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ABSTRACT
The performance of different anomaly detection algorithms is typi-
cally compared using metrics that depend on the true positive rate
(TPR) and the false positive rate (FPR). However, to obtain the TPR
it is necessary to generate attacks that will be detected, which is
useless to evaluate detection strategies against more realistic ad-
versaries that can adapt their attacks to remain undetected. On the
other hand, the FPR can be misleading and hard to interpret in prac-
tical applications since the amount of time a process is observed
is not fixed. In this poster, we present a novel metric that is based
on the maximum impact an adversary can cause while remaining
stealthy, and on the expected time between false alarms. Our metric
is useful for the evaluation and comparison of anomaly detection
strategies in CPS.
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1 INTRODUCTION
One of the differences between detecting attacks in control systems
when compared to detecting attacks in general IT systems is that
researchers do not have readily available data from attacks in the
wild. Even if we test our algorithms on the few known examples
(like Stuxnet), they are domain specific and it is not clear they
will give insights into the evaluation other than to show that we
can detect Stuxnet (which can be easily detected ex post). For that
reason, the question we would like to address in this poster is how
to create attacks that are general enough to be applicable across
multiple industrial control domains but that will also allow us to
define an evaluation metric that is fair (and that is not biased to
detect the specific attacks from the researchers).

To motivate the need of a new metric, we now discuss the chal-
lenges and limitations of common metrics in literature.

Measuring the True Positive Rate is Misleading. To obtain the
true positive rate of a detection algorithm we need to generate an
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attack that will be detected. Publications using the true positive
rate [9] generate their attacks as random signals (e.g., a sensor re-
porting fake random values ). This type of non-strategic random
failure is precisely what the fault-detection community has been
working on for over 40 years; with those attacks we are not advanc-
ing the state of the art on attack-detection, but rather reinforcing
the fact that fault-detection works when sensor or control signals
fail in a non-malicious way.

Stealthy Attacks and ROC Curves. If we evaluate our anomaly
detection algorithm against using a traditional intrusion detection
metric like Receiver Operating Characteristic (ROC) curves, and
the attacker is able to generate stealthy attacks, we would have
had a 0% detection rate; that is, our ROC curve would be a flat line
along the x-axis with a 0% value in the y-axis [2].

Summary.A classification accuracy metric of an anomaly detection
algorithm A needs to capture two things: (1) the ability of A to
detect attacks (we call this a security metric), and (2) the ability
of A to label correctly normal events so that it does not raise too
many false alarms (we call this a usability metric). The security
metric and the usability metric represent a trade-off that needs to
be balanced (lower false alarm rates typically means lower ability
to detect attacks).

In this poster, we present the trade-off curve introduced in [8]
that includes both (the security metric and the usability metric) and
that is useful to evaluate and compare anomaly detection algorithms
for cyber-physical systems, where the main goal of adversaries is to
disrupt the physical process as much as possible while remaining
undetected (e.g., stuxnet).

2 NEW EVALUATION METRIC
We assume an attacker that has compromised a sensor (e.g. pH level
in a water treatment plant) or an actuator (e.g. pump or valve) in
our system. We assume that the adversary has complete system
knowledge, i.e. she knows the physical model we use, the statistical
test we use, and the thresholds we select to raise alerts. Given this
knowledge, she generates a stealthy attack, where the detection
statistic will always remain below the selected threshold. Given
this strong assumptions for the adversary, we can compute our
proposed metric.
Computing Y-axis (Security). We consider a strong adversary

model where the attacker knows all details about our anomaly
detection test, and thus can remain undetected, even if we use
active monitoring Given an anomaly detection threshold τ we want
to evaluate how much “damage” the attacker can do without raising
an alarm. The adversary wants to drive the system to the worst
possible condition it can without being detected, where “worst:”
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refers to the maximum deviation of a signal from its true value that
the attacker can obtain (without raising an alarm, and given a fixed-
period of time, otherwise given infinite time, the attacker might
be able to grow this deviation without bound). Let yk denote a
sensor reading at an instant k . The adversary wants to maximize
the deviation of a variable of interest yk (per time unit) without
being detected. The true value of this variable is yk ,yk+1, . . . ,yN ,
and the attack starts at time k , resulting in a new observed time
series yak ,y

a
k+1, . . . ,y

a
N . The goal of the attacker is to maximize the

distance maxi | |yi − yai | |.
An optimal greedy-attack (ya∗) at time k ∈ [κ,κf ] (where κ and

κf are the initial and final attack times, respectively), satisfies the
equation:ya∗k+1 = argmaxyak+1 f (y

a
k+1) (where f (y

a
k+1) is defined by

the designer of the detection method to quantify the attack impact)
subject to not raising an alert (instead of max it can be min).

Notice that while we have defined a specific impact for unde-
tected attacks in our y-axis for clarity, we believe that designers
who want to evaluate their system using our metric should define
an appropriate worst case undetected attack optimization problem
specifically for their system. In particular, the y-axis can be a repre-
sentation of a cost function f of interest to the designer. There are
a variety of metrics (optimization objectives) that can be measured
such as the product degradation from undetected attacks, or the
historical deviation of the system under attack

∑
i |yi − ŷai | or the

deviation at the end of the attack |yN − ŷaN |, etc.
Computing X-axis (Usability).While the y-axis of our proposed

metric is completely different to ROC curves, the x-axis is similar,
but instead of using the false alarm rate, we use instead the ex-
pected time between false alarms E[Tf a ]. This value has a couple of
advantages over the false alarm rate: (1) it addresses the deceptive
nature of low false alarm rates due to the base-rate fallacy [1], and
(2) it addresses the problem that some anomaly detection statistics
make a decision (“alarm” or “normal behavior”) at non-constant
time-intervals. We argue that telling security analysts that e.g., they
should expect a false alarm every hour is a more direct and intu-
itive metric rather than giving them a probability of false alarm
number over a decision period that will be variable depending of
the anomaly detection tests.

The usability metric for each evaluated detection mechanism
is obtained by counting the number of false alarms nFA for an
experiment with a duration TE under normal operation (without
attack), so for each threshold τ we calculate the estimated time for
a false alarm by E[Tf a ] ≈ TE/nFA.

3 CASE STUDY
To illustrate the use of our metric, we will implement two detection
strategies in a real testbed, the bad-data detection (stateless) and
the CUSUM (stateful). We will consider the evolution of the water
level in a tank in the Secure Water Treatment Testbed (SWaT) at
the Singapore University of Technology and Design.

The goal of the attacker is to deviate the water level in a tank as
much as possible until the tank overflows without being detected.
A successful attack occurs if, when the PLC receives from the
sensor a High water-level message (the point when the PLC sends
a command to close the inlet, which corresponds to 0.8 m), then
the real water level has already overflowed (the real level of water

reaches 1.1m). Therefore, the impact of the attack (the Y axis) is
given by ∆ = hr eal − 0.8, where hr eal is the real level of water
when the PLC closes the inlet valve. The value of ∆ is computed
for different τ for each detection strategy. The usability metric (X
axis) is calculated forTE = 8 h, which is the time of the experiment
without attacks. Figure 1 illustrates our proposed trade-off curve.
Clearly, when the stateless detection is being used, the attacker
has enough room to launch a stealthy attack that will cause an
overflow (i.e., ∆ = 0.3). On the other hand, the CUSUM algorithm
is able to limit the impact of the adversary. Our proposed curve
allows us to find an adequate threshold that will lead to a large
enough expected time between false alarms, but at the same time a
reasonable maximum impact.
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Figure 1: Comparison of stateful and stateless detection.
Stateless tests are not good for this use case.

It is worth to mention that our metric has been used by several
research groups in [3–7].

4 ACKNOWLEDGEMENTS
This work is partially supported by NSF CNS-1553683 and NIST
70NANB17H282.

REFERENCES
[1] StefanAxelsson. 2000. The base-rate fallacy and the difficulty of intrusion detection.

ACMTransactions on Information and System Security (TISSEC) 3, 3 (2000), 186–205.
[2] Alvaro A Cárdenas, John S Baras, and Karl Seamon. 2006. A framework for the

evaluation of intrusion detection systems. In Proceedings of Symposium on Security
and Privacy. IEEE, 15–pp.

[3] Luis Francisco Combita, Jairo Alonso Giraldo, Alvaro A. Cardenas, and Nicanor
Quijano. 2018. DDDAS for Attack Detection and Isolation of Control Systems.
Springer International Publishing, Cham, 407–422.

[4] Amin Ghafouri. 2018. Resilient Anomaly Detection in Cyber-Physical Systems. Ph.D.
Dissertation. Vanderbilt University.

[5] Jezdimir Milošević, David Umsonst, Henrik Sandberg, and Karl Henrik Johans-
son. 2018. Quantifying the impact of cyber-attack strategies for control systems
equipped with an anomaly detector. In Proceedings of the 2018 European Control
Conference. IEEE, 331–337.

[6] Kaveh Paridari, NiamhO’Mahony, Alie El-DinMady, Rohan Chabukswar, Menouer
Boubekeur, and Henrik Sandberg. 2018. A framework for attack-resilient industrial
control systems: Attack detection and controller reconfiguration. Proc. IEEE 106, 1
(2018), 113–128.

[7] David Umsonst and Henrik Sandberg. 2018. Anomaly detector metrics for sen-
sor data attacks in control systems. In Proceedings of the 2018 American Control
Conference (ACC). IEEE, 153–158.

[8] David I Urbina, Jairo A Giraldo, Alvaro A Cardenas, Nils Ole Tippenhauer, Junia
Valente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg.
2016. Limiting the impact of stealthy attacks on industrial control systems. In
Proceedings of the Conference on Computer and Communications Security (CCS).
ACM, 1092–1105.

[9] Yong Wang, Zhaoyan Xu, Jialong Zhang, Lei Xu, Haopei Wang, and Guofei Gu.
2014. SRID: State Relation Based Intrusion Detection for False Data Injection
Attacks in SCADA. In Proceedings of European Symposium on Research in Computer
Security (ESORICS). Springer, 401–418.


	Abstract
	1 Introduction
	2 New Evaluation Metric 
	3 Case Study
	4 Acknowledgements 
	References



