (African Americans) to 5.4% (South Asians). 

While males had higher BPs than females across groups, sex contributed little to BP 

variance. Although statistically significant, ancestry principal components (PCs) explained 

little variance for any BP phenotype in any group (generally <0.1%), except European 

ancestry in African Americans (1% of SBP and DBP variance, decreased SBP, DBP, and PP 

with lower European ancestry).

Novel BP loci in GERA and meta-analyses with ICBP and UKB

The GERA GWAS discovery stage did not indicate significant genomic inflation with 

genomic-control (λ)26 values of 1.063, 1.058, and 1.065 for SBP, DBP, and PP, respectively 

(Supplementary Figures 1-4, Online Methods). In addition to the linear regression 

analytic approach used in previous GWAS13,14,17 we used a mixed model approach that 

yielded slightly smaller λ values, suggesting an improved population substructure and/or 

cryptic relatedness adjustment (Supplementary Table 2). We detected 75 independent, 

genome-wide significant (P≤5×10−8) loci associated with one or more BP phenotypes 

(Supplementary Figures 1-4, Supplementary Tables 1-5).

Of the 75 identified loci, 36 replicated previous GWAS findings. Of the remaining 39 novel 

loci (Figure 3), 25 were strictly replicated (P≤0.00067, Bonferroni correction for 75=39+36 

SNPs – see Online Methods) in 221,477 individuals from the International Consortium on 

Blood Pressure (ICBP; HapMap summary statistics augmented to 1000 Genomes Project; 

Online Methods; Supplementary Figure 5)17 and UK Biobank (UKB; imputed 

additionally using UK10K)27). Among the remaining 14 loci, 8 had suggestive significance 

(P≤0.01), and one X chromosome SNP was unavailable for replication. All SNPs of at least 

suggestive significance (P≤0.05) had effects in the same direction as in GERA, and had no 

significant heterogeneity among the GERA race/ethnicity groups or between GERA and/or 

ICBP and/or UKB (Figure 3 and Supplementary Table 3), giving further credibility that 

these loci are also true-positive findings. Of note, ICBP alone poorly replicated novel SNPs 

(only 3 SNPs met Bonferroni correction in ICBP alone), although the SNPs were highly 

enriched for small P-values. These results emphasize the importance of large replication 

cohorts.

Expanding our discovery to a meta-analysis of GERA and ICBP also did not indicate 

significant inflation (average λ=1.042, Supplementary Table 2); this λ is slightly smaller 

than GERA alone, likely due to the slightly conservative nature of extending the ICBP 

summary statistics (Online Methods). Thirty-six additional new loci reached genome-wide 

significance for at least one BP phenotype. Using 152,081 individuals from UKB for 

replication, 22 loci replicated at P≤0.00067 (Bonferroni for 75 SNPs, see above), 7 were 

suggestive with P<0.01, and 2 reached nominal significance (P<0.05). As before, all SNPs at 

least of nominal significance (P<0.05) had the same effect direction in UKB, arguing for a 

low rate of false positive findings (Figure 4, Supplementary Table 3). We did not detect 

significant heterogeneity for any lead SNP.

Finally, to maximize discovery power, we combined all three studies (GERA, ICBP, and 

UKB, n=321,262). Our genome-wide meta-analysis of SBP, DBP, and PP had λ=1.069, 

1.076, and 1.076, respectively. We identified 241 additional novel genome-wide significant 
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loci (Supplementary Figure 6, Supplementary Table 3), although replication was not 

possible. Only rs139491786 showed heterogeneity evidence (I2=88, P=1.5×10−5).

Conditional analysis

We first searched for additional genome-wide significant SNPs within a 1Mb window 

(±0.5Mb of the lead SNP) involving each previously-described or novel locus in GERA, 

testing for replication in UKB. We first identified an additional novel SNP, rs1322640, 

129Kb from rs13197550 (lead GERA SNP), that replicated in UKB (P=8.3×10−6, Table 2a, 
Supplementary Table 5). We next identified a novel INDEL (chromosome=20, b37 

position=10,573,001) located 396Kb from rs2104574 (lead GERA SNP), that replicated in 

UKB (P=0.012, Table 2a, Supplementary Table 5).

We further combined GERA and UKB in a discovery conditional meta-analysis, identifying 

an additional 4 independent signals (Table 2b, Supplementary Table 5). No replication was 

possible for these.

Replication of previous GWAS results

We also investigated replication of previously-described BP loci in GERA (Supplementary 
Table 6, which also reports the GERA lead SNP when it differs from the previously-

described lead SNP at the locus)4–22. For the 85 previously-described lead SNPs (or an 

r2=1.00 proxy for one SNP), 62.4% (53/85) were significantly associated with at least one 

GERA BP phenotype at P<0.00059 (Bonferroni adjustment for 85 tests) and had the same 

direction of effect; 78.8% (67/85) were nominally significant; 95.3% (81/85) had effects in 

the same direction. Replication was stronger in UKB, with 77.6% (66/85) replicating at 

Bonferroni significance, 89.4% (76/85) at nominal significance, and 96.5% (82/85) in the 

same direction. The replication was further improved in meta-analysis of GERA and UKB, 

where 84.7% (72/85) met Bonferroni significance, 89.4% (76/85) were nominally 

significant, and 96.5% (82/85) had effects in the same direction.

In addition, testing an aggregate, weighted genetic risk score (GRS) using all 85 previously-

described SNPs for each BP trait led to highly significant associations in all GERA groups 

with P<10−168 (whites), P<10−22 (Latinos), P<10−9 (East Asians), and P<0.002 (African 

Americans), and P<10−350 in UKB whites, for all BP traits, (Table 3). In GERA, Latinos 

had a larger mean SBP GRS than whites (P=0.053), while African Americans had a lower 

one (P=0.032). When GERA African Americans were stratified by European ancestry, SBP 

GRS were lower in individuals with 0%-50% European ancestry (coefficient=0.65, 95% 

CI=0.18-1.13) than in those with 50%-100% European ancestry (coefficient=1.04, 95% 

CI=0.56-1.51), although these confidence intervals overlap. The same trend appeared for 

DBP and PP (Table 3). There was also a very high degree of concordance of the estimated 

regression coefficients for SBP, DBP, and PP among the non-Hispanic whites in GERA, 

ICBP, and the UKB (Supplementary Figure 7).

Examining the effects of individual SNPs, for those discovered in ICBP the effects are 

typically weaker in GERA, likely due to the winner's curse28. The opposite is also the case: 

SNPs discovered in GERA have weaker effects in ICBP. UKB comparisons are similar, with 
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the discovery cohort (GERA or GERA+ICBP) having stronger effect sizes than the 

replication cohort (UKB). Seven SNPs exhibited significant heterogeneity among studies 

(P<0.00059, Bonferroni correction for 85 SNPs) at the lead trait (Supplementary Table 6).

Variance explained and gain using multiple BP measurements

The variance explained in an additive linear model by the 75 genome-wide significant loci 

identified in our GERA discovery cohort was 1.4%/1.2%/1.8% for SBP/DBP/PP in GERA 

non-Hispanic whites; note that the same individuals were used for discovery and testing, but 

with the independent ICBP estimated effect size. The results for the other GERA groups 

were: 2.0%/1.6/2.4% in Latinos, 0.9%/0.7%/1.4% in East Asians, 1.3%/0.6%/1.6% in 

African Americans, and 1.7%/1.7%/0.7% in South Asians. Including the remaining of the 85 

previously-described SNPs not genome-wide significant in GERA and the 36 novel SNPs 

from the GERA and ICBP meta-analysis modestly increased variance explained (Table 3). 

All previously-described and novel loci explain 2.9%/2.5%/3.1% of SBP/DBP/PP variation 

in GERA non-Hispanic whites, with an estimated greater (but not significantly different) 

variance in Latinos (3.4%/2.6%/3.6%) and less in East Asians (2.4%/1.7%/2.6%) and 

African Americans (2.0%/1.3%/2.1%), who similarly have the lowest GRS; UKB results 

were generally slightly lower than GERA, e.g., 2.7%/2.5%/3.0% for UKB whites. Adding 

dominance terms to the linear regression model did not increase variance explained (none 

significant after multiple comparison correction).

We subsequently investigated the impact of multiple BP measurements in an analysis 

restricted to individuals who had ≥5 measurements (Supplementary Figure 8). Using all 

measurements, compared to just one, reduced the regression coefficient standard error (SE) 

by 25%; the regression coefficient estimate itself did not change significantly. With a large 

number of measurements, the GRS approximately doubled variance explained for SBP and 

DBP, but was over 3-fold greater for PP, due to the latter's greater measurement error 

(Supplementary Table 7). The BP variance due to measurement error was estimated 

(Online Methods) as 56.5% (SBP), 47.5% (DBP) and 71.5% (PP). Lastly, the number of 

genome-wide significant variants that would have been found when using 1/2/3/4/all 

measurements (in a fixed subset of non-Hispanic white individuals with ≥5 measurements 

and using genotyped SNPs only) was 2/3/3/7/7 SBP, 2/4/7/7/11 DBP, and 4/7/15/14/23 PP, 

demonstrating a large increase with more measurements included. However, when not fixing 

the sample size, and using all individuals with at least 1/2/3/4/5+ measurements, we found 

12/10/11/10/7 genome-wide SBP, 14/14/14/13/11 DBP, and 20/21/23/21/23 PP significant 

loci, using a total of 80,792/78,372/75,446/71,834/67,547 individuals, reflecting the loss of 

statistical power with decreasing sample size. Consequently, it is difficult to determine the 

optimal minimum number of measurements for subject inclusion, due to the precision vs. 

sample size tradeoff.

BP risk scores and onset of hypertension

We tested the association of the GRS (described above for SBP, DBP, and PP) with time-to-

onset of hypertension. Predictive value of the GRS increased with the number of BP SNPs 

included (Table 3), as expected. Including SNPs from the meta-analysis of all three cohorts, 

the SBP GRS was the strongest hypertension predictor with a non-Hispanic white hazards 
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ratio (HR)=1.18 (P=10−44); the DBP GRS was slightly less significant with HR=1.14 

(P=10−30), as was that for PP with HR=1.15 (P=10−33). The GRS were also predictive in 

other groups; e.g., for SBP GRS, Latino P=1.4×10−6, East Asian P=0.0021, and African 

American P=0.00024.

Sex Differences

We tested SNP effect size differences by sex (heterogeneity test, Supplementary Table 8; 
coefficients plot, Supplementary Figure 9). After Bonferroni correction (α=0.00013, all 

386 novel and previously-described SNPs), none was significantly different. However, 25 

SNPs were nominally significant (P<0.05) at the lead trait, which is in slight excess of the 

19.3 expected; of those in the same effect direction in males and females, 17/20 (85.0%, 

95% CI=61.1%-96.0%) had stronger magnitude in females than males.

Differences in SBP, DBP, and PP effects

We tested whether the normalized effect size of each SNP was greater in SBP or DBP 

(Online Methods, Supplementary Table 9); 26.2% of the SNPs had significantly different 

normalized effect sizes for between SBP and DBP (P<0.00013, Bonferroni correction for 

386 SNPs); of these, for 57.4% the normalized effect was greater for SBP than DBP.

Heritability from all Genotyped and Imputed SNPs

Array heritability estimates derived from genotyped SNPs based on PC-Relate kinship 

estimates29, to account for population stratification in the kinship estimate, using GEAR30 in 

the non-Hispanic whites was 15.5% (95% CI=13.9%-17.1%) for SBP, 15.1% (95% 

CI=13.5%-16.7%) for DBP, and 14.5% (95% CI=12.7%-16.2%) for PP, increasing only 

modestly when adding imputed SNPs to 16.1% (95% CI=14.5-17.7%) for SBP, 17.0% (95% 

CI=15.6%-18.4%) for DBP, and 15.6% (95%CI=14.0%-17.2%) for PP. These estimates 

were similar to estimates not accounting for population stratification in the kinship estimates 

but adjusting for it in the phenotype model instead using GCTA31 (SBP h2=16.8%, 95% 

CI=15.1%-18.6%); this may be because the ancestry effect in non-Hispanic whites is 

modest. Sample sizes were too small to evaluate other GERA groups.

eQTL analysis in different tissues

We investigated whether the previously-identified and all novel loci co-localized with 

Expression Quantitative Trait Loci (eQTLs). We used eQTLs from 44 Genotype-Tissue 

Expression (GTEx) tissues and kidney 32,33. Across all tissues, 186 of 367 sentinel SNPs 

were eQTLs in at least one tissue; at least one SNP in 213 of the same 367 loci was an 

eQTL. We determined for each tissue whether the number of eQTLs (either by sentinel SNP 

or by locus) was greater than expected by chance, where expectation was derived from a 

random sampling of SNPs and loci (Online Methods). We ranked the tissues by eQTL P-

value, both for the sentinel SNP and locus analysis. We generally expect tissues with more 

eQTLs to overlap more SNP sets, and enrichment to be greater simply because of chance 

GWAS set overlap, especially when eQTLs in tissues relevant to the phenotype are also 

found in these tissues. To observe whether the enrichment visible for a given tissue is greater 

than expected relative to the total number of eQTLs it contains, we examined the 

Hoffmann et al. Page 6

Nat Genet. Author manuscript; available in PMC 2017 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relationship between P-value and total eQTL count per tissue (Figure 5). The aorta and 

tibial artery are clear outliers compared to other tissues, even accounting for total number of 

eQTLs.

Enrichment analysis for functional elements

We subsequently investigated whether genes near sentinel variants were enriched for certain 

functional pathways. We included genes within ±0.5Mb of the 390 sentinel variants with a 

significant eQTL in either tissue identified above (aorta and tibial artery). We identified 

2,013 genes near all 390 sentinel variants (Online Methods) and tested for functional 

annotation enrichment. Using DAVID 6.834,35, 1,480 had annotations, producing 26 

significant annotation terms (Benjamini-Hochberg P<0.05, Supplementary Table 10), 

without a clear functional pathway emerging.

Discussion

In this large, ethnically-diverse GERA cohort with EHR-derived BP measures, we 

discovered 39 novel genome-wide significant BP loci, most replicating in ICBP and UKB. 

Merging GERA and ICBP identified 36 additional novel genome-wide significant loci, most 

replicating in UKB. Finally, merging all three cohorts identified 241 additional genome-wide 

significant loci, although no replication was available. Conversely, we were able to replicate 

almost all 85 previously-described BP SNPs. We also showed that using multiple EHR BP 

measurements almost doubled variance explained, although the total variance explained 

remains small (e.g., 2.9% for SBP in non-Hispanic whites). We also showed that BP signals 

are enriched in two large arteries, aorta and tibial.

Our study used a large general population sample with EHR-derived data for the first time in 

BP GWAS. The consistency and generalizability of BP genomics findings from one-time 

research-protocol-based assessments to purely clinical measures recorded in an EHR has 

been questioned36. We were able to replicate most previously-identified loci from many 

cohorts using research-based assessments, demonstrating BP genetic findings are not 

significantly different between studies using research assessments and those using clinical, 

EHR-derived ones. This is important because clinical measures recorded in the EHR are the 

basis for clinical decisions in general, real-world, clinical practice. Moreover, this extends 

GWAS reach to numerous clinical samples.

EHR-based studies offer additional benefits. Our identification of new variants takes 

advantage of multiple independent measurements in the EHR to increase statistical power7. 

Our study increased the standardization and reduced the variability of the EHR-derived BP 

measures by excluding measures obtained in clinical settings with increased measurement 

variability, e.g., emergency rooms, retaining measures obtained in visits to primary care/

Internal Medicine departments.

The new BP SNPs identified have similar genomic context to those previously-described, 

which were located 8.2%/20.0%/32.9%/38.8% in exon/UTR/intron/intergenic regions while 

novel SNPs identified in GERA were distributed 2.6%/23.1%/33.3%/41.0%, respectively, 

those from the GERA+ICBP meta-analysis 0%/2.8%/55.6%/41.7%, and those from the 
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GERA+ICBP+UKB meta-analysis 2.5%/14.9%/41.5%/41.1% (Supplementary Table 4)37. 

Frequencies and variant types of lead SNPs are also similar to those previously described; 

for European ancestry, 85.9% of previously-described SNPs have minor allele frequencies 

(MAF)>0.10, compared to 89.7% of GERA-identified SNPs; 94.4% of GERA+ICBP SNPs; 

and 82.2% of GERA+ICBP+UKB SNPs. Comparing results across traits within GERA, the 

leading trait locus was more often PP for novel loci than before (24.7% PP for previously-

described SNPs, versus 59.0%, 58.3%, and 41.9% PP for GERA, GERA+ICBP, and GERA

+ICBP+UKB, respectively); this may reflect that earlier BP studies tested SBP/DBP, but not 

PP. We additionally demonstrated the significant effect of the summary BP SNP scores on 

time-to-onset of hypertension, enabled by GERA longitudinal EHR data. We note that a 

GERA hypertension GWAS produced no additional novel results (and results much less 

significant than for the continuous BP traits, as expected).

One limitation was that 1000 Genomes imputed results were unavailable in ICBP; however, 

the much larger UKB replication did not have this limitation. For ICBP, we therefore relied 

on summary test statistic imputation from HapMap. The use of these approximated results, 

and the fact that all test statistics from ICBP were based on SNP results imperfectly imputed 

to HapMap, likely led to diminished effect sizes in ICBP. Overall, we needed a very large 

number of individuals for replication, both to replicate our novel GERA results, which 

improved greatly when adding UKB to ICBP, and to replicate previously-described results, 

which improved when adding UKB to GERA.

Another advantage of a single large cohort, such as GERA, is the ability to directly assess 

additional local SNPs by conditional analysis. The absence of individual-level data requires 

LD assumptions from other studies. Nevertheless, we only found two additional variants in 

GERA that were ultimately not explained by nearby previously-described SNPs, and an 

additional four when combining GERA and UKB. We further note these additional 

conditional hits were located at a substantial distance from the locus sentinel SNP, likely 

indicating an independent gene and/or mechanism involved. The lack of identification of 

additional SNPs close to sentinel SNPs is quite distinct from what is observed for serum 

lipids, for example38, and suggests that lower frequency variants with larger effects within 

the same loci identified here are uncommon. A similar conclusion was recently obtained in a 

sequencing study of type 2 diabetes39.

While our sample sizes were smaller in the other race/ethnicity groups than for the non-

Hispanic whites, we noticed that Latinos had the highest standardized GRS, followed closely 

by non-Hispanic whites, and then by East Asians and African Americans. In African 

Americans, European ancestry was associated with lower BP, but individuals with more 

European ancestry had higher BP standardized GRS (created from previously-described 

SNPs); this is counter-intuitive, but may reflect the fact that the GWAS discovery occurred 

primarily in European ancestry individuals, and suggests there may be other SNPs in African 

Americans remaining to be identified.

We also looked for a pattern in terms of which loci replicated. Logically, the largest 

replication indicator was discovery P-value, as stronger associations likely require a smaller 

sample size for replication than weaker ones. In GERA, loci with P≤1×10−9 replicated at a 
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Bonferroni level at a rate of 76.5% (13/17) vs. 54.5% (12/22) for those with 

5×10−8≤P<1×10−9; all of the ICBP SNPs with P≤1×10−9 replicated at a Bonferroni level in 

GERA+UKB; however, the pattern was not seen in the GERA and ICBP meta-analysis with 

57.1% (4/7) with P≤1×10−9 vs. 62.1% (18/29) with 5×10−8≤P<1×10−9 although numbers 

were small. Perhaps also of note, the two SNPs in GERA with MAF<0.001 failed to 

replicate in UKB (P>0.05).

We also searched for eQTL enrichment in a variety of tissues. Both the aorta and tibial 

arteries were clear outliers compared to other tissues, suggesting genetic factors influencing 

vascular elasticity and/or stiffness are important determinants of BP and hypertension.

There are several reasons for the enhanced discovery in our study: an increased sample size, 

multiple BP measures (reducing phenotype variability), better designed arrays with 

increased genomic coverage40,41, and larger imputation reference panels (reducing error and 

providing additional imputed SNPs). We showed a 25% SNP effect se reduction using 

multiple BP measurements. In addition, 15 SNPs not present in 1000 Genomes were 

genome-wide significant in the UKB data alone (6.2% of the 241 novel SNPs), while none 

of the SNPs in 1000 Genomes surrounding them met genome-wide significance.

After completion of our analyses, three additional large-scale BP/hypertension GWAS have 

been published42–44, including, as in our study, hundreds of thousands of individuals in 

discovery and replication phases. Notable among the findings were an enrichment of SNPs 

also involved in cardiometabolic traits42 and the implication of genetic variation in vascular 

function42,44, as we also found. Two of the studies42,43 also focused on rare variation, and 

identified a few larger-effect rare missense and nonsense variants in eight distinct genes. 

These studies collectively identified 71 distinct novel genome-wide significant loci. Using a 

broad definition of overlap (r2>0.3), a cursory examination suggests that 16 of these overlap 

with our 316 novel hits (2 of the 39 from GERA alone, 4 of 36 from GERA+ICBP, and 10 of 

241 from GERA+ICBP+UKB). These studies, along with ours, demonstrate the enhanced 

power of both gene discovery and characterization afforded by expanded sample sizes.

In summary, the current study demonstrates the utility of a large general cohort with EHR-

derived multiple independent measurements for studying BP genetics; it is reassuring that 

the same BP loci found in research-based cohorts are captured with high significance, and 

also that the longitudinal data typical for EHRs provide important opportunities for novel 

SNP discovery. The new SNPs found here may provide novel mechanistic insight into the 

control and treatment of hypertension, ultimately preventing a variety of clinical sequelae.

Online methods

All statistical tests were two-sided.

Participants, phenotype, and genotyping

Our primary analysis used individuals from the RPGEH GERA cohort, which has been 

described45,46. We used three trait outcomes: SBP, DBP, and PP, where PP=SBP-DBP. We 

began with 3,197,317 GERA EHR BP measurements. In KPNC, BP is measured and 
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recorded in the EHR at the beginning of each clinic visit, regardless of the visit reason. 

Examination of mean BP measurements by medical specialty showed that, compared to 

Internal Medicine (IM), average BP measurements obtained in the following departments 

were significantly higher (p<0.0001): anesthesiology, chemical and alcohol dependency, 

health education, emergency room, hospital care, ophthalmology, physical therapy, 

rehabilitation, transplant, urgent care, and urology. Higher average BP measurements in 

these specialties likely indicated effects of acute illnesses or other effects on BP, and we 

excluded all BP measurements obtained in these specialty visits; 3,046,609 BP 

measurements (95%) remained after these exclusions. We further excluded 1,127,077 

measurements recorded as binned into 5 systolic and 7 diastolic BP ranges (e.g., systolic BP 

recorded in the range 140-159); this was an early recording method prior to the full EHR 

implementation in 2006. After noting that 75.6% of the 1,919,532 remaining measurements 

were from IM visits, we excluded the 188,173 OB/GYN and 280,501 other departmental 

measurements to obtain the most homogeneous BP phenotype, resulting in 1,450,858 

measurements from IM visits on 107,196 individuals. Finally, after excluding those failing 

genotyping, 1,342,814 independent SBP and DBP IM visit measurements from different 

days (345,031 untreated and 997,783 treated) on 99,785 individuals obtained from the 

beginning of 2006 to the end of 2011 remained for analysis. Anti-hypertensive medication 

treatment was assessed via EHR prescription filling information; once an individual started a 

drug, they were considered treated on all subsequent measurements. We added 15mmHg to 

treated SBP values and 10mmHg to treated DBP values,47 similar to previous BP GWAS,17 

to correct for treatment effect.

Individuals were genotyped at over 650,000 SNPs on one of four race/ethnicity-specific 

Affymetrix Axiom arrays optimized for individuals of European (EUR), Latino (LAT), East 

Asian (EAS), and African American (AFR) race/ethnicity40,41. We analyzed 80,792 non-

Hispanic whites, 8,231 Latinos/other, 7,243 East Asians, 3,058 African Americans, and 461 

South Asians (genotyped on the EUR array). The Kaiser Foundation Research Institute and 

University of California San Francisco Institutional Review Boards approved this project. 

Written informed consent was obtained from all subjects.

Genotype quality control and imputation

Initial genotype quality control was performed per race/ethnicity-specific array, as 

described46. In addition, we required an array per-SNP call-rate ≥90%, resulting in 665,350 

(EUR), 777,927 (LAT), 704,105 (EAS), 864,905 (AFR), and 663,783 South Asian (SAS) 

SNPs. We excluded SNPs with a minor allele count (MAC)<20, resulting in an MAF cutoff 

of 0.0001 (EUR), 0.001 (LAT), 0.001 (EAS), 0.003 (AFR), and 0.02 (SAS) and a total 

number of 662,517, 758,681, 700,291, 855,429, and 568,707 SNPs, respectively.

Imputation was performed on an array-wise basis. We first pre-phased the genotypes with 

Shape-it v2.r7271948. We then imputed variants from the 1000 Genomes Project (phase I 

integrated release, March 2012, with Aug 2012 chromosome X update, a cosmopolitan 

reference panel with singletons removed) with Impute2 v2.3049–51. The estimated quality 

control metric rinfo
2 used in this study is the info metric from Impute2, which is an estimate 

of the imputed genotype correlation to the true genotype52. Poorly imputed (rinfo
2<0.3) and 
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MAC<20 SNPs were removed, resulting in 24,149,855 (EUR), 20,828,585 (LAT), 

15,248,462 (EAS), 21,485,958 (AFR), and 8,607,429 (SAS) SNPs (28,613,428 unique 

SNPs) available for analyses.

GWAS analysis and covariate adjustment

We first analyzed each of the five race/ethnicity groups separately. Data from each SNP were 

modeled using additive dosages accounting for imputation uncertainty53. For each 

quantitative trait (treatment adjusted SBP, DBP, and PP), for computational efficiency, we 

first ran a mixed model of the BP measurement adjusted for age, age2, BMI, and sex using 

all BP measurements for each individual. We then constructed a long-term average residual 

for each individual as the dependent variable in a linear mixed model using estimated 

kinship matrices with leave-one-chromosome-out (LOCO) to account for population 

substructure and cryptic relatedness with Bolt-LMM54. Finally, we undertook a fixed-effects 

meta-analysis to combine the results of the five groups using Metasoft v2.055. We 

considered as novel loci that were at a physical distance >0.5Mb from any previously-

described locus (and visual inspection for longer LD stretches, see below).

To find additional independent SNPs at each locus, we ran a conditional stepwise regression 

analysis at all SNPs with rinfo
2>0.8 in the GERA meta-analysis, around each previously-

described and novel GERA SNP. We looked for additional genome-wide significant SNPs 

within a 1Mb window (±0.5Mb) of the lead SNP. While this generally worked well, certain 

portions of the genome have stronger LD (we noted particularly at ends of chromosomes and 

centromeres, where recombination is suppressed), which we assessed via visual inspection 

of the Manhattan plots to form an expanded window size, and repeated the stepwise 

regression on the expanded window. In these analyses we adjusted for ancestry PCs (see 

below) instead of the mixed model approach, both for simplicity and computational 

efficiency.

To adjust for genetic ancestry/population stratification when not using Bolt-LMM LOCO, 

we performed a PC analysis, as described45. The first 10 eigenvectors for non-Hispanic 

whites and the first 6 eigenvectors for all other race/ethnicity groups were included as 

covariates in the regression model described above. When we tested European vs. African 

ancestry percentages in African Americans, we used PC1 as a European admixture 

surrogate45.

Replication of novel GERA SNPs using ICBP and UKB

To test the 39 novel GERA genome-wide significant SNPs for replication, we evaluated the 

associations utilizing a fixed effects meta-analysis of ICBP and UKB. We also tested the 36 

novel SNPs found in the meta-analysis of GERA and ICBP for replication in UKB. We 

report associations that replicate at a strict Bonferroni threshold (P<0.00067, to account for a 

total of 75 novel SNPs tested), as well as suggestive (P<0.01) and nominally suggestive 

(P<0.05) findings with effects in the same direction as the original.
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ICBP—ICBP GWAS summary statistics from 69,396 individuals at 2,696,785 SNPs were 

obtained from dbGaP17. As only summary statistics were available, we did not use these 

data to replicate conditional SNPs.

As the ICBP has been imputed to HapMap v22, a smaller reference panel than used here for 

GERA, we used ImpG v1.0.156 to estimate the summary statistics for the 1000 Genomes 

Project reference panel SNPs used for the GERA imputation. To solve for the effect size βj 

of the additive coded genotype Xij (i indexing N individuals, j indexing SNPs) from the 

summary statistics imputed to 1000 Genomes from ImpG, we assumed that the ICBP had 

the same allele frequency as in the 1000 Genomes European ancestry individuals and Hardy-

Weinberg Equilibrium (HWE). Let qj be the MAF, and pj=1-qj. Assuming HWE, Npj
2 

individuals have Xij=0, N2pjqj have Xij=1, and Nqj
2 have Xij=2. It is known that 

SE(βj)=∑irij
2/sqrt(sxx,j), where rij is the residual of the phenotype regressed on the SNP 

genotype Xj and sxx,j= ∑i(Xij-mean(X.j))2. It can be shown that sxx,i=2npjqj. Although ∑rij
2 

is unknown in ICBP, a reasonable approximation is obtained by assuming that individually 

each SNP explains very little of the trait variance and thus ∑rij
2 is constant and does not 

depend on j, i.e., ∑rij
2=∑ri

2, and solve for this quantity using the existing effect size estimate 

of βj from the available HapMap SNPs. Using ImpG assumes all HapMap SNPs were 

imputed without error; such error likely dampens the results.

UKB—The UKB cohort has been previously-described27. Of note, genotypes were imputed 

using a larger number of individuals from the UK10K combined with 1000 Genomes Project 

as a reference panel (n=6,285). SBP measures were taken from manual (variable 93.0-2.0-1) 

and automatic readings (4080.0-2.0-1), as were DBP (94.0-2.0-1 and 4079.0-2.0-1, 

respectively). Age was reported as the age at measurement (34.0.0). Anti-hypertensive use 

was assessed by self-report (6153.0-1.0 and 6177.0-2.0), and BPs were corrected as in 

GERA. BMI was calculated from measured weight and height (21001.0.0). Sex was 

determined genetically (22001.0.0). Analysis was done as in GERA, a meta-analysis of each 

self-reported race/ethnicity group (21000.0-2.0): we identified 145,341 individuals who 

reported any white race/ethnicity group and with global ancestry PC1≤50 and PC2≤50, 

where global PC1 and PC2 were calculated from the entire cohort (22009.0.1-2), including 

2,274 South Asians, 2,029 African British, 1,979 mixed/other, and 458 East Asians, totaling 

152,081 individuals. Ancestry PCs within whites were calculated using 50,000 random 

white individuals with the remaining subjects projected, which has been shown to work 

well45, and then within each other group. We analyzed 35,893,267, 12,078,001, 19,866,667, 

15,820,020, and 7,298,789 SNPs with rinfo
2≥0.3 and MAF≥0.0001, 0.005, 0.005, 0.005, and 

0.025, in whites, South Asians, African-European, mixed/other, and East Asians, 

respectively (42,521,712 unique SNPs).

GERA meta-analysis with ICBP, and with UKB

We additionally performed meta-analysis of the GERA and ICBP results for genome-wide 

discovery using a fixed-effects meta-analysis, using UKB for replication. We further 

performed a discovery meta-analysis of GERA, ICBP and UKB for maximal discovery size, 

but with no replication sample available. In this analysis we reviewed the locus plots, 

manually merging the ±0.5Mb windows when necessary. Specifically, after assessing SNPs 
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in the GERA+ICB+UKB meta-analysis, we checked if the SNPs appeared independent in a 

meta-analysis of GERA and UKB, as both had individual level data. Most regions were 

either obviously correlated with high r2, or obviously not with r2<0.05; however, to 

formalize the conditional analysis and retain a SNP as independent, we required that the 

reduction in p-values from univariate to joint in the GERA+UKB meta-analysis be less than 

10-fold, and additionally that translating an equivalent reduction in p-values to the GERA

+ICBP+UKB meta-analysis still led to a genome-wide significant result (i.e., if we assumed 

that Pjoint,GERA+ICBP+UKB/Punivariate,GERA+ICBP +UKB=Pjoint,G ERA+UKB/

Punivariate,GERA+UKB, the approximated Pjoint,GERA+ICBP+UKB would still need to be 

genome-wide significant). This may have been slightly conservative.

Replication analysis of previously-described SNPs in GERA

To determine how many of the 85 previously-described loci from ICBP and other GWAS 

replicated in this study, we tested the sentinel SNPs from those studies in our dataset4–22. 

Frequently, multiple BP phenotypes are reported for the same loci. We used a Bonferroni 

correction for replication (85 SNPs, α=0.00059). The SNP rs2446849 was not in our 

reference panel, so we used the closest proxy, rs2513758, at a physical distance of 876bp 

and r2=1.00 in Europeans.

GRS construction

We constructed a GRS for each of the three BP traits for each individual by summing the 

additive coding of each set of SNPs associated with the particular BP trait weighted by the 

previously-described effect size from ICBP (phs000585.v1.p1), and then standardized the 

distribution of all groups simultaneously by the mean and standard deviation (i.e., to a 

standard normal distribution) for interpretability. We used the leading SNP from each locus.

Multiple Measurements

To assess the impact of multiple BP measurements, we compared the P-value and effect size 

estimates for the previously-described GWAS significant SNPs using one, two, three, four, 

and all measurements from each individual. We used a set of 67,547 non-Hispanic white 

individuals, all with ≥5 BP measurements available for this analysis, to keep the sample size 

identical among comparisons. We also examined the variance explained by a GRS of the 

previously-described hits assuming previous effect sizes as a function of number of BP 

measurements.

From this analysis, we can also estimate both the variance due to measurement error and 

variance explained by the GRS in the absence of measurement error, as follows. Let B = 

observed BP measurement, G = the GRS, E = residual genetic and environmental effect on 

BP, M = component of BP due to measurement error, and k = number of BP measurements. 

We assume that the measurement error is independent across multiple measures within an 

individual, and the additive model B=G+E+Mk for the average of k BP measurements. Let 

VB=Var(B), VG=Var(G), VE=Var(E), and VM=Var(M). For k BP measurements with 

independent measurement error, VMk=VM/k. The proportion H of BP variance attributable 

to the GRS is VG/(VG+VE+VM/k). Then 1/H = (1+VE/VG)+(VM/VG)/k=α+β(1/k) where 

α=1+VE/VG and β=VM/VG. We thus have a linear model of 1/H in terms of 1/k, and 1/
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α=VG/(VG+VE) is the proportion of variance due to the GRS in the absence of measurement 

error, and β/(α+β) is the proportion of variance in BP due to measurement error. Fitting a 

linear regression model to 1/H as a function of 1/k, we can then use the estimated intercept 

(α) and regression coefficient (β) to estimate the error variance and variance due to the GRS 

in the absence of measurement error.

BP risk scores and onset of hypertension

We additionally tested GRS constructed by weighting different subsets of identified BP-

associated SNPs (i.e., identified for SBP, for DBP, and for PP, constructed as described 

above). Hypertension onset here was defined as the first hypertension treatment time, or the 

first time either SBP≥140 or DBP≥90 occurred in an individual and was maintained for the 

next subsequent BP measurement. Individuals were left censored at their first measurement 

(and not included if already meeting the hypertension diagnosis criterion), and right 

censored at their latest measurement if not hypertensive.

Differences in SBP, DBP, and PP effects

We also tested if the normalized effect size of each SNP was different for SBP versus DBP. 

Suppose that Y is SBP normalized to a standard normal (mean centered, then divided by the 

standard deviation) and Z is normalized DBP, and X is the SNP dosage. Then we model 

Y=aX+E and Z=bX+F, where a is the regression coefficient for Y on X and similarly b for 

Z; E and F are the residual errors, respectively. Since Var(Y)=Var(Z)=1, assuming a and b 

have the same sign (which is generally the case since the phenotypes are correlated), testing 

the equality of a and b is also a test of effect difference between SBP and DBP. Now, 

consider the difference Y-Z=(a-b)X+(E-F). Regressing Y-Z on X tests the difference 

between a and b; in this analysis, we additionally adjust for the same covariates as discussed 

previously.

GWAS Heritability from all Measured SNPs

We estimated the additive array heritability of each individual's long-term average age and 

BMI-adjusted BP residuals using GEAR v0.7.730. Array heritability estimates may be more 

sensitive to artifacts than GWAS results57, so we restricted our analysis to the largest group 

of individuals, non-Hispanic whites, that were run with the same reagent kit and type of 

microarray (n=73,133)46. We used only autosomal data, a common practice in array 

heritability estimation, and also LD-filtered our data so no two pairwise SNPs had r2>0.8 

with a standard greedy algorithm in plink v1.0758. This resulted in 547,922 genotyped 

SNPs, and 3,796,606 imputed SNPs restricted to rinfo
2>0.8. Because of population 

stratification, we used PC-Relate29 to estimate kinship coefficients rather than the standard 

GCTA estimates31 which assume a homogeneous population; we also compared the results 

to those obtained using the standard GCTA kinship estimates with PC adjustment. We used 

GEAR rather than GCTA to estimate heritability since the PC-Relate kinship matrix estimate 

was not positive definite; this can be explained by the fact that the matrix entries are 

computed based on different allele frequencies, i.e., those depending on ancestry from the 

PC analysis. In all analyses we removed individuals so that no two remaining individuals 

had a kinship estimate >0.025; sample size was maximized with Plink v1.959, leaving us 

with 62,133 individuals.
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eQTL enrichment analysis

To carry out tissue-specific eQTL enrichment analysis, we used 44 tissue types with at least 

70 samples available from GTex32 in addition to seven kidney eQTLs33. We used 367 

sentinel variants from previously-identified SNPs and the three discovery stages presented 

here with MAF>0.001 and in eQTL databases. Next, 100 sets of 367 random pseudo-

sentinel variants were selected matching the MAF to the original 367 (within ±0.5%). 

Within each set, the selection was done without replacement; the match for each variant was 

selected one-at-a-time, and selection of the subsequent variant excluded all previously-

selected variants, as well as all variants within ±0.5 Mb of all previously-selected variants.

Enrichment was tested at both the sentinel SNP level and locus level, conceptually similar to 

Nicolae et al.60. At the sentinel SNP level, the number of variants that were also eQTLs in 

any of the 45 tissues was counted. At the locus level, variants in high LD (r2>0.8) with any 

of the 367 sentinel variants were examined for overlap with eQTLs, and if at least one 

variant within the locus was also an eQTL, the locus was counted. Subsequently, this was 

repeated for 100 randomly generated sets to observe if an eQTL enrichment was visible in 

the GWAS set. In order to assess which of the 45 tissues were driving the enrichment, counts 

were also computed per tissue. For each tissue, an upper-tailed p-value for enrichment of the 

GWAS count was calculated with a Z-score computed using the mean and standard deviation 

of the null distribution for that tissue.

DAVID analysis

Annotation of genes surrounding sentinel variants was conducted with DAVID 6.8 beta 

(non-beta was 6 years old)34,35. Genes within a ±0.5Mb window of each of the 390 sentinel 

variants were selected, as defined by GENCODE v19 GTF61. Subsequently, those with at 

least one significant eQTL in tissues identified from the previous enrichment analysis were 

included in the final list for analysis. Functional annotation analysis was run on the Homo 

sapiens background with default annotations in the categories of disease, functional 

categories, gene ontology, pathways, and protein domains, as well as with default 

parameters, retaining terms with at least two assigned genes. Annotation terms meeting 

Benjamini-Hochberg P<0.05 (adjusting for the number of terms) were considered 

significant.

Data availability—Data, including all genotype data and information on hypertension 

status, are available on approximately 78% of GERA participants from dbGaP under 

accession code phs000674.v1.p1 . This includes individuals who consented to having their 

data shared with dbGaP. The complete GERA data are available upon application to the KP 

Research Bank Portal, http://researchbank.kaiserpermanente.org/for-researchers/. The ICBP 

summary statistics are available from dbGaP under accession code phs000585.v1.p1. The 

UK Biobank data are available upon application to the UK Biobank, www.biobank.ac.uk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Project workflow. (a) EHR phenotype extraction for the GERA cohort. (b) GWAS analysis 

approaches.
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Figure 2. 
Empirical cumulative distribution functions of BP measures (mmHg), stratified by GERA 

race/ethnicity group and normalized to a 61 year old male with BMI 27kg/m2 for reference, 

indicated by the vertical dashed line. There were 80,792 non-Hispanic whites, 8,231 Latinos, 

7,243 East Asians, 3,058 African Americans, and 461 South Asians.
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Figure 3. 
Novel BP loci detected in GERA and tested for replication in the ICBP+UKB meta-analysis. 

The two SNPs rs76217164 and rs143118162 failed to impute in ICBP (owing to low allele 

frequency), and rs141216986 was on the X chromosome and not available in ICBP or UK. 

We used an additive model. The effect allele is the allele to the left (e.g., A in A/G). Effect 

sizes are indicated in mmHg. Each line represents the effect size and 95% confidence 

interval for each group, with the text on top of each line representing the group tested: G, 

GERA (n=99,785); IU, meta-analysis of the ICBP and UKB (n=221,477); and GIU, meta-
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analysis of GERA, ICBP, and the UKB (n=321,262). The color of each line indicates the 

statistical significance of the test: red, P≤10−9; orange, 10−9<P≤5×10−8; green, 

5×10−8<P≤0.00067 (Bonferroni correction for 39+36=75 SNPs); blue, 0.00066<P≤0.05; 

black, P>0.05.
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Figure 4. 
Novel BP loci identified in the GERA+ICBP meta-analysis, and tested for replication in the 

UKB. We used an additive model. The effect allele is the allele to the left (e.g., A in A/G). 

Effect sizes are indicated in mmHg. Each line represents the effect size and 95% confidence 

interval for each group, with the text on top of each line representing the group tested: GI, 

meta-analysis of GERA and ICBP (n=169,181); U, UK Biobank (n=152,081); and GIU, 

meta-analysis of GERA, ICBP, and the UKB (n=321,262). The color of each line indicates 

the statistical significance of the test: red, P≤10−9; orange, 10−9<P≤5×10−8; green, 
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5×10−8<P≤0.00067 (Bonferroni correction for 39+36=75 SNPs); blue, 0.00066<P≤0.05; 

black, P>0.05.
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Figure 5. 
Tissue specific expression quantitative trait loci (eQTL) analysis of 51 tissues. The two 

outlier tissues, accounting for total eQTL count, are labeled. Tissue total eQTL counts vs P-

values at (a) the locus and (b) the sentinel variant.
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