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Abstract

Stochastically Lighting Up Galaxies:

Statistical Implications of Stellar Clustering

by

Robert Louis da Silva

Stars form discretely. At the very least, they form in units of individual stars.

However, their discreteness likely extends to much larger spatially and temporally

correlated structures known as star clusters. This discreteness has a profound impact

on the light that a population of stars will produce even at fixed star formation

rate. Ignoring the effects of this clustering when analyzing observations can lead to

significant errors and biases.

This work presents an exploration of the effects of this clustering, the foun-

dation of which is the construction of SLUG , a code which Stochastically Lights Up

Galaxies. It accounts for the effects of clustering by populating composite stellar

populations (“galaxies”) one cluster at a time where each cluster is filled by indi-

vidual stars whose evolution is tracked. This is the first code capable of exploring

stochasticity for stellar populations composed of clusters and led to several signifi-

cant insights in the field. Most notably, the scatter of luminosities due to stochasti-

cally placing clusters over the star formation history of a population greatly exceeds

the effects of stochastically sampling a population with a stellar initial mass function.

This has profound implications for interpretations of star formation rates, deriving

initial mass functions, and the star formation rate distribution of the universe.

We also explore the statistics of luminosities of clusters themselves, deriving

an analytical method (CLOC) for calculating the full distribution of cluster order

statistics roughly one billion times faster than a suite of Monte Carlo simulations.

This giant leap forward in speed provides the groundwork for a previously impossible

robust exploration of the relevant parameter space (e.g. dust opacity distributions,

cluster mass function shape and cutoffs, and cluster disruption parameters).
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Chapter 1

Introduction

As astronomers, our fundamental tool for discovery and exploration is the

telescope. This allows us to see celestial objects through the light that they emit. In

the visible wavelengths of light, the universe is dominated by the radiation emitted

by stars. Unfortunately, nearly all of these observations are unresolved, meaning

that the light from many (sometimes millions, billions, or even trillions) of stars is

blended together. In these jumbled systems, we cannot directly infer any physical

properties (such as mass, star formation history, or stellar mass distribution). We

are stuck having to tease information out of this ensemble of stars.

In order to interpret these systems, we turn to models. To begin, we

start with the fundamental unit of galaxies: stars. Stars are believed to be nearly

entirely determined by their mass which determines the size, temperature, lifetime,

brightness, spectral energy distribution, evolution, and all other physical properties

of the star. The metallicity of material that makes up the star has second order

effects and, in rare cases, interacting multiples of stars can greatly influence the

evolution of the star. However, one can largely think of stars as belonging to a main

sequence, a one dimensional family of objects.

We have built up libraries of the trajectories of stars of different masses

through time. These tracks follow the physical properties of stars as they evolve.

When combined with models for the stellar surfaces that arise as a function of their

stellar structure, we can determine the observational properties of these stars.

However, these models only account for the evolution of individual stars.

In order to account for a population or stars, we need to know how the stars are

1



distributed in both mass and age. Surprisingly, the distribution of the initial masses

of stars (or initial mass function: IMF) is remarkably consistent everywhere we are

capable of directly checking (although many indirect methods report often conflict-

ing variations in the IMF, these variations have never been widely accepted by the

community). Massive stars thus have a well-quantified trend of being significantly

less common than lighter stars. Once this distribution is chosen, one needs simply

to fill a stellar population with stars accordingly. The distribution of ages is signifi-

cantly more complex as the physical properties and environment of each population

can have significant effects on the occurrence of stars being born. Some populations,

such as globular clusters, were born nearly simultaneously while others continuously

form at a constant rate and still others were marked by dramatic bursty episodes

of greatly enhanced star formation normally attributed to considerable events in

the dynamical history of these systems (such as gravitational instabilities or galaxy

mergers).

Motivated by computational limitations, the standard approach to combine

models of single stars to composite populations of an ensemble of stars has been one

of approximation. By determining the properties of an average star (weighted by the

choice of stellar initial mass function) as a function of its age, one needs simply to

scale these luminosity by a factor corresponding to how many stars are present (i.e.

the mass of the stellar population). Then one combines these average stars at each

age weighted by the star formation history in order determine the luminosity of the

population. Thus these methods spread fractional pieces of stars throughout time

and create a one-to-one relation between a stellar population’s star formation history

and its luminosity. These techniques are known as point-mass approximations as

they assume that all of the probability for the luminosity resides at a value for each

mass.

The errors arise because stars do not form in fractional amounts. Stars

form discretely. For example, a small enough population might not have any of the

most massive stars. Since the luminosity of stars is extremely sensitive to their mass

(with the proportionality of light to mass being highly superlinear), this means that

even the lack of a few of the most massive stars can profoundly impact its luminosity.

Thus some clusters will be brighter and some dimmer even if they have the same

mass. The effects of deviating from a one-to-one relation are called stochastic. These
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issues led several groups to develop Monte Carlo methods for building up composite

stellar populations. This approach is much more computationally expensive as it

requires that every population follows the evolution of each individual star, however

it properly accounts for the true distribution of masses within a population. SLUG ,

which is the code that forms the backbone of this thesis, is one such code (presented

in chapter 2).

Aside from being extremely fast and having dedicated significant resources

to a useful user interface, SLUGdid something novel that led to it being of signif-

icant scientific impact. It allowed for a clustering of stars in time. Observations

and theoretical simulations of the turbulent environments in which stars formed

strongly indicated that stars form in bursts that are collocated in space and time,

but SLUGwas the first to include these effects and bring attention to them. This

clustering, leads to an enhanced stochastic populating of the star formation history

with stars (rather than a smooth stream of stars, stars are formed in small episodic

bursts). In fact, once clustering was accounted for, stochasticity in populating the

star formation history is actually greatly dominant over traditionally considering

IMF sampling stochasticity. These realizations have profound impact on the inter-

pretation of stellar properties, most dramatically the star formation rates of observed

galaxies (discussed in detail in chapter 3).

SLUG , while comparatively fast, was too slow to perform statistical stud-

ies of massive populations of stars with varying clustering parameters. Seeking to

improve the capability to constrain the clustering properties that formed the key

insight of SLUG , we turned one of the most well studied star cluster relations, the

correlation between star formation rate and most luminous cluster (the Ṁ⋆ − L1

relation). It was prohibitively expensive to consider running SLUGmodels for a sci-

entifically interesting region of parameter space. This was because each realization

of the relation required millions of galaxies, each with billions of stars.

Thus we turned to an analytic method that after a few reasonable assump-

tions, allowed us to leverage properties of the distributions of the luminosities to

calculate distributions of the Ṁ⋆ − L1relation roughly a billion times faster than

SLUG could do. This formed the basis of the CLOC tool that makes up the last chap-

ter of this thesis (presented in chapter 4). This great speed increase, allows an

unprecedented exploration of the relevant parameters that affect observations.
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Chapter 2

SLUG - Stochastically Lighting

Up Galaxies: Methods and

Validating Tests

The effects of stochasticity on the luminosities of stellar populations are an

often neglected but crucial element for understanding populations in the low mass

or low star formation rate regime. To address this issue, we present SLUG, a new

code to “Stochastically Light Up Galaxies”. SLUG synthesizes stellar populations

using a Monte Carlo technique that properly treats stochastic sampling including

the effects of clustering, the stellar initial mass function, star formation history,

stellar evolution, and cluster disruption. This code produces many useful outputs,

such as i) catalogs of star clusters and their properties, such as their stellar initial

mass distributions and their photometric properties in a variety of filters, ii) two

dimensional histograms of color-magnitude diagrams of every star in the simulation,

iii) and the photometric properties of field stars and the integrated photometry of

the entire simulated galaxy. After presenting the SLUG algorithm in detail, we val-

idate the code through comparisons with starburst99 in the well-sampled regime,

and with observed photometry of Milky Way clusters. Finally, we demonstrate

the SLUG’s capabilities by presenting outputs in the stochastic regime. SLUG is

publicly distributed through the website http://sites.google.com/site/runslug/.
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2.1 Introduction

Fundamental progress in understanding the properties of galaxies, star

clusters and stellar populations comes from the comparisons between the observed

and synthetic photometry derived from stellar evolution codes. It has become com-

mon practice to infer properties such as star formation rate (SFR), star formation

history (SFH), age, metallicity, redshift, and stellar mass from photometry. Despite

the limits of theoretical modeling of stellar populations (such as uncertainties with

dust, stellar evolution, and the stellar initial mass function [IMF]; see Conroy et al.

2009, 2010; Conroy & Gunn 2010) synthetic libraries have reached a degree of preci-

sion that allows accurate estimates of these parameters – although sometimes with

degeneracy – in massive galaxies and clusters.

However, observations reveal a higher complexity in lower mass systems

where scaling relations which apply to more massive systems cannot be trivially

extrapolated (e.g., Lee et al., 2007; Weisz et al., 2008). Moreover, in lower mass

systems, the limited number of stars that are present render these systems incon-

sistent with the predictions of most of the currently available codes for synthetic

photometry (such as starburst99 [Leitherer et al. SB99; 1999]; PEGASE [Fioc &

Rocca-Volmerange 1997]; or GALEV [Kotulla et al. 2009]). This is because these

stellar population models predict only the mean luminosities in given bands, assum-

ing many realizations of the populations. In reality, the individual realizations may

have significant scatter about these mean luminosities. For this reason, it is safe to

compare them to individual observations only when the coeval stellar populations

being observed are quite large. Violation of this last condition leads to stochastic

variations in the photometric properties, but these codes are not designed to fully

capture them.

For example in globular clusters, some of the simplest observed stellar

populations, failure to account for sampling effects can lead to a significant error in

the estimated contributions of blue horizontal branch and AGB stars to the inte-

grated light. As a result, correct estimates of globular cluster ages and metallicities

based on their integrated light are possible only if one correctly accounts for this

stochasticity (Brocato et al., 1999; Colucci et al., 2011).

Moreover, in weakly star forming regions, stochastic effects can mimic those
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of a varying IMF. Indeed, recent observations in the low SFR regime have led to

serious consideration of a varying IMF (Pflamm-Altenburg & Kroupa, 2008; Hov-

ersten & Glazebrook, 2008; Meurer et al., 2009; Lee et al., 2009). However a fully

self-consistent model of stochasticity, allowing for a range of parameters such as

differing degrees of stellar clustering, metallicities, stellar tracks, input IMFs and

initial cluster mass functions (ICMFs), and SFHs has not been available to test the

null hypothesis of a non-varying but stochastically sampled IMF.

These considerations apply not only to the dwarf galaxies studied by Lee

et al. (2009) but also to the outer regions of galaxies such as XUV disks (Boissier

et al., 2007a; Thilker et al., 2007) and outlying HII regions (Werk et al., 2008;

Gogarten et al., 2009) where the stochasticity becomes crucial in the interpretation

of inferred SFRs and SFHs.

While the number of studies that use Monte Carlo approaches to address

problems on scales of clusters and galaxies is growing (e.g., Raimondo et al., 2005;

Popescu & Hanson, 2009a; Silva-Villa & Larsen, 2011; Fouesneau & Lançon, 2010;

Eldridge, 2012), a general purpose tool to study photometry in clusters and galaxies

has not previously been available. To fill this need, we have created SLUG, a code

that allows proper study of the stochastic star formation regime at a range of scales

from individual star clusters to entire galaxies. SLUG provides a variety of tools

for studying the stochastic regime, such as the ability to create catalogs of clusters

including their individual IMFs and photometric properties, color-magnitude dia-

grams (CMDs) of entire galaxies where we keep track of the photometry of every

star, as well as integrated photometry of entire composite stellar populations.

This paper, the first of a series, focuses on the methods used in the code

along with several tests to demonstrate that we are reliably reproducing observations

and predictions from other codes for synthetic photometry. We then demonstrate

the use of this code in the stochastic regime. In a companion paper (Fumagalli et al.,

2011b), we use SLUG to show that, once random sampling is included, a stochastic

non-varying IMF can reproduce the observed variation of the Hα/FUV ratio in

dwarf galaxies, without resorting to modifications of the IMF. In a the second paper

of the series (da Silva et al in prep.) we will explore in detail the implications of

stochastic star formation with clustering. Further work will apply this code to a

variety of astrophysical questions, such as understanding SFR calibrations in the
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stochastic regime and further study of other claims of IMF variation.

The layout of the paper is as follows: §2.2 presents an introduction to

stochasticity and its effects on the luminosity of stellar populations; §2.3 gives a

detailed description of the SLUG algorithm; §2.4 discusses various tests of the code;

§2.5 shows a presentation of the code’s outputs in the stochastic regime; finally; §3.5

summarizes the results.

2.2 What is Stochasticity?

Many astrophysical studies require creation of synthetic photometry of

galaxies and other collections of stars in order to compare with observations. In this

section we present a discussion of the various effects of stochasticity and the regimes

in which they are important.

2.2.1 Coeval Stellar Populations

The standard procedure for calculating the luminosity from a coeval pop-

ulation of stars used by the most popular implementations (such as SB99) is as

follows (Tinsley, 1980; Scalo, 1986).

To find the mean luminosity of a coeval population of stars with initial mass

M (i.e. mass at birth, before any mass loss due to stellar evolution) in some band

β at a time t after formation (Lβ,coeval(t)), one simply integrates the luminosity of

each star in that band as a function of the initial stellar mass m and time (Lβ(m, t)),

weighting by the distribution of initial stellar masses (i.e. the IMF) dN/dm:

Lβ,coeval(t) =

(

M

M⊙

)
∫ mmax

mmin

Lβ(m, t)
dN

dm
dm, (2.1)

where mmin and mmax are the minimum and maximum initial stellar masses al-

lowed by the IMF, and we normalize the IMF such that
∫

m(dN/dm) dm = 1 M⊙.

Note that the mean total luminosity simply scales linearly with the initial mass of

the stellar population. However, for small stellar populations, any individual set of

stars drawn from the given mass distribution may have a luminosity that deviates

significantly from the mean. This is because each realization of a given mass M is

built up with a different sampling of stellar masses which, due to the non-linear de-
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pendence of luminosity on stellar mass, yields a different luminosity. For example, if

one realization of a stellar population with a total mass of 20 M⊙ consists of one 20

M⊙ star, its total luminosity will be quite different than if the same population were

composed of twenty 1 M⊙ stars. We call this type of stochastic process sampling

stochasticity. When stochastic sampling is important, the distribution of luminosi-

ties can be both very broad and highly asymmetric, and so it becomes important

to know the shape of the luminosity distribution as well as its mean.

One of the more significant manifestations of sampling stochasticity is the

apparent undersampling of the upper end of the IMF. Since the IMF is steeply

declining with increasing stellar mass, it is improbable that a low mass population

will contain a massive star. As a result, the IMF in a low mass population with few

stars can often appear truncated and less luminous than a fully-sampled assumption

would have predicted1. When considering young clusters, those that are not well-

populated at the upper end of the IMF can appear much less luminous since the

luminosity dependence on mass is much steeper than the slope of the IMF, resulting

in the majority of the light being produced by the most massive stars.

One can roughly estimate the mass below which this effect is significant

by calculating the expectation value of obtaining a star above a given mass. We do

so following the formalism of Elmegreen (2000), who find that the total mass (M)

required to expect a single star above a mass m is

M ∼ 3× 103
(

m

100M⊙

)1.35

. (2.2)

This statement is clearly dependent on one’s choice of IMF. Elmegreen (2000) uses

a Salpeter IMF with a lower limit of 0.3 M⊙ and no upper limit. (However if one

imposes an upper limit as done by Weidner & Kroupa 2004 the result does not

change significantly.) This result implies that in order to reasonably expect even

a single 120 M⊙ star2, one would need to sample approximately 104M⊙ ≡ Mtrunc.

Thus, one can ignore this apparent pseudo truncation and other sampling effects

1Extremely rare drawings of the IMF at low masses can also produce pseudo top-heavy IMFs
which are overly luminous per unit mass.

2Due to limitations of stellar evolutionary tracks, this is the highest stellar mass SLUG can
model and is a reasonable guess for the highly uncertain absolute stellar mass limit. While some
(e.g., Figer, 2005) suggest a value of ∼ 120− 150M⊙ others (e.g., Crowther et al., 2010) suggest it
may be as high as 300 M⊙.
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only for coeval populations with masses ≫ Mtrunc. (Additional reference on the

limits of stochastic sampling including stellar evolution, can be found in Cerviño

& Luridiana 2006, 2004. For specific considerations to Hα luminosity [one of the

features of a stellar population most sensitive to stochasticity], see Cerviño et al.

2003.)

Another manner in which stochastic sampling can manifest in coeval pop-

ulations is for stars going through particularly short-lived and luminous phases of

evolution after they leave the main sequence (e.g., AGB and blue horizontal branch

stars Buzzoni, 1989; Lançon & Mouhcine, 2000; Lançon, 2011; Fouesneau & Lançon,

2010). Since these phases are short, only a very narrow range of masses is undergo-

ing one of them at any given time. Thus the exact sampling within that mass range

can have a significant impact on the number of stars in that phase. As a result,

a non-infinite population of stars can have additional random scatter in luminosity

even if M > Mtrunc. This effect is more important in populations with little ongo-

ing star formation relative to their stellar mass (otherwise new stars dominate the

photometric properties of the population), at specific ages when these post-main

sequence populations contribute significantly to the luminosity of the population

(Colucci et al., 2011).

2.2.2 Composite Stellar Populations

In order to characterize a more complicated star formation history, the

next step is to integrate over the coeval populations discussed above to find the

luminosity of all stars in a given band at a time τ ,

Lβ,total(τ) =

∫ τ

−∞

SFR(t)

M⊙
Lβ,coeval(τ − t)dt, (2.3)

where SFR(t) is the star formation rate as a function of time.

In order to treat such models as represenative, two conditions must be

met: (1) each of the summed coeval populations is large enough to ignore the effects

of sampling stochasticity and (2) the SFR is continuously sampled as well. These

conditions can quickly break down for sufficiently low SFRs.

To illustrate this point, consider a galaxy forming stars at a constant rate.

In order for stochastic sampling effects to be negligible within some time interval
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dt, there need to be at least Mtrunc worth of stars formed in that interval. For

the SFR to be considered reasonably well sampled, dt must be much smaller than

the evolutionary timescales of any of the stars, which are ≈ 106 yr for the massive

stars that generally dominate the light in an actively star-forming system. Thus the

condition for stochastic sampling effects to be negligible is that

dt =
Mtrunc

SFR
≪ 106 yr, (2.4)

implying that this condition is met only for SFRs consistently ≫ 10−2M⊙ yr−1 ≡

SFRtemp. However, this temporal stochasticity is amplified when one considers that

stars are believed to be formed in discrete collections known as clusters. As a result,

the clumping in time of star formation in clusters can produce stochastic effects

even in regions with SFRs higher than SFRtemp. In this case the characteristic mass

in Equation ?? is replaced with a mass characteristic of the clusters being drawn

(discussed further in da Silva in prep.; Fumagalli et al. 2011b).

The conditions required to ignore the effects of stochasticity break down

in a variety of astrophysical environments such as dwarf galaxies (e.g., Lee et al.,

2009), low star formation rate regions in the outskirts of galaxies (e.g., Boissier et al.,

2007b; Fumagalli & Gavazzi, 2008; Bigiel et al., 2010), and low surface brightness

galaxies (e.g., Boissier et al., 2008).

2.3 Technique

2.3.1 Overview

Here we present a brief overview of the code while we present each step in

detail in the subsequent sections.

SLUG simulates star formation according to the scheme presented in Fig-

ure 2.1. We create collections of star clusters obeying a user-defined ICMF (which

can include a given mass fraction of stars not formed in clusters), SFH, IMF, and

choice of stellar evolutionary tracks. This collection defines a “galaxy”. We do not

currently include any effects of chemical evolution. A description of the parameters

that users can vary is provided in Table 2.1 and will be described in the following

sections.
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These galaxies are built up (§2.3.2) by first drawing the age of the cluster

from a distribution defined by the given SFH. The mass of the cluster is drawn from

the ICMF. Next, the cluster’s mass is then filled up with stars according to an IMF.

Each of the stars within the cluster is evolved using a stellar evolutionary track

combined with a model spectral energy distribution (SED) to determine a variety

of integrated fluxes corresponding to commonly used photometric filters (§2.3.3).

At a given set of time steps, these fluxes are summed over each star cluster.

The clusters are then disrupted according to the prescription of Fall et al. (2009a).

Disrupted clusters have their fluxes added to a “field” population while surviving

clusters have their properties stored individually.

The code repeats these operations until a stellar mass equal to the integral

of the provided SFH is created. The run time of the code is roughly

trun ∼ 4s + (60s) (1 + 6.6[1 − fc])

(

∫ tmax

0 SFR(t)dt

107M⊙

)

(

timesteps

5

)

×

(

No. filters

2

)(

cpu Speed

2.33 GHz

)

(2.5)

where fc is the fraction of stars in clusters and tmax is the maximum run time of

the simulation.

The code outputs a variety of files that keep track of the properties of the

stars, clusters, and total integrated stellar populations. Table 2.2 provides a short

description of each available output file. All outputs are parsed and transformed

into binary FITS tables.

The code is open source and written in C++ with wrapping and parsing

routines written in IDL. This entire process can be controlled through an IDL graph-

ical user interface (see Figure 2.2) or either the UNIX or IDL command lines. The

IDL routines are also available wrapped in packages for use with the IDL virtual

machine3 for those without IDL licenses. SLUG is available for download with an up-

to-date manual, visit the SLUG website at http://sites.google.com/site/runslug/.

3The IDL virtual machine is freely available from http://www.ittvis.com/language/en-
us/productsservices/idl/idlmodules/idlvirtualmachine.aspx
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2.3.2 Cluster Creation

Most stars are thought to be born in star clusters (Lada & Lada, 2003)

and the distribution of star cluster masses appears to obey a power law distribution,

where observations (e.g., Zhang & Fall, 1999a; Lada & Lada, 2003; Fall et al., 2009b;

Chandar et al., 2010a) and theory (e.g., Fall et al., 2010) suggest that the index (β) of

the power law dN/dM ∝M−β is approximately 2. SLUG allows for both clustered

and unclustered star formation. The user can choose what fraction of the stellar

mass is formed in star clusters. If the code is forming clusters (fc > 0), the ICMF’s

power law slope as well as its upper and lower bounds can be varied. If unclustered

star formation is desired (fc = 0), the stars’ masses are drawn individually from an

IMF and treated as a disrupted “cluster” of one star for the remainder of the code.

The initial masses of stars are drawn from an IMF. Choices of IMF4 cur-

rently are Chabrier (2003), Kroupa (2001), Salpeter (1955), a user-defined arbitrary

power law, and the recently proposed IGIMF (Kroupa & Weidner, 2003; Pflamm-

Altenburg & Kroupa, 2008). While the Chabrier, Kroupa, Salpeter, and power law

IMFs are implemented as a standard probability density function of stellar masses,

the IGIMF has additional features that require different treatment (see Appendix

2.8).

Regardless of the choice of IMF, we draw stars until the total mass of the

star cluster is built up. Since the random distribution of stars never exactly equals

the mass of the cluster, a question arises as to whether to keep the last star added.

This last star increases the mass of the cluster above the cluster mass drawn from

the ICMF. We determine whether or not to keep that star in the cluster based on

whether keeping the star in makes the total mass of stars closer to the mass drawn

from the ICMF than leaving it out5.

Independent of its mass, the age of the cluster relative to the galaxy is

assigned in a probabilistic manner weighted by the SFH (which can be arbitrary)

such that the SFH is reproduced on average. This is analogous to how the full

IMF is reproduced on average when one combines many realizations of clusters,

but individual realizations can be top-heavy or appear truncated. Note that this

4IMFs are truncated to 0.08 − 120M⊙ due to the lack of stellar tracks outside that range.
5The effects of different sampling methods and their dependence on the ICMF is studied in

detail by Haas & Anders (2010a). Our method is identical to their ‘stop-nearest’ method.
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method produces a scatter in the SFHs for even a given “constant” SFR. Thus

SLUG’s definition of a galaxy with a constant SFR is not a galaxy where the SFR

is instantaneously constant at all times 6, but rather a galaxy that produces a mass

of stars over a time dt equal to SFR×dt which is distributed in clusters whose ages

are drawn from a uniform distribution. This interpretation of what a SFR is and

its implications is discussed in more detail in da Silva et al. (in prep.).

Clusters are born until the total mass of stars formed is equal to the integral

of the SFH. As with the problem of populating a cluster with stars, a galaxy will

never be filled to exactly its given mass with an integer number of clusters. Therefore

we apply the same condition for populating the galaxy as we do for the clusters: we

add clusters until we exceed the galaxy mass (defined as the integral of the SFH) and

keep the final cluster only if the updated total galaxy mass is closer to the desired

value. As a result the average SFR over the entire simulation of a particular galaxy

can be higher or lower than the input value. This effect is small for most regimes,

but very rare drawings of the ICMF at low SFRs can produce mild departures. We

emphasize that this is not the effect of any error associated with the code but rather

is the necessary result of our interpretation of what a SFR means. This behavior

is analogous to the situation that arises when drawing from the IMF: the total

mass of stars drawn will never exactly match the target cluster mass, and for rare

drawings it is possible that the actual cluster mass will differ from the target mass

by a non-trivial fraction.

We demonstrate the results of this procedure in Figure 2.3. While lower

average SFRs tend to produce larger fractional scatter in the instantaneous SFR,

significant scatter remains until the SFRs exceed 10 M⊙ yr−1. This scatter is a

direct result of the finite size of clusters. This type of “bursty” behavior may be

responsible for the observed bursty SFHs of dwarf galaxies (Weisz et al., 2012a). To

clarify with an example, consider that a 107M⊙ cluster (when averaged over 1 Myr

similarly to the curves shown in Figure 2.3), will appear as a deviant peak for all but

the highest SFRs, where the contribution of that individual cluster is drowned out by

enough other clusters. Of course averaging over a larger time interval (δt) reduces

6A constant SFR cannot be instantaneously constant because stars form in discrete units of
mass. For example, when a star is born, the instantaneous SFR is infinite. Thus we must turn to
a more probabilistic interpretation of the SFR.
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the influence of any single cluster, and in the limit of averaging over arbitrarily

large intervals the difference between the average and input SFR (∆avg−input) must

approach zero. The rate at which ∆avg−input decreases as a function of δt is a

function of the ICMF.

We note that in this release of the code all stars in a cluster are treated

as having identically the same age, which may not be the case (e.g., see Bernasconi

& Maeder, 1996). While observations suggest a scatter of a several Myr (Palla &

Stahler, 1999; Jeffries, 2007; Hosokawa et al., 2011), the mass dependence of this

scatter is unclear. Given these uncertainties, and that the intracluster age scatter

is at most a few Myr (typically small compared to the cluster age distribution), we

chose to neglect this effect for now.

Example of Cluster Creation Algorithm

To illustrate our procedure for forming stars in clusters, we now give an

example. Suppose a user requests a SFH consisting of a constant SFR of 2 M⊙ yr−1

for 106 yr, with an ICMF restricted to the mass range 105 − 107 M⊙. In response,

the code starts by determining an age for the first cluster. This age is drawn from a

distribution that is exactly equal to the normalized SFH. In this example, the SFR

is constant so the SFH is flat and hence the distribution from which the the age is

drawn is simply a uniform probability from 0 to 106 yr. Suppose the code draws

an age of 5 × 105 yr for the first cluster. Once the age has been determined, the

code then draws a cluster mass from the ICMF. Suppose this mass turns out to

be 1.6 × 106 M⊙. The code then populates that cluster with stars until the total

mass of stars is greater than 1.6× 106 M⊙. Since the total mass of stars formed at

this point does not exceed the integral of the SFH (
∫ 106 yr
0 2M⊙ yr−1 dt = 2 × 106

M⊙), the code draws another cluster. Suppose that this time the draw results in

a cluster age of 1 × 105 yr and a cluster mass of 5 × 105 M⊙. At this point the

code has created a total mass in clusters that is greater than the integral of the

SFR (1.6 × 106M⊙ + 5× 105M⊙ = 2.1 × 106M⊙ > 2 × 106M⊙). Because the total

stellar mass if the code keeps the last cluster (2.1× 106M⊙) is closer to the integral

of the SFR (2× 106M⊙) than if it discards the last cluster (1.6× 106 M⊙), the code

keeps the last cluster. It then fills that cluster from the IMF. At this point the code
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terminates, having drawn two clusters of mass 1.6 × 106 M⊙ and 5 × 105 M⊙ and

ages of 5× 105 yr and 1× 105 yr.

2.3.3 Stellar Tracks, SEDs, and Broad Band Photometry

Given the mass and age of each star, we need to determine its properties for

a variety of observables. We use the same algorithms adopted by SB99 (Leitherer

et al., 1999; Vázquez & Leitherer, 2005) to create a set of tables over which SLUG

interpolates the stellar photometry. These tables are constructed in advance to

reduce the run time. The available tracks and SEDs are listed in Table 2.3.

The first step in SLUG is to determine the physical properties of each star.

To this end, we make use of a variety of stellar evolutionary models. Modifying the

SB99 source code, we were able to obtain the full range of stellar tracks available

to SB99 (Padova and Geneva; see Table 2.3). In the future we plan to implement

a wider range of stellar tracks including those from Eldridge & Stanway (2009) and

the BaSTI library (Pietrinferni et al., 2007; Cordier et al., 2007). We supplement the

Geneva tracks with the Padova+AGB tracks for stars in the mass range 0.15-0.8M⊙.

These models provide luminosities, gravities, chemical compositions, and effective

temperatures at discrete intervals in the evolution of a discrete number of stellar

masses. We then need to map these physical properties to stellar atmospheres in

order to estimate the spectral energy distributions of the stars. SLUG allows users to

choose from one of five possible SB99 algorithms for modeling the atmospheres. One

possible model makes use of the Schmutz (1998) atmospheres which are dependent

on the stellar wind model. For these models we implement all four prescriptions

of stellar winds available in SB99 (see Table 2.3). It is important to note that the

SB99 algorithms match SEDs to tracks with a nearest neighbor approach and not

through interpolation. Therefore there can be some mild discreteness in the output

SEDs. Future work will include removal of this effect.

With SEDs in hand, we can convolve with filters to determine the pho-

tometry of each point in our stellar tracks. For this step we include the effects of

nebular continuum (free-free, free-bound, and 2 photon processes) as implemented

in SB99, but neglect nebular line emission for this first release of the code. (For a

discussion of the importance of nebular continuum for the SEDs, see Reines et al.

15



2010, Leitherer & Heckman 1995, and Mollá et al. 2009.) The full list of available

filters is presented in Table 2.4. We also integrate the SED to determine the bolo-

metric luminosity as well as to calculate Q(H0), the number of hydrogen ionizing

photons emitted per second. One can convert Q(H0) to Hα luminosity with a simple

conversion assuming case B recombination. Following the notation of Osterbrock &

Ferland 2006,

LHα = (1− fesc)(1− fdust)Q(H0)

(

αeff
Hα

αB

)

hνHα (2.6)

≈ 1.37 × 10−12(1− fesc)(1 − fdust)Q(H0) ergs/s (2.7)

where fesc is the escape fraction (poorly constrained but thought to be between 0.05

[Boselli et al. 2009] and 0.4 [Hirashita et al. 2003]) and fdust represents the fraction

of of ionizing photons absorbed by dust grains (e.g., see appendix of McKee &

Williams, 1997, who suggest a value of 0.37). To better characterize the ionizing

luminosity we also keep track of Q(He0) and Q(He1) which represent the numbers

of ionizing photons in the HeI and HeII continua respectively.

The above steps allow us to create a discrete two-dimensional table for each

flux band where one axis represents stellar mass, the other represents time, and the

value of the table is the logarithm of the flux in that band at the appropriate mass

and time. Our tables are created through use of the isochrone synthesis method

such that our results are stable against the numerical issues that arise from a fixed

mass approach (Charlot & Bruzual, 1991).

2.3.4 Evaluating the Stellar Properties

To determine the properties of a given star of any mass at any given time,

we first determine if the star is still ‘alive’. This is done by an interpolation in time

to find the minimum mass of a dead star (mdeath) at a given time according to our

stellar evolution models (where we call a star “dead” if it no longer has entries in

our stellar tracks). If the star is less massive than mdeath, we interpolate our model

tables to determine the flux in a given filter to a precision of 0.01 dex .

For computational speed, there are a variety of approximations and re-

strictions we are forced to implement. The current scheme only allows ages up to
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1 Gyr for the stellar tracks (to be expanded in later releases of the code). We do

not evolve stars less massive than 0.9 M⊙ (a number which can be changed by the

user). These stars do not evolve past the main sequence for the current maximum

age of the code of 1 Gyr, so these stars are treated as having their zero-age main

sequence (ZAMS) properties at all times. Due to limitations of the stellar tracks, we

treat the photometric properties of all stars less massive than 0.156 M⊙ identically

to those of 0.156 M⊙ stars. For many purposes, more massive stars dominate the

light in the bands such that this approximation is reasonable (but caution is advised

for redder bands dominated by older populations). The tracks also impose a 120M⊙

upper mass limit on stars.

Currently, we neglect the effects of binary stellar evolution (see Eldridge

& Stanway, 2009; van Bever & Vanbeveren, 1998; Dionne & Robert, 2006), which

may have an impact on the derived results by producing a bluer population with a

reduced number of red supergiants and increased age range of Wolf-Rayet stars.

2.3.5 Cluster Disruption

If the user chooses to form stars in star clusters, we randomly disrupt our

clusters in a mass independent way such that dN/dτ ∝ τ−1 (following Fall et al.,

2009a). We start cluster disruption 1 Myr after the cluster forms. This results in

90% of star clusters being disrupted for each factor of 10 in age after 1 Myr. We

continue to calculate the photometry for stars in disrupted clusters, and we include

their contribution in our calculations of the integrated properties of the galaxy, as

well as in a set of ”field” variables and outputs.

2.4 Validating Tests

In this section we present a variety of tests to validate the outputs of SLUG.

For these tests we make use of a set of fiducial parameters presented in Table 2.5

unless otherwise noted 7. To emphasize that SLUG can be applied at different

regimes, we arrange these tests in order of scale starting with individual clusters

and then considering integrated properties of entire galaxies in the well-sampled

7Since we aim to test SLUG rather than to perform a study of the effects that the multiple
parameters have on the luminosity distributions, we choose widely adopted vlaues.
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regime.

2.4.1 Photometry of Clusters

To demonstrate that SLUG reproduces properties of observed clusters, we

turn to the catalog of young star clusters compiled in Larsen (1999). To reproduce

the clusters’ photometry we modify our fiducial IMF to extend down to 0.08 M⊙

and run a SLUG model with a SFR of 1M⊙ yr−1 for 500 Myr, evaluated every 10

Myr. Note that the SFR does not directly affect the ICMF or the properties of

the clusters, only the number of clusters in existence at a given time. We show the

results of this exercise in Figure 2.4 where we find remarkable agreement between

the models and the data. As is clear from the figure, we are able to reproduce both

the location and spread of most of the observed data. Clusters that fall outside of

the locus of the SLUG models can easily be reproduced when one accounts for a

modest amount of reddening (see reddening vector).

2.4.2 Cluster Birthline

Another test of the photometry of clusters is to compare their Hα lumi-

nosity to their bolometric luminosity. Work by Corbelli et al. (2009) has shown

that newly born clusters lie along a birthline in this parameter space. They found

that the distribution of star clusters was incompatible with a truncation of the IMF

within clusters determined by the mass of the clusters are prescribed by Weidner

& Kroupa (2006). In Fig. 2.5 we compare the same models as in Section 2.4.1 (as-

suming fesc = 0 and fdust = 0) with those of Corbelli et al. (2009), and find good

agreement without altering the IMF. Our theoretical predictions differ slightly in the

tilt of the locus of points from those by Corbelli et al. (2009), since we characterize

the properties of our stars in a different manner (making use of stellar tracks rather

than fitting formulae). To better demonstrate the origin of the birthline we also

make use of SLUG’s ability to keep track of the IMF of each individual cluster (see

bottom panel of Figure 2.5). We group clusters by their location in this diagram and

sum all of their IMFs together to produce a mean IMF for each region. Here we can

see that the birthline (from left to right) is a sequence of clusters with progressively

more well-sampled upper ends of the IMF. Extremely rare deviants exist below the
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birthline where more extremely massive (> 100M⊙) stars are drawn than average.

Note that these rare clusters consisting of essentially isolated O stars have been

reported in the Milky Way (de Wit et al., 2004, 2005) and the SMC (Oey et al.,

2004; Lamb et al., 2010) in numbers consistent with stochastic sampling of the IMF.

This prediction of the preferential combinations of IMF realizations lying along the

cluster birthline will be testable with future observations and is an example of the

predictive power and insight provided by SLUG.

2.4.3 Comparison with SB99

A third obvious comparison for SLUG is SB99 itself. Being widely used,

SB99 serves as a benchmark for our code. Indeed, one of the motivations for making

use of the same tracks and SED algorithms as SB99 is that our code should be able

to exactly reproduce SB99 in the well-sampled regime. To that end we now present

a variety of tests where we compare to SB99 to demonstrate to demonstrate that

we can reproduce their results in the regime where neither sampling nor temporal

stochasticity are important.

To compare the outputs of both SB99 and SLUG, we choose an instan-

taneous burst of star formation to demonstrate the matching of the codes in both

amplitude and time. We run a SB99 model similar to our fiducial model (i.e. IMF

slope of -2.35 from 1-120 M⊙, solar metallicity, Padova+AGB tracks, and Lej+Smi

SEDs [see Table 2.3 for definitions of these parameters]). To meaningfully compare

with SB99 we must choose SLUG input parameters such that we are evaluating

a population where SB99’s estimates of the mean are a valid model for the total

luminosity of the system. We therefore draw a very large instantaneous population

of 109M⊙. To nullify any possible effects of random truncations due to populating

the clusters, we ensure all clusters are very large by modifying the fiducial ICMF to

a restricted range (106 − 2× 106M⊙). Similar results are obtained if we simply turn

clustering off. We present the results in Figure 2.6. It is evident that we are accu-

rately able to reproduce SB99 in the well-sampled regime for integrated “galaxy”

properties. We match both the amplitude and time evolution in all photometric

bands.

This can also be seen by looking at the full SEDs. In Figure 2.7, we present
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photometry for all 15 of the flux bands available for SLUG and compare with the

spectra and integrated photometry produced by SB99 at a variety of time steps.

Again we are able to fully reproduce the photometric properties in the well-sampled

regime from FUV to K-band.

In both these tests, SLUG matches SB99 within 0.026 dex for all fluxes at

all times.

2.5 Stochasticity in Action

Having demonstrated that SLUG can reproduce realistic clusters as well as

reproduce SB99’s results, we now present outputs of SLUG in the stochastic regime.

2.5.1 Effects on Coeval Populations

Recent studies (e.g., Dalcanton et al., 2009) have demonstrated the wealth

of information that can be obtained using resolved color-magntiude diagrams (CMDs)

of stars within a galaxy. For comparison with such studies in the stochastic regime,

SLUG produces two-dimensional histograms for the user’s choice of filters. Such

diagrams allow us to directly characterize the effects of stochasticity in a coeval

population. In Figure 2.8, we compare two realizations of CMDs produced by SLUG

for a 105M⊙ instantaneous burst to the theoretical isochrones from which they are

produced. Aside from demonstrating we accurately reproduce the tracks, we are

able to see the effects of stochasticity in populating the rapid phases of evolution

differently in the two realizations. Note that SLUG is capable of producing such

diagrams for any given SFH.

2.5.2 Effects on Composite Populations

While individual clusters of stars can be treated as coeval, larger systems

are intrinsically built of composite populations. One of the most basic composite

populations one can consider is a galaxy forming stars at a constant star formation

rate. As discussed in Section 2.2.2, the value of the SFR will have a significant

impact on the effects of stochasticity.

To demonstrate the differences that stochasticity makes, we compare SLUG
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realizations to those of a well-sampled SB99 model. In Figure 2.9, we first examine

the luminosities for SFRs of 100, 500, and 1000 realizations of 1, 10−1, and 10−2

M⊙ yr−1 respectively. We use our fiducial values for the ICMF and cluster mass

fraction. For each SFR, we show the mean and median of the SLUG runs along

with the 5 and 95 percentiles.

First, we note that the agreement between the mean of the SLUG models

and the SB99 prediction of the mean again exhibits our ability to reproduce SB99’s

outputs.

However, one can clearly see an increase in fractional scatter as the SFR

decreases. This can be attributed to the more bursty SFHs which are the result of

the grouping of age in massive clusters. This scatter appears at higher SFRs than

predicted by our naive discussion in Section 2.2.2 as a direct result of the clustering.

In fact, nearly all of the scatter seen in Figure 2.9 is a result of the clustering

rather than sampling of the IMF in clusters. This is most clearly demonstrated

by Figure 2.10 which shows similar simulations but with completely unclustered

star formation. The figure presents the results of 100, 500, and 1000 realizations of

SFRs of 10−2, 10−3, and 10−4 M⊙ yr−1 respectively. Without clustering the 10−2

M⊙ yr−1 models have approximately an order of magnitude less scatter in the log

of the luminosity within the 5-95 percentile range. We see that the unclustered

stochastic effects behave as predicted in Section 2.2.2 where the fractional scatter is

small for SFRs ∼ 10−2 M⊙ yr−1 and quickly increases as the SFR decreases (also

discussed in Fumagalli et al., 2011b).

For a demonstration of the effects of clustering on the photometric prop-

erties of galaxies, we present the tracks of a random subset of individual stochastic

realizations of clustered star formation in Figure 2.11. One can see that the Q(H0)

curves are less uniform than the R luminosity. This is a direct result of the sensitiv-

ity of Q(H0) to the youngest, most massive stars. One can also see that the scatter

increases with decreasing SFR as expected. Of note is the evolution of the 4th from

the top simulation with SFR=10−2M⊙yr
−1 as it is marked by several significantly

large clusters which lead to a very “bursty” SFH. This is to be further discussed

in da Silva et al. (in prep.) where we elaborate on the effects of stochastic star

formation when one includes clusters.
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2.6 Summary

We introduce SLUG, a new code that correctly accounts for the effects of

stochasticity (with caveats discussed in the text) by populating galaxies with stars

and clusters of stars and then following their evolution using stellar evolutionary

tracks. Cluster disruption is taken into account and a variety of outputs are created.

We present a series of tests comparing SLUG to observations and other

theoretical predictions. SLUG is able to reproduce the photometric properties of

clusters from the Larsen (1999) catalog as well as the Corbelli et al. (2009) birthline.

It can also reproduce the results of SB99 in the well-sampled regime.

Finally we present SLUG outputs in the stochastic regime and demonstrate

the flexibility of the code to address a variety of astrophysical problems with its

variety of possible outputs.

SLUG is a publicly available code, and can be found at

http://sites.google.com/site/runslug/.
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2.8 Appendix: Implementation of IGIMF

The IGIMF theory (Kroupa & Weidner, 2003; Weidner et al., 2010b) is a

statement that (1) most (if not all) stars form in clusters, (2) the SFR controls the

upper cutoff of the ICMF, and (3) that each cluster’s mass changes the upper cutoff

of the IMF in that cluster. Thus the distribution of stars in a galaxy is not simply

drawn from the IMF, but is the result of of a joint distribution function of stars and

star clusters.

We implement the IGIMF following Weidner et al. (2010b). We use the

work of Pflamm-Altenburg & Kroupa (2008), Weidner & Kroupa (2005), and Wei-

dner et al. (2004a) to define the maximum cluster mass as

Mecl,max = 84793

(

〈SFR〉

M⊙ yr−1

)3/4

, (2.8)

where 〈SFR〉 is the time-average SFR. Thus the SFR affects the upper cut off of the

ICMF. We determine the average star formation rate over a time interval defined

by the user (fiducially 107 yr).

After a cluster mass has been drawn, we must adjust the upper cutoff of

the IMF that we use to draw stars for that cluster. The relation between maximum

stellar mass and cluster mass (mmax−Mecl) has been studied by Weidner & Kroupa

(2004) and Weidner et al. (2010a). Following their treatment, we solve a system of

equations numerically for mmax as a function of Mecl.

The first equation is simply a statement that the total cluster mass (Mecl) is

the integral of the distribution of masses (dNdm ) integrated from the lowest to highest

mass star in the cluster:

Mecl =

∫ mmax

mmin

m
dN

dm
dm. (2.9)

The next constraint is derived based on the statement that there is only one star

in the cluster with mass equal to mmax. Their choice of implementation of this
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statement is as follows8:

1 =

∫ mmax,⋆

mmax

dN

dm
dm (2.10)

where mmax,⋆ is the maximum stellar mass possible.

In the specific case of a Kroupa (2001) IMF, these equations reduce to the

following (taken from Weidner & Kroupa, 2004).

1 = k

[

(

mH

m0

)α1
(

m0

m1

)α2

mα3

1

(

m1−α3

max,∗

1− α3
−
m1−α3

max

1− α3

)]

(2.11)

Mcl

k
=

mα0

H

2− α0
(m2−α0

H −m2−α0

low ) +
mα1

H

2− α1
(m2−α1

0 −m2−α1

H )

+

(

mH

m0

)α2

mα2

0

2− α1
(m2−α2

1 −m2−α2

0 ) +

(

mH

m0

)α2 (m0

m1

)α2 mα3

1

2− α3
(m2−α3

max −m2−α3

0 )

(2.12)

where

α0 = +0.30, mlow = 0.01

α1 = +1.30, mH = 0.08

α2 = +2.30, m0 = 1.00

α3 = +2.35, mmax,∗ = 120

(2.13)

We fit a 6th order polynomial to the numerical solution to find:

log10mmax =

6
∑

i=0

ai(log10Mcl)
i (2.14)

where a=[ 1.449, -2.522, 2.055, -0.616, 0.0897, -0.00643, 0.000182].

We then use this upper mass limit to modify the standard Kroupa (2001)

IMF to fill in the stars for each cluster. Figure 2.12 demonstrates the result. One

can see that we are accurately applying the cutoff to the IMF in the IGIMF.

8Cerviño et al. (2010) have pointed out that this expression does not equate to the logical
statement mentioned above — it under-predicts the maximum mass in 63% of cases. In fact,
this formalism equates rather to the statement that the expectation value of stars in the interval
mmax − mmax,⋆ is equal to 1. However this is the standard formalism of the IGIMF, so it is the
formalism we implement.
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Table 2.1. Input Parameters

Parameter Description

Controlling the Physics

IMF stellar initial mass function; can choose
Kroupa, Salpeter, Chabrier, IGIMF, or
an arbitrary slope

ICMF initial cluster mass function, can change
slope, minimum and maximum mass

Stellar Evolutionary Tracks library of models used for stellar evolution
Metallicity metallicity of the stellar population
Stellar Atmosphere which scheme and models are used for SEDs
Stellar Wind Modela which wind model is used for SEDs
Fraction of stars in clusters mass fraction of stars formed in clusters

Controlling the Simulation

Maximum time how long the simulation is run
SFH can be arbitrary
Seed random seed used for simulation

Controlling Output

Time step time between code outputs
Fluxes choose which fluxes to output
Colors which colors to use for CMDs
CMD output parameters choice of number of bins and
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Table 2.1 (cont’d)

Parameter Description

range of color and luminosity for each CMD
Cluster output? set to print output for each cluster
IMF output? set to output IMF histograms for each cluster

a only applicable for Schmutz (1998) O star atmospheres in Leje-
une+Sch models (see Table 2.3)

Table 2.2. SLUG Output Files

Name Description

Histogram a 2d histogram of the user’s choice
of color-magnitude diagram(s)

of every star in the “galaxy” at each timestep
Cluster mass, fluxes most massive star born

in cluster, number of stars formed in cluster, and
age of each undisrupted cluster at each timestep

IMF a histogram of the IMF of each cluster
that appears in the Cluster file

Integral the total flux of the entire “galaxy”
at each timestep

Miscellaneous the total stellar mass actually formed,
as well as the actual SFH and ICMF of the simulation
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Table 2.3. Stellar Properties

Parameter Allowed Values

Tracks Geneva STDa, Geneva Highb, Padova STDc, Padova AGBd

Metallicitye Geneva: 0.001, 0.004, 0.008, 0.020, 0.040
Padova: 0.0004, 0.004, 0.008, 0.020, 0.50

SEDs Planckf, Lejeuneg, Lejeune+Schh, Lejeune+Smii, Pau+Smij

Wind Modelsk Maederl, Empiricalm, Theoreticalm, Elsonn

aCharbonnel et al. (1996, 1999)

bsame a, but for high mass stars use higher mass loss rate models from
Meynet et al. (1994)

cFagotto et al. (1994b,a) and references therein

dsame as c except use Padova+AGB implementation from Vázquez & Lei-
therer (2005)

esolar is 0.20

fsimple blackbody SED

gLejeune et al. (1997, 1998)

hsame as g, but for O stars use Schmutz (1998)

isame as g, but for O stars use the Smith et al. (2002) implementation of
the Hillier & Miller (1998)

jsame as i, but also include the Smith et al. (2002) implementation of
Pauldrach et al. (2001) atmospheres

konly relevant when using Schmutz (1998) atmosheres with Lejeune+Sch
models

lde Jager et al. (1988); Maeder & Meynet (1987); Maeder (1990)

mLeitherer et al. (1992)

nElson et al. (1989)

27



Table 2.4. Broad Band Filters

Filter Reference

NUV 1
FUV 1
u 2
g 2
r 2
i 2
z 2
J 3
H 3
K 3
U 4
B 4
V 4
R 4
I 4

Q(H0) 5
Q(He0) 5
Q(He1) 5
Lbol 6

1GALEX; Morris-
sey et al. (2005)

2SDSS; Fukugita
et al. (1996)

3Skrutskie et al.
(2006)

4Johnson-Cousins;
Appenzeller et al.
(1998)

5Obtained by inte-
grating SED blueward
of 912, 504, and 208
Å for Q(H0), Q(He0),
Q(He1) respectively.

6Given by stellar
evolutionary tracks.
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Table 2.5. Fiducial Inputs

Parameter Fiducial Value

Time step 106 yr
Maximum time 109 yr

IMF 1-120M⊙; slope=-2.35
ICMF 20− 107M⊙; slope=-2

Stellar Evolutionary Tracks Padova+AGB
Metallicity Solar; Z = 0.20

Stellar Atmosphere Lej+Smia

Fraction of stars in clusters 100%

aWhile the preferred SEDs for SB99 are the
Pau+Smi atmospheres, we find that the Pauldrach
models are far too discrete. Therefore while we pro-
vide the Pau+Smi atmospheres, we recommend the
Lej+Smi.

29



Figure 2.1 A schematic flow-chart describing the algorithm of the the SLUG code.
Note that for the case of unclustered star formation, the cluster mass is drawn from
the IMF and the population step is skipped as the single star is treated as part of a
disrupted cluster for the remainder of the code. Note this is updated from Fumagalli
et al. (2010).
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Figure 2.2 IDL GUI interface for running the code. The code may also be called via
the UNIX or IDL command lines.
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Figure 2.3 Examples of star formation histories averaged over 1 Myr bins for simu-
lations with varying input constant SFRs of 0.0001–100 M⊙ yr−1. The dotted lines
show the input SFR. The average SFR of the simulation in each case is within 2, 0.2,
and <0.02 percent of the input for 10−4,10−3, and > 10−2 M⊙ yr−1 respectively.
SFRs of zero are masked.
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Figure 2.4 Comparison of observed young star clusters from Larsen (1999) (black
points) to SLUG models of clusters > 104M⊙ (blue triangles). The orange curves
show the trajectory of a SB99 105M⊙ cluster as a function of time. Data are
omitted from upper left panel as the ages are not present in the Larsen (1999)
catalog. Arrows denote the extinction vector for AV = 0.5 mag (created following
appendix B of Schlegel et al., 1998).
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Figure 2.5 (top) Here we present the birthline as first discussed by Corbelli et al.
(2009) whose original data are shown as black points and crosses (circle-crosses
denote their ‘clean’ sample). Blue data points are clusters from SLUG. We see that
our models are in relatively good agreement with observations. (bottom) We present
overlays demonstrating the average IMFs in each region of the birthline plot. Note
how the IMF becomes progressively more bottom heavy moving to lower luminosity.
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Figure 2.9 R-band, FUV, and ionizing photon luminosities vs. time for galaxies
with constant SFRs of 1, 10−1, and 10−2 M⊙ yr−1 as indicated. R-band and FUV
luminosities are in units of erg s−1 Hz−1. We compare a fully sampled realization
from SB99 (solid black lines) with 100, 500, and 1000 realizations from SLUG for
SFRs of 1, 10−1, and 10−2 M⊙ yr−1 respectively. The SLUG models are represented
by their arithmetic mean (black dash-dotted line), median (colored dashed line) and
5-95 percentile range (filled color region). The timestep in our SLUG models was
set to 10 million years. Note that the y-axis in each panel has been chosen to match
the SFR, but always spans the same logarithmic interval.
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Figure 2.10 Same as Figure 2.9, but this time made with unclustered star formation,
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Figure 2.11 Solid lines show the evolution of Q(H0) and R band luminosity for
individual simulations with clustered star formation with SFRs of 1, 10−1, and 10−2

M⊙ yr−1. Dashed lines show the SB99 prediction. Note that the y-axis in each
panel has been chosen to match the SFR, but always spans the same logarithmic
interval.
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Figure 2.12 The mass of the largest star in a cluster vs. that cluster’s mass for
clusters created by SLUG for a Kroupa (2001) IMF (left) and the IGIMF (right).
The black lines denote the analytic prediction of the maximum possible stellar mass
in a cluster in the IGIMF model, the black dashed line notes the lower limit of the
initial cluster mass function, and blue contours denote the location of SLUG models.
Top panels show the maximum stellar mass as a function of the cluster mass drawn
from the ICMF, while bottom panels show the same relation relative to the sum of
the masses of all stars actually populating the clusters. These two differ slightly–
see section 2.3.2.
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Chapter 3

Quantifying SFR Uncertainties

The integrated light of a stellar population, measured through photometric

filters that are sensitive to the presence of young stars, is often used to infer the

star formation rate (SFR) for that population. However, these techniques rely on

an assumption that star formation is a continuous process, whereas in reality stars

form in discrete spatially- and temporally-correlated structures. This discreteness

causes the light output to undergo significant time-dependent fluctuations, which,

if not accounted for, introduce errors and biases in the inferred SFRs. We use SLUG

(a code that Stochastically Lights Up Galaxies) to simulate galaxies undergoing

stochastic star formation. We then use these simulations to present a quantitative

analysis of these effects and provide tools for calculating probability distribution

functions of SFRs given a set of observations. We show that, depending on the

SFR tracer used, stochastic fluctuations can produce non-trivial errors at SFRs as

high as 1 M⊙ yr−1, and we suggest methods by which future analyses that rely

on integrated-light SFR indicators can properly account for stochastic effects. We

emphasize that due to the stochastic behavior of blue tracers of SFR, one cannot

assign a deterministic single value to the SFR of an individual galaxy.

3.1 Introduction

Stellar light is the primary observable in astronomy, and it provides most

of our knowledge of the universe and its evolution. While for the nearest stellar

populations we can observe individual stars, we are often restricted to measuring
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the integrated photometric properties of stars, both spatially and spectrally. These

integrated properties, when filtered through a model for stellar populations, can

then yield estimates of the mass, star formation rate (SFR), star formation history

(SFH), initial mass function (IMF), and numerous other properties for the observed

stellar population.

Because the light produced by a star is a function of its mass and age, the

stellar population synthesis (SPS) models required to map between observed lumi-

nosity and underlying physical properties involve calculating a sum over the mass

and ages of all the stars that comprise the population. The most commonly-used

approaches for evaluating this sum rely on several assumptions for computational

efficiency. Most relevant to this paper, it is common to assume that the IMF and

star formation history (SFH) are infinitely well populated (e.g., Starburst99: Lei-

therer et al. 1999; Vázquez & Leitherer 2005; PEGASE: Fioc & Rocca-Volmerange

1997; GALEV: Kotulla et al. 2009; FSPS: Conroy et al. 2009, 2010; Conroy & Gunn

2010). This approach is convenient because it replaces the sum with a separable

double-integral: one first integrates over the IMF at fixed time to calculate the light

per unit mass for a stellar population as a function of age, and then integrates this

light to mass ratio weighted by the star formation history in order to arrive at an

estimate of the integrated light produced by stars of all ages.

While this approach is convenient, it can also be dangerous. The potential

pitfalls of assuming a fully-sampled IMF when analyzing a simple stellar population

(i.e., a group of stars of uniform age) are well-known: if the IMF is not fully-sampled,

the highly nonlinear dependence of luminosity on stellar mass causes the manner in

which stars discretely fill a population’s mass to have large consequences for the lu-

minosity (e.g., Cerviño & Valls-Gabaud, 2003; Cerviño & Luridiana, 2004; Popescu

& Hanson, 2009b, 2010a,b). In this case, there is no longer a deterministic relation

between the total mass and age of the population to the total luminosity and color of

its integrated light. The implication is that the inverse problem, that of determining

the mass or age of a simple stellar population from its photometric properties, no

longer has a unique solution. Nor can this non-uniqueness be described as a simple

error symmetrically bracketing a central estimate. In a small stellar population, a

single high mass star can dramatically increase (and at times dominate) the lumi-

nosity of a stellar population. Thus, this very high luminosity for rare realizations
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skews the mean of the luminosity distribution well away from its median. As a re-

sult, mean relations for luminosities that are in the stochastic regime (where a single

star can dramatically affect the luminosity) often greatly overpredict the luminosity

of a randomly chosen realization. See Cerviño (2013) for a recent review of this

topic, and a discussion of the implications of these uncertainties.

The hazards of assuming a well-sampled SFH, and thus the accuracy of SPS

models that make this assumption, have received significantly less attention (e.g.,

see the recent review by Kennicutt & Evans 2012a). We know from observations of

both the Milky Way and nearby galaxies that star formation is a highly clustered

process (e.g., Lada & Lada, 2003), which more closely resembles a series of discrete

bursts identifiable with the formation of individual clusters than the continuous

creation of new stars at a constant rate. Only when the SFR is sufficiently high

do the individual bursts blur together to create an approximately continuous SFH

(see figures 3 and 11 of da Silva et al. 2012, hereafter Paper I). The question of

how integrated light is affected by stellar clustering coupled to finite IMF sampling

motivated us to create the Stochastically Lighting Up Galaxies (SLUG ) code (da Silva

et al., 2012, hereafter Paper I). This code hierarchically follows clusters drawn from

a cluster mass function, each of which is individually populated on a star-by-star

basis according to an IMF. Each star evolves following an individual evolutionary

track, and contributes light calculated from an individual stellar atmosphere model.

As a result of this approach, SLUG produces Monte Carlo realizations of stellar

populations rather than simply the mean results, including stochasticity in both the

IMF and the SFH. Our initial application of this code (Fumagalli et al., 2010; da

Silva et al., 2012) showed that, for non-simple stellar populations, SFH sampling

stochasticity turns out to affect the light output of stellar populations far more

than IMF sampling stochasticity. Indeed, Fumagalli et al. (2011b) (also see Weisz

et al. 2012b) show that this effect explains the low Hα to FUV ratios seen in dwarf

galaxies (Lee et al., 2009; Boselli et al., 2009; Meurer et al., 2009), something that

some earlier authors had erroneously attributed to variations in the IMF itself. Since

this initial application, SLUG has been used to study these effects in a number of

other contexts (Siana et al., 2010; Cook et al., 2012; Andrews et al., 2013; Forero-

Romero & Dijkstra, 2013).

In this paper we extend the application of SLUG to the problem of inter-
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preting SFR indicators (SFIs). These are, by construction, extremely sensitive to

the properties of the most massive, shortest lived, brightest stars, and thus are very

vulnerable to stochasticity. They are therefore subject to the same “inverse prob-

lem” that affects the determination of mass and age for simple stellar populations:

at low SFRs, where IMF and SFH are sparsely sampled, there is no unique mapping

between SFRs and SFIs, and thus no unique way to infer a SFR from a SFI in an

individual galaxy1. Given these limitations, our goal in this paper is to provide the

next-best possible solution: a full characterization of the probability distribution

function (PDF) of SFR given a particular observed value of SFI. The layout of the

paper is as follows: Section 3.2 describes a library of SLUG simulations that we

have performed to solve the forward problem of characterizing the distribution of

luminosities that result from stochastic sampling of the IMF, including the effects

of clustering2 and a discussion of the dependence on free parameters. Section 3.3

describes how we use these SLUG simulations to solve the inverse problem of deter-

mining the PDF of SFR given a set of observations, including the higher-dimensional

correlations between the true underlying SFR and multiple SFIs. Finally, Section 3.4

discusses the implications of this work, and Section 3.5 summarizes our conclusions.

3.2 The Distribution of Luminosity at Fixed Star For-

mation Rate

3.2.1 SLUG Simulations

We first consider the problem of determining the distribution of luminosi-

ties of SFIs given an input SFR. This allows us to determine, for example, how much

scatter is expected for a given stellar population and to characterize the types of

errors one might incur if only using the mean properties. We approach this problem

via SLUG simulations, which produce Monte Carlo realizations of photometric prop-

erties given a set of user inputs including the input SFH, IMF, the initial cluster

1The mean relations are still accurate. On average those SFRs produce that SFI luminosity.
However, the interpretations that simply use the mean relation are not appropriate. The broad and
highly skewed nature of the PDFs for SFR given a SFI mean that care must be taken to properly
interpret observations.

2Stellar clustering is the dominant mechanism for SFH sampling stochasticity, thus in several
places we use the terms “SFH stochasticity” and “effects of clustering” interchangeably.
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Table 3.1. SLUG Simulation Parameters

Fiducial

fc 1
tsf [Myr] 500
mmax [M⊙] 107

mmin [M⊙] 20
[Fe/H] 0
IMF Kroupa

Note. — Here fc is the
clustering fraction, tsf is
the duration of star for-
mation, mmin and mmax

are the minimum and
maximum of the ICMF,
[Fe/H] is the metallicity
used for the stellar evo-
lution and atmosphere
models, and IMF is the
choice of stellar initial
mass function. For a de-
scription of how each of
these parameters is im-
plemented in SLUG , see
Paper I.

mass function (ICMF), the fraction of star formation occurring in clusters, and a

set of stellar evolutionary tracks and atmosphere models. The code also takes pa-

rameters describing how clusters disrupt, but these affect only the properties of the

cluster population, not the integrated light of a galaxy, and so we will not refer to

them further. Unless otherwise noted, all our simulations make use of the default

SLUG parameter choices described in Paper I, and summarized in Table 3.1. We also

refer readers to da Silva et al. (2012) for a full description of SLUG ’s functionality.

For the purposes of this paper, we restrict ourselves to very simple input

SFHs: those with constant SFR over a time of 500 Myr.3 Our choice of time period

3It is important to note that, as discussed in Paper I, the input SFH does not match the actual
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is long enough that we avoid any transient initial phases of the buildup of the stellar

population. The primary output of each SLUG simulation is a realization of the PDF

of luminosities given a SFR and other ancillary variables,

p(ℓ | log SFR, φ), (3.1)

where ℓ is a vector of log luminosities in various photometric bands and φ denotes

parameters that define the model. For simplicity, in the analysis that follows we will

omit φ except where relevant.

While SLUG is capable of producing photometry in many bands, and the

next release of the code will support full spectra, here we focus on the three most

common indicators of the SFR: the FUV luminosity LFUV, the bolometric luminosity

Lbol, and the Hα luminosity LHα. The last of these is a recombination line produced

when the ionizing radiation of the stars interacts with the ISM, and SLUG does not

report this directly. Instead, it reports the rate of hydrogen-ionizing photon emission

Q(H0), which we convert to Hα luminosity via

LHα = (1− fesc)(1− fdust)Q(H0)αeff
HαhνHα

≈ 1.37 × 10−12(1− fesc)(1 − fdust)Q(H0) erg, (3.2)

where fesc and fdust are the fractions of ionizing photons that escape from the galaxy

and that are absorbed by dust grains rather than hydrogen atoms, respectively, αeff
Hα

is the recombination rate coefficient for recombination routes that lead to emission of

an Hα photon, and hνHα = 1.89 eV is the energy of an Hα photon. For the purposes

of the plots presented in this paper, we take fesc = fdust = 0, but adopting non-zero

values for one or both of them would simply amount to applying a constant shift

to our results4. Similarly, although we focus on Hα, the results will be identical up

realized SFH. In fact, due to stochastic sampling of the cluster mass function, the output SFH will
differ from the input SFH as it will exhibit a series of bursts on small time scales (see figure 3 in
Paper I). This is because there is no “constant” star formation rate. For example, consider a galaxy
forming stars at 1 M⊙yr−1. In one day, 1/365th of a solar mass of gas is not transformed into a
star. Constant star formation rates (and star formation histories in general) can only be considered
continuous when averaged over some time interval. In our case, the observations dictate their own
averaging window and we investigate how well the continuous model matches reality.

4Note that care should be taken when correcting for dust with other star formation rate indicators
since (as we will show in section 3.2.2) at fixed star formation rate, the ratios of SFIs can have
considerable scatter.
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Figure 3.1 Distribution of input SFRs for SLUG simulations. The discontinuity at
10−4 occurs because of the change in simulation strategy.

to a constant shift for any other hydrogen recombination line, or any other source

of emission (e.g., free-free emission) that is directly proportional to the ionizing

luminosity. We leave for future work the discussion of other SFIs that have more

complex, non-linear relationships with the ionizing photon production rate (e.g.,

[O ii] 372.7 nm, [Ne ii] 12.8 µm, [Ne iii] 15.6 µm – Kennicutt & Evans 2012a).

In order to characterize the PDFs of our chosen SFIs, we run approximately

1.8 × 106 SLUG models. Of these models, we run 9.83 × 105 at input SFRs with a

distribution of log SFR that has a linear form with a slope of -1 over a range in

log SFR from −4 to 0.3, where SFRs here are measured in M⊙ yr−1. The remaining

0.8× 106 models are uniformly distributed in log SFR over a range from −8 to −4.

The distribution of the model star formation rates pM (log SFR) is shown in Figure

3.1. Our choice of distribution is motivated by the practical requirement that we

need more simulations to adequately sample the PDFs at lower SFRs because the

scatter is larger. As we will show in section 3.3.1, our results do not depend on the

assumed distribution of models, pM (log SFR).
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Figure 3.2 Contours representing 10[1,2,3] models for the three different SFIs con-
verted to SFRs using the point-mass approximations. Without stochastic effects,
the galaxies would be forced to lie exactly on the dashed line.

3.2.2 Simulation Results

For convenience, we report the result of our simulations in SFR space,

meaning that we report luminosities as the SFRs one would infer using the approx-

imation of perfect IMF and SFH sampling, which we refer to as the “point mass

approximation”5. For our fiducial IMF, stellar evolution tracks and atmosphere

models, the conversions between these and the luminosities reported by SLUG are

SFRQ(H0) = 7.6383 × 10−54(M⊙yr
−1 s)Q(H0) (3.3)

SFRFUV = 9.6415 × 10−29(M⊙yr
−1 erg−1 s Hz)LFUV (3.4)

SFRbol = 2.6607 × 10−44(M⊙yr
−1 erg−1 s)Lbol. (3.5)

This approach allows us to report the results using the different SFIs on a common

scale, making them easier to compare. It also allows us to separate the effects

of stochastic sampling from the dependence of the results on the choice of stellar

evolution and atmosphere models as these, to good approximation, simply cause

changes in the conversion constants in equations (3.3) – (3.5).

Each SLUG model may be thought of as a point in a four-dimensional

parameter space defined by these three luminosities and their corresponding intrinsic

SFR. In Figure 3.2, we show the raw distribution of our models in three orthogonal

projections of this parameter space. Figure 3.3 presents the distributions related to

5This is standard statistical terminology. It arises from the fact that one treats the posterior
PDF as having all of its mass located at a single point.
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Figure 3.3 (left) PDFs of the SFIs vs. intrinsic SFR arising just from stochastic
effects (presented as fraction of the maximum value in each intrinsic SFR bin). The
dashed line represents the point-mass approximation. The hard cutoff at log SFR =
−8 + log 2[M⊙yr

−1] is the smallest SFR that can produce any clusters with a mass
of 20 M⊙, the minimum cluster mass we allow. The horizontal stripe for SFRFUV

at -18 corresponds to the lower limit of FUV luminosity given by the SLUG models.
(right) Zoomed in version of plots in left column.
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their intrinsic SFRs. We can immediately see that there is significant mass of models

well away from the line predicted by the point-mass approximation, confirming the

necessity of the stochastic treatment and our assertions that full PDFs should be

used in place of simple mean relations. We also see that, as expected, the deviation

from the line is largest for SFRQ(H0), and smaller for the other two dimensions. This

was discussed in Fumagalli et al. (2011b), as tracers that are sensitive to stars with

lifetimes shorter than a few Myr are most sensitive to the flickering in the SFH,

while SFI that depend on longer lived stars average over longer time scales and are

thus more stable in recovering the mean SFH.

While a clear picture of the ensemble of all the models is presented in

figure 3.3 (which is critically useful in our subsequent analysis – see Section 3.3),

explorations of the level of scatter can perhaps be better addressed by Figure 3.4,

which shows the marginal distributions of p(ℓ | log SFR). To emphasize the shape

of the distribution over the actual values that are related to adopted point mass

calibrations, we plot the distribution of the offsets between these inferred SFRs and

the true SFR that was used in each simulation. It is again clear that Q(H0) has

the largest scatter6, in extreme cases producing estimates that differ from the true

SFR by as much as eight orders of magnitude! Furthermore, these distributions are

clearly not Gaussians centered on the true SFR. Instead, they are highly asymmetric.

Finally, it is clear that as the SFR increases, the PDF gets narrower. This is the

result being better sampled and the laws of statistics of large numbers.

6It is important to caution that, while large scatter is a real limitation of SFIs based on ionizing
luminosity, it would be incorrect to conclude from this that alternates such as FUV or bolometric
luminosity are always preferable. If the true SFR is stable on the ∼ 10 − 100 Myr timescales to
which these tracers are sensitive, as is the case in our models, then, all other factors equal, they are
preferable. However, in a galaxy where the intrinsic SFR might be variable on shorter timescales
(e.g., in a merging or interacting galaxy), the longer averaging interval of FUV or bolometric
luminosity becomes a disadvantage, as it produces too coarse an estimate of the true SFR.
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proximation for ease of comparison. Models are grouped by SFR into bins 0.25 dex
wide, and are color-coded by input SFR as indicated in the legend.
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3.3 The Distribution of Star Formation Rate at Fixed

Luminosity

3.3.1 Derivation

Thus far we have shown how one can estimate the probability distribution

of log luminosities ℓ given an intrinsic star formation rate, p(ℓ | log SFR). However,

we want to invert the problem and find the full distribution of SFRs given ℓ, i.e.,

p(log SFR | ℓ). We perform this inversion with a technique known as implied con-

ditional regression. The idea behind this technique is simple. We start with the

following decomposition:

p(log SFR | ℓ) =
p(log SFR, ℓ)

p(ℓ)
. (3.6)

Each SLUG model has a known SFR and produces an output ℓ, and thus represents

a sample point in the multidimensional parameter space (log SFR, ℓ); we denote

such a point as a vector z, where the first component is log SFR, and the three

log luminosities that comprise ℓ form the second through fourth components. This

definition can obviously be generalized to an arbitrary number of components in

ℓ. In this space, we define the distance between two points z1 and z2 by the usual

Cartesian metric,

|z1 − z2| =
√

(log SFR1 − log SFR2)2 + (log SFRQ(H0),1 − log SFRQ(H0),2)2 + · · ·.

(3.7)

The first task in computing p(log SFR | ℓ) is to use these sample points to

estimate the underlying multidimensional probability distribution p(log SFR, ℓ) and

its projection along the log SFR direction

p(ℓ) =

∫

p(log SFR, ℓ) d log SFR. (3.8)

To do this, we use a kernel density estimation technique which constructs the PDF

as a sum of kernels centered on each multidimensional simulation point. Explicitly,
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we approximate the value of the PDF at a position z = (log SFR, ℓ) by

p(log SFR, ℓ) = A
∑

i

K(|zi − z|;h), (3.9)

where zi is the position of the ith sample point, A is a normalization constant, andK

is the kernel function, which has the bandwidth parameter h. For its compactness,

we choose to use an Epanechnikov kernel, which is of the form

K(z;h) ∝







1− z2/h2, z < h

0, z ≥ h
. (3.10)

The parameter h must be chosen to balance the competing demands of smoothness,

favoring larger h, and fidelity, favoring smaller h. We choose to set this parameter

equal to 0.1 dex because exploration of histograms at various bin sizes indicates that

there is little structure below this scale. We are thus washing out any features of

this PDF on scales below 0.1 dex in any dimension. The result of this procedure is

an estimate of the multidimensional probability density p(log SFR, ℓ) describing our

raw SLUG data, and, by plugging into equation (3.6), an estimate of p(log SFR | ℓ).

The second step in computing p(log SFR | ℓ) is to the apply a proper

weighting of the prior probability distribution of star formation rates. Simply ap-

plying equation (3.6) using our computed p(log SFR, ℓ) amounts to adopting a prior

probability distribution of log star formation rates that follows the distribution of

our SLUG simulations, shown in Figure 3.1. This is clearly not an ideal choice, as

this distribution was chosen to ensure good sampling of the PDF, rather than to

reflect a realistic prior distribution. Fortunately, it is trivial to rescale the results to

an arbitrary prior probability distribution using Bayes’s theorem,

p(log SFR | ℓ) =
p(ℓ | log SFR)p(log SFR)

p(ℓ)
, (3.11)

where p(log SFR) is the prior probability distribution for the star formation rate.

Our input grid of models has a distribution of log SFR given by p(log SFR) =

pM (log SFR), where pM(log SFR) is the distribution shown in Figure 3.1. Bayes’s

theorem tells us that we can use the results from one prior distribution p1(log SFR))

to find the results for a different prior distribution p2(log SFR) by multiplying
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p(log SFR | ℓ) by p2(log SFR)/p1 log SFR).
7 For the case of transforming our SLUG

simulations to a desired p2(log SFR), we set p1(log SFR) = pM (log SFR). This is

equivalent to assigning a different relative weighting of each of the models in the

library such that the effective p(log SFR) matches whatever form is desired.

For the purposes of this analysis, we restrict ourselves to two possible

priors. The first is the observed star formation rate distribution which Bothwell et al.

(2011) parameterize as a Schecter function with slope −1.51 and characteristic SFR

of 9.2M⊙ yr−1. However, as a caveat, note that this observational determination was

made ignoring the effects of stochasticity. This is unlikely to affect the characteristic

SFR, since this is high enough that stochastic effects probably do not dominate the

error budget for the FUV plus IR star formation rate indicated used in Bothwell

et al.’s study (c.f. Figure 3.4). On the other hand, the slope at low SFR may be

more problematic, a topic to which we return below.

The second prior we consider is a flat distribution of log SFR. This flat

model is perhaps the most obvious prior, and is close to the distribution used in

the SLUG simulations pM(log SFR), but is in fact a relatively poor choice. The

reality is that lower SFRs are more common and hence should be weighted more

highly. Contrary to unfortunately common practice, assigning a uniform prior is

neither “robust” nor prior-agnostic. It is in fact a very specific choice for a prior,

which in this case is relatively poor. However, it does offer an interesting model

to compare against to distinguish effects for the choice of prior. It also has the

benefit that changing to another prior is perhaps easier to visualize since the term

p1(log SFR) is a constant. A flat prior on the linear scale of SFR (i.e., p(SFR) ∝ 1)

is an extremely poor choice and should be avoided, since it is equivalent to assuming

that higher values of log SFR are more common.

Once a prior has been chosen, we are at last in a position to derive the

final PDF of log SFR given a set of observations. We can think of a given set of

observational data as describing a PDF p(ℓ | data) of luminosities in one or more

bands; the simplest case would be an observation of a single tracer which produces

a central value of log luminosity with a Gaussian error distribution, in which case

p(ℓ | data) is a Gaussian in one dimension (corresponding to the SFI measured)

7This operation requires calculation of a new normalization constant, which is simple to compute
in the case of the one-dimensional SFR.
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and is flat in the other dimensions (corresponding to SFIs that were not measured).

Given the observations, and a choice of prior distribution p(log SFR) for the SFR,

the final posterior distribution for the SFR is given by applying equation (3.6),

rescaling by the chosen prior, and then integrating over the luminosity distribution

implied by the data. The result is

p(log SFR | data) =

∫

p(log SFR, ℓ)

p(ℓ)

p(log SFR)

pM (log SFR)
p(ℓ | data) dℓ, (3.12)

where p(log SFR, ℓ) is given by equation (3.9), p(ℓ) is given by equation (3.8), and

pM (log SFR) is the PDF of SFRs in our SLUG simulations.

3.3.2 Results

To understand the results for the estimates of p(log SFR | ℓ), we begin

by examining an example corresponding to the simplest case of a measurement

for a single tracer. Consider an observation of Hα luminosity corresponding to

log SFRQ(H0) = −3 with a Gaussian error bar of width σ. In Figure 3.5, we show

the posterior PDF for the SFR given this measurement of Hα using both flat and

Schecter function priors. If we had to assume point-mass conversion, we would

infer log SFR = −3 for the galaxy SFR (the black dashed line). However, given

the skewness in the flux distribution, the peak and mean of the true PDF8 are

significantly offset and neither corresponds to the point-mass estimate. We will

characterize the difference between the point-mass estimate and the mean of the

true PDF as the “bias”. Note that this bias is not meant as a simple offset that

one can blindly apply to the observational determination to get a “better” answer

that fixes the stochastic issues. In practice, stochasticity fundamentally breaks the

deterministic relationship between luminosity and SFR and thus the full PDF should

be used whenever possible (or at least the first four moments of the distribution).

We can also see from Figure 3.5 that the posterior PDF of SFR has signif-

icant width. Thus even a perfect measurement of the luminosity, corresponding to

σ = 0 in the Figure, retains a systematic uncertainty in the SFR with a standard

deviation of approximately 0.5 dex and a significant negative tail. Indeed, in the

8Note that, as is always the case, this PDF is only true in so far as the prior is the correct prior
to use and that other assumptions made are accurate as well regarding the IMF, stellar tracks and
atmospheres, etc.
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Figure 3.5 Posterior distributions for SFR given an observed Hα luminosity corre-
sponding to a SFR centered at SFRQ(H0) = −3. The observed log luminosity is
taken to have a Gaussian-distributed uncertainty whose width σ (measured in dex)
corresponds to the values shown in the legend; σ = 0 corresponds to a δ function
distribution. The top panel shows results using a flat prior, and the bottom panel
shows the results using a Schecter function prior (see Section 3.3.1). The curves get
noisier at lower SFRs due to the smaller number of models and the more dispersed
nature of the PDFs.
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example shown, this stochastic uncertainty dominates the error budget, as is clear

from the fact that the PDFs for observational errors of σ = 0, 0.25 dex, and 0.5 dex

are only marginally different. Finally, we can see that the choice of prior does affect

the results, but not significantly9.

Given the results shown in Figure 3.5, it is obviously of interest to know

how the bias and uncertainty depend on the observed value of a particular SFI. We

formally define these quantities as follows. Consider an observation of a particular

SFI I which returns an estimated log star formation rate log SFRI using the point-

mass estimate (i.e., using equations 3.3 – 3.5), with a Gaussian error distribution σ

on log SFRI . The posterior probability distribution for the true star formation rate

p(log SFR | log SFRI ± σ) is then given by equation (3.12), treating the observed

luminosity distribution p(ℓ | data) as a Gaussian of width σ centered at log SFRI .

The corresponding mean estimate of log SFR is

log SFR =

∫

p(log SFR | log SFRI ± σ) log SFR d log SFR. (3.13)

We define the bias b and scatter s, respectively, as

b(log SFRI) ≡ log SFR− log SFRI (3.14)

s(log SFRI)
2 ≡

∫

p(log SFR | log SFRI)
(

log SFR− log SFR
)2
d log SFR,(3.15)

i.e., for a given observation of a single tracer, we define the bias as the difference

between the mean value of log SFR computed from the full PDF and the point-mass

estimate, and the scatter as the second moment of the PDF of log SFR. Due to the

nature of the distributions, normally the bias is positive.

Figure 3.6 shows the bias and scatter as a function of the observed lumi-

nosity of the three SFIs we consider in this paper, ionizing/Hα luminosity, FUV

luminosity, and bolometric luminosity. As expected, we see that both the bias and

scatter are reduced at high star formation rates, and that both are largest for ion-

izing luminosity-based SFRs, since they are the most sensitive to the most massive

stars. Although it is not immediately apparent from the figure, ionization-based

9Given that the posteriors are so broad, this is the result of the fact that the priors are similar.
Choosing a linearly flat p(SFR) ∝ 1 prior would produce significantly different results with a much
higher weighting of higher SFRs.
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Figure 3.6 Bias (eqt. 3.14) and scatter (eqt. 3.15) due to stochasticity in SFR
estimates using the SFIs indicated in each panel. The lower observational error
models produce noisier curves because they are averaging over fewer SLUG models.

58



SFIs also have the longest tails (this produces the high value of the bias). We also

see the choice of prior has a larger effect in the higher uncertainty observations.

This is because there is a bigger dynamic range for the PDF to affect the result. As

is always the case, the closer the PDF is to a δ function, the less a prior matters.

We also see that the uncertainty is characteristically largest at log SFR ≈

−4. Two effects contribute to this peak. First, the luminosity, particularly the ion-

izing luminosity, is dominated by stars with masses & 20M⊙. For our adopted IMF,

these contribute a fraction fN ∼ 10−2.5 of stars by number. The expected number

of such very massive stars present at any given time is 〈N〉 = fN tlife(SFR/〈M〉),

where 〈M〉 ∼ 1 M⊙ is the mean stellar mass and tlife ∼ 4 Myr is the lifetime of

the very massive stars with which we are concerned. Thus a star formation rate of

∼ 10−4 M⊙ yr−1 is the value for which the expected number of very massive stars

present at any given time transitions from being & 1 to <
∼ 1, and thus represents

something of a maximum in the amount of stochastic flickering.

The second effect is more subtle, and points to a fundamental limitation

of our understanding. We adopt a minimum cluster mass of 20 M⊙, and, as can be

seen from Figure 3.3, this imposes a minimum star formation rate log SFR ∼ −8

corresponding to the lowest star formation possible with a minimum cluster mass

of 20 M⊙. SFRs below this value always produce luminosities of zero in our model.

However, this means that the range of possible SFRs for a given observed (non-zero)

luminosity has a hard lower limit, and this has the effect of limiting the width of the

SFR PDF, and thus the scatter, at the very lowest SFRs. Such a hard edge to star

formation is obviously artificial, but it does point out the fact that, at very low SFRs,

it is not possible to make a good estimate of the scatter without knowing exactly

how star formation and stellar clustering works in regimes where the number of star

clusters present at any given time is likely to be zero. Without this knowledge,

one cannot calculate the probability that a galaxy with a SFR of, say, 10−5 M⊙

yr−1 based on the point mass estimate is actually a galaxy with a true SFR of 10−8

M⊙ yr−1 that has just formed a single O star and thus has a temporarily boosted

luminosity.

A much more subtle version of this effect, is responsible for the very slight

turn-down in bias and scatter that we observe as the SFR approaches 1M⊙ yr−1. For

reasons of numerical cost we have not been able to run models with log SFR & 0.3,
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and this slightly limits the bias and scatter at the highest SFRs we explore. As is

apparent from Figure 3.6, however, the effect is very minor.

3.3.3 Publicly-Available Tools

We caution that, while the summary statistics discussed in the previous

section are useful rules of thumb, those attempting a proper statistical analysis of

their data should make use of the full PDFs and calculate posterior probability

distributions from Equation 3.12. To facilitate such computations, we have made

two tools publicly-available at https://sites.google.com/site/runslug/plots.

First, we have created an interactive visualization tool; Figure 3.7 shows

a screenshot. Its operation is as follows. As discussed above, one may think of

our simulations as populating a four-dimensional parameter space (SFR, SFRQ(H0),

SFRFUV, SFRBOL). Either an input theoretical star formation rate SFR, or an

observation of one or more of the star formation tracers, picks out a particular part

of this parameter space, and therefore restricts the range of values available for the

other tracers. The visualization tool allows users to see these effects by selecting

a range of values in one more more of the four parameters. The tool then shows

the corresponding range in the other parameters. For example, in the screen shot

shown in Figure 3.7, a user has selected a range of intrinsic SFRs centered around

log SFR = −4 (bottom panel), and the tools is displaying the corresponding range of

values for SFRQ(H0), SFRFUV, and SFRBOL (top three panels). Versions of the tool

are available for both flat and Schecter function priors, and for different clustering

fractions (see Section 3.4.3).

Second, we have made available both the full output of the SLUG simula-

tions and a set of python scripts to parse them and use them evaluate Equation 3.12

for a specified set of observational constraints. The basic strategy implemented in

the code for calculating a p(SFR | data) is

1. Run the script that loads in the 1.8 million galaxy simulations and performs

the kernel density estimate.

2. Evaluate the density on a grid of SFI values, weighted by the appropriate

prior.
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Figure 3.7 Screenshot of interactive data visualization tool for the 4-
dimensional parameter space (SFR, SFRQ(H0), SFRFUV, SFRBOL). Available at
https://sites.google.com/site/runslug/plots. Selections can be applied to any dimen-
sion(s) to show the effects on the others.

3. Weight each point in the above grid by the input observational PDF, p(ℓ |

data). As an example, the posted python code demonstrates how to do this

for a Gaussian error bar.

The output is a PDF similar to the one plotted in Figure 3.5. The entire operation

should take a few minutes at most, with most of the time spent in step 1, which

only needs to occur once for evaluation of an entire dataset. We note that one of the

benefits of our approach, and our code, is that we can easily extend to considering

the distribution of SFR given a joint set of constraints. Nothing changes in the

formalism since we have thus far always been treating ℓ as a vector.
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3.4 Discussion

Having discussed at length the quantitative implications of stochasticity

for the interpretation of SFIs, in this section we step back and consider some of the

broader implications of our results. We also discuss some caveats and cautions.

3.4.1 Star Formation Rate Distributions and the Cosmic Star For-

mation Rate Budget

We have already alluded to one important implication of our results: be-

cause there is both a systematic bias and a scatter in SFR determinations, and

because both of these quantities depend systematically on the observed value for

the SFI, there is likely to be a similar systematic bias in observational determina-

tions of the distribution of star formation rates in a galaxy population derived using

point-mass calibrations. A number of authors have published such determinations

based on a variety of SFIs in both the local and high-redshift Universes (to name

but a few of many examples, Salim et al. 2007: FUV at z ∼ 0; Bothwell et al. 2011:

FUV plus infrared / bolometric at z ∼ 0; Fontanot et al. 2012: FUV plus infrared

/ bolometric at z ∼ 0.4 − 1.2; Ly et al. 2012: Hα at z ∼ 0.5; Smit et al. 2012:

FUV at z ∼ 4 − 7; Bauer et al. 2013: Hα at z ∼ 0.05 − 0.3). Our findings suggest

that the results of these surveys may suffer from significant systematic errors, with

the extent of the problem depending on the tracer used and on the range of SFR

being studied. In particular, faint end slopes may need to be revised, as our results

open up the possibility that there may be a non-negligible population of galaxies

that have significant SFRs averaged over time, but that are missed in observational

surveys simply because they happen to have relatively low UV or ionizing photon

luminosities at the instant that the observation is made.

We note that, in setting the prior probability distribution used in our

Bayesian analysis, we have relied on these potentially flawed measurements.10 In

principle the proper way to address this issue is via forward modeling. Given a

parameterized functional form for the SFR distribution (e.g., a Schecter function),

one could use p(ℓ | log SFR) to calculate the observed SFI luminosity distribution

10This is not a deficiency of our method compared to others, as any non-trivial statistical analysis
requires the use of some prior distribution for the star formation rate, either explicitly or implicitly.
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that would be expected for a particular choice of parameters describing the SFR, and

then adjust those parameters iteratively until the predict SFI luminosity distribution

matches the observed one. However, such an approach is beyond the scope of this

work, as an accurate forward model would need to be constructed on a survey-

by-survey basis, as it would have to fold in uncertainties and errors arising from

finite instrumental sensitivity, the color or other cuts used to define the sample, and

similar effects.

This issue may also affect determinations of the cosmic star formation

rate budget (e.g. Hopkins & Beacom, 2006). These measurements are somewhat

less vulnerable to stochasticity than measurements of the SFR distribution, as they

necessarily involve averaging over a large number of galaxies and thus averaging out

stochasticity (though given the large scatter, the required number of galaxies may

be large). If one could in fact observe every Hα photon, for example, emitted in a

particular field in a given redshift range, there would be no error from stochasticity

as long as the field were large enough to have a bulk SFR larger than ∼ 1 M⊙

yr−1. However, in practice measurements of the SFR budget are based on flux-

limited samples, and stochasticity can interact with the flux limit by scattering

some galaxies with low average SFRs into the sample, while scattering others with

higher SFRs out of it. Which of these two effects dominates is a subtle question,

since there are more low-luminosity galaxies that could potentially scatter above

the flux cut, but the skewness of the PDF is such that galaxies are more likely to

be under- than over-luminous for their SFR. Again, rigorous treatment of this issue

requires that the study’s selection function be analyzed properly with Monte Carlo

simulations.

3.4.2 Kennicutt-Schmidt Relations

Another area where luminosity-dependent bias and scatter in SFIs can

cause problems is in empirical determinations of the relationship between gas and

star formation in galaxies, generically known as Kennicutt-Schmidt relations (Schmidt,

1959; Kennicutt, 1998). Prior to the past decade, such relationships were generally

measured as integrated quantities over fairly large spiral galaxies. In the past decade,

however, there has been a concerted effort to push these measurements to galaxies
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with lower global SFRs (e.g., Lee et al., 2009; Boselli et al., 2009; Meurer et al.,

2009), and to ever-smaller spatial scales within large galaxies (e.g., Wong & Blitz,

2002; Kennicutt et al., 2007; Bigiel et al., 2008, 2010; Schruba et al., 2010; Onodera

et al., 2010; Bolatto et al., 2011; Calzetti et al., 2012; Momose et al., 2013; Leroy

et al., 2013). These efforts have pushed the data into realms of ever-lower absolute

SFR, and thus greater vulnerability to stochasticity.

To take one example, for the lowest gas surface density bin in the sample

of Bigiel et al. (2010), the median SFR surface density is inferred to be a bit over

10−6 M⊙ yr−1 kpc−2. For the mean pixel size of 600 pc used in the study, this

corresponds to < 10−6 M⊙ yr−1. The study uses FUV as its SFI of choice, and con-

sulting Figure 3.6, we see that, for a Schecter function prior and assuming negligible

observational errors, we expect a scatter of ∼ 0.5 dex from stochasticity alone. If

we adopt a flat prior distribution of SFRs (perhaps reasonable inside a galaxy), we

also expect a similar amount of bias. This will obviously affect the mean relation

that one infers between gas and SFR, and it should be accounted for when fitting

the observations. Qualitatively, the net effect of stochasticity is likely to be that the

inferred relationship between SFR and gas surface density is too steep at the lowest

SFRs (due to the bias) and that the inferred scatter will be larger than the true one

(due to the extra scatter in the SFI-SFR relation imposed by the stochasticity).

3.4.3 Sensitivity to Parameter Choices

We end this discussion with a caution regarding the sensitivity of our re-

sults to some of the parameters we have chosen in our SLUG simulations. The

results obviously depend to some extent on the choice of stellar evolutionary tracks

and atmosphere models, but this is true even in the absence of stochasticity. The

parameters that are unique to our stochastic models are those that describe how

stars are clustered. A full analysis of the effects of varying the cluster mass func-

tion’s minimum and maximum mass, as well as its power law index and the total

fraction of stars formed in clusters, is well beyond the scope of this paper. However,

to explore the effects of clustering to gain some intuition, we focus on a single pa-

rameter: the total fraction of stars formed in clusters fc.
11 This is likely the single

11An important note on nomenclature: some authors whose interest lies primarily in stellar
dynamics (e.g., Portegies Zwart et al., 2010) limit the definition of star clusters to include only those
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most important parameter. Our default choice is fc = 1. This is motivated by the

observation that, in the Milky Way, most star formation occurs in clusters (Lada &

Lada, 2003), and by the result that models with fc = 1 provide an excellent match

to the observed distribution of Hα to FUV ratios in local dwarf galaxies (Fumagalli

et al., 2011b). However, to investigate how our results would change if we alter this

parameter, we run roughly 15, 000 unclustered models (fc = 0) and 25, 000 with

fc = 0.5. These models are uniformly distributed in log SFR between −4 and −2.

Figure 3.8 shows the PDFs of offset between SFI and true SFR that we ob-

tain from the unclustered and reduced clustering runs; it should be compared with

Figure 3.4 for our fiducial case. The comparison indicates that reducing the cluster-

ing can significantly reduce the spread of SFI values produced at fixed SFR. This

will correspondingly significantly decrease the scatter in the inferred SFR PDFs.

This result implies that, at least at low SFRs, it is crucial to understand

the clustering properties of star formation in order to do something as simple as

inferring a star formation rate. A more accurate determination of stellar clustering

parameters, and whether they vary with galactic environment, is therefore urgently

needed. Our fiducial parameters are reasonable first approximations based on empir-

ical constraints from local galaxies, but if clustering parameters vary systematically

with galaxy properties, the effects of stochasticity on inferences of the SFR may as

well.

stellar structures that are gravitationally-bound and dynamically-relaxed. These are distinguished
from associations – collections of stars that are born in spatial and temporal proximity to one
another, but need not be bound or relaxed. Since we care only about the temporal correlation of
star formation, and not about the dynamical evolution of the structures in which the stars form,
we are interested in a much more expansive definition of clustering, one that includes both clusters
and associations. Thus our fc parameter is not directly comparable to the parameter Γ that is
sometimes introduced to denote the fraction of star formation that occurs in structures the remain
bound after the transition from gas-dominated to gas-free evolution (e.g., Bastian, 2008a).
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Figure 3.8 Same as Figure 3.4 but for fc = 0.5 (left) and fc = 0 (right).
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3.5 Summary

While star formation in galaxies is often imagined as a continuous, ongoing

process, observations tell us that the actual distribution of stellar ages is highly

stochastic, with stars mostly forming in discrete bursts of finite size. At sufficiently

high star formation rates (SFRs), the overall process of star formation in a galaxy

consists of many such bursts, and the continuous approximation is reasonable. In

this paper, we use the Stochastically Lighting Up Galaxies (slug) code to investigate

what happens at lower SFRs when this approximation begins to break down, with

particular attention to how this breakdown affects our ability to infer the underling

SFR using a variety of star formation indicators (SFIs).

We show that the generic effect of stochasticity is to produce a broad

probability distribution function (PDF) for SFI luminosity a fixed SFR. The breadth

of the PDF depends on both the SFI being used and on the true SFR. We then devote

the bulk of the paper to understanding the implications of this spread in SFI at fixed

SFR for the inverse problem of inferring the true SFR given an observed SFI. We

derive an analytic expression for the PDF of true SFR given a set of observational

constraints, and provide software to evaluate this PDF using our simulation results

and a set of user-specified observational constraints.

Using this formalism, we show that the process of inferring the SFR from

an observed SFI is subject to scatter, and, more worryingly bias, meaning that the

process of simply converting between SFI and SFR using the standard calibrations

that apply at higher SFRs is likely to lead to systematic errors when used at low

SFRs. The strength of the bias and scatter depend on both the observed values of

the SFI and on its observational uncertainty, and on the choice of SFI. Ionization-

based SFIs such as Hα emission in particularly can be problematic due to the very

short timescales over which they average; for such indicators, a scatter of several

tenths of a dex is expected even at inferred SFRs as high as ∼ 1 M⊙ yr−1. Even for

indicators much less subject to scatter such as FUV luminosity, for measurements

with non-trivial observational uncertainty, biases of up to ∼ 0.5 dex are possible.

Finally, we discuss the implications of these results for efforts to construct

“luminosity functions” of star formation rate, for estimates of the cosmic star for-

mation rate budget, and for inferences of the Kennicutt-Schmidt Law relating gas
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content to star formation rate. The Legacy Extragalactic UV Survey (LEGUS;

Calzetti et al., 2014, in preparation) will provide a valuable data set for this type of

analysis.
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Chapter 4

Cluster Order Statistics

The luminosity distribution of the brightest star clusters in a population of

galaxies encodes critical pieces of information about how clusters form, evolve, and

disperse, and whether and how these processes depend on the large-scale galactic

environment. However, extracting constraints on models from these data is challeng-

ing, in part because comparisons between theory and observation have traditionally

required computationally-intensive Monte Carlo methods to generate mock data

that can be compared to observations. We introduce a new method that circum-

vents this limitation by allowing analytic computation of cluster order statistics, i.e.,

the luminosity distribution of the Nth most luminous cluster in a population. Our

method is flexible and requires few assumptions, allowing for parameterized varia-

tions in the initial cluster mass function and its upper and lower cutoffs, variations

in the cluster age distribution, stellar evolution, and dust extinction, as well as ob-

servational uncertainties in both the properties of star clusters and their underlying

host galaxies. The method is fast enough to make it feasible for the first time to use

Markov chain Monte Carlo methods to search parameter space to find best-fitting

values for the parameters describing cluster formation and disruption, and to obtain

rigorous confidence intervals on the inferred values. We implement our method in a

software package called the Cluster Luminosity Order-Statistic Code (CLOC), which

we have made publicly available.
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4.1 Introduction

Stars do not generally form in isolation, in either space or time. Instead,

they form in a spatially and temporally clustered fashion (e.g. Lada & Lada, 2003;

Bressert et al., 2010; Gutermuth et al., 2011), at a density far above the background

field stellar density in their host galaxy. This clustering has profound effects on

the observable properties of galaxies (Fumagalli et al., 2011c; da Silva et al., 2012),

and it also provides an important clue to the physical mechanisms that govern the

process of star formation. If we could confidently measure the fraction of stars that

form in star clusters, the mass distribution of those clusters (including its upper and

lower limits), and the rate at which clusters dissolve into the field stellar population,

we would learn a great deal about how stars form.

Unfortunately, extracting all of these quantities from observations is far

from trivial. When high spatial-resolution multicolor photometry is available, the

standard approach is to use stellar population synthesis models to assign masses

and ages to each cluster, then measure the distributions of these or other quantities

of interest. These observations generally indicate that the mass distribution can be

approximated as a (possibly truncated) powerlaw dN/dM ∝Mβ with β ≈ −2 over

a wide mass range (e.g. Zhang & Fall, 1999b; Bik et al., 2003; Boutloukos & Lamers,

2003; Fall, 2006; Fall et al., 2009c; Chandar et al., 2010b; Fall & Chandar, 2012;

Bastian et al., 2012a,b). There is more controversy over the age distribution, mostly

arising from issues of how the samples are selected. More inclusive cluster catalogs

constructed to include all objects above a surface brightness threshold tend to show

powerlaw age distributions dN/dt ∝ tγ with γ ≈ −0.9 (Fall et al., 2005, 2009c;

Chandar et al., 2010b; Fall & Chandar, 2012). If one imposes additional selection

criteria based on morphology or crowding, this removes many young clusters from

the sample, yielding a distribution that can still be approximated by a powerlaw,

but with a significantly shallower index, γ ≈ 0 (Gieles et al., 2007; Bastian et al.,

2011, 2012a,b). While measuring the mass and age distribution by assigning masses

and ages to all clusters has the virtue of being conceptually direct, the data required

to use this approach are available only for a relatively modest number of galaxies.

Single-band photometry capable of resolving the brightest few clusters is available

for a much larger sample of galaxies (e.g., Larsen & Richtler, 1999; Larsen, 2002;
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Bastian, 2008b), and exploiting such large but lower-quality data sets is the only

feasible means to detect whether cluster mass or age distributions deviate from

powerlaw behavior at the very high mass end, where the number of clusters in

an individual galaxy is necessarily very small, and data from many galaxies must

therefore be combined to yield a statistically-meaningful result.

The primary method of using this data to study the tip of the cluster

mass function has traditionally been to use Monte Carlo methods to compute the

luminosity distribution that would be expected from a given theoretical model, and

compare that to the observations (e.g. Bastian, 2008b; Larsen, 2009; Fouesneau

et al., 2012). This has the advantage that it allows one to handle observational

errors properly, and to include “nuisance” parameters such as dust extinction that

limit the information that can be extracted from data. Unfortunately, Monte Carlo

methods can be forbiddingly expensive to employ. Lada & Lada (2003)’s compilation

of clusters just within 2 kpc of the Sun includes ∼ 100 entries, and this survey covers

only ∼ 1 − 3% of the Milky Way’s star-forming disk, and a significantly smaller

fraction of the Milky Way’s total star formation budget. Thus a single Monte Carlo

realization of the star clusters in a Milky Way-like galaxy, including the effects of

cluster disruption, might require that ∼ 106 clusters be drawn, and determining

the order statistics of this distribution (i.e., the distributions of luminosities of the

most luminous cluster, second most luminous cluster, etc.) might then require ∼ 103

realizations, for a total of ∼ 109 total draws from the cluster luminosity distribution.

The problem is far worse if one considers more rapidly star-forming galaxies like the

Antennae, which have larger cluster populations. Since our knowledge of the various

processes that influence cluster luminosity distributions is limited, and the set of

parameters describing them is therefore relatively large, ideally one would like to be

able to search the parameter space for models that fit observations using standard

Markov chain Monte Carlo (MCMC) methods. However, this is not feasible if one

requires ∼ 109 draws from the cluster luminosity distribution at every point in this

parameter space. As a result, many authors have resorted to fixing many of the

parameters that describe cluster formation, and varying only a single one (e.g., the

upper mass cutoff – Bastian 2008b) in an attempt to fit observations. Clearly this

approach is not ideal.

In this paper we introduce a method to solve this problem. We show that

72



it is possible to calculate the cluster luminosity distribution and its order statistics

analytically, even including parameterized treatments of processes such as cluster

disruption, stellar evolution, and dust extinction. While our method is not quite

as general in the types of distributions that one can handle as a full Monte Carlo

method, it retains the vast majority of Monte Carlo’s flexibility and requires only a

tiny fraction of the computational time. Moreover, using our method the computa-

tional time is close to independent of the number of clusters present, nor is it much

more expensive to compute order statistics than it is to compute the luminosity

function itself. This makes our method particularly advantageous for calculations

involving large galaxies, and those seeking to explore the tip of the luminosity dis-

tribution. In a companion paper (da Silva et al., 2013, in preparation), we use this

method to revisit the question of whether the observed relationship between star

formation rate of luminosity of the most luminous cluster provides strong constraints

on the upper limit to the cluster mass function. We have developed a software tool

called the Cluster Luminosity Order-Statistic Code (CLOC) to perform these analytic

calculations, and made it publicly available under the terms of the GNU General

Public License.

The remainder of this paper is organized as follows. Section 4.2 describes

our model and its derivation. In Section 4.3 we describe the publicly available code

that implements this model, and present comparisons between it and a full Monte

Carlo method. In Section 4.4 we use our formalism to explore how the various

parameters that go into the cluster luminosity function affects it shape in order to

gain insight about what sorts of observations can be used to constrain star cluster

formation.

4.2 The Model

4.2.1 Cluster Order Statistics

Our overall goal is to derive an analytic expression for the probability

distribution function (PDF) and cumulative distribution function (CDF) of the kth

order statistic of star cluster luminosities, or any other property. Formally, we define

φk(L) as the PDF of the kth most luminous cluster in a region of interest, either a
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galaxy or some specified sub-galactic volume.1 We normalize this and all other PDFs

in this paper to unity, i.e.,
∫

φk(L) dL = 1. We define Φk(L) =
∫ L
0 φk(L

′) dL′ as

the corresponding CDF. Thus, Φk(L) is the probability that the kth most luminous

cluster in a population has a luminosity of L or less, while φk(L) dL is the probability

that the kth most luminous cluster has a luminosity in the infinitesimal range L to

L+ dL.

We will perform this calculation in several steps. In this section, we will

derive φk(L) and Φk(L) under the assumption that we know both the PDF φ(L) for

the luminosity of a single cluster and the expected number of clusters 〈N〉 in the

region of interest. In subsequent sections we will derive these two quantities from

parameterized versions of the cluster mass and age distributions. Deriving φk(L)

and Φk(L) from φ(L) and 〈N〉 is most straightforward if we assume that cluster

formation is a Poisson process, so that clusters are created fully independently of

one another, and the number of clusters in a given region is Poisson-distributed.

We note that this cannot be precisely true, simply due to mass conservation: for a

purely Poisson distribution, there is a finite, non-zero probability for any number

or total mass of clusters, whereas in reality the probability that the total mass

of star clusters in a given region exceeds the total baryonic mass of the region is

identically zero. Nonetheless, when the total mass of star clusters is large compared

to the mass of any individual cluster (as is often the case in practice), then the

Poisson assumption should be reasonable, and so we will adopt it. In Appendix

4.6, we provide a more detailed derivation of the PDF and CDF that shows how to

generalize to the non-Poisson case.

There is one more subtlety with which we must reckon before proceeding to

calculate. For any Poisson process, and for most non-Poisson ones, there is a finite

probability that a region of interest will contain a number of clusters N that is

smaller than the order statistic k in which we are interested. For example, we might

be interested in the luminosity distribution of the second most luminous cluster

(k = 2), but some of the regions we are examining will contain only 0 or 1 clusters.

1Note that our convention in defining the 1st order statistic as describing the distribution of the
most massive or luminous cluster, while sensible for astronomy (where samples are usually mass- or
luminosity-limited and thus the least luminous cluster is generally not observed), is the opposite of
the standard statistics convention whereby the 1st order statistic describes the distribution of the
smallest member of a sample, not the largest. The usual convention may be recovered by replacing
k by N + 1− k in all the expressions below, where N is the size of the sample.
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We must therefore decide between two possible ways of handling this case: we could

either say that the kth most luminous cluster has a luminosity of 0 if there are

fewer than k clusters present, or we could restrict our calculation of the PDF of the

kth most luminous cluster to the case where there k or more clusters present. We

argue in Appendix 4.6 that the former approach is preferable, and we will therefore

say that, if the number of clusters N is smaller than the order statistic k we are

computing, then the luminosity of the kth most luminous cluster is 0.

With this choice, we are now prepared to derive φk(L) and Φk(L). For a

Poisson process, the expected number of clusters with luminosity > L is

〈N(> L)〉 = 〈N〉(1 − Φ(L)), (4.1)

where Φ(L) =
∫ L
0 φ(L′) dL′ is the CDF of luminosity for a single cluster. The

probability that there are exactly m clusters with luminosity > L is given by the

Poisson formula,

Pm(> L) =
1

m!
〈N(> L)〉me−〈N(>L)〉 (4.2)

=
e−〈N〉

m!
〈N〉m[1− Φ(L)]me〈N〉Φ(L). (4.3)

When the number of clusters present N is larger than the order k, the PDF φk(L)

should be proportional to the probability that a single cluster is in the luminosity

range L to L+dL, multiplied by the probability that exactly k−1 clusters are more

luminous than L, i.e., we should have φk(L) ∝ φ(L)Pk−1(> L). When N < k, the

luminosity of the kth most luminous cluster is zero. Combining these two terms,

the complete PDF is

φk(L) =
Γ(k, 〈N〉)

Γ(k)
δ(L) + 〈N〉Pk−1(> L)φ(L) (4.4)

=
Γ(k, 〈N〉)

Γ(k)
δ(L)

+ 〈N〉
〈N〉k−1[1− Φ(L)]k−1

(k − 1)!
φ(L), (4.5)

where Γ(x) is the usual (complete) Γ function and Γ(x, s) is the incomplete Γ func-

tion. The coefficient of the δ-function is the probability that, for a Poisson process,
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the number of clusters is smaller than k, while the second term represents the

product φk(L)Pk−1(> L). The coefficient on this term is chosen to ensure that
∫

φk(L) dL = 1. We derive both coefficients by alternative means in Appendix 4.6.

Note that the coefficient of the δ-function, Γ(k, 〈N〉)/Γ(k), goes to zero extremely

rapidly as k/〈N〉 → 0. Thus this term is significant only when 〈N〉 <
∼ k. There

term would vanish entirely if we adopted the alternative approach to defining order

statistics by excluding the case N < k, but in that case the other term would have

to modified as well.

The CDF Φk(L) is the probability that the kth most luminous cluster has a

luminosity ≤ L, but this must be equal to the probability that at most k−1 clusters

have luminosities ≥ L. For example, the probability that that the 2nd brightest

cluster has a luminosity ≤ L, which is Φ2(L), must be equal to the probability that

there are either 0 or 1 clusters brighter than L, which is P0(> L) + P1(> L). Thus

in general we have

Φk(L) =
k−1
∑

m=0

Pm(> L) (4.6)

= e−〈N〉e〈N〉Φ(L)
k−1
∑

m=0

〈N〉m[1−Φ(L)]m

m!
. (4.7)

Note that Φk(L) remains finite in the limit L → 0, even if Φ(L) is identically zero

below some finite minimum L. This behavior occurs because, even if there is zero

probability that any individual cluster has a luminosity L = 0, we can still find a

luminosity of exactly 0 for the kth most luminous cluster if there are fewer than

k clusters present in the region of interest, and the probability of this occurring is

finite.

4.2.2 Calculation of the Expected Number of Clusters

The second step in our derivation is to calculate the expected number of

clusters 〈N〉. This is a function of the star formation rate in the region under

study Ṁ∗, the star cluster mass function ψ(M), the cluster age distribution χ(t)

defined over the full range of cluster masses,2 the minimum and maximum cluster

2There are two subtle points to be made here. First, the age distribution χ(t) must be that for
all clusters, not, as is sometimes reported in the literature, the age distribution for a luminosity-
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ages tmin and tmax used to define the sample, and the fraction of stars in clusters at

birth, which we denote fc.
3 We normalize the mass and age distributions such that

∫

ψ(M) dM =
∫

χ(t) dt = 1, where the integrals are taken over all possible masses

and ages, respectively.

Given these definitions, the expected number of clusters formed during the

time interval of interest is

〈Nform〉 =
Ṁ∗∆t

〈M〉
fc, (4.8)

where 〈M〉 =
∫

Mψ(M) dM is the expectation value of the cluster mass and ∆t =

tmax − tmin is the age range in the observed sample. If the cluster age distribution

is not flat, indicating that not all clusters that form survive to indefinite ages, the

expected number of clusters that survive long enough to be observed will be reduced.

Let Psurv(t) be the probability that a cluster survives to age t, in which case

〈N〉 =
Ṁ∆t

〈M〉
fc

(

1

∆t

∫ tmax

tmin

Psurv(t) dt

)

≡
Ṁ∗∆t

〈M〉
Fc (4.9)

is the expected number of surviving clusters within the age interval of interest. The

quantity in parentheses is the time-averaged fraction of surviving clusters, and the

quantity Fc that we have defined is the fraction of all stars in clusters, averaged over

the stellar age range under consideration. For a constant star formation rate, the

survival probability is proportional to the cluster age distribution, renormalized so

that the survival probability is unity at time t = 0, i.e., Psurv(t) = χ(t)/χ(0). Thus

Fc =
fc

χ(0)∆t

∫ tmax

tmin

χ(t) dt. (4.10)

limited sample. Second, in principle the mass and age distributions might not be independent, in
which case we would need to consider the joint distribution g(M, t). There is a dispute on this point
in the observational literature – e.g., see Bastian et al. (2011, 2012a,b) versus Fall et al. (2009c),
Chandar et al. (2010b), and Fall & Chandar (2012). Fortunately, even in those papers where the
authors do report that the mass and age distributions are not independent, the co-variance is very
weak, at least at the large masses with which we will be concerned. Similarly, some theoretical
models also predict that cluster disruption will be mass-dependent (e.g., Kruijssen et al., 2012),
but the predicted dependence is again weak. For these reasons, we will assume that the mass and
age distributions are independent.

3Note that the quantity fc is subtly different from the cluster formation efficiency Γ defined
by some authors (e.g. Bastian, 2008b), because Γ refers to the fraction of stars formed as part
of gravitationally-bound clusters. In contrast, fc depends only on the observational criteria used
to define clusters when selecting them in an observed galaxy. Thus fc and Γ are identical only
if the observational selection criteria pick out all gravitationally bound structures, and only such
structures.
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Note that. although for simplicity we have assumed constant Ṁ∗, our results in the

end depend only on the cluster age distribution χ(t) and the expected number of

clusters 〈N〉. Thus, the formulae throughout this paper are equally valid for other

combinations of Psurv(t) and Ṁ∗(t) that give the same χ(t) and 〈N〉.

To proceed further we must specify functional forms for ψ(M) and χ(t).

To render the problem analytically-tractable, we will assume that both of these can

be described by truncated powerlaws. Specifically, we adopt

ψ(M) =











AMβ, Mmin < M < Mmax

0, otherwise
(4.11)

and

χ(t) =























B, t < t0

B(t/t0)
γ , t0 ≤ t < t1

0, t ≥ t1.

(4.12)

Here t0 may be understood as the age at which clusters begin to disappear, and t1

is the maximum possible age of any cluster. The normalization factors appearing in

these equations are

1

A
=

∫ Mmax

Mmin

Mβ dM

=











(Mβ+1
max −Mβ+1

min )/(β + 1), β 6= −1

ln(Mmax/Mmin), β = −1
, (4.13)

and

1

B
= t0 +

∫ t1

t0

(

t

t0

)γ

dt

= t0 +











(tγ+1
1 − tγ+1

0 )/(γ + 1), γ 6= −1

ln(t1/t0), γ = −1
. (4.14)

The functional forms for both the mass and age distributions are well-motivated by

observations. As discussed in the Introduction, there is an observational consensus
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that the mass function is well fit by a (possibly truncated) powerlaw with index

β ≈ −2. There is dispute in the observational community about the age distribution,

but all groups agree that a powerlaw is a good fit to the data. The dispute is whether

the index γ ≈ −0.9 or ≈ 0, with most of the disagreement stemming from how the

cluster sample is selected.

With these definitions, we can write out 〈M〉 explicitly as

〈M〉 = A×











(

Mβ+2
max −Mβ+2

min

)

/(β + 2), β 6= −2

ln(Mmax/Mmin), β = −2
. (4.15)

We can similarly write out Fc explicitly. For simplicity, we will assume that tmin ≥ t0

and tmax ≤ t1, so that the age distribution χ(t) over the observed age range can

be represented by a pure powerlaw. Given that all observed open cluster samples

satisfy this condition, this is not a significant limitation. With this assumption, we

have

Fc = fc
t0
∆t

×










[

(tmax/t0)
γ+1 − (tmin/t0)

γ+1
]

/(γ + 1), γ 6= −1

ln(tmax/tmin), γ = −1
. (4.16)

We could substitute this into equation (4.9) to obtain an explicit form for 〈N〉, but

this would simply replace Fc with fc and t0 as the variables that must be specified

to compute cluster luminosity order statistics. Since these two quantities enter the

problem only through the combination Fc, we will use Fc as the variable of interest

through the rest of this work, keeping in mind that it is related to the physical

quantities fc and t0 via equation (4.16).

4.2.3 The Cluster Luminosity Function: Dust and Stellar Evolution

The final step in our calculation is to derive the PDF φ(L) for the lumi-

nosity of a single cluster. This quantity depends on three factors. The first is the

cluster mass distribution ψ(M), since more massive clusters are more luminous, all

other things being equal. The second is the cluster age distribution χ(t), since at
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fixed mass there will be a range of cluster ages, and the mass-to-light depends on

the cluster age. The third factor is the distribution of dust optical depths, which

we denote η(τ). The amount of extinction may vary from cluster to cluster, and

this will create a scatter in the observed luminosity even at fixed mass and age.

A fourth possible factor, which we will not include in our formalism, is stochastic

variation in luminosity from cluster to cluster at fixed mass, age, and extinction due

to the effects of incomplete IMF sampling. While this is significant for clusters with

masses below ∼ 103.5 M⊙ (Cerviño & Luridiana, 2004; Fouesneau et al., 2012), we

focus in this work on the PDF of luminous and massive clusters, and in particular

on the PDF of the most luminous cluster, which minimizes the importance of this

effect. Below, we verify via Monte Carlo calculation that this effect is indeed negli-

gible for φ1(L) except at the very lowest star formation rates. Thus we are left with

age-dependent mass-to-light ratio and dust extinction as the two effects we must

include.

To handle the age dependence, we define Υ(t) as the mass-to-light ratio

for a cluster of age t, so that the luminosity L = M/Υ(t); note that Υ(t) must be

defined relative to a particular waveband. For ages t in the range 10 Myr to 1 Gyr,

and many wavebands in the visible part of the spectrum, it is approximately the

case that Υ(t) ∝ tζ , where both the index ζ and the constant of proportionality

depend on the choice of waveband. In Appendix 4.7 we fit for Υ(t) in V band, and

obtain

Υ(t) = Υ∗

(

t

10 Myr

)ζ

(4.17)

with ζ = 0.688 and Υ∗ = 8.3 × 10−21 M⊙

(

erg s−1 Hz−1
)−1

.

Since Υ(t) is a deterministic one-to-one function of t, the distribution of

mass-to-light ratios for a cluster population can be computed from the distribution

of cluster ages via

θ(Υ) ∝ χ(t)

∣

∣

∣

∣

dΥ

dt

∣

∣

∣

∣

−1

. (4.18)

The intrinsic luminosity of a cluster (i.e., before dust extinction is applied) is Lin =

M/Υ, and so the distribution of intrinsic luminosities is (Fall, 2006)

φin(Lin) =

∫ ∞

0
ψ(ΥLin)θ(Υ)Υ dΥ. (4.19)
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For the purposes of algebraic evaluation, it is most convenient to transform to loga-

rithmic variables, which allows us to write the integral as a convolution. We define

ξ([1/Υ]) = Υ2θ(Υ) as the distribution of light-to-mass (instead of mass-to-light)

ratios, and compute the PDF φin(logLin) = Linφin(Lin) via

φin(logLin) ∝ ψ(logM) ∗ ξ(− logΥ)

≡

∫ ∞

−∞
ψ(logLin − logΥ)ξ(− log Υ) d log Υ, (4.20)

where ∗ denotes convolution. We defer actual calculation of this convolution to

Appendix 4.8, since it is conceptually straightforward but algebraically tedious.

The result for φin(logLin) is given by equation (4.58), and the corresponding CDF

Φin(logLin) by equations (4.59) and (4.64).

We model dust as providing a distribution of optical depths η(τ) (in the

appropriate waveband) that is uniform in the range from τ0 to τ1, such that the

luminosity of a given cluster is reduced by a factor e−τ . Our choice of distribution

is motivated by a compromise between realism and analytic tractability. The sim-

plest approach would be to adopt a single dust optical depth for all clusters, which

corresponds to decreasing the luminosity of each cluster by a constant factor. This

is trivial to include, but would miss the potentially important effect that differential

extinction can broaden the luminosity distribution. In order to capture this effect

while still retaining a distribution that can be calculated analytically, we adopt the

next-most complicated approach, which is a step function distribution. Should it be

desirable, it is straightforward to mix distributions with different step functions to

create essentially arbitrary dust distributions. From this distribution of dust extinc-

tions, and the distribution of intrinsic luminosities computed above, the distribution

of observed luminosities can again be obtained via convolution,

φ(logL) = φin(logLin) ∗ η(−τ)

=

∫ ∞

−∞
φin(logLin)η(logLin − logL) d logLin (4.21)

where L = Line
−τ . As with the computation required to compute the PDF of

intrinsic luminosities, the convolution is straightforward but algebraically tedious to

compute. We give the result in Appendix 4.9; the final expressions for φ(logL) and

81



Φ(logL) are given by equations (4.78) and (4.81), respectively.

With this step complete, we now have a full analytic description of the

order statistics of cluster luminosities, including the effects of age-dependent mass-

to-light ratios and a range of dust extinctions. Specifically, we can compute the

PDF and CDF of an arbitrary order statistic from equations (4.5) and (4.7), using

the expected number of clusters 〈N〉 given by equation (4.9) and the PDF and CDF

of luminosity for individual clusters given by equations (4.78) and (4.81).

4.2.4 Observational Uncertainties

We now add one final element to our model, which is that neither star

formation rates nor cluster luminosities can be measured perfectly. There are sev-

eral options for how to treat this issue, depending on the application one has in

mind. One might choose simply to use the formalism above to generate theoretical

distributions of cluster luminosity, and then compare these to observations using a

statistical technique that accounts for the observational errors. In this case, one can

simply use the formalism as we have described it thus far, without accounting for

observational error. However, an alternative and often preferable approach is to fold

reasonable estimates of the errors into the theoretical model, and then to compare

the model including these error estimates with the observed data. This makes it

possible to use non-parametric tests (e.g. the Kolmogorov-Smirnov test) that do not

naturally handle observational errors.

To fold observational errors into our model, we define ǫS and ǫL as the

uncertainties on the star formation rate and cluster luminosities, respectively. Both

of these errors are dominated by systematic effects that are highly uncertain. For

cluster luminosities, the dominant errors arise from the need to extrapolate the

cluster profile to large radii in order to assign a total luminosity (Larsen & Richtler,

1999). These can lead to an approximately half magnitude of error. Similarly,

depending on the choice of star formation tracer, observational estimates of the SFR

are subject to uncertainties arising from dust extinction, ionizing photon escape, the

choice of stellar initial mass function, and ambiguities in the choice of timescale over

which the SFR is averaged, among others – see Kennicutt & Evans (2012b) for a

recent review. Typical errors are again ∼ 0.5 dex.
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Table 4.1 Fiducial Parameter Values
Parameter Description Fiducial Value

Mmax Maximum cluster mass 109 M⊙

Mmin Minimum cluster mass 100 M⊙

β ICMF power law index −2
γ Cluster age distribution power law index −0.9
tmin Minimum age of sample 107 yr
tmax Maximum age of sample 109 yr
τ0 Minimum dust optical depth 0
τ1 Maximum dust optical depth 1
Fc Fraction of stars in clusters at time of observation 0.01

Despite the fact that these errors are systematic and non-Gaussian, we

make a simplistic assumption that they can nevertheless be at least roughly approx-

imated as a simple Gaussian blur applied to both the log cluster luminosities and

log star formation rates. Under this assumption, we can write the distribution of

observed luminosities Lobs in a galaxy with observed star formation rate Ṁ∗,obs as

simply

φk,obs(logLobs | log Ṁ∗,obs) =
1

2πǫSǫL
×

∫∫

φk(logL | log Ṁ∗)×

exp

{

−
[log(Ṁ∗/Ṁ∗,obs)]

2

2ǫ2S
−

[log(L/Lobs)]
2

2ǫ2L

}

d log Ṁ∗ d logL, (4.22)

where φk(logL | log Ṁ∗) is computed as described in the preceding sections. The

expression for Φk,obs(logLobs) is analogous.

4.2.5 The Importance of Variable Mass-to-Light Ratios

To demonstrate the effects of variable mass-to-light ratios, dust extinction,

and observational uncertainties, and to understand why it is crucial to include these

effects in any realistic model, it is helpful to compare the results of our formalism

that includes them to simplified formalisms in which these complications are ignored.

To this end, we use three different approaches to compute the PDF and CDF of

the first order statistics of cluster luminosity, Φ1(L) and φ1(L), as a function of star
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Figure 4.1 Comparison of the first order statistic φ1(L) as a function of star for-
mation rate Ṁ∗ for differing levels of model complexity. Black lines (“incomplete
mass-based formalism”) represent the expectation value of the most luminous clus-
ter determined by computing the maximum mass from equation (4.25) and then
applying a fixed mass-to-light ratio Υfit. Red lines (“complete mass-based formal-
ism”) show the median, and red bands the 5− 95 percentile range, for the 1st order
statistic computed using equations (4.5) and (4.7) for φ1(L) and Φ1(L), but using a
fixed mass-to-light ratio to compute the luminosity distribution for individual clus-
ters (equation 4.23). Blue lines and bands (“full luminosity formalism”) show the
median and 5 − 95 percentile range, for φ1(L) and Φ1(L) computed from the full
formalism, using equations (4.5), (4.7), and (4.78). The parameters used for the
computation are given in Table 4.1 for the lower panel; the upper panel is identical
except that it uses Mmax = 107 M⊙ rather than 109 M⊙. The best-fitting mass to
light ratio Υfit is shown in each panel.
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formation rate Ṁ∗. The first calculation uses the full formalism we have just derived.

The second uses a simplified formalism in which we adopt a fixed mass-to-light ratio

Υfit, and set the luminosity distribution to

φ(L) = ψ(M/Υfit)Υfit (4.23)

before using equations (4.5) and (4.7) to compute φ1(L) and Φ1(L). We deter-

mine the value of Υfit by performing a least-squares fit to minimize the difference

between the median values of L versus Ṁ∗ as computed via the two formalisms.

This approach amounts to ignoring the scatter in the relationship between cluster

luminosity statistics and star formation rate induced by the presence of a range of

cluster ages, dust, and observational uncertainties. The third approach we use is

even simpler, but is common in the literature. This is to assert that the expected

mass of the most massive cluster 〈M1〉 is such that the expectation value of the mass

being in the interval M1 −Mmax is unity, i.e.,

1 = N

∫ Mmax

〈M1〉
AMβ dM. (4.24)

In this case we have

〈M1〉 =

(

Mβ+1
max −

1

〈N〉A

)1/(β+1)

, (4.25)

and the expected luminosity of the most massive cluster is then 〈L〉 = 〈M1〉/Υfit.

We show the results we obtain from these three methods for two example

sets of parameters in Figure 4.1; the parameters used for the model in the lower

panel are those given in Table 4.1, while the upper panel is identical except for the

value of Mmax. There are several noteworthy points about this figure. First, the

5 − 95 percentile confidence interval we obtain from the full formalism completely

encompasses the confidence interval we obtain by assuming a fixed mass-to-light

ratio. This is expected, as the full formalism has other degrees of freedom to explore

in the mass-to-light ratio, thus allowing more scatter. On the other hand, the

median luminosities we obtain in all three models are very similar except at the

highest SFRs. At these large SFRs, models with a fixed mass-to-light ratio predict
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a stark flattening, while the full model produces a more gradual tapering. This is

due to the additional variability from the scatter in mass-to-light ratios that allows

a continually increasing range of luminosities. This effect is particularly important

for efforts to constrain Mmax using the observed relationship between Ṁ∗ and the

luminosity of the most luminous cluster (Weidner et al., 2004b; Bastian, 2008b),

and it shows that any such attempt is likely to fail if it does not properly account

for variations in mass-to-light ratio. Our conclusion on this point is consistent with

that of Bastian (2008b), who found using Monte Carlo simulations that adopting a

fixed mass-to-light ratio is a poor approximation.

4.3 Software Implementation and Validation

We have implemented the analytic formalism for computing cluster lu-

minosity statistics in a software package called Cluster Luminosity Order-Statistic

Code (CLOC), which we have released under the GNU General Public License. The

code is available for download at https://code.google.com/p/cluster-cloc/. CLOC takes

as inputs the parameters required to compute the cluster luminosity function and

its order statistics. To remind the reader, these are the overall star formation rate

Ṁ∗ (which may be given as a single value or, more commonly, a range with the

computation to be performed on a grid of Ṁ∗ values), the minimum and maximum

cluster ages (tmin and tmax), the parameters of the initial cluster mass function

(Mmin, Mmax, and β), the minimum and maximum amounts of dust extinction to

use (τ0 and τ1), the parameters describing the cluster age distribution (Fc and γ),

the parameters describing the observational error (ǫS and ǫL), and the parameters

describing the time evolution of the light to mass ratio (Υ∗ and ζ). The last two

of these depend only on the choice of observational filter and stellar evolution, and

so should not be regarded as free parameters. Given these inputs, the code uses

the algorithm described in this paper to produce a set of default outputs described

in Table 4.2. The code is implemented in C++, with Python wrappers to call the

program and parse the output files. In the remainder of this section we verify the

accuracy of CLOC via comparison to two different Monte Carlo methods, making

slightly different assumptions.
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Table 4.2 Description of Software Outputs
Variable Name Description

x the x-array for luminosity arrays in units of
ln
(

erg s−1 Hz−1
)

pdf l the PDF of the luminosity of a single cluster
φ(L) before observational uncertainty convolution

pdf l obs the PDF of a single cluster φ(L)
after observational uncertainty convolution

sfr x the x-axis for the Ṁ∗ − L1 relation in M⊙ yr−1

q5, q50, q95 the 5th, 50th, and 95th percentile of the
Φ1(L) distribution corresponding to sfr x in the same units as x

Note that the full distributions at each SFR are output and easily obtainable, but
these are the only numbers output to this summary data structure.

4.3.1 Monte Carlo Verification

Our first comparison is to a Monte Carlo calculation that, like CLOC, as-

sumes that cluster formation is a Poisson process, and also computes the mass-

to-light ratios of clusters using the same approximate relationship (equation 4.17).

This allows us to verify the accuracy of our analytically-calculated PDFs, and our

software implementation thereof. Luckily, the Monte Carlo implementation of the

model is simple compared with the analytic derivation of its results (although of

course much slower to run). The process is as follows: we adopt a set of parameters

Mmin = 500 M⊙, Mmax = 109 M⊙, β = −2, tmin = 107 yr, tmax = 109 yr, Fc = 0.01,

γ = −0.9, τ0 = 0 τ1 = 1, and Ṁ∗ = 0.1 M⊙ yr−1. From these parameters, we com-

pute the mean cluster mass 〈M〉 = 7254 M⊙ and the expected number of clusters

〈N〉 = 136.5 from equations (4.9) and (4.15). We then create a sample of clusters

via the following algorithm:

1. Draw an actual number of clusters N from a Poisson distribution with expec-

tation value 〈N〉.

2. For each cluster, draw a mass M from the initial cluster mass function ψ(M),

a light-to-mass ratio from the distribution ξ([1/Υ]), and a dust optical depth

τ from η(τ). Each of these distributions is determined fully from the input

parameters.

3. From the drawn values, compute the observed luminosity L = (M/Υ)e−τ .
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Figure 4.2 Comparison of the analytic prediction of the PDF of the most luminous
cluster as computed by CLOC (blue curve) and the result of 106 Monte Carlo re-
alizations of a cluster population (grey histogram). The input parameters for this
test are Mmin = 500 M⊙, Mmax = 109 M⊙, β = −2, tmin = 107 yr, tmax = 109 yr,
Fc = 0.01, γ = −0.9, τ0 = 0 τ1 = 1, and Ṁ∗ = 0.1 M⊙ yr−1.

We repeat this process 106 times, to create 106 independent cluster samples. From

each sample, we record the luminosity L of the most luminous cluster. The code

that performs these tasks is included for download with CLOC.

We then run CLOC with the same input parameters, using ǫS = ǫL = 0,

i.e., assuming that there is no observational uncertainty on either the star formation

rate or cluster luminosities. We compare the analytically-predicted PDF φ1(L) of

the most luminous cluster as computed by CLOC with the results of the Monte Carlo

code in Figure 4.2. We see that CLOC exactly predicts the PDF of the Monte Carlo

realizations, performing as desired, and with a run time that is far smaller than that

of the Monte Carlo code.

4.3.2 Comparison to SLUG

We next compare CLOC to the Monte Carlo code SLUG (da Silva et al., 2012;

Fumagalli et al., 2011a). This test is interesting because SLUG and CLOC treat star

cluster formation in somewhat different ways, and this difference allows us to check

the sensitivity of our predictions to some of the assumptions we made along the

way. SLUG is like CLOC in that it produces a population of clusters with a specified
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initial cluster mass function and following a cluster disruption law that produces a

specified cluster age distribution, but it differs in two ways. First, SLUG does not

assign clusters a fixed, deterministic mass-to-light ratio. Instead, it populates the

clusters with individual stars, each of which has an individual mass-to-light ratio

determined by stellar evolution models. Thus SLUG uses the full numerical evolution

of the mean mass-to-light ratio as computed from stellar evolution codes, rather than

our powerlaw approximation to it, and also correctly handles the case where the IMF

is not fully sampled. The comparison to SLUG enables us to determine where we

can no longer safely assume that stochastic variations in mass to light ratio due to

imperfect sampling of the IMF is negligible for order statistics at the bright end of

the cluster luminosity function.

The second difference between CLOC and SLUG is that SLUG uses a mass-

constrained method to sample the cluster mass function, and this method is not

precisely described by Poisson statistics. Specifically, when given a time interval

∆tSLUG, a star formation rate Ṁ∗, and an ICMF, SLUG draws clusters from the

ICMF until the total mass of clusters drawn exceeds the target mass Ṁ∗∆tSLUG; it

keeps the last cluster drawn if the result of doing so is closer to the target mass than

the result of omitting this cluster. When the expected mass of stars Ṁ∗∆tSLUG is

much larger than the maximum cluster mass Mmax, the distribution of number of

clusters should converge to the Poisson distribution we have assumed. At the other

extreme, Ṁ∗∆tSLUG ≪ 〈M〉, the star formation rate ceases to be a well-defined

concept. Since stars form in (approximately) discrete events of finite mass, one can

only define a meaningful SFR by averaging over timescales that are long compared

to the mean time between events. The behavior in the intermediate regime, where

〈M〉 ≪ Ṁ∗∆tSLUG ≪ Mmax is more complex, and the distribution of number of

clusters, and of star formation history, begin to depend on how one samples from

the ICMF. The different assumptions made by SLUG and CLOC in this case will

produce somewhat different results. We emphasize that neither code’s prescription

is necessarily physically correct in the intermediate regime, as the results depend on

the real physical details of how galaxies form clusters. Both mass-limited sampling

and Poisson sampling are at best reasonable guesses at the right answer. The

differences between these two approaches can therefore provide some measure of

how accurate any method of producing synthetic cluster catalogs can hope to be in
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the regime where the ICMF is not well sampled.

With this discussion in mind, our procedure for comparing SLUG to CLOC is

as follows. As in our previous test, we consider clusters in the age range tmin = 10

Myr and tmax = 1 Gyr. We use the default SLUG prescription for cluster formation

disruption, which amounts to fc = 1, t0 = 1 Myr and γ = −1, and from these

values, we compute Fc = 0.0047 using equation (4.16). We then run both CLOC and

SLUG for six cases: we use star formation rates Ṁ∗ = 10−3, 10−2, and 10−1 M⊙ yr−1,

and maximum cluster masses Mmax = 105 and 109 M⊙. We do not use any dust

extinction for this test, as SLUG does not include any. All other parameters are as

specified in Table 4.1. For the SLUG runs, we perform 103 realizations of the cluster

population for each case. We output the cluster population at an age of 100 Myr

for the runs with Mmax = 109 M⊙, and at an age of 1 Gyr for the Mmax = 105 M⊙

runs. Note that we do not consider star formation rates higher that 10−1 M⊙ yr−1

due to issues of computational cost: performing even 1000 SLUG runs at Ṁ∗ = 10−1

M⊙ yr−1 requires of order a CPU-day, and the computational cost is linear in both

the number of realizations and the star formation rate. However, the vast majority

of the observational sample is at higher SFRs, illustrating the difficulty of using

Monte Carlo methods to analyze the observations.

We show the results of a comparison between CLOC and SLUG in Figure 4.3.

We see that the agreement between the two codes is generally quite good, but that

there are some important differences. First focus on the left column, showing the

models with Mmax = 105 M⊙ and ∆tSLUG = 1 Gyr. These runs are in the regime

where Ṁ∗∆tSLUG ≫Mmax, so our assumption that N is Poisson-distributed should

be safe. Thus differences between CLOC and SLUG in this column are entirely due

to the treatment of mass-to-light ratio in CLOC. At Ṁ∗ = 10−1 and 10−2 M⊙ yr−1,

the difference between the two codes is minimal. However, at Ṁ∗ = 10−3 M⊙ yr−1

we see that the distribution produced by SLUG is noticeably broader than the one

computed by CLOC. This difference occurs because CLOC’s value for the mass-to-light

ratio assumes that each cluster fully samples the IMF, but at very low SFRs the

maximum cluster mass is likely to be well below the ∼ 103.5 M⊙ value required for

full sampling (Cerviño & Luridiana, 2004; Fouesneau et al., 2012). This induces

an additional scatter in mass-to-light ratio that is not included in CLOC, and that

broadens the distribution. This indicates that CLOC’s results for the luminosity
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distribution of the brightest cluster should not be considered reliable at SFRs below

∼ 10−3 − 10−2 M⊙ yr−1, due to its incomplete treatment of IMF sampling effects.

Fortunately, at such low SFRs, codes like SLUG are fairly fast to run, since the

number of stars involved is small.

Now consider the right column, which usesMmax = 109 M⊙ and ∆tSLUG =

100 Myr. These runs are in the regime where Ṁ∗∆tSLUG ≫Mmax, and so differences

in how the ICMF is sampled begin to be important, on top of IMF sampling effects

within clusters. In particular, note that, because the sampling is mass-constrained,

even though we have setMmax = 109 M⊙, no cluster of that mass can ever be created

in the SLUG runs, because Ṁ∗∆tSLUG = 106 − 108 M⊙. Thus, even if SLUG does

draw a cluster close to 109 M⊙ from the ICMF, it will reject it on the grounds that

a mass of 0 is closer to the target mass than a mass of 109 M⊙. We have chosen

this extreme case intentionally, to show the importance of ICMF sampling effects.

At Ṁ∗ = 10−3 M⊙, we find that the SLUG distribution is not only broader than the

CLOC one, it is systematically shifted to higher luminosity. The broadening is almost

certainly a result of the same effect as in the upper left panel, i.e., extra scatter in

the mass-to-light ratio in SLUG due to incomplete IMF sampling. At Ṁ∗ = 10−2 M⊙

yr−1, the broadening effect has vanished, but the SLUG distribution remains shifted

to higher luminosity than the one predicted by CLOC by ∼ 1 − 2 mag. Only once

the star formation rate reaches Ṁ∗ = 10−1 M⊙ yr−1 do CLOC and SLUG agree well.

Clearly at low star formation rates, CLOC’s assumption that the number of clusters

is Poisson-distributed produces fewer massive, luminous clusters than SLUG ’s mass-

limited sampling method, leading to a systematic offset in the first order statistic

PDF.

The most important point to take from this comparison exercise is that,

as long as one avoids the regime Ṁ∗∆tSLUG ≪ Mmax or Ṁ∗ ≪ 10−2 M⊙ yr−1,

differences between CLOC and SLUG (and presumably between CLOC and other Monte

Carlo codes that behave similarly to SLUG ) are negligible. At SFRs below ∼ 10−2

M⊙ yr−1, CLOC systematically underestimates the breadth of the cluster luminosity

distribution due to its omission of IMF sampling effects. If one wishes to consider

models with Ṁ∗∆tSLUG ≪ Mmax the situation is considerably more complicated.

In this case, differing choices of exactly how to handle the incompletely-sampled

ICMF can result in a star formation rate-dependent offset of ∼ 1 − 2 mag level in
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the predicted luminosity PDF. The correct physical answer in this regime is unclear.
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Figure 4.3 Comparison of the PDFs of the most luminous cluster as computed
analytically by CLOC (blue curve) and via Monte Carlo sampling by SLUG (gray
histogram), following the procedure outlined in the main text. The left column uses
Mmax = 105 M⊙ and a run time of 1 Gyr in SLUG , while the right column uses
Mmax = 109 M⊙ and a run time of 100 Myr. The star formation rates used are
10−3, 10−2, and 10−1 M⊙ yr−1, in the top, middle, and bottom rows, respectively.
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4.4 Discussion of Parameter Effects

Having presented the basic outline of the derivation and the parameters

that determine cluster luminosities, we now turn to a study of the effects of varying

these parameters, with particular attention to the first order statistic. Our goal is

both to demonstrate the power of the analytic formalism, and also to build some

intuition to help us interpret observations of the relationship between star formation

rate and brightest cluster luminosity, which we refer to for simplicity as the “SFR-

L1” relation. This has traditionally been used in an attempt to deduce parameters

describing star cluster formation (e.g. Bastian, 2008b). To that end, we consider a

fiducial model whose parameters are given in table 4.1, and we then systematically

vary the parameters. The results of this experiment are shown in figures 4.4 and 4.5

which we discuss below. Although we focus on the first order statistic here, we note

that many of the phenomena we identify are generic, and will affect higher order

statistics as well.

4.4.1 Clustering Parameters

Ignoring essentially random effects of dust and light-to-mass ratio, the

dominant input shaping the SFR-L1 diagram is the cluster mass function, which

in turn is set by the fraction of stars in clusters Fc, and the initial cluster mass

function parameters Mmin, Mmax, and β. The effects of the first factor, Fc, are

simple. (We remind the reader again that Fc is not the same as the mass fraction

of stars that form in clusters or in other gravitationally-bound structures; it is the

fraction of stars in the observationally-selected age range that are in observationally-

identified clusters today.) Varying Fc simply translates the observed relation left

or right, such that Fc = 0.1 with a given star formation rate Ṁ∗ is fully equivalent

to having Fc = 1 and a star formation rate of 0.1Ṁ∗. This can be seen in the first

row of Figure 4.4. The value of Fc also has another effect. In the upper panel

of Figure 4.4, notice that 5% confidence contour in the low Fc model extends all

the way to the bottom of the plot (and in fact all the way to −∞) at the lowest

SFRs. This occurs because, when Ṁ∗ and Fc are both very low, 〈N〉 is low as well,

and there is a reasonable chance that there will be no clusters present at the time

of the observation. Thus for these models the PDF has a significant component
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Figure 4.4 (left) the PDF of the luminosity of a single cluster before observational
error is applied. The filled region corresponds to the fiducial model, while the solid
red line denotes the PDF for that results when the change for each corresponding
row is applied. The black line corresponds to the model before observational errors
are included. (middle) PDFs of the most luminous cluster for star formation rates
log10 Ṁ⋆ = −2.75 (blue) and 2.75 (green). Filled regions are for the fiducial values
and solid lines are for when the change for each corresponding row is applied. (right)
The 5-95 percentile confidence range for the luminosity of the brightest cluster as
a function of Ṁ∗. The red region is for the fiducial model and blue is the altered
model.

95



0.00

0.08

0.16

0.24

p
(L

)[
M

V
]

β = −2.5

0.00

0.15

0.30

0.45

p
(L

1
)
[M

V
]

β = −2.5
−24

−16

−8

0

L
1
[M

V
]

β = −2.5

0.00

0.08

0.16

0.24

p
(L

)[
M

V
]

β = −1.5

0.00

0.15

0.30

0.45

p
(L

1
)
[M

V
]

β = −1.5
−24

−16

−8

0

L
1
[M

V
]

β = −1.5

0.00

0.08

0.16

0.24

p
(L

)[
M

V
]

log10 σSFR = 1.5

0.00

0.15

0.30

0.45

p
(L

1
)
[M

V
]

log10 σSFR = 1.5
−24

−16

−8

0

L
1
[M

V
]

log10 σSFR = 1.5

0.00

0.08

0.16

0.24

p
(L

)[
M

V
]

ln σL = 3

0.00

0.15

0.30

0.45

p
(L

1
)
[M

V
]

ln σL = 3
−24

−16

−8

0

L
1
[M

V
]

ln σL = 3

−15−10−505
L [MV ]

0.00

0.08

0.16

0.24

p
(L

)[
M

V
]

τ0 = 0; τ1 = 5

−30−25−20−15−10−50
L1 [MV ]

0.00

0.15

0.30

0.45

p
(L

1
)
[M

V
]

τ0 = 0; τ1 = 5

−4 −3 −2 −1 0 1 2 3 4
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Figure 4.5 Same as figure 4.4 but with different parameters varied.
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at zero luminosity, corresponding to the δ-function term in equation (4.5). When

the prefactor on this term, Γ(1, 〈N〉)/Γ(1), exceeds 0.05, the 5% confidence contour

must encompass zero luminosity. The value of Fc, to which 〈N〉 is proportional,

determines at what SFR this happens.

Behavior as a result of changing the upper and lower limits on the ICMF

is less trivial than the simple translation that results from modifying Fc, and is

illustrated in the bottom four panels of Figure 4.4. For qualitative trends, when all

other variables are held constant it is reasonable to treat the Ṁ∗ − L1 relation as

behaving like the Ṁ∗ −M1 relation, i.e., the relationship between star formation

rate and the mass of the most massive cluster. This only is reasonable when applied

over a relatively small time window ∆t where any clusters older than this age are

likely to have faded too dramatically to be candidates to be the most luminous.

Thus changing the upper mass cutoff Mmax has little to no effect until there is a

sufficiently high cluster formation rate (CFR) to make the probability of a cluster

near the maximal mass forming over a time ∆t relatively high. Thus the effect of

changing the maximum cluster mass from Mmax to a value M ′
max < Mmax is to first

order to leave the distribution unchanged until the star formation rate reaches a

critical value Ṁ∗,lim. We can find this limiting SFR by first noting that we need

to expect to find at least one cluster in the range M ′
max −Mmax with an age < ∆t

for the change to have a large effect. This condition can be roughly estimated

using equation (4.25) to compute the expected mass of the most massive cluster

and equation (4.9) to compute the expected number of clusters. Combining these

two results gives the star formation rate at which we expect to produce a cluster

with a mass of at least CMmax. This is roughly

Ṁ⋆,lim ≈
〈M〉

Fc∆t(β + 1)

[

(Mmin/Mmax)
β+1 − 1

(M ′
max/Mmax)β+1 − 1

]

≈
〈M〉

Fc∆t(β + 1)

(

Mmin

M ′
max

)β+1

, (4.26)

where in the second step we have assumed that (Mmin/Mmax)
β+1 ≫ 1 and

(M ′
max/Mmax)

β+1 ≫ 1, as is the case for any realistic values of Mmin/Mmax and β.

Above Ṁ⋆,lim, the relation between Ṁ∗ and the luminosity of the brightest cluster

is dramatically flattened. One can see an example of this by comparing the second
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and fourth rows of Fig. 4.4, which differ only in their values of Mmax.

The effect of the lower mass cutoff Mmin is twofold (see equation 4.25).

Consider the use of a higher minimum mass M ′
min compared to a fiducial case with

a lower limit of Mmin. First, note that the observed maximum mass cannot be less

than M ′
min and thus in any regime where M1 is in the range of Mmin −M ′

min will

have its value set to a floor of approximately M ′
min. This is of course assuming that

there is at least one cluster. The other effect of raising Mmin is to raise the mean

cluster mass 〈M〉. This both decreases the allowed range of cluster masses and thus

increasesM1 and L1, but also decreases the expected number of clusters 〈N〉, making

N = 0 a more likely outcome. The net effect is that, at higher SFRs, increasing

Mmin very slightly increases the expected luminosity of the brightest cluster, but it

also raises the SFR at which the 5% confidence contour extends all the way down

to zero.

Changing the value of the slope β will affect the observed relation in several

ways. The dominant effects are on the overall slope and dispersion of the relation

(see the first two rows of of figure 4.5). A flatter mass function corresponds to a

broader distribution of cluster masses at fixed number of clusters N . As a result, β

closer to 0 results in the most massive cluster spanning a wider range of luminosities

at fixed SFR. A steeper mass function will result in a less dispersed distribution.

The ICMF slope also directly controls how the most luminous cluster varies with N

and thus will affect the overall slope of the relation.

Finally, we have already seen that the cluster age distribution plays a

key role in setting the total number of extant clusters at the time of observation.

However, this role is entirely encoded in the parameter Fc, which provides the

mapping between the mass fraction of stars observed to be in clusters at the time

of the observation (Fc) and the mass fraction of stars formed in clusters (fc). At

fixed ∆t and fc, changing the cluster age distribution slope γ changes the value of

Fc, and thus the expected number of clusters. However, changes in γ are degenerate

with changes in fc that leave the overall value of Fc the same.
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4.4.2 Dust Extinction and Observational Uncertainties

In addition to the parameters discussed above that characterize the phys-

ical way clusters form and evolve, there are additional “nuisance” parameters that

affect the observed luminosity function, and that must be accounted for if we are

to have confidence in any deductions we make about the physical parameters. Dust

is one such nuisance parameter, though one that is often ignored. As illustrated

in the bottom panel of Figure 4.5, higher mean dust extinctions lower the median

luminosity at expected at fixed SFR. Equally importantly, dispersion in the dust

optical depth distribution broadens the distribution. In the extreme case of a highly-

extincted galaxy, the most luminous cluster might well be the one with the lower

extinction, rather than the one with the highest intrinsic luminosity. More generally,

variations in the mean or width of this distribution can mimic the effects of many

other parameters, and the problem is even worse if the amount of dust extinction

is systematically correlated with the star formation rate. Should this be the case,

there is little that one can do short of attempting to estimate the extinction of each

cluster individually.

A final, also commonly-neglected nuisance effect is the uncertainties in the

measurements of star formation rate and cluster luminosity themselves. While the

photometric errors are often quite small, significant errors can arise from uncertain-

ties in how to extrapolate the cluster surface brightness distribution to large radii.

These effects can introduce scatter of 0.5−1.5 magnitudes (Larsen & Richtler, 1999).

The SFR also remains significantly uncertain due to scatter in the SFR calibration

and even stochastic variations in the SFR indicators (see Kennicutt & Evans (2012b)

for a recent review). Robust SFR measurements are best achieved by combining two

star formation rate indicators to capture both obscured and unobscured populations

(e.g., UV and IR, or Hα and IR), and in this case the error is likely 0.5 dex or less,

but many studies of cluster statistics are based on less accurate SFR measurements.

These uncertainties have the effect of broadening the distribution along both the Ṁ∗

and L1 axes, and must be correctly accounted for when interpreting observations.

The effect of varying the assumed uncertainty can be dramatic, as evidenced by

rows 3 and 4 of Figure 4.5.
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4.5 Conclusions

In this paper we present a new analytic method to compute luminosity

order statistics of star clusters from theoretical models of the cluster formation pro-

cess, including realistic parameterized treatments of cluster aging, cluster disruption,

dust extinction, and observational uncertainties in the determination of both cluster

luminosities and galaxy star formation rates. We have implemented this analytic

method in a new software package, the Cluster Luminosity Order-Statistic (CLOC)

code, which is released under the terms of the GNU General Public License, and

we have verified that this package produces results consistent with the full Monte

Carlo stellar and cluster population synthesis code SLUG (da Silva et al., 2012) in

the regime where the star formation rate is large enough that the initial stellar and

cluster mass functions are well-sampled.

The primary advantage of our method compared to previous work is its

speed. Monte Carlo methods of computing order statistics of cluster luminosity

(i.e., the probability distribution of the most luminous cluster in a population, sec-

ond most luminous, third most luminous, etc.) are extremely expensive, requiring

vast numbers of trials to produce converged distributions. In contrast, because our

method is analytic, we are able to obtain the same results in a tiny fraction of the

time – for some of the examples we present, the difference in computation time is

a matter of days versus milliseconds. The reduction in computational cost that we

achieve is such that we can, for the first time, use Monte Carlo Markov Chain meth-

ods to explore the full, multi-dimensional parameter space characterizing the way

star clusters form, fade, and disrupt, as well the a variety of observational uncertain-

ties that affect measurements of star cluster luminosities and galaxy star formation

rates. We can therefore conduct statistically-rigorous analyses of what can be in-

ferred about the properties of star cluster formation and evolution from observed

cluster luminosity distributions, the order statistics thereof, and the dependence of

both of these quantities on the large-scale properties of galaxies. The freedom to

explore the ways in which nuisance variables confound our attempts to constrain

the relevant cluster parameters opens the door for an unprecedented analysis of the

relationship between galaxy star formation rates and brightest cluster luminosities,

which is the subject of the companion paper (da Silva et al., in prep.).
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4.6 General Derivation of Cluster Order Statistics

Here we derive the order statistics for clusters using a more general method

that can be extended to the case where cluster luminosities are independent of one

another, but where the full cluster formation process does not obey Poisson statistics.

Let φ(L) be the luminosity PDF of a single cluster, and Φ(L) =
∫ L
0 φ(L′) dL′ be the

corresponding CDF. Note that, although we use L as the variable, our derivation

applies equally well to any other quantity that is defined for a star cluster, for

example mass. First consider a region of study containing exactly N clusters. For

independently-drawn cluster luminosities, the probability that any single cluster has

a luminosity > L is 1−Φ(L), and for m ≤ N , the probability that exactly m clusters

have luminosities > L is simply given by the binomial distribution. Thus we have

Pm(> L) =







N !
(N−m)!m! [1− Φ(L)]mΦ(L)N−m, m ≤ N

0, m > N
. (4.27)

101



To obtain the CDF Φk(L), recall that Φk(L) is the probability that the kth most

luminous cluster has a luminosity ≤ L. If N ≥ k, this probability must be equal to

the probability that there are between 0 and k − 1 clusters that have luminosities

> L, and therefore

Φk(L | N) =
k−1
∑

m=0

Pm(> L) (4.28)

Note that for N < k, this evaluates to Φk(L | N) = 1 for any luminosity where

Φ(L) 6= 0. This amounts to asserting that, in a region with N < k clusters, the

CDF of the kth most luminous cluster is 1 for any non-zero value of L. For N ≥ k,

the corresponding PDF is

φk(L | N) =
d

dL
Φk(L | N) (4.29)

=
N !

(N − k)!(k − 1)!
Φ(L)N−k[1−Φ(L)]k−1 ×

φ(L) (4.30)

Note that the second equality is not immediately obvious, but is a standard result

in statistics that can be proven by a variety of arguments (e.g., Rose & Smith, 2002,

section 9.4).

The case N < k is more subtle, since this amounts to asking what we mean

by the PDF φk(L | N) when N < k. To put the question in words: what is the

probability that the kth most luminous cluster has a luminosity in the range L to

L+dL, if we are considering a region where there are fewer than k clusters present?

We must answer this question if we are to define a meaningful PDF, because in any

sample of galaxies or sub-galactic regions, there are likely to be regions that contain

no or only a small number of clusters. There are two possible approaches. One

could simply exclude cases where N < k, and compute statistics in the remaining

cases. This would amount to changing the summations below (equations 4.32 and

4.33) to run from N = k to ∞ rather than N = 0 to ∞. The other option is to

assign a luminosity of 0 to the kth most luminous cluster in regions where N < k.

While both options are equally valid from the standpoint of statistics, from

a practical standpoint the second one is preferable. The difficulty with excluding

the case N < k is that, in order to compare a model of this form to observations, we
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would be required to construct an observational sample in which we exclude regions

that contain too few clusters. However, finite observational sensitivity means that we

can never count clusters with certainty. In particular, we cannot easily distinguish

between the possibilities that there are no clusters present and that there are clusters

present, but below our detection limit. For this reason, we could never be certain

of successfully constructing an observational sample that is appropriately cleaned

of cluster-free regions. In contrast, if we simply assign a luminosity of zero in our

formalism when N < k, we avoid this complication. In this case we need make no

effort to sort our observational sample into galaxies with and without a large enough

number of clusters, and can instead handle cases of non-detections by folding the

observational upper limits into our analysis. For this reason, we choose to formally

extend the definition of φk(N) to

φk(L | N) = (4.31)






N !
(N−k)!(k−1)!Φ(L)

N−k[1− Φ(L)]k−1φ(L), k ≤ N

δ(L), k > N
.

This choice is also consistent with the CDF for the case N < k. As noted above,

Φk(L) evaluates to unity for N < k and Φ(L) 6= 0, so (d/dL)Φk(L | N) = 0 for any L

such that Φ(L) 6= 0. However, for φk(L | N) to be properly normalized, it must have

an integral of unity over all L. The definition given by equation (4.31) meets these

requirements, as for any N < k it gives a zero derivative for any luminosity L that

it is possible for a cluster to have, but also has unit integral over all luminosities.

We are now in a position to compute the PDF φk(L) and CDF Φk(L) for

a population of regions with varying numbers of clusters. This is given by the sum

of φk(L | N) and Φk(L | N) weighted by the probability P (N) that a given region

contains exactly N clusters:

Φk(L) =

∞
∑

N=0

P (N)Φk(L | N) (4.32)

φk(L) =
∞
∑

N=0

P (N)φk(L | N). (4.33)

To proceed further one requires the discrete probability distribution P (N) for the
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number of clusters. One might guess that P (N) is Poisson-distributed, but, as

noted in the main text, this cannot be strictly true due to mass conservation. As

has been discussed in the context of sampling from the IMF (e.g., Haas & Anders,

2010b), many other choices are possible that enforce mass conservation to varying

degrees. For example, the SLUG code to which we compare in Section 4.3.2 uses a

“stop-nearest” approach in which clusters are drawn from the cluster mass function

until the total mass exceeds the specified mass budget, and then one keeps or does

not keep the last cluster drawn based on which choice puts the total mass closest to

the target value. Alternately, one could always or never keep the last cluster, which

corresponds to ensuring that one always overshoots or undershoots the mass budget,

one could produce a list of clusters but then sort them by mass, or any number

of other approaches. Clearly each of these approaches will generate a different

distribution of P (N) values. To calculate the order statistics for a given method of

sampling the cluster mass function, one must derive P (N) for that approach (either

analytically or numerically) and then use that distribution in equations (4.32) and

(4.33).4

Without a real physical theory of star cluster formation there is no obvious

reason to favor one method of mass-limited sampling over another. However, in the

limit where the mean cluster mass is much less than the total gas mass, it is probably

reasonable to approximate that clusters form independently of one another, in which

case P (N) will be Poisson-distributed. In this case, the PDF and CDF of cluster

luminosities are

Φk(L) =

∞
∑

N=0

〈N〉Ne−〈N〉

N !
Φk(L | N) (4.34)

φk(L) =
∞
∑

N=0

〈N〉Ne−〈N〉

N !
φk(L | N), (4.35)

where 〈N〉 is the expected number of clusters in the region under consideration.

4The stop-nearest method and some others like it present a further complication. For this
method, the masses and luminosities of individual clusters are not independent, because the last
cluster drawn is much more likely to be kept if its mass is small than if it is large. Thus clusters
drawn late in the selection process are not independent of those drawn early. The formalism given
here cannot be used in this case.
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Evaluating equation (4.34), we have

Φk(L) =
∞
∑

N=0

〈N〉Ne−〈N〉

N !

k−1
∑

m=0

Pm(> L) (4.36)

=
k−1
∑

m=0

∞
∑

N=0

〈N〉Ne−〈N〉

N !
Pm(> L) (4.37)

=

k−1
∑

m=0

〈N〉m[1− Φ(L)]me−〈N〉

m!
×

∞
∑

N=m

〈N〉N−mΦ(L)N−m

(N −m)!
(4.38)

= e−〈N〉e〈N〉Φ(L)
k−1
∑

m=0

{〈N〉[1− Φ(L)]}m

m!
. (4.39)

Note that in the second line we exchanged the order of summation, which is possible

because the sums involved are absolutely convergent. The third line is simply a

substitution using equation (4.27), and the fourth line follows from the definition of

the exponential function. The final line is equation (4.7) of the main text.

Similarly, evaluating equation (4.35) gives

φk(L)

=
k−1
∑

N=0

〈N〉Ne−〈N〉

N !
δ(L) +

∞
∑

N=k

〈N〉Ne−〈N〉

(N − k)!(k − 1)!
×

Φ(L)N−k[1− Φ(L)]k−1φ(L) (4.40)

=
Γ(k, 〈N〉)

Γ(k)
δ(L) +

〈N〉ke−〈N〉

(k − 1)!
[1− Φ(L)]k−1φ(L)×

∞
∑

N=k

〈N〉N−kΦ(L)N−k

(N − k)!
(4.41)

=
Γ(k, 〈N〉)

Γ(k)
δ(L) +

〈N〉
{〈N〉[(1 −Φ(L)]}k−1

(k − 1)!
e−〈N〉e〈N〉Φ(L). (4.42)
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The first line follows from substituting equation (4.31) into equation (4.35), the

second is just an algebraic re-arrangement, and the final line uses the definition of

the exponential function. This is equation (4.5) of the main text.

4.7 Fit for Υ

In this Appendix we compute an approximate powerlaw fit to the age-

dependent cluster mass to light ratio Υ(t) for V band. We run a starburst99

simulation of a simple stellar population with a Kroupa IMF, Padova+AGB stellar

tracks, Lej+SMI stellar atmospheres, and Solar metallicity. From this simulation,

we find that at ages t = 10 Myr − 1 Gyr, the light-to-mass ratio in V bands is well

approximated by Υ(t) = Υ∗(t/10 Myr)ζ , with best-fit parameters

ζ = 0.688 (4.43)

Υ∗ = 8.3× 10−21M⊙

(

erg s−1 Hz−1
)−1

. (4.44)

Figure 4.6 shows both the starburst99 result and our best-fitting function. The

maximum deviation between the fit and the numerical result is 0.07 dex.
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Figure 4.6 Fit of a simple power law approximation (1/Υ ∝ t−ζ , red) for the light
to mass ratio 1/Υ(t), compared to the results of a starburst99 calculation of Υ
with a Kroupa IMF, Padova+AGB stellar tracks, Lej+SMI stellar atmospheres, and
Solar metallicity (black). The grayed out region corresponds to populations younger
than 10 Myr, for which the fit is poor.
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4.8 The Luminosity Function for Variable Ages

Here we evaluate the convolution

φin(logLin) ∝ ψ(logM) ∗ ξ(− log Υ) (4.45)

for the PDF of intrinsic luminosities including age-dependent mass to light ratios,

where Lin =M/Υ. First we evaluate ξ([1/Υ]) using equation (4.18), which gives

ξ([1/Υ]) ∝











Υ(γ−1−ζ)/ζ , 1/Υ0 < 1/Υ < 1/Υ1

0, otherwise
, (4.46)

where for convenience we have defined Υ0 = Υ∗(tmin/10 Myr)ζ and Υ1 = Υ∗(tmax/10 Myr)ζ .

The calculation can be done most easily by transforming to logarithmic variables.

Given the above equation for ξ([1/Υ]), the PDF of − log Υ is given by

f1(− log Υ) ∝











Υ(γ−1)/ζ , 1/Υ0 < 1/Υ < 1/Υ1

0, otherwise
. (4.47)

We can similarly transform the ICMF ψ(M) to a logarithmic variable as

f2(logM) ∝











Mβ+1, Mmin < M < Mmax

0 otherwise
. (4.48)
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Since the intrinsic luminosity Lin obeys logLin = logM − logΥ, we can now find

the PDF of logLin via the substitution z = − logΥ, giving

φin(logLin)

∝

∫ ∞

−∞
f1(z)f2(logLmin − z) dz (4.49)

=

∫ ∞

−∞
[exp(z)](γ−1)/ζ [exp (logLin − z)]β+1 dz (4.50)

∝























0, Lin >
Mmax

Υ0

∫ z1
z0
G(z) dz, Mmin

Υ1
< Lin <

Mmax

Υ0

0, Lin <
Mmin

Υ1

(4.51)

where for convenience we have defined

z0 = logmax[1/Υ1, Lin/Mmax] (4.52)

z1 = logmin[1/Υ0, Lin/Mmin] (4.53)

G(z) = [exp(z)](γ−1)/ζ [exp (logLin − z)]β+1 (4.54)

= Lβ+1
in exp(ωz), (4.55)

where

ω =
γ − 1

ζ
− β − 1. (4.56)

The integral
∫

G(z) dz therefore trivially evaluates to (Lβ+1
in /ω) exp(ωz), up to the

constant of integration.

We now limit ourselves to considering the case log(Mmax/Mmin) > log(Υ1/Υ0),

which amounts to saying that the mass distribution is broad enough that the a clus-

ter with the minimum possible mass at the youngest possible age is still dimmer

than a cluster at the maximum possible mass and the oldest possible age. Us-

ing our fit to V band, tmin = 10 Myr, and tmax = 1 Gyr, this is true as long as

log10(Mmax/Mmin) > 1.38, which is a fairly unrestrictive requirement given the ob-

servations imply a far broader range of cluster masses exists. With this assumption
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φ(logLin) reduces to

φ(logLin)

∝



















































0, Lin >
Mmax

Υ0

∫ log 1/Υ0

logLin/Mmax
G(z) dz, Mmax

Υ1
< Lin <

Mmax

Υ0

∫ log 1/Υ0

log 1/Υ1
G(z) dz, Mmin

Υ0
≤ Lin ≤ Mmax

Υ1

∫ logLin/Mmin

log 1/Υ1
G(z) dz, Mmin

Υ1
< Lin <

Mmin

Υ0

0, Lin <
Mmin

Υ1

(4.57)

∝ Lβ+1
in



















































0, Lin >
Mmax

Υ0

Υ−ω
0 − M−ω

max

L−ω
in

, Mmax

Υ1
< Lin <

Mmax

Υ0

Υ−ω
0 −Υ−ω

1 , Mmin

Υ0
≤ Lin ≤ Mmax

Υ1

M−ω
min

L−ω
in

−Υ−ω
1 , Mmin

Υ1
< Lin <

Mmin

Υ0

0, Lin <
Mmin

Υ1

. (4.58)

The corresponding CDF for γ 6= 1 is

Φin(logLin) =

B























































































































1/B, [Mmax

Υ0
,∞)

Lβ+1

in
−Mβ+1

max /Υ
β+1

1

(β+1)Υω
0

−

Lν
in
−Mν

max/Υ
ν
1

νMω
max

+B1 +B2, [Mmax

Υ1
, Mmax

Υ0
)

(

Υ−ω
0

−Υ−ω
1

β+1

)

×
(

Lβ+1
in −Mβ+1

min /Υ
β+1
0

)

+B1, [Mmin

Υ0
, Mmax

Υ1
)

Lν
in
−Mν

min
/Υν

1

νMω
min

−

Lβ+1

in
−Mβ+1

min
/Υβ+1

1

(β+1)Υω
1

, [Mmin

Υ1
, Mmin

Υ0
)

0, [0, Mmin

Υ1
)

. (4.59)

where the interval in each case specifies the range in Lin over which it applies, and
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we have defined

B1 =
Mν

min/Υ
ν
0 −Mν

min/Υ
ν
1

νMω
min

−

Mβ+1
min /Υ

β+1
0 −Mβ+1

min /Υ
β+1
1

(β + 1)Υω
1

(4.60)

B2 =

(

Υ−ω
0 −Υ−ω

1

β + 1

)

×

(

Mβ+1
max /Υ

β+1
1 −Mβ+1

min /Υ
β+1
0

)

(4.61)

1/B = B1 +B2 +

Mβ+1
max /Υ

β+1
0 −Mβ+1

max /Υ
β+1
1

(β + 1)Υω
0

−

Mν
max/Υ

ν
0 −Mν

max/Υ
ν
1

νMω
max

(4.62)

ν =
γ − 1

ζ
. (4.63)

For γ = 1, we instead have a CDF

Φin(logLin) =

B′























































































































1/B′, [Mmax

Υ0
,∞)

Lβ+1

in
−Mβ+1

max /Υ
β+1

1

(β+1)Υω
0

− log(Υ1Lin/Mmax)
Mω

max

+B′
1 +B′

2, [Mmax

Υ1
, Mmax

Υ0
)

(

Υ−ω
0

−Υ−ω
1

β+1

)

×
(

Lβ+1
in −Mβ+1

min /Υ
β+1
0

)

+B′
1 [Mmin

Υ0
, Mmax

Υ1
)

1
Mω

min

log Lin

Mmin/Υ1

−
Lβ+1

in
−Mβ+1

min
/Υβ+1

1

(β+1)Υω
1

, [Mmin

Υ1
, Mmin

Υ0
)

0, [0, Mmin

Υ1
)

(4.64)
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where

B′
1 =

1

Mω
min

log
Υ0

Υ1

−

[

Mβ+1
min

(β + 1)Υω
1

]

[

Υ
−(β+1)
1 −Υ

−(β+1)
0

]

(4.65)

B′
2 =

Υ−ω
0 −Υ−ω

1

β + 1
×

(

Mβ+1
max /Υ

β+1
1 −Mβ+1

min /Υ
β+1
0

)

(4.66)

1/B′ = B′
1 +B′

2 +
[

Mβ+1
max

(β + 1)Υω
0

]

[

Υ
−(β+1)
0 −Υ

−(β+1)
1

]

−
1

Mω
max

log
Υ0

Υ1
. (4.67)

4.9 The Luminosity Function for Variable Ages and Dust

In this appendix we derive the PDF and CDF for clusters including the

effects of both variable ages and dust, by evaluating the convolution

φ(logL) ∝ φin(logLin) ∗ η(−τ), (4.68)

where φin(Lin) is the distribution of intrinsic luminosities given by equation (4.58),

η(τ) =
1(τ0,τ1)(τ)

τ1 − τ0
=











1
τ1−τ0

, τ0 < τ < τ1

0 otherwise
(4.69)

is the distribution of dust optical depths, and L = Line
−τ . Here 1(x0,x1) is the

indicator function, which is unity on the interval (x0, x1) and zero elsewhere.

As in Appendix 4.8, we evaluate the PDF of the sum by transforming to

logarithmic variables. To simplify the analysis, first note that equation (4.58) for

φin(logLin) can be rewritten as a sum of powerlaws multiplied by indicator functions:

φin(logLin) ∝

5
∑

i=1

CiL
pi
in1(Lin,0,i,Lin,1,i)(Lin), (4.70)
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with

C = (Υ−ω
0 ,−M−ω

max,Υ
ω
0 −Υ−ω

1 ,M−ω
min,−Υω

1 ) (4.71)

p = (β + 1, β + 1 + ω, β + 1, β + 1 + ω, β + 1) (4.72)

Lin,0 =

(

Mmax

Υ1
,
Mmax

Υ1
,
Mmin

Υ0
,
Mmin

Υ1
,
Mmin

Υ1

)

(4.73)

Lin,1 =

(

Mmax

Υ0
,
Mmax

Υ0
,
Mmax

Υ1
,
Mmin

Υ0
,
Mmin

Υ0

)

. (4.74)

The intrinsic and observed luminosities are related by logL = logLin − τ , and we

let z = logLin, so the convolution may be written

φ(logL)

∝

∫ ∞

−∞
φin(z)η(z − logL) dz (4.75)

=
1

τ1 − τ0

5
∑

i=1

Ci

∫ ∞

−∞
epiz1(Lin,0,i,Lin,1,i)(e

z) ·

1(τ0,τ1)(z − logL) dz (4.76)

=
1

τ1 − τ0

5
∑

i=1

Ci

∫ ∞

−∞
epiz1(logLin,0,i,logLin,1,i)(z) ·

1(τ0+logL,τ1+logL)(z) dz (4.77)

=
1

τ1 − τ0

5
∑

i=1

Cimax

(

Lpi
i,1 − Lpi

i,2

pi
, 0

)

, (4.78)

where

L0,i = max (logLin,0,i, τ0 + logL) (4.79)

L1,i = min (logLin,1,i, τ1 + logL) . (4.80)

The corresponding CDF is

Φ(logL) =

∫ logL

−∞
φ(logL′) d log L′. (4.81)

We refrain from writing out the full result of this integration, because, although

each term is trivial to evaluate, there are a very large number of them thanks to

the multiple min and max operators involved. The full expression is included in the
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CLOC software package.
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Chapter 5

Conclusions & Outlook

The main thrust of this work is to reevaluate the way in which astronomers

do one of their most fundamental exercises: stellar population synthesis. While an

ambitious and perhaps audacious goal, we have shown that standard approaches

that make use of the “point-mass” assumption have serious problems in many as-

tronomically interesting regimes. With SLUG , we have shown that this can lead to

incorrect conclusions regrading the nature of the IMF and galaxy star formation

rates. Future work will explore the effects on estimating population masses and

ages as well, which even nature’s simplest examples (i.e. single age star clusters)

are affected by these same effects.

While other works had considered IMF sampling stochasticity, this work

is the first to explore the effects of SFH sampling stochasticity. Remarkably, when

working with composite stellar populations the properties of the stellar clustering

appear to be at least as important as the properties of the IMF itself. Given its

complete lack of literature attention thus far, this is an alarming call to reconsider

how astronomers have interepreted their observations. For example, the artificial

constructs of “star formation rates” need to be reexamined. There are no constant

star formation rates in the universe. Instead, we have a collection of instantaneous

bursts. Before considering stellar clustering, the large size of galaxies made it rea-

sonable to neglect this time sensitive “flickering” as the large number of individual

stars blurred together. However, the clumpy clustered nature of star formation in-

troduces orders of magnitude more burstiness to the SFHs making such a treatment

no longer viable.

115



With this newfound understanding of the importance of stellar clustering

to interpreting even the most basic properties of the stellar populations we see, the

need to understand the properties of that clustering are even more crucial. CLOC

provides a framework to begin the next generation of studies in clustering properties

that will hopefully allow greater constraints on these critical parameters.
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