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ARTICLE

Topological kink plasmons on magnetic-domain
boundaries
Dafei Jin1,2,11, Yang Xia 1,11, Thomas Christensen3, Matthew Freeman4, Siqi Wang1, King Yan Fong1,

Geoffrey C. Gardner5, Saeed Fallahi6, Qing Hu7, Yuan Wang1, Lloyd Engel4, Zhi-Li Xiao8, Michael J. Manfra 9,

Nicholas X. Fang7 & Xiang Zhang 1,10*

Two-dimensional topological materials bearing time reversal-breaking magnetic fields sup-

port protected one-way edge modes. Normally, these edge modes adhere to physical edges

where material properties change abruptly. However, even in homogeneous materials,

topology still permits a unique form of edge modes – kink modes – residing at the domain

boundaries of magnetic fields within the materials. This scenario, despite being predicted in

theory, has rarely been demonstrated experimentally. Here, we report our observation of

topologically-protected high-frequency kink modes – kink magnetoplasmons (KMPs) – in a

GaAs/AlGaAs two-dimensional electron gas (2DEG) system. These KMPs arise at a domain

boundary projected from an externally-patterned magnetic field onto a uniform 2DEG. They

propagate unidirectionally along the boundary, protected by a difference of gap Chern

numbers (± 1) in the two domains. They exhibit large tunability under an applied magnetic

field or gate voltage, and clear signatures of nonreciprocity even under weak-coupling to

evanescent photons.
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Topologically protected one-way edge modes can exist in
two-dimensional systems under a time-reversal-breaking
magnetic field1–3. Such modes usually arise at physical

edges where material properties undergo a sudden change.
Nevertheless, another type of topological edge modes, termed
topological kink modes, can exist at magnetic-domain boundaries
inside an otherwise homogeneous system1–8. Intuitively, this
system can be viewed as composed of two effective materials,
distinguished by the sign of magnetic field, and separated by a
synthetic edge from the domain boundary. While time-reversal-
preserving kink modes have been observed in both the low-
frequency fermionic (electronic) and high-frequency bosonic
(photonic) valley-Hall systems9,10, time-reversal-broken kink
modes have only been observed in fermionic systems11. Various
bosonic (photonic, plasmonic, magnonic, and excitonic12–19)
counterparts have yet to be demonstrated experimentally.

A two-dimensional electron gas (2DEG) in a high-mobility
GaAs/AlGaAs heterojunction20,21 is an ideal platform to realize
kink modes. Under a perpendicular magnetic field, the 2DEG
hosts magnetoplasmons (MPs)—electron-density oscillations
sustained by the longitudinal Coulomb force and subjected to a
transverse Lorentz force—covering a broad spectral range from
radio to microwave frequencies. These MPs embody a proto-
typical band topology of bosonic excitations5,17. The magnetic
field opens a topological gap for the bulk MPs up to a cyclotron
frequency22,23. Topologically protected edge magnetoplasmons
(EMPs) bridge the bulk gap and propagate unidirectionally along
system’s boundaries24–27.

Previous studies of EMPs in any 2DEG systems all relied on
sharp termination of electron density nðrÞ at sample edges28–30.
In this work, we achieve an innovative device design that ensures
a constant electron density n0 throughout the main area of 2DEG,
but contains a space-varying magnetic field BðrÞ ¼ BðrÞêz31–33 in
the 2DEG. This magnetic field is produced by a custom-shaped
NdFeB strong permanent magnet placed atop the GaAs/AlGaAs
heterojunction. It generates a magnetic field of opposite signs
about ± 0:15 T in the two domains, sufficient to produce a sizable
MP bulk gap in each domain. The high electron mobility μ �
107 cm2 V�1 s�1 of our 2DEG affords an ultra-long relaxation
time up to hundreds of picoseconds and ultra-low damping rate
down to a few gigahertz, superior to most existing 2DEG
systems24,34,35. We experimentally demonstrate the existence of
KMPs and their nonreciprocal nature, by measuring the reso-
nance absorption spectrum in the 1–10 GHz frequency range. We
find that the excitation frequencies of KMPs exhibit a unique
dependence on an additionally applied magnetic field or gate
voltage, differing substantially from the conventional EMPs. Our
theoretical calculation and experimental observation show good
mutual agreement.

Results
Device. Figure 1 illustrates the layout of our topological mag-
netoplasmonic device. Conceptually (Fig. 1a), a 2DEG in a
GaAs/AlGaAs heterojunction (see the “Methods” section) is
cladded above and below by a fused-silica spacer and a GaAs
substrate, respectively, of thicknesses dA ¼ 100 μm and
dB ¼ 150 μm, and permittivities εA ¼ 3:8 and εB ¼ 12:8. This
dielectric–2DEG–dielectric structure is enclosed in a metallic
cavity along z, terminated at the spacer’s top and substrate’s
bottom. A holed NdFeB permanent magnet installed atop the
cavity projects a circular magnetic field BmðrÞ ¼ BmðrÞêz onto
the 2DEG. The sign of BmðrÞ changes sharply across the pro-
jection of the hole’s radius, a ¼ 0:75 mm, producing the adja-
cent oppositely signed magnetic domains (see the “Methods”
section). The entire 2DEG is additionally exposed to a tunable

uniform magnetic field B0 ¼ B0êz from a superconducting coil,
allowing an overall shift of the field profile.

In practice (Fig. 1b), the heterojunction sample has a
12 ´ 6 mm2 rectangular footprint. A 9 ´ 3 mm2 Hall bar is
fabricated on it, allowing in situ measurements and control of
the 2DEG electron concentration n0. The fused silica spacer is
topped by a 100 nm-thick e-beam evaporated Cr-coating, serving
simultaneously as upper cavity wall and gate electrode36,37. A gate
voltage of Vg � ± 100 V can be applied across the Cr-
coating–Hall bar junction to tune the electron concentration.
The sample–spacer–magnet assembly is glued by poly(methyl
methacrylate) (PMMA) onto a customized Cu printed circuit
board (PCB) with a 5 μm Ni and 200 nm Au surface finish. The
PCB hosts a coplanar waveguide (CPW) connecting RF Ports 1
and 2 with mini-SMP connectors36. By design, the CPW has a
50 Ω impedance with the sample–magnet assembly loaded. The
CPW signal line is aligned tangentially to the projected circle
from the hole of magnet so as to maximize the microwave–KMP
coupling.

Theory. The essential physics of MPs can be captured by the
continuity equation and a constitutive equation including the
longitudinal Coulomb and transverse Lorentz forces:

ωρðr;ωÞ ¼ �i∇ � jðr;ωÞ; ð1Þ

ωjðr;ωÞ ¼ �i
e2

m�
nðrÞ∇Φðr;ωÞ � iωcðrÞjðr;ωÞ ´ êz: ð2Þ

Here, j and ρ are the surface current and charge densities, eval-
uated at frequencies ω and in-plane positions r. Φðr;ωÞ ¼R
Vðr� r0Þρðr0;ωÞ d2r0 is the self-consistent potential due to the

(screened) Coulomb interaction V . ωcðrÞ ¼ eBðrÞ=m�c is a space-
varying cyclotron frequency, with m� ¼ 0:067me the electron
effective mass. As elaborated below, even with a constant electron
density nðrÞ ¼ n0, topologically protected KMPs can reside at
sign-changing magnetic domain boundaries defined solely by the
spatial profile BðrÞ and ωcðrÞ5.

The total magnetic field, BðrÞ ¼ B0 þ BmðrÞ, is the sum of a
tunable, uniform field B0 from the superconducting coil, and a
fixed, r-dependent field BmðrÞ from the holed NdFeB permanent
magnet. The latter is well-approximated by

BmðrÞ ’ �Bm þ sgnðr � aÞΔBm: ð3Þ
Here, ΔBm contributes an equal-magnitude sign-changing jump
at r ¼ a � 0:75 mm, while �Bm accounts for a small, overall shift
due to the small distance between magnet and 2DEG. By a
combination of finite-element simulations and room-temperature
Hall-probe measurements on the surface of magnet, we infer the
low-temperature values of each as ΔBm � 0:14 T and �Bm � 0:01
T (see the “Methods” section).

The in-plane Coulomb interaction, which determines the
plasmonic frequency scale, is screened by the dielectric response
of the materials cladding the 2DEG above (εA) and below (εB); in
momentum space, it takes the form26,27

VðqÞ ¼ 2π
q
βðqÞ ¼ 2π

q
2

εA cothðqdAÞ þ εB cothðqdBÞ
; ð4Þ

with βðqÞ being the q-dependent screening function. The scalar
potential and surface charge density are related by
ΦðqÞ ¼ VðqÞρðqÞ. The eigenmodes of the system consistent with
Eqs. (1) and (2) are eigenstates of a 3 ´ 3 Hamiltonian H with
operator elements5,17. In the circularly symmetric “potential” of
Eq. (3), the eigenmodes decompose according to RmðrÞeimφ with
azimuthal angle φ and angular wavenumber m 2 Z. The radial
function RmðrÞ can be expanded by the Bessel functions with
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radial wavenumbers qmn, n 2 Z
þ, which enter the Coulomb

interaction Eq. (4) (see the “Methods” section).
Figure 2a illustrates the magnetoplasmonic dispersion of bulk

MP and KMP modes for n0 ¼ 1 ´ 1011 cm�2, B0 ¼ �Bm ¼ 0 T,
and ΔBm ¼ 0:15 T. The spectrum exhibits particle–hole symme-
try, i.e. ωnm ¼ �ωn;�m, with a zero-frequency band describing
static modes5. The bulk MPs in each magnetic domain contains a
gap from zero frequency to the cyclotron frequency
jωcðrÞj ¼ ejBðrÞj=m�c, in this case about 60 GHz. The band
topology of each domain, considered as an extended bulk, is
characterized by a topological invariant, the Chern number,
equaling C ¼ �sgnBðrÞ ¼ sgnða� rÞ ¼ ± 15. The associated gap
Chern number �C also equals ± 1; its difference across domains of
oppositely directed magnetic fields is Δ�C ¼ 2, dictating the
existence of two unidirectional edge states localized at r ¼ a. This
is a manifestation of a bulk-edge correspondence: the two
domains of the 2DEG are topologically distinct (but share a
common bulk band gap) due to their opposite magnetic biases;
the emergence of edge-localized kink magnetoplasmons furnishes
a continuous transition between the two domains by crossing and
thereby connecting the bulk gap, allowing a change of topology
from one domain to the other.

These conclusions are manifest in Fig. 2a, b from the existence
of quasi-even and quasi-odd KMP branches (so named due to
their asymptotic association with the even and odd KMPs of a
linear domain boundary). Both are unidirectional and exhibit
increasing localization with incrementing angular wavenumbers
m. They differ from the conventional EMPs even at the
microscopic level. For EMPs, the electron-density waves hit a
physical barrier where the momentum is immediately reversed.
For KMPs, however, the electron-density waves hit a magnetic
barrier where the Lorentz force is reversed. There are classical
analogies to the two kinds of KMPs; they are topologically
equivalent to the equatorial Kelvin and Yanai waves of the ocean
and atmosphere with a Coriolis parameter replacing BðrÞ38.

Figure 2c investigates the dispersion for increased ΔBm (from
0.15 to 0.18 T) and B0 (from 0 to 0.1 T). Comparing to Fig. 2a,
increasing ΔBm widens the bandgap and decreases the frequencies

of the quasi-even KMPs. Conversely, increasing B0 (but
maintaining B0 < ΔBm) reduces the overall gap—since the
cyclotron frequency is lowered in the inner domain—and
increases the excitation frequencies of the quasi-even KMP. This
latter behavior further distinguishes our new KMPs from the
traditional EMPs which shift in the opposite direction with
increasing B0

24,26. The quasi-odd KMP branch in Fig. 2c appears
as though they are not gapless. This puzzle, however, is remedied
at larger jmj where the quasi-odd dispersion curve turns
downwards towards the zero-frequency modes (see the “Meth-
ods” section), same as Fig. 2a, c. This reinstates an asymptotically
gapless behavior fulfilling the topological requirements of MP
systems5.

Experiment. We next seek experimental evidence for the theo-
retically predicted KMPs specific to our device. The device is
inserted into a He-3 cryostat running at 0.5 K. An Agilent
E5071C network analyzer (NA) is used to acquire power trans-
mission S21 (Port 1 to 2) and S12 (Port 2 to 1) in the frequency
range 300 kHz to 20 GHz18,36,37. Our focused frequency range is
limited to 1–10 GHz, beyond which the cables and NA suffer high
loss and noise, prohibiting acquisition of clear signals. Referring
to Fig. 2a, c, we expect to observe characteristic absorption
associated with the m ¼ 1 and 2 quasi-even KMPs. Note that the
quasi-odd KMPs fall into our spectral range only at extremely
large (angular) momenta. Their non-dispersive nature will only
produce a broad absorption background in the spectrum with no
resolvable resonances.

In the first series of measurements, we keep the gate grounded,
Vg ¼ 0 V, and investigate the influence of the applied magnetic
field B0 on the resonant absorption of quasi-even KMPs in S21
(Fig. 3a). All signals are divided by a reference (denoted baseline)
and processed with five-point curve smoothing (refer to
Supplementary Fig. 1). Here, we choose B0 ¼ 0:2 T as baseline,
which provides a high suppression of unwanted low-frequency
bulk modes, without exerting too great a torque on the
magnet–sample assembly. For every S21-spectrum in Fig. 3a,
each reflecting a single applied field in the range B0 ¼ 0–0:1 T, we
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Fig. 1 Topological magnetoplasmonic device. a Conceptual layout. b Device design and PCB layout. The 2DEG is formed at the interface of a GaAs/AlGaAs
heterojunction, cladded between a fused-silica spacer and the substrate, and finally enclosed in a metallic cavity. A holed NdFeB magnet on the top
provides an oppositely signed magnetic field at the 2DEG to permit kink magnetoplasmons (KMPs) traveling unidirectionally along the magnetic-domain
boundary. Microwaves transmitted along the coplanar waveguide on a printed circuit board excite the KMPs. An applied uniform magnetic field B0 or a
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observe two well-defined absorptive resonances, corresponding to
the m ¼ 1 and 2 right-circulating quasi-even KMPs. Spanning
frequencies from 3 to 4 GHz and 6 to 8 GHz, they exhibit
linewidths of 1 to 2 GHz, roughly consistent with the Hall-probe
inferred DC damping rate γ � 2:6 GHz. Figure 3c compares
the measured and theoretically predicted resonance frequencies.
We make two observations: first, measurements and theory agree
well, in the absence of fitting parameters; second, the excitation
frequencies increase monotonously with increasing B0, which
unambiguously differentiates our magnetically defined KMPs
from conventional EMPs.

In the second series of measurements, we fix the applied
magnetic field B0 ¼ 0 T, and explore the KMPs’ dependence
on the gate voltage Vg (Fig. 3b). The baseline is chosen at
Vg ¼ �80 V, which corresponds to an essentially electron-
depleted 2DEG supporting no plasmonic modes. Once more,
every spectrum in Fig. 3b, each now corresponding to distinct
gate voltages in the range Vg ¼ �20 to þ20 V, exhibits two clear
absorptive resonances associated with the m ¼ 1 and 2 quasi-even
KMPs. Increasing the gate voltage (or, equivalently, the electron
concentration n0) increases the KMP frequency, as expected.
Moreover, the extinction depth of each resonance also increases
with the Vg. This is consistent with the f -sum rule39 which
dictates a linear increase of integrated extinction with increased
n0 (disregarding the negligible spectral dispersion in the
microwave–KMP coupling). Comparing theoretical and experi-
mental observations (Fig. 3d) we again find good agreement.

Using the same sample and magnet, we examine the
nonreciprocal properties of the KMPs in Fig. 4a, to explicitly
demonstrate the underlying unidirectional character of the KMPs.
Since the KMPs are right-circulating in the bandgap (Fig. 2), S21
and S12 correspond to the “easy-coupling” and “hard-coupling"
directions, respectively, of our device (Fig. 1b). Each coupling
direction is normalized separately, with baselines taken at B0 ¼ 0:2
T. The 2DEG is gated by Vg ¼ 40 V, ensuring a pronounced
extinction depth, and the applied magnetic field is turned off
B0 ¼ 0 T. In this configuration, the m ¼ 1 and 2 quasi-even KMPs
exist at 4.2 and 8.0 GHz, respectively. Comparing S21 and S12 we
observe distinct asymmetry of extinction depth at each resonance,
with S12 exhibiting shallower extinction. This asymmetry is
indicative of the unidirectional character of the KMPs.

Discussion
The isolation ratio S21=S12 ¼ ðS21 � S12ÞjdB attained from our
current experiment is limited by the evanescent-photon–plasmon
coupling technique. It is important to stress that the KMPs
themselves are always unidirectional, independent of the prop-
erties of the photons used to probe them. In order to observe a
sharp isolation contrast, the probe’s extent should in principle be
much smaller than the length scale of the edge (or kink)
modes12,28,30,40. However, the probing technique compatible with
our device here employs the evanescent field from CPW photons,
which are more delocalized than the KMPs.

To be quantitative, we have performed a full-wave simulation
for the wavelengths and mode profiles of microwave photons
along the CPW, as shown in Fig. 4b. At f ¼ 8 GHz excitation
frequency (corresponding to the m ¼ 2 quasi-even mode reso-
nance), the waveguide photon wavelength is about 1 cm, whereas
the KMP (angular) wavelength is only about 2 mm. As a result,
the KMPs only see a slowly varying nearly quasistatic photon field
with <π=5 phase variation across their circulating diameter. This
significantly limits the attainable isolation ratio, since the wave-
guide photons, regardless of direction, couples weakly with both
KMPs. Nonetheless, despite this weak coupling between the
photon probe and KMPs, the nonreciprocal nature of KMPs is
evident.

In summary, we have experimentally realized high-frequency
topological kink modes, kink magnetoplasmons (KMPs), in a
unique magnetoplasmonic device featuring oppositely biased
magnetic domains. The KMPs localize at the magnetic domain
boundaries in the otherwise homogeneous two-dimensional
electron gas (2DEG). Our experimental observation show good
agreement with theoretical calculation. The demonstrated KMP
architecture can be generalized to accommodate more complex
magnetic patterns, and could be useful for novel integrated
topological circuits 13,18,19.

Methods
2DEG sample growth and characterization. Our sample is a single-interface
GaAs/AlxGa1�xAs (x ¼ 0:22) heterojunction grown by molecular beam epitaxy
(MBE) on a 500 μ m-thick GaAs wafer. After the growth, the sample is back-
polished down to 100 μ m thick in order to enhance the evanescent microwave
coupling. The MBE growth consists of a 500 nm-thick GaAs layer followed by a
170 nm-thick AlxGa1�xAs (x ¼ 0:22) spacer and a 20 nm GaAs cap layer to pre-
vent oxidization of the AlGaAs barrier. It is delta-doped with Si doping con-
centration 1:6 ´ 1012 cm�2 at a setback of 120 nm above the GaAs/AlGaAs
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interface containing 2DEG. The 2DEG lies 190 nm below top surface. The electron
concentration n0 ¼ 0:95 ´ 1011 cm�2 and mobility μ ¼ 8:6 ´ 106 cm2 V�1 s�1 are
extracted from our Hall measurement at T ¼ 0:3 K in dark. In our actual micro-
wave experiment at 0.5 K, the typical zero-gate electron concentration is measured
to be about 1 ´ 1011 cm�2. This number is used in our calculation. The uniform
magnetic field B0 is supplied by a superconductor coil. In the absence of the holed
NdFeB magnet, it can safely reach above 7 T, enabling a quantum-Hall measure-
ment to characterize the sample (see Fig. 5). When the NdFeB magnet is present,
the applied field is limited by practical concerns to at most 0.5 T, beyond which a
huge magnetic torque is exerted onto the magnet, risking damage to the sample.

NdFeB magnet design and characterization. The NdFeB magnet is 1 mm long,
4 mm wide, and 1 mm thick, and the hole radius is 0.75 mm. It is produced by
sintering NdFeB powders in a custom mold and subsequently magnetizing it along
the thickness direction. At room temperature, Hall-probe measurements indicate
that the holed magnet provides ~ ± 0:18 T remanent magnetic field in the surface
area inside and outside the hole. With this value, and taking into account the
known anisotropic reduction of the magnetism of NdFeB at cryogenic tempera-
tures 41–43, we are able to simulate out the magnetic field profile over the entire
magnet at low temperature (see Fig. 6) using a finite-element software (Comsol
Multiphysics). From the results, we infer that the two key parameters of Eq. (2),
namely, a sign-changing field strength ΔBm � ± 0:14 T and a overall shift
�Bm � 0:01 T. These are the values used in our theoretical calculations in Fig. 2c, d,
demonstrating good agreement between theory and experiment with no fitting
parameters.

Theoretical development and computational scheme. The evanescent nature of
KMPs and the presence of encapsulating metals, which screen away the long-range
part of Coulomb interaction, allow us to focus on the region around and inside the
circle r≲ a ¼ 0:75 mm. We can legitimately take a circularly symmetric model
system cut off at a radius R ¼ 10 mm � a, where the scalar potential Φ is
grounded Φðr ¼ R;φÞ ¼ 0. This truncation does not affect the evanescent KMPs
that localize around r ¼ a, far away from the truncation region.

The associated eigenproblem can be conveniently expressed in a chiral
representation5

ωjRðr;φÞ ¼ þωcðrÞjRðr;φÞ þ
e2n0
ω0m�

e�iφ

i
ffiffiffi
2

p ∂�jDðr;φÞ; ð5Þ

ωjDðr;φÞ ¼ ω0V̂
eþiφ

i
ffiffiffi
2

p ∂þjRðr;φÞ þ ω0V̂
e�iφ

i
ffiffiffi
2

p ∂�jLðr;φÞ; ð6Þ

ωjLðr;φÞ ¼ �ωcðrÞjLðr;φÞ þ
e2n0
ω0m�

eþiφ

i
ffiffiffi
2

p ∂þjDðr;φÞ; ð7Þ

in which ∂± � ∂r ±
i
r ∂φ. The basic field components are the right-circulating

current jR � 1ffiffi
2

p ðjr � ijφÞe�iφ , the left-circulating current jL � 1ffiffi
2

p ðjr þ ijφÞeþiφ , and

the “scalar-potential (density-fluctuation)" current jD � ω0Φ. Here, ω0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0=m�R

p
is a characteristic plasmon frequency, ωcðrÞ ¼ eBðrÞ=m�c is the

r-dependent cyclotron frequency, and V̂ is the Coulomb interaction operator,

V̂ρðr;φÞ ¼
Z R

0
r0dr0

Z 2π

0
dφ0Vðjr � r0jÞρðr0;φ0Þ; ð8Þ

with Vðjr � r0 jÞ being the screened in-plane Coulomb interaction in real space and
relating to Eq. (4) by a Fourier transform.

The eigensolutions with a given angular wavenumber m and obeying the hard-
wall boundary condition are linear expansion of Bessel functions

jsðr;φÞ ¼
XN!1

n¼1

An;sJmþsðqmnrÞ
" #

eþiðmþsÞφ: ð9Þ

Here s ¼ �1; 0;þ1 resembles a spin index referring to the jR, jD, jL components,
respectively. qmn ¼ ζmn=R are discretized radial wavenumbers with ζmn denoting
the nth zero of the mth order Bessel function JmðζÞ. In practice, the expansion is
truncated at a finite N , determined by the desired spectral resolution (N ¼ 2000 in
our calculations). In this discrete cylindrical-wave basis, the screened Coulomb
interaction relates ρ and Φ by ΦðqmnÞ ¼ VðqmnÞρðqmnÞ, with VðqÞ defined by
Eq. (4).

The matrix-form eigen-equation in the cylindrical-wave bases reads

ω

ω0

Aþ1

A0

A�1

0
B@

1
CA ¼

þW þ qmnR
i
ffiffi
2

p I 0

� 2πβðqmnÞ
i
ffiffi
2

p I 0 þ 2πβðqmnÞ
i
ffiffi
2

p I
0 � qmnR

i
ffiffi
2

p I �W

0
BBB@

1
CCCA

Aþ1

A0

A�1

0
B@

1
CA: ð10Þ

Here As ¼ ðA1;s;A2;s; ¼ ;AN;sÞT, I is an N ´N identity matrix, W is an N ´N full
matrix determined by the magnetic-field profile. If BðrÞ ¼ B0, then W ¼ ðωc=ω0ÞI
is diagonal with the constant cyclotron frequency ωc ¼ eB0=m�c, and the usual
bulk MP modes can be recovered5.

The radially varying magnetic field in our problem results in scattering between
different radial indices n (within the s ¼ �1 and þ1 chiral subspace), which
localizes the edge modes to the magnetic-domain boundary. The matrix W can be
determined from the expansion

ωcðrÞJm�1ðqmnrÞ � ω0

X
n′

Wnn′Jm�1ðqmn′rÞ; ð11Þ

ωcðrÞJmþ1ðqmnrÞ � ω0

X
n′

Wnn′Jmþ1ðqmn′rÞ; ð12Þ

with Wnn′ denoting the elements of W. After lengthy manipulations involving
Bessel integrals44, we obtain

W ¼ e
ω0m�c

2ΔBmY�1X þ ðB0 þ �Bm � ΔBmÞI
� �

; ð13Þ
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where X and Y are N ´N matrices with elements

Xnn′ ¼
Z ~a

0
~rd~rJm�1ðζmn~rÞJm�1ðζmn′~rÞ

¼
~a

ζ2mn�ζ2mn′

ζmnJmðζmn~aÞJm�1ðζmn′~aÞ
�ζmn′Jmðζmn′~aÞJm�1ðζmn~aÞ

� �
for n≠ n0;

~a
2ζmn

~aζmnJ
2
mðζmn~aÞ þ ~aζmnJ

2
m�1ðζmn~aÞ

�2ðm� 1ÞJmðζmn~aÞJm�1ðζmn~aÞ

� �
for n ¼ n0;

8>>><
>>>:

Ynn′ ¼ δnn′
1
2
J2m�1ðζmnÞ;

ð14Þ

where ~a � a=R and ~r � r=R.

Topological properties at large momentum. In our MP system with a sign-
changing magnetic field, the bulk-boundary correspondence guarantees the exis-
tence of two kind of gapless topological kink modes, termed as the even and odd
modes, respectively. The even modes show gapless feature at the momentum zero,
whereas the odd modes show gapless feature at the momentum infinity. They both
connect to a zero-frequency bulk band (see ref. 5 for detailed analysis).

In the case when the magnetic field is imbalanced in the two domains as in
Fig. 2c, by a quick glance, it is puzzling that the odd modes seem not to go down
towards the zero-frequency band. This triggers a question on whether such modes
are topological or not. But a more refined calculation in a much larger (angular)
momentum range shows that they eventually do bend downward and make
themselves gapless at the (angular) momentum infinity. This restores all the
necessary topological requirements. Fig. 7 displays this behavior.

Impact of loss and non-hermiticity. The finiteness of the electronic damping rate γ
unavoidably introduces a finite linewidth and lifetime to all MP modes (bulk, edge,
or kink). The topological protection of KMPs assumes hermicity; additionally, it
cannot suppress loss due to non-Hermitian perturbations, such as intrinsic elec-
tronic decay (due to imperfections, electron–electron, and electron–phonon
scattering).

A natural question is how does intrinsic loss, or more generally non-hermiticity
of the Hamiltonian, influence the topological structure45,46. It has been shown that
the definition of Chern number needs to be generalized45. Consider a 2D Dirac-
cone structure with a two-fold degeneracy point (closely related to our MP
problem)5,17. After breaking the degeneracy by opening a gap and in the
meanwhile generalizing the parameter space into a complex plane, the
eigenenergies and eigenstates reside on a two-Riemann-sheet manifold. The two
sheets are connected by two square-root branch cuts ended at two exceptional
points (EPs)47. The eigenstates, following the general formalism of non-Hermitian
Hamiltonian, can be divided into the left-eigenstates jA>L and right-eigenstates
jA>R. They all together form four Chern numbers CLL, CLR, CRL, CRR, which can
be proved to be all equal45. As long as the gap remains open in the complex-energy
plane, the topological edge modes persist.

A related, more practical question is how much loss is required to effectively
close the bandgap (filling appreciable density of states into the gap). For our 2DEG
samples, the high mobility μ � 107 cm2 V−1 entails a low damping rate
γ ¼ e=m�μ � 2:6 GHz. It is the ratio γ=ωc that controls the loss-induced gap
closing. First of all, the governing Eq. (2) must be modified to include the
loss rate γ,

ðωþ iγÞjðr;ωÞ ¼ �i
e2

m�
nðrÞ∇Φðr;ωÞ � iωcðrÞjðr;ωÞ ´ êz : ð16Þ

It is sufficient to consider the uniform bulk at long-wavelength limit only. The
(non-Hermitian) Hamiltonian equation is

ω

jρ
jx
jy

0
B@

1
CA ¼ H

jρ
jx
jy

0
B@

1
CA ¼

0 vpqx vpqy
vpqx �iγ �iωc

vpqy þiωc �iγ

0
B@

1
CA

jρ
jx
jy

0
B@

1
CA; ð17Þ

where jρ � vpρ, and vp is an effective plasmon velocity5,

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2n0
m�

dAdB
εAdB þ εBdB

s
: ð18Þ

For a lossy system, it is more physical to plot the response function instead of
the dispersion relation. The Green operator (response matrix) of this problem is

Gðq;ωÞ ¼ ωI �Hðq;ωÞ½ 	�1; ð19Þ
which can be derived analytically. For example, the Gjy jx

component, which gives

the response in jy due to a source in jx , is

Gjy jx
ðq;ωÞ ¼ � v2pqxqy þ iωωc

ωðω2
c � ðω2 þ iγÞ2Þ þ v2pðq2x þ q2yÞðωþ iγÞ : ð20Þ

As noted previously, in our setup ωc � 50 GHz and γ � 2:6 GHz, such that
γ � 5 ´ 10�2ωc, rendering the time-reversal-breaking scale ~20 times greater than
the non-Hermitian scale. In Fig. 8, we plot the response function in the ðq ¼

qêx;ωÞ plane. For comparison, we choose γ=ωc ¼ 5 ´ 10�5 for nearly vanishing loss
and γ=ωc ¼ 5 ´ 10�2 for our samples. The two plots use the same color scale. The
latter has slightly blurred band edges, but the gap is still well-defined and open.

Experiments with different samples and magnets. To further verify the prop-
erties of KMPs, we have performed experiments with different 2DEG samples and
different NdFeB magnets. For instance, we use a sample of much higher electron
concentration n0 ¼ 2:5 ´ 1011 cm�2 (at zero gate voltage) and higher electron
mobility μ ¼ 1:46 ´ 107 cm2 V−1 s−1 which also produce well-defined KMP reso-
nances. The increased electron density causes a large overall blueshift of KMP
resonance frequencies relative to Fig. 3; as a result, only the m ¼ 1 quasi-even
mode remains within our 1–9 GHz reliable measurement range. Additionally, the
increased mobility (and concomitantly reduced loss) produces significantly sharper
resonances.

We place on top of this sample differently customized magnets of varying hole
diameters 2a ¼ 1:2, 1.5, and 1.8 mm. The spacer and substrate thicknesses are
dA ¼ dB ¼ 200 μm. As expected, with increasing hole diameter, i.e., increasing
length of the domain boundary, the resonance frequency decreases. The location of
the absorption dips are consistent with the theoretical calculation. These results are
summarized in Fig. 9.

We then verify the existence of resonances in the presence of defects along the
edge. This will be a strong indication of suppressed back scattering and topological
protection. By knocking off a few chips from the upper hole edge of the magnet, we
make a small local perturbation to the field profile projected onto the 2DEG
underneath. The measured results are given in Fig. 10. The defect only produces a
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minor frequency shift and negligible transmission reduction. Evidently, the overall
absorption structure is not significantly perturbed relative to the pristine
configuration.
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All relevant data is available from the authors upon request.
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