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Oscillating Mindfully: Using Machine Learning to
Characterize Systems-Level Electrophysiological
Activity During Focused Attention Meditation

Noga Aviad, Oz Moskovich, Ophir Orenstein, Etam Benger, Arnaud Delorme, and
Amit Bernstein
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ABSTRACT
BACKGROUND: There has been rapid growth of neuroelectrophysiological studies that aspire to uncover the “black
box” of mindfulness and meditation. Reliance on traditional data analysis methods hinders understanding of the
complex, nonlinear, multidimensional, and systemic nature of the functional neuroelectrophysiology of meditation
states.
METHODS: Thus, to reveal the complex systemic neuroelectrophysiology of meditation, we applied a machine
learning extreme gradient boosting classification algorithm and 4 complementary feature importance methods to
extract systemic electroencephalography features characterizing mindful states from electroencephalography
recorded during a focused attention meditation and a control mind-wandering state among 26 experienced
meditators.
RESULTS: The algorithm classified meditation versus mind-wandering states with 83% accuracy, with an area under
the receiver operating characteristic curve of 79% and F1 score of 74%. Feature importance techniques identified 10
electroencephalography features associated with increased power and coherence of high-frequency oscillations
during focused attention meditation relative to an instructed mind-wandering state.
CONCLUSIONS: The findings help delineate the complex systemic oscillatory activity that characterizes meditation.

https://doi.org/10.1016/j.bpsgos.2024.100423
Given exponential progress over the past 2 decades in mind-
fulness research and its applications, there is fast-growing
scientific interest in illuminating the “black box” of mindful-
ness and meditation practices and states more broadly (1).1

Central to these efforts is research that aspires to uncover
the functional neurophysiological substrate or correlates of
altered consciousness during mindfulness and related medi-
tation practices (2–6) and, most notably, the study of functional
brain activity in real-time during mindfulness and related
meditation practices and states (4,5,7–9). The high temporal
resolution of electroencephalography (EEG) and its capacity to
capture the real-time dynamics of brain activity and large-scale
e definition of mindfulness has been the subject of extensive
and ongoing debate among Buddhist scholars as well as sci-
entists. We use the term mindfulness to refer broadly to a family
of mental state(s) and related meditation practices character-
ized by present-moment attention and awareness,
nondistraction, and a particular set of salutary attitudes
toward experience (e.g., patience, acceptance, curiosity,
nonjudging) (54–59). Likewise, meditation refers to a broader
class of contemplative practices grounded in Buddhist as well
as a range of other wisdom traditions that includes a number
of families or types of practices and targets (e.g., attentional,
constructive, and deconstructive families).
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synchronization of neural networks noninvasively has thus
been instrumental (10). However, despite vast research into
oscillatory activity during meditation, understanding of the
complex functional electrophysiology of meditation practices
and states is still limited (2,11).

A central limitation of existing research is that most EEG
studies of mindfulness and meditation have largely focused on
unidimensional, individual, typically spectral correlates within
the EEG signal (12). This traditional approach to EEG data is
not designed to empirically elucidate nonlinear, multidimen-
sional, and complex systems-level endogenous electrophysi-
ological activity that likely characterizes complex brain states
during meditation (2,12). Furthermore, scholars have argued
that variability in data analytic and experimental methods have
limited comparison, integration, and generalization of findings
across studies, which further hinders an integrative and com-
plex understanding (5,12). This, in turn, translates into a further
restricted basis for making informed choices regarding design
elements and parameters (e.g., specific EEG features of in-
terest) in future empirical studies.

Machine learning (ML) algorithms represent a fast-growing
method to advance systems-level understanding and pattern
recognition from complex data (13). ML modeling enables
discovery of systems-level patterns in large amounts of high-
y of Biological Psychiatry. This is an open access article under the
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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dimensional data with limited assumptions regarding the
components of interest in the data (14). Accordingly, ML has
been applied recently to EEG data (15), including preliminary
efforts to classify meditation states (12,15–19). These initial
studies have sought to test the potential of ML classification
techniques to detect and classify meditation versus other
mental states (e.g., rest with open or closed eyes, reading,
listening) based on electrophysiological activity. Overall, these
initial studies have demonstrated moderate to excellent clas-
sification accuracy (78%–90%), suggesting that meditative
states can be distinguished from other mental states based on
electrophysiological activity.

However, ML studies of meditation have yet to apply
emerging post hoc explainability computational methods to
empirically extract the systems-level electrophysiological fea-
tures of meditation states. These methods are critical not only
to test whether the EEG signal distinguishes brain activity
during meditation from other mental states (e.g., mind wan-
dering) but also to empirically characterize the functional neural
architecture of that systems-level oscillatory activity within the
signal that guides such differentiation (20). Accordingly,
computational explainability and feature importance methods
are critical for deriving informative insights from the model and
improving understanding of its predictions so as to empirically
characterize systems-level electrophysiology of meditation
states (20,21), i.e., for seeing into the black box of meditation.

Therefore, in the current study, we aimed to advance an
integrative systems-level understanding of electrophysiology
during focused attention (FA) meditation (22). Relative to open
monitoring and (de)constructive meditation practices, FA
meditation practices are common to mindfulness as well as a
number of related meditation practices and entail a narrower
set of practices that may be subserved by a more unified
pattern of electrophysiological activity (23). To do so, we
sought to first apply ML algorithms and modeling for classifi-
cation of 2 experimental states—FA meditation and mind
wandering—among advanced meditators. Second, we sought
to apply multiple techniques of model explainability and feature
importance to extract ML classification features that most
strongly distinguished between meditation and mind-
wandering states. We conducted these analyses on open-
access EEG data of experienced meditators wherein EEG
was recorded in a mixed between-within design over 2 blocks,
one of FA meditation and the other of a control comparison
state of mind wandering (11).

METHODS AND MATERIALS

Participants

The original parent study (11) sampled meditators from 3
distinct meditative traditions as well as control participants,
who were included in the study based on age, gender, and
years of meditation practice. To develop an ML model capable
of classifying FA meditation specifically, we used a subset of
the original dataset, including samples from Vipassana and
Himalayan yoga tradition practitioners only (n = 26). These 2
traditions involve sustained FA on a specific object of atten-
tion. Vipassana meditators practiced the Vipassana meditation
techniques per S.N. Goenka (24). Although the Himalayan yoga
tradition involves a variety of practices, here participants were
2 Biological Psychiatry: Global Open Science March 2025; 5:100423 w
instructed to engage in an FA practice that entailed focus on a
mantra with or without awareness of the breath (see the
Supplement for more details). The parent project was
approved by the local Meditation Research Institute Indian
ethical committee and the ethical committee of the University
of California San Diego (Institutional Review Board project #
090731).
Procedure

The parent study consisted of two 20-minute sessions, a
meditation condition and an instructed mind-wandering con-
trol condition, in a within-subject design. The 2 blocks were
counterbalanced to prevent order effects. In the meditation
block, the first 10 minutes constituted a preparatory breath
focus period during which all participants were asked to focus
on their breath regardless of their particular FA meditation
practice. During the final 10 minutes of the meditation block,
participants were instructed to practice their regular formal FA
meditation practices. In the instructed mind-wandering block,
participants were instructed to remember autobiographical
events from childhood to the most recent past and were
explicitly told to avoid remembering emotionally charged
events. See the Supplement for details regarding the 64 1 8
channel Biosemi Active-Two amplifier system and a 10–20
Headcap standard 64-channel cap used for data collection.
Dataset and Models

Data Selection. We chose, a priori, to analyze data recor-
ded from 9 midline-frontal electrodes: Fp1, Fpz, Fp2, AF3, AFz,
AF4, F1, Fz, F2 (see the Supplement for a detailed rationale for
electrode selection). The final dataset included 26 experienced
meditators (n = 12 Himalayan yoga tradition, n = 14 Vipassana
practitioners). The entire 10-minute meditation period and the
parallel 10-minute instructed mind-wandering period analyzed
in the parent study were used for classification. The 10-minute
breath focus period was used for calibration (see Calibration
below).

Data Preparation for Classification. Preprocessing of
EEG data included referencing to the right mastoid, down-
sampling from 1024 Hz to 256 Hz, and noise filtering and
artifact rejection as detailed in the parent study (11). In addi-
tion, each recording was split into 10-second non-overlapping
epochs, 2560 samples each (sample rate = 256 Hz), and
discontinuous epochs were removed (see the Supplement for
additional details). Finally, data from all 9 electrodes were
combined into an array of shapes (2560, 9) for each epoch.
Each epoch was labeled 0 or 1, representing meditation and
nonmeditation states, respectively, based on the condition
during which the epoch was recorded (meditation or mind
wandering). Epochs were divided into training and testing sets
with an 80%:20% ratio in a leave-n-subjects-out manner,
meaning that epochs belonging to the same participant were
only used in a single set. Weights were used to account for
imbalances in data between labels/conditions in calculation of
the loss function. Per the within-subject design, data were
centered around the mean and standardized across partici-
pants and conditions.
ww.sobp.org/GOS
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Performance Evaluation. The performance of the classi-
fication model was evaluated using the following measures: 1)
classification accuracy, the most straightforward evaluation
metric of ML models, is defined as the ratio of correct pre-
dictions out of the total predictions (accuracy = number of
correct predictions / total number of predictions 3 100%); 2)
area under the receiver operating characteristic curve (AUROC)
plotted using the true positive rate (i.e., model sensitivity, true
positive rate = true positives / [true positives1 false negatives])
as a function of false positive rate (i.e., probability of false
alarm, false positive rate = false positives / [false positives 1
true negatives]) (see Table 1); and 3) F1 score, the harmonic
mean of precision (i.e., the ratio of true positives to all positive
predictions, true positives / [true positives 1 false positives])
and recall, another term for sensitivity or true positive rate (F1
score = 2 3 [precision 3 recall] / [precision 1 recall]) (see
Table 1). AUROC and F1 scores were calculated in addition to
the more intuitive measure of accuracy because both are
considered more reliable, in particular for cases of imbalanced
datasets (i.e., when the number of examples in one class
greatly outnumbers the examples in another class), such as the
current dataset (25). We performed 50 iterations of random
subsampling cross-validation in a leave-n-subjects-out
manner such that participants were randomly split into training
and testing sets, and each participant’s epochs appeared on a
single set only. The partition into train (80%) and test (20%)
sets was repeated randomly at each of the 50 iterations;
because there were 26 participants in total, 21 random par-
ticipants were used for training, and 5 were used for testing/
validation at each iteration. Scores were calculated on the
testing set and averaged across the 50 runs of the model.

Calibration. We added several epochs to the training set as
calibration epochs for each test participant. The epochs used
for calibration included the first 30% of epochs recorded
during mind wandering (approximately 1.85 minutes), as well
as the first 70% of epochs recorded during breath focus
(approximately 4.2 minutes). The specific number of epochs
used for calibration was selected based on experimental
analysis to determine the minimal number of epochs needed to
achieve maximum performance (see the Supplement for
experimental analysis of number of epochs for calibration). The
need for such calibration stems from the well-documented
challenge of high interparticipant variability in EEG data,
which causes particular concern when training the model using
leave-n-subjects-out cross-validation (26). This method of
cross-validation, which is required to properly evaluate model
performance on unseen participants, often leads to lower
performance than the scenario where intraparticipant data is
used both in training set and test set, making it more appli-
cable to real-life and clinical scenarios, when a model would be
Table 1. Classification Metrics

Actual
(Positive)

Actual
(Negative)

Positive
Predictive Value

Predicted (Positive) True positives False positives Precision

Predicted (Negative) False negatives True negatives

Sensitivity Recall

Biological Psychiatry: G
used in medical applications suitable for unseen participants
(13). This is because using epochs of the same participant for
more than a single set (e.g., some of the participant’s epochs
are in the training set and other epochs of the same participant
are in the test set) likely leads to data leakage (27), when the
model learns the characteristics of each participant in addition
to the features used for classification, thus overestimating the
model’s performance and underestimating its classification
error (28). Therefore, we used epochs recorded during breath
focus as well as the first epochs recorded during mind wan-
dering to quantify a baseline (premeditation) electrophysio-
logical activity benchmark for each test participant (26).

Classifier Configuration and Hyperparameters. We
sought a classification model that performs well on structured
data (i.e., formatted, ordered, tabular data) and provides esti-
mates of the importance of each electrophysiological feature
during meditation from the trained predictive model. For these
reasons, we chose to use XGBoost (29), a framework for de-
cision tree ensemble models wherein predictions of multiple
trees are aggregated. This framework allows for relatively
straightforward retrieval of feature importance scores, calcu-
lated by the average gain in accuracy across all splits in the
trees where each feature was used, and thereby interpret the
model’s predictions.

XGBoost models allow tuning of many hyperparameters to
maximize model performance and prevent overfitting. The
optimal hyperparameter values for the model were selected
based on grid search results and include max_depth, which
controls the maximum depth of the tree: 10; learning_rate,
which controls the rate at which the model learns patterns in
data: 0.2; subsample, which controls the number of samples
supplied to a tree: 0.8; colsample_bytree, which controls the
number of features supplied to a tree: 1; min_child_weight,
which blocks potential feature interactions to prevent over-
fitting: 5; and gamma, a regularization parameter to prevent
overfitting: 2.

Feature Importance. The classifier was trained on 225
univariate features. These features were selected based on
previous findings in the literature describing electrophysiology
of meditation, feasibility of the computation, and the capability
to directly compare and contrast results to findings reported in
the majority of existing EEG studies of meditation (12). They
include the power of delta (1–4 Hz), theta (4–8 Hz), alpha (8–12
Hz), beta (12–30 Hz), and gamma (30–150 Hz) frequency bands
in each of the 9 electrodes, as well as the computed coherence
between all combinations of 2 electrodes of the 9 and each of
the 5 frequency bands. Features were calculated, as reported
in the parent study to facilitate comparability, using the
EEGLAB functions of Newcrossf for coherence and Spectopo
for spectral power.

The features that contributed most to the model’s pre-
dictions were extracted using 3 methods. First, important
features were extracted using XGBoost’s Gain method
(average accuracy gain across all splits in which the features
were used). Second, SHapley Additive exPlanations (SHAP)
library (30)—a game-theoretical approach to explain the de-
cisions made by any model—was used to validate the results,
as well as interpret each feature’s pattern of contribution
lobal Open Science March 2025; 5:100423 www.sobp.org/GOS 3
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independently. Finally, permutation importance functionality
provided by Scikit-learn library (31) was used to further eval-
uate each feature’s importance based on both the AUROC
score and F1 score. In permutation importance, a single
feature is permuted so that any potential correlation between
the feature and label is lost. Then, model baseline performance
score is compared with the performance score obtained by the
model on the same dataset with the permuted feature to infer
how important the feature is for classification. Using this
approach, the 10 strongest features were extracted using 4
complementary methods: XGBoost feature importance, SHAP,
permutation importance based on the AUROC score, and
permutation importance based on the F1 score. Among the 10
strongest features, each feature was assigned a score repre-
senting its relative importance in the model, such that the most
important feature received a score of 10, the next most
important received a 9, and so on. This procedure was then
repeated over 10 iterations of random subsampling cross-
validation to attain a generalized score and avoid biases
caused by specific test sets. Finally, scores of all 10 runs from
all 4 methods were summed. The average of the 4 methods
was computed as well, but using an average score rather than
a summed score did not lead to a change in the features
identified as most important for classification. Like other de-
cisions in this study, the selection of 4, and these 4 methods in
particular, is arbitrary. However, the methods were selected a
priori to help ensure that feature selection was grounded both
within and across permutations of participants as well as in-
dependent orthogonal feature importance methods based on
fundamentally different mathematical assumptions. By doing
this, we attempted to strike a balance between robustness and
predictive power in feature selection (see Table 2).

RESULTS

Model Performance

After training, over 50 iterations of random subsampling cross-
validation, the XGBoost classifier achieved mean accuracy =
83%, AUROC = 79%, and F1 score = 74% in classifying FA
meditation versus mind-wandering control states based on the
225 univariate features (see the Supplement for more details).
Table 2. Weighted Scores of Primary and Secondary Features

Feature XGBoost SHAP

Fz-F2 Beta Coherence 33 33

AF4 Delta Power 18 47

Fpz-Afz Gamma Coherence 22 40

AF3 Gamma Power 10 22

Fz-F2 Gamma Coherence 47 30

Fp1-AF3 Gamma Coherence 41 14

AF4-F2 Theta Coherence 38 14

AF4 Gamma Power 5 4

Fpz Gamma Power 5 18

F1-F2 Gamma Coherence 8 13

The weighted score of each feature was assigned based on 10-fold cross-validation
important features for classification.

AUROC, area under the receiver operating characteristic curve; SHAP, SHapley Ad
aThese 3 features received particularly high weighted scores, indicative of their ove

4 Biological Psychiatry: Global Open Science March 2025; 5:100423 w
These results provide strong evidence that these 2 experi-
mental states were characterized by distinct electrophysio-
logical activity

Feature Importance

The most important features for the model’s predictions were
extracted by means of XGBoost, SHAP, permutation impor-
tance based on AUROC score, and permutation importance
based on F1 score separately during each iteration of a 10-fold
cross-validation (see Figure 1). Three features received
particularly highly weighted scores, which are indicative of their
overall relative importance for the model’s predictions (see
Table 2): 1) beta coherence between electrodes Fz and F2,
such that high coherence was indicative of the meditation
state, and low coherence was indicative of the nonmeditation
state (see Figure 2); 2) delta power in electrode AF4, such that
low power was indicative of the meditation state, and high
power was indicative of the nonmeditation state (see Figure 3);
and, 3) gamma coherence between electrodes Fpz and AFz,
such that high coherence was indicative of the meditation
state, and low coherence was indicative of the nonmeditation
state (see Figure 4). Together, these key electrophysiological
features point to an overall pattern of highly synchronized,
high-frequency oscillations as well as reduced low delta os-
cillations during FA meditation in frontal and midline areas
(e.g., the dorsolateral prefrontal cortex, anterior cingulate
cortex).

Finally, to test and verify the relative importance of these
features for classification, the 3 primary features were removed
from the dataset entirely. Model performance without the 3
primary features dropped to AUROC = 72% and F1 score =
66%. These results support the suggested importance of the
features for classification but demonstrate that 3 individual
features were not sufficient to characterize the electrophysio-
logical activity during FA meditation relative to instructed mind
wandering.

In addition to the 3 most central features, 7 secondary
features were found to impact the model’s predictions,
although less strongly. Their weighted importance scores were
lower than those of the 3 most dominant features (see Table 2):
1) gamma power in electrode AF3, such that high power was
Permutation: AUROC Permutation: F1 Average

39 30 33.75a

29 31 31.25a

19 25 26.5a

25 29 21.5

4 1 20.5

10 13 19.5

7 9 17

29 24 15.5

16 16 13.75

9 13 10.75

, as well as the summed and averaged weighted scores, used to identify the most

ditive exPlanations.
rall relative importance for the model’s predictions.

ww.sobp.org/GOS

http://www.sobp.org/GOS


Figure 1. Top 10 important features generated by XGBoost and SHapley Additive exPlanations (SHAP). Both figures were generated during the same run on
the same training set. A direct comparison of the two is not straightforward because they were generated using 2 different approaches. Despite that, they
include mostly the same features. The image on the left was generated by XGBoost and provides an ordered list of top 10 features and their calculated
importance (F) scores, such that gamma coherence between Fz-F2 electrodes contributed the most to the model’s predictions, etc. The image on the right was
generated by SHAP and provides an ordered list of top 10 features as well as other useful information, such as the distribution of different values for each
feature (represented by color, such that pink represents high values, and blue represents low values) and the distribution of the feature’s impact on predictions
(represented by the x-axis, such that negative values represent a mindful state prediction, and positive values represent a nonmindful state prediction). For
example, high (pink) beta coherence between Fz-F2 electrodes indicates the meditation state (negative x value), whereas low (blue) coherence indicates the
nonmeditation state (positive x value). Note that the low values are more indicative of the nonmeditation state than the high values that are indicative of the
meditation state, as demonstrated by the length of the tail to the right or the absolute value of x.
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indicative of the meditation state, and low power was indica-
tive of the nonmeditation state; 2) gamma coherence between
electrodes Fz and F2, such that high coherence was indicative
of the meditation state, and low coherence was indicative of
the nonmeditation state; 3) gamma coherence between elec-
trodes Fp1 and AF3, such that high coherence was indicative
of the meditation state, and low coherence was indicative of
the nonmeditation state; 4) theta coherence between elec-
trodes AF4 and F2, such that high coherence was indicative of
the meditation state, and low coherence was indicative of the
nonmeditation state; 5) gamma power in electrode AF4, such
Figure 2. Pattern of effect for beta coherence in Fz-F2 electrodes. x Value
represents level of beta coherence in electrodes Fz-F2, and y value repre-
sents impact on model predictions, such that negative values represent a
mindful state prediction, and positive values represent a nonmindful state
prediction. The greater the absolute value of y, the higher the estimated
probability of the prediction is. Note that coherence needs to be very high to
indicate mindful state prediction, whereas lower values indicate nonmindful
state prediction.

Biological Psychiatry: G
that high power was indicative of the meditation state, and low
power was indicative of the nonmeditation state; 6) gamma
power in electrode Fpz, such that high power was indicative of
the meditation state, and low power was indicative of the
nonmeditation state; and 7) gamma coherence between elec-
trodes F1 and F2, such that high coherence was indicative of
Figure 3. Pattern of effect for delta power in electrode AF4. The x-axis
represents delta power in electrode AF4, and the y-axis represents impact
on model predictions, such that negative values represent a meditation state
prediction, and positive values represent a nonmeditation state prediction.
The greater the absolute value of y, the higher the estimated probability of
the prediction is. Note that when delta power in AF4 electrode is very low, all
data points are assigned negative y values, indicating a meditation state
prediction. Conversely, when power is relatively high, all data points have a
positive y value, indicating a nonmeditation state prediction.

lobal Open Science March 2025; 5:100423 www.sobp.org/GOS 5

http://www.sobp.org/GOS


Figure 4. Pattern of effect for gamma coherence in Fpz-AFz electrodes.
The x value represents the level of gamma coherence in electrodes Fpz-AFz,
and the y value represents impact on model predictions. Thus, negative
values represent a meditation state prediction, and positive values represent
a nonmeditation state prediction. The greater the absolute value of y, the
higher the estimated probability of the prediction. Note that low coherence is
indicative of a nonmeditation state.
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the meditation state, and low coherence was indicative of the
nonmeditation state.

Dimensionality Reduction Using Feature Selection

Finally, to further quantify and validate the relative importance
of the primary and secondary features observed, a new dataset
was created. This new dataset contained only the 10 features
found to be most important, excluding all other 214 features.
This was done to investigate whether the identified minimal set
of features was sufficiently quantitatively comprehensive to
account for the electrophysiology of the meditation state (32).
Model performance on the new dataset achieved averaged
scores of AUROC = 78% and F1 score = 72%, which are
relatively close to the model classification values achieved with
the entire dataset of 225 features. These secondary results
thereby further validate the results achieved by summing
feature importance scores obtained via orthogonal methods of
XGBoost (Gain), SHAP, and permutation importance model
explainability and derived characterization of the model’s
feature importance (see Figure 1). More specifically, these
findings demonstrate that the identified set of features suffi-
ciently characterize the key electrophysiological patterns that
distinguish between FA meditation and mind-wandering
states. Consequently, these results also indicate that the rest
of the features—despite constituting the very large majority of
the data—are either redundant or not important for classifi-
cation purposes or for the characterization of functional elec-
trophysiology during FA meditation relative to mind-
wandering.

DISCUSSION

We applied advances in ML modeling for classification and
pattern recognition to identify systems-levels oscillatory
6 Biological Psychiatry: Global Open Science March 2025; 5:100423 w
patterns that characterize electrophysiological brain activity
during FA meditation relative to instructed mind wandering
(11). We used the XGBoost decision trees ensemble ML
classification algorithm to learn, with no prior assumptions, the
electrophysiological patterns that differentiate between these
states and then calculated XGBoost’s Gain feature impor-
tance, SHAP, permutation importance based on the AUROC
score and permutation importance based on F1 score
methods to evaluate the relative contribution of features to the
model’s classification.

First, using 225 calculated EEG features, ML was able to
classify experimental meditation versus mind-wandering
states with 83% accuracy, with an AUROC score of 79%
and an F1 score of 74%. These findings provide strong evi-
dence that using ML, FA meditation can be robustly differen-
tiated from an instructed mind-wandering state based on
electrophysiological activity alone. Second, feature importance
analyses revealed that 3 primary features and 7 secondary
features largely accounted for the ML model’s predictions (see
Table 2). These features include, first, an increase in power and
coherence of high-frequency oscillations during meditation
states relative to mind wandering; second, decreased delta
activity during meditation in AF4 electrode; and lastly,
increased theta coherence during FA meditation relative to
mind wandering. Finally, we found that the identified set of
features achieved almost identical ML model prediction to the
original ML model of all 225 features. Therefore, the findings
indicate that the identified features distinguished between an
FA meditation state and a control mind-wandering state and
that over 200 other features were redundant or not similarly
predictive of electrophysiological activity unique to meditation.
In addition, these results, and in particular the emphasis on the
role of coherence, highlight the complexity of the model,
reflecting the assumed systemic complexity of the phenome-
non of electrophysiological activity during meditation.

Furthermore, it is noteworthy that the current findings are
consistent with the main findings reported in the parent study
(11). In the original analysis of these data, Braboszcz et al. (11)
found that elevated gamma waves were linked to trait mind-
fulness when looking at EEG activity across meditation and
mind-wandering conditions. They reported elevation in median
gamma power over parieto-occipital electrodes in experienced
meditators across all tested meditation traditions relative to
meditation-naïve participants. However, in their analysis, the
same pattern over frontal electrodes was not found. Addi-
tionally, although Braboszcz et al. (11) also sought to charac-
terize differences in gamma activity that distinguished between
meditation and the control mind-wandering states, no such
electrophysiological features were detected. However, in the
current study of these EEG data, the ML model was able to
predict and characterize the EEG signal during meditation
versus nonmeditation states within participants. This is argu-
ably strong and direct evidence of the potential utility of ML for
mapping electrophysiology of complex mental states such as
meditation, and perhaps more generally, when seeking to
characterize mental states vis-à-vis complex, multidimen-
sional, and nonlinear data (33).

Moreover, the observed model explainability findings pro-
vide a novel and powerful cross-validation of findings across a
large number of independent and heterogeneous EEG studies
ww.sobp.org/GOS
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that were previously difficult to integrate (4–6,12). Specifically,
first, findings of increased beta and gamma power and
coherence during the meditation state are consistent with
previous studies that documented increased high-frequency
oscillations during meditation, mostly in advanced meditators
(4,5,7,9,34,35). Beta oscillations are typically linked to senso-
rimotor processing but have also been associated with atten-
tion, emotion, and cognitive control (6,36), and gamma activity
and synchronization have been associated with diverse
cognitive functions and aspects of arousal, learning, and
attention (37,38), as well as enhanced top-down control in
vision (39) and audition (40). Second, reduced frontal delta
activity during meditation has been reported previously (8).
Moreover, the complementary pattern of increased delta ac-
tivity has been previously linked to autobiographical memory
activation (41) and was reported in one study when partici-
pants were asked to focus on a present distraction (7), argu-
ably similar to the control state of mind wandering used here,
suggesting a potential role of delta oscillations in attentional
engagement (4). Third, the observed elevation in theta coher-
ence during the meditation state is consistent with numerous
studies that have associated elevated theta power and
coherence in midline-frontal brain regions with meditation
states (4,6,34,42,43). This activity has been linked to concen-
trative attentional engagement and internalized attention (4).
Finally, although we only tested frontal midline electrodes, the
feature importance results described above reflect a general
pattern of high coherence and synchronization between elec-
trodes and hemispheres during meditation, as demonstrated
by increased gamma coherence in several electrode couples,
including bilateral ones (e.g., F1-F2). The increased overall
coherence during meditation supports the common hypothesis
that meditation states likely involve highly synchronized
oscillatory activity in large brain networks rather than a spe-
cific, isolated, or localized electrophysiological event (4,44).

Moreover, the current study also builds on initial efforts to
apply ML models to classification of mindfulness and related
meditation states (16–18). Crucially, to the best of our knowledge,
this is the first study to attempt to increase model transparency
and apply emerging explainability and feature importance
methods to characterizing systems-level electrophysiological
activity from ML-based classification models of meditation.

We argue that the current complex and systemic under-
standing of mindfulness and related meditation mechanisms
broadly, and electrophysiology specifically, may have various
implications. First, the findings illustrate the potential utility or
relative value proposition of ML to help field-wide efforts to
characterize the complex, multidimensional, nonlinear, sys-
temic neural activity that underlies meditation states more
accurately (12). Second, such knowledge is more likely to
guide the development of robust and effective translational
innovations and applications. For example, neuromodulation
protocols (e.g., transcranial alternating current stimulation)
more closely grounded in comprehensive and accurate
knowledge of the systemic electrophysiology of meditation
may prove more effective and robust (45).

The current study has several limitations. First, findings are
limited to a single dataset of 26 participants. Although most
EEG studies of meditation among experienced FA meditators
have included 10 to 22 participants (6,46–48), the chosen
Biological Psychiatry: G
dataset balances sample size with study design choices such
as EEG spatial resolution and control condition to permit
generalization by the ML model. To determine the robustness
of ML and explainability findings, it is important that additional
studies test the reproducibility of the observed findings in other
datasets, among larger samples, and with respect to additional
meditation traditions and practices. Future investigations could
also examine the generalizability of the ML-based model and
identified features with and without calibration, which we used
in the current study to address the challenge of high inter-
participant variability in EEG data, which causes particular
concern when training the model using leave-n-subjects-out
cross-validation (26). Second, future studies could likewise
examine the robustness and generalizability of ML-based
classification and selected EEG features in the same 9
midline-frontal electrode array selected in this investigation,
alternative electrode arrays, and whole-scale electrode sam-
pling. Third, the current study is limited by various design
choices made during data preparation and model configuration
(e.g., epoch duration, model hyperparameters). Future studies
could examine the value of ML generally and XGBoost in
particular for classification compared with the performance of
various other univariate and multivariate classification ap-
proaches. Finally, we focused on 225 univariate features,
including spectral and coherence features, to facilitate compar-
ison to past work (12). However, future ML and explainability
studies may better characterize the dynamic, multidimensional,
and complex nature of meditation by including complexity
measures of entropy (49,50) and Higuchi fractal dimension (50),
graph-theory based measures of small-worldness and clustering
(51), whole-brain network connectivity analysis and interaction
with heartbeat evoked potential (52), as well as long-range
temporal correlation of neuronal oscillations (53).
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