UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Quantum and Fisher information from the Husimi and related distributions

Permalink
https://escholarship.org/uc/item/102203tA4

Journal
Journal of Mathematical Physics, 47(2)

ISSN
0022-2488

Author
Slater, Paul B

Publication Date
2006-02-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/102203tz
https://escholarship.org
http://www.cdlib.org/

JOURNAL OF MATHEMATICAL PHYSICS 47, 022104 (2006)

Quantum and Fisher information from the Husimi
and related distributions
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The two principal/immediate influences—which we seek to interrelate here—upon
the undertaking of this study are papers of Zyczkowski and Stomczynski [J. Phys.
A 34, 6689 (2001)] and of Petz and Suddr [J. Math. Phys. 37, 2262 (1996)]. In the
former work, a metric (the Monge one, specifically) over generalized Husimi dis-
tributions was employed to define a distance between two arbitrary density matri-
ces. In the Petz-Suddr work (completing a program of Chentsov), the quantum
analog of the (classically unique) Fisher information (monotone) metric of a prob-
ability simplex was extended to define an uncountable infinitude of Riemannian
(also monotone) metrics on the set of positive definite density matrices. We pose
here the questions of what is the specific/unique Fisher information metric for the
(classically defined) Husimi distributions and how does it relate to the infinitude of
(quantum) metrics over the density matrices of Petz and Sudédr? We find a highly
proximate (small relative entropy) relationship between the probability distribution
(the quantum Jeffreys’ prior) that yields quantum universal data compression, and
that which (following Clarke and Barron) gives its classical counterpart. We also
investigate the Fisher information metrics corresponding to the escort Husimi,
positive-P and certain Gaussian probability distributions, as well as, in some sense,
the discrete Wigner pseudoprobability. The comparative noninformativity of prior
probability distributions—recently studied by Srednicki [Phys. Rev. A 71, 052107
(2005)]—formed by normalizing the volume elements of the various information
metrics, is also discussed in our context. © 2006 American Institute of Physics.
[DOI: 10.1063/1.2168125]

I. INTRODUCTION

The two-level quantum systems (TLQS) are describable (nonclassically) in terms of 2 X2
density matrices (p)—Hermitian non-negative definite matrices of trace unity. These matrices can
be parametrized by points in the unit ball [Bloch ball/sphere (Ref. 1, p. 10244)] in Euclidean
3-space. On the other hand, the TLQS can be described in a classical manner using a generaliza-
tion of the Husimi distribution® (Ref. 3, Sec. 4.1) (cf. Refs. 4-9). “The Husimi function is a
function on phase space, and takes only non-negative values while the Wigner function can be
negative and is usually violently oscillating. Hence the Husimi function can be regarded as a
probability distribution in phase space, and its order of delocalization can be a measure of chao-
ticity of quantum states.”'” (Note that the original Husimi distribution was defined only for density
operators in separable Hilbert space—one which admits a countable orthonormal basis—while the
distribution studied here is defined over a finite-dimensional Hilbert space.)

There is an (uncountable) infinitude (Ref. 11, Sec. 16.7) of (quantum monotone) Riemannian
metrics that can be attached to the Bloch ball of TLQS. Contrastingly, in the classical context of
the Husimi distribution, there is not an infinitude, but rather a single distinguished (up to a
constant multiple) monotone Riemannian metric—the Fisher information metric.'>!* [“In the
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classical case, decision theory provides a unique monotone metric, namely, the Fisher information.
In the quantum case, there are infinitely many monotone metrics on the state space” (Ref. 15, p.
2672).] So, it appears to be an question of obvious interest—which we seek to address here—of
how one reconciles/deals with this phenomenon of classical uniqueness and quantum nonunique-
ness, as applied to essentially the same objects (that is, the TLQS).

Il. MONOTONE METRICS

The monotone metrics are all stochastically monotone."” That is, geodesic distances (as well
as relative entropies) between density matrices decrease under coarse-grainings [completely posi-
tive trace-preserving maps, satisfying the Schwarz inequality: T(a"a)=T(a) T(a)]. These metrics
can be used for purposes of statistical distinguishability.15 The monotone metrics for the TLQS
have been found to be rotationally invariant over the Bloch ball, depending only on the radial
coordinate r, that is the distance of the state in question from the origin (0,0,0)—corresponding to
the fully mixed state. They are splittable into radial and tangential components of the form [Ref.
15, Eq. (3.17),

2 1 > 1—r\\"! 2
dsmonolonezl_rzdr + (1+r)f E dn”. (])

Here, using spherical coordinates (r,6;,6,), one has dn*=r? d6‘%+r2 sin’ 6, dﬁg. Further, f:R*
—R* is an operator monotone function such that f(r)=tf(r"") for every t>0. [A function is
operator monotone if the relation 0 <K= H, meaning that H—K is nonnegative definite, implies
0<f(K)<f(H) for any such matrices K and H of any order.] The radial component is independent
of the function f, and in the case of the Bures (minimal monotone) metric [corresponding to the
particular choice fgyes(f)=(1+1)/2], the tangential component is independent of r.'®

In the classical context of the Husimi distribution, there is not an infinitude, but rather a single
distinguished (to a constant multiple) monotone metric—the Fisher information metric.' 21 (The
counterpart here to stochastic mappings—which are the appropriate morphisms in the category of
quantum state spaces—are stochastic matrices." ) The ij entry of the Fisher information matrix
(tensor) is the expected value with respect to the probability distribution in question of the product
of the first derivative of the logarithm of the probability with respect to its ith parameter times the
analogous first derivative with respect to its jth parameter. [Under certain regularity conditions,
the Fisher information matrix is equal to the “second derivative matrix for the informational
divergence (relative entropy)” (Ref. 17, pp. 455-456, Ref. 18, p. 43).] The volume element of the
Fisher information metric can be considered—in the framework of Bayesian theory—as a prior
distribution (Jeffreys’ prior”’lg’zo) over, for our purposes here, the Bloch ball of TLQS.

Fisher information metric for the Husimi distribution: We have found (having to make use of
numerical, as well as symbolic MATHEMATICA procedures in our quest) that for the Husimi distri-
bution over the TLQS, the Fisher information metric takes the specific form [cf. (2)],

1-r
—2r—ln<1+ ) | .
2 r -r
dsFisherHusz Td}’2+ <(1 +r)fHus(E>> dnz' (2)
Here,
(t-1)°
=5——"""—. 3
fHus() t2—2tlnt—1 ()

Now, a plot (Fig. 1) shows fiy,,(7) to be, in fact, a monotone function. [fy,(f) is “almost” equal to
(t=1)3/(?=2t=1)=t—1.] It has a singularity at t=1, corresponding to the fully mixed state (r
=0), where fiy,,(1+Af)=3+3A¢/2, though we have not attempted to confirm its operator mono-
tonicity. Also, f(#) fulfills the self-adjointness condition f(¢)=¢f(t"") of Petz and Sudar (Ref. 15,
p. 2667), at least at t # 1. For the pure states, that is =0, r=1, we have lim,_ fi,(£)=1.
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FIG. 1. The monotone function fy,(¢) that yields the rangential component of the Fisher information metric over the
trivariate Husimi probability distributions for the two-level quantum systems.

We further have the relation,

q
g’ —p>=2pqIn =
P

= 3
quus ( I_?) (q p)
q

1

cHus(p5 Q) = (4)

where cy(p,q) is a specific “Morozova-Chentsov” function. There exist one-to-one correspon-
dences between Morozova-Chentsov functions, monotone metrics and operator means (Ref. 21,
Corollary 6). “Operator means are binary operations on positive operators which fulfill the main
requirements of monotonicity and the transformer irlequality.”21

We can write (1) more explicitly as

1-r ) 1-r
-2r—In 2r+ (1 =r°)In
1+r ) 1+r )
d

2
dsFisherHUS: 27’3 r+ 4}"3 dn~. (5)

Certainly, dsl%-isherH does not have—in terms of the radial component—the specific form (1)
required of a monotone metric (cf. Ref. 22). In Fig. 2 we show both the radial components of
(any) ds2 oone and of ds12:isherH . Petz (Ref. 23, p. 934) attributes the unvarying nature [1/(1
—r?)] of the radial component of the (quantum) monotone metrics to the (classical) Chentsov
uniqueness (of Fisher information) theorem.'>" “Loosely speaking, the unicity [sic] result in the
[probability] simplex case survives along the diagonal and the off-diagonal provides new possi-
bilities for the definition of a stochastically invariant metric” (Ref. 15, p. 2664).

If we (counterfactually) equate the volume element of ds%isher,_, to that of a generic monotone
B us

rad. comp.
20
10
— r
0.2 0.4 0.6 0.8 1
-10

FIG. 2. The radial components of any monotone metric and that of the Fisher information metric derived from the family
of trivariate Husimi distributions over the TLQS. The one for the (nondenumerably infinite) class ds?,, . dominates that
for dslzri%her .

> Hus
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FIG. 3. Monotonically decreasing function f.oner factual Obtained by equating the volume element of ds%isher]_IuS to that of a
generic monotone metric (1).

metric (1), and solve for f(f), we obtain a monotonically decreasing function (Fig. 3) (cf. Ref. 22),

[~ 9/2
V2(=1+1)
- _ 6
Feouner tacual?) 11+ (=1 +2=2¢1n(1)22 =21 + (1 + 0)In(r)) (©)

Converting to (Cartesian coordinates (x y z), the trace of dsFlsher can be simply expressed
as —In[(1-R)/(1+R)]/(2R), where R=\x>+y*+z” (cf. Refs. 14 and 24) Also, at the fully mixed
state (x=y=z=0), the metric is simply flat, that is

d‘slz:isher]_luS = %(dxz + dy2 + de) . (7)

(The Riemann and Ricci tensors evaluated at the fully mixed state have no nonzero entries.)

Numerical evidence indicates that the Fisher information matrix for the Husimi distribution
over the TLQS is bounded by the corresponding information matrices for the (quantum) monotone
metrics, in the sense that the monotone metric tensors minus the Fisher-Husimi information tensor
are positive definite.

We can normalize the volume element of dsl:lsher to a probability distribution py,, by
dividing by the Fisher 1nformat10n metric volume= 1 1393 509 893 676 60. If we generate a
“hybridized-Husimi” (quantum'®) monotone metric, dsHYBHus’ via the formula (1), using fi,(?),
then the volume of the Bloch ball of TLQS in terms of this newly generated monotone metric is
%772(4—77)24.236 07>1.393 51. Using this as a normalization factor, we obtain a probability
distribution (pHYBHus) of interest over the TLQS.

lll. COMPARATIVE NONINFORMATIVITIES

Let us compare pyy,—in the manner employed in Refs. 25 and 26 (cf. Refs. 27 and 28, Sec.
VI)—with the prior probability distribution (pp,es). The latter is obtained by normalizing the
volume element of the well-studied minimal monotone (Bures) metric [Ref. 29, Eq. (7)] [Ref. 30,
Eq. (16)], that is,

7 sin 6,
PBures = ’
V1 -7

generated from (1) using the operator monotone function fg,.s(£)=(1+1)/2. (We avoid the specific
designations f,;,(2) and fi,.«(¢) because these are usually, confusingly, considered to generate the
maximal and minimal monotone metrics, respectively [Ref. 15, Eq. (3.21)]. Our integrations of
probability distributions are conducted over r € [0,1], 6, € [0,7] and 6, € [0,27].)

The relative entropy (Kullback-Leibler distance) of ppyes With respect to py,s [Which we
denote Ski (Ppures» Prus) —that is, the expected value with respect t0 ppyres Of INPgyres/ Prus—iS
0.130 845 “nats” of information. (We use the natural logarithm, and not 2 as a base, with one nat

(8)
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equalling 0.531 bits.) Let us note that the Shannon entropy (Sspanmon) Of the Husimi distribution is
the Wehrl entropy (Swepy) Of the corresponding quantum state. Explicitly implementing [Ref. 31,
Eq. (6)], we have for the TLQS,

1 1-
Stwehil = —<2r+4r In2+(1+ r2)1n<—r) —2rIn(1 - r2)>. 9)
4r 1+r

Swenr 18 always greater than the von Neumann entropy, S,n=—Tr p In p, which for the TLQS is
expressible as

1 1-r
Syn==|2In2+rlIn —1n1—r2>. 10
N 2( ( e r) ( ) (10)
[We, of course, notice the omnipresence in these last two formulas, as well as in (5) and further
formulas below of the term W=In[(1-r)/(1+7r)]. The two eigenvalues (\;,\,=1—\,) of p are
(1£r)/2, so W is expressible as In(\,/\,).] Each monotone metric can be obtained in the form of
a “contrast functional” for a certain convex subset of relative entropies.3 233

A. Bures prior

Now, let us convert pgy.s to a posterior probability distribution (postg,.s) by assuming the
performance of six measurements, two (with one outcome “up” and the other “down”) in each of
the x, y, and z directions. Normalizing the product of the prior pgy.s and the likelihood function
corresponding to the six measurement outcomes (Ref. 25, p. 3),

192pBures(1 _x2)(1 —)’2)(1 _Zz)
71 ’

POStgyres = (11)
we find Sk (pOStgyressPrus) =0.091 2313 <0.130 845. [The Cartesian coordinates in (11) are trans-
formed to the spherical ones employed in our analysis.] So, in this sense pgyes iS more noninfor-
mative than py,,, the relative entropy being reduced by adding information to pgy.,. On the other
hand, pgs—corresponding to the minimal monotone metric—is itself the least noninformative of
the monotone-metric priors (P onorone)- (LU0 has established an inequality between the [mono-
tone metric] Wigner-Yanase skew information and its minimal monotone counterpart.34)
Reversing the arguments of the relative entropy functional, we obtain Sg; (PuussPBures)
=0.0818197. But now, following the same form of posterior construction, we find
SkL(POStyus» PBures) =0.290 405>0.081 8197, further supportive of the conclusion that pgyes 1S
more noninformative than py,.. In some sense, then, pg,., assumes less about the data than py.
But this diminishability of the relative entropy is limited. If we convert pp,.s t0 @ new posterior
Postgyres using the square of the likelihood function above—that is, assuming 12 measurements,
Sour (with two outcomes “up” and the other two “down”) in each of the x, y, and z directions,

giving

21 504pBures[(1 _x2)(1 _))2)(1 = Z2)]m
3793 ’

then Sk (PoStgyres> Prius) =0.292 596 > 0.130 845. To much the same effect, if we use a likelihood
based on the optimal/nonseparable set of measurements for two qubits, consisting of five possible
measurement outcomes, given in Ref. 35, Eq. (8), to convert ppy.s to a new posterior, then the
relative entropy reaches higher still, that is from 0.130 845 to 0.623 855. (Employing a likelihood
based on the optimal/nonseparable set of measurements for three qubits, consisting of eight pos-
sible measurement outcomes [Ref. 35, Eq. (9)], the relative entropy with respect to py,, increases
further to 1.513 65.) Actually, if we formally take m:% in Eq. (12), and renormalize to a new
posterior, we obtain a superior reduction, that is, to 0.071 67 <<0.091 2313. (Further, with m= %, we
get 0.070 2389 and 0.073 2039, with m=f—1.)

Postgyres = m=2, (12)
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B. Morozova-Chentsov prior

In Ref. 25, it was found that the (“Morozova-Chentsov™) prior distribution,

1-r)|? .
0.005 13299 In ] sin 6,

+r

Pmc = , (13)

V1 =72
that is, the normalized volume element of the monotone metric (1) based on the operator mono-
tone function,

2(t=1)?

T (1400 (o

Iuc(?)
was apparently the most noninformative of those (normalizable) priors based on the operator
monotone functions that had been explicitly discussed in the literature. Now, Sk; (Pyc»Prus)
=1.379 91, that is, quite large. This can be reduced to 0.893 996 if, into pyc, one incorporates
m=6 measurements of the type described above; diminished further to 0.561 901 with m=12; and
further still to 0.471 852—the greatest reduction of this type—with m=18. (For m=24, it starts to
rise to 0.652 441.)

But, if we again use the likelihood based on the optimal nonseparable measurement of two
qubits [Ref. 25, Eq. (8)], with just five measurements, the relative entropy of the corresponding
posterior form of py;c with respect to py, is reduced to 0.342 124, which is the smallest we have
achieved so far along these lines. (For the mentioned optimal nonseparable measurement scheme
for three qubits, the reduction is quite minor, only to 1.334 92 nats.) We obtained intermediate-
sized reductions to 0.455 24 and 0.492 979, respectively, by using for our measurements, 20
projectors oriented to the vertices (Ref. 36, Secs. 9 and 10) of a dodecahedron and of an icosa-
hedron. (The primary measurement scheme used above, and in Ref. 25, with six measurements
oriented along three orthogonal directions, is tantamount to the use of an octahedron.)

C. Hilbert-Schmidt prior

The prior distribution generated by normalizing the volume element of the Hilbert-Schmidt
metric over the Bloch sphere is [Ref. 25, Eq. (10)] [Ref. 16, Eq. (31)]

r* sin 6,

=3 s 15
PHs . (15)

which is simply the uniform distribution over the unit ball. The Hilbert-Schmidt volume element
can be reproduced using the formula (1) for a quantum monotone metric, making use of fyg
=(1+1)?/\t, but this function is neither monotone increasing nor decreasing over ¢ e [0,1] (cf.
Ref. 37).

We have that Sk; (Pyus.Pus)=0.057 9239 and Sk; (Pys»Prus) =0.054 43. Now, in terms of our
usual posterior distributions based on six measurements, Skp(pOStyys,Pus)=0.023 6596 and
Sk (postys, Prus) =0.278 953, so we can conclude that the Husimi prior py,s is more noninforma-
tive than the Hilbert-Schmidt prior pys.

IV. UNIVERSAL DATA COMPRESSION

Employing py,s as a prior distribution (Jeffreys’ prior) over the family (Riemannian manifold)
of Husimi qubit probability distributions, the (classical) asymptotic minimax/maximin redundancy
of universal data compression is equal to [Ref. 18, Eq. (2.4)],"
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marg. prob.
1
0.8

0.6

0.2 0.4 0.6 0.8

FIG. 4. Plots of one-dimensional marginal probability distributions over the radial coordinate r of pgyress Prys., » PGKS»
- Hus

Phus> and pye. The order of dominance of the curves is pyys™ Ppures = PGKs = PHYB,,, > PMC- The marginal distributions of

PHYBy, and pgks are quite close, as reflected in their small relative entropy (=0.0004).

3 In S +1n 1.393 509 893 676 60 = 3 In I +0.331 826 = ? Inn—-3.92499, (16)
2 e 2 2me 2

where n is the sample size (the number of qubits [TLQS]) and we used the before-mentioned
volume of dsFlsher . [“Suppose that X is a discrete random variable whose distribution is in the
parametric family {P(, 0 € O} and we want to encode a block of data for transmission. It is known
that a lower bound on the expected codeword length is the entropy of the distribution. Moreover,
this entropy bound can be achieved, within one bit, when the distribution is known. Universal
codes have expected length near the entropy no matter which member of the parametric family is
true. The redundancy of a code is defined to be the difference between its expected length and its
entropy” (Ref. 17, p. 459).]

For the quantum/monclassical counterpart38 (cf. Refs. 39-41), let us consider the use of the
“Grosse-Krattenthaler-Slater” (“quasi-Bures™) probability distribution [Ref. 35, Eq. (33)],

0.083 2258e( 1- r) v
r-sin 6,

PGrs = 1=

1+r (17)

This is the normalized form of the monotone metric (1) associated with the (presumably operator)
monotone function,

tt/(t—l)

Joks(t) = (18)
[Taking limits, we have for the fully mixed state, fgxs(1)=1 and for the pure states, fgxs(0)
=¢ 1] It appears* (though not yet fully rigorously established) that the (quantum) asymptotic
minimax/maximin redundancy, employing pggs as a prior probability distribution over the 2 X2
density matrices [and their n-fold tensor products (cf. Ref. 43)], is % In n—1.770 62. This is greater
than the classical (Husimi-Fisher-information-based) analog (16) by 2.200 95 nats of information.
It would seem that this difference is attributable to the greater dimensionality (2”) of an n-qubit
Hilbert space, as opposed to a dimensionality of 3n for n trivariate Husimi probability distribu-
tions over the TLQS.

We further note that Sy (Pgures: Prys,,, ) =0.006 360 46 and Sk; (Puys,, :PBures) =0.006 2714,
both being very small. Smaller still, SKL(pBures, Pcks)=0.003 590 93 Hand Skr.(PGks > PBures)
=0.003 545 79—whence the designation pguai-Bures=Pcks- But then, even more strikingly, we
computed that Sk; (pgks» pHYBHUS)zo.OOO 397 852 and SKL(pHYBHus’ Pcks)=0.000 396 915. In Fig.
4 we show the one-dimensional marginal probability distributions over the radial coordinate r of
the five distributions pgyress PHYB, > PHus PGKs» and pyc, with those for PHYB,,,, and pgs
being—as indicated—particularly proximate.

Substitution of PuyYBy,, for Pcks into the quantum asymptotic (maximin) redundancy formula
that has to be maxzmzzed over all possible prior probability distributions [Ref. 42, Eq. (4.3)],
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3 1

1 3 3
—Inn-—-—-—-In2--Inm+4m
2 2 2 2 0

<_ In(1 =72+ 1 ln< - r) —In w(r))rzw(r)dr,
2r 1+r

(19)

leads to a very slightly decreased (and hence suboptimal) redundancy, % Inn—1.77101 vs % Inn
—1.770 62. (Use of ppues @s a quantum prior over the 2 X 2 density matrices gives us a constant
term of —1.774 21, use of pys, —1.882 79 and use of pyc, —2.156 67.) To obtain the appropriate
form of w(r) to use in (19), we take our probability distributions [such as (8) and (13)], divide
them by 4% and integrate the results over 6, € [0, 7] and 6, €[0,27]. [Thus, we must have
4arfow(r)r* dr=1.] The minimax objective function is

”) ~In w(r)). (20)

3 1 1
—ln2——ln7'r—ln(1—r2)+—ln(
1+r

3
min max (— Inn-—
2 2 2r

w Osr=<l
The minimax is also achieved using the w(r) formed from pgks.

We can, additionally, achieve an extremely good fit to py,s by proceeding in somewhat an
opposite fashion to that above—reversing our hybridization procedure. Employing fgks(), rather
than fi,,(7) in the expression (2) for ds%isherHLlS and obtaining the corresponding normalized (di-
viding by 4.002 77) volume element (pyyp_ ). we find Ski(PuyB - Prus) =0.000 316 927. (In-
terchanging the arguments of the relative entropy functional, we get 0.000 317 754.) It is quite
surprising, then, that a joint plot of fgks(f) and fiy, () readily shows them to be substantially
different in character [for example, fi,(50)=55.8161 and f;xs(50)=19.9227], since they have
been shown here to generate two pairs of such highly similar probability distributions, one pair
composed of (quantum) monotone (pgks and pHYBHus)’ and the other pair of (quantum) nonmono-
tone metrics (p,, - and ppyy).

GKS

V. ESCORT-HUSIMI DISTRIBUTIONS

For the escort-Husimi distributions,44 we raise the probability element of the Husimi distri-
bution to the gth power, and renormalize to a new probability distribution. (Of course, the Husimi
distribution itself corresponds to g=1. If we set a=2g—1, we recover the a-family of
Amari.33’45’46) To normalize the gth power of the Husimi distribution, one must divide by

27— (1 =)™+ (1 +r)'*9)

21
r+qr
A. The case g=2
For (entropic index) ¢g=2, the Fisher information metric takes the form
dsg ——=dr*+{ (1 L= e 22
SFisher, 5 = (34 r2)2 e+ (L+7)f o,/ )dn (22)
where
2
4+
Ht)=—7F"7. 23
fq-Z( ) 2([ + 1) ( )

We have fq=2(1)=f-1 and fq=2(0)=%.

Relative entropies: Further, the relative entropies Sk (Ppus» PEse,., )=0.0114308 and
SkL(PBures» PEse,, )=0.429 64, So, it appears that PEse,, is even less nomnformatlve than pyye
[recalling that SKL(pBures, Phus) =0.130 845<0.429 64] which in turn we found above was less
noninformative than the prior probabilities formed from any of the (quantum) monotone metrics.
We also note that Sky (pOStgyress pESCq=2)=O.125 159<<0.429 64. If we ‘“hybridize” dslzgisherq=2 by
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modifying its radial component into that required of a (quantum) monotone metric, then we find
that SKL(pBures’pHYquz)=0'002 460 31(<(SKL(pBures7pHYBHus) =0.006 360 46) is quite small.

B. The cases g>2

For the escort-Husimi probability distribution with g=3, the Fisher information metric takes

the form
3-r2 1-r
dslz:ishcrq=3 ( z)zdr + ((1 + r)fq 3( 1+ r>>d”2, (24)
where
2 +1
() = . 25
fo=0 3(t+1) (25)

Now, f,5(1)=f,- 3(0)—% and a plot of f,_5() clearly manifests monotonic behavior also. (The
monotonically decreasing scalar curvature of dsFlgher equals % at r=0.) We have that
SkL(PBuress PEsc,_,) =0.637 05> Sk (PBures PEse, ,)=0.429 64 so the informativity (noninformativ-
ity) of the escort-Husimi prior probabilities appears to increase (decrease) with q.

For ¢g=4,
80(5—2r7 + 1% 1=r\\"'
dsFlSher B mdr2 + ((1 + r)fq:4<m>> dn?, (26)
where
3+ +P+1+1)
27
fo=alt)= 4(t+1)(32+41+3) 27)
For ¢=5,
3(5-r )(5+3r4) 1-r =
2
ASFisher, m +| (1+7)f s dn?, (28)
where

2000+ +1)

foms(0) = 5+ + )22 +1+2) (29)

We have (as found by Krattenthaler, making use of explicit MATHEMATICA computations of ours
for g=2,3,...,40) (cf. Ref. 47, Sec. 3.2, Ref. 48),

(q-D27, ¢
i+ DX ilg - i)

[For odd q some simplification in the resulting expression occurs due to cancellation by a factor of
(t+1).]

In Fig. 5 we plot f,_,(1), i=1,...,30, revealing their common monotonically increasing be-
havior. [Of course, we have f,_;(t) = fys(t), shown already in Fig. 1. The steepness of the curves
decreases with increasing ¢.]

Let us further note that in addition to Sk (Ppuress PhHYB, ) 0.006 36046 and

SKL(pBures’pHYB ) 0.002 460 43, we have SKL(pBures’pHYB ) 0.013 2258 SKL(PBuress PHYB )
~0.023 8858 and SKL(pBureS,pHYB )=0.0327578. [We have also been able to compute hat

fo) = (30)
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FIG. 5. The monotone functions fq:,v(t), i=1,...,30 that yield the tangential components of the Fisher information metric
over the escort-Husimi (¢=i) probability distributions. The steepness of the graphs decreases as ¢ increases.

SKL(pBures’pHYqumoo) =0.096 9315 and SK‘L(pGKS’pHYBcFIOOO) =0.127 027] SO, the best of these fits
of Ppures tO the prior probabilities for the hybridized-escort-Husimi probability distributions is for
q=2.
C. Tangential components

Now, we can reexpress the formula (30) without summations, making use of the binomial
theorem, as

(~14+)(=1+0%(=1+1"9)

g +0)(1 —g+t+qt—19— gt — %94 gr'*9)°

fo(0) = (31)
So, we could study hybridized escort-Husimi metrics based on nonintegral ¢ using this formula.
[We note that (31), in fact, yields lim,_,; f,(f) = fi,s(?).] For example,

Freip(D) =6+ 61+ 21— (32)

4
1+t
Thus, (31) gives us [following the formulation (1)] the tangential components of the escort-Husimi
Fisher information metrics for arbitrary ¢. (Pennini and Plastino** have argued, though, that in a
quantal regime, g can be no less than 1. Tsallis statistics with an entropic index of g= %, Beck has
contended, correctly describes the small-scale statistics of Lagrangian turbulence.49)

D. Radial components

We do not have, at this point, a comparable complete formula for the radial components.
However, Krattenthaler has shown—making use of explicit computations of ours for the cases
q=2,3,...,18—that the denominators of the functions giving the radial components are simply
proportional to

q . . 5\ 2
Pochhammer{g — 2i + 1,2i + 1]r"
ulg) = (E ) : (33)

= 202i+1)!

(The Pochhammer symbol is synonymous with the rising or ascending factorial. The obtaining of
comparable formulas for the numerators of the radial components might be possible using the
“Rate.m” program available from the website of Krattenthaler [http://www.mat.univie.ac.at/kratt/],
if we had available additional explicit computations beyond the g=18.) As way of illustration, the
radial component of ds%isherqis is expressible as

144(21 + 427 + 135/ + 28/° + 358 — 6710+ /12)
Tu(8) '

(34)
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FIG. 6. Approximation to the presumed operator monotone function fp(7) yielding the rangential component of dsz;isherp for
the positive P representation over the two-level quantum systems.

VI. POSITIVE P-REPRESENTATION FOR TLQS

Braunstein, Caves, and Milburn focused on a specific choice of positive P-representation
which they called the canonical form and which is always well defined [Ref. 50, Eq. (3.3)] (cf.
Ref. 51, Sec. 6.4):

. 1 1 1 1
Pew(@.B) = — eXP(- Jlat B|2)<5(a+ B)|p| 5 a+ B)>
- Lo~ Lla-gp o ae ) (35)
=2 exp N S (a .
“The canonical form is clearly positive, and...it is essentially the Q-function [Husimi

distribution].”°

We sought to implement this model, choosing for « and B independent two-dimensional

representations of the s.pin-l coherent states (while for the Husimi distribution or Q-function, only,

say a, need be employed). 2[The “positive P representation achieves [its] considerable success by
doubling the number of degrees of freedom of the system, i.e., doubling the number of dimensions
of the phase space” (Ref. 50, p. 1153). More typically, in the positive P representation, « and 3 are
allowed to vary independently over the entire complex plane.] However, then our result—using
this choice of a and S—was not normalized to a probability distribution in the manner indicated
in (35).

We noted that Braunstein, Caves, and Milburn had commented that a “positive P representa-
tion can be defined for a large class of operators. We restrict ourselves here to those that are built
up from the standard annihilation and creation operators of a harmonic oscillator. In particular, our
work does not apply to generalizations of the positive P representation that include spin or
pseudospin operators often used to describe a two-level atom” (Ref. 50, p. 1155). [We are not
aware, however, of any specific applications reported in the literature of the positive P represen-
tation to n-level (finite-dimensional) quantum systems. ]

We did not perceive how to exactly (re)normalize the distribution (35) for our particular
choices of @ and B. So, we expanded just the exponential term of (35) into a power series in third
order in the four phase variables and exactly normalized the product of this series with the
remaining unmodified factor (the Q-function or Husimi distribution) to obtain a new (presumed)
probability distribution. We then fit (numerically) the resultant tangential component of the asso-
ciated Fisher information metric to the form (1) required of a monotone metric. In Fig. 6 we show
what we (gratifyingly) obtained in this manner for fp(¢). In Fig. 7 we show an approximation to
the radial component of ds%isherp, similarly obtained. [The positive P function “seems to possess
some interesting properties and may deserve close inspection” (Ref. 52, p. 175).] It would be of
interest to see how near the associated probability distributions (pp and pHYBP) would be to the
probability distributions (already discussed above) pgkss Prus PHYB,, - and PHYB s Most press-
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FIG. 7. Approximation to the radial component of dSIZTisherP for the positive P-representation over the two-level quantum
systems.

ing, though, is the question of whether or not the concept of a positive P representation does, in
fact, have a meaningful and natural theoretical application to the n-level quantum systems.

Vil. GAUSSIAN DISTRIBUTION

An approach quite distinct from that of the Husimi probability distributions, but still classical
in nature, to modeling quantum systems has been presented in Refs. 4-8 (cf. Ref. 9). Here the
family of probability distributions is taken as that of the Gaussian (complex multivariate normal
distributions) having covariance matrix equal to the density matrix. For the TLQS, Slater [Ref. 53,
Eq. (13)] [Ref. 54, Eq. (16)] derived the corresponding Fisher information metric. This is repre-
sentable as

2(1+7%) 2
AsFigherg,, . = T dr? + - rzan, (36)

The tangential component can be reproduced, following the basic formula (1), by choosing
Sauss(t) =t/ (1+1). This is simply one-half of that—jfy; () =2fGauss(H) =2/ (1 +t)—associated with
the maximal monotone (Yuen-Lax) metric.”> Like that metric, the metric (36) yields a non-
normalizable volume element (so one cannot immediately apply—without some preliminary
truncation—the comparative noninformativity/relative entropy test we have used above®™%%). Of
course, the radial component of (36) is also not consistent with the requirement for a monotone
metric. In fact, it rises much more steeply than 1/(1-7?), in opposite behavior to that for ds%isherHug.
In Fig. 8 we show this phenomenon.

VIIl. DISCRETE WIGNER FUNCTION FOR A QUBIT

The discrete Wigner function (pseudoprobability) W, in the simplest case of a qubit, is defined
on a 2 X2 array, with four components W, ;, i, j=1,2 [Ref. 56, Egs. (14)-(17)]. The sum of W;; in
each “line” A is the probability p;; of projecting the state onto the basis vector |a,-j), where i

rad. comp.
1750

1500
1250
1000
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250
/)

0.2 0.4 0.6 0.8 1

r

2
monotone

FIG. 8. Radial components of ds and dsf:isherG . The latter dominates the former.
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FIG. 9. Scalar curvature of the Fisher information metric for the family of Husimi distributions.

e {1,2,3} indexes a set of three mutually unbiased bases (MUB) for a qubit and j € {1,2} indexes
the basis vector in each MUB. Choosing the MUB to be the eigenstates of the three Pauli
operators, and using our cartesian coordinates, one can obtain three one-dimensional marginal
(binomial) probability distributions over the x, y, and z axes, of the form
((1+x)/2,(1=x)/2),...(cf. Refs. 57 and 58). Now, the corresponding Jeffreys’ prior for the one-
dimensional family of such binomial distribution is simply the beta distribution pg(x)
= llww'm. (Let us notelet the one-dimensional marginal distributions obtained for pg,., are of
another form, that is, 2\ 1 —x?/1r.)

Let us take the product of pg(x), pg(y), and pg(z), which naturally forms a (prior) probability
distribution,

1
pproduct_ 773\“"(1 —xz)(l —yz)(l —Zz),

(37

over the hypercube with vertices (+1,+1,+1) and renormalize/truncate it to a probability distri-
bution over the Bloch sphere,

1
6.614 555 161 01\(1 —x>)(1 —y*)(1 - 22)

Pwigner = (38)

(Thus, the quantum-mechanically inaccessible region lying outside the Bloch ball, but within the
hypercube is disregarded—assigned null measure—in the new normalization.)

Now, we found—strictly following the notation, formulas and line of argument above in Sec.
II—that Sk; (Pwigners Prus) =0.014 9831 and Sk (Prus» Pwigner) =0.015 6225, so these two distribu-
tions are rather close in nature. Of course, py,, is rotationally symmetric over the Bloch sphere,
while pyjigner is 1OL, S0 it seems to make little sense to try to compute some function fyyigne(?) to
generate the tangential component. We found it problematical, using our usual (relative entropy)
approach, to designate either py,, Or Pyigner as more or less noninformative. [The “Husimi func-
tion is a kind of...coarse-grained Wigner function” (Ref. 48, p. 3).]

IX. SCALAR CURVATURE

In Fig. 9, we plot the scalar curvature of dslzsigherH . The formula for this scalar curvature is
h us

F(=6r+W(=3+7r)(=4r*(=3+ 1) +6Wr(2 = 3r* + r*) + W*(3 - 8/ + 5%))

Kn:2 — ,
Hus (W20 =1+ ) (=2r+ W(-1+r%))?
(39)
where W=In(1-r)/(1+r). Also, expanding about r=0,
o —6r7 1387 32094/° 1544747 57710 054r"°
KHus = - (40)

5 125 30625 153125 58953125 °
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The nonpositive monotonically decreasing scalar curvature (Fig. 9) has its maximum at r=0,
corresponding to the fully mixed state, indicative of a flar metric there [cf. (7)] (and is — at the
pure states, r=1). For the minimal monotone (Bures) metric, the non-negative scalar curvature is
constant, that is K"3>=6, over the Bloch ball, and for the (n”>-1)-dimensional convex set of n
X n density matrices, n>>2, achieves its minimum of K%, =(5n*~4)(n*~1)/8 at the fully mixed
state [p=(1/n)1].>° [In Ref. 59, the metric used is one-quarter of that corresponding to (1), used
here, so the results we compute here differ from those there by such a factor. For the maximal
monotone metric, K”mai—S(r2—6)/(1 —r?), which is monotonically decreasing as r increases, as is
Ki2

For the two-level quantum systems, Andai® has constructed a family of monotone metrics
with nonmonotone scalar curvature, and given a condition for a monotone metric to have a local
minimum at the maximally mixed state.

Metrics of constant scalar curvature: The metric dSther R has constant scalar curvature,

K” 2—1 while, as previously noted, K’5-=6. Let us note that K'?WY 4(nz— 1)(n*-2), which is also
5 for n 2. Here, WY denotes the ngner-Yanase metric—the only pull-back metric among the
quantum monotone metrics—and fyvy(f)= 4(w‘+1)2 which is the only self-dual operator mono-
tone function.’’ “It is not known at the moment if there are other monotone metrics of constant
sectional and scalar curvature” (Ref. 61, p. 3760). It is a theorem that the “set of two-dimensional
normalized density matrices equipped with the Bures metric is isometric to one closed-half of the
three-sphere with radius %.”62 The WY-metric “looks locally like a sphere of radius 2 of dimension
(n*-1)" (Ref. 61, p 3759). If we transform to spherical coordinates on the 3-sphere, then, the
metric tensor for dsZ; is diagonal in character, while the two other (constant scalar curvature)

metrics are not (cf. Ref. 63)

The three metrics dsmm, dstyys and dsF,sher are Einstein. If we scale these metrics so that
they are all of unit Volume * then K22 oiea= =61 ~59.2176, K2 iea=6m(m=2)~21.5185 and
K”_%,bca]ed—4ﬂ'2 6\37=6.830 03. The constant scalar curvatures of (unit-volume) Yamabe met-
rics are bounded above, and their least upper bound is a real number equal to n(n— 1)V2/”, where
V, is the volume of the standard metric on S", and in our (Bloch sphere) case, n=3, so the bound

is 24213743 ~139.13.%

X. DISCUSSION

4 (cf. Ref. 44, Sec. 2.4 and Refs. 19, 20, and 65) has calculated the Fisher information
matrix of the Husimi distribution in the Fock-Bargmann representation of the quantum harmonic
oscillator with one degree of freedom. He found that the Fisher information of the position and
that of the momentum move in opposite directions, and that a weighted trace of the Fisher
information matrix is a constant independent of the wave function, and thus has an upper bound.
(Luo did not consider the possibility of generating prior probability distributions by normalizing
the volume element of the Fisher information metric.)

Gnutzmann and Zyczkowski noted that one “is tempted to think of the Husimi function as a
probability density on the phase space. However, the rules for calculating expectation values of
some observable using the Husimi function are nonclassical” (Ref. 47, Sec. 2.1) (cf. Ref. 66, p.
548). Gardiner and Zoller remarked that the “main problem of the Q-function is that not all
positive normalizable Q-functions correspond to positive normalizable density operators” (Ref. 51,
p. 109).

Further, the comparison of distances between Husimi distributions for arbitrary quantum states
based on the Fisher information metric with those employing the Monge distance,’ might be
investigated. For the TLQS studied here, the Monge distance is, in fact, “consistent with the
geometry of the Bloch ball induced by the Hilbert-Schmidt or the trace distance” (Ref. 3, p. 6716).
[The trace distance is monotone, but not Riemannian, while the Hilbert-Schmidt distance, con-
trastingly, is Riemannian, but nor monotone (Ref. 67, p. 10083).37] For n-dimensional quantum
systems (n>>2), unlike the trace, Hilbert-Schmidt or Bures distance, the Monge distance of p to
the fully mixed state—which provides information concerning the localization of p in the classical
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FIG. 10. Statistical distance as a function of distance from the origin of the Bloch ball—corresponding to the fully mixed
state—for any monotone metric, for dséi\her'_I , and for the Monge (or equivalently, for n=2, Hilbert-Schmidt) metric. The
sheryy,
monotone-metric curve dominates that for dsFishe,H , which dominates the linear curve for the Monge metric.
us

phase space—is not the same for all pure states.” 3 The only monotone metrics for which explicit
distance formulas are so-far available are the Bures (minimal monotone) and Wigner-Yanase
ones.”!

In Fig. 10 we show how the distance from the fully mixed state (r=0) increases as r increases,
for any monotone metric and for ds%isherH , and (linearly) for the Monge (or Hilbert-Schmidt)
metric. The first-mentioned distance—takiflg the functional form arcsin r (equalling /2 for r
=1)—dominates the second-mentioned distance (equalling 7/4.555 153 216 7057 for r=1), which
in turns dominates the third [Ref. 3, Eq. (4.10)], which takes the value /8 for r=1.

Let us bring to the attention of the reader, a recent preprint, which introduces a concept of
escort density operators and a related one of generalized Fisher information®® (cf. Refs. 46 and
69).

We have been consistently able above to find (apparently operator) monotone functions to
generate the tangential components of (classical) Fisher information metrics for (rotationally sym-
metric) probability distributions over the TLQS. We suspect the existence of some (yet not for-
mally demonstrated) theorem to this effect. Also, it would be of interest to formally test the
various monotone functions presented above for the property (requisite for a quantum monotone
metric'>*! of operator monotonicity

We have “hybridized” dsFlsher above to a (quantum) monotone metric dsHYB by replacing
its radial component by that requlred [1/(1-r?)] while retaining its tangential component [formed
from fi,(1)]. But it appears that we could also convert it by appropriately scaling (a conformal
transformation) the entire metric (tangential and radial components) by some suitable function. If
we do so, we find that—by explicit construction—the new metric (dsconfommll ) has the required
radial component, while the tangential component is generated by a functlon

fconformalHus(t) =fHus(t) -r=1, (41)

which also appears to be operator monotone. [We note that [feonformay,, (1)=1 and
1im, o feonformaly, (£)=0.] But now, we have the large relative entropies SKL(pGKS, pconformalHus)
=50.4636 and SKL(pconformalH ,PGKS) = 54 2601. At r=0, ds> 1s not flat, as is dsFlsher , but
has a (limiting) scalar curvature of —g

Further questions: Motivated by the analyses above, we would like to pose the question of
whether there exists a family of trivariate probability distributions parametrized by the points of
the Bloch ball, for which the associated [classically unigue (up to a constant multiple)] Fisher
information metric fully—both in terms of tangential and radial components—has the requisite
form (1) for a monotone metric. Also, the volume elements (and hence associated prior probabili-
ties) of the monotone metrics are expressible as the product of Haar measure and measures over
the eigenvalues.16 To what extent, if any, does this hold true for prior probabilities not arising from
monotone metrics? Are there any nonmonotone metrics which give rise to prior probabilities more
noninformative than (at the very least) the minimal monotone (Bures) one? What are suitable

conformalyy
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counterparts to formula (1) for n-level quantum systems (n>2)? Are there any monotone metrics
which are flat at the fully mixed state, as is ds%isherH (7)?
us

XI. SUMMARY

In a classical context, for the family of Husimi probability distributions over the three-
dimensional Bloch ball of two-level quantum systems (TLQS), we derived the (flat-at-the-fully-
mixed-state) Fisher information metric [ds%isherH , given by (2)]. Its tangential—but not its radial
(r)—component conformed to that of one of thgs(uncountably) infinite class of (quantum) mono-
tone metrics. The prior probability distribution (pyy,,) formed by normalizing the volume element
of dslzzisheer was found (Sec. III) to be considerably less noninformative than the priors formed
from any of the (quantum) monotone metrics, even that (pg,.s) based on the (relatively informa-
tive) minimal monotone (Bures) metric. However, if we replaced the radial component of
dslz_-ishermIS by that required [1/(1-7%)] of all (quantum) monotone metrics, the resultant
“hybridized-Husimi” prior probability (pyys,, ) became very close (in the sense of relative en-
tropy ~0.006 “nats”) to ppues» and thus comparably informative in nature, but even nearer
(=0.0004) to another quantum-monotone-metric-based (“Grosse-Krattenthaler-Slater” or “quasi-
Bures”) probability distribution (pgks) that has been conjectured to yield the asymptotic minimax/
maximin redundancy for universal quantum coding. The analogous (Bayesian) role in universal
(classical) coding—by a well-known result of Clarke and Barron'""*—is played by Jeffreys’ prior
(cf. Refs. 19 and 20). This takes the specific (original, nonhybridized) form py,, for the family
(manifold) of trivariate Husimi qubit probability distributions under study. We also studied the
Fisher information metric for the escort-Husimi (Sec. V), positive-P (Sec. VI) and certain Gauss-
ian probability distributions (Sec. VII), as well as, in some sense, the discrete Wigner pseudoprob-
ability (Sec. VIII). Additionally, we applied the Clarke comparative noninformativity test”™* to
quantum priors (Sec. III). Evidence that this test is consistent with the recently stated criterion of
“biasedness to pure states” of Srednicki®’ has been presented.28
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