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Abstract

Late adolescence is a period of dynamic change in the brain as humans learn to navigate 

increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo 

extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, 

reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as 

neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young 

adulthood. Challenges in early development, including prenatal exposure to infection, may set 

the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity 

and function before symptoms emerge. A growing body of research suggests that activation of 

the mother’s immune system during pregnancy may act as a disease primer, in combination with 

other environmental and genetic factors, contributing to an increased risk of neurodevelopmental 

disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine 

the course of brain and behavioral changes in offspring exposed to maternal immune activation 

(MIA). Although the vast majority of MIA research has been carried out in rodents, here we 

highlight the translational utility of the nonhuman primate (NHP) as a model species more closely 

related to humans in PFC structure and function. In this review, we consider the protracted period 

of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP 

offspring in the context of rodent preclinical models, and lastly explore the translational relevance 

of the NHP MIA model to expand understanding of the etiology and developmental course of PFC 

pathology in schizophrenia.
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EPIDEMIOLOGICAL EVIDENCE

Exposure to infection during pregnancy is associated with an increased risk of 

neurodevelopmental disorders in offspring, including schizophrenia (1). Mounting evidence 

indicates that disruption in fetal neurodevelopment may be due to the mother’s immune 

response to the pathogen rather than the pathogen itself (2). This maternal immune 

activation (MIA) hypothesis is supported by a growing body of seroepidemiological studies 

that link specific maternal inflammatory biomarkers with offspring neurodevelopmental 

outcomes, ranging from subtle alterations to profound neurodevelopmental disorders (3). 

Preclinical animal models of MIA-exposed offspring offer powerful translational tools to 

evaluate the neurobiological consequences of artificially activating the maternal immune 

system during gestation in a controlled environment (1,4,5). While rodent model systems 

have greatly advanced our understanding of the link between MIA and atypical offspring 

neurodevelopment (6), nonhuman primates (NHPs) and humans share greater similarities in 

placental structure and pregnancy physiology, maternal-fetal interface, gestational timeline, 

fetal brain development, and overall brain structure–particularly in the prefrontal cortex 

(PFC) (7). The NHP model has emerged as a powerful tool to evaluate a diverse 

range of gestational conditions, such as obesity, poor diet, and maternal stress, that are 

associated with maternal inflammation and adverse neurodevelopmental outcomes (8). 

Indeed, emerging data from human (9–11,148) and NHP (12) studies suggest that natural 

variation in maternal cytokines, in the absence of an infection, can influence offspring 

neurodevelopment.

UNIQUE FEATURES OF NHPs

While no animal model can recapitulate human-specific, behaviorally defined brain 

disorders (13), here we focus on the unique translational potential of the most commonly 

employed NHP in biomedical research, the rhesus macaque (Macaca mulatta). Similar 

to humans, rhesus monkeys live in large social hierarchies and rely on sophisticated 

multimodal communicative repertoires (14). Brain regions underlying social and cognitive 

processing show similar patterns of activity in humans and NHPs (15). Figure 1 details 

the organization and complexity of the PFC in the rodent, monkey, and human brain. 

Although cross-species definitions of PFC vary (16–18), expansion of PFC regions has been 

a hallmark of primate evolution, with the elaboration of associative territories involved 

in executive function, emotional processing, and communication. Rhesus monkey and 

human brains follow very similar patterns in early gestation, when the symmetrical division 

of cortical progenitor cells yields units comprised of asymmetrically dividing progenitor 

cells, ultimately resulting in the production of cortical columns (19–21). Radial glia guide 

the migration of cortical neurons, yielding region-specific patterns of cytoarchitectural 

organization. This nearly 2-month-long period of neurogenesis and migration in the primate 

brain reflects its greater size and complexity (22), as neurons develop in place, producing 

dendritic arbors and developing spines across the primate life span (23,24). Importantly, the 

onset of rapid synaptogenesis occurs prenatally in humans and monkeys, but postnatally 

in rodents, representing a unique vulnerability in primate cortical development in utero 

that cannot be reproduced in rodent models. The process of myelination in the brain 

also follows species-specific trajectories (25), beginning postnatally in rats and mice and 
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prenatally in monkeys and humans–though not uniformly across all regions. The PFC may 

be especially vulnerable to prenatal insults such as MIA owing to its complexity as well 

as its unique protracted course of development and maturation. Myelination in the PFC 

continues long past sexual maturity, culminating around rodent postnatal day 90 to 100, age 

13 years in the monkey (26), and into the third decade of life in humans (27,28). A complex 

interplay between glial cells, including oligodendrocytes and microglia, and neuronal cells 

contributes to the development of long-range connectivity in the brain and supports the 

structural development of myelin in white matter (29). Alterations to myelin development 

and structure are a particularly important feature of schizophrenia (30) and thus represent a 

critical pathway that may be affected by MIA in unique ways in the primate brain.

ESTABLISHING THE NHP MIA MODEL

In this review, we focus on the poly(I:C) (polyinosinic:polycytidylic acid)–based 

rhesus monkey MIA model established in our laboratory that characterizes offspring 

neurodevelopment through the critical period of late adolescence/early adulthood (birth 

to 4 years of age) that captures dynamic PFC-related changes in brain and behavioral 

development. We first evaluated behavioral development in NHP offspring born to dams 

injected with the viral mimic, poly(I:C), in the late first or second trimester (31,32) and later 

expanded our characterization of this cohort to include immune system evaluation (33), in 

vivo positron emission tomography imaging (34), and postmortem cellular and molecular 

studies [K.L. Hanson, Ph.D., et al., unpublished data, May 2022; (35)]. Although we are 

at the earliest stages of exploring neuropathology in the NHP MIA model, the gestational 

timing of the prenatal immune challenge may provide some insight into which stages of 

fetal brain development may be affected. Peak periods of neurogenesis for subcortical 

structures, including the amygdala (36), thalamus (37), striatum (38), and hippocampus (39), 

occur during the late first trimester. In macaques, corticogenesis also begins at the end of 

the first trimester and continues through the second trimester (40). Exposure to prenatal 

immune challenge may disrupt these finely orchestrated events and could initiate a cascade 

of aberrant brain and behavioral development. Alterations in offspring social development 

were observed in offspring exposed to MIA in the first (but not second) trimester, which led 

us to focus exclusively on MIA induction in the late first trimester in our subsequent larger 

cohorts (41).

Social Development in MIA NHP Offspring

Our initial NHP MIA model generated two cohorts of offspring born to dams that 

received three injections of a modified form of poly(I:C) in either the late first or the 

second trimester, and these cohorts were compared with offspring born to saline-injected 

or untreated dams (31). Both groups of MIA-exposed offspring initially exhibited species-

typical patterns of development and were indistinguishable from control offspring in the 

majority of early developmental assessments. MIA-treated offspring developed a species-

typical repertoire of vocalizations, body postures, and facial expressions used to facilitate 

rhesus monkey social interactions and did not differ from control offspring in the amount 

of time they spent engaged in social interactions, including reciprocal play behavior with 

age-matched peers. However, when the MIA animals were temporarily removed from these 
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familiar environments and observed alone, they produced more motor stereotypic behaviors 

compared with control animals. Under these conditions, the second-trimester MIA–exposed 

offspring also demonstrated a reduction in affiliative coo call vocalizations that are thought 

to serve the function of reestablishing contact with conspecifics (42–44). Interestingly, 

the group with first-trimester MIA exposure demonstrated a reduction in coo calls when 

removed from their home cage and introduced to an unfamiliar peer in a modified version 

of the rodent social approach test described below, suggesting that the presence of an 

unfamiliar animal may differentially impact social buffering for the MIA groups (45,46).

In contrast to rodents, rhesus monkeys exhibit a species-typical hesitation before 

immediately approaching and interacting with an unfamiliar animal–failure of which can 

have negative consequences, including physical harm (47,48). However, the first-trimester 

MIA–exposed offspring more frequently approached the unfamiliar animals and spent 

nearly twice as much time in the immediate proximity of the novel animal compared with 

the other two groups. We next initiated a series of noninvasive eye-tracking studies to 

evaluate gaze patterns of the NHPs with first-trimester MIA exposure when viewing social 

images depicting rhesus monkey facial expressions (32). MIA-treated offspring showed a 

reduction in average fixation time after the first presentation that was not observed in control 

offspring. The MIA-treated animals also took longer than the control animals to direct 

their attention to the eyes and looked less at the eyes than control animals when viewing 

fearful/submissive faces. Collectively, these initial studies indicate that MIA-treated NHPs 

fail to regulate species-typical social behavior across both controlled and semi-naturalistic 

contexts in response to potentially threatening stimuli. As described below, we consider 

these impairments in species-typical social behavior demonstrated by the MIA-treated NHP 

offspring to be translationally relevant to changes in social cognition in individuals with 

schizophrenia (49). Additional studies are under way to map the emergence of changes in 

species-typical development in our most recent cohort of MIA-exposed NHPs, which, as 

described below, includes longitudinal eye-tracking data. As our understanding of rearing 

practices and housing conditions that reduce stress among laboratory-reared NHPs has 

advanced in the 15 years since the original cohort was created (50–52), these more recent 

studies may also provide insight into interactions between enhanced enrichment, social 

buffering, and stress reduction (45,53) and the emergence of MIA-induced behavioral 

changes.

Cognitive Development in MIA NHP Offspring

Recent work in a cohort of first-trimester MIA–exposed male offspring has explored the 

emergence of brain and behavioral changes from birth to 4 years of age (41), highlighting 

the effects of MIA on the cognitive phenotype. In addition to forthcoming comprehensive 

assessment of social development, the NHP MIA offspring were tested using a variety of 

cognitive tasks relevant to PFC function, beginning with a reversal learning paradigm at 18 

months of age, followed by additional cognitive assessments from 3 to 4 years that included 

the continuous performance test, probabilistic reversal learning task, progressive ratio 

breakpoint task, and intradimensional/extradimensional task. These tasks assess attention, 

reward learning, motivation, and set shifting, similar to paradigms used in schizophrenia 

research. Overall, MIA offspring performed similarly to control offspring, while exhibiting 
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subtle, but consistent differences in measures of omission errors (reversal learning), misses 

in the intradimensional/extradimensional task, and an increased number of false alarms on 

the continuous performance test. These differences appear to reflect a difficulty adaptively 

forming and using a task set or an overemphasis of negative feedback on performance. In the 

vast majority of measures, MIA offspring perform similarly to control offspring, in contrast 

to the relatively robust changes found in brain imaging. Age at testing likely contributes 

to variability in findings, as NHP late adolescence may be comparable to the age of the 

prodromal phase seen in individuals with schizophrenia.

PFC Vulnerability in NHP MIA Model

In our early analyses, the PFC had already emerged as uniquely vulnerable to in utero 

MIA exposure in NHPs. The same animals that exhibited subtle impairments in cognitive 

performance described above also underwent longitudinal neuroimaging at 6 months and 

yearly from ages 1 to 4 (41). MIA-treated offspring demonstrated a significant reduction in 

frontal and prefrontal gray matter that was first detected at 6 months of age and persisted 

through the final scan at nearly 4 years of age. Additionally, there was a significant reduction 

in underlying white matter that emerged between 3 and 4 years of age. Taken together, it 

appears that volumetric reductions are specific to the frontal lobes in MIA NHP offspring 

and persist across the early life span. As described below, volumetric reductions have 

emerged as a consistent outcome in rodent MIA models (54) and have been reported 

following prenatal influenza exposure in NHPs (55). Although future cellular and molecular 

studies on postmortem brain tissue from this cohort are needed to provide insight into the 

neurobiological mechanisms underlying this reduction, preliminary in vivo neuroimaging 

results (56) suggest a significant increase in extracellular free water, a potential biomarker 

for neuroinflammation seen in first-episode psychosis (57–59) that has also been noted in 

rats exposed in utero to MIA (60).

We have initiated studies to evaluate brain tissue from our early pilot cohorts, finding 

differences in dendritic morphology of pyramidal cells in dorsolateral prefrontal cortex 

(DLPFC) of MIA-exposed NHP offspring (61). Specifically, analyses of Golgi-stained 

neurons revealed reduced diameter of apical dendrites as well as increased branching of 

apical dendrites from tissue obtained in late adolescence. These results were replicated 

in a subsequent cohort (K.L. Hanson, Ph.D., et al., unpublished data, May 2022) that 

additionally found outcomes were not affected by first- or second-trimester exposure. 

Though it is not known when these morphological changes emerged, atrophy of apical 

dendrites in PFC neurons (including reduced diameter) has been associated with chronic 

stress (62,63). Given that peripubertal stress has been shown to exacerbate some of 

the MIA-induced changes in rodent offspring neurodevelopment (64,65), our ongoing 

studies include more comprehensive assessments of biological indices of stress, including 

cortisol and inflammatory biomarkers. Interestingly, increased apical dendritic branching 

has also been shown in rats exposed to high levels of ethanol in adolescence (66). 

The structure of dendritic trees determines the electrophysiological properties of neurons 

(67–71), and morphological variability of branch points may significantly alter synaptic 

activity by decreasing differential impedance, affecting cellular excitability (72). Thus, MIA 

exposure resulting in changes to the morphology of apical dendrites may have significant 
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consequences for membrane excitability and neuronal function and the balance of inputs to 

cortical neurons.

We have also observed differences in gene expression in MIA NHP offspring from initial 

pilot cohorts that further hint at aberrant neurodevelopment affecting the PFC (35). RNA 

sequencing was performed in the DLPFC and the anterior cingulate cortex along with 

the hippocampus and primary visual cortex, and results were compared between NHP 

offspring with first- and second-trimester MIA exposure and control animals. Similar 

to morphological findings, differences in gene expression showed a high degree of 

concordance between first- and second-trimester MIA–exposed NHP offspring, with the 

notable exception of greater downregulation of the serotonin receptor-associated gene 

HTR3A in first-trimester MIA–exposed NHP offspring. Importantly, gene expression 

differences were observed with region-specific effects: the DLPFC showed a significantly 

higher number of differently expressed genes than the anterior cingulate cortex, where 

effects were minimal. This finding underscores the importance of examining the highly 

derived DLPFC region, which may be especially vulnerable to the effects of MIA that 

cannot be observed in rodent PFC.

COMPARISON WITH RODENT MIA MODELS

Although the focus of this review is on NHP MIA models, it is important to acknowledge 

that the vast majority of MIA models have used rodents to provide foundational knowledge 

on the neurodevelopmental consequences of MIA exposure. Alongside increased costs and 

methodological constraints associated with their extended life history and development, 

the greater physical, psychological, and social needs of primates require unique ethical 

considerations for their use in research in captivity. Rodent models additionally offer 

expanded utility in modeling genetic differences, environmental stressors, and drug 

treatment effects as well as allowing for the use of complex mechanistic protocols, including 

optogenetic or chemogenetic manipulations. It is also possible to generate larger cohort 

sizes among litters, which can reduce the variability in a model that is quite variable (6), 

while also increasing statistical power. Although NHPs are an excellent modeling system 

for MIA to compare to the human condition, foundational studies in the rodent are valuable 

for establishing mechanisms of MIA in a reasonably short time frame. Below we briefly 

summarize the extensive literature of behavioral and PFC-related pathologies across rodent 

MIA models, despite significant evolutionary differences between mice and rats that impact 

performance in these behavioral domains (73,74).

Overview of Social and Cognitive Deficits in the Rodent MIA Models

More comprehensive reviews of behavioral alterations in rodent MIA models (75,76) have 

demonstrated the influence of sex, strain, species, vendor, MIA-induction methods, and 

postnatal testing paradigms and ages. Despite methodological variability, changes in species-

typical social development have emerged as a common feature of many rodent MIA models 

(6). MIA-exposed rodent offspring consistently show impairments in social approach, 

especially when MIA induction occurs in early to mid-gestation (75). Although early MIA 

models focused on adult-onset changes in behavior, several recent studies have demonstrated 
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social behavior deficits in prepubertal animals (77,78), suggesting that impairments in social 

behavior might be an early indicator of MIA-induced behavioral pathology. Indeed, several 

studies have reported alterations in pup ultrasonic vocalizations (79–81), which are often 

interpreted as an early communicative signal of mother-pup interaction. Alterations in social 

behavior have also emerged as a key behavioral outcome that can be used to stratify 

MIA-exposed mice into susceptible and resilient groups (82), though additional factors 

including offspring sex, inflammatory status, and postnatal environment may also play a 

role in the emergence of MIA-induced social deficits (82–86). MIA-induced changes in 

cognitive abilities have also been reported in numerous rodent studies. Working memory 

is commonly assessed using the spontaneous alternation task or T-maze alternation task, 

and most MIA studies report a deficit in the rodent’s ability to remember the arms it 

has previously entered (87–93). Tests that require associative learning or memory beyond 

working memory capacity include the novel object recognition task, Morris water maze, 

latent inhibition, and fear conditioning. MIA rodents in general also tend to have deficits 

in these associative learning tasks (77,94–101,147), although some studies have reported no 

differences in learning between control and treatment groups (102). Evidence suggests that 

performance on associative or working memory–based learning with a reward component 

is more variable. On touch screen visual discrimination, simple odor discrimination, set 

shifting, and trial-unique nonmatching-to-location tasks, many studies report a decrease 

in performance in MIA offspring (92,103–108), though several studies show performance 

equal to or greater than control animals (103–112). Although early MIA models focused on 

adult-onset changes in behavior, cognitive deficits have also been reported in MIA-exposed 

juveniles (77,87).

Overview of PFC Pathology in Rodent MIA Models

The rodent MIA field is quickly evolving and will likely provide additional insight 

into potential mechanistic differences underlying social and cognitive deficits, which will 

clarify what changes, if any, are occurring in the PFC and other relevant brain regions. 

MIA-exposed rodent offspring demonstrate numerous alterations in cellular and molecular 

properties, neurochemistry, structure, and function in different brain regions (113). Given 

the role of the PFC in mediating social and cognitive processes across species (114,115), 

it is not surprising that many rodent MIA models have noted PFC pathology. Global 

volumetric reductions are consistently noted in rodent MIA models (54), with reduced 

frontal volume reported in both mid-gestation MIA–treated rats (116,117) and late first 

trimester MIA–treated NHPs (41). Emerging cellular and molecular findings in rodent 

models have hinted at important future directions for guiding investigations into the long-

term effects of MIA in the NHP PFC. Disruptions to immune processes in the rodent PFC 

are of particular translational interest, though the effects of MIA on activated microglia, 

a common target of investigations in schizophrenia, remain controversial (118). A popular 

hypothesis in the etiology and presentation of neurodevelopmental disorders highlights 

the disruption in the balance between inhibitory and excitatory neuronal signaling, which 

has been implicated in schizophrenia (119,120). Interestingly, rodent MIA models have 

demonstrated significant changes in excitatory and inhibitory neurotransmission, specifically 

implicating the interaction of dendritic spines with vGlut2 and GAD65 positive presynaptic 

puncta (121). Further evidence of disruptions to the GABAergic (gamma-aminobutyric 

Hanson et al. Page 7

Biol Psychiatry. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acidergic) system includes reduced expression of GAD65/67 messenger RNA and hyper-

methylation of GAD (glutamic acid decarboxylase) promoter regions in the PFC (88). 

Additionally, evidence from rodent models suggests selective vulnerabilities in inhibitory 

cell types: MIA-exposed rats showed a significant decrease in the number of parvalbumin-

positive inhibitory interneurons surrounded by perineuronal nets in the medial PFC 

(122). Systemic loss of perineuronal nets is known to be a feature of schizophrenia, 

and investigating the impacts of changes in parvalbumin-positive interneuron architecture 

may be of particular interest for understanding altered cellular communication. Critically, 

alterations to the GABAergic system show a protracted developmental trajectory in 

NHPs, such that inhibitory synapses of interneurons onto pyramidal neurons in the 

DLPFC strengthen in adolescence (123), particularly in parvalbumin-positive subtypes 

(124). Further, disruptions to multiple neurotransmitter systems, including dopamine and 

serotonin, have been identified in rodent MIA models. Given the centrality of dopamine to 

many hypotheses of schizophrenia pathophysiology and that more extensive dopaminergic 

innervation is a hallmark of primate PFC, examining these systems in an NHP model may 

be of exceptional importance. Of course, these systems require examination in the context of 

the broader network of motivational and reward-related circuitry, implicating frontostriatal 

and frontoamygdalar circuitry, the latter of which shows distinctive patterns of change in 

inhibitory neurotransmission (125) between subjects exposed to either prenatal or postnatal 

immune activation.

TRANSLATIONAL RELEVANCE TO SCHIZOPHRENIA

We suggest that the protracted period of development, sophisticated behavioral repertoire, 

and complex PFC neuroanatomy positions the NHP MIA model to bridge the gap 

between rodent MIA models and clinical studies (Figure 2). The primate PFC undergoes 

rapid and dynamic refinement during the adolescent period (126), and MIA may set the 

stage for altered neurodevelopment with long-term consequences that ultimately manifest 

during the critical time when symptoms of psychiatric illness occur (127,128). Following 

a period of typical early development, the MIA-exposed NHPs in our research begin 

to exhibit changes in brain and behavioral development spanning a period roughly 

equivalent to early childhood through late adolescence that are translationally relevant to 

the neurodevelopmental trajectory of schizophrenia (129). Our early studies (31,32) revealed 

alterations in species-typical social development in MIA-exposed NHPs that are relevant to 

core domains of social cognition impacted by schizophrenia (130). The restricted scan path 

strategy and reduced attention to salient facial features exhibited by MIA-exposed NHPs in 

late adolescence shares features with individuals with schizophrenia (131). The development 

of noninvasive eye-tracking methods (132) has allowed us to incorporate longitudinal eye 

tracking into our most recent MIA cohorts and will be the focus of future publications, 

allowing us to explore the emergence of social, cognitive, and in vivo brain changes in 

the same animals. Indeed, the subtle impairments of cognitive performance exhibited by 

this latest cohort of MIA-treated NHPs align with the premorbid phase of schizophrenia, 

characterized by attentional and other cognitive deficits in later childhood and adolescence 

(133) that become more severe over time (134). The cognitive tasks used in that study were 

also chosen for their translatability to clinical work, as evidenced by impairments in these 
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domains at various stages of disease progression (135–137). Given that our NHP cohort is 

still at the early stages of development, behavioral differences between groups may be more 

subtle and continue to evolve (138).

Investigations at multiple levels indicate widespread dysfunction and altered organization 

of the PFC in schizophrenia and strongly implicate the primate DLPFC (139). Our 

recent work demonstrates that MIA-treated NHPs display reduced PFC volumes at 3.5 

to 4 years of age (41), a period that coincides roughly with observations of reduced 

gray matter volume in adolescents with schizophrenia (140,141) and may serve as a 

biomarker of neurodevelopmental risk (142). Though postmortem investigations from 

MIA-treated NHPs provide only a snapshot in time, cellular (61) and molecular (35) 

differences indicate important changes in the adolescent brain in MIA-exposed NHP 

PFC that may share characteristics with psychiatric illness. However, the majority of 

postmortem studies in schizophrenia are carried out in adults; postmortem studies of 

MIA-exposed NHPs provide an important opportunity to evaluate cellular and molecular 

changes before symptoms appear. Additional research into the longitudinal effects of MIA 

on the brain has the potential to elucidate broader long-term consequences with relevance 

to altered neurodevelopment across the human life span. As noted above, schizophrenia 

is a highly heterogeneous disorder with multiple comorbidities, including medications and 

environmental influences. Research using postmortem brain tissue from individuals with 

schizophrenia provides insight into the cellular and molecular outcomes of the disorder, 

but is also complicated by the heterogeneous life history of each individual. Rodent 

studies provide a controlled environment from which to consider the etiology and course 

of schizophrenic features, but they are limited by substantial differences in PFC structure 

and function. NHPs, who share the unique architecture of the brain and developmental 

trajectory with humans, provide an invaluable compromise in a controlled environment 

to model features of schizophrenia longitudinally across the life span, for tremendous 

insight into potential etiologies such as MIA, and to develop strategies that intervene 

before symptoms worsen during the vulnerable period of adolescence. The MIA model may 

also provide insight into the complex developmental epigenetic mechanisms that link early 

MIA with schizophrenia etiology in late adolescence and early adulthood (143). Indeed, 

rodent models have identified transcriptomic and epigenomic mechanisms that mediate the 

downstream effects of MIA in rodent models, including PFC-specific alterations (144). 

Interestingly, transgenerational changes in MIA offspring behavior have been documented 

through multiple mouse generations (145,146). These effects were specific to offspring of 

males born to MIA-treated mothers, indicating that paternal sperm methylation may have 

been the source of this transgenerational effect. Our future NHP models will explore these 

transcriptomic and epigenomic mechanisms in a species more closely related to humans.
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Figure 1. 
Organization of the PFC in the human, macaque, and rat brain. Expansion and elaboration 

of PFC regions has been a hallmark of primate evolution, including territories involved in 

executive function, such as BAs 9 and 46 of the dlPFC, language and speech production (BA 

44/45), and socio-emotional processing (BAs 47/12, 10, 11, and 13). Granular cortices, 

defined by the presence of a clear layer IV, represent canonical PFC territories with 

unique functional architectonics that subserve complex multimodal processing. Agranular 

territories more closely resemble the ventromedial PFC and aCC (BAs 24 and 32) of 

the primate brain and serve as a critical interface for integration of limbic and sensory 

information. aCC, anterior cingulate cortex; BA, Brodmann area; dlPFC, dorsolateral 

prefrontal cortex; dmPFC, dorsomedial PFC; FEF, frontal eye fields; M1, primary motor 

area; M2, supplementary motor area; mPFC, medial PFC; OFC, orbitofrontal cortex; vlPFC, 

ventrolateral PFC. [Macaque and rodent illustrations were adapted with permission from 

Preuss and Wise (17).]
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Figure 2. 
Evidence of PFC dysfunction in schizophrenia populations and preclinical MIA 

models. A rapidly growing literature from rodent MIA models paired with decades of 

human schizophrenia studies highlights changes in PFC-related behavior and underlying 

neurobiology in the animal model and the clinical population. Although the NHP MIA 

model literature is less extensive compared with the rodent MIA literature owing to the time 

and resources required to generate each cohort, emerging findings from NHP MIA offspring 

also include changes in social and cognitive development, reductions in frontal gray and 

white matter, altered dorsolateral PFC dendritic morphology, and gene expression. MIA, 

maternal immune activation; NHP, nonhuman primate; PFC, prefrontal cortex.
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