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Allard’s argument versus Baker’s contention for the
adaptive significance of selfing in a hermaphroditic fish
John C. Avise1 and Andrey Tatarenkov

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697

Contributed by John C. Avise, October 2, 2012 (sent for review June 29, 2012)

Fertilization assurance (Baker’s contention) and multilocus coadap-
tation (Allard’s argument) are two distinct hypotheses for the
adaptive significance of self-fertilization in hermaphroditic taxa,
and both scenarios have been invoked to rationalize isogenicity
via incest in various plants and invertebrate animals with predom-
inant selfing. Here we contrast Allard’s argument and Baker’s con-
tention as applied to the world’s only known vertebrate that
routinely self-fertilizes. We pay special attention to frequencies
of locally most common multilocus genotypes in Floridian popula-
tions of the Mangrove Rivulus (Kryptolebias marmoratus). Isoge-
nicity patterns in this fish appear inconsistent with Allard’s
argument, thus leaving Baker’s contention as the more plausible
scenario (a result also supported by natural history information for
this species). These results contrast with the isogenicity patterns
and conclusions previously drawn from several self-fertilizing
plants and invertebrate animal species. Thus, the adaptive signif-
icance of selfing apparently varies across hermaphroditic taxa.

Baker’s rule | coadapted genes | androdioecy | reproductive assuarance

The mating system of many hermaphroditic plants and in-
vertebrate animals includes at least occasional self-fertiliza-

tion (1–4). Why selfing is so common poses an evolutionary
enigma because self-fertilization is an extreme form of incest that
often reduces genetic fitness via inbreeding depression (5). Why
then do so many dual-sex organisms routinely self-fertilize? One
standard explanation is that the transmission advantage of selfing
compared with outcrossing is sufficient to outweigh inbreeding
depression and thus enable selfing to invade a population of
outcrossers (6).
Within that context, two major classes of adaptive benefit have

been argued to help explain selfing’s evolutionary maintenance.
The first hypothesis follows logically from the severe restriction on
genetic recombination that self-fertilization promotes (7). When
selfing predominates in a sexual population for even a few gen-
erations, heterozygosity rapidly decays (homozygosity increases)
such that relatively little intraindividual genetic variation soon
remains available for shuffling into novel multilocus allelic suites.
In the extreme, reproduction within a highly inbred lineage in ef-
fect becomes “clonal” as highly homozygous individuals self-fer-
tilize in successive generations and thereby produce essentially
isogenic (genetically identical) offspring. Although meiosis and
syngamy continue to operate in a selfing lineage, these cellular
processes become ineffective in generating recombinant geno-
types; instead, multilocus isogenotypes favored by natural selec-
tion tend to be preserved and proliferate (Fig. 1).
In the early 1970s, Robert Allard and colleagues published

seminal articles empirically documenting how selfing’s restriction
on genetic recombination can act in conjunction with natural se-
lection to favor the spread of coadapted multilocus suites of
alleles well molded to local ecological conditions (7, 8–11). These
studies involved plant populations with predominant selfing and
showed that particular multilocus genotypes routinely reached
substantial frequencies in populations with high self-fertilization
rates. Furthermore, as summarized by Allard et al. (12), “these
multiallelic configurations are distributed ecogeographically in
patchwork patterns that are precise overlays of environmental

heterogeneity” and thus “natural selection was the predominant
integrating force in shaping the specific genetic structure of dif-
ferent local populations as well as the adaptive landscape.” With
regard to purported evolutionary benefits of self-fertilization as
a tactical component of amixed-mating strategy, for shorthand we
will refer to this genomic-coadaptation scenario as Allard’s ar-
gument for the adaptive significance of selfing.
Soon thereafter, Robert Selander and colleagues published an

analogous series of studies documenting multilocus coadaptation
in local populations of terrestrial hermaphroditic snails with high
selfing rates (13–16). Again, specific multilocus suites of alleles
appeared to be coadapted to particular ecological conditions and
thereby often were driven to moderate or high frequencies in
populations of these invertebrate animals.
Long before the works of Allard and Selander, however, Her-

bert Baker (17, 18) had proposed a very different hypothesis for
the adaptive significance of self-fertilization, especially in the
context of establishment after long distance dispersal (e.g., weeds,
island colonization). According to Baker (19), fitness payoffs from
selfing derive primarily from fertilization assurance [also known
as “reproductive assurance” (20–22)] during island colonization
or after long distance dispersal into distant habitats where con-
specifics might not be available for outbreeding. (This advantage
also had been appreciated by Darwin.) Unlike obligate out-
crossers that lack the capacity to reproduce without a mate, each
self-compatible individual is reproductively self-sufficient. Baker
interpreted fertilization assurance to be the key advantage of
selfing, an argument that gained empirical support from docu-
mented associations—across plant species (23, 24), and particu-
larly for island species (25) and also among invertebrate animal
taxa (26)—between proclivity to self-fertilize and colonization
potential. Baker argued that self-fertilization is advantageous in
any hermaphroditic species in which opportunities for outcrossing
are constrained for any reason, such as low population density
(e.g., in newly colonized habitats), unequal sex ratio, or any other
ecological or genetic basis for a paucity of suitable mates. We
henceforth refer to fertilization assurance as Baker’s contention
for the adaptive significance of selfing. Allard’s argument and
Baker’s contention are not mutually exclusive (i.e., both could
apply to a given species), but they do convey different sentiments
about fitness dividends from self-fertilization. Under Allard’s ar-
gument, selfing’s restraint on genetic recombination is the key
evolutionary factor, whereas Baker’s scenario emphasizes in-
herent benefits of selfing that derive from assured fertilization.
Table 1 summarizes several other implications of Baker’s

contention versus Allard’s argument. For example, the former
implies that selection might act to favor even a single gene that
promotes self-fertilization, whereas the latter invokes co-
adaptation at the genomic level. Thus, although fertilization as-
surance (Baker’s contention) offers immediate fitness payoffs to
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any self-fertile individual in each generation, especially when
mating opportunities are limited, Allard’s argument entails de-
ferred fitness benefits because several generations of selfing and
natural selection must transpire before a formerly outcrossed
lineage might evolve multilocus coadaptation (either inside the
genome or in relation to external ecological niches). Further-
more, further outcrossing effectively disintegrates (via genetic
recombination) any coadapted multilocus genotype that selection
and selfing may have collaborated to sculpt across successive
generations of selfing.
With regard to the incidence of isogenicity in selfing species,

Allard’s argument implies that the frequencies of various mul-
tilocus genotypes should register “interclonal” selection, whereas
Baker’s contention implies that any such isogenotypes should
reflect differential proliferation via dispersal and colonization.
With regard to the spatial arrangement of isogenotypes, Allard’s

argument implies that particular multilocus genotypes should
reach moderate to high frequencies in habitats where they are
locally well adapted. Empirically, in Allard’s self-fertilizing plants
and in Selander’s self-fertilizing snails, different multilocus
genotypes consistently characterized local populations occupying
xeric versus mesic environments. By contrast, Baker’s scenario
necessitates no epistasis and no particular association between
multilocus genotype and habitat. Indeed, Baker’s contention
invokes no coadaptation, either across multiple loci or between
particular isogenotypes and specific environmental conditions.
Because various authors have used biological data from plants

and invertebrates to argue in favor of either Allard’s argument or
Baker’s contention, a fresh perspective from other selfing taxa
might be helpful. Here we examine multilocus genotypes in the
world’s only known vertebrate clade in which hermaphrodites
routinely self-fertilize. Observed distributions of isogenotypes in
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A- J-I-H-G-F-E-D-C-B-

A- J-I-H-G-F-E-D-C-B-

A- J-I-H-G-F-E-D-C-B-

A- J-I-H-G-F-E-D-C-B-

A- J-I-H-G-F-E-D-C-B-

AA JJIIHHGGFFEEDDCCBB

BB JJJJHHGGEEEEEECCBB

BB JJJJEEEEEEEEEEEEBB

BB JJEEEEEEEEEEEEEEBB

1.00

0.50

0.25

0.12

0.06

0.03

0.02

0.01

<0.01

0

1

2

3

4

5

6

7

8

selfing lineagesH
relative

Fig. 1. Expected declines in population H and shifts in the frequencies of isogenic genotypes across eight generations of selfing, starting from an outbred
deme in generation 0. Multilocus genotypes that are effectively isogenic begin to emerge by generation 5; some of these may soon proliferate under the
influence of natural selection (and/or genetic drift). For example, isogenic lineage EE (black-tailed fish) represents only 10% of the population in generation 5
but increases to 70% of the population by generation 8. Similarly, isogenotype BB (striped body) increases to 20% of the population by generation 8. The
demise of any isogenic lineage (such as the termination of FF in generation 5 or the disappearance of CC in generation 6) can be interpreted to register either
reproductive failure or an outcross event by the focal individual(s).

Table 1. Evolutionary features of Allard’s argument versus Baker’s contention for the adaptive significance of selfing

Feature Allard’s argument Baker’s contention

Nature of selection For genes coadapted to one another in a given habitat Fertilization assurance
Epistasis implied? Yes No
Level of selection Multilocus genotype Any gene that promotes selfing
Timing of selective benefits Deferred for several generations postoutcrossing Immediate in each selfing generation
Recipient of genetic benefits* The inbred lineage Each selfing individual
Isogenicity implied? Yes Not necessarily
Frequency of isogenotypes Often locally high Seldom locally high except after dispersal
Arrangement of isogenotypes Often associated with particular habitats Often disjunct or perhaps patchily distributed
Selfing ↔ fitness Fitness benefits are a consequence of selfing Fitness benefits favor the evolution of selfing

*One fundamental distinction between Baker’s contention and Allard’s argument is that the former emphasizes selfing’s immediate fitness payoffs to the
individual, whereas the latter invokes only deferred fitness dividends that might accrue from self-fertilization extended across multiple generations. In other
words, fertilization assurance (under Baker’s contention) offers immediate fitness payouts to any self-fertile individual in each and every generation,
especially when mating opportunities are limited for any reason. By contrast, multilocus genetic coadaptation (under Allard’s argument) offers deferred
and perhaps tenuous fitness benefits to the initiating individual because any outcrossing within an inbred lineage immediately undoes what selection and
selfing may have combined to accomplish across at least several successive generations of strict selfing within an inbred lineage.
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Kryptolebias marmoratus (Cyprinodontiformes; Kmar) as well as
the natural history of this piscine clade appear to be more con-
sistent with Baker’s than with Allard’s scenario.

Background
Kryptolebias Lineage. The Mangrove Rivulus belongs to a small
killifish clade that includes several closely related taxa with pro-
clivities for hermaphroditism and in some cases self-fertilization
(27, 28). Selfing byKmarwas discovered in the early 1960s (29), and
in nature it yields highly homozygous lines composed of individuals
so genetically uniform as to be, in effect, clonally identical to one
another (30). Thus, Kmar became a model for studying the evo-
lutionary ramifications of self-fertilization and clonality in a verte-
brate species (reviewed in ref. 31). The following are some of
genetic discoveries made across the years about these unique fish:
(i) selfing lineages in Kmar do exhibit genetic variation, albeit at
reduced levels comparedwithmost outcrossing species (32–37); (ii)
males as well as hermaphrodites exist in some populations (38, 39),
thus makingKmar an androdioecious species (40); (iii) these males
sometimes mediate outcross events (41) such that Kmar has
a mixed-mating system (40, 42, 43) with predominant selfing; and
(iv) these and other features of the reproductive system have been
mapped phylogenetically and phylogeographically across members
of theKmar clade to yield inferences about evolutionary histories of
the self-fertilization syndrome (27, 44, 45).
Here we summarizemicrosatellite and other biological data that

may have some bearing onAllard’s versus Baker’s scenarios for the
proximate adaptive significance of selfing in Kmar. Specifically, we
address the degree to which particular multilocus isogenotypes are
present and how they are geographically arranged in highly selfed
populations of this species. One prediction fromAllard’s argument
is that local environmental conditions should favor coadapted
isogenic lineages, which therefore should be common at particular
locales. Baker’s scenario, by contrast, implies that isogenotypes
might be rare and perhaps geographically disjoined.

Isogenicity. Distribution of isogenicity in theory. Fig. 2 outlines a the-
oretical framework for our discussions of isogenicity in selfing
species. Imagine a baseline population in which each hermaph-

roditic individual begins to self-fertilize in generation (G) = 0. In
each successive generation of selfing in this increasingly inbred
population, heterozygosity (H) declines by 50%, eventually
reaching<1%of its initial value by aboutG= 7 (Fig. 2,Left). Thus,
only after G ∼ 7 of selfing can reproduction within an inbred lin-
eage begin to yield offspring whose multilocus genotypes are es-
sentially identical to one another and to that of the selfing parent.
At the outset of such isogenicity, the expected population fre-
quency of each such multilocus genotype should be ∼1/N, assum-
ing selective neutrality. Thereafter, the expected frequency of the
locally most common multilocus genotype (LMCMLG) in a local
population can begin to change in response to evolutionary forces
such as genetic drift or natural selection. If we initially assume that
each local population is closed to outside gene flow and is large
and stable in size, then the effects of genetic drift can be neglected
and the evolutionary dynamics become governed by selective
forces operating in conjunction with the breeding system. If we
further assume that selfing continues at a high rate and that natural
selection favors any particularmultilocus genotype (MLG) over all
others, then the frequency of the LMCMLG should increase in
sigmoidal fashion and eventually approach fixation as shown by the
trajectories in the shaded portion of Fig. 2, Right. The temporal
duration of any such evolutionary transition from low to high
frequency of an LMCMLG is a function of the intensity of favor-
able selection acting on each LMCMLG. However, an important
point is that the frequency of the LMCMLG in any population is
expected to be nontrivially high (>0.10) across a broad range of
parameter values (selection coefficients and numbers of gen-
erations elapsed since the onset of isogenicity atG ∼ 7) (Fig. 2). In
other words, Allard’s argument implies that particular multilocus
genotypes favored by natural selection should often be present in
moderate to high frequencies in local populations of any species
with high rates of self-fertilization.
Distribution of isogenicity in practice. The theory outlined in this
article implies that Allard’s argument predicts moderate to high
frequencies for selectively favored MLGs in local populations of
predominant selfers. Do such expectations match empirical
data? For Allard’s self-fertilizing plants and Selander’s self-fer-
tilizing snails, the answer is a resounding “yes”: in almost every
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population, one or another MLG was quite common or even
fixed locally (Fig. 3). In Kmar, by contrast, LMCMLGs almost
never reached moderate or high frequencies (Fig. 3). Indeed,
only seldom did MLGs occur in a local Kmar population other
than as singletons (Figs. 3 and 4). Among the total of more than
150 different MLGs observed in the current study, in no case has
natural selection apparently driven a given MLG to high fre-
quency in any local Kmar population surveyed.
Evolutionary implications of contrasting isogenicity patterns. One pos-
sible explanation for the paucity of locally common isogenotypes in
Kmar is that outcrossing events in these fish are far more common

than previously suspected. This seems unlikely however because
selfing rates have been estimated both from direct genetic assays of
progeny in the laboratory (40) and indirect genetic evidence from
natural populations (27, 43). Furthermore, males (who pre-
sumablymediate the outcross events) are documented to be rare in
Florida in field surveys that now span nearly half a century (30, 45).
A second possibility for the paucity of common MLGs in Kmar

is that populations in Florida were founded too recently for
isogenicity to have been achieved and for favorable selection on
particular MLGs to have taken hold. This seems unlikely how-
ever because isogenicity via selfing requires only about half-
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dozen generations to arise (Fig. 2), self-fertilizing Kmar pop-
ulations are known to have inhabited South Florida for at least
30 y, and Kmar has a short generation time [i.e., three to four
generations per year (47, 48)]. A third possibility for the low
frequency of LMCMLGs in Kmar is genetic drift in small pop-
ulations. Although we cannot exclude this possibility, under
Allard’s scenario, natural selection should interact with and
perhaps even override genetic drift even in small populations.
A fourth possibility for the low frequency of LMCMLGs in Kmar

is that microsatellite markers are selectively neutral and hence not
directly subject to selection. However, this explanation misses the
broader point that selfing restricts recombination throughout the
genome, including at neutral loci, thereby generating strong
gametic-phase disequilibrium and potentially making particular
MLGs quite visible to natural selection. Nevertheless, it remains
possible that favorable gene combinations (“coadapted gene
complexes”) might well emerge very early in a selfing population—
perhaps well before more variable loci approach isogenicity.
A fifth and related possibility for the paucity of common

MLGs in Kmar is that genetic assays for Kmar were more refined
than those for Allard’s plants or Selander’s snails. Allard’s
studies on plants and Selander’s studies on snails involved

allozymes, which typically show far less polymorphism than do
the microsatellite loci we used for Kmar. To address whether this
technical factor alone might account for the disparity in iso-
genicity patterns between Kmar and other self-fertilizing taxa, we
added to our analysis a genetic survey of another self-fertilizing
plant: the wild mustard Arabidopsis thaliana. Bomblies et al. (46)
used 436 SNPs to assess multilocus population genetic structure
in 77 local populations of this species (which also displays <5%
outcrossing). Despite the high discriminatory power of these
SNPs, frequencies of LMCMLGs in A. thaliana often proved to
be moderate to high, much as for Allard’s plants and Selander’s
snails (Fig. 3). Thus the striking contrast in isogenicity patterns
between Kmar and these other self-fertilizers seems unlikely to
be due solely to different powers of resolution by the molecular
markers used. This implies that some biological (rather than
technical) factor(s) must have shaped the distinct isogenicity
outcomes in Kmar versus the self-fertilizing plants and inverte-
brates included in this survey.

Allard’s Argument Versus Baker’s Contention for Kmar?We found no
locally common multilocus isogenotypes in K. marmoratus. As
demonstrated in this article, this isogenicity pattern departs dra-
matically from those in several other self-fertilizing species pre-
viously assayed, and this disparity cannot readily be ascribed to
differences in outcrossing rates or genetic assays that were applied
to these fishes, plants, and invertebrates, all of which have mixed-
mating systems with high selfing rates. The paucity of fixed or even
commonmultilocus genotypes in local populations of Kmar seems
inconsistent with Allard’s argument for the adaptive significance
of self-fertilization in this species. Therefore, partly by default, ge-
netic patterns in Kmar appear to be more compatible with Baker’s
contention for the adaptive significance for selfing, an interpretation
arguably reinforced by several natural history facets ofKmar biology
(Table 2). Although definitive evidence for (or against) Allard’s
scenario ultimately must come from direct appraisals of the relative
genetic fitness of multilocus genotypes in particular habitats, at
present the balance of genetic and other biological evidence seems
to favor fertilization assurance (Baker’s contention) as offering the
better explanation for any adaptive benefits that have attended the
evolutionary maintenance of self-fertilization in the Kmar clade.
This is not to imply that Allard’s argument carries little force

for the self-fertilizing plants and invertebrate animals in which
genomic coadaptation was strongly implicated by several lines of
theoretical and empirical evidence in addition to patterns of
isogenicity per se. Overall, our current comparisons indicate that
different adaptive scenarios for selfing probably apply across di-
verse taxa with similar rates of self-fertilization. Thus, whether
Allard’s or Baker’s contention best accounts for the adaptive
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Table 2. Natural history evidence supporting Baker’s contention for adaptive significance of Kmar clade selfing

i) Factors that imply limited mating options (and thus place fitness premiums on selfing:
a) Kmar appears to be quite uncommon at most locales within its range.*
b) Hermaphrodites greatly outnumber gonochoristic males at most sites.
c) Individuals often tend to be relatively solitary.*
d) Individuals tend to be highly belligerent toward conspecifics.

ii) Factors that imply a strong colonization potential:
a) The clade has a broad geographic distribution [southern Florida, most islands of the Caribbean (including the Bahamas), and the Atlantic coast

from Yucatan to southeast Brazil].
b) Kmar inhabits coastal environs that are prone to strong storms and ocean currents.
c) Individuals have been taken in large numbers inside rotting mangrove logs that obviously could be transported as flotsam.
d) Adults can survive out of water for several weeks (when packed in wet material such as moist leaves or plant debris).
e) Adults can move short distances on land (wet mangrove forest floors) by flipping.
f) The species probably practices facultative egg stranding in which fertilized eggs may be stranded for a time before hatching (although the
extent of embryonic diapause under field conditions remains unknown).

*However, Kmar natural history is poorly known, and some studies suggest that the species may occur in substantial aggregations and be social at particular
times or sites (49, 50).
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benefits of clonality via incest ultimately may have to be decided
for each taxon case by case. Furthermore, the current study makes
it clear that information on the frequencies of isogenotypes will
be necessary to decide between Allard’s and Baker’s scenarios
in any taxon. Other model genetic organisms that regularly self-

fertilize, such as some nematodes in the genus Caenorhabditis,
should be amenable for critical experimentation on this topic.
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