
UC Berkeley
Faculty Publications

Title
The complexity of computable categoricity

Permalink
https://escholarship.org/uc/item/0zv7r0p3

Authors
Montalban, Antonio
Downey, Rodney
Kach, Asher
et al.

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0zv7r0p3
https://escholarship.org/uc/item/0zv7r0p3#author
https://escholarship.org
http://www.cdlib.org/


THE COMPLEXITY OF COMPUTABLE CATEGORICITY

RODNEY G. DOWNEY, ASHER M. KACH, STEFFEN LEMPP, ANDY E. M. LEWIS-PYE,

ANTONIO MONTALBÁN, AND DANIEL D. TURETSKY

Abstract. We show that the index set complexity of the computably categorical structures
is Π1

1-complete, demonstrating that computable categoricity has no simple syntactic char-
acterization. As a consequence of our proof, we exhibit, for every computable ordinal α, a
computable structure that is computably categorical but not relatively ∆0

α-categorical.

1. Introduction

The goal of the present paper is to solve one of the most fundamental and longstanding
questions in computable model theory. We show that the index set of computably categorical
structures is Π1

1-complete and hence there cannot be any reasonable or structural characteri-
zation of this class.

Mathematics is often concerned with classifying objects like groups and rings in terms of
invariants which classify those objects up to isomorphism. For example the familiar use of
dimension classifies vector spaces. As we see below, logic gives tools to demonstrate when no
reasonable invariants or simpler descriptions are possible.

The concern of the present paper grew from the long-term program which seeks to under-
stand the effective (i.e., algorithmic) content of mathematics. Familiar realizations of this
program include algorithmic questions in groups such as the word problem, or the search for
effective procedures in field theory and ring theory, such as the computational effectiveness of
the Hilbert Basis Theorem. These considerations go back to the early 20th century, beginning
with the work of Dehn [Deh11], Grete Herrmann [Her26], and Van der Waerden [vdW30].
Starting with Fröhlich and Shepherdson [FS56], Rabin [Rab60], Mal’cev [Mal61, Mal62] (and
arguably Turing [Tur36]), the language and techniques of computability theory enable the
modern precision possible in these studies. We can now calibrate the level of computability
aligned to specific algorithmic questions. Clearly, if we are concerned with algorithms on
structures, we should have some method of describing the domains in some kind of effective
way. Thus, when we want to study the effective properties of mathematical structures, i.e.,
a set together with some operations and relations on it, it is natural to start with the com-
putable structures, i.e, those mathematical structures having computable presentations. A
presentation is computable if the set and the operations and relations on it are computable. A
computable (presentation of a) field would be one whose domain is a computable set on which
the operations of +, ·,−1 are computable.

2010 Mathematics Subject Classification. 03D45,03D60.
Key words and phrases. computable categoricity.
Kach’s research was partially supported by grants from the Marsden Fund of New Zealand and the Packard

Foundation. Lempp’s research was partially supported AMS-Simons Foundation Collaboration Grant 209087.
Lewis-Pye was supported by a Royal Society University Research Fellowship. Montalbán was partially sup-
ported by NSF grant DMS-0901169 and the Packard Fellowship. Turetsky was partially supported by Austrian
Science Fund grant P23989-N13. This work was partially supported by Bulgarian National Science Fund under
contract D002-258/18.12.08. Lempp would like to thank Victoria University of Wellington, New Zealand, and
the Newton Institute, Cambridge, England, for their hospitality while part of this research was being carried
out.

1



2 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

The first obstacle we encounter when we restrict ourselves to computable structures is that
there can be computable presentations which are isomorphic, but not computably isomorphic.
This implies that we cannot translate computational properties from one to the other. For
instance, there are computable presentations of the countably infinite-dimensional Q-vector
space Q∞ where all the finite-dimensional subspaces are computable, and computable presen-
tations of Q∞ where no finite-dimensional subspace is computable (see [DHK+07]). The reader
can see that there is a fundamental tension between the classification tools of classical math-
ematics, like isomorphism, and those of effective mathematics, like computable isomorphism,
and hence between invariants and algorithmic invariants.

The principal concern of the present paper is the class of structures where there is no such
difference, as encapsulated by the following definition.

Definition 1.1. A computable structure S is computably categorical if any two computable
presentations A and B of S are computably isomorphic.

This concept was originally introduced by Mal’cev [Mal62] under the name ‘autostability’1

and has become an important branch of mathematical logic. Here is our basic problem:

Characterize the computably categorical structures.

For many classes of structures, there is a concise syntactic definition of the computably
categorical structures: A computable linear order is computably categorical if and only if it has
finitely many adjacencies (Dzgoev and Goncharov [GD80]); a computable Boolean algebra is
computably categorical if and only if it has finitely many atoms (Goncharov, and independently
La Roche [LR78]); a computable ordered abelian group is computably categorical if and only
if it has finite rank (Goncharov, Lempp, and Solomon [GLS03]); a computable tree of finite
height is computably categorical if and only if it is of finite type (Lempp, McCoy, R. Miller,
and Solomon [LMMS05]); a computable torsion-free abelian group is computably categorical
iff it has finite rank (Nurtazin [Nur74]); a computable p-group is computably categorical iff
it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G
finite, or (ii) (Z(p∞))n ⊕ (Zpk)∞ ⊕G where G is finite, and n, k ∈ ω (Goncharov [Gon80] and
Smith [Smi81]); and so on.

Based on these examples, it is natural to hope for a simple characterization of computable
categoricity. What form would such a characterization take? A fundamental aim of mathe-
matical logic is to exhibit natural connections between syntax and semantics. In the same way,
a fundamental aim of computable structure theory is to connect computational properties of
algebraic structures with structural properties. So we would anticipate that a solution might
entail a result saying that computably categorical structures had simple descriptions, either
in arithmetic or in the language of the structure. That is, an acceptable answer would be a
syntactic or structural characterization of computable categoricity.

Groundbreaking results of Goncharov [Gon75, Gon77] showed that if a structure is suf-
ficiently computable then there was indeed a syntactic characterization of computable cate-
goricity in terms of “effective naming” of the elements of the structure. That is, Goncharov
demonstrated that a 2-decidable computable structure was computably categorical iff it had
a computably enumerable Scott family of existential formulas, i.e., a computably enumer-
able family of existential formulas that define the automorphism orbits of the structure.2

Goncharov’s results filtered through another related notion called relative computable cate-
goricity.

1We thank Alexandra Soskova for providing this reference.
2Here and later, we refer the reader to Section 2 for prerequisite definitions.



COMPUTABLE CATEGORICITY 3

Definition 1.2. A computable structure S is relatively computably categorical if for any two
presentations A and B of S (computable or not), there is an isomorphism between them that
is computable with the presentations of A and B as oracles.

Goncharov [Gon77] demonstrated the equivalence between relative computable categoricity
and the existence of a computably enumerable Scott family of existential formulas, and in
[Gon75] proved that for 2-decidable structures the notions of computable categoricity and
relative computable categoricity coincide. A consequence of Goncharov’s work is that relatively
computably categorical structures are well-understood. For example, it is straightforward to
show that the index set complexity of the relatively computably categorical structures is simply
defined in terms of the arithmetical hierarchy: It is Σ0

3-complete (Downey, Kach, Lempp, and
Turetsky [DKLTed]). The point here is that an index set is a listing of members of the class,
and if the class admits a simple description, then its index set should be easily described in the
arithmetical hierarchy, as this example shows. We will return to this point later.

Implicit in Goncharov’s papers from the 1970’s is the question of whether there is a charac-
terization of computably categorical structures for structures which are not 2-decidable. This
is the question we answer here.

Downey, Kach, Lempp, and Turetsky [DKLTed] showed that a 1-decidable structure is
computably categorical iff it has a Σ0

2 infinitary Scott family. Thus, again, we find a simple
characterization of computably categorical structures. The pattern generated by the 1- and
2-decidable examples suggests that perhaps a computable structure is computably categorical
iff it has a Σ0

3 infinitary Scott family. As we see below, this is not true.
At the same time there also had been considerable evidence that computable categoric-

ity is an ill-behaved notion and could conceivably have no simple syntactic characterization.
Evidence for this has taken many forms: Goncharov [Gon77] constructed a graph witnessing
the divergence of computable categoricity and relative computable categoricity; White [Whi03]
demonstrated the index set complexity of the computably categorical structures to be Π0

4-hard
and thus strictly more difficult than the index set complexity of the relatively computably
categorical structures; Csima, Khoussainov, and Liu [CKL08] constructed a strongly locally
finite computably categorical graph with an infinite chain of properly embedded components;
R. Miller and Schoutens [MSar] constructed a computably categorical field of infinite tran-
scendence degree over Q; and so on.

During a lecture of Goncharov in 1997 at Kazan, Shore suggested a method to demonstrate
that there was no reasonable characterization of computably categorical computable structures
by proving completeness of the index set at a high level. Shore suggested that it would be
enough to show that the index set of computably categorical structures is Π1

1-complete. We
prove this theorem in this paper. Let us explain what this means.

What such an index set result shows is that there is no computationally simpler way of
telling if a computable presentation A is computably categorical than to check, for any other
computable presentation B, if there exists a classical isomorphism between A and B, then there
is a computable one. Note that this requires checking all potential classical isomorphisms, that
is all continuum many functions from one domain to the other. We would expect that if there
were a simple syntactic characterization of computable categoricity, then such a characteriza-
tion should produce a simpler way for checking if a structure is computably categorical.

By way of illustration, consider the isomorphism problem for torsion-free abelian groups.
The classical group theory literature suggests that there are no reasonable invariants for clas-
sifying torsion-free abelian groups up to isomorphism. Mathematical logic gives us a way to
prove that there are no such invariants. What do we mean by this? Plainly, one invariant for
the isomorphism type of G is “the isomorphism type of G”. Note that this is a Σ1

1-class as we
need to search through the possible functions which could be isomorphisms for G. But such



4 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

an “invariant” is hardly useful for understanding isomorphism types, since what we seek is
something like dimension for vector spaces which simplifies the isomorphism problem. Downey
and Montalbán [DM08] showed that the isomorphism problem for torsion-free abelian groups
is Σ1

1-complete, and hence no invariant can be simpler arithmetically than the isomorphism
type itself. There are no useful invariants. The same reasoning applies here. The index set is
as bad as it can possibly be and hence there is no reasonable simpler characterization.

To state our theorem formally, for each e ∈ N, we let Me be the eth (partial) computable
structure computed by the eth Turing machine.

Theorem 1. The index set

Icc := {e ∈ N : Me is computably categorical}

of the computably categorical structures is Π1
1-complete.

The proof of this result is complex and unusual in several ways. In order to demonstrate
Theorem 1, and of important independent interest, we show there is no connection between
computable categoricity and relative ∆0

α-categoricity for computable ordinals α.3 The question
of whether computable categoricity implies relative ∆0

α-categoricity for some fixed α has also
been open for some time. Ash [Ash87] showed that a structure is relatively ∆0

α-categorical
if and only if it has a computably enumerable Scott family of Σc

α-formulas. This is a nice
syntactical characterization of the notion of relative ∆0

α-categoricity, and implies that the
index set of such structures is Σ0

α+2. It is not hard to see that if every computably categorical

structure were relatively ∆0
α-categorical, then we could decide ifMe is computably categorical

as follows: First check if it is relatively ∆0
α-categorical, and then check that for any other

computable structure A, if there exists a ∆0
α-isomorphism between S and A, then there is a

computable one. This would be a Π0
α+3 procedure, which is much weaker that Π1

1. Thus, the
following theorem follows from our main theorem.

Theorem 2. For every computable ordinal α, there is a computable structure that is com-
putably categorical but not relatively ∆0

α-categorical.

Of course, this result is a strengthening of Chisholm, Fokina, Goncharov, Harizanov, Knight,
and Quinn [CFG+09], extending results of Goncharov, Harizanov, Knight, McCoy, Miller
and Solomon [GHK+05], where it is shown that ∆0

α-categoricity does not imply relative ∆0
α-

categoricity.
The necessary argument for Theorem 1 does not need to explicitly exhibit a particular

witness to Theorem 2. We will, however, in the course of our proof, explicitly exhibit such a
structure for each computable ordinal α. Unfortunately, although this paper demonstrates that
computable categoricity has no simple syntactic characterization, it fails to completely settle
the connection between computable categoricity and relative hyperarithmetic categoricity. We
don’t know of another example of analytic completeness of an index set proven without solving
the important question (also asked as Question 6.1) below which remains open.

Question 1.3. Is there a computable structure that is computably categorical but not rela-
tively hyperarithmetically categorical?

Finally, we discuss an important issue of uniformity involving computably categorical struc-
tures. Given computable presentations Mi and Mj of a computably categorical structure S,
there is an index e of a computable isomorphism Φe : Mi

∼= Mj . Of course, though it
is not difficult to see that 0′′ always suffices to find such an index e, there is no a priori

3Again, refer to Section 2 for prerequisite definitions.



COMPUTABLE CATEGORICITY 5

reason that such an index e can be found computably. When demonstrating that the struc-
ture built for Theorem 2 is computably categorical in Lemma 4.22, we need the nonuniform
information of g restricted to Tµ (the exact meaning of this is unimportant here). The curi-
ous reader might wonder whether this nonuniformity is necessary. Since uniform computable
categoricity is equivalent to relatively computable categoricity (see Downey, Hirschfeldt, and
Khoussainov [DKK03] for definitions and results), this nonuniformity is provably required.

2. Background and Notation

Though we refer the reader to Ash and Knight [AK00] for further background on computable
structure theory and computable model theory and to Soare [Soa87] for further background
on computability theory, we present much of the necessary background in this section.

2.1. Prerequisite Terminology and Results.

Definition 2.1. A computable structure S is relatively ∆0
α-categorical if between any two

presentations A and B of S there is a (∆0
α(A)⊕∆0

α(B))-computable isomorphism.

Theorem 2.2 (Ash [Ash87]). The following are equivalent for a computable structure S:

(1) The structure S is relatively ∆0
α-categorical.

(2) The orbits of S are effectively isolated by Σc
α-formulas, i.e., there is a computably

enumerable family Φ of Σc
α-formulas over some fixed c ∈ S such that each a ∈ S

satisfies some φ ∈ Φ, and if a, b ∈ S both satisfy the same φ ∈ Φ then they are
automorphic.

(3) The Σc
α-types of S are effectively isolated by Σc

α-formulas, i.e., there is a computably
enumerable family Φ of Σc

α-formulas over some fixed c ∈ S such that each a ∈ S
satisfies some φ ∈ Φ, and if a, b ∈ S both satisfy the same φ ∈ Φ then they satisfy the
same Σc

α-formulas.

2.2. Kleene’s O and Feferman and Spector’s O∗. We will use O∗, an extension of
Kleene’s O due to Feferman and Spector [FS62]. The salient features of O∗ are:

• There is a c.e. ordering relation 4 on the Σ1
1-set O∗ such that for each α ∈ O∗, the

set {β ∈ O∗ : β 4 α} is linearly ordered by 4 and has no hyperarithmetic infinite
descending sequences.
• The set O∗ has a 4-least element 0 (diverging from the standard notation 1). The

sets of successor and limit elements are computable, and so is the predecessor func-
tion pred(·) defined on the successor elements.
• The set of α ∈ O∗ for which {β ∈ O∗ : β 4 α} is well-ordered is O.
• There is a computable sequence of limit elements {αn ∈ O∗ : n ∈ N} such that the set
{n : αn ∈ O} is Π1

1-complete.

2.3. Computably Enumerable Relations. For each α ∈ O∗, we will build a structure Aα
in the language

Lα := {E} ∪ {Rβ : β 4 α} ∪ {Mm : m ∈ N} ∪ {Lm : m ∈ N},
where E is a binary relation and Rβ, Mm, and Lm are unary relations. The binary relation E
will represent the edge relation on a tree, with the root being identified as the only element
on which E is reflexive. The unary relations Rβ, Mm, and Lm will serve to label elements of
the tree.

As the construction of Aα and Aα′ will be independent for α 6= α′, we later fix an α ∈ O∗
and abbreviate Lα as L and Aα as A. So that the construction better reflects the intuition, we
work with the language L rather than the language of directed graphs. Though this language
shift facilitates the intuition, it necessitates the following (non-standard) definitions.



6 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

Definition 2.3. A presentation A of an L-structure is L-computable if its domain A is com-
putably enumerable, the relations EA, RAβ , and MAm are uniformly computable, and the rela-

tions LAm are uniformly c.e.

We then need to define the meaning of computable categoricity for L-computable structures.
It remains unchanged.

Definition 2.4. An L-computable structure is computably categorical if any two L-computable
presentations of it are computably isomorphic.

It is not hard to show that, uniformly from an L-computable presentation A, there is a
presentation G of a computable graph such that A is computably categorical (in the sense
above) if and only if G is computably categorical (in the usual sense). A simple way to do this
is to use loops to label nodes of the tree, rather than the unary relations. It is also easy to
see that there is an effective enumeration {B`}`∈N of all (partial) L-computable structures.

We also need to define the meaning of embeddings of L-computable structures. Viewing
L-structures as computable graphs via the transformation in the previous paragraph, an em-
bedding of computable presentations of L-structures should only require the preservation of the
relations and non-relations E, Rβ, and Mm, and the relations (but not the non-relations) Lm.

Definition 2.5. An embedding ι : A → B is an (injective) map that preserves all relations
and non-relations E, Rβ, and Mm, and the relations (but not necessarily the non-relations) Lm.

2.4. Notation. Though our notation is mostly standard, we review certain definitions and
conventions.

Definition 2.6. Let T be a tree. For a node ρ ∈ T , we denote the parent of ρ by ρ−. By
convention, the parent of the root of T is the root itself.

Throughout, we maintain certain notational conventions.

Convention 2.7. The symbols α and β will be reserved for elements of O∗; the symbols µ
and ν will be reserved for nodes on the priority tree of strategies TS (described later); and σ, τ ,

and ρ will be reserved for nodes on any of the trees Tt, T̂ , and A (also all described later).
The symbol t will be reserved for terms. The symbol s will be reserved for stage numbers.

Elements α ∈ O are sometimes treated as ordinals. Thus, for example, we sometimes write
Σi
α for Σi

γ , where γ is the order type of {β : β ≺ α}.
We emphasize that the exposition will involve many different trees. Though there should

be no cause for confusion, we caution the reader of this fact.

Definition 2.8. Fix an Lα-structure B with domain B. The root of B, if it exists, is the
Gödel-least x ∈ B such that E(x, x). We denote the root by rB, if it exists. The length |π|
of an element π ∈ B, if it exists, is the length of the shortest sequence x1, . . . , xn satisfying
E(xi, xi+1) for 1 ≤ i < n, rB = x1, and π = xn. Note that the length of the root is 1.

3. The Trees

As preparation for the proof of Theorem 2, we introduce the trees that will play a crucial
role in the construction of the requisite computable structures. We do so in several steps: In
Section 3.1, for α ∈ O∗ and m ∈ N, we define the tree T(α,m); in Section 3.2, we define an
expansion T of the tree T(α,0); in Section 3.3, we prove symmetry properties of T ; and in
Section 3.4, we prove relative categoricity properties of T .

We start by defining some features and attributes of our trees.



COMPUTABLE CATEGORICITY 7

3.1. The Basic Trees T(α,m). We will build a tree T(α,m) for each α ∈ O∗ and m ∈ N.
Our aim in defining this tree, roughly speaking, is that we should be able to use it to define
a structure in which, for β ≺ α, there are non-automorphic elements which have the same
Σ0
β-type. The tree will consist of finite sequences of terms, which are defined as follows:

Definition 3.1. A term is either:

• a pair t = (β, n) with β ∈ O∗ and n ∈ N; or
• a triple t = (β, n, (β′, n′)) with β ∈ O∗ a limit, n, n′ ∈ N, and β′ is a successor with
β′ ≺ β.

We call β the rank of t. We call a term a successor or a limit according to its rank.

In fact, for each term t we will build a tree Tt (not just for those of the form (α,m)). It will
be convenient to identify the term t with the sequence σ of length 1 with σ(0) = t, so that we
may write τ_t rather than τ_〈t〉. We start by describing Tt in the case when rank(t) ∈ O
as the definition can be done by transfinite recursion in this case. This definition is not only
easier to understand, but also gives the intuition for the general definition.

(1) If t = (0, n), then Tt is the tree with one node (0, n).
(2) If t = (β, n) is a successor term, then Tt is the tree with root (β, n) and having one

subtree Tt′ for each term t′ of rank pred(β) except for the term (pred(β), n). More
formally,

Tt := {t} ∪ {t_σ : σ ∈ Tt′ for t′ a term of rank pred(β), t′ 6= (pred(β), n)}.
(3) If t = (β, n) is a limit term, then Tt is the tree with root (β, n) and having one

subtree Tt′ for each successor term t′ of rank less than β. More formally,

Tt := {t} ∪ {t_σ : σ ∈ Tt′ for t′ a successor term of rank ≺ β}.
(4) If t = (β, n, (β′, n′)) is a limit term, then Tt is the tree with root (β, n, (β′, n′)) and

which has one subtree Tt′ for each successor term t′ of rank less than β except for the
term (β′, n′). More formally,

Tt := {t} ∪ {t_σ : σ ∈ Tt′ for t′ a successor term of rank ≺ β, t′ 6= (β′, n′)}.
To extend the definition to terms with rank not in O, we need to define the trees in a more

direct way.

Definition 3.2. A finite sequence σ := 〈ti〉0≤i<` of terms, where ` ≥ 1 and ti is (βi, ni) or

(βi, ni, (β
′
i, n
′
i)), is acceptable if for all i < `− 1:

(T1) if βi is a successor, then βi+1 = pred(βi);
(T2) if βi is a limit, then βi+1 is a successor and βi+1 ≺ βi;
(T3) if βi is a successor, then ti+1 6= (pred(βi), ni);
(T4) if βi is a limit and ti = (βi, ni, (β

′
i, n
′
i)), then ti+1 6= (β′i, n

′
i).

We define Tt to be the tree of acceptable strings σ with σ(0) = t. Of course, we order these
strings by initial segment. We write last(σ) to denote σ(|σ|−1). For each acceptable string of
terms σ, we define rank(σ) = rank(last(σ)). We emphasize that the empty string is not part
of our tree.

Is not hard to prove, in the case when rank(t) ∈ O, that Tt is a well-founded tree of
rank rank(t). Also, let us observe that for all σ ∈ Tt, Tlast(σ) = {last(σ)_τ : σ_τ ∈ Tt}.

We now use the tree Tt in order to define a structure Tt with domain Tt. This structure
has a binary relation E that reflects the edge relation on the tree: For all σ, τ ∈ Tt, E(τ, σ) if
and only if τ = σ− (in particular, the root is linked to itself). The structure also has a myriad
of unary relations that we use to label the nodes of Tt. The unary relations are of two types:



8 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

• Height Labels: For each β ∈ O∗, we have a height relation Rβ. Informally, these
relations specify the height of an element σ. More formally, the relation Rβ(σ) holds
if and only if β = rank(σ).
• Marker Label: For each integer j ∈ N, we have a marker relation Mj . We have that
Mj(σ) holds iff rank(σ) is a non-successor and last(σ) ∈ {(β, j), (β, j, (β′, n′))}. When
rank(σ) is a successor, no relation Mj holds of σ.

Our aim in defining Tt has been to ensure that certain elements are hard to distinguish from
each other (while being non-automorphic) and that Lemma 3.3 below also holds.

Lemma 3.3. Let β ∈ O. Then:

(1) If m 6= m′, then T(β,m) does not embed into T(β,m′).
(2) If β is a limit, then T(β,m) does not embed into T(β,n,(β′,m′)) for any β′ ≺ β and any

n,m′ ∈ N.
(3) If β is a limit and (β′,m′) 6= (β′′,m′′), then, for any n ∈ N, T(β,m,(β′′,m′′)) does not

embed into T(β,n,(β′,m′)).

We note here that for any limit β, any successor β′ ≺ β and any n,m ∈ N, T(β,n,(β′,m)) does
embed into T(β,n).

Proof. We show the three statements simultaneously by induction on β.
If β = 0, the marker relation Mm holds of the unique element in T(β,m) but not of the unique

element in T(β,m′). Consequently, no embedding of T(β,m) into T(β,m′) exists.
If β is a successor, towards a contradiction, fix an embedding ι : T(β,m) → T(β,m′). Let

σ0 := 〈(β,m)〉 ∈ T(β,m) and σ1 := 〈(β,m), (pred(β),m′)〉 ∈ T(β,m). Then ι(σ0) must be
〈(β,m′)〉 ∈ T(β,m′) as Rβ holds of σ0 ∈ T(β,m) and 〈(β,m′)〉 ∈ T(β,m′) is the unique element
of T(β,m′) that Rβ holds of. As the edge relation E holds of the pair (σ0, σ1), it must be that the
edge relation E holds of the pair (ι(σ0), ι(σ1)). Thus, the rank of last(ι(σ1)) must be pred(β).
If pred(β) is a limit, then Mm′ holds of σ1, so it must also hold of ι(σ1), and thus last(ι(σ1)) is
either (pred(β),m′) or (pred(β),m′, (β′′,m′′)) for some β′′,m′′. Because of the edge relation E,
the embedding ι induces an embedding of Tlast(σ1) into Tlast(ι(σ1)). The inductive hypothesis
(either (1) or (2), depending on whether pred(β) is a limit) implies last(ι(σ1)) = last(σ1). This
is a contradiction as 〈(β,m′), (pred(β),m′)〉 6∈ T(β,m′). Consequently, no embedding of T(β,m)

into T(β,m′) exists.
If β is a limit, note first that (1) holds because in T(β,m), the label Mm holds of the

unique element for which Rβ holds, while this is not true of T(β,m′). Towards a contradic-
tion to (2) or (3), fix an embedding ι : T(β,m) → T(β,n,(β′,m′)) (for (2)) or an embedding
ι : T(β,m,(β′′,m′′)) → T(β,n,(β′,m′)) (for (3)). By considering the images of σ0 := 〈(β,m)〉 and
σ1 := 〈(β,m), (β′,m′)〉 or σ2 := 〈(β,m, (β′′,m′′))〉 and σ3 := 〈(β,m, (β′′,m′′)), (β′,m′)〉 un-
der ι, a similar contradiction is reached in each case. Consequently, no embedding of T(β,m)

into T(β,n,(β′,m′)) or T(β,m,(β′′,m′′)) into T(β,n,(β′,m′)) exists. �

In a strong sense, the proof above exploits all of the obstacles to an embedding. In particular,
we have:

Remark 3.4. For successors α ∈ O, the structures T(α,m) −T(pred(α),n) and T(α,n) −T(pred(α),m)

are isomorphic.

Definition 3.5. Let σ = 〈ti〉0≤i<` ∈ Tt, where ti is (βi, ni) or (βi, ni, (β
′
i, n
′
i)). We define the

backbone of σ, denoted bb(σ), to be the sequence 〈γi〉0≤i<`, where γi = (βi) if βi is a successor

and γi = (βi, ni) otherwise.



COMPUTABLE CATEGORICITY 9

Thus the backbone of σ specifies the sequence of height and marker labels placed on initial
segments of σ.

Definition 3.6. Let σ = 〈ti〉0≤i≤` ∈ Tt, where ti is (βi, ni) or (βi, ni, (β
′
i, n
′
i)). We define the

weak rank of σ, denoted wr(σ), to be min{β`} ∪ {β′i : ti = (βi, ni, (β
′
i, n
′
i))}.

Thus the weak rank of σ is the least ordinal which occurs in any of the terms of σ.

3.2. The Expanded Trees T̂. Although we have not proved it yet, when α ∈ O is a limit Tα
is not relatively ∆0

α-categorical. Our task is now to take the structure Tt and to modify it so
as to ensure that it is computably categorical when rank(t) ∈ O. Thus, in the construction of
the structure for Theorem 2, we will build a structure At which is a fattening of Tt, but where
(an isomorphic copy of) Tt is a Π0

2-subset of At (where At is the domain of At). Furthermore,
the part of the structure which is not in Tt will be, in a sense we will describe, symmetric with
respect to Tt. So, from a structural viewpoint, the larger structure At will not be too different
from Tt. However, the larger structure At will be computably categorical when rank(t) ∈ O.

Let us first informally describe the shape of the larger structure At. The construction for
Theorem 2 will have a tree of strategies, denoted TS, where every node is associated with some
requirement and the children of each node reflect the outcomes of the requirement. Though
standard, the precise definition of TS is not yet important.

Each node µ ∈ TS will be responsible for enumerating certain nodes to our new fattening At
of Tt. We will have to use a new kind of acceptable term that reflects the node in TS responsible
for it.

Convention 3.7. Fix a limit α ∈ O∗ for the remainder of the construction. Fix an effective
enumeration {αi}i∈N of the set {β ∈ O∗ : β 4 α} with α0 = α and for which αj = pred(αi)
implies j ≤ i.

We note that such effective enumerations exist (uniformly in α): Given any enumeration
of all β ∈ O∗ satisfying β 4 α, the enumeration can be modified so that when a successor β
appears, we compute successive predecessors until either an already enumerated element is
reached or a limit is reached, whereupon we enumerate this (finite) sequence in reverse order
(not including the already enumerated element, if appropriate). Of course, a limit must
eventually be reached because there are no infinite computable (hyperarithmetic) descending
sequences, so this sequence is necessarily finite.

We will build a modified version of T(α,0). For the rest of this section, we abbreviate T(α,0)

as T .
It is worth highlighting the fact that the root of the tree of strategies is ∅, and so is of

length 0, as opposed to the root of T , which is of length 1.

Definition 3.8. Let µ ∈ TS be a node on the tree of strategies. Let ` := |µ|.
A µ-term is either

• a triple t = (αi, n, µ) with (αi, n) an acceptable term, i, n ≤ `, and ` ∈ {i, n}; or
• a quadruple t = (αi, n, (αi′ , n

′), µ) with (αi, n, (αi′ , n
′)) an acceptable term, i, i′, n, n′ ≤

`, and ` ∈ {i, i′, n, n′}.
We define term(t) := (αi, n) or term(t) := (αi, n, (αi′ , n

′)) depending on the form of t.
A µ-term is a ν-term for some ν ⊆ µ.
Let P be a path through TS. A P -term is a ν-term for some ν ⊂ P . A TS-term is a ν-term

for some ν ∈ TS.

Definition 3.9. A finite sequence σ := 〈ti〉0≤i<` of TS-terms, where ti is (βi, ni, µi), or

(βi, ni, (β
′
i, n
′
i), µi), is acceptable if for all i < `− 1:



10 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

• if βi is not a limit, then βi+1 = pred(βi);
• if βi is a limit, then βi+1 is a successor and βi+1 ≺ βi ;
• if µi and µi+1 are comparable and βi is a successor, then we have that ti+1 6=

(pred(βi), ni, µi+1);
• if µi and µi+1 are comparable and βi is a limit and ti = (βi, ni, (β

′
i, n
′
i), µi), then

ti+1 6= (β′i, n
′
i, µi+1).

We define T̂ to be the tree of acceptable sequences σ of TS-terms with σ(0) = (α, 0, ∅). Of
course, we order these strings by initial segment.

For each such acceptable sequence, we define rank(σ) := rank(last(σ)) and term(σ) :=
term(last(σ)). We emphasize that the empty string is not an element of our tree.

We then use the tree T̂ in order to define a structure T̂ with domain T̂, exactly as before.
For all σ, τ ∈ T̂, E(τ, σ) if and only if τ = σ−. The relation Rβ(σ) holds if and only if
β = rank(last(σ)). The relation Mj(σ) holds if and only if rank(σ) is a non-successor and
last(σ) ∈ {(β, j, µ), (β, j, (β′, n′), µ)}. Though this tree might look rather messy, the restriction
of it to an appropriate subset is not.

Definition 3.10. Fix a node µ ∈ TS and a path P ⊆ TS. Define the tree Tµ of µ-terms to be
the tree

Tµ :=
{
σ ∈ T̂ : (∀i)

[
σ(i) is a µ-term

]}
.

Define the tree TP of P -terms to be the tree

TP :=
{
σ ∈ T̂ : (∀i) [σ(i) is a P -term]

}
.

We also let T P be the corresponding induced substructure of T̂ .

We make a few quick observations. The tree Tµ is finite for all µ ∈ TS. It is not too difficult
to see that T is isomorphic to T P . Further, it is immediate that TP =

⋃
µ⊂P Tµ.

To say that any T ′ is a substructure of T̂ means that the domain is a subset of T̂ and
that for any elements of the domain, a relation holds in T ′ if and only if it holds in T̂ . The
structure A we build will be an expansion of a substructure of T̂ to the language L, and will
have as its domain a c.e. subset A of T̂. This domain will contain TTP, where TP is the true
path of the construction. Being an expansion to L, the structure A will also have a new kind
of label, temporary labels, that are specified by unary relations Lm for m ∈ N. These labels
will not be computable, but rather uniformly c.e.; that is, for the structure to be computable,
we only demand the relations Lm be uniformly c.e. (recall Definition 2.3).

3.3. Symmetry with Respect to T P . Having defined the requisite trees, we establish
symmetry properties that guarantee the existence and nonexistence of embeddings and iso-
morphisms between subtrees of expansions of T̂ .

Definition 3.11. We define the backbone and weak rank for an acceptable sequence of TS-
terms just as before. Let σ = 〈ti〉0≤i≤` ∈ T̂ , where ti is (βi, ni, µi) or (βi, ni, (β

′
i, n
′
i), µi).

We define the backbone of σ, denoted bb(σ), to be the sequence 〈γi〉0≤i≤`, where γi = (βi)

if βi is a successor and γi = (βi, ni) otherwise. If two sequences have the same backbone we
shall also say that they are similar.

We define the weak rank of σ, denoted wr(σ), to be min{β`}∪{β′i : ti = (βi, ni, (β
′
i, n
′
i), µi)}.

Definition 3.12. Let A be an expansion of a substructure of T̂ to L with domain A, and
let P be a path through TS. We say that A is symmetric with respect to TP if

(S1) TP ⊆ A,



COMPUTABLE CATEGORICITY 11

(S2) For all similar σ, σ′ ∈ TP and for all τ with σ_τ(0) 6∈ TP , we have that

σ_τ ∈ A ⇐⇒ σ′_τ ∈ A,
and σ_τ and σ′_τ have the same labels.

The structure A we construct will satisfy the following properties:

(P1) The structure A is symmetric with respect to TTP.
(P2) The nodes in TTP have infinitely many temporary labels. All the nodes in TTP have

exactly the same temporary labels.
(P3) The nodes in A \ TTP have only finitely many temporary labels.

We now show that if A satisfies the above properties, then the lemma above, which we
know holds for T TP, still holds about A.

Given a node σ ∈ A, let

Aσ := {σ_τ : σ_τ ∈ A}
and let Aσ be the restriction of A to Aσ.

Lemma 3.13. Fix a structure A satisfying P1, P2 and P3. Fix distinct σ, σ′ ∈ TTP with
common rank β := rank(σ) = rank(σ′). Then:

(1) If β ∈ O and term(σ) 6= term(σ′), then Aσ does not embed into Aσ′ unless term(σ)
and term(σ′) are of the form (β,m, (β′,m′)) and (β,m), respectively, for some β′ < β
and m,m′ ∈ N.

(2) If β ∈ O∗, term(σ) 6= term(σ′), and A is hyperarithmetic, then there is no hyper-
arithmetic embedding of Aσ into Aσ′ unless term(σ) and term(σ′) are of the form
(β,m, (β′,m′)) and (β,m), respectively, for some β′ < β and m,m′ ∈ N.

(3) If β ∈ O∗\O, σ and σ′ are similar, and there is no β′ ∈ O, m,m′ ∈ N such that
(β,m, (β′,m′)) ∈ {term(σ), term(σ′)}, then Aσ and Aσ′ are isomorphic.

Proof. For (1), we fix an embedding ι : Aσ → Aσ′ . As x and ι(x) must have the same
cardinality of labels, Properties P2 and P3 imply ι sends elements of TTP to elements of TTP.
Thus ι induces an embedding Tterm(σ) → Tterm(σ′). By Lemma 3.3, this implies term(σ) =
(β,m, (β′,m′)) and term(σ′) = (β,m).

For (2), suppose term(σ) and term(σ′) are not of the specified form, and fix an embedding
ι : Aσ → Aσ′ . By the same reasoning as in part (1), we see that ι induces an embedding
ι̂ : Tterm(σ) → Tterm(σ′) which is computable in ι ⊕ TTP. Further, by Properties P2 and P3,

TTP is computable in A′′. Thus ι̂ is computable in ι⊕A′′.
Observe that the proof of Lemma 3.3 was effective: From t0, t

′
0 not of the specified form

and an embedding ι̂ : Tt0 → Tt′0 , we effectively obtain terms t1, t
′
1 not of the specified form

with rank(t1) = rank(t′1) < β and ι′ � Tt1 : Tt1 → Tt′1 an embedding. Repeating this, ι̂

computes a sequence t0, t1, . . . with rank(t0) > rank(t1) > . . . . Since O∗ contains no infinite,
descending, hyperarithmetic sequence, it follows that ι̂ is not hyperarithmetic. Thus ι must
not be hyperarithmetic.

For (3), we first define an isomorphism π : Aσ ∩TTP ∼= Aσ′ ∩TTP. Then we will argue that
by symmetry, π extends to an isomorphism Aσ ∼= Aσ′ . It is tempting to define π recursively
in β; however, since β is not well-founded, we must instead define π(τ) recursively in |τ |. Our
inductive hypothesis will be the following:

• π preserves edge relation and non-relation;
• τ and π(τ) are similar;
• if there are γ ∈ O∗, γ′ ∈ O, m,m′ ∈ N such that (γ,m, (γ′,m′)) ∈ {term(τ), term(π(τ))},

then term(τ) = term(π(τ)); and



12 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

• if rank(τ) ∈ O, then term(τ) = term(π(τ)).

To summarize the last two points: If term(τ) 6= term(π(τ)), then all elements of O∗ men-
tioned in either term are in O∗ \ O. The idea is the following: By the proof of Lemma 3.3,
if term(τ) 6= term(π(τ)), then there must be some t with term(τ_t) 6= term(π(τ_t)). Since
τ with rank(τ) = 0 are labeled by their term, the proof derives a contradiction using well-
foundedness. To avoid this problem, we arrange that for such t, rank(t) ∈ O∗\O — we send
the “incompatibility” down an infinitely descending chain in O∗, so that it never reaches
rank 0 and destroys our isomorphism. The crucial step is Case 2b below, where we choose
γ′ ∈ O∗\O.

Base case: We define π(σ) = σ′. By assumption, this definition satisfies the inductive
hypothesis.

Inductive step: Suppose that for all ρ with σ ⊆ ρ ⊆ τ , we have defined π(ρ) in a fashion
satisfying the inductive hypothesis; we must now define π(τ̂t) for all t with τ̂t ∈ TTP in a
manner that induces a bijection between {τ_t : τ_t ∈ TTP} and {π(τ)_t : π(τ)_t ∈ TTP}.
This will ensure that π continues to preserve edge relation and non-relation.

We have several cases:

(1) If term(τ) = term(π(τ)), then {t : τ_t ∈ TTP} = {t : π(τ)_t ∈ TTP}, and we define
π(τ_t) = π(τ)_t for all such t. Clearly the inductive hypothesis is preserved.

(2) If term(τ) 6= term(π(τ)), then by the inductive hypothesis rank(τ) ∈ O∗ \ O. There
are several cases, depending on rank(τ):
(a) If rank(τ) = γ + 2 for some γ ∈ O∗, fix any bijection f : {t : τ_t ∈ TTP} → {t :

π(τ)_t ∈ TTP}; such bijections exist because both sets are countable. We define
π(τ_t) = π(τ)_f(t) for all such t. Since rank(τ_t) = γ + 1 ∈ O∗ is not a limit,
the inductive hypothesis is preserved.

(b) If rank(τ) = γ+1 for some limit γ ∈ O∗\O, fix γ′ ∈ O∗\O a successor with γ′ < γ,
and let m,n ∈ N be such that term(τ) = (γ + 1,m) and term(π(τ)) = (γ + 1, n).
By assumption, m 6= n. Define π as follows:

π(τ_t) =


π(τ)_(γ,m) if term(t) = (γ,m, (γ′, 0)),

π(τ)_(γ,m, (γ′, k)) if term(t) = (γ,m, (γ′, k + 1)),
π(τ)_(γ, n, (γ′, 0)) if term(t) = (γ, n),

π(τ)_(γ, n, (γ′, k + 1)) if term(t) = (γ, n, (γ′, k)),
π(τ)_t otherwise.

Then, since γ, γ′ ∈ O∗ \ O, the inductive hypothesis is preserved.
(c) If rank(τ) is a limit, there are several cases, depending on term(τ) and term(π(τ)):

(i) If term(τ) = (γ,m, (γ′0, n0)) and term(π(τ)) = (γ,m, (γ′1, n1)), then by the
inductive hypothesis, γ′0, γ

′
1 6∈ O. By assumption, (γ′0, n0) 6= (γ′1, n1). By

definition of acceptable terms, neither γ′0 nor γ′1 are limits. There are several
cases, depending on the relationship of γ′0, γ

′
1, n0 and n1:

(A) If γ′0 6= γ′1, define π as follows:

π(τ_t) =


π(τ)_(γ′0, k) if term(t) = (γ′0, k) and k < n0,

π(τ)_(γ′0, k − 1) if term(t) = (γ′0, k) and k > n0,
π(τ)_(γ′1, k) if term(t) = (γ′1, k) and k < n1,

π(τ)_(γ′1, k + 1) if term(t) = (γ′1, k) and k ≥ n1,
π(τ)_t otherwise.



COMPUTABLE CATEGORICITY 13

(B) If γ′0 = γ′1 and n0 < n1, define π as follows:

π(τ_t) =


π(τ)_(γ′0, k) if term(t) = (γ′0, k) and k < n0,

π(τ)_(γ′0, k − 1) if term(t) = (γ′0, k) and n0 < k ≤ n1,
π(τ)_(γ′0, k) if term(t) = (γ′0, k) and k > n1,
π(τ)_t otherwise.

(C) The case for γ′0 = γ′1 and n0 > n1 is similar to case (A).
Since γ′0 and γ′1 are not limits, τ_t and π(τ_t) are similar. Since γ′0, γ

′
1 6∈ O,

the remainder of the inductive hypothesis is preserved.
(ii) The case for term(τ) = (γ,m, (γ′, n)) and term(π(τ)) = (γ,m) is similar to

case (i).
(iii) The case for term(τ) = (γ,m) and term(π(τ)) = (γ,m, (γ′, n)) is similar to

case (i).

So π : Aσ ∩TTP → Aσ′ ∩TTP is a bijection which preserves edge relation and non-relation,
and such that τ and π(τ) are similar for all τ . By Property P2, π is an isomorphism.

To extend π to Aσ, for τ ∈ Aσ \ TTP, let τ = ρ_ζ with ρ maximal such that ρ ∈ TTP.
Note that σ ⊆ ρ. Define π(τ) = π(ρ)_ζ. Since ρ and π(ρ) are similar, Property P1 implies
that π : Aσ → Aσ′ is an isomorphism. �

3.4. Relative ∆0
α-Categoricity. Fix a computable structure A satisfying P1, P2 and P3.

For β < α, if β ∈ O, then A is not relatively ∆0
β-categorical. Though demonstrating this is

not required for either Theorem 1 or Theorem 2, we do so as the computations help explain
the motivation and purpose of the requisite properties. It also allows us to offer an explicit
structure for Theorem 2 rather than the existence proof that Theorem 1 yields.

Not only does A not have a computably enumerable Σc
β-Scott family, it has no Σi

β-Scott

family of any computational complexity. The reason, in essence, is that the Σi
β-types of

〈(α, 0), (β + 1, 0)〉 and 〈(α, 0), (β + 1, 1)〉 coincide, as we will show in Lemma 3.14 below.
As Tβ+1,0 and Tβ+1,1 are not isomorphic, this implies A has no Σi

β-Scott family.

We remark that if α ∈ O∗\O, then A is not relatively hyperarithmetically categorical.
This is of little interest because, by Lemma 3.13 above, A is not even ∆0

γ-categorical for any
computable ordinal γ. Briefly, fix TP-terms t0 and t1 with term(t0) = (β, n) and term(t1) =
(β,m) for β ∈ O∗ \ O a successor and n 6= m. Let A′ = A \ A〈(α,0,∅),t0〉 t A〈(α,0,∅),t1〉 — so A′
is made from A by replacing A〈(α,0,∅),t0〉 with a second copy of A〈(α,0,∅),t1〉. Then A ∼= A′, but
any isomorphism would send A〈(α,0,∅),t0〉 to some Aτ with term(τ) 6= t0. Thus there can be no
hyperarithmetic isomorphism.

Lemma 3.14. Let σ = (σ1, . . . , σk), σ
′ = (σ′1, . . . , σ

′
k) be tuples from A such that:

• σi and σ′i are similar for every i; and
• for every i, j, |σi ∧ σj | = |σ′i ∧ σ′j |.

For each i, let ρi be maximal (possibly empty) such that σi = τi
_ρi and σ′i = τ ′i

_ρi for some τi
and τ ′i . Let β = min{wr(τ1), . . . ,wr(τk),wr(τ ′1), . . . ,wr(τ ′k)}.

If every τi, τ
′
i ∈ TTP, then for any β0 < β, the (parameter-free) Σi

β0
-types of σ and σ′

coincide.

Proof. By induction on β0: For β0 = 0, note that quantifier-free types can only specify the
labels of the elements and equality or inequality. The former coincide since, by hypothesis, the
tuples are pairwise similar, and each τi and τ ′i is drawn from TTP and A satisfies Properties P1
and P2. The latter coincide since the various meets have the same lengths.

For β0 > 0, let ψ(x, y) be a Πi
γ-formula for some γ < β0, and suppose A |= ∃xψ(x, σ).

We must show that A |= ∃xψ(x, σ′) — the other direction will then follow by symmetry. So



14 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

fix z ∈ A such that A |= ψ(z, σ), and partition z into z0 ∈ TTP and z1 6∈ TTP. Without loss of
generality, assume that {z0, z1, σ} is downward closed; so {z0, z1, σ} is a tree. We will define
a tree-map f on {z0, z1, σ}, such that A |= ψ(f(z0z1), σ′).

For ζ ∈ {z0, z1, σ}, if ζ ⊆ σi, define f(ζ) = σ′i � |ζ|. Since |σi ∧ σj | = |σ′i ∧ σ′j |, this is well
defined, even if there are multiple i with ζ ⊆ σi. If ζ 6⊆ σi for any i, assume that we have
already defined f(ζ−). There are several cases, based on wr(ζ), rank(ζ) and whether ζ ∈ z1:

(1) If ζ ∈ z0, wr(ζ) ≥ β0 and rank(ζ) is a successor, define f(ζ) = f(ζ−)_(rank(ζ),m, µ)
for some large m (and the unique µ ⊂ TP for which this is a µ-term).

(2) If ζ ∈ z0, wr(ζ) ≥ β0 and rank(ζ) is a limit with term(ζ) = (rank(ζ),m) or term(ζ) =
(rank(ζ),m, (β′,m′)), define f(ζ) = f(ζ−)_(rank(ζ),m, (β′′,m′′), µ) for some β′′ > γ
and large m′′ (and the unique µ ⊂ TP for which this is a µ-term).

(3) If wr(ζ) < β0, define f(ζ) = f(ζ−)_last(ζ).
(4) If ζ ∈ z1, define f(ζ) = f(ζ−)_last(ζ).

We must show that f(ζ) ∈ A. For ζ ∈ σ, this is immediate, since f(ζ) ∈ σ′. To show this
for ζ ∈ z0, we must show that f(ζ) is an acceptable sequence: Then it will be an element
of TTP ⊆ A. The only case to consider is when wr(ζ) < β0 ≤ wr(ζ−).

If ζ− 6⊆ σi for any i, then term(f(ζ−)) = (rank(ζ),m) for m chosen large relative to term(ζ),
or term(f(ζ−)) = (rank(ζ),m, (β′,m′)) for m′ chosen large relative to term(ζ). Either way,
we see that f(ζ) is acceptable.

If ζ− ⊆ σi and β0 > rank(ζ), then rank(ζ−) ≥ wr(ζ−) ≥ β > β0 > rank(ζ), so it
must be that rank(ζ−) is a limit. By definition of β, either term(f(ζ−)) = (rank(ζ−),m)
or term(f(ζ−)) = (rank(ζ−),m, (β′,m′)) for some β′ ≥ β > β0 > rank(ζ), so f(ζ) is accept-
able.

If ζ− ⊆ σi and β0 ≤ rank(ζ), then since wr(ζ) < β0 ≤ wr(ζ−), it must be that term(ζ) =
(rank(ζ),m, (wr(ζ),m′)). By definition of acceptable sequences, since f(ζ−) is acceptable, f(ζ)
is acceptable.

Next, consider ζ ∈ z1. Let ζ = ζ ′_ζ ′′ with ζ ′ maximal such that ζ ′ ∈ z0. Note that by
construction, ζ ′ and f(ζ ′) are similar, so by Property P1, f(ζ) = f(ζ ′)_ζ ′′ ∈ A.

Since f is a length-preserving tree-map, it preserves meets. As mentioned before, ζ and f(ζ)
are similar by construction. Finally, let τ ⊆ ζ be maximal with wr(τ) ≥ β0 and τ ∈ TTP,
and let ζ = τ_ρ. Then f(ζ) = f(τ)_ρ, wr(f(τ)) > γ and f(τ) ∈ TTP. By the inductive
hypothesis, it follows that (z, σ) and (f(z), f(σ)) = (f(z), σ′) have the same Σi

γ-types, and so
A |= ψ(f(z), σ′). �

Proposition 3.15. The structure A has no Σi
β-Scott family for any β < α.

Proof. Fix a parameter set τ for a potential Σi
β-Scott family, and assume without loss of

generality that τ is downward closed in A. Fix any two σ, σ′ ∈ TTP distinct from elements
of τ with |σ1| = |σ2| = 2 and rank(σ1) = rank(σ2) = β + 1. Then the Σi

β-types of σ and σ′

over τ are determined by the parameter-free Σi
β-types of (σ, τ) and (σ′, τ), so by Lemma 3.14

they are the same.
Since Aσ is not isomorphic to Aσ′ , σ and σ′ are not in the same orbit. Thus they witness

the failure of the potential Σi
β-Scott family. �

4. Computable Categoricity

Recall that we fixed a limit α ∈ O∗. Uniformly in α, we build A which is an expansion of a
substructure of T̂ as described in the previous section. The objective is to make A computably
categorical if α ∈ O.



COMPUTABLE CATEGORICITY 15

The construction is a priority construction. We describe the requirements, the outcomes,
and the tree of strategies in Section 4.1; the action of an instance of the Ξ-requirement in
Section 4.2; the outcome of an instance of a Φ`-requirement in Section 4.3; the construction
in Section 4.4; and the verification in Section 4.5.

A global feature of the construction will be a (computably enumerable) bag of labels. At
each stage s, this bag will contain a subset of the temporary labels Lm for m ∈ N. In the
limit, the infinitely many labels possessed by nodes in TTP (recall P2) will be precisely the
labels in the bag. The nodes in A\TTP will have at most finitely many labels (recall P3), and
if σ ∈ A \ TTP but σ− ∈ TTP, σ will have at least one label not in the bag.

We fix an effective enumeration {B`}`∈N of all (partial) computable L-structures. For con-
venience, we assume that if π ∈ B`, then |π| exists and is witnessed by elements with Gödel
number not greater than π.

4.1. The Requirements, Outcomes, and Tree of Strategies. In order to build A, we
satisfy two types of requirements:

Ξ: The structure A satisfies properties P1, P2 and P3.
Φ`: If A and B` are isomorphic, then they are computably isomorphic.

Of course, we only have to ensure that the Φ` requirements are satisfied in the case that α ∈ O.
There is an unusual relationship between these types of requirements that allowed us to

simplify the exposition in the previous section: A node working for the Ξ-requirement needs
to build part of A but has no need for multiple outcomes; a node working for a Φ`-requirement
has a need for multiple outcomes but has no need to build part of A. This allows every node µ
on the tree of strategies TS to be shared between the Ξ-requirement and a Φ`-requirement,
with the former dictating the action and the latter dictating the outcome.4

If µ is a node on the tree of strategies with |µ| = `, then this node will be concerned with
the satisfaction of Φ` and will have finitary and expansionary outcomes. The rough idea is
that µ will have finitary outcome while it waits to see B` match everything that had already
been enumerated into A by the end of the last expansionary stage, and then once it sees
this happen it will have expansionary outcome. In fact, we shall have to use a number of
different expansionary outcomes depending on the level of evidence for the existence of the
isomorphism.

For the sake of satisfying Φ`, µ has a set of outcomes which depends upon the maximum
length of sequences in Tµ. If this maximum length is m then µ has outcomes:

Out(µ) := {mpe∅} ∪ {m−1pek : k ∈ N1} ∪ {m−2pek : k ∈ N2} ∪ · · ·
∪{1pek : k ∈ Nm−1} ∪ {sek : k ∈ Nm} ∪ {fk : k ∈ Nm+1}.

The true outcome will be mpe∅ if A and B` are isomorphic, although the converse will not
necessarily hold. All outcomes of the form npek are referred to as primary expansionary
outcomes, and more specifically as npe outcomes. Outcomes of the form sek are referred
to as secondary expansionary outcomes; outcomes of the form fk are referred to as finitary
outcomes. All of these outcomes are ordered lexicographically according to their right suffix,
but using the reverse ordering on the natural numbers. Thus the leftmost outcome is mpe∅,
while, e.g., m−1pe(5) is to the left of m−2pe(5,1), which is to the left of m−1pe(4), which is to
the left of m−2pe(4,3).

These outcomes may initially look a little complex, but they are really very simple. The way
in which to understand them and their ordering is roughly as follows. We start with the idea

4It might be more natural to devote, say, even levels to nodes which work for Ξ and odd levels to nodes
which work for Φ`-requirements. Doing so, however, would complicate Definition 3.8 as we only want nodes µ
associated with Ξ there.



16 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

that there should be a set of outcomes mpe < m−1pe < · · · < 1pe < se < f, where f will be the
finitary outcome indicating that we are not observing any evidence of an isomorphism between
A and B`, and with the other outcomes corresponding to different levels of evidence for this
isomorphism.5 The outcome mpe indicates the highest level of evidence for the existence of an
isomorphism, and then m−1pe indicates a slightly lower level of evidence, and so on, in a way
which shall be made precise later. The outcome se indicates the lowest level of evidence other
than f. We then have to modify this idea, however, because we want that if an outcome o

is visited, and then an outcome to the left of o is visited, o cannot later be revisited. We
want this because it will simplify our analysis of the interaction between nodes on the tree of
strategies. So rather than µ having outcome m−1pe at some stage, for example, we let k be
the number of times that µ has had outcome mpe∅ and give it outcome m−1pe(k). This means
that whenever µ has outcome mpe∅ we start using what one might think of as a new version
of m−1pe, which is to the left of the old ones. Thus the right suffix does nothing more than
allow us to ensure that nodes on the tree of strategies which have already been visited, are not
visited again once the path has been to the left (so the right suffix can basically be ignored
once this feature of the construction is given).

The tree of strategies TS is the set of finite sequences µ such that, for all n < |µ|, µ(n) ∈
Out(µ � n). It is worth noting that since the root of TS is ∅, it has length 0, unlike the root
of A.

4.2. The Action of the Ξ-Requirement at a Node µ. In Definition 3.10, we defined the
tree Tµ ⊂ T̂. The Ξ-requirement at µ is responsible for the elements of Tµ for which higher
priority requirements are not already responsible.

Definition 4.1. If µ = ∅ then Rµ := Tµ and otherwise Rµ := Tµ \ Tµ− .

Thus Rµ is precisely the set of sequences of µ-terms containing at least one µ-term. These are
the elements of A for which µ is responsible. Note that Rµ is not a tree as it is not downward
closed.

The node µ works, of course, according to the assumption that it lies on the true path. This
means that when µ is visited it assumes that any µ′ which has already been visited cannot be
visited again if it lies to the left of µ or if the path has been to the left of µ′ after it was visited.
As described before [actually not, but to be added], any µ′ gives new temporary labels to all
the elements of A that it is responsible for each time that it is visited, as well as giving these
elements all the labels which have been added to the bag. It also adds to the bag temporary
labels which it gave to elements of A at previous stages (as a matter of fact we put a delay
into this process so that each of the two most recent temporary labels it has given to each of
its elements are not yet added to the bag). Importantly though, this means that, at any point,
the most recent labels which µ′ has given to the elements it is responsible for have not been
added to the bag. So if µ believes that µ′ will never be visited again, then it also believes that
these most recent labels will never be added to the bag of labels. When µ is visited, labels
which have not been added to the bag, but which have been given to some element of A by
some µ′ which is either to the left of µ or such that the path has been to the left of µ′ after it
was visited, are called µ-dead labels.

So the basic picture we have in mind is roughly as follows. With its choice of outcomes,
µ delays the nodes above its expansionary outcomes from rejuvenating their labels (adding
their old temporary labels to the bag and giving new ones to the elements they are responsible

5As for why we require different outcomes for different amounts of evidence, for now we can only say that
it is essential for making A computably categorical. Remark 4.21 identifies exactly where in the verification
these are required.



COMPUTABLE CATEGORICITY 17

for) until it has seen B` match the elements they have added along with the corresponding
labels. Therefore, for the part of A which is built by these nodes, it will not be difficult to
build the computable isomorphism. On the other hand, the elements added by those µ′ to
the left or right, or ⊃ µ but which cannot be visited again, will have µ-dead labels (on some
initial segment anyway). Again then, these will not be a problem as we look to construct
the computable isomorphism, since they will be easily distinguished. The node µ, however,
cannot delay the rejuvenation of labels for those elements in the part of A built by the nodes
⊆ µ, which is Tµ. So µ will not try to work out which of these elements is which. At the end
of the construction the computable isomorphism is built, given the finite amount of necessary
information regarding the image of Tµ. Since these elements are indistinguishable as far as
µ is concerned (beyond, of course, the information given by the backbone of each sequence),
during the construction it only tries to establish where elements of A should be mapped in B`
‘modulo’ Tµ, and this motivates the following definition.

Definition 4.2. Acceptable sequences ρ, ρ′ ∈ T̂ are symmetric with respect to Tµ, denoted
ρ ≡µ ρ′, if there are sequences σ, σ′, τ such that |τ | > 0 and:

• ρ = σ_τ ,
• ρ′ = σ′_τ ,
• σ, σ′ ∈ Tµ,
• τ(0) is not a µ-term, and

• σ is similar to σ′.

Having established the prerequisite terminology, we informally describe the action of the
Ξ-requirement at a node µ. First Ξ enumerates all the elements of Rµ into A, knowing that all
other elements of Tµ were already enumerated by higher priority requirements. Then, Ξ tries to
ensure satisfaction of the property P1 by enumerating new elements into A and copying labels
as necessary. Finally, Ξ performs its label rejuvenation by giving labels to all the elements
in Rµ in such a way that at every single stage they all have different labels ‘modulo Tµ’, and
that they all end up with the same labels after infinitely many rejuvenations. The precise
details are as follows. By a large number, we mean a number which is (strictly) larger than
any m such that a label Lm has previously been given to any element of A. Stages at which µ
is visited are also referred to as µ-stages.

Label Rejuvenation. When we rejuvenate the labels at a set of nodes {σi}i∈I ⊂ A, simultane-
ously we:

(1) Let Lm0 be the second largest temporary label which currently holds of each σi. Enu-
merate Lm0 into the bag of labels.

(2) Take a large numberm and add the temporary label Lm to each σi (that is, make Lm(σi)
hold).

(3) For every label Ln in the bag of labels with n < m0, make Ln(σi) hold of each σi.

The Instructions. At any stage s when µ is visited, the following action is taken.

(C1) If this is the first µ-stage, enumerate the elements of Rµ into A and give them all

the rank and marker labels that they have in T̂ . Add to each element of Rµ two
large temporary labels in such a way that, for any σ, σ′ ∈ Rµ, if last(σ) = last(σ′)
then σ and σ′ have the same temporary labels, and otherwise they do not share any
temporary labels. This ends the action for the construction as a whole at this stage.
In particular, the current path does not extend past µ (although µ is still considered
to have an outcome).

(C2) At every other µ-stage, we look for strings σ, σ′, τ such that:



18 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

(a) σ ∈ Tµ− and σ′ ∈ Rµ,
(b) σ is similar to σ′,
(c) τ(0) is not a µ-term, and

(d) σ_τ ∈ A[s− 1] but σ′_τ 6∈ A[s].
For each such σ, σ′, and τ , we enumerate σ′_τ into A. We add all the labels on σ_τ
to σ′_τ . We say that σ′_τ is copied from σ_τ .

We then rejuvenate the labels for all elements of Rµ in such a way that σ and σ′

are rejuvenated simultaneously if and only if last(σ) = last(σ′).

4.3. The Outcome of the Φ`-Requirement at a Node µ. The aim of the Φ`-requirement
at µ, where ` = |µ|, is to build a computable isomorphism between A and B`. Of course, this
is only possible if A and B` are classically isomorphic. The choice of outcomes will attempt to
prevent A and B` from being classically isomorphic. If this fails, then in the limit the strategy
will have built a computable isomorphism between A and B` (using finitely much nonuniform
information about the image of Tµ).

Let m be the length of the longest strings in Tµ. Whenever µ is visited we form a vector k
as follows. This vector describes the outcomes which µ has had at previous stages. Let k1

be the number of stages at which µ has been visited and has had outcome mpe∅, and let

k1 = (k1). Given ki, if i < m then let ki+1 be the number of times that µ has been visited
and has had outcome m−ipeki . If i = m then let ki+1 be the number of times that µ has

been visited and has had outcome seki . Let ki+1 = ki
_ki+1. Let k = km+1. If A and B` do

not appear isomorphic (in a precise manner described soon), then the outcome is fk. If A
and B` do appear isomorphic, then we assess the amount of evidence towards this fact, and
then decide which of the other outcomes µ should have at this stage.

More formally, the first time the node µ is visited, the outcome is mpe∅. Recall that, as
specified in (C1) above, the stage is then ended without visiting further nodes in TS.

At every other µ-stage, we assess whether E appears to be an edge relation on B` for a tree.
If B`[s] contains more than one x with E(x, x), or contains cycles, the outcome of µ is fk.
Otherwise, let s0 be the last expansionary stage, primary or secondary, i.e., the last µ-stage
at which it did not have finitary outcome. We decide whether A and B` seem isomorphic
depending on the presence or absence of a matching. To obtain a matching, we will give
elements of B` tags for elements of A[s0]\Tµ.6 These tags are described by a (partial) tagging
function

f : A[s0] \ Tµ → B`

mapping ρ to fρ. The construction may redefine fρ (i.e., tags may be moved). The tagging
function f is local to µ, being completely independent of other nodes’ tagging functions, but we
abuse notation and write fρ rather than fµρ [s]. For ρ ∈ A[s0]\Tµ, when we define fρ := π ∈ B`,
we say that we place the ρ-tag on π. When µ is visited, some of the tags will already have
been placed at previous µ-stages. The objective will be to place all the tags which are not
presently on some element of B`, i.e., to make f total on A[s0] \Tµ. It may also be necessary
to make various values fρ undefined. This can be done only if the ρ-tag proves itself to be
wrongly placed (as explained later).

So the basic idea is that f will establish the required isomorphism. Since values fρ may
be redefined, however, how do we ensure that the given isomorphism will be computable?

6Note that tags are distinct from labels. Labels are part of the first-order structure while tags are local to
a strategy, are not part of the first-order structure, and serve only to help determine the outcome. Also, note
that A[s0] refers to the structure built at the end of stage s0.



COMPUTABLE CATEGORICITY 19

Suppose for a moment that g is an isomorphism from A to B`.7 It is useful to concentrate
initially on what will happen to ρ such that ρ /∈ Tµ and ρ− ∈ Tµ. As we have described
already, since µ is not able to delay the rejuvenation of labels given to sequences in Tµ, it
works ‘modulo’ Tµ. More precisely, this means that it aims to place the ρ-tag on g(ρ′) for
some ρ′ ≡µ ρ, in such a way that all the tags for distinct ρ′ ≡µ ρ are placed on different
elements of B`. When the ρ-tag is placed on g(ρ′) for ρ′ ≡µ ρ we say that it is placed correctly.
When the ρ-tag is not placed correctly, it will be placed on π such that π− is not in g(Tµ),
and will eventually be proved to be in the wrong place, and so will be moved. So, if we are
given the g-image of Tµ (which is a finite amount of information), then the first time we see
the ρ-tag placed on π with π− in this image, we know that it is correctly placed, and will
not subsequently move. We then also have to deal with ρ such that ρ− /∈ Tµ. The tag for ρ
of this kind will only be placed above where we have already placed the ρ−-tag, and will not
move unless the tag for an initial segment proves to be wrongly placed. Thus once the tag for
ρ with ρ− ∈ Tµ is correctly placed, the isomorphism above this will be built uniformly in a
computable fashion. In the definition below we assume that E appears to be an edge relation
on B` for a tree, so that π− is defined for π ∈ B`.

Definition 4.3. We define the backbone of π ∈ B` in the obvious way. First, bb(rB`) = 〈(α, 0)〉
(recall Definition 2.8). Suppose we are given bb(π−). If π does not have precisely one rank
label, then bb(π) is undefined. If it has the unique rank label Rβ and β is a successor then
we define bb(π) := bb(π−)_(β). If it has the unique rank label Rβ and β is a not a successor,
then bb(π) is undefined unless it has a unique marker label Mj . If it does have a unique
marker label Mj then we define bb(π) := bb(π−)_(β, j).

The precise instructions at stage s, once µ has decided whether E appears to be an edge
relation on B` for a tree, are as follows. As above, let s0 < s be the last expansionary stage.
First, take each ρ ∈ A[s0] \ Tµ such that fρ was undefined at the beginning of stage s, in the
order in which they were enumerated into A, and perform the following. Let m be largest
such that the temporary label Lm has been given to ρ. Look for an element π ∈ B` which has
no tag on it and such that:

(1) bb(π) = bb(ρ);
(2) π has the temporary label Lm;
(3) (a) if ρ− 6∈ Tµ, then π− has the ρ−-tag on it;

(b) if ρ− ∈ Tµ then no proper initial segment of π is tagged or has a µ-dead label;

If there is such a node, let fρ be the Gödel-least eligible node π.
Having performed these instructions for all the appropriate ρ, we then have to decide which

values fρ should be made undefined. If fρ = π then fρ is made undefined only if we see a proof
that the tag is wrongly placed. This requires that either ρ− ∈ Tµ and one of the following hold:

• some proper initial segment of π receives a new tag, or
• some proper initial segment of π has a µ-dead label;

or ρ− 6∈ Tµ and the ρ−-tag is proved to be wrongly placed. For all ρ, if we see a proof that
the ρ-tag is wrongly placed, we make fρ undefined.

Having performed these instructions, we are then ready to decide whether this should be
an expansionary stage. A matching occurs if fρ is defined for all ρ ∈ A[s0] \ Tµ and, for each
such ρ, the temporary labels of ρ are a subset of the temporary labels of fρ. If we do not have

a matching, the outcome is fk, where k is as defined previously. If there is a matching and the

7In fact A will be rigid, but we never directly prove this because we do not need to. It always suffices just
to consider an arbitrary isomorphism from A to B` (when one exists) and to work with that.



20 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

stage s0 was an npe-stage (for any n ≤ m), then the outcome is sek�m. Otherwise we have to

decide for which n ≤ m (if any) this should be an npe-stage.
For each 1 ≤ n ≤ m, let s1 < s be the last stage which was an n′pe-stage for some n′ ≥ n.

We say s is eligible as an npe-stage if:

(i) n = 1 or there has been an n−1pe-stage > s1, and
(ii) there exists an expansionary stage s2 with s1 < s2 < s such that:

(a) all the tags for ρ ∈ A[s1] \ Tµ with ρ− ∈ Tµ and |ρ| ≤ n+ 1 have been placed at
stage s2 and have not been proved wrong since then, and

(b) for each 1 ≤ j ≤ n, all the elements in B`[s2] of length j except for at most |Tµ � j|-
many, presently have a tag on some (not necessarily proper) initial segment.

In the above Tµ � j is the set of strings in Tµ of length j. If there exists a greatest n ≤ m
such that s is eligible as an npe-stage then the outcome is npek�m−n. Otherwise, the outcome
is sek�m.

This completes the instructions for deciding the outcome of µ.

Now let us informally describe the idea behind npe-stages and why they should exist.
Suppose that g is an isomorphism fromA to B` and that there are infinitely many expansionary
stages for µ. We will later be able to show that no tags are ever placed in g(Tµ). Let s0 be a
stage of the construction after which all elements of Tµ have appeared in A and all elements
of g(Tµ) have appeared in B`. Suppose that ρ /∈ Tµ, ρ− ∈ Tµ and |ρ| = n + 1. Let s1 > s0

be an npe-stage at which ρ has already been enumerated into A. Suppose that s > s1 is an

npe-stage, and let s2 be as in (ii) of the conditions for an npe-stage above. Then at stage s
the tag for ρ must be placed on some g(τ) which is a one element extension of an element
of g(Tµ), since all other elements of B`[s2] of length n + 1 have a tag placed on some proper
initial segment. It cannot then be moved from this position, and since there are infinitely many
expansionary stages this means that Aρ embeds into Aτ (after the ρ-tag is placed on g(τ), the
tags for extensions of ρ all get placed without subsequently being moved, and establish this
embedding). We then wish to show that last(ρ) = last(τ), so that τ ≡µ ρ and the ρ-tag is

correctly placed. In the case that ρ ∈ TTP this will follow from Lemma 3.13 (there is a detail
here which we discuss further below). If ρ /∈ TTP then it has a finite number of temporary
labels given to it, the largest two of which will not be added to the bag. The fact that τ
has either of these labels therefore means that in this case we also have last(ρ) = last(τ). In
summary, at all sufficiently large npe-stages, all tags for ρ with ρ− ∈ Tµ and |ρ| = n+ 1 will
be correctly placed (and will remain so).

Why should there exist infinitely many npe-stages? The basic idea is as follows, and of
course the proper proof will be given in the verification. Suppose inductively that there are
infinitely many n′pe-stages for n′ < n. For now, suppose quite simply that no tags are ever
placed in g(Tµ). As described above this means that, for all ρ /∈ Tµ with ρ− ∈ Tµ and |ρ| ≤ n,
the tag for ρ is eventually correctly placed. Thus there will be no difficulty in satisfying (iib)
of the conditions for an npe-stage. Suppose that there exists a last npe-stage s. It suffices to
show that, for all ρ ∈ A[s] \ Tµ with |ρ| = n + 1 and ρ− ∈ Tµ, the value fρ reaches a limit.
These ρ do not have their labels rejuvenated after stage s, and the two largest temporary
labels given to them are never added to the bag. After some stage the correct positions for
these tags will have all of their finite set of temporary labels. For each of these ρ, any ρ′-tag
placed in one of the correct positions for ρ must satisfy ρ′ ≡µ ρ, since otherwise it cannot have
either of the two largest labels given to ρ. So the correct positions will always be available as
positions for placing the tags after some point. Thus if fρ was moved infinitely often, one of



COMPUTABLE CATEGORICITY 21

the correct positions would eventually become the Gödel least available option, and the ρ-tag
would eventually be correctly placed and not moved, a contradiction.

We promised to say a little bit more about the use of Lemma 3.13 in the argument a couple
of paragraphs above, that the tag for ρ as specified must be placed correctly at all sufficiently
late npe-stages. Roughly this works as follows. Let ρ and τ be as in the discussion above.
Recall that both of ρ− and τ− are in Tµ and that we were considering the case ρ ∈ TTP.
Although Lemma 3.13(a) permits an embedding when last(ρ) is of the form (β, n, (β′, n′), µ′′)
and last(τ) is (β, n, µ′) for the unique µ′ ⊆ µ′′ for which there is a µ′-term (β, n, µ′), if the tag
for ρ is placed on g(τ) for τ of this form at an npe-stage, then the pigeon hole principle tells
us that we must have permanently placed the tag for some τ ′ ≡µ τ on g(σ) for some σ which
has the right backbone, but with last(σ) 6= (β, n, µ′). Given that we have infinitely many
expansionary stages, we get an embedding of Aτ ′ into Aσ, which does now directly contradict
Lemma 3.13. One might then think that it is the existence of infinitely many expansionary
stages which is threatened by the exceptional case in Lemma 3.13(a). If there are only finitely
many expansionary stages, however, any ρ for which we look to place a tag after the last
expansionary stage only receives finitely many labels. In that case ρ and τ as described would
be clearly distinguished by their two largest labels, so that the ρ-tag could not be placed on
g(τ) when last(τ) 6= last(ρ).

In the above, we simply assumed here that no tags are placed in Tµ, and in actual fact
some considerable care has to be taken in proving this. Thus, the actual proof that there are
infinitely many npe-stages will be a little more complicated (and, of course, more detailed)
than what we have just described, but is essentially the same.

4.4. The Construction. The construction proceeds in a typical priority argument fashion.
At stage s, unless the stage is ended prematurely via the instruction (C1), the stage visits
nodes µ ∈ TS (determined by the current outcomes) until a node is reached of length s. When
a node µ ∈ TS is visited, the associated Ξ-requirement acts as described and the associated
Φ`-requirement (where ` := |µ|) dictates the outcome of µ.

4.5. The Verification. It will often be necessary to be precise about exactly when during
some stage of the construction certain instructions are carried out. We therefore subdivide
each stage of the construction into steps. By a step of the construction, we mean the part of
a single stage during which the instructions for one strategy visited at that stage are carried
out. So if n strategies are visited at stage s, then stage s consists of n steps.

Before we prove anything at all about the construction, we actually have to be careful to
ensure that it is well-defined. Consider what happens when µ performs the instructions (C2)

at some stage s. Suppose that we find strings σ, σ′, τ such that σ ∈ Tµ− and σ′ ∈ Rµ, σ is
similar to σ′, such that τ(0) is not a µ-term, and σ_τ ∈ A but σ′_τ 6∈ A. The instructions

tell us that we must enumerate σ′_τ into A and add all the labels on σ_τ to σ′_τ . We
must rule out the possibility, however, that for some other σ′′ the same conditions hold with
respect to σ′ and τ , but that the labels on σ′′_τ are different than those on σ_τ . In this
case the instructions may be ambiguous and will certainly fail to achieve what is required of
them. We shall shortly prove that this potentially problematic situation does not arise. For
now, however, in order to ensure that the construction is well-defined one can simply imagine
that, were this situation to arise, we choose the first σ for which the given conditions hold for
each σ′ and τ .

As an important initial step, we start by showing that a true path TP exists.

Lemma 4.4. There is a (unique) infinite path through TS of nodes which are visited infinitely
often. Indeed, every node visited infinitely often is on this path.



22 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

Proof. We show by induction on n that there is a unique µ of length n which is visited infinitely
often. Clearly this holds for n = 0. Suppose that the result holds for n, and let µ be the
node of length n which is visited infinitely often. If there exists a greatest k such that µ
has infinitely many kpe-stages, then let s be a kpe-stage for µ, which is not the first stage
at which µ is visited and after which µ never has a k′pe-stage for any k′ > k. The node µ′

of length n + 1 visited at stage s is then the unique node of length n + 1 visited infinitely
often. If there exists no such k but µ has infinitely many expansionary stages, then let s be
an se-stage for µ after which there are no k′pe-stages for any k′. The node µ′ of length n+ 1
visited at stage s is the unique node of length n + 1 visited infinitely often. Finally, if there
exists a stage s after which µ always has finitary outcome, then the node µ′ of length n + 1
visited at stage s is the unique node of length n+ 1 visited infinitely often. �

Lemma 4.5. Only acceptable sequences are enumerated into A.

Proof. Sequences are either enumerated via (C1) or (C2). The fact that sequences enumerated
via (C1) are acceptable is immediate from the definition of Rµ. In order to deal with sequences
enumerated via (C2), suppose that σ ∈ Rµ, β := rank(σ), that t is a ν-term, that if β is a limit
then β′ := rank(t) is a successor less than β and that if β is not a limit then β′ = pred(β). It
suffices for us to show that if σ_t is not an acceptable sequence then ν ⊆ µ. In order to see
this let t′ = last(σ) and let µ′ ⊆ µ be such that t′ is a µ′-term. The fact that σ_t is not an
acceptable sequence means that ν is comparable with µ′ and that either:

(i) β is a successor, t′ is of the form (β, n, µ′) and t = (pred(β), n, ν), or;
(ii) β is a limit, t′ is of the form (β, n, (β′, n′), µ′) and t = (β′, n′, ν).

Let i and j be such that β = αi and β′ = αj (according to the enumeration fixed by Con-
vention 3.7). If (i) holds then i, n ≤ |µ′|, and by Convention 3.7 this means that j < |µ′| and
that, since t is a ν-term, ν ⊆ µ′. If (ii) holds then we have that i, j, n, n′ ≤ |µ′|. The fact that
t is a ν-term again gives ν ⊆ µ′, as required. �

Next we work towards showing that P1 is satisfied. The following lemma shows that the
potentially problematic situation concerning ambiguous instructions which we outlined at the
start of the verification cannot arise.

Definition 4.6. At any stage, we say that A is symmetric with respect to µ if, for all ρ ≡µ ρ′,
we have ρ ∈ A iff ρ′ ∈ A and that if either of these strings belong to A then they have the
same labels.

Lemma 4.7. Immediately after any step when µ is visited except the first, A is symmetric
with respect to µ.

Proof. We actually prove the following by induction on the step of the construction, simulta-
neously for all µ: Immediately after any step when µ is visited except the first, A is symmetric
with respect to µ′ for all µ′ ⊆ µ, and after the first step at which µ is visited A is symmetric
with respect to all µ′ ⊂ µ. Note that since there is only one ∅-term, ≡∅ implies equality. So
the result is trivial for µ = ∅. Now suppose |µ| > 0 and that µ is visited at stage s.

Note that any µ′ only enumerates sequences into A which extend elements of Rµ
′
. It follows

that no extensions of elements of Rµ can be enumerated into A by nodes to the left or right
of µ. We wish to show that no µ′ ⊂ µ can enumerate sequences into A extending elements of
Rµ. So suppose that there is a first step at which some µ′ ⊂ µ enumerates a sequence ρ into A
which extends an element of Rµ. This must be because µ′ finds σ, σ′ which are similar and

τ such that σ ∈ Tµ′− , σ′ ∈ Rµ′ , τ(0) is not a µ′-term, σ_τ ∈ A but ρ = σ′_τ /∈ A. Since ρ

extends an element of Rµ, τ = τ0
_τ1 with σ′_τ0 ∈ Rµ, and thus σ_τ0 ∈ Rµ. So σ_τ extends



COMPUTABLE CATEGORICITY 23

an element of Rµ, and since it has already been enumerated into A, by our choice of ρ it must
have been enumerated by a node µ′′ ⊇ µ.

If σ_τ ∈ Rµ
′′
, then σ′_τ ∈ Rµ

′′
. If instead σ_τ was enumerated by µ′′ via (C2), then

there are some σ′′, τ2, τ3 with τ1 = τ2
_τ3, σ′′ ∈ Tµ′′− , σ_τ0

_τ2 ∈ Tµ′′ , σ′′ similar to σ_τ0
_τ2

and τ2(0) not a µ′′-term. But then σ′_τ0
_τ2 ∈ Tµ′′ and by transitivity of similarity, σ′′ is

similar to σ′_τ0
_τ2. In either case, we see that when µ′′ enumerated σ_τ , it would also have

enumerated σ′_τ if this sequence had not already been enumerated into A, a contradiction.
So suppose that µ is visited for the first time at stage s. By the induction hypothesis we

know that, immediately prior to µ acting, A is symmetric with respect to all µ′ ⊂ µ (since any
node terminates the construction for the stage after the first time it is visited, µ− has been

visited at least twice). Now if µ enumerates σ_τ into A, where σ ∈ Tµ′ for some µ′ ⊂ µ and

τ(0) is not a µ′-term, then it also enumerates all sequences σ′_τ such that σ′ ∈ Tµ′ is similar
to σ and gives them the same labels.

Suppose next that this is the second time that µ is visited, and that it was visited first at
stage s′. At stage s′, µ enumerated all elements of Rµ into A, whereupon the construction
for that stage was immediately terminated. So when µ is visited at stage s, we have by the
induction hypothesis that A is symmetric with respect to all µ′ ⊂ µ, and we also know that
no proper extensions of elements of Rµ have been enumerated into A. Thus at stage s, µ
enumerates sequences into A and gives them labels sufficient to ensure that A is symmetric
with respect to µ at the end of the step. We must also ensure that A remains symmetric with

respect to all µ′ ⊂ µ. Suppose that ρ = σ_τ where σ ∈ Tµ′ for some µ′ ⊂ µ and τ(0) is not a

µ′-term. If µ enumerates ρ into A at stage s then it enumerates all σ′_τ such that σ′ ∈ Tµ′

is similar to σ and gives them the same labels. If µ rejuvenates the labels for ρ then ρ ∈ Rµ,

but then so are all σ′_τ such that σ′ ∈ Tµ′ is similar to σ, and all these sequences have their
labels rejuvenated simultaneously.

In the case that µ is visited at stage s, and has been visited at least twice before, we may
argue in a fairly similar way. Let s′ be the greatest stage prior to s at which µ was visited. By
the induction hypothesis we have that at the end of stage s′, A was symmetric with respect to
µ. By the induction hypothesis, we also know that before µ performs any action at stage s, A
is symmetric with respect to all µ′ ⊂ µ. Subsequent to stage s′ and before µ acts at stage s,
no extensions of elements of Rµ can have been enumerated into A. Thus, before µ acts at

stage s, if σ ∈ Rµ and σ′ ∈ Tµ− are similar and τ(0) is not a µ-term, then σ_τ ∈ A implies

σ′_τ ∈ A. If σ′_τ ∈ A but σ_τ /∈ A, then for all σ′′ ∈ Rµ similar to σ, σ′′_τ /∈ A and µ
will enumerate these sequences at stage s and give them all the same labels. If σ_τ ∈ A and
σ′_τ ∈ A prior to µ acting at stage s, we must ensure that neither sequence has had their
labels rejuvenated subsequent to stage s′. Since τ(0) is not a µ-term, this could only happen if

σ′_τ ∈ Rµ′ for some µ′ to the right of µ, but then µ′ must have been visited prior to stage s′

and cannot be visited subsequent to stage s′ since µ is to the left of µ′ and is visited at stage
s′. Finally, the fact that when µ acts at stage s, A remains symmetric with respect to all
µ′ ⊂ µ is argued exactly as for the case that µ is visited for the second time at stage s. �

We isolated an important principle during the course of the proof of Lemma 4.7:

Observation 4.8. Only µ′ ⊇ µ can enumerate sequences extending elements of Rµ. In partic-
ular, this means that when µ enumerates σ′_τ in A via (C2), where τ(0) is not a µ-term,

σ′_τ(0) does not belong to Rµ
′

for any µ′. Thus a simple inspection immediately tells us
which node must be responsible for enumerating a sequence in A. If ρ ∈ Rµ then it can only
be enumerated by µ. Otherwise let σ be the longest initial segment of ρ which belongs to
some Rµ. Then ρ can only be enumerated by µ such that σ ∈ Rµ.



24 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

The following terminology will be useful.

Definition 4.9. We say that ρ is a µ-boundary sequence if ρ /∈ Tµ but ρ− ∈ Tµ. We say
that ρ is pure if it belongs to Rµ for some µ. We say that ρ is broken if it is not pure. If ρ
is pure, let origin(ρ) be the µ such that ρ ∈ Rµ. If ρ is broken, let origin(ρ) be the origin of
the longest pure initial segment of ρ. We say that ρ0 and ρ1 are siblings if there exist ρ and
TS-terms t 6= t′ such that ρ0 = ρ_t and ρ1 = ρ_t′.

So we have observed that ρ is always enumerated by origin(ρ). If ρ is pure then it is
enumerated via (C1), and if is it broken then it is enumerated via (C2).

Lemma 4.10. The structure A is symmetric with respect to TTP.

Proof. Property S1 follows since the action of a node µ ∈ TP the first time it is visited ensures
Rµ ⊆ A.

S2 then follows almost immediately from Lemma 4.7. If σ, σ′ ∈ TTP are similar and
σ_τ(0) /∈ TTP, then let µ be the shortest member of TP such that σ and σ′ both belong
to Tµ. If σ_τ ∈ A then it is only given finitely many labels, so let s be a stage at which µ is
visited and σ_τ has already been enumerated into A and will not be given any more labels
after µ acts at stage s. By Lemma 4.7, at every stage ≥ s at which µ is visited, σ′_τ ∈ A
and has precisely the same finite set of labels. �

The following will complete the properties required for the analysis in Sections 3.3 and 3.4.

Lemma 4.11. The structure A has properties P2 and P3.

Proof. For P2, fix σ ∈ TTP, and let µ ⊂ TP be such that σ ∈ Rµ. Suppose σ receives temporary
label Lm at stage s0 via (2) of Label Rejuvenation. Let s1 < s2 be the next two stages after s0

at which µ is visited. Then at stage s2, Lm is enumerated into the bag.
Conversely, suppose Ln is a label which enters the bag at stage s. Let s0 < s1 < s2 be the

next three stages after s at which µ is visited. Then at stage s0, σ is labeled with Lm for some
m > n. At stage s2, Lm is enumerated into the bag, and Ln is made to hold of σ. So the
temporary labels on σ are precisely the labels in the bag.

For P3, fix σ ∈ A \ TTP. If σ is broken, then it never gains any labels beyond the finitely
many it had when it entered A. If σ is pure, then let µ 6⊂ TP be such that σ ∈ Rµ. Then
the labels on σ are precisely the finitely many labels it had at the end of the final stage at
which µ is visited. �

Computable Categoricity: To demonstrate that A is computably categorical when α ∈ O,
we verify that A is computably isomorphic to B` if the two are isomorphic. Thus, for the
remainder of this section, we assume α ∈ O (and is a limit) and A ∼= B`. We let µ be the
strategy on the true path TP dedicated to building the computable isomorphism, i.e., we let
µ := TP � `. We also let g be an isomorphism from A to B`. Recall that we say the ρ-tag
placed on π is correctly placed if π = g(ρ′) for some ρ′ ≡µ ρ.

Lemma 4.12. If there are infinitely many µ-expansionary stages, and the ρ-tag is not moved
from some point on, then, letting fρ take its final value, Aρ embeds into B`fρ via a computable
embedding which maps ρ to fρ.

Proof. This follows directly from the fact that, given the conditions described in the statement
of the lemma, for all σ ∈ Aρ, fσ is defined at some point after the ρ-tag takes its final value (and
therefore does not move from that point on). Then if E(σ, σ′) for σ, σ′ ∈ Aρ, E(fσ, fσ′) holds
in B` because we do not place a σ′-tag on π ∈ B` unless π− has a σ-tag placed on it. When we
place any σ-tag, we require that the element we place it on has the same rank and marker labels.



COMPUTABLE CATEGORICITY 25

Suppose that a temporary label is given to σ ∈ Aρ at some stage s. Let s′ be a stage after
which the σ-tag is placed and does not move. At the next expansionary stage after max{s, s′},
we must have that fσ also has this temporary label. It is not particularly important, but in
observing that the next expansionary stage suffices here, rather than the one after that, note
that sequences which µ is looking to place tags for in order to have an expansionary stage do
not have their labels rejuvenated while we wait for the next expansionary stage. Therefore it
makes no difference whether the instructions require fσ to have all labels given to σ before we
have a matching, or all labels given to σ by the end of the most recent expansionary stage. �

Next we need a number of small technical lemmas, all of which lead up to the proof of
Lemma 4.19, that there exist infinitely many µ-expansionary stages. The basic idea behind
the proof of Lemma 4.19 is as follows. Suppose there is a last expansionary stage s for µ. We
focus initially on what happens to the tags for µ-boundary sequences ρ ∈ A[s]. These ρ do not
have their labels rejuvenated subsequent to stage s. Firstly, this means that none of the tags
can be placed in g(Tµ) subsequent to stage s, because the two largest temporary labels given
to each of these ρ are never added to the bag, and are therefore never given to any element of
Tµ. Secondly, this means that each value fρ must eventually be defined and come to a limit,
because eventually the correct positions in B` will have all the necessary labels and will be
available to place these tags on.

Once we know that fρ comes to a limit somewhere, we then have to consider what this
limit might be. We argue by induction on ρ that this limit is a correct position for ρ. By
the inductive hypothesis and a pigeon hole argument, every g(σ) for σ a µ-boundary sequence
strictly shorter than ρ must have a tag placed on it, so this limit must be the image of some µ-
boundary sequence. So the limit is either a correct position or a sibling of a correct position.
However, siblings have distinct terms, so will have distinct largest temporary labels. So fρ
settles at a correct position.

Once we know that labels for µ-boundary sequences settle at the correct locations, we can
argue that the remaining labels settle and do so at the correct location: If ρ is a µ-boundary
sequence, and ρ_σ is acceptable, then we argue by induction along |σ|, fρ_σ is eventually
placed at the correct location (and never moves). By the inductive hypothesis, the only
concern is that fρ_σ might be placed at a sibling of the correct location, but since siblings
have distinct largest temporary labels, this cannot be.

So we will eventually have another matching, resulting in another expansionary stage.

Lemma 4.13. If ρ ∈ A \ TTP and ρ− ∈ Tµ, then the two largest temporary labels given to ρ
are never added to the bag.

Proof. If ρ is pure then this is clear. If it is broken (and thus ρ is a µ-boundary sequence),
then the result follows from the following sublemma.

Sublemma 4.14. Suppose ρ is a broken µ′-boundary sequence and s is a µ′-stage such that
ρ is already in A by the end of the µ′-step at stage s. From this point on, until such a stage
as the path is to the left of µ′, the two largest labels on ρ are not added to the bag of labels.

Proof. Let ρ = σ_t ∈ A, so that σ ∈ Tµ′ but ρ /∈ Rµ
′′

for any µ′′. We know that ρ must
be enumerated by origin(ρ) ⊆ µ′ via (C2). When this enumeration is made, let µ0 be the
shortest initial segment of origin(ρ) such that there exists σ′ ∈ Rµ0 which is similar to σ, and
σ′_t has been enumerated into A (so ρ is enumerated by copying σ′_t). If σ′_t is broken,
then µ0 enumerated it by copying some other string σ′′_t already in A. By our action at

(C2), it must be that σ′′ ∈ T
µ−0 and σ′′ similar to σ′. So origin(σ′′) ⊂ µ0, and by transitivity

of similarity, σ′′ is similar to σ, so origin(σ′′) contradicts our choice of µ0 to be shortest. So
σ′_t ∈ Rµ1 for some µ1 ⊇ µ0. If µ1 were comparable with origin(ρ), it would contradict our



26 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

assumption that ρ is broken. So µ1 ⊃ µ0 must be incomparable with origin(ρ). Also, µ1 must
be visited prior to the point at which ρ enters A, but cannot be visited subsequent to this
point until such a stage as the path is to the left of origin(ρ) (and thus µ′). Let s1 be the last
stage at which µ1 is visited prior to stage s. At the end of stage s1, σ′_t has two temporary
labels which are not added to the bag of labels at any stage prior to one at which the path is
to the left of µ′. When origin(ρ) enumerates ρ into A, it gives it these labels. �

Since µ is on the true path by assumption, and origin(ρ) = µ, then the path is never to the
left of µ after the stage at which ρ is enumerated into A. The lemma follows. �

Lemma 4.15. If ρ is broken, then no extension of ρ is enumerated after the step at which ρ
is enumerated.

Proof. The proof is by induction on the step of the construction. So suppose that the result
holds prior to a step z at which µ′ is visited. If µ′ enumerates sequences via (C1), then these
do not extend sequences enumerated via (C2), so suppose that it enumerates sequences via
(C2). If any sequence which µ′ enumerates is to extend a sequence previously enumerated via
(C2), then this previous sequence must also have been enumerated by µ′. So suppose that µ′

previously enumerated ρ = σ′_τ at some step z′ such that σ′ ∈ Rµ′ and τ(0) is not a µ′-term,

and that at step z it enumerates σ′_τ_τ ′. This must be because there exists σ ∈ Tµ′− which
is similar to σ′ with σ_τ_τ ′ ∈ A. By Lemma 4.7, by the end of the step z′, σ_τ had already
been enumerated. We have that σ_τ_τ ′ cannot already have been enumerated, otherwise
σ′_τ_τ ′ would be enumerated at step z′. It must therefore be enumerated at a later point,
but strictly prior to step z, from which it follows by the induction hypothesis that σ_τ ∈ Rµ′′

for some µ′′ which must be to the left or right of µ′. This means that µ′′ cannot have been
visited between steps z′ and z, meaning that no extensions of sequences in Rµ

′′
can have been

enumerated between steps z′ and z, a contradiction. �

Lemma 4.16. Suppose that there is a last µ-expansionary stage s. Then at no point subsequent
to stage s is any tag on an element π ∈ g(Tµ).

Proof. Recall that if ρ is not a µ-boundary sequence, then we do not place fρ until we have
placed fρ− . So if there is such a tag fρ, we may assume ρ is a µ-boundary sequence. Further,

by construction we only seek to place fρ if ρ ∈ A[s], and thus ρ ∈ A \ TTP. By Lemma 4.13
the two largest labels given to ρ are never added to the bag, and are therefore never given to
elements of Tµ. Now if the ρ-tag was already placed on π at stage s, then π has the all the
labels which had been given to ρ by the start of stage s; ρ may have been given a new largest
label at stage s, but whether or not this happened, ρ’s second largest label after stage s was
one of its labels at the start of stage s. If fρ is placed on π subsequent to stage s, then π has
the largest label given to ρ. In either case we see that π has one of the two largest labels given
to ρ, which is a contradiction. �

It is easily observed, by induction on the point at which sequences are enumerated, that at
the end of the step at which any sequence ρ is enumerated into A, all initial segments (other
than ∅) have also been enumerated.

Lemma 4.17. At any point, if siblings ρ0 and ρ1 have both been enumerated into A, then the
two largest temporary labels given to ρ0 have not been given to ρ1.

Proof. The proof is by induction on the point of the construction. Let ρ0 = ρ_t and ρ1 = ρ_t′.
First of all, consider the case that ρ is enumerated by some µ′ via (C2). By Lemma 4.15, this
means that ρ_t and ρ_t′ must also be enumerated via (C2) at this step. Suppose that σ′ is

the longest initial segment of ρ in Rµ
′

and that ρ = σ′_τ . Then µ′ enumerates ρ because it



COMPUTABLE CATEGORICITY 27

sees σ ∈ Tµ′− which is similar to σ′ with σ_τ ∈ A. By Lemma 4.7, by the end of this step,
σ_τ_t and σ_τ_t′ have both been enumerated into A, and by Lemma 4.15 again, must
therefore have already been in A. The induction hypothesis therefore holds for these strings.
By Lemma 4.7, µ′ gives ρ_t precisely the same labels as σ_τ_t and gives ρ_t′ precisely the
same labels as σ_τ_t′.

We are left to consider the case that ρ is pure and is enumerated by µ′, say. If ρ_t and
ρ_t′ are both pure then the result follows immediately, since at any point the two most recent
labels given to either of these sequences have not been added to the bag. Suppose that both
of these sequences are broken. Then they must both be enumerated by µ′. In this case the
result follows from Sublemma 4.14 by considering the last stage at which µ′ enumerates one
of the sequences (or both together). We are therefore left to consider the case that one of
the sequences, ρ_t, say, is broken, while the other is pure. Then at any point, the two most
recent labels given to ρ_t′ have not been added to the bag, and so have not been given to
ρ_t. On the other hand, at the stage at which ρ_t is enumerated, or at any subsequent stage
at which ρ_t′ has its temporary labels rejuvenated, µ′ must be visited and the result then
follows again from Sublemma 4.14. �

Lemma 4.18. If ρ and ρ′ are similar, pure, have the same origin and last(ρ) =last(ρ′), then
at every point s of the construction, Aρ[s] = Aρ′ [s].

Proof. This follows immediately by induction on the point of the construction at which se-
quences are enumerated, or labels rejuvenated. Let µ′ be the common origin of ρ and ρ′. If any
sequence ρ_τ is enumerated into A by some µ′′ via (C1), then µ′′ also enumerates into ρ′_τ
at this step and gives it the same labels. Similarly, if µ′′ rejuvenates the temporary labels for
one of these sequences, then it does so for the other in the same way. If ν enumerates ρ_τ
via (C2) then ν ⊇ µ′. Let σ be the longest initial segment of τ such that ρ_σ ∈ Rν and let
τ = σ_τ ′. Since ρ′_σ is similar to ρ_σ and is in Rν , it follows from Lemma 4.7 that at the

step at which ρ_τ is enumerated, ρ′_τ is also enumerated and is given the same labels. �

Lemma 4.19. There are infinitely many µ-expansionary stages.

Proof. Suppose towards a contradiction, that there is a last µ-expansionary stage s. We
concentrate initially on what happens to tags for µ-boundary sequences ρ ∈ A[s]. We wish to
show first that these tags reach a limit value.
Showing that the tags reach a limit value. We have to prove that for each µ-boundary
sequence ρ ∈ A[s], there is a stage after which fρ is always defined and takes the same
value π. By Lemma 4.13, the two largest labels given to ρ are never added to the bag of
labels, so that subsequent to stage s the tag for ρ can only ever be on π which is g(ρ′) for ρ′

with last(ρ) = last(ρ′) (by the argument in the proof of Lemma 4.16, it does not matter that
this tag may have been placed on π before stage s); by definition of how we place tags, ρ′

must be similar to ρ. Now consider all of the π on which the tag for ρ would be correctly
placed, i.e., π ∈ B` such that π = g(τ) for some τ ≡µ ρ. By Lemma 4.16, if a tag for any ρ′

is placed on such π then ρ′ must be a µ-boundary sequence. Thus by the above argument,
reversing ρ and ρ′, we see that last(ρ′) = last(ρ), and so ρ′ ≡µ ρ. There are only finitely many
ρ′ ≡µ ρ, k-many, say. This means that there are k-many positions in B` which are correct for
these k-many tags and which, subsequent to stage s, can only be tagged with these k-many
tags. The sequences ρ′ ≡µ ρ are only given a finite number of labels during the construction,
and so there is a stage after which the g-images of all of these sequences together with their
labels have appeared in B`. Therefore, after a certain stage, there is always some position
g(ρ′) with ρ′ ≡µ ρ which, by Lemma 4.10, has all the labels given to ρ, and on which we may
place the tag for ρ. This suffices to show that there is not a stage after which fρ is always



28 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

undefined. Now suppose that fρ becomes undefined infinitely many times. Note that if the
tag for ρ is placed on π′ and then becomes undefined, it can never be placed on π′ again, and
that if the tag is correctly placed then, by Lemma 4.16, fρ will never subsequently become
undefined. Therefore, after some point, a correct position for the tag will be the Gödel least
available option, and we will therefore place the tag for ρ correctly. This gives the required
contradiction.
Showing that the tags reach an appropriate limit value. So, for each µ-boundary
sequence ρ ∈ A[s], there is a stage after which fρ is always defined and takes the same
value π. Furthermore, π = g(ρ′) for some ρ′ with last(ρ′) = last(ρ) and ρ′ similar to ρ. We
show, by induction on |ρ|, that ρ′ ≡µ ρ.

Suppose first that ρ′ is not a µ-boundary sequence. By Lemma 4.16, ρ′ 6∈ g(Tµ), so there
exists a unique τ ⊂ ρ′ which is a µ-boundary sequence. By the inductive hypothesis, for every
τ ′ ≡µ τ , the limit value of fτ ′ is g(τ ′′) for some τ ′′ ≡µ τ . Since there are only finitely many of
these, by the pigeon hole principle there must be some τ ′ ≡µ τ for which the limit value of fτ ′
is g(τ). But when this tag is placed on g(τ), it will prove that the fρ tag is wrongly placed
on π, contrary to our assumption that π is the limit value of fρ. So it must be that ρ′ is a
µ-boundary sequence. Since ρ′ is similar to ρ and last(ρ′) = last(ρ), it follows that ρ′ ≡µ ρ.

Since being an acceptable sequence is a local property, if ρ_τ is acceptable and ρ ≡µ ρ′,
then ρ′_τ is acceptable, and in fact ρ_τ ≡µ ρ′_τ . By Lemma 4.7, it follows that for any τ ,
if ρ_τ ∈ A, then ρ′_τ ∈ A and has the same labels.
Dealing with non-boundary sequences. So far we have been able to observe that for
µ-boundary sequences ρ ∈ A[s], fρ takes a final value g(ρ′) such that ρ′ ≡µ ρ. Now we wish to
show that after stage s, for each ρ of this kind and each τ such that ρ_τ ∈ A, subsequent to
the point at which fρ = g(ρ′), the tag for ρ_τ is only ever placed on g(ρ′_τ) and is eventually
placed here. The proof is by induction on |τ |. Suppose that |τ | > 0 and the result holds for
τ−. We have shown that ρ′_τ ∈ A and has the same labels as ρ_τ . Note that the labels on
ρ_τ are not updated subsequent to stage s. Let t = last(τ). By Lemma 4.17 the two largest
labels given to ρ_τ cannot ever be given to any ρ′_τ−_t′ for t′ 6= t. Thus, after stage s, for
any t′ (with t′ possibly equal to t), the tag for ρ_τ−_t′ can only be placed on g(ρ′_τ−_t′)
once the tag for ρ_τ− has taken its final position, and will eventually be placed here.

The reader may worry that the tag for ρ_τ might have been placed by stage s, but the
same argument as in the proof of Lemma 4.16 shows that this is not a concern: If the tag
for ρ_τ were placed on ρ′_τ ′ by stage s, then since s was expansionary, all labels which ρ_τ
had at stage s are present on ρ′_τ ′. At least one of ρ_τ ’s two largest labels was present at
stage s, so by Lemma 4.17, it must be that τ ′ = τ .

All of this suffices to show that we do eventually get a matching, which gives the required
contradiction. �

Let m be the longest length of any ρ ∈ Tµ. We outlined at the end of Section 4.3 the basic
idea behind the proof that, for each k with 1 ≤ k ≤ m, there are infinitely many kpe-stages
and that all tags are eventually correctly placed. What follows is essentially the same proof,
but modified to deal with the fact that as we do the induction on k, we also have to prove
that tags are not placed in g(Tµ).

Lemma 4.20. Let m be the longest length of any ρ ∈ Tµ. For each k with 1 ≤ k ≤ m:

(1) There are infinitely many kpe-stages.
(2) No tag is ever placed on an element of g(Tµ � k).
(3) For all µ-boundary sequences ρ with |ρ| ≤ k + 1, the ρ-tag is eventually permanently

correctly placed and is never placed in g(Tµ), unless possibly last(ρ) is of the form
(β, n, (β′, n′), µ′) and the ρ-tag is placed in g(Tµ).



COMPUTABLE CATEGORICITY 29

Thus, for all µ-boundary sequences ρ, the ρ-tag is eventually correctly placed (and the possibility
allowed in (3) cannot actually occur).

Proof. The proof is by induction on k.
The base case. First we deal with the case k = 1. It is clear that no tag is ever placed on
the single element of B` of length 1, since we do not look to place tags for ρ of this length.
When any tag for ρ of length 2 is placed it cannot subsequently be moved. So each fρ for ρ
of length 2 reaches a final value, and there are infinitely many 1pe-stages. Let the final value
fρ be g(ρ′). First suppose that ρ ∈ TTP. By Lemma 4.12, Aρ embeds into Aρ′ which means

that ρ′ ∈ TTP, since otherwise ρ′ would have only finitely many labels. Now since Aρ embeds

into Aρ′ , rank(ρ) is a successor and both of ρ and ρ′ are in TTP, it follows from Lemma 3.13

that term(ρ) = term(ρ′). Next suppose that ρ /∈ TTP. In this case ρ only receives finitely
many labels, and so it follows from Lemma 4.17 and the fact that there are infinitely many
expansionary stages that ρ = ρ′.
Understanding the situation given by the induction hypothesis. Suppose the result
holds for all j < k (and that 1 < k ≤ m). So no tag is ever placed in g(Tµ � j) for j < k,
and all tags for ρ with ρ− ∈ Tµ � j such that j < k are eventually placed correctly, except
perhaps when |ρ| = k, last(ρ) is of the form (β, n, (β′, n′), µ′′) and the ρ-tag is placed in g(Tµ).
Suppose the latter possibility occurs. Note that the ρ-tag is not moved once it is placed in
g(Tµ). Then ρ ∈ TTP since otherwise, by Lemma 4.13, the last two temporary labels given to
ρ are never added to the bag of labels, and so are never given to any element of Tµ (again
contradicting the fact that there are infinitely many expansionary stages). By Lemmas 4.12
and 3.13 the only possibility is that the tag for ρ is placed on π = g(σ), for some σ ∈ Tµ

which is similar to ρ with term(σ) = (β, n).
Suppose |ρ| = k is a boundary sequence, and let Λ = {ρ′ : ρ′ ≡µ ρ}. Since |Λ| is finite, for

every ρ′ ∈ Λ with the ρ′-tag not (permanently) correctly placed, there is a ρ′′ ∈ Λ such that
no tag is (permanently) correctly placed on g(ρ′′). By the inductive hypothesis, it must be
that fρ′ ∈ g(Tµ) and g(ρ′′) is not tagged at all (since g(ρ′′) 6∈ g(Tµ), the inductive hypothesis
tells us that any permanent tag on g(ρ′′) is correctly placed). We can therefore fix an injective
function h such that for σ ∈ Tµ, h(σ) = σ unless a tag for some ρ is placed on g(σ), in
which case h(σ) ≡µ ρ and no tag is ever placed on gh(σ). For any σ ∈ Tµ, by the inductive
hypothesis no proper initial segment of gh(σ) is ever tagged. Then gh(Tµ � k) is the set of all
elements of B` of length k which do not receive a tag on any initial segment. It follows that
there will be no difficulty in satisfying clause (iib) in the conditions for a kpe-stage. Note also
that for any σ ∈ Tµ, h(σ) ∈ TTP: If h(σ) = σ, this is immediate; if h(σ) 6= σ, h(σ) ≡µ ρ for

some ρ with the ρ-tag misplaced, and by the earlier argument, such ρ are in TTP. The point
of all of this is to establish a clear picture of the situation we are working with as we prove
there are infinitely many kpe-stages.
Proving (1) for the induction step. Suppose towards a contradiction, that there is a
last stage s0 which is a jpe-stage for some j ≥ k (note that for m ≥ j ≥ k the existence of
infinitely many jpe-stages implies the existence of infinitely many kpe-stages). We observed
that for each 1 ≤ j ≤ k, all the elements in B` of length j, except for |Tµ � j|-many, eventually
have a tag permanently placed on some initial segment. Given the induction hypothesis, it
therefore suffices to show that for each µ-boundary sequence ρ ∈ A[s0] with |ρ| = k + 1, the
value fρ reaches a limit. Suppose that ρ is of this form, and consider the set of all τ ≡µ ρ.
We extend h, as given above, to these sequences by defining h(τ) = h(τ−)_last(τ). Note
that h(τ−) is necessarily similar to τ−. Let Λ be the set of all values h(τ) such that τ ≡µ ρ.
By Lemma 4.10, all sequences h(τ) belong to A and have the same finite set of labels as ρ.
For no element of g(Λ) is any tag ever placed on a proper initial segment. Now if any tag is



30 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

ever on an element of g(Λ) subsequent to stage s0, then by Lemma 4.17 this must be a tag
for some τ ≡µ ρ. Once a stage is reached at which all elements of g(Λ) have appeared in B`
together with their finite set of labels, the positions in g(Λ) will be available as positions for
placing the tags for τ ≡µ ρ. If τ ≡µ ρ and fτ does not reach a limit, then it will eventually
be placed in g(Λ) and never subsequently moved, a contradiction. This proves (1) for the
induction step.
Proving (2) for the induction step. This is the fiddliest case. In order to help with
readability we shall conform to a certain convention as regards the use of variables as we
prove this case. We shall use the variable σ (by which we mean also σ′ and σ′′) for sequences
of length k, and we shall use the variables τ and ρ for sequences of length k + 1. Note that it
suffices to prove this for µ-boundary sequences.

Now suppose σ′ is a µ-boundary sequence with |σ′| = k and that the σ′-tag is placed on
π ∈ g(Tµ). As we have discussed previously, it must be the case that σ′ ∈ TTP and last(σ′)
is of the form (β, n, (β′, n′), µ′′). Further, π must be g(σ) for some σ ∈ Tµ similar to σ′ with
term(σ) = (β, n). Since σ′ is a µ-boundary sequence, µ′′ ⊃ µ. Since σ ∈ Tµ, it must be that
(β′, n′, µ′′) is a µ′′-term. Let ρ be σ_(β′, n′, µ′′). We partition the set of all ρ′ ≡µ ρ into three
parts, depending on which tag (if any) is placed on g(ρ′−).

Let Λ0 be the set of ρ′ ≡µ ρ such that g(ρ′−) is tagged with fσ′′ for some σ′′ with last(σ′′) =
(β, n, (β′, n′), µ′′). Note that ρ ∈ Λ0. Let Λ1 be the set of ρ′ ≡µ ρ such that g(ρ′−) is tagged
with fσ′′ for some σ′′ with last(σ′′) 6= (β, n, (β′, n′), µ′′). Let Λ2 be the set of ρ′ ≡µ ρ which do
not have any tag placed on g(ρ′−). Finally, let Λ−0 be the set of all ρ′− for ρ′ ∈ Λ0, and let Λ−

be the set of all ρ′− for ρ′ ≡µ ρ. We extend h to ρ′ ≡µ ρ as before: h(ρ′) = h(ρ′−)_last(ρ′).
Now let s0 be a kpe-stage large enough that all elements of gh(Tµ � k) (and so also their

initial segments) have appeared in B`, and ρ has already been enumerated into A by stage s0.
We claim that at any kpe-stage s1 > s0, every ρ′-tag such that ρ′ ≡µ ρ must be placed in
gh(Λ1) or gh(Λ2). Since |Λ0| > 0 and two tags cannot be placed on the same element of B` at
the same time, this gives the required contradiction.

In order to see the claim, first let s2 < s1 be as in the definition of s1 being eligible as a kpe-
stage. Then with at most |Tµ � k|-many exceptions, for any ζ of length k with g(ζ) ∈ B`[s2],
g(ζ) has a tag placed on an initial segment by stage s1. Since g and h are injective, and the
elements of gh(Tµ � k) never receive such tags, it follows that g(ζ) has a tag placed on an
initial segment by stage s1 unless ζ ∈ h(Tµ � k). Since the elements of gh(Tµ � k) never
receive tags on initial segments, if g(ζ) ∈ B`[s] of length k does not have a tag placed on an
initial segment at stage s1, it will never have a tag placed on an initial segment.

Next, suppose that the tag for ρ′ ≡µ ρ is placed on g(τ) at stage s1. By definition of s1

being eligible as a kpe-stage, τ ∈ B`[s2], and thus τ− ∈ B`[s2]. Since ρ′ is a µ-boundary
sequence there cannot be a tag placed on an initial segment of g(τ−) at stage s1. It follows
that τ− ∈ h(Tµ � k) and g(τ) never has a tag placed on a proper initial segment, and
thus the tag for ρ′ will never be moved. Let τ− = h(σ′′′). Since h preserves backbones,
bb(σ′′′) = bb(τ−) = bb(ρ′−) = bb(σ). Let ρ′′ = σ′′′_(β′, n′, µ′′). Then ρ′′ ≡µ ρ and ρ′′

demonstrates that τ− ∈ h(Λ−).
Since the ρ′ tag is never moved, by Lemmas 3.13 and 4.12 we have last(τ) = last(ρ′).

Now suppose σ′′′ ∈ Λ−0 . Then by definition of h, last(h(σ′′′)) = (β, n, (β′, n′), µ′′). But then
τ = τ−−_(β, n, (β′, n′), µ′′)_(β′, n′, µ′′), which is not an acceptable sequence. So it must be
that σ′′ 6∈ Λ−0 , and thus τ 6∈ h(Λ0), as claimed.
Proving (3) for the induction step. Let s0 be large enough that g(Tµ) ⊆ B`[s0]. Suppose
that ρ is a µ-boundary sequence with |ρ| = k + 1. Let s1 > s0 be a kpe-stage at which ρ has
already been enumerated into A. If last(ρ) is of the form (β, n, (β′, n′), µ′) then let µ′′ be the
unique initial segment of µ′ such that there is a µ′′-term (β, n, µ′′), let ρ′ = ρ−_(β, n, µ′′) and



COMPUTABLE CATEGORICITY 31

if ρ′ /∈ Tµ then suppose we have already shown the result for all τ ≡µ ρ′ and let s2 > s1 be
large enough such that all tags for τ ≡µ ρ′ have been correctly placed by stage s2. Otherwise
let s2 = s1.

By the same argument as in (2), if fρ is placed on g(σ), then σ− ∈ gh(Tµ � k). By (2),
h(Tµ � k) = Tµ � k, so the tag for ρ must be placed on a one-element extension of an element
of g(Tµ). If ρ /∈ TTP then it follows from Lemma 4.17 that it is correctly placed, so suppose
ρ ∈ TTP. If last(ρ) is not of the form (β, n, (β′, n′), µ′) then it follows from the fact that the
tag will never be moved, and from Lemmas 3.13 and 4.12, that it is correctly placed. If last(ρ)
is of the form (β, n, (β′, n′), µ′) then it follows in the same way that the tag is either correctly
placed, or placed on π := g(τ) for some τ with τ− ∈ Tµ and last(τ) = (β, n, µ′′). Unless
τ ∈ Tµ, however, the latter possibility cannot hold since tags for all τ ≡µ ρ′ have already been
placed correctly, so that one of these tags is placed on π. �

Remark 4.21. In the previous Lemma, the proof of the base case relied on an application of
Lemma 4.12, which we can only apply once we know there are infinitely many µ-expansionary
stages. This is why it is important to have a µ-expansionary outcome of lower priority than
the 1pe-outcomes, i.e. the se-outcomes.

Also, when proving (1) for the induction step it was important that for all ρ ∈ A[s0], the
labels for ρ are not rejuvenated before a kpe-stage. This is why it is important to different
µ-outcomes for kpe-stages and k−1pe-stages.

Lemma 4.22. The presentations A and B` are computably isomorphic.

Proof. Note first that, for ρ ∈ A\Tµ, if ρ ≡µ ρ′ then Aρ is isomorphic to Aρ′ . If ρ /∈ TTP then
this follows from Lemma 4.10, and otherwise it follows from Lemma 4.18. The computable
isomorphism is constructed as follows. We start with the finite amount of nonuniform infor-
mation which is g restricted to Tµ. For each ρ ∈ A \ Tµ with ρ− ∈ Tµ, let t := last(ρ). Run
the construction and wait for a stage at which the ρ-tag is placed on π with π− ∈ g(Tµ),
π− = g(σ) say. Then map σ_t to π, and whenever a tag for ρ_τ is placed on π′ subsequent
to this, map σ_t_τ to π′. �

5. Π1
1-Completeness

It is not hard to see that the index set Icc of the computable categorical structures is Π1
1:

A computable structure Me is computably categorical if and only if for all i ∈ ω and for all
f : ω → ω, if f is an isomorphism Me → Mi, then there exists a computable isomorphism
Me →Mi. Notice that the existence of a computable isomorphism is just Σ0

3.
In this section, we show that the index set is in fact Π1

1-hard.

Lemma 5.1. Fix α ∈ O∗ \ O. Then Aα is not computably categorical.

Proof. This is merely a repetition of the proof sketched in Section 3.4. Fix TP-terms t0 and t1
with term(t0) = (β, n) and term(t1) = (β,m) for a successor β ∈ O∗ \ O and n 6= m. Let
σ0 = 〈(α, 0, ∅), t0)〉 and σ1 = 〈(α, 0, ∅), t1)〉. Let A[σ0/σ1] =

(
(A \ Aσ0)× {0}

)
∪
(
Aσ1 × {1}

)
,

with the induced relations and also
(
(α, 0, ∅), 0

)
E(σ1, 1) — so A[σ0/σ1] is made from A by

replacing Aσ0 with a second copy of Aσ1 . By Lemma 3.13, Aσ0 ∼= Aσ1 , so A ∼= A[σ0/σ1].
However, suppose f : A → A[σ0/σ1] were an isomorphism, and consider f(σ0). Since f

must preserve the edge relation, height labels and temporary labels, either f(σ0) = (σ1, 1)
or f(σ0) = (σ′, 0) for some σ′ ∈ TTP with |σ′| = 2 and term(σ′) = (β, n′) for some n′ 6= n.
So f would compute an isomorphism between Aσ0 and either Aσ1 or Aσ′ , as appropriate. By
Lemma 3.13, f cannot be computable (indeed, cannot be hyperarithmetical). �

Theorem 5.2. The index set Icc is Π1
1-complete.



32 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

Proof. Fixing a Π1
1-set S, we need to build a computable sequence of structures {Cn}n∈N such

that Cn is computably categorical if and only if n ∈ S. By [FS62], there is a computable
sequence {αn}n∈N of limit elements of O∗ such that αn ∈ O if and only if n ∈ S. Let
Cn := Aαn . Since our construction was uniform in α, {Cn}n∈N is a computable sequence.

By Lemmas 4.22 and 5.1, Cn is computably categorical if and only if n ∈ S, so this sequence
suffices. �

6. Remarks and Open Questions

Despite having established Theorem 1 and Theorem 2, many important questions remain.
For example, the latter requires a different computably categorical structure Aα for varying α.
It is natural to ask whether there is a computably categorical structure that is not relatively
∆0
α-categorical for any computable ordinal α. This is known to be equivalent to the failure of

relative hyperarithmetic categoricity.

Question 6.1. Is there a computably categorical structure that is not relatively hyperarith-
metically categorical?

We note that our structure Aα is easily seen to be relatively ∆0
α-categorical.

Soskov [Sos96] showed that an external relation R on a computable structure S is relatively
intrinsically hyperarithmetical (i.e. RA is hyperarithmetic on the diagram of A for every copy
A of S) if and only if it is intrinsically hyperarithmetical (i.e. RA is hyperarithmetic for every
computable copy A of S). Our work yields and interesting corollary that is in stark contrast
with Soskov’s result.

Corollary 6.2. For every computable ordinal α, there is a intrinsically computable relation R
on a computable structure S that is not relatively intrinsically ∆0

α.

Proof. Fixing α, let S be the Lα ∪ {C1,C2}-structure consisting of two disjoint copies of Aα,
where the unary relation C1 holds of one disjoint copy, and the unary relation C2 holds of
the other disjoint copy. Let R be the binary relation holding of the graph of the (unique)
isomorphism between one disjoint copy and the other disjoint copy.

Then R is intrinsically computable as S was computably categorical. As S was not rela-
tively ∆0

α-categorical, there is a presentation B of S not isomorphic to an (arbitrary) fixed
computable presentation A of S via any ∆0

α(B)-computable isomorphism. Then the relation R
is not ∆0

α(B)-computable for the presentation of S consisting of the disjoint copies A and B.
Hence, the relation R is not relatively intrinsically ∆0

α-computable. �

We end with the following

Question 6.3. If any two hyperarithmetic presentations A and B of a computable structure S
are hyperarithmetically isomorphic, is S relatively hyperarithmetically categorical?

References

[AK00] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of
Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
2000.

[Ash87] C. J. Ash. Categoricity in hyperarithmetical degrees. Ann. Pure Appl. Logic, 34(1):1–14, 1987.
[CFG+09] John Chisholm, Ekaterina B. Fokina, Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight,

and Sara Quinn. Intrinsic bounds on complexity and definability at limit levels. J. Symbolic Logic,
74(3):1047–1060, 2009.

[CKL08] Barbara F. Csima, Bakhadyr Khoussainov, and Jiamou Liu. Computable categoricity of graphs with
finite components. In Logic and theory of algorithms, volume 5028 of Lecture Notes in Comput. Sci.,
pages 139–148. Springer, Berlin, 2008.

[Deh11] Max Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71(1):116–144, 1911.



COMPUTABLE CATEGORICITY 33

[DHK+07] Rodney G. Downey, Denis R. Hirschfeldt, Asher M. Kach, Steffen Lempp, Joseph R. Mileti, and
Antonio Montalbán. Subspaces of computable vector spaces. J. Algebra, 314(2):888–894, 2007.

[DKK03] R. Douni, D. Khirshvel′d, and B. Khusainov. Uniformity in the theory of computable structures.
Algebra Logika, 42(5):566–593, 637, 2003.

[DKLTed] Rodney G. Downey, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky. Computable cate-
goricity versus relative computable categoricity. Fund. Math., submitted.

[DM08] Rod Downey and Antonio Montalbán. The isomorphism problem for torsion-free abelian groups is
analytic complete. J. Algebra, 320(6):2291–2300, 2008.

[FS56] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans. Roy. Soc.
London. Ser. A., 248:407–432, 1956.

[FS62] S. Feferman and C. Spector. Incompleteness along paths in progressions of theories. J. Symbolic
Logic, 27:383–390, 1962.

[GD80] S. S. Gončarov and V. D. Dzgoev. Autostability of models. Algebra i Logika, 19(1):45–58, 132, 1980.
[GHK+05] Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller, and Reed

Solomon. Enumerations in computable structure theory. Ann. Pure Appl. Logic, 136(3):219–246,
2005.

[GLS03] Sergey S. Goncharov, Steffen Lempp, and Reed Solomon. The computable dimension of ordered
abelian groups. Adv. Math., 175(1):102–143, 2003.

[Gon75] S. S. Gončarov. Selfstability, and computable families of constructivizations. Algebra i Logika,
14(6):647–680, 727, 1975.

[Gon77] S. S. Gončarov. The number of nonautoequivalent constructivizations. Algebra i Logika, 16(3):257–
282, 377, 1977.

[Gon80] Sergey S. Goncharov. Autostability of models and abelian groups. Algebra i Logika, 19(1):23–44,
132, 1980.

[Her26] Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math.
Ann., 95(1):736–788, 1926.

[LMMS05] Steffen Lempp, Charles McCoy, Russell Miller, and Reed Solomon. Computable categoricity of trees
of finite height. J. Symbolic Logic, 70(1):151–215, 2005.

[LR78] Peter E. La Roche. Contributions to Recursive Algebra. ProQuest LLC, Ann Arbor, MI, 1978. Thesis
(Ph.D.)–Cornell University.

[Mal61] Anatolii I. Mal’cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
[Mal62] Anatolii I. Mal’cev. On recursive Abelian groups. Dokl. Akad. Nauk SSSR, 146:1009–1012, 1962.
[MSar] Russell Miller and Hans Schoutens. Computably categorical fields via fermat’s last theorem. Com-

putability, to appear.
[Nur74] Abys T. Nurtazin. Computable classes and algebraic criteria of autostability. PhD thesis, Math.

Inst. SB USSRAS, Novosibirsk, 1974.
[Rab60] Michael O. Rabin. Computable algebra, general theory and theory of computable fields. Trans.

Amer. Math. Soc., 95:341–360, 1960.
[Smi81] Rick L. Smith. Two theorems on autostability in p-groups. In Logic Year 1979–80 (Proc. Seminars

and Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes
in Math., pages 302–311. Springer, Berlin, 1981.

[Soa87] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated sets.

[Sos96] Ivan N. Soskov. Intrinsically hyperarithmetical sets. Math. Logic Quart., 42(4):469–480, 1996.
[Tur36] Alan M. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc.

London Math. Soc., S2-42(1):230, 1936.
[vdW30] Bartel L. van der Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen. Math. Ann.,

102(1):738–739, 1930.
[Whi03] Walker M. White. On the complexity of categoricity in computable structures. Math. Log. Q.,

49(6):603–614, 2003.



34 DOWNEY, KACH, LEMPP, LEWIS, MONTALBÁN, AND TURETSKY

Department of Mathematics, Statistics, and Operations Research, Victoria University of
Wellington, P.O. Box 600, Wellington, NEW ZEALAND

E-mail address: rod.downey@msor.vuw.ac.nz

URL: homepages.msor.vuw.ac.nz/∼downey

Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL
60637, USA

E-mail address: kach@math.uchicago.edu

URL: www.math.uchicago.edu/∼kach

Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706,
USA

E-mail address: lempp@math.wisc.edu

URL: www.math.wisc.edu/∼lempp

Pure Mathematics, University of Leeds, ENGLAND, LS2 9JT
E-mail address: aemlewis@aemlewis.co.uk

URL: aemlewis.co.uk

Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL
60637, USA

E-mail address: antonio@math.uchicago.edu

URL: www.math.uchicago.edu/∼antonio

Kurt Gödel Research Center, Währinger Straße 25, 1090 Wien, AUSTRIA
E-mail address: turetsd4@univie.ac.at

URL: http://tinyurl.com/dturetsky

http://homepages.msor.vuw.ac.nz/~downey
http://www.math.uchicago.edu/~kach
http://www.math.wisc.edu/~lempp
http://aemlewis.co.uk/
http://www.math.uchicago.edu/~antonio/index.html
http://tinyurl.com/dturetsky

	1. Introduction
	2. Background and Notation
	2.1. Prerequisite Terminology and Results
	2.2. Kleene's O and Feferman and Spector's O*
	2.3. Computably Enumerable Relations
	2.4. Notation

	3. The Trees
	3.1. The Basic Trees
	3.2. The Expanded Trees T-hat
	3.3. Symmetry with Respect to TP
	3.4. Relative Delta0alpha-Categoricity

	4. Computable Categoricity
	4.1. The Requirements, Outcomes, and Tree of Strategies
	4.2. The Action of the Xi-Requirement at a Node mu
	4.3. The Outcome of the Phil-Requirement at a Node mu
	4.4. The Construction
	4.5. The Verification

	5. Pi11-Completeness
	6. Remarks and Open Questions
	References



