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The Essential Role of Consciousness in Mathematical Cognition 
 

Robert F. Hadley (Hadley@CS.Sfu.ca) 
School of Computing Science, Simon Fraser University  
8888 University Drive, Burnaby, B.C., V5A 1S6 Canada 

 
Abstract 

In his most comprehensive book on the subject (1994), Roger 
Penrose provides arguments to demonstrate that there are 
aspects of human understanding which could not, in principle, 
be attained by any purely computational system.  His central 
argument relies crucially on renowned theorems proven by 
Gödel and Turing. However, that key argument has been the 
subject of numerous trenchant critiques, which is unfortunate 
if one believes Penrose's conclusions to be plausible. In the 
present article, alternative arguments are offered in support of 
Penrose-like conclusions (although the present arguments 
differ markedly from his).   It is argued here that a purely 
computational agent, which lacked conscious awareness, 
would be incapable of possessing crucial concepts and of 
understanding certain kinds of geometrically-based proofs. 

Keywords: Consciousness; Cognition; Penrose; Infinity; 

1. Introduction 
In his most comprehensive book on the subject (1994), 
Roger Penrose provides arguments to demonstrate that there 
are aspects of human understanding which could not, in 
principle, be attained by any purely computational system. 
In particular, Penrose argues that human mathematicians are 
capable of proving propositions (specifically, certain 
metatheorems) that could not be proven by any computer 
program. Penrose argues further that this superiority of 
humans over machines (including the most advanced kinds 
of AI systems), within specific realms of mathematics, also 
entails that computers are incapable of understanding the 
semantics of mathematical formulae. The crux of Penrose’s 
case involves his appeal to renowned theorems proven by 
Gödel and by Turing. These theorems establish limits upon 
what can be derived within formal deductive systems 
devoted to arithmetic, and upon what can be discovered by 
any computer program that accepts computer programs as 
input. We need not explore the details of those theorems 
here, but interested readers will find a concise discussion of 
those results in my recent paper (Hadley, 2008). For present 
purposes, we need only note that numerous researchers have 
challenged the case that Penrose has constructed, in both of 
his books on this topic (Penrose, 1989, 1994). While 
everyone accepts the correctness of the theorems established 
by Gödel and Turing, many commentators have argued, for 
a variety of reasons, that Penrose’s application of those 
theorems within the cognitive realm is seriously flawed. A 
very common criticism concerns his contention that if 
mathematicians are following purely computational 
methods when they discover theorems, then those methods 
would be logically sound, and any correct formal model of 
those methods would be logically consistent (Feferman, 
1995; McCullough, 1995). I will spare the reader most 
details, but my own critique, given in (Hadley, 2008), 

presents a rigourous argument demonstrating that even 
when an AI system employs only correct algorithms, and 
makes only valid inferences, an inconsistency may result 
when that system is directed at an accurate formal deductive 
model of itself. If such an inconsistency could result when 
an automated agent (AI system) is employed, it could 
likewise result in the case of the best human 
mathematicians. Another major difficulty is that Penrose 
appears to assume (mistakenly) that if human 
mathematicians are indeed following reasonable 
computational processes, in their search for proofs, then 
they must be employing infallible algorithms, rather than 
some very enlightened, but fallible search process.  

Despite doubts regarding crucial aspects of Penrose’s 
arguments, I nevertheless believe that some of his 
conclusions are both correct and important. In particular, I 
agree that a purely computational agent, which lacked 
awareness or consciousness, would also lack the capacity to 
understand some crucial mathematical concepts and forms 
of reasoning. Indeed, I will argue in support of this general 
conclusion. I will do so by addressing the problematic 
nature (computationally speaking) of the concepts of 
countably infinite sets and of non-denumerable (higher-
order) infinities. Arguments presented there differ markedly 
from those due to Penrose. Following that, I argue in favour 
of a suggestion of Penrose (unproven hitherto) regarding the 
inability of purely computational agents to grasp the 
reasoning found in crucial, geometrically-based proofs 
(Note, the awareness required to grasp such concepts might 
be present in a computational agent, but only as a contingent 
side-effect of a variety of factors. I return to this issue.)  
This latter section evokes to some degree certain themes 
found in Searle (1992). However, the specific arguments I 
present are not Searle’s. (It is noteworthy that many 
researchers in Artificial Intelligence remain unconvinced by 
Searle’s famous ‘Chinese Room’ argument, and appear 
quite willing to attribute understanding to a hypothetical 
robot which could merely pass certain behavioural criteria. 
It should be valuable, therefore, to consider arguments 
which specifically support Penrose’s conclusions, but which 
do not depend upon an acceptance of Searle’s famous 
argument.) 

Before delving into details of the arguments presented 
below, it would be well to pause briefly, to consider the 
sense of ‘consciousness’ and ‘awareness’ at issue here. 
Although I will not attempt to define these terms (and do 
not think definitions are actually possible for the concepts 
we commonly associate with the words), a few illustrative 
remarks may be helpful. In using these terms, I have in 
mind consciousness (or awareness) that is focused on a 
specific topic. For example, we can become conscious of 
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having particular thoughts (about things as various as food, 
pains, tactics, and sets of numbers). Also, we can become 
conscious or aware that we perceive some geometric figure 
or that we understand certain concepts (such as the concept 
of the set of natural numbers). 

Moreover, very often we are consciously thinking or 
perceiving on specific occasions, without being conscious or 
aware that we are thinking or perceiving. There may be 
other subtle differences among the kinds I consciousness I 
have mentioned here, but for present purposes I will not 
attempt an analysis. Indeed, it is noteworthy that if 
operational or behavioural analyses were possible in these 
instances, the famous problem of other minds would 
arguably not exist.    

2. Human Concepts of Infinite Sets 
Let us now consider whether, in all cases, the semantic 
understanding of human mathematicians can be adequately 
captured by fully computable, operational procedures. 
Consider first the concept of a countably infinite 
(denumerable) set of objects. Typically, students of 
mathematics have acquired a reasonably good 
understanding of this concept by the end of their first course 
in differential calculus, if not earlier. The concept is 
frequently explained to students by an informal definition 
along the following lines: ‘a countable (or denumerable) 
infinity of objects is an infinite set of items, where each 
element of the set can be put into one-to-one 
correspondence with a distinct natural number.’1 

It is crucial to note, however, that this ‘definition’ already 
presupposes an understanding of an infinite set, in two 
separate ways. First, the definition explicitly appeals to the 
meaning of the word ‘infinite’; secondly, the definition 
invokes the concept of the natural numbers, which, of 
course, is again a concept of an infinite set of elements. It 
would appear, then, that any attempt to provide a robot (or 
other AI system) with the concept of a countably infinite set, 
by providing the robot with the definition just considered, 
would involve a serious circularity. It might be suggested 
that the circularity could be diminished, at least, by 
replacing the word ‘infinite’, in the quoted sentence, with 
the phrase ‘extremely large’. Such a replacement raises 
other difficulties, but let that pass. For, even to assume that 
the robot could understand the concept of the set of natural 
numbers is already to assume that it has grasped the concept 
of a countable infinite set. (Indeed, a pleasing property of 
the natural numbers is that they are paradigmatically a 
countable set – they come numbered!) What is worse, from 
the standpoint of those who seek to reduce all human 
thought to computational processes, is that every attempt to 
define, explicitly, the concept of a countable infinity must 
inevitably invoke the concept of the natural numbers.  

However, let us consider whether we could, by purely 
computational means, endow a robot with the concept of the 

                                                        
1 The set of natural numbers includes zero, together with all the 

positive integers (0, 1, 2, 3 ...). 

set of natural numbers. For, if we could do that much, we 
may have gone far towards endowing it with the notion of a 
denumerable infinity. This much is clear; we can certainly 
provide a robot with a (non-terminating) procedure for 
generating the Arabic numerals which individually each 
express one of the natural numbers. There is a simple non-
terminating procedure for generating, say, each of the 
decimal or binary numerals. Of course, at no time will a 
computer or a human ever have generated the entire set of 
numerals, so, it would be absurd to suggest that a robot (or a 
human) would grasp the concept of the entire set of natural 
numbers by having produced the set. It might be suggested, 
though, that we could ‘tell’ the robot that the process of 
generating the ‘entire set’ will not (or could not) halt. For 
argument’s sake, let us grant that the robot might already 
possess the concept of negation (the sense of ‘not’) and the 
concept of halting. We may further assume then, that, via 
ordinary semantic compositionality, the robot could come to 
understand the sense of ‘not halting’. By similar charitable 
assumptions, let us concede that the robot understands the 
meaning of ‘the process never halts’. In this fashion, we 
might allow that our robot could, in solely computational 
terms, come to ‘understand’ that it is always possible to 
generate one more numeral, or even that ‘no matter how 
many numerals have so far been generated, this robot can 
generate at least one more’.  

On the face of it, it might now appear that our robot has 
thus been endowed with a complete, human-like conception 
of the infinite set of countable numerals. (To be sure, 
numerals are merely names and are not themselves numbers. 
So, our robot would not yet have acquired a genuine 
conception of the set of natural numbers, but let that pass.) 
However, we should resist this superficial appearance, as I 
shall now argue. A crucial aspect of many mathematicians’ 
understanding of even a countable (enumerable) set of items 
(in the case numerals) is that the entire set of elements can 
(or does) simultaneously exist. The human concept of this 
infinite set is not just that of a finite set, so far generated, 
combined with the potential for always generating yet 
another element of the set. Rather, most mathematicians 
(and even many students of mathematics) conceive and 
realize that, over and above the elements already generated 
or enumerated, there exist vastly many more elements that 
can be enumerated. Indeed, not only do they realize that 
vastly many elements remain to be enumerated, but 
infinitely many elements yet remain. The italicized phrase 
here is crucial. We cannot hope to endow a robot with a 
purely computational understanding of a countable infinity 
if part of what we must make the robot understand is that, 
no matter how many items it has generated or enumerated, 
there remain infinitely more items to come. Moreover, the 
robot would need to understand that all these remaining 
items are already contained in the infinite set in question.  

It is puzzling, to be sure, how a human student could 
come to grasp the seemingly circular aspects which I have 
just stressed. It may well be that, initially, the student’s 
understanding of infinity does merely consist of notions 
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such as ‘there is no end to this process of generating 
numerals’, and ‘I can always keep generating one more 
item’. However, in the case of many intelligent students at 
least, there comes a stage where the student’s understanding 
leaps to a higher level. The student’s awareness of the items 
being enumerated, together with the unending nature of the 
enumerative (or generative) process, enables a conceptual or 
imaginative leap to occur, and in this process the student is 
able to entertain the idea that the entire aggregate set of 
elements simultaneously exists. Of course, the student does 
not visualize the entire set, but may, in some schematic 
fashion, imagine a series of elements stretching off into a 
vanishing point. In any case, I submit that the conceptual 
leap that occurs involves an emergent awareness, and at the 
very least, significant meta-processing must be involved.  

Please note, however, that I am not claiming that 
emergent awareness and metaprocessing could never occur 
within a computational robot. Rather, my contention is that 
such emergence and meta-processing are not to be found in 
any given computational procedure which purports 
specifically to express or embody the concept of a 
‘countable infinity’. If it someday happens that we discover 
computational processes which could engender emergent 
awareness of a type sufficient to enable the ‘conceptual 
leap’ mentioned in the previous paragraph, then these 
processes would very probably enable a broad range of 
conceptual leaps. That is, the engendered awareness would 
be of a fairly general nature. I say this because the 
awareness which presently enables us to imagine an 
unbounded set of objects, simultaneously co-existing, does 
not in any way seem to be specific to the particular concept 
of an infinite set. (We should bear in mind, also, that for all 
we know, consciousness can emerge only as a combined 
side-effect of both chemical processes and specialized 
neurological events. Moreover, and crucially, computer 
simulations of chemical processes do not produce the same 
effects as the chemical processes themselves (as Searle has 
stressed). Consider a computer simulation of hydrochloric 
acid dissolving iron.) 

Perhaps, however, it will now be objected that there are 
eminent mathematicians who belong to the intuitionist, or 
constructivist school of thought. Members of this ‘school’ 
commonly deny the existence of any complete, actualized 
set of infinite objects, such as the set of natural numbers. It 
may appear that these mathematicians, at least, cannot 
conceive of a fully realized countable infinity, and do not 
possess the concept that I have been arguing for.  

In reply, I would stress two points. In the first place, 
mathematical intuitionists (or constructivists) do not claim 
to be unable to conceive of a completed, fully realized 
infinity. Rather, they simply doubt or deny the existence of 
the set of objects. Put another way, they doubt the existence 
of the extension of the phrase, ‘countably infinite set’, rather 
than the intension of the phrase.  

Secondly, even if some intuitionists insist that they cannot 
understand the meaning of ‘countably infinite set’, or claim 
to lack the corresponding concept, there are certainly many 

other mathematicians, belonging to the Platonist school of 
thought, who are certain they do understand the concepts, 
not only of countable infinite sets, but of larger, 
nondenumerable infinite sets. Surely, the cognitive abilities 
of these Platonically inclined mathematicians fall within the 
scope of Cognitive Science as much as the mathematical 
intuitionists do. 

Having now considered reasons to believe that the 
concept of a countable infinity is not expressible in terms of 
a computational procedure, let us turn to conceptions of 
higher-order, non-denumerable infinities. Many, though not 
all, mathematicians have accepted the work of the renowned 
Georg Cantor, who developed (via subtle proofs) a theory of 
transfinite numbers, based upon a hierarchy of infinite sets. 
The first (or lowest order) of these infinities are the 
countably infinite sets that we have already considered. All 
countably infinite sets are judged to be of the same 
magnitude (i.e., cardinality), and that magnitude was termed 
by Cantor, aleph-null. Immediately following the lowest 
order infinity, is the class of infinite sets whose magnitude 
(cardinality) equals that of the set of real numbers (the latter 
includes all the transcendental numbers (e.g., �), all 
‘rational’ numbers, and all integers). The cardinality of the 
set of real numbers constitutes a 2nd-order infinity, known 
as aleph-one. The size of aleph-one vastly exceeds that of 
aleph-null, but one can begin to get a glimmering of the 
magnitude involved by considering that any given countable 
infinity can be mapped to an arbitrarily small segment of the 
real number continuum (which we assume extends infinitely 
far to the left and right). We can, therefore, map an infinity 
of countable infinities into the entire real continuum, whose 
magnitude is aleph-one. Without going into further 
technicalities, the crucial point to note is that one cannot 
acquire the concept of aleph-one, the first non-denumerable 
infinity, unless one already possesses the concept of a 
countably infinite set (whose magnitude is aleph-null). 
Indeed, each of the higher order, non-denumerable infinities 
is defined in terms of the preceding order infinity, so that 
the semantics of each of the transfinite ‘numerals’ (aleph-
one, aleph-two, etc.) ultimately presupposes the concept of 
the countable infinity, aleph-null. It follows, then, that if my 
preceding arguments are accepted, and the concept of a 
countable infinity cannot be captured by any computational 
procedure specific to that concept, then the same limitation 
applies to the concepts of each of the higher order infinities. 
(Note, by the way, that none of the higher-order infinities, 
beginning with aleph-one, could remotely be defined in 
terms of such phrases as ‘the set of items is unbounded’, or 
‘however many items you have counted, there will always 
be more to count’. Such expressions do not begin to convey 
the magnitude even of aleph-one, which corresponds to the 
cardinality of the set of real numbers.) 

3. Human Perception of Geometric Diagrams 
Apart from the human capacity to form conceptions of a 
variety of types of infinity, there is a crucial human ability, 
involved in our capacity to understand certain geometrically 
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based proofs, which bears upon our overall concerns here. 
Specifically, there is strong reason to believe that the 
relevant kind of understanding necessarily involves 
conscious awareness in the perception of complex geometric 
diagrams. This perceptual awareness is intimately related to 
what cognitive psychologists identify as the ‘perception of a 
gestalt’. Bearing in mind that, for all we know, conscious 
awareness is not a mere by-product of computational 
processes, but may well be partially the result of complex 
chemical 12 processes, the following arguments, should 
lend credence to Penrose’s assertion that the ability to 
understand certain mathematical arguments cannot merely 
be the result of the execution of computer algorithms. (N.B. 
some of the following points are evocative of the work of 
John Searle, 1992, but I have considerably reduced the 
number of assumptions required, and my conclusions are 
much less sweeping than those of Searle.) Let us note, first 
of all, that the ability to perceive certain schematic diagrams 
as instantiations of geometric shapes appears, crucially, to 
require awareness. For example, consider the seven ‘dots’ 
displayed in Figure 1.  

 

 
 
 
Figure 1: Seven ‘dots’ which schematically represent a 

hexagon. 
 

Very little effort is required, typically, for an adult human 
to perceive these seven dots as comprising a hexagon. 
(Indeed, considerably greater effort is required to simply 
perceive the collection of dots merely as a set of unrelated 
dots.) Moreover, humans perceive the hexagon shape 
virtually instantly. Certainly, no conscious analysis or 
dissection of the ‘data’ is involved. Let us consider, 
however, whether a purely computational process could 
come to perceive the collection of dots as a hexagon. There 
are two possible cases to consider. 

In Case 1, a sequential computer program is presented 
with a digitized image of the ‘set of dots’, and from this 
image the program is able to draw lines between dots lying 
on the perimeter, compute angles between lines that share 
common vertices, and engage in other computational 
processes. Without doubt, an appropriately designed 
program would eventually identify the set of dots as 
comprising a hexagon, and would label it as such. However, 
there is nothing about such a computational procedure 
which should tempt us to suppose that the computer 
‘perceives’ the set of dots as a unified object. The mere 
algorithmic processing of a series of dots, involving the 
construction of line segments, measurement of angles, etc., 
in no way logically entails that any postulated awareness of 
the separate discrete elements involved (dots, lines, angles 
... ) would result in an awareness of a single, cohesive 
object. Yet, anything that is purely the result of a 

computational process would be logically entailed by formal 
analysis of that same process. (See Hadley, 2008; Penrose, 
1994; or Kleene, 1967, for an explanation of the 
mathematical relationship between computable procedures 
and logical entailment.) It follows that if any computable, 
sequential procedure does manage to perceive the collection 
of seven dots in Figure 1 as a coherent, unified hexagon, this 
perception does not result as a computationally necessitated 
consequence of the computer program that instantiates the 
algorithm involved. Rather, any such unified perception 
would almost certainly be, at best, an emergent, contingent 
side-effect of the program’s execution. Consider then Case 
2, according to which a computer program comes to 
identify, purely via parallel algorithmic processing, Figure 1 
as an instance of a hexagon. In the case of such parallel 
processing, the seven separate dots in figure 1 would be 
simultaneously represented and processed by concurrently 
active ‘memory units’ and procedures within the computer. 
Would this simultaneous representation and processing of 
seven, separate discrete dots necessarily result in the 
perception of a cohesive, unified hexagon (assuming, as 
before, that an appropriately designed program was 
involved)? 

The answer, once again, is no. For the mere fact that 
memory units, representing the seven separate dots, are 
simultaneously activated, or even that line segments 
between the adjacent dots lying on the perimeter are 
concurrently ‘drawn’ would not automatically result in a 
realization that all these dots and line segments belong 
together. Even if we assume that some awareness is present 
in the execution of the parallel procedures, there is no 
logical reason why that awareness should not be separately, 
albeit concurrently, focused on the separate dots and line 
segments involved. There is no more reason to suppose that 
a unified perception would result than there is to suppose 
that six different people, each located several miles from 
one another and each simultaneously examining a single 
large dot which has been connected by a visible line to some 
corresponding dot that is likewise viewed by a ‘fellow 
examiner’, would result in a unified perception of a very 
large hexagon. Even if we suppose that the people involved 
can each talk to one another via cell phones, and that they 
collectively come to deduce that some hexagon must be 
present, there is still no logical compulsion to suppose that 
the separate people collectively perceive a single hexagon. 

Note, moreover, that it does not help matters to shrink the 
scale involved and to replace the separate people by 
collections of separate neurons in a human brain. For, the 
fundamental problem still remains; the separate neurons, 
even though they may send signals to one another (just as 
the people were able to talk via cell phones) do not share a 
single awareness in which a perception could be ‘unified’ 
(indeed, the separate neurons presumably have no 
awareness at all). It may well be that the simultaneous 
activation of separate collections of neurons (which are 
concurrently stimulated by the seven distinct dots in Figure 
1) would, in fact, when coupled with appropriate chemical 
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reactions and the exchange of electrical signals over a 
suitably configured network, result in a unified perception 
of a hexagon. However, this result would be causally 
produced, and not be logically entailed. There is no way that 
we can deduce, logically that a unified perception would 
result in this case. Given this, we are assured that no 
computer program, whether parallel in design or not, could 
engender the required unified perception of a hexagon 
purely by virtue of the execution of the program itself. If a 
unified perception results, it is an emergent by-product of a 
non-logical order. 

In light of the foregoing conclusions, we are in a position 
to see that the human capacity to follow (and indeed to 
discover) certain geometrically-based proofs requires the 
presence of conscious, gestalt-like perceptions. A fragment 
from one of Penrose’s geometric proofs will be helpful here 
(although Penrose uses the proof for a very different 
purpose). As Penrose explains (Penrose, 1994) there is an 
intriguing, provable relationship between those natural 
numbers known as ‘hexagonal numbers’, and those which 
are perfect cubes. Hexagonal numbers are so-named 
because their magnitude exactly corresponds to the number 
of ‘dots’ required to comprise a ‘filled-in’ hexagon of the 
kind displayed in figure 1, above. In figure 1 we see seven 
dots. Thus, seven is a hexagonal number. The next two 
hexagonal numbers, in ascending order, are 19 and 37. The 
hexagon corresponding to 19 can be created by the mere 
expedient of adding a new perimeter of dots to the hexagon 
corresponding to the number 7, as shown below in Figure 2. 

 
 

 
 
 

Figure 2: Enlarging a hexagon via adding a new 
perimeter. 

 
 In a similar fashion, we could add a perimeter of dots to 

Figure 2 to obtain a hexagon corresponding to the next 
hexagonal number, which is 37. The complete set of 
hexagonal numbers is infinite, and for each such number 
one could, in principle, generate a corresponding geometric 
figure in the fashion just illustrated. Now, it turns out that if 
we take the number ‘1’ to be hexagonal, and if we sum up 
any consecutive series of hexagonal numbers, beginning 
with ‘1’, then the sum will be a perfect cube. (Call this last 
assertion, ‘Theorem 1’.) For example, if we sum the first 
three hexagonal numbers, 1, 7, and 19, we obtain the cube, 
27. By means of a graphic proof, involving ‘dotted’ 
hexagons and geometric cubes, Penrose proves the truth of 
Theorem 1. One step of this proof involves noting that every 
numerical perfect cube, N, corresponds to a geometric cube 
containing N units, as displayed in Figure 3.  

 

 
 
 

 Figure 3: The volume of a geometric cube corresponds to 
an algebraic cube.  

 
The next step is to note that the perimeter of any cube, 

when viewed from the same perspective as used in Figure 3, 
will be a hexagon. Significantly, humans attain this insight 
via a conscious perception. We see both the geometric cube 
and the hexagonal border my means of integrated, cohesive 
gestalts. Another key step in Penrose’s proof involves the 
perception that the number of ‘units’ in a ‘filled-in’ 
geometric cube (such as that in figure 3) can be obtained by 
summing up a progressive series of fragments of cubic 
arrays. Such a series is displayed in Figure 4. Each fragment 
in the series, apart from the initial solitary unit at the bottom 
left, consists of a ‘back wall, side wall, and ceiling’, as 
Penrose observes (Penrose, 1994). By nesting the successive 
fragments together, in sequence, we can perceive with our 
conscious imagination that, when closely nested together, 
the fragments will constitute the completed, unified cube 
(having dimensions of 4 by 4 by 4, in the present case).  

A final, crucial, step in the proof requires that we imagine 
viewing any given fragment (from Figure 4) in the series 
from a distant point opposite the vertex point of the ‘three 
walls’. For example, if we view the rightmost fragment in 
the series, from this perspective, we will discover that it 
appears as the hexagon shown in Figure 5, below. By means 
of conscious, gestalt-based perceptions such as the present 
one, we are able to realize that the number of units in each 
of the fragments of figure 4, is equal to the number of units 
in the corresponding hexagon.  

 
 

 
 
 

Figure 4: A series of cube fragments. 
 
By now, it is presumably evident to the reader that the 

ability to understand and follow Penrose’s geometrically-
based proof intrinsically requires the ability to perceive 
complex diagrams as integrated gestalt patterns. Moreover, 
as I have previously argued, that ability in turn necessitates 
our conscious awareness. Of course, it may well be that a 
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purely computational agent, lacking all awareness, could 
construct a proof of the same ‘theorem’ (Theorem 1). And 
this proof (when viewed abstractly, with many details 
suppressed) might possess an overall structure that bore 
some resemblance to the structure of the Penrose proof that 
we have been considering. Nevertheless, the Penrose proof 
is not the same proof as the one (call it Proof-2) the purely 
computational agent would create. For, unlike the Penrose 
proof, Proof-2 would lack the gestalt perceptions of 
hexagons and cube fragments, but would necessarily contain 
much detailed analysis of spatial relationships of the small 
constituents of the images in figures 2, 3, 4, and 5.  

 
 

 
 
 
 Figure 5: The view of a 4 by 4 cube, from a particular 

vantage point.  
 
It might be objected, however, that when humans follow 

geometric proofs of the kind offered by Penrose, they are 
still performing, at some subconscious level, much detailed 
processing of small constituents, in a fashion comparable to 
the ‘detailed analysis’ which must exist in the computer-
generated Proof-2. Whether or not that is so, I submit that 
the various, conscious gestalt perceptions employed in the 
Penrose-style proof are essential to our understanding the 
proof. It is by means of these gestalt perceptions (inter alia) 
that we become convinced that each step of the proof 
follows from the preceding one. Moreover (and I think this 
is of fundamental importance), the kind of gestalt 
perceptions we have been discussing are crucial to the 
discovery process for geometric proofs of the present type. 
At the very least, such high-level, gestalt perceptions 
provide powerful heuristic evidence which helps to guide 
the discovery process. If our brains were limited to the kind 
of low-level, tedious analysis that occur in proofs 
exemplified by Proof-2, the search space for geometric 
proofs would be overwhelmingly vast, and many fewer 
interesting proofs would be discovered. 

4. Summary and Discussion 
In the foregoing, I have presented arguments, grounded in 
mathematical domains, to demonstrate that the acquisition 
of human-like concepts of countable and non-denumerable 
infinities, and human-like comprehension of a particular 
geometrically motivated proof does require conscious 
apprehension of the subject matter involved. I have not 
precluded the possibility that a computational agent might 
come to possess the requisite consciousness, but have 
argued that if this consciousness does arise within the agent, 

it does so as an emergent, contingent side-effect of the 
underlying processes involved.  

Moreover, I have emphasized that it is presently unknown 
whether the relevant consciousness could in fact arise solely 
as a consequence of the underlying computational 
processes. For all we presently know, computational 
processing may be, at most, just one among several causal 
conditions for the creation of the conscious conceivings, 
realizations, and perceptions involved. It may well be that 
special kinds of chemical activities comprise an additional 
necessary condition for the production of such 
consciousness. Alternatively, it may be that the ‘quantum-
classical’ hypotheses advanced by Penrose (1994) are 
correct, and that no agent whose processing is entirely 
deterministic could ever be conscious. Specifically, in Part 
II of his scientific tour de force, Penrose offers a theory of 
how entirely non-computational, processes, arising at the 
interface between quantum and classical physics, and 
occurring within microtubules in the synaptic junctions of 
neurons, may be a causally necessary condition for the 
production of conscious thinking. Crucially, within 
Penrose’s theory, the relevant non-computational processes 
are strongly non-deterministic; they cannot even be 
computationally approximated using probabilistic equations 
and/or random number generators. 

It is essential to note, moreover, that we need not embrace 
Penrose’s controversial, Gödel-Turing based arguments 
(concerning the limitations of computational provability) in 
order to grant the credibility of his conjectures about the 
genesis of consciousness. 

Penrose may well be right about the nature of this genesis. 
If he is indeed correct, we may conclude, given the 
supporting arguments I have presented above, that no 
deterministic computer program could acquire the 
mathematical concepts or comprehend the mathematical 
proofs that I have discussed. 
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