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Sciences Division, University of California, Berkeley, Berkeley, CA, United States

In cities across the globe, the majority of wastewater – that includes drug resistant and
pathogenic bacteria among other contaminants – is released into streams untreated.
This water is often subsequently used for irrigation of pastures and produce. This use
of wastewater-contaminated streams allows antibiotic-resistant bacteria to potentially
cycle back to humans through agricultural products. In this study, we investigated
the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli
isolated from produce and irrigation water across 17 provinces of Ecuador. A total
of 117 vegetable samples, 119 fruit samples, and 38 irrigation water samples were
analyzed. Results showed that 11% of the samples were positive for E. coli including 11
irrigation water samples (29%), and samples of 13 vegetables (11%), and 11 fruits (9%).
Among the 165 E. coli isolates cultured, 96 (58%) had the ESBL phenotype, and 58% of
ESBL producing E. coli came from irrigation water samples, 11% from vegetables, and
30% from fruits. The blaCTX−M−55, blaCTX−M 65, and blaCTX−M 15 genes were the most
frequently found gene associated with the ESBL phenotype and coincided with the
blaCTX−M alleles associated with human infections in Ecuador. Three isolates had the
mcr-1 gene which is responsible for colistin resistance. This report provides evidence
of the potential role of irrigation water in the growing antimicrobial resistance crisis in
Ecuador.

Keywords: fresh produce, irrigation water, ESBL E. coli, CTX-M, Extended-spectrum beta-lactamase (ESBL)

INTRODUCTION

The rise of antimicrobial resistance (AMR) is one of the most serious biological threats facing
modern society, and the inability to treat bacterial infections is already occurring in many
nosocomial infections (Frieri et al., 2017). The World Health (WHO) has listed extended spectrum
β-lactamase-producing Enterobacteriaceae (ESBL-E) as the most critical antimicrobial resistant
microorganisms, among the “Highest Priority” pathogens due to the increasing prevalence in
humans and livestock (Yassin et al., 2017; Shrivastava et al., 2018; Li et al., 2019; Murray et al., 2021).

Globally, the majority of wastewater produced by urban settlements goes into streams without
prior treatment. Only 20% of produced wastewater receives proper treatment (UNESCO, 2012),
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and the capacity to treat wastewater often depends on the
income level of the country; treatment capacity is 70% of
the generated wastewater in high-income countries, compared
to ∼8% in low-income countries (Sato et al., 2013). This
phenomenon is rising as urban populations grow and developing
countries increasingly install pipes to channel wastewater away
from communities, even before the development of wastewater
treatment plants. The wastewater comes from diverse sources
(e.g., homes, hospitals, and animal processing plants, etc.) and
contains large quantities of antibiotic resistant bacteria (ARB),
often carrying antimicrobial resistance to last-line antimicrobials,
such as carbapenems (Lin et al., 2020).

These antimicrobial resistant bacteria (ARB) can cycle back
to humans when wastewater-contaminated streams are used to
irrigate produce or provide water to food animals (FAO and
WHO, 2008; Leff and Fierer, 2013; Pigłowski, 2019); one recent
example is the finding of New Delhi metallo-β-lactamases–type
carbapenem-resistant Escherichia coli in water, domestic food
animals, and humans (carbapenem, a last-line drug, is used
exclusively in human medicine) (Li et al., 2019; Murray et al.,
2021). Many antibiotic-resistant Enterobacterales, members of
the intestinal microbiome (including E. coli), can survive and
multiply in the environment (Vasco et al., 2015; Guerrero et al.,
2020) and may colonize humans and domestic animals through
the fecal-oral route of transmission. Plasmids and other mobile
genetic elements (MGEs) carrying AMR genes promote the
dissemination of AMR among intestinal bacteria in the intestine
of vertebrates (Bonardi and Pitino, 2019), and this cycle is
fundamentally captured in the One Health concept. Produce
contamination can happen before pre-harvest (i.e., through
contaminated irrigation water or manure fertilization) (Beuchat,
1996; Iwu and Okoh, 2019), as well as post-harvest (i.e., by
washing, handling and processing food) with irrigation water
(Murray et al., 2017).

Wastewater-impacted irrigation water has been identified
as the main source of contamination for fresh produce with
pathogenic microorganisms and ARB (Njage and Buys, 2015;
Gekenidis et al., 2018a). The fecally contaminated produce can
transfer ARB to the consumer especially when the produce is
consumed fresh and uncooked (Pesavento et al., 2014; Araújo
et al., 2017; Hölzel et al., 2018). Besides contributing to the spread
of pathogens, irrigation water may potentially play a leading role
in the dissemination of ARB (Moore et al., 2010; Hong et al., 2013;
Gekenidis et al., 2018b; Vital et al., 2018).

The production of extended-spectrum β-lactamases (ESBL) is
one of the most important mechanisms of antibiotic resistance
in Enterobacteriaceae. ESBL genes can be divided into 4
groups: TEM, SHV, OXA, and CTX-M types (Bush and Jacoby,
2010); CTX-M type is the most prevalent of ESBLs described
(Rossolini et al., 2008; Bevan et al., 2017). Enterobacteriaceae
members are the most common bacterial agents causing
foodborne outbreaks associated with the consumption of fresh
produce (Cooper et al., 2007; Kilonzo-Nthenge et al., 2018;
Al-Kharousi et al., 2019; McDaniel and Jadeja, 2019; Motlagh
and Yang, 2019). Pathogenic E. coli is a key bacterium in
foodborne illnesses, and commensal E. coli is a common
indicator organism of fecal contamination in aquatic systems

(Edberg et al., 2000; Rochelle-Newall et al., 2015; Motlagh and
Yang, 2019). E. coli is also recognized as an important species
in the spread of ARB, mainly due to a high aptitude to
acquire genetic information through horizontal gene transfer
(Grasselli et al., 2008; Hasegawa et al., 2018; Marlène et al., 2020).

In Ecuador, an upper middle-income country, wastewater is
almost entirely released untreated into streams; these streams
often serve as irrigation water for produce and food-animal
agriculture (Ortega-Paredes et al., 2020a,b). There are few studies
about the dissemination of ESBL-E. coli from irrigation water
to produce (Ben Said et al., 2015; Vital et al., 2018); most
of the studies have been carried out in fresh produce from
retail centers and groceries (Bhutani et al., 2015; Faour-Klingbeil
et al., 2016; Ortega-Paredes et al., 2018; Al-Kharousi et al., 2019;
Yang et al., 2019; Colosi et al., 2020; Richter et al., 2020; Song
et al., 2020). The aim of this study was to build upon the
previous literature to understand the relationship between ARB
in irrigation water and ARB on fresh produce obtaining samples
from farms and their irrigation water. The study focused on the
occurrence of extended spectrum β-lactamase producing E. coli
in 17 provinces of Ecuador.

MATERIALS AND METHODS

Study Areas
This study was carried out in the following provinces of Ecuador:
Manabí, Bolívar, Cañar, Loja, Guayas, Pastaza, Tungurahua,
Pichincha, Azuay, Chimborazo, Cotopaxi, Imbabura, Santa
Elena, Los Ríos, Morona Santiago, Orellana, and Zamora
Chinchipe provinces which are mainly agrarian (Figure 1).
The samples correspond to those that are collected as part
of the national surveillance program that aims to monitor
microbiological indicators and pathogens in the food supply
(“Programa Nacional de Vigilancia de Microorganismos de
Higiene y Control de Microorganismos Patógenos, para la
Vigilancia Epidemiológica de Enfermedades Transmitidas por
Alimentos de Origen Agrícola y Pecuario del país – PNVCH”).

Sampling Fresh Produce
Fresh fruits and vegetables (representing 20 types) were obtained
from agricultural farms in 17 provinces of Ecuador, from June to
December 2019 (Figure 1). In total, 274 samples were analyzed
(117 vegetables, 119 fruits were collected from agricultural
farms. Among the vegetables consist of lettuce (Lactuca
sativa, n = 43), onion (Allium cepa, n = 31), garlic (Allium
sativum, n = 21), coriander (Coriandrum sativum, n = 17),
cabbage (Brassica oleracea var. viridis, n = 2), spinach
(Spinacea oleracea, n = 1), pepper (Piper nigrum, n = 1),
tomato (Solanum lycopersicum, n = 1). The fruit samples
correspond to cocoa (Theobroma cacao, n = 1), peach (Prunus
persica, n = 2), strawberry (Fregaria vesca, n = 31), melon
(Cucumis melo var. cantalupensis, n = 7), apple (Malus
domestica, n = 1), banana (Musa paradisiaca, n = 13),
blackberry (Rubus ulmifolius, n = 31), watermelon (Citrullus
lanatus, n = 12), grape (Vitis vinifera, n = 1), and golden berry
(Physalis peruviana, n = 20).
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FIGURE 1 | Map of Ecuador showing the sampling locations. Map of sampling locations of irrigation water, fruits and fresh produce. The circles represent the total
number of samples according to the color assigned to each sample (vegetables: green, fruits: yellow, and irrigation water: blue) collected in each canton (pink).

Isolation of Escherichia coli From
Irrigation Water and Produce
The farmers of each crop indicated the irrigation water they
used, and this water (n = 37) was collected in sterile bottles and
transported to the laboratory at approximately 8◦C and processed
within 10 h. Five hundred milliliters of water were filtered using
a 0.45 µm pore membrane filter (Millipore, United States). The
filter was then incubated in Chromocult R© coliform agar (Merck,
Germany) overnight at 37◦C, the apparent E. coli colonies were
taken and seeded on MacConkey agar (Difco, United States)
supplemented with ceftriaxone (2 mg/L) to identify the lactose
positive colonies (a maximum of five colonies were picked from
each plate) (Richter et al., 2020), colonies of presumptive E. coli
were then tested for β-glucuronidase activity using Chromocult R©

medium (Merck, Germany). All E. coli confirmed isolates from
each sample were kept frozen at −80◦C in Tryptic Soy Broth
medium (Difco, United States) with 15% glycerol.

The vegetable samples were collected aseptically and
refrigerated until analysis (within 12 h). Ten grams of the fresh

produce were weighed and placed in a sterile plastic bag and
incubated with 90 ml of peptone water (Faour-Klingbeil et al.,
2016) for 30 min at room temperature. In the case of fruits such
as watermelon and melon, the surface was swabbed, and the
swab was placed in peptone water (described above). The next
day 100 µl of the liquid was taken and cultured on MacConkey
agar (Difco, United States) supplemented with ceftriaxone (2
mg/L) (Botelho et al., 2015). A maximum of five lactose positive
colonies were selected from each plate sample and placed on
Chromocult coliform agar after 24 h of incubation at 37◦C,
colonies of presumptive E. coli, positive for β-glucuronidase,
were selected for additional analyses (Lange et al., 2013). All
isolates confirmed to be E. coli from each sample were kept frozen
at −80◦C in Tryptic Soy Broth medium (Difco, United States)
with 15% glycerol.

Antimicrobial Susceptibility Testing
Susceptibility tests were performed using the Kirby-Bauer
method on Mueller-Hinton agar (Difco, United States)
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in accordance with Clinical and Laboratory Standards
Institute (CLSI, 2019). Eleven antibiotics were used for
testing and included: Cefazolin, CZ (30 µg); Ampicillin,
AM (10 µg), Gentamicin, GM (10 µg), Imipenem, IPM
(10 µg); Trimethropin-sulfamethoxazole, SXT (1.25/23.75
µg); Ceftazidime, CAZ (30 µg); Cefepime, FEP (30 µg);
Ciprofloxacin, CIP (5 µg); Amoxicillin/Clavulanic acid, AmC
(20/10µg); cefotaxime, CTX (30µg); and Tetracycline TE (30
µg). After 18 h of incubation, the E. coli strains were classified as
susceptible, intermediate, or resistant according to the clinical
interpretation criteria recommended by CLSI. E. coli ATCC
25922 was used as a quality control. To determine the ESBL
phenotype, we carried out a diffusion disk method on Mueller
Hinton agar as before using antibiotic susceptibility discs
(Oxoid, United States) of CTX (30 µg), CAZ (30 µg). Our
criterion to determine ESBL was CTX ≤ 27 mm; CAZ ≤ 22 mm
(CLSI, 2019). Specifically, ESBL production was confirmed by
growth in a medium with discs of ceftazidime (30 mcg) and
ceftazidime+ clavulanic acid (30 mcg+ 10 mcg). An increase of
≥5 mm in zone of inhibition for ceftazidime + clavulanic
acid compared to ceftazidime was confirmed as ESBL
producers (CLSI, 2019).

PCR Amplification for Detection of
β-Lactamase Genes
When samples were positive for ESBL-producing E. coli, one to
five isolates selected per sample for further analysis. A total of
96 isolates were tested for the following resistance genes: blaSHV,
blaTEM, blaCTX−M, and blaOXA (Table 1). Bacterial DNA was
extracted by boiling (Dashti et al., 2009), and PCR amplification
reactions were performed in a volume of 25 µl containing 12.5
µl of 2 × Qiagen Multiplex PCR Master Mix (Qiagen GmbH,
Hilden, Germany), 0.2 µM concentrations of each primer, and
2 µl of DNA template. The cycling parameters were as follows:
an initial denaturation at 95◦C for 15 min; followed by 30
cycles of 94◦C for 30 s, 62◦C for 90 s, and 72◦C for 60 s;
and with a final extension at 72◦C for 10 min. Amplification
products were observed in agarose gel electrophoresis 1.5%,
stained with Ethidium bromide at 100V for 45–60 min. The size
of the amplified products was compared with the commercial
(Invitrogen, United States) 100-bp ladder. The band size (bp)
for each gene was: blaSHV, 237; blaTEM, 445; blaCTX−M, 593; and
blaOXA: 813 (Fang et al., 2008).

DNA Sequencing and Analysis
Genomic DNA was extracted from the eighty isolates (including
isolates of irrigation water, blackberry, strawberry, onion, banana,
and garlic) using the Wizard R© Genomic DNA Purification
(Promega, United States) according to the manufacturer’s
instructions. The whole genome of isolates was sequenced
using Illumina MiSeq. Sequencing was carried out at the
University of Minnesota Mid-Central Research and Outreach
Center (Willmar, Minnesota) using a single 2 × 250-bp dual-
index run on an Illumina MiSeq with Nextera XT libraries to
generate approximately 30- to 50-fold coverage per genome.
Genome assembly of MiSeq reads for each sample was performed

using SPAdes assembler with the careful assembly option
and automated k-mer detection (Bankevich et al., 2012). The
identification of genus and species of the isolates was carried
out using fastANI (Jain et al., 2018) with a percentage greater
than 80% of identification. Acquired AMR genes, plasmid types
were identified using ABRicate tool (version 0.8.13), Resfinder
was the database used for the identification of resistance genes
(Zankari et al., 2012); PlasmidFinder database for plasmid
replicon identification (Carattoli et al., 2014).

Phylogenetic Analysis
Pan-genome analysis was carried out using Roary, core genes
were defined as genes being in at least 99% of isolates analyzed
(Page et al., 2015). A maximum-likelihood phylogenetic tree
with 1,000 bootstrap replicates based on core genomes of
isolates was created using RaxML-NG (Kozlov et al., 2019).
The phylogenetic tree was visualized using iTOL (Letunic and
Bork, 2019). Additionally, multilocus sequence typing (MLST)
(Larsen et al., 2012), based on seven housekeeping genes (adk,
fumC, gyrB, icd, mdh, purA, and recA) and core genome
(cgMLST) (Hansen et al., 2021) were performed using the Center
for Genomic Epidemiology website1. The isolates also were
characterized by Clermont phylogenetic typing by EzClermont
web (Waters et al., 2020).

Sequence Accession Number
Assembled genome contigs have been deposited in the European
Nucleotide Archive (ENA) at EMBL-EBI under the following
accession numbers: SAMN20872921, SAMN20872922,
SAMN20872998, SAMN20873936, SAMN20873938,
SAMN20873941, SAMN20873969, SAMN20873994,
SAMN20874637, SAMN20875987, SAMN20875988,
SAMN20875992, SAMN20875994, SAMN20875998,
SAMN20879008, SAMN20879962, SAMN20879963,
SAMN20879975, SAMN20879976, SAMN20880112,
SAMN20880135, SAMN20880136, SAMN20881008,
SAMN20881023, SAMN20881078, SAMN20881101,
SAMN20881102, SAMN20881103, SAMN20881104,
SAMN20881105, SAMN20881397, SAMN20881398,
SAMN20881399, SAMN20881400, SAMN20882115,
SAMN20882121, SAMN20882132, SAMN20882145,
SAMN20882146, SAMN20882147, SAMN20882148,
SAMN20882149, SAMN20883143, SAMN20883144,
SAMN20883145, SAMN20883146, SAMN20883147,
SAMN20884528, SAMN20884547, SAMN20884549,
SAMN20886717, SAMN20887874, SAMN20887881,
SAMN20887882, SAMN20887901, SAMN20887904,
SAMN20887915, SAMN20887924, SAMN20887927,
SAMN20887932, SAMN20887933, SAMN20888904,
SAMN20888908, SAMN20888911, SAMN20888912,
SAMN20888913, SAMN20888914, SAMN20888915,
SAMN20888916, SAMN20888921, SAMN20888932,
SAMN20888933, SAMN20888934, SAMN20888941,
SAMN20888958, SAMN20888959, SAMN20888960,
SAMN20888962, SAMN20890819, SAMN20891007.

1http://www.genomicepidemiology.org/
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TABLE 1 | Primers used for detection of different β-lactamase genes in the multiplex PCR.

Genes Primer sequence (5′ to 3′) Size (bp) References

blaSHV CTT TAT CGG CCC TCA CTCAA AGG TGC TCA TCA TGG GAA AG 237 Fang et al., 2008

blaTEM CGC CGC ATA CAC TAT TCT CAG AAT GA ACG CTC ACC GGC TCC AGA TTT AT 445 Monstein et al., 2007

blaCTX−M ATG TGC AGY ACC AGT AAR GTK ATG GC TGG GTR AAR TAR GTS ACC AGA AYC AGC GG 593 Boyd et al., 2004

blaOXA ACA CAA TAC ATA TCA ACTTCGC AGT GTG TTT AGA ATG GTG ATC 813 Ouellette et al., 1987

RESULTS

Prevalence of Escherichia coli
In total, 274 samples were collected, including 117 vegetable
samples, 119 fruit samples, and 38 irrigation water samples.
Across all samples, a total of 30 (11%) were positive for E. coli;
11 of the irrigation water samples had E. coli (29%, 11/38),
13 vegetables samples had E. coli (11%, n = 13), and 11 fruits
(9%, n = 11). In total, 165 isolates of E. coli were recovered
from 30 samples.

Antimicrobial Susceptibility Testing
Ninety-six isolates (58% n = 96) showed extended-spectrum beta-
lactamases (ESBL) phenotype according to the CLSI protocols;
58% of E. coli isolates from irrigation water were ESBL-producers,
11% from vegetables, and 30% from fruits. ESBL-E. coli were
isolated from garlic (2 isolates), onion (9 isolates), strawberry (10
isolates), blackberry (4 isolates), banana (14 isolates), and golden
berry (1 isolate).

The rate of resistance was high; more than 80% of recovered
E. coli isolates were resistant to cefazolin, ampicillin, and
cefotaxime. In the case of the E. coli isolates from irrigation
water, 100% of the isolates were resistant to ampicillin and
cefazolin. In addition, these isolates had a high prevalence of
resistance to cefotaxime (96%), tetracycline (79%), and cefepime
(84%) (Table 2).

One hundred percent of the E. coli isolates from vegetables and
fruits were resistant to ampicillin and cefazolin, cefotaxime, and
tetracycline. Ninety-one percent of E.coli isolates from vegetables
were resistant to cefepime. Two ESBL isolates from irrigation
water presented resistance to the critically important class
carbapenems, however no carbapenemase gene was detected.
Additionally, we observed 33 resistance profiles across all of
the extended spectrum beta-lactamase-producing E. coli isolates.
The resistance profiles with the highest number of isolates are
summarized in Table 3. In addition, 94% (90 of 96) of the E. coli
ESBL isolates presented multi-drug resistant (MDR) patterns,
with non-susceptible to at least one antibiotic in three or more
antimicrobial categories (Magiorakos et al., 2012).

Genotypes of Extended-Spectrum
β-Lactamase – Escherichia coli
We obtained high-quality genome sequences of 80 ESBL-E. coli
isolates. MLST analysis using 7 housekeeping genes showed
that 80 isolates were assigned to 37 known STs, whereas 7
isolates represented 7 novel STs. ST10 was shared by 14%
(n = 11) of isolates from three sources, with a different province

of origin: irrigation water (Pichincha), onion (Tungurahua),
banana (Manabí), and strawberry (Tungurahua). ST453 (5%,
n = 4) and ST224 (8%, n = 6) were shared in two
sources and in different provinces of origin of the sample:
ST453 (banana = Manabí, irrigation water = Pichincha),
ST224 (irrigation water = Pichincha and Zamora Chinchipe,
banana = Manabí) (Table 4).

The application of a cgMLST scheme showed 55 cgSTs, from
which only 2, cgST86226 (banana, Manabí, n = 5; irrigation
water Pichincha, n = 1) and cgST135673 (banana Manabí, n = 3;
irrigation water, Zamora Chinchipe n = 1) were isolates from
two different sources. Several isolates belonging to the same ST
(based on 7 genes) were assigned to different cgSTs based on
cgMLST and some of the isolates from the same sample had the
same cgST. Additionally, we constructed a maximum likelihood
tree based on the core genomes to compare the phylogeny of
isolates of E. coli from the irrigation water, vegetables, and fruits
(Figure 2). The phylogenetic analysis showed that all isolates with
the same cgMLST and obtained from different sources differed
in thousands of SNPs indicating that although the isolates were
genetically close, they have been evolving apart for many years
(Table 4 and Figure 2). The genomes of ESBL-E. coli isolates from
irrigation and fresh produce did not cluster apart; instead the
isolates form different sources seemed to share recent common
ancestry (Figure 2).

When ESBL-E.coli isolates were characterized by Clermont
phylogenetic typing, 38% (n = 30) isolates belonged to
phylogroup A: irrigation water (n = 21), strawberry (n = 3), onion
(n = 4), banana (n = 2). In phylogroup B1 accounted for 35%
(n = 28) of isolates: irrigation water (n = 15), banana (n = 7),
strawberry (n = 1), blackberry (n = 4), and onion (n = 1). In
phylogroup D accounted for 14% of the isolates: irrigation water
(n = 4), strawberry (n = 3), garlic (n = 2), onion (n = 1) and banana
(n = 1). Phylogroups B2, E and F accounted for 3% (n = 2), 5%
(n = 4) and 3% (n = 2) of isolates, respectively. Three (4%) isolates
of irrigation water belonged to the cryptic lineage (Figure 2).

Detection of β-Lactamase Genes
Ninety-six E.coli isolates phenotypically identified as ESBL, were
tested by Multiplex PCR for genes encoding SHV, TEM, CTX-M,
and OXA enzymes. The CTX-M gene was detected in 98% (94 of
96) of the isolates, followed by TEM 92% (88 of 96), SHV 28%
(27 of 96), and OXA 1% (1/96). Additionally, combinations of
genes were present: 64% had both CTX-M and TEM; and 26%
had CTX-M, TEM, and SHV.

The presence of AMR genes in the genome sequences of
80 ESBL-E. coli isolates was investigated by Resfinder. Several
ESBL-encoding blaCTX−M gene variants were distributed in
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TABLE 2 | Antibiotic susceptibility profiles of isolates ESBL- E.coli from irrigation water, vegetables, and fruits.

Antimicrobial
categories

Antibiotics Irrigation water n = 56
(frequency/percent)

Vegetables n = 11
(frequency/percent)

Fruits n = 29
(frequency/percent)

R S I/SDD R S I/SDD R S I/SDD

Cephalosporins Cefazolin 56/100 0/0 0/0 11/100 0/0 0/0 29/100 0/0 0/0

Penicillins Ampicillin 56/100 0/0 0/0 11/100 0/0 0/0 29/100 0/0 0/0

Aminoglycosides Gentamicin 17/30 39/70 0/0 7/64 4/36 0/0 15/52 13/45 1/3

Carbapenems Imipenem 2/4 49/88 5/9 0/0 10/91 1/9 0/0 20/69 9/31

Sulfonamides Trimethropin/Sulfamethoxazole 36/64 18/32 2/4 10/91 1/9 0/0 21/72 8/28 0/0

Cephalosporins Ceftazidime 25/45 10/18 21/38 7/64 0/0 4/36 19/66 0/0 10/34

Cephalosporins Cefepime 47/84 2/4 7/13 10/91 0/0 1/9 22/76 0/0 7/24

Fluoroquinolones Ciprofloxacin 36/64 10/18 10/18 7/64 2/18 2/18 15/52 9/31 5/17

Aminopenicillin +
inhibitor of
betalactamase

Amoxicillin/clavulanic acid 17/30 23/41 16/29 6/55 1/9 4/36 22/76 5/17 2/7

Cephalosporins Cefotaxime 54/96 1/2 1/2 11/100 0/0 0/0 29/100 0/0 0/0

Tetracyclines Tetracycline 44/79 12/21 0/0 11/100 0/0 0/0 29/100 0/0 0/0

R, resistant; I, intermediate; S, susceptible; SDD, susceptible-dose dependent in the case of cefepime; n, number of isolates tested.

isolates from irrigation water and fresh produce (Figure 3).
Among the 80 ESBL-E. coli isolates, we identified allelic
variants of blaCTX−M in 77 (96%). The most common allelic
variants were blaCTX−M−55 in 49 isolates (64%) and the second
most common allele was blaCTX−M−65 in 14 isolates (18%)
(Supplementary Table 1).

We found some discrepancies in some ESBL- E.coli isolates
that were positive by PCR for some genes but negative by

TABLE 3 | The sixteen most common resistance profiles for ESBL-E. coli isolated
from water, vegetables, and fruits in Ecuador.

Resistance profiles Produce/Fruits Irrigation
water

Total

CZ-AM-GM-SXT-CAZ-FEP-
CIP-AmC-CTX-TE

14 4 18

CZ-AM-FEP-CTX-TE 1 5 6

CZ-AM-SXT-CAZ-FEP-CIP-
CTX-TE

0 4 4

CZ-AM-SXT-CAZ-FEP-CIP-
AmC-CTX-TE

2 1 3

CZ-AM-GM-SXT-CAZ-FEP-
CIP-CTX-TE

0 4 4

CZ-AM-GM-SXT-FEP-CIP-
CTX-TE

1 4 5

CZ-AM-SXT-FEP-CIP-CTX-TE 0 4 4

CZ-AM-SXT-FEP-CIP-AmC-
CTX-TE

4 2 6

CZ-AM-SXT-CAZ-FEP-CTX-TE 3 0 3

CZ-AM-CAZ-FEP-CTX-TE 1 2 3

CZ-AM-GM-CAZ-CTX-TE 2 0 2

CZ-AM-SXT-FEP-AmC-CTX-TE 2 1 3

CZ-AM-SXT-FEP-CTX-TE 4 0 4

CZ-AM-GM-CAZ-AmC-CTX-TE 4 0 4

CZ-AM-SXT-FEP-AmC-CTX 0 2 2

CZ-AM-SXT-CIP-CTX-TE 0 2 2

CZ, cefazolin; AM, ampicillin; GM, gentamicin; IPM, imipenem; SXT, trimethropin-
sulfamethoxazole; CAZ, ceftazidime; FEP, cefepime; CIP, ciprofloxacin; AmC,
amoxicillin/Clavulanic acid; CTX, cefotaxime; TE, tetracycline.

whole genome sequencing (WGS): 12 isolates for blaTEM gene, 9
isolates for blaSHV genes and blaCTX−M in one gene. Additionally,
2 isolates showed blaSHV and blaTEM using WGS, but were
negative by PCR. The WGS analysis of ESBL-E. coli allowed us to
identify 2 isolates of E. coli from irrigation water and 3 isolates
from banana with the presence of the mcr-1 gene that confers
resistance to colistin.

DISCUSSION

In this study, we found that irrigation water, fruit, and vegetables
were contaminated with ESBL-E. coli and the highest percentage
was found in irrigation water (58%), which confirms the
important and emerging role that irrigation water, contaminated
with wastewater, has in the spread of ARB and ESBL E. coli
and ESBL genes. (Gekenidis et al., 2018a; Vital et al., 2018). The
major ESBL gene was the CTX−M (94 of 96 isolates) followed by
blaSHV 28% (27 of 96), and blaOXA 1% (1of 96). The prevalence
of blaCTX−M type ESBL genes in irrigation water E. coli was
57%, followed by 15% in banana isolates. Additionally the most
abundant allelic variants of blaCTX−M found in vegetables, fruits
and irrigation water (blaCTX−M55, blaCTX−M65, and blaCTX−M15)
(Table 4) are the same alleles found in children and domestic
animals in Ecuador (Salinas et al., 2021), in rivers that cross
cities (Ortega-Paredes et al., 2020a), and in bacteria from human
infections in Ecuador (Cartelle Gestal et al., 2016; Soria Segarra
et al., 2018). The presence of the same blaCTX−M alleles in
isolates from different sources provides strong evidence that
these sources (irrigation water, domestic animals, and humans)
are connected. The allelic variants of blaCTX−M from isolates
obtained from same European country, but from different
(unconnected) sources, animal species or time periods, have been
shown to be different (Day et al., 2019; Ludden et al., 2019).

Our genomic analysis showed that most strains obtained from
irrigation water and produce were genetically different with 3
exceptions (HY1.4.3 and V427.2; HP6.1 and V661.1; HP1.4 and
V662.1), however the number of SNPs between thes strains
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TABLE 4 | Source and genetic characteristics of ESBL- E. coli isolates from different sources in Ecuador.

Relevant antimicrobial resistance genes

Sample (*) Source Location ST cgST CTX-M TEM SHV OXA mcr-1

H505 Irrigation Cañ-La Troncal 937 87149 55 141

H719 Irrigation Chim-Riobamba 617 93239 3

H719 Irrigation Chim-Riobamba new7 143498 15 1 187 1

H726 Irrigation Imb-Ibarra 155 17156 55 141

V662 Banana Man-Portoviejo 10 15007 55 1

V661.1 Banana Man-Portoviejo 847 28793 55

V662 Banana Man-Portoviejo 6598 39050 8, 55 1

V662 Banana Man-Portoviejo 453 86226 8, 55 1

V662 Banana Man-Portoviejo 453 86226 55 1

V662 Banana Man-Portoviejo 453 86226 55 1 12

V663 (3) Banana Man-Portoviejo 224 135673 55 1 1

V661.3 Banana Man-Portoviejo new3 136455 55 1 12

HY1.3.3 Irrigation Pich-Yaruquí 6027 2725 55 1

HY6.5.3 Irrigation Pich-Yaruquí 522 4492 55 1

HP1.2 Irrigation Pich-Yaruquí 10 5994 55,65 141

HP6.4 Irrigation Pich-Yaruquí 100 6271 15

HY8.5.3 Irrigation Pich-Yaruquí 131 9613 12

HY3.4.3 Irrigation Pich-Yaruquí 38 13889 9 1

HY7.5.3 Irrigation Pich-Yaruquí 206 17904 65 1

HP1.4 Irrigation Pich-Yaruquí 752 21656 65

HY4.2.2 Irrigation Pich-Yaruquí 224 29102 55 1

V727 (2) Strawberry Pich-Yaruquí new4 33815 65 12

HP6.2 Irrigation Pich-Yaruquí 1725 34210 55 5

HY3.5 Irrigation Pich-Yaruquí 1706 38416 15 1

HP1.1 Irrigation Pich-Yaruquí 155 40558 65

HP4.3 Irrigation Pich-Yaruquí 7290 43104 8

HP7.2 Irrigation Pich-Yaruquí 10 46675 55 12

HP7.4 Irrigation Pich-Yaruquí 10 46675 55 141 12

HY2.4.2 Irrigation Pich-Yaruquí new2 79725 15

HY4.4.2 Irrigation Pich-Yaruquí 3944 80110 55 1

HP4.4 Irrigation Pich-Yaruquí 117 81681 55 141

HP2.4 Irrigation Pich-Yaruquí 117 82990 55 141

HP6.3 Irrigation Pich-Yaruquí 453 86226 55 141

HY6 (2) Irrigation Pich-Yaruquí 540 96158 15 1

HY1 (2) Irrigation Pich-Yaruquí 540 96158 15 1

HP7 Irrigation Pich-Yaruquí 124 96630 65

HY6 Irrigation Pich-Yaruquí 9580 96650 55 1

HY2.3.3 Irrigation Pich-Yaruquí 10 101136 15 1

HY8.2.2 Irrigation Pich-Yaruquí 9962 116134 1 12

HP6.1 Irrigation Pich-Yaruquí 1725 117316 55

HY4.4 (2) Irrigation Pich-Yaruquí 205 117479 15 1

HP6.5 Irrigation Pich-Yaruquí 10340 117591 3 141

HP2 Irrigation Pich-Yaruquí 57 117853 55 141

HP1.5 Irrigation Pich-Yaruquí 57 117853 55 141

V727.4 Strawberry Pich-Yaruquí new6 119048 65 176 12

V727.5 Strawberry Pich-Yaruquí 4541 119048 65 12

HY6.5 Irrigation Pich-Yaruquí 10 134002 55 1

HY1.3.2 Irrigation Pich-Yaruquí 2973 135505 55, 65 1

HP1.3 Irrigation Pich-Yaruquí 354 137556 55 1

HY4.3.2 Irrigation Pich-Yaruquí 224 138183 55 1

HY1.1.4 Irrigation Pich-Yaruquí new1 138274 1

HY5.2.1 Irrigation Pich-Yaruquí 155 138689 55 1

(Continued)
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TABLE 4 | (Continued)

Relevant antimicrobial resistance genes

Sample (*) Source Location ST cgST CTX-M TEM SHV OXA mcr-1

HY3.5.2 Irrigation Pich-Yaruquí 155 138689 55 1

HY1.4.3 Irrigation Pich-Yaruquí 394 142214 15

HY6.1.2 Irrigation Pich-Yaruquí 69 144487 55 1 1

H579.2 Irrigation Tun-Ambato 206 4018 65

V696 (4) Blackberry Tun-Ambato 5044 32678 55 1

V698 (3) Strawberry Tun-Ambato 10 38518 55 1

V1140 (2) Onion Tun-Ambato 4204 55533 55, 65 1

V1140 Onion Tun-Ambato 4204 55533 55 1

V427.5 Onion Tun-Ambato 58 60063 55 1

V469.5 Onion Tun-Ambato 10 69259 55 1

V1147 (2) Garlic Tun-Ambato 973 118630 3 1

H579.1 Irrigation Tun-Ambato 155 138689 55 1

V427.2 Onion Tun-Ambato 4368 142214 15

H430 Irrigation Zam-Yantzaza 224 135673 55 1 1

*Number of isolates with the same cgST obtained from the same sample. Tun, Tungurahua; Pich, Pichincha; Man, Manabi; Zam, Zamora; Imb, Imbabura; Cañ, Cañar;
Chim, Chimborazo.

FIGURE 2 | Frequency of allelic variants of AMR genes in E. coli from different sources.
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FIGURE 3 | Phylogenetic tree of ESBL-E.coli sequences from irrigation water, fruits, and vegetables. Maximum-likelihood phylogenetic tree of core genomes of 80
ESBL- E.coli isolates from irrigation water, fruits, and vegetables based. Labels show isolate ID assigned based on host ID, origin of isolate is shown by font colors
(irrigation water: blue, onion: brown, banana: yellow, blackberry: purple, strawberry: red, and garlic: green). Background colors in branches indicate the seven
phylogroups identified. Numbers represent bootstrap values using 1000 pseudo-replicates.

ranged from 9,332 to 20,310 suggesting that these strains have
been evolving apart for many years (Table 4). As expected, some
isolates from the same vegetable or fruit showed higher level
of genetic closeness, for instance: V698.3 and V698.4 had 12
SNP; V663.4 and V663.5, 6 SNPs; V696.2 and V696.4, 13 SNPs;
V1147.5 and V1147.1, 2 SNPs). Interstingly, 2 isolates obtaind
from the same irrigation channel 1 month appart (HY3.5.2 and
HY5.2.1) had 24 SNPs, suggesting that this strain was higly
adapted to water. We did not find additional asociation of ESBL-
E.coli clusters with provinces, which may indicate that different
E. coli lineages have been widely distributed in the Ecuadorian
territory (Figure 2).

These findings may indicated that E. coli populations in
the environment are highly diverse (Day et al., 2019; Ludden
et al., 2019) and blaCTX−M-genes are probably diseminating in
the environmet mostly by mobile genetic elements and not so
much by bacterial clones. The plasmids carrying blaCTX−M-genes
disseminate efficiently by conjugation, even between bacteria
belonging to different genera (Cantón et al., 2012). Transposable
elements (such as ISEcp1) are also very active in blaCTX−M-gene
mobilization among different plasmids (Cantón et al., 2012). The
activity of these MGEs conceals the source of origin of these
antimicrobial resistance genes.

The majority of strains isolated from irrigation water and
vegetables belonged to phylogroups A and B1 which are

considered more generalists, found in most warm-blooded
animals and environmental samples (Touchon et al., 2020).
We found that some genetically close E.coli isolates, obtained
from the same vegetable, had 1 or 2 additional antimicrobial
resistance genes which may be a reflection of the dynamic process
of antimicrobial resistance gene-turnover in the environment
(Barrera et al., 2019).

The blaCTX−M type of ESBL gene is of increasing concern
globally (Bevan et al., 2017), and is the predominant ESBL gene
in both community and hospital-acquired infections (Manyahi
et al., 2017; Fils et al., 2021). A troubling feature of blaCTX−M-
bearing plasmids is their ability to capture additional resistance
determinants, including carbapenemase genes (Partridge et al.,
2012; Potron et al., 2013). Further analysis is necessary to
understand whether the plasmids carrying blaCTX−M genes, in
bacteria from irrigation water and produce, are the same as those
circulating in bacterial isolates from human isolates.

In our study fruits, such as bananas, we hypothesize that their
contamination was due to post-harvest processes in which the
food is often washed in contaminated water and reused to wash
several batches of the product. Although it is true, the skin of the
product protects the fruit, the transmission of resistant bacteria
can occur through contact and inadequate consumer hygiene
(Harris et al., 2003; Hong et al., 2013; Kawamura et al., 2017;
Murray et al., 2017; Hölzel et al., 2018).
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We also found a higher prevalence of ARB in vegetables
in farms than in retail markets in Ecuador (Ortega-Paredes
et al., 2018). However, other reports from the Philippines,
Lebanon, and Portugal have documented even higher levels
(Faour-Klingbeil et al., 2016; Araújo et al., 2017; Vital et al., 2018).
In most of the studies, the collection of produce samples has been
carried out in groceries and wholesale markets, which makes it
difficult to analyze sources of contamination (Bhutani et al., 2015;
Yang et al., 2019; Colosi et al., 2020; Richter et al., 2020; Song
et al., 2020). In this study, we collected produce and water from
farms and their respective irrigation systems, which allowed us
to study contamination at the source (i.e., not due to handling,
transport, distribution, and processing). We found that MDR
isolates were more prevalent in irrigation water isolates compared
to fresh produce. Similar results were observed in the Philippines,
where 58% of the E. coli isolates from irrigation water were MDR
(Paraoan et al., 2017). The resistance to these antibiotics was also
observed in E. coli isolates from irrigation water in other studies
(Pignato et al., 2009; Ben Said et al., 2015; Vital et al., 2018).

Our study had some limitations; the number produce
and fruit samples obtained in each location may not be
representative of produce from other agricultural settings in
Ecuador. Additionally, long-read sequencing of plasmids could
not be carried out due to budgetary limitations.

We found evidence that fresh produce constitutes an
important source of ESBL-E. coli and represents a route for
the dissemination of resistance genes through the consumption
of raw products (Rasheed et al., 2014; Hölzel et al., 2018; Al-
Kharousi et al., 2019). We hypothesize that the main source of
ABR contamination is irrigation water used for the cultivation
of produce, which has been suggested by others as well (Pignato
et al., 2009; Gekenidis et al., 2018b). In Ecuador, the lack of
sewage treatment may lead to contamination of the food supply
with ARB, mainly belonging to the Enterobacteriaceae family
(Caicedo-Camposano et al., 2019; Ortega-Paredes et al., 2020a).
Antibiotic resistant E. coli can transfer antibiotic resistance
determinants not only to other strains of E. coli, but also
to other species of potentially pathogenic bacteria within the
gastrointestinal tract (Grasselli et al., 2008; Huddleston, 2014).

CONCLUSION

We found a high prevalence of ESBL-E. coli on produce and
in irrigation water; blaCTX−M was the main ESBL gene in these
isolates. Allelic variants of the blaCTX−M gene found in irrigation
channels and vegetables were the same as those observed in
commensal E. coli from domestic animals, and commensal and

pathogenic E. coli from humans, suggesting connection between
these different sources. This paradigm poses the potential risk of
further spreading ARB that are resistant to last-line antibiotics
such as carbapenems, which are used exclusively in serious
infections in hospitals (Sheu et al., 2019). In this case, resistance
goes full circle, from humans to vegetables and fruits (potentially
meat and dairy), and back to human populations (Murray
et al., 2021). Greater investments are needed to support the
development and installation of wastewater treatment systems
throughout Ecuador, as well as in other low- and middle-
income countries.
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