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An Exact Significance Test for
Three-Way Interaction Effects

Douglas R. White, Robert Pesner, and Karl P. Reitz

ABSTRACT: A modification of Fisher’s exact test for the 2 x 2 x 2 contingency
table is proposed as a test of the null hypothesis of no three-way statistical in-
teraction among variables, controlling for the two-way or first-order correlations.
The test uses a truncated hypergeometric distribution, limited by the bivariate
marginal totals of the variables. Possible generalizations to L x M x N tables are
discussed. The test is also applicable to the null hypothesis of no difference in the
magnitude of correlation in a comparison of two bivariate distributions.
Illustrations of each application are provided. One obvious use in cross-cultural or
survey research is as a test of the replication of a correlation in different subsamples
of a population.

Much attention in recent years is paid to developing statistical techniques
for applications in social scientific research, particularly in developing
models for discrete or ordinal variables. Perhaps the most important
breakthrough has been in the development of log-linear techniques based on
the cross-product ratio. Goodman’s approach has made it possible to

decompose complex patterns in N-way tables into first-, second-, or higher-
order interactions. The strength of the cross-product (log linear) model is
that since most correlation coefficients are also based on cross-product ratio
measures, the significance tests are appropriate for testing correlational in-
ferences. This also limits their applicability. Recent work on entailment
structures (White, Burton, and Brudner 1977) represents an instance where
the correlational model is rejected in favor of discrete if-then statements
about contingent relationships, with no assumption of invariant cross-
products. Such discrete relationships can best be analyzed using statistical
tests based on the hypergeometric probability distribution, involving
discrete sampling without replacement. This forms the starting point for
our approach, particularly the application of the hypergeometric
distribution known as Fisher’s exact test. I

Fisher’s exact test can be used to measure the statistical significance of
differences between two discrete univariate distributions (or the probability
of the observed or more extreme differences) under the null hypothesis of
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the equivalence of the distributions. z For cross-classification or contingency
tables, Fisher’s test also provides a test of significance for the correlation
between two discrete variables. 3 For dichotomous variables, producing 2 x 2
tables, Fisher’s test is quite simply applied. The test is generalizable to cases
involving M x N tables, but with some difficulty since an explicit ordering
of possible distributions by degree of departure from independence must be
defined. 4

Bartlett (1935) was the first to propose a generalization of Fisher’s exact
test to find significant interaction in 2 x 2 x 2 contingency tables. He

developed both an exact and an asymptotic test. His tests have been

generalized by a number of authors. Zelen (1971) extended his tests to
2 x 2 x k tables, Gart (1972) to 2 x j x k tables, and Patil (1974) to i x j x k
tables. The basic distribution formulas for specific models can be found in a
variety of sources (see for example Bishop et al. (1975) for the 2 x 2 x k case
and Halperin et al. (1977) for the i x j x k case). These authors have mainly
been concerned with the asymptotic version of these tests, with little at-
tention given to the implementation of the exact tests under different sam-
pling models.

In this paper we redevelop Bartlett’s exact test to measure the statistical
significance of a difference between (a) two dichotomous bivariate
distributions and (b) second-order interaction effects in systems of three
variables, with the three bivariate distributions between the three variables
held constant. This three-way interaction is directly analogous to in-
teraction between two variables and is our main interest in developing the
statistical model used in this paper. We also distinguish cases where only
one of the three possible bivariate distributions between three variables is
held constant. We conclude with a brief discussion about generalizing these
results to polychotomous variables (L x M x N tables).

Differences Between Two Discrete Bivariate Distributions

As in the case of the difference between two discrete univariate

distributions, the null hypothesis asserts the equivalence of the two

distributions. Obviously, this is only possible if the two distributions are of
the same dimensions, say M x N. Provisional acceptance of the null

hypothesis generates the corollary that the two populations are structurally
equivalent as far as the categories involved in the distribution are con-
cerned. This in turn allows the two distributions to be combined and con-
sidered as complementary exhaustive samples of a larger population formed
by combining the two distributions, with all three bivariate distributions
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held constant. This takes the tabular form of a 2 x M x N contingency table,
where the value of the first variable indicates one or the other of the original
bivariate distributions. We start below with the simple case of a 2 x 2 x 2
table (dichotomous bivariate distributions).

Three-way Interaction

First-order interaction refers to relationships between pairs of variables.
However, this is only the simplest level on which interaction between
variables takes place. Given a system of three variables, say XI, X2, and X3,
it may be of interest to see if, for example, X, affects the relationships be-
tween X2 and X3. This is second-order interaction. Given larger systems of
variables this concept can be extended as far as is desirable.

In tests of statistical significance of three-way interaction, the null

hypothesis asserts the independence of a univariate distribution (the control
variable) from all the various bivariate distributions present in the system of
variables. For the purposes of this test, therefore, all bivariate distributions
present in the system are held constant. We start with a system of three
dichotomous variables, which takes the form of a 2 x 2 x 2 contingency
table.

Table 1 : Notation
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The Model

The three-way interaction problem as well as comparison of two bivariate
distributions begin with the statistical analysis of a 2 x 2 x 2 contingency
table, with one variable acting as control. In interaction, of course, each
variable takes a turn as the control variable. This involves a system of three
dichotomous variables, Xi, X2, and X3. A notation for the statistical

analysis of a 2 x 2 x 2 table is defined in Table 1 and illustrated in Figure 1.
A,,k is the actual cell value in a trivariate distribution: the subscripts stand
for the values of the first, second, and third variables (XI, X2, and X3),
respectively. Marginal totals for the first variable are designated A 1.. and
A 2 , for the second variable A , i and A.2, and so forth. Bivariate

distributions, while not shown in the table, can be designated as follows: for
the bivariate distribution (cell values in the 2 x 2 table) between X2 and X3,
for example, the cell values are A n, A 12, A 21, and A 22 (see Figure 1). The
total number of observations is A ( = N).
Both cases dealt with in this paper involve examining the possible cell

values in the trivariate distribution while holding all three bivariate
distributions constant. Small letter-subscripted values, such as alJ/o
designate possible cell values in the trivariate distribution so constrained.
Minimal and maximal cell values under these constraints are designated a,,k
and a,,w respectively.

Figure 1 shows a schematic representation of 2 x 2 x 2 distributions with
bivariate distributions projected as 2 x 2 marginal total matrices up, out,
and to the right, and univariate distributions as marginal totals of these
matrices.
The computation of the probability, P(A III), of an observed distribution,

is derived by consideration of the number of ways of drawing A III, A &dquo;2,
A 121, and A 122 observations, respectively, out of the bivariate marginal totals
in the outward matrix of Figure 1: A II, A ,2, A 21, and A 22. The number of

ways of drawing such samples, without replacement, is 5

The total sample space for all possible ways of drawing samples is
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Table 1 gives the definitions of Cm and Cm.
The point probability of drawing A I 119 A &dquo;2, A 121, and A 122 observations is

therefore (identifying this probability by reference to the 111 cell)

[The same probability will be obtained for P(a21l = A21I).] ]

Calculating the point probabilities for every value of i between all and
§iii will produce a point probability distribution for the given trivariate
distribution under the above-mentioned constraints.

In much statistical hypothesis testing, however, what is compared to a
previously established level of significance is not a point probability, but a
cumulative probability. This cumulative probability is calculated by adding
all the point probabilities of possible outcomes equally or more extreme
than the actual outcome, thus forming one tail of the probability
distribution. This concept of a tail depends on a unilinear directed ordering
of the point probabilities based on a concept of degree of departure from
statistical independence. In contingency tables with one degree of freedom,
where a given value in any single cell completely determines the other cells,
this order is always based on either increasing or decreasing values in (any)
single cell. As 2 x 2 x 2 tables have one degree of freedom, this procedure is
fully applicable.
For any given outcome, except the two extremes of the distribution, the

question arises as to which direction is appropriate for summing the
cumulative probability. In one-tailed tests involving alternate hypotheses of
the form a <_ c or a * c, the alternate hypothesis establishes the direction:
summing up to the extreme in the former case and down to the extreme in
the latter.

In two-tailed tests, with alternate hypotheses of the form a ~ c, this
method is unavailable. When using symmetrical probability distributions,
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such as normal or t-distributions, cumulative probabilities are summed
away from the mean. But hypergeometric distributions are not normally
symmetrical, and using this method may involve adding point probabilities
greater than that of the observed outcome. Therefore, we have substituted
the method of summing along the generally descending direction of the
distribution. While this may be immediately determined by examining a list
of the point probabilities, a simpler method suitable for computer
calculation is utilized in the following equations for the cumulative

probability:

Figure 1; Schematic of Marginal Totals for a 2x2x2 Trivariate Distribution
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P(al11 = A i i or more extreme)
= 1’(am~AmO

or

P(a 111 = A i i or more extreme)

= P(a m l4 mO

whichever is smaller.

Or to simplify the notation further:

whichever is smaller.6 6

[The same probabilities would be obtained using formulas for P(a2&dquo; = A 21 1
or more extreme).! ]
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It should be noted that the resulting probability distribution is not a full
hypergeometric distribution. A full distribution with four combinatorials in
the numerator would have the form:

and would require the variables a, b, and c to take on any values greater
than or equal to 0 such that a + b + c <_ t. It would also be subject to the or-
dering problems discussed below. However, in our model, the variables
analogous to b and c (namely A 112 and A 121) are determined by the variable
analogous to a (namely A III). This, of course, derives from the fact that
given all marginals, a 2 x 2 (or a 2 x 2 x 2) contingency table, having but one
degree of freedom, is totally determined once any one cell is known. Thus
the problem of explicitly ordering possible distributions by degree of depar-
ture from independence is avoided. 7

This reduction of the sample space from the theoretical full

hypergeometric distribution is a result of the dual constraints placed on the
2 x 2 x 2 tables under investigation, as discussed above: (a) it is constrained
by the bivariate distribution X2 versus X3 and (b) it is constrained by the
marginals in the table itself, which are, in fact, the values of the other two
possible bivariate distributions, X, versus X2 and Xi versus X3.
By way of contrast, significance testing involving a relation between a

univariate and a bivariate distribution is an example of a full

hypergeometric distribution involving three variables. In one form this is
the classic three-variable case, central to much quantitative social science
research. For example, in such a standard work as Rosenberg’s Logic of
Survey Analysis, 8 the intervention of a third &dquo;test&dquo; variable is the act which
enables the researcher to determine the nature of a relationship between two
variables found in the data. Of course, Rosenberg’s treatment is pur-
posefully unsophisticated statistically. He restricts himself to a simple com-
parison of percentages, thus subjecting his data merely to the first stage of
refinement. He makes use of no probability model and thus does no real
statistical hypothesis testing. He uses no criteria to measure the significance
of the differences he finds among the percentages. One such criterion can be
based on the hypergeometric model.
Where the control variable is dichotomous, the three variable case takes

the form of a 2 x M x N contingency table. The null hypothesis asserts the
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independence of the univariate and bivariate distributions. In this case only
the given bivariate distribution is held constant and which variables are in-
volved will affect the resulting probabilities. Using the notation developed
above, in the case where X, is the control variable, the equations become

and

or

whichever is smaller.

[The same probabilities would be obtained using formulas for P(a2li = A 21 1
or more extreme).] The difference in the denominator arises from the fact
that the relevant marginals of the bivariate distributions of X, versus X2 and
X, versus X3 (A, ,, A,.2, A&dquo;, and A,2.) are not prior constraints on the con-
trolled table values.
Whichever formulas are applicable to the data at hand, once the

probability has been computed it can be compared with whatever level of
significance has been previously established to determine whether the null
hypothesis should be accepted or rejected. We must emphasize that this is a
test of significance only., and says nothing about the nature or direction of
any differences between the two bivariate distributions (if that is what is
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being tested), about the type of interaction involved (if that is what is being
tested), or about the relation between a univariate and a bivariate
distribution (if that is what is being tested).

Proof of Symmetry. One of the important features of this significance
test is that it is symmetric for any of the three possible control variables.
Here we offer a proof of symmetry. Such proof is necessary since the
denominator [Equation (2)] of our point probability is not equal for per-
mutations of the variables.
For any given value i in cell 111, the number of ways of drawing samples

holding variable XI constant is given by Equation (1), substituting i for
value A ii i, as in Equation (2). Now consider the ratio of ways of drawing
samples with value i in cell 111 to the ways of drawing samples with value
i+1:

Simplifying by cancelling factorials, Equation (6) becomes

This result, however, is perfectly symmetric whether we begin with variable
XI, X2, or X3 as the control. Hence the point probabilities for each value of i
must be the same for each control variable. Q.E.D.
An example of symmetric results taking each variable as a control is

shown in Table 2. Given the marginal constraints of the observed

distribution, there are three possible theoretical distributions where in

Equation (2), i = 1, 2, 3. Computations are shown for X, as control, X2 as
control, and X3 as control, leading to identical point probability estimates
for each value of i, as predicted.
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The Sampling Model

Every test of significance corresponds to the probability of some event
under a random sampling model. For the truncated hypergeometric
distribution the underlying sampling model is theoretically simple but prac-
tically cumbersome. A sample of the observed size N is picked at random,
with replacement, from a population in which all three-way combinations
of values of the variables occur with equal frequency. Each sample is
tabulated in a 2 x 2 x 2 table. Samples that do not correspond to the ob-
served marginals of this table are rejected. The sampling distribution of the
remaining 2 x 2 x 2 tables is described by the truncated hypergeometric
model. There are equivalent designs that are less cumbersome, but all con-
strain the sample according to marginal constraints, which is the key feature
of the hypergeometric distribution.

Comparison with the Log-Linear Model

Goodman’s log-linear analysis defines the null hypothesis of no N-way
interaction in terms of equality of cross-product ratios. In the 2 x 2 table
this is expressed by adlbc = 1, where a, b, c, d are cell values. In the

Table 2: Interaction Tests for a 2x2x2 Table Showing Symmetry
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2 x 2 x 2 table the no three-way interaction hypothesis is specified by
(adlbc) (ehlfg) = 1. Log-linear analysis is based on decomposition of the
contributions to the various cross-product ratios: for three variables there is
one three-way cross product and three two-way cross products. Since the
cross-product ratio underlies many of the correlational models such as Phi
(Pearson’s product-moment coefficient for the 2 x 2) and Gamma, log-
linear is an appropriate model for testing statistical hypotheses about
correlational models.

There are, however, statistical models that are not correlational, and for
which lack of interaction is not necessarily defined by equality of cross-
product ratios. Entailment analysis (White, Burton, and Brudner 1977) is
one such model, where zero cells or near-zero cells are hypothesized in a
series of 2 x 2 tables in a given data set, or a lower rate of exceptions is
hypothesized for entailments of the form &dquo;If X then Y&dquo; than for their con-
verses. For the 2 x 2 case log-linear and Fisher’s exact test happen to con-
verge in that the hypothesis of noninteraction is identical: the

hypergeometric expectation of no interaction is one where the cross-

products are equal.
Log-linear and the hypergeometric methods diverge, however, in the case

of three-way interaction. In the case of entailment analysis, we may be
trying to test, in this case, whether an entailment &dquo;If X then Y&dquo; is replicated
under control conditions for the presence or absence of Z. The log-linear
model is inapplicable in that no equality of cross-product ratios can be
logically derived from the entailment model for the case of no interaction.
The appropriate model is that developed here: given that the bivariate
frequencies of the variables are fixed (all two-way interactions held con-
stant), which is the probability of getting the observed distribution by
chance? That this involves a random procedure for filling the cells of the
2 x 2 x 2 table under constraint should be no surprise. It should also come as
no surprise that the three-way exact test gives a different solution for the ex-
pected values of cells in the 2 x 2 x 2 table under the hypothesis of no in-
teraction than the log-linear method.
One of the attractive features of the three-way exact test is that it gives an

exact computational formula for the expected values of cells, with no in-
teraction, in the three-way table. A computational solution for these values
in the log-linear approach has been proven to be impossible, and they are
obtained by iterative methods. This in itself entails that the two methods
give divergent results, or that different statistical models are involved. Prac-
tically, however, we have found that the methods give expected values that
are extremely close under most marginal constraints.
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Evaluation

Besides the log-linear model, the only other statistical measures known to
us that can be used to measure statistical significance in the cases dealt with
here are x2 and W2.9 However these statistical measures suffer from several
shortcomings if applied to discrete data. In the first place, if the total num-
ber of cases in each controlled contingency table is less than 50 x2 or w2loses
accuracy. Our statistic is not subject to any such limitation. Secondly, wz
requires the identification of an independent variable, as it is based on the
asymmetric statistic, Somer’s dl, As we have demonstrated above, in-

dependence or dependence is irrelevant with our model. Thirdly, and most
importantly, w2 is based on x2, both of which involve the assumption that
the variables being analyzed are continuous. Our model, of course, makes
the opposite assumption of the discreteness of the variables. Finally, both
involve the assumption that sampling is done with replacement, while our
model assumes sampling without replacement. However, our statistic as
developed so far suffers from the serious drawback of being limited to
dichotomous variables. It is possible to generalize for polychotomous
variables, but this involves theoretical assumptions that may not be justified
in specific research situations.
Taking first the 2 x 2 x N case, where the first variable is the control

variable, each controlled table will be of type 2 x N. In the equation for P,
the numerator will now have 2 x N instead of 2 x 2 = 4 terms, and of these

(2 -1 ) x (N -1 ) = N -1 must be known before the rest are determined. Thus
there is no single given ordering to the various possibilities, as these are
made up of ascending and descending values for N-1 cells. The problem
that then arises is to order these possible combinations by degree of depar-
ture from statistical independence. If the measuring scale involved is or-
dinal there may be a sound approach to doing this; if the scale is only
nominal any approach will be arbitrary.
The problem is similar but compounded in the 2 x M x N case. Even if

both polychotomous variables are measured with ordinal scales, it will

probably be rare that an ordering of the MxN combination of
measurements possible will be given unambiguously.

Finally, the L x M x N case. This, in fact, is merely a logical extension or
generalization from the preceding cases, derived by allowing each variable
in turn to be the control variable. Clearly the ordering problem here reaches
a third level of complexity. In this case (L -1 ) x (M-1 ) x (N-1 ) values
must be given before the rest are determined, and L x M x N possible com-
binations of values must be ordered. Obviously the solution to this problem
will rarely be unambiguous.
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Following a suggestion of Pierce’s (1970) we can offer an overall solution
to the ordering problems. 10 An unambiguous order may be obtained by
merely listing all the point probabilities in numerical order and cumulate all
point probabilities less than or equal to the point probability of the actual
outcome. As Pierce says, the resulting test is &dquo;nondirectional&dquo;&dquo; and will
work unless a &dquo;one-tailed&dquo; test is insisted upon, which in our opinion has
no analogue even the the 2 x 2 x L case unless a particular ordering coef-
ficient (e.g., Gamma) is specified, as illustrated under &dquo;Applications&dquo;
(Table 6).

It should be understood, however, that the calculation of exact point
probabilities for a particular table of any dimension is theoretically unam-
biguous (if practically tedious). Thus once the ordering problem is solved,
calculation of cumulative probabilities can proceed in a relatively straight-
forward manner.

This suggestion allows unlimited extension of our model to more complex
research problems. Some such possible extensions are interaction effects
between univariate and multivariate distributions or between bivariate or

higher-order and multivariate distributions (full hypergeometric distri-

butions), comparisons between two multivariate distributions and higher-
order interaction third-order analysis (both reduced hypergeometric distri-
butions). We have applied interaction analysis of the 2 x 2 x 2 case to large
systems of variables, which we hope to discuss in a future paper.

Applications

Three applications are illustrat

1. significance testing for difference between two bivariate dis-
tributions of dimensions 2 x 2;

2. significance testing for interaction effects among three dichotomous
variables; and

3. significance testing for interaction effects in the 2 x 3 x 3 case.

The first example is from a study by Brudner-White (1978) on the con-
comitants of language variability in an Austrian village near the

Yugoslavian border. Her contention is that occupational endogamy is

stronger than language identity as an occupational marker for the farmer
populations that control access to local agrarian resources, and that

language endogamy is consequently an epiphenomenon of occupational en-
dogamy. Tables 3 and 4 present the data for occupational and language en-
dogamy, respectively.
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Table 3: Occupational Endogamy

Table 4: Language Endogamy
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Using Equation (4) the statistical significance of the difference between
these two bivariate distributions is P= .47. Thus, although the occupational
endogamy is greater than the language endogamy (Romney’s normalized
measures of endogamy are .67 and .57, respectively), 12 the difference is not
statistically significant at P = .05.
The second example is from Murdock and White’s (1969) cross-cultural

sample. When the worldwide association between patrilineality and bride-
wealth is broken down by region, as shown in Table 5, there are significant
differences [P=.0003 using Equation (3)] between societies in the insular
Pacific region and those outside of this region. Within this region, in fact,
the direction of the relationship is reversed, as shown by the Gamma coef-
ficients in Table 5.
The third example is a hypothetical illustration of use of the significance

test with a table of higher dimensionality, in this case 2 x 3 x 3. Assuming
that for a population of 19 cases that the cross-classification of two nominal
three-category variables is as follows:

Table 5: Regional Replication of the Association between

Patrilineality and Bridewealth
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Nine cases are drawn from this population as possessing a certain charac-
teristic. Does the bivariate distribution in the new subsample resemble that
of the old? For illustration, we assume that the new distribution is as
follows:

What is the probability of sampling this distribution randomly from the
larger population, with the qualification that the only valid or comparable
samples are ones with the same row and column totals? Table 6 shows the
seven valid samples by this criterion, and the number of ways of drawing
such samples at random from the total population. The point probability of
each valid sample is computed as the proportion of ways of drawing each
given valid sample over the total ways of drawing any valid sample. The
probability of drawing the observed sample is P=.03, using a

generalization of Equation (4). Using the nondirectional method for ob-
taining cumulative probabilities (the sum of all point probabilities equal to
or less than the observed), the cumulative probability is also P = .03, as this
is the smallest of all the point probabilities.

Table 6 also shows how the cumulative probability would differ if ordinal
assumptions can be made about the variables, and if the tables are ordered
by a correlation coefficient such as Gamma. The observed distribution,
while it is the least likely to occur by chance, is not the one with the most
positive Gamma coefficient. The cumulative (directional) probability in this
case changes to P=.07, which is not as significant as the (unordered)
significance test at the nominal level of association.

Conclusion

In this paper we have presented a versatile model for measuring statistical
significance for use in testing hypotheses involving discrete polychotomous
variables. It is most easily applied to dichotomous variables but is

generalizable, with some difficulty, to those of higher order. We con-
centrated on two three-way applications of the model: comparisons of two
bivariate distributions and second-order interaction effects in systems of
three variables. Finally, we suggested several directions in which this model
can be fruitfully extended.
We would be the first to assert the extreme simplicity of our model com-
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Table 6: Interaction Tests for a 2x3x3 Table Formed by

Sampling fran a 3x3 Distribution

* Nondirectional

** Directional

*** Lesser of two directional values, the other being .82.
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pared to much of the statistical work being used in contemporary social
scientific research. Yet its simplicity is by no means an indication of its
limited applicability-quite the contrary. In fact, we feel it is very widely
applicable, including in some situations where much more complicated
statistical techniques have been applied without sufficient regard for the
theoretical assumptions implicit in the techniques. Hopefully, the

availability of a versatile model that is not subject to the limitations of
assumptions about the number of observations and the continuous quality
of variables will encourage the use of more appropriate models in social
scientific research.

Notes

1. See Fisher (1954:96-97), Siegel (1956), Lieberman and Owen (1961), and Pierce (1970).
2. In a statistical test of the difference between two discrete univariate distributions, the null

hypothesis would be that the two distributions are equivalent. Under the assumption of
the null hypothesis, therefore, the populations from which these distributions are taken
must also be considered as structurally equivalent, as far as the categories used to con-
struct the distributions are concerned. Thus the univariate distributions can be combined
into a single contingency table, which is then analyzable with Fisher’s exact test. For com-
putational details, see Pierce (1970:110-113).

3. In contrast to the preceding case, here the null hypothesis asserts the independence of the
two variables. Here the contingency table is given and Fisher’s test can be applied direc-
tly. For complete details, see Pierce (1970:116-120).

4. See Pierce (1970:127-130). This problem also arises with our model; we discuss a solution
below.

5. This, of course, is only one of the three possible ways of calculating this probability, all of
which will yield equivalent results. In this case the control variable is X1. See the
following section for proof of symmetry.

6. Copies of a FORTRAN program that calculates this probability are available from the
authors upon request.

7. Even in the 2 &times; 2 and 2 &times; 2 &times; 2 case there are actually two possible orderings, ascending or
descending for any given cell. We let the data itself choose between these with our alter-
native definitions for P(a111 = A111 or more extreme).

8. See Rosenberg (1968).
9. See Ploch (1974).

10. cf. Pierce (1970:129).
11. Ibid.
12. For a 2 &times; 2 table, Romney’s (1971) coefficient of endogamy is achieved by normalizing

the rows and columns of the table, and then computing (d-o)/(d + o), where d is the num-
ber of cases in the diagonal, and o is the number of cases in the off-diagonal.
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