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Abstract 
Shifting and shedding power demand can be cost-effective techniques for grid operators to function 

reliably and for end users to earn compensation. Grid operators reimburse customers in 

proportion to the quantity of load shed. Simple data-driven methods are used to quantify this shed, 

which is the difference between a measured load during the event and modeled “baseline” that 

would have occurred in absence of the event. These methods have evolved over the years and in 

many cases have been integrated with building physics, to make them a hybrid between physics 

based and empirical models. However, there is no comprehensive analysis that provides 

guidance to building operators, grid operators and researchers in selecting appropriate models 

based on their specific needs and available data. This work aims to fill this gap by critically 

assessing the performance of baseline models put forward from the year 2000 through 2023. The 

literature reviewed includes reports generated by grid operators, reports from national laboratories 

and academic journal articles. 

 
The work outlines modeling features like the inputs, time-period for modeling, estimation method, 

adjustments to fine tune the predictions and metrics to evaluate the performance. A 

comprehensive list of 50 models has been provided. For each model, the study explores the 

applicability of the model to weather sensitive buildings, variability in the building profile, timing of 

the event, and whether the building reduces energy consumption before an event. The work 

identifies the situations in which a particular model works and draws lessons based on evidence 

of performance. Finally, recommendations to aid decision making in model selection are given. 

 
 

Keywords 
Demand flexibility, demand response, baseline load profile, quantifying load shed, building-grid 
integration, grid-interactive efficient buildings. 
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Nomenclature 

Abbreviations Notations 
AC air conditioner 
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning 

Engineers 
C&I commercial and industrial consumers 
CA-ISO California ISO  
CBL consumer or custom baseline 
CDD cooling degree day 
CMTA California Manufacturers and Technology Association 
CP change point 
DADRP day-ahead demand response program 
DOW day of the week 
DRP demand response program 
ERCOT Electric Reliability Council of Texas 
GLD guaranteed load drop 
HDD heating degree day 
HLV high load variability  
HVAC heating, ventilation, and air conditioning  
ISO independent system operator 
ISO-NE ISO New England Inc.  
LLV low load variability  
LV load variability  
medRTE median of the relative hourly error 
MLR multiple linear regression 
MPE mean percent error  
NMBE normalized mean bias error  
NWS non-weather sensitive 
NY-ISO New York ISO 
OAT outside air temperature 
OBMC optional binding mandatory curtailment 
OLS ordinary least square 
PG&E Pacific Gas and Electric 
PJM PJM Interconnection L.L.C.  
PW piecewise regression 
RRMSE relative root mean square error 
RTO regional transmission organization 
SCE Southern California Edison  
SDGE San Diego Gas and Electric 
SLR simple linear regression 
SSE sum of squared differences 
THI temperature humidity index 
TOWT time of week and temperature  
VAV variable air volume 
WM weather matching 
WS weather sensitive 
WSA weather sensitive adjustment  
WWP wind speed adjusted dry bulb temperature 
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Indexes and sets Notations 
2P, 3P, 4P and 5P CP change point models, where the number signifies the number of 

parameters  
i,	d	 index for input data points, 𝑖	,	d=1,…,n 
k	 index for hourly temperature in an exponential distribution for two days, 

k	=1,…,48 
t	 index for 15 min data points in a week, t	=1,…,672 
w	 index for weeks in a year, t	=1,…,52 

 

Variables Notations 
∈1! (d) and ∈1" (d) terms calculated by linear regression on non-DR days for each day “d”, 

- looks back and + looks forward.  
y#1  y#1  is the predicted load for an account/building. 
L6	  average load across baseline day-pairs. 
Actual Load adj. hours and 
Predicted Load adj. hours 

actual load and predicted load during adjustment/pre-event hours 

L load during the control day-pair period  
THI_(DR	 day)	 and	
THI_(non-DR	day) 

estimate for THI for the peak hours of the event day, and the estimate 
for the peak hours on non-DR days 

yi actual load 
yt average load at time t across all weeks. 
yw,t load at time t during the week w 

 

Parameters Notations 
h starting hour of load shed event 
n number of data points 
p number of independent parameters in the model. 

 
 

Function Notations 
avg average 
reg regression 
γ function to remove autocorrelation from the days prior and following the 

event 
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1. Introduction 
Shifting and shedding power demand can be cost-effective techniques for grid operators to function 

reliably and for end users to earn compensation. Buildings comprise over 70% of electricity 

demand in the United States and building demand management is encouraged in various ways 

by the Federal Energy Regulatory Commission [1], Regional Transmission Organizations (RTO), 

Independent System Operators (ISO), and utilities across USA. Building demand can be reduced 

or shaped a number of ways, most of which involve changing thermostat setpoints, but can also 

include lighting reduction [2], turning off appliances [3], temporary ventilation modulation [4] or 

reduction [3], sensor-based control [5] and even switching off commercial freezers temporarily [6]. 

The load shed can either displace a shortfall in generation or assist with grid constraints, e.g., 

peak demand [7].  

 

 
Figure 1: Example time series of power demand in a building and calculated load shed 
 
 
A load shed event, as shown in Figure 1 in the hatched area, may last from around an hour to 

several hours [7]. Grid operators reimburse customers in proportion to the quantity of load shed. 

To quantify this shed, it is necessary to estimate the counterfactual of how much power the 

building would have used in the absence of the demand shedding event. The actual power used 

can then be subtracted from this quantity to estimate the shed. There are several methods 

available for quantifying this counterfactual power demand, which is referred to as the “baseline” 

from here forward. These methods can have varying levels of accuracy and ease of 
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implementation. With the increasing need for grid-interactive controls and demand measurement 

and verification, the selection of methods becomes increasingly important. 

 

No current comprehensive analysis of the multitude of baselining strategies exists. The most 

comprehensive analysis of various modeling approaches was conducted in the year 2000 [8]. 

Others conducted in 2011 [9] and 2017 [10], [11] examined many models but only in the context 

of their applicability in a single region in USA. For these reasons, this work attempts to 

amalgamate all the current understanding of the performance of all models from different regions 

of USA that have been put forward for quantifying power demand shedding in a single document 

and draw lessons as to their performance, domain of applicability, and considerations for their 

proper use. To meet this need, the objectives of this work are to: 

• Provide a comprehensive list of published methods for estimating baseline energy 
consumption in commercial and industrial buildings in the United States and detail their 
function, and 

• Critically assess the models’ performance during load shed events based on published 
works. This includes the assessment of pros and cons of each approach, domain of 
applicability, directions in which research and practice are moving, fruitful areas of 
exploration, and implications for practical application.  

This research presents a comprehensive and up-to-date analysis of baseline models used for 

quantifying load shedding in the USA. It is a repository for best practices in simplified baseline 

modeling for demand shed events and will support future research directions.  
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2. Methodology 
Baseline estimation has been the subject of many previous works. The current review searched 

for existing analyses of modeling approaches used in the USA by grid operators. The search was 

conducted in scientific journal databases as well as national laboratory repositories and grid 

operators’ internally published documents.  

In general, buildings can be modeled using physics-based methods [12], [13], data-driven 

methods [13], and complex methods including machine-learning based methods [14], [15], [16]. 

However, the vast majority of methods used for quantifying load shed for grid services 

reimbursement are simplified data-driven methods [8], [9], [17]. These methods are 

computationally efficient as compared to calibrated simulations [18], [19], [20]. In many cases the 

simplified methods are integrated with some knowledge of building physics to make a hybrid or 

semi-physical simplified method [13]. The scope of the current work is therefore confined to these 

simple data-driven models used by utilities and grid operators in the United States to compensate 

consumers for events happening on weekdays. It also includes models developed by research 

labs and energy companies for similar purposes. Section 5 discusses the applicability of this work 

to locations outside of the United States. 

This work does not include weekend-based models, as events generally happen at times when 
energy demand is high—usually on weekdays for commercial and industrial buildings. It also does 

not include a review of machine learning algorithms or detailed physics-based modeling as they 

are rarely if ever used in the applications of interest [18], [19], [20]. This is likely because they 

require a high level of expertise and computational effort, require inputs that are often unknown 

for these use cases (e.g., equipment schedules), and have limited applicability in some types of 

buildings such as those driven by internal loads, e.g., factories. This resulted in exclusion of 7 of 

10 models discussed in [21], and 2 of 6 models in [14]. 

With these constraints, the search returned the 20 works in Table 1. Each of the references in 

Table 1 examines some aspect(s) of an approach to estimating the baseline power demand and 

usually focuses on a particular geographical region and climate. In some cases, the performance 

of a single model was assessed, while in others several models were evaluated for 

appropriateness for a particular use case. Table 1 shows, for each work, the number and type of 

baseline models tested, description of the buildings or other loads tested, ISO/RTO territory, 

climate zone and data used for modeling in each work reviewed. In some works, multiple models 

were tested to assess the appropriateness of certain models or classes of models for different 

applications, e.g., weather sensitive buildings. 
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From these works, the current review extracted the salient features common to the modeling 

approaches and organizes them below in Section 3. This is done without discussion at first to lay 

out the problem. Then, Section 4 discusses individual models and their demonstrated 

performance and domains of applicability. Lastly, Section 5 critically analyzes existing literature 

on baselining methods and discusses trends and areas for future improvement.



 

Table 1. Baseline model discussions (2000-2023) in the literature: ‘avg’ denotes average-based models, while ‘reg’ designates 
regression-based models.  

References (Year) and Description  Number of customers and 
type  

Region (and 
ISO/RTOs)   

Climate zones  

[8] (2000) compares 18 (‘avg’ and ‘reg’) models used by ISO 
and utilities for quantifying load shed. The models were selected 
based on ease of understanding, use, and implementation. The 
models were evaluated for different customer types and events 
occurring in both summer and winter. 

646 accounts (commercial 
and industrial C&I)  

California, mid-
Atlantic, mid-
west, north 
and south USA 
(CAISO, PJM, 
and NY ISO)  

Dry, warm 
marine, mixed- 
humid, mixed- 
dry, cool humid 
and cold humid  

[22], [23] (2009) tested 7 (5 ‘avg’ and 2 ‘reg’) models developed 
by ISOs, utilities and consulting companies for quantifying load 
shed. The authors proposed their own variations to the models. 
The models were evaluated for events occurring only in the 
summer. 

33 commercial buildings 
(offices, museums, retail 
stores, bakery, and 
detention facility)  

PG&E territory, 
California  

Dry, warm-
marine, and 
mixed-marine  

[9] (2011) selected 11 (9 ‘avg’ and 2 ‘reg’) models developed by 
ISOs, utilities and energy companies for quantifying load shed. 
The models were evaluated for different customer types, 
customer size and events occurring in both summer and winter. 

4,565 DR and 16,002 
non-DR C&I customers  

Data from PJM 
service 
territory; 
Models from 
PJM, CAISO, 
NYISO, ISO-
NE and 
ERCOT  

Mixed humid and 
cold humid  

[24], [25] (2008-11) analyzed 6 (‘avg’) models developed by grid 
operators on the basis of their construct, time periods used for 
estimation and adjustments used for fine tuning the predictions. 
The models were evaluated for events occurring in both 
summer and winter. 

306 sites, can be 
individual or aggregated 
meter sites  

NYISO, ISO-
NE, PJM, 
SCE, PG&E, 
and ERCOT 
territory.  

Warm-marine 
and mixed-
marine, dry, and 
humid 

[26] (2012) evaluated 5 (1 ‘avg’ and 4 ‘reg’) whole building 
energy models on granularity of data used for modelling 
(daily/weekly/monthly) and different training period length used 
for estimation (6-month, 9 month and 12 month). The models 
were selected from existing commercial, public domain, and 
research methods. 

29 commercial buildings  California, 
North Carolina, 
Washington, 
Oregon, 
Colorado, and 
Idaho  

Dry and humid 



 

References (Year) and Description  Number of customers and 
type  

Region (and 
ISO/RTOs)   

Climate zones  

[27] (2015) study describes an open-sourced model used by 
LBNL to establish baseline energy consumption for buildings, 
The model was evaluated for events in multiple years occurring 
in summer. 

36 commercial building 
(office, manufacturing, 
laboratory, retail, 
museum, jail, and bakery)  

PG&E territory, 
California  

Dry, warm-
marine, and 
mixed-marine  

[28] (2015) tested the performance of 5 (‘reg’) whole building 
energy models, selected from the public domain.  

389 commercial buildings  Northern 
California  

Dry, warm-
marine, and 
mixed-marine  

[18], [19], [20], [29] (2016) describe 2 (‘reg’) hybrid whole 
building energy models for short term measurement and 
verification in commercial buildings. 

40 commercial building 
(office, school, hospital, 
and hotel)  

Arizona, 
Texas, Illinois, 
Canada  

Dry and humid 

[21] (2016) compares the performance of 10 (3 ‘reg’, others are 
machine learning algorithms) whole building energy models, 
selected from existing commercial and research methods. 

537 commercial building  California, 
Northwest and 
Mid-Atlantic 
regions of USA  

Very hot, hot, 
warm, mixed, 
cool, cold, and 
very cold  

[10], [11] (2017) evaluates the performance of 29 (‘avg’) model 
used for quantifying load shed. The models were tested for 
weekend and weekday events occurring in both summer and 
winter, and different types of customers 

104,000 aggregated 
accounts (C&I, residential, 
and agricultural), used 
100 commercial accounts 
for simulation  

PG&E, SCE, 
and SDG&E, 
California  

Dry, warm-
marine, and 
mixed-marine  

[30] (2019) compares the performance of whole building energy 
model using smart meter data with utility estimates.  

137 commercial buildings  New England  Cool humid  

[31] (2021) evaluates 8 models (4 ‘avg’ and 4 ‘reg’) developed 
by ISOs and research labs for quantifying load shed in 
commercial buildings.  

453 commercial buildings    Marine, cold, and 
mixed-humid.  

[32] (2022) evaluates 5 model (2 ‘avg’ and 3 ‘reg’) developed by 
either ISOs or commercially used for demand flexibility 
applications with varying model constructs. The study analyzes 
events from multiple years. 

203 commercial buildings 
1)121 retail stores 2) 11 
office buildings  

11 States  Hot-humid, warm- 
humid, warm-dry, 
mild- humid, and 
cold-humid  

[14] (2023) evaluates 6 (2 ‘avg’, 2 ‘reg’, others are machine 
learning) whole building energy models for demand flexibility 
applications with varying model constructs. The study analyzes 
events from multiple years. 

120 commercial buildings    Marine and 
mixed- humid  
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3. Model features 
This section presents the salient features of each the models reviewed, organized by feature. The 

distinguishing features of the baseline models seen consistently in literature are: 1) input 

variables(s), 2) time-period and granularity of data, 3) method of estimation, and 4) adjustment(s) 

used to fine-tune the predictions. Each of these are discussed in the subsections below. In most 

subsections, a summary table is given with strengths and weaknesses of different modeling 

choices, and these choices are then discussed in more detail subsequently. 

3.1. Input variables. 
 

The most used input variables are summarized in Table 2 and discussed in this section. The 

impact of the selection of inputs is discussed in much greater detail in Section 5. Baseline models 

can use 1) weather variables; 2) building variables; and 3) time and calendar variables; or a 

combination of these, as model inputs for predicting the baseline. Some models use only historical 

energy data for baseline prediction. A summary of model inputs other than historical power data 

is shown in Figure 2.  

 

 

Figure 2: Summary of input variables other than historical power data used in reviewed models. 

 



 

Table 2: Commonly used model inputs 

Category Sub- 
category 

Model inputs 

 
 
 
 
 
 
 
 
 
Weather 

 
 
 
 
Temperature 

• Outdoor air temperature (OAT): Hourly dry bulb temperature [33], [34] or aggregated values like 
average or maximum daily temperature [35], [36], [37]. 

• Degree day: A measure to quantify the harshness of outdoor climate. [7],[8],[33],[38]– [40]. 
• Temperature gain variables: Difference between the maximum temperature in the afternoon and 

minimum temperature in the morning. [33]. 
• Weather-based day types: e.g., the variable “hotday” =1 when the average temperature is greater 

than 70°F (21°C), while “coldday” =1 when the temperature is less than 60°F (16°C) [29]. 
 
Humidity 

• Dew point, wet bulb temperature [9],[31] and relative humidity [18],[40]. 
• Difference of outdoor and wet bulb temperature [31],[32]. 
• Temperature humidity index (THI): A variable that accounts for temperature and humidity [7]–[9], 

[39]. 
 
 
 
Other 

• Daylight savings time [33], [35].  
• Fraction of dawn and dusk hours [33]. 
• Wind speed [12], [18], [35]. 
• Wind speed adjusted dry bulb temperature (WWP): Variable to account for the effect of wind speed 

and temperature e.g. If wind speed> 10mph (16km/h), WWP=temperature - 0.5*(wind speed-10) [35] 
• Weather zones: Variable defined for a zone based on multiple weather stations located in it [33]. 

 
 
Building 

Structure and 
operation 

• Building type, age and area [26], [32], [38]. 
• Building schedule and occupancy [9], [28], [36], [38]. 

Thermal 
response of 
building 

• Change or balance point (CP) [33], [35], [38], [42], [43]. 
• Lagged temperature: Temperature from a previous time e.g., weighted average of degree days or 

temperature of previous 2 days with weights decreasing exponentially [7], [22], [29]. 
 
 
Time and 
calendar 
variables 

• Hour [7], [44]. 
• Month of the year [4]. 
• Holiday variables [26], [33], [35]. 
• Day of the week variables [17], [32], [33], [35]. 
• Season variables: Variable for difference between seasons [33].  
• Day of week [19]. 
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3.1.1. Weather variables 
The first category of inputs is weather-related variables. The most used variable by far is outdoor 

air temperature (OAT), followed by humidity [31], [38], [40]. A few models use degree days instead 

of OAT to capture the harshness of outdoor climate [17]. ERCOT’s regression-based model uses 

other weather variables like fraction of dawn and dusk hours and time of daylight [33]. In some 

cases, the weather variables are weighted for an ISO/RTO service territory zone such that the 

average OAT in a particular zone is the weighted aggregate of OAT from multiple stations, where 

stations closer to the customer receive greater weight [33], [45]. Many models omit solar radiation 

as a variable, although it is often a greater driver of thermal dynamics in buildings than humidity. 

The limited inclusion of solar radiation might stem from challenges in accessing solar data and is 

discussed in greater detail in subsequent sections.  

Some grid operators, such as PJM, utilize wind speed or wind speed adjusted dry bulb 

temperature for forecasting the demand of its customers instead of quantifying the load shed 

[35]. Similarly, some hybrid whole building energy models have incorporated wind speed, though 

not specifically for demand flexibility applications [12], [18], [35]. These inputs have been 

included in case the reader wishes to assess their performance with their baseline models. 

It is well documented that some buildings are not as sensitive to weather variables. These include 

buildings driven primarily by internal loads such as factories and data centers. For this reason, 

buildings are often categorized as either weather-sensitive or non-weather sensitive and different 

models are used to estimate shed in each category of buildings. Table 3 describes the methods 

used in the literature for classifying these two categories of buildings. 
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Table 3: Review of methods classifying weather sensitivity (WS) in buildings  

Ref Method for classifying weather sensitivity.  

[23] Spearman rank order correlation coefficient is quantified between load and outdoor air 
temperature for each hour on admissible days. 
Cutoff: If the coefficient is greater than 0.7, building is said to be weather-sensitive 

[9], 
[46] 

Regress the yearly load with cooling degree hours (CDH) with base temperature as 60°F 
(16°C), the intercept represents the average non weather sensitive load. The slope 
represents the increase with each degree increase in temperature above 60°F (16°C). 
The weather sensitivity (WS) ratio is evaluated between 60 to 90°F (16 to 32°C) and is 
given as: 

WS	Ratio =
Slope ∗ (90 − 60)

Intercept	of	the	equation
			(Eq. 1) 

Cutoff: 0.30 or greater. 

[8] Regress the yearly load with hourly degree hour. 
Cutoff: Weather sensitive if sum of cooling or heating coefficients is positive and the F-
statistic for these coefficients is significant at the 0.10 level. 

[8] Fraction of the maximum load or energy used for cooling/heating. 
Remarks: Such data is not typically available. 

 
3.1.2. Building variables 

The second category of inputs includes building variables such as type, age, and floor area. 

Additionally, building schedules can account for time of operation and occupancy. Alternatively, 

a few models indirectly integrate buildings’ properties into the model using variables like “change 

point” and “lagged variables”. Envelope performance, for example, determines location of the 

change point to some degree but it is not explicitly accounted for. Similarly, the effects of thermal 

mass can be captured indirectly by including lagging effects of previous hours. 

 

Several papers discuss the need for accounting for the type of load profile [26], which is often a 

function of the use type of the building. Similar to the distinction between weather-sensitive and 

non-weather-sensitive buildings, buildings are often categorized according to their load variability 

(LV). Highly variable load buildings often have large equipment that is used in a pattern that is not 

easy to predict, and thus modeling is more difficult. Table 4 describes the ways that load variability 

has been defined in the literature. 
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Table 4: Review of methods classifying load variability (LV) in buildings 

Ref Method for classifying load variability  

[23] 
Load	variability	(%) =

(	Hourly	load − daily	load)
daily	load

(Eq. 2) 

Buildings with load variability greater than 15% are classified as highly variable buildings. 

[9] RRMSE of the residuals of the weather regression for admissible days described in  
 
Table 3. The formula for relative root mean square error (RRMSE) is given below. 

RRMSE =
W∑ (y$ − y#1)%

n
&
$'(

W∑ (y$)%
n

&
$'(

	(Eq. 3) 

Where yi is the actual load, y#1  is the predicted value and n is the number of data points. 
Cutoff: RRMSE greater than 0.4 was classified as a variable load site.  

[8] Root mean square (RMS) deviation of load from corresponding mean, computed across 
all load shed hours and normalized by the RMS load during those hours, like RRMSE. 
Cutoff: 0.29-0.42 

[28] Load variability is computed by determining the average load for each of the 672 15-
minute time intervals in a week. For each data point, the squared difference between the 
load and the average load at that specific time of the week is calculated. The square root 
of the average of these squared errors defines the LV metric, as expressed by the 
formula: 

LV = [∑ ∑ \y),+ − y+]^
%,-%

+'(
.%
)'(

(52)(672)
	(Eq. 4) 

where yw,t represents the load at time t during the week w, and yt is the average load at 
time t across all weeks. 

 

3.1.3. Time and calendar variables 
The third category of inputs is time and calendar variables. Including time of day helps to capture 

the time-dependent variations in energy use [9], [43]. A few models also input the day of week, 

as occupancy and loads may be greater on weekdays (e.g., in offices). Similarly, variables 

denoting season are sometimes used, as cooling and heating needs may vary with seasons [33].  

 
3.2. Time-periods 
A few modeling decisions must be made regarding time-periods of interest. These include the 

training period, sampling frequency of the input data used and the prediction period.  
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The training period should include typical operating conditions of the building like occupancy 

pattern, population density, schedule for different seasons, and indoor temperature setpoints. The 

days that are not a good representation of the energy consumption pattern of the building are 

filtered e.g., previous load shed days, holidays, weekends, off-peak days, and scheduled 

shutdowns. This gives the “admissible days” that can be input into the model. Some models [23], 

[26], [47] use additional rules for filtering the “input days”, e.g., only use days that are near the 

event day in time or have similar OAT [8]. These are called “proxy (event) days” and are used as 

input instead of the admissible days. Excluding load shed days may pose limitations for buildings 

with frequent shedding, while omitting holidays and weekends can create temporal gaps between 

input days and events. Various estimation methods are employed to alleviate these challenges, 

as detailed in the subsequent sub-section. 

The prediction horizon defines the period for quantifying load shed [26].  Models are trained on 

one set of data and employed on another “unseen” set [27]. How long and how similar this unseen 

prediction period is to the training period is the subject of some existing work, discussed below.  

Additionally, studies have explored how the distance from the event day influences predictions, 

providing insights into model performance variability [14]. Moreover, certain models exhibit 

varying efficacy depending on the timing of load shed [14], [31], [32], which is explored in Section 

5.  

Granularity of data also affects model performance e.g., the data can be input in 15-minute 

intervals, hourly intervals or more [38], [45]. The granularity or the sampling frequency should be 

uniform throughout the time frame selected for modeling and prediction horizon. 

 

3.3. Baseline estimation method 

The third important aspect of the modeling approach is the baseline estimation method. Figure 2 

provides an overview of the baseline models reviewed in this work organized by estimation 

method (regression or averaging). In this section the features of each method have been 

explained and in Section 5, the strengths and weaknesses and domain of applicability of the two 

main classes of methods (averaging and regression), as well as the sub-classes of methods within 

them have been articulated. 
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Figure 2: Baseline estimation methods (hatched area represents regression models and 
unhatched represents average models) 

 
3.3.1. Averaging methods 
The simplest method to estimate the baseline is a simple average. The most important choice in 

selecting an averaging method is the training period, as outlined in Section 3.2. Day-matching 

models include “High X of Y” [10], [11], [25], [31] where X proxy days with the highest load are 

selected from Y admissible days; and “Middle X of Y”, where data from moderate weather days 

is used [25]. In some cases, proxy days refer to a collection of “day-pairs”, which are a pair of 2 

days from the preceding year that closely match the “event day-pairs” [8], [9], [10]. On the other 

hand, weather matching models select proxy days based on weather conditions [10], [11], e.g. 

days with the daily maximum temperature or days that sufficiently match the cooling degree hours 

(CDH) [31]. Some models sort the admissible days based on CDH, and then select the top 25% 

as proxy days [26]. The estimation method then can be a simple average of the hourly data or a 

weighted average giving more influence to the recent days. Some grid operators refer to 

averaging methods that use data from the previous 1-5 days or post-event days for baseline 

estimation as "emergency methods” [9], [48]. This work adopts the same definition.
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3.3.2. Regression methods 

Beyond simple averaging methods, another class of models uses regression approaches. Linear 

regression is the simplest regression method and can use single or multiple inputs for prediction. 

This approach is also referred to as the "energy signature curve”. Piecewise regression improves 

the results by including two linear regression models for temperature below and above the 

balance point(s). For buildings that have heating and cooling, there will be separate balance 

points for heating and cooling [17], [34], [37]. However, simple linear regression does not consider 

the time dependency in the building load data. Advanced approaches like time-series modeling 

captures autocorrelation and temporal variations in the data (e.g., the effect of past values on 

future values) and is designed for forecasting [8], [49], [50].  

 
3.4. Adjustments 

Baseline models are adjusted to improve predictions. This is also referred to as continuous model 

calibration. The observed load is compared with the baseline load a few hours before and/or after 

the event, to calculate a scalar or additive adjustment for the prediction shown below.  

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐿𝑜𝑎𝑑	𝑎𝑓𝑡𝑒𝑟	𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝑆𝑐𝑎𝑙𝑎𝑟	𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐿𝑜𝑎𝑑	(𝐸𝑞. 5)  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐿𝑜𝑎𝑑	𝑎𝑓𝑡𝑒𝑟	𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒	𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐿𝑜𝑎𝑑	(𝐸𝑞. 6) 
 

A scalar adjustment is a multiplicative adjustment which increases or decreases the prediction by 

a ratio based on percentage comparison, whereas the additive approach is based on absolute 

demand difference [25]. The adjustment values can be time-based, such as one hour before the 

event (h-1) or one hour after the event (h+1). They can be capped in terms of magnitude, e.g., 

within 80-120% of the (h-1) value, or direction, i.e., symmetrical (baseline adjusted up and down) 

or asymmetrical (baseline only adjusted up) [24], [25]. Some adjustments are calculated using 

regression which may or may not be based on outside weather. Those based on weather are 

called weather sensitive adjustment (WSA) [46]. The different type of adjustments used in the 

literature are summarized in Table 5.



 

Table 5:Adjustments used in the literature. “DR” refers to demand response. 

Type Ref. Adjustment  Formula  
Scalar load 
based 

[4]– 
[6], 
[29], 
[33], 
[41] 

Capped (0.8 and 1.2) and based on either first 3 
of previous 4 hours or first 2 of previous 3 hours. 
It can also be called morning adjustment when it 
is based on the previous 2 hours. 

Adjustment = 	
Actual	Load	during	adj. hrs
	Predicted	load	in	adj. hrs

	(Eq. 7) 

 
The hours are pre-event hours.  

[10], 
[11], 
[31] 

Capped and based on 2 hours before load shed 
and 2 hours after load. The limit can be +/- 20% 
or +/- 40% 

Adjustment = 	
Actual	Load	during	adj. hrs
	Predicted	load	in	adj. hrs

(Eq. 8) 

The hours are a combination of pre and post event hours. 
Scalar 
regression 
based 

[8], 
[51] 

Baseline counterparts of control day-pair loads 
are subjected to regression analysis. The 
adjustment is used when R sq is greater than 
0.5. 

L = a + bL6	(Eq. 9)	 
L represents the load during the control day-pair period 
and L6	 is the average load across baseline day-pairs.  

[27] Two terms ∈1! (d) and ∈1" (d) are calculated by 
linear regression on non-DR days. For each day 
“d”, - looks back and + looks forward. γ is the 
function to remove autocorrelation from the days 
prior and following the event. 

∈!{ (d) = γ!/ ∈ (d!)		(Eq. 10) 
∈"{ (d) = γ"/ ∈ (d")	(Eq. 11) 

Adjustment = 	
1	
2
(	∈1! (d) 	+∈1" (d)(Eq. 12) 

[8], [9]  A model is fitted to the load as a function of THI. 
The ratio of the estimate for THI for the peak 
hours of the event day, and the estimate for the 
peak hours on non-DR days, is the adjustment. 

 

Adjustment=THI_(DR	day)/THI_(non-DR	day)	(Eq. 13)				
 
This adjustment is weather sensitive (WSA) 

Additive 
load based 

[46], 
[33] 

Can be based on either first 3 of previous 4 
hours or first 2 of previous 3 hours. Adjustment = 	 [Actual	Load

− Predicted	Load](123.		6789/)(Eq. 14)	 

Additive 
regression 
based 

[52]  Piece wise regression (reg) on OAT- day types 
and hour load where load reductions are 
expected. 

Adjustment	 = [reg;<;&+	=>? 	− reg&7&!;<;&+	=>?	]	(Eq. 15)	 

This adjustment is weather sensitive (WSA) 
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4. Models 
This section compiles models employed by utilities, grid operators, and national laboratories in 

the United States for quantifying baseline power demand. The models are divided based on 

estimation method into Table 6 and Table 7. These tables provide details on data selection 

methods, adjustments, and use cases. 

Note that naming conventions vary among models in Table 6 and Table 7.  For instance, the 

second “10” in "High 10 of 10" means either 10 closest days, 10 highest energy days, or 10 days 

with OAT > or 80°F (27°C) depending on the study.  Some studies further filter data based on 

time, e.g., using data only from 12-6 pm or 12-9 pm. All these nuances have been summarized in 

Table 6 and Table 7. It should be noted that models used for weekends, or employing machine 

learning, have been excluded in keeping with the scope of this work. In addition, some models 

discussed in Table 1 were similar and thus have been grouped together in Tables 6 and 7. 

Therefore Tables 6 and 7 have fewer entries than Table 1. 

In Table 6 and Table 7, “use cases” refer to the applicability of each model to either weather-

sensitive (WS) vs. non-weather-sensitive (NWS) buildings, or to low load variability (LLV) or high 

load variability (HLV) buildings. Methods for categorizing these buildings as such are summarized 

in Table 3 and Table 4. Similarly, “adjustments”, customized per use case, are also detailed in 

Table 6 and Table 7. 
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Table 6: Models based on averaging arranged in the increasing order of time-period used. The abbreviations for ISOs and RTOs have 
been defined in the nomenclature. Use cases include weather-sensitive (WS), non-weather-sensitive (NWS) buildings, low load variability 
(LLV), high load variability (HLV) or all of them. Abbreviations for independent parameters and adjustments have been described in 
Section 3. 
 
 Model Data used Adjustments Weather 

sensitivity  
Load 
variability 

Ref
. 

A.1 PJM emergency 
GLD (guaranteed 
load drop) 

Average of loads in the 2 hours preceding 
and the 2 hours following the event hour.  

Use only pre-event hours 
and can be additive or 
scalar. 

Both Both [9]  

A.2 PJM emergency 
energy settlement 

Average load in the hour preceding the start 
of the event. 

Use only pre-event hours 
and can be additive or 
scalar. 

Both Both [9]  

A.3 PJM emergency 
GLD for non-
weather sensitive 
customers 

Two days, one day before or one day after 
an event, which is closest after exclusions. If 
there is a tie, previous day is chosen. 

Additive or scalar. 
Unadjusted works better 
for this model. 

Non-
weather-
sensitive 

Both [9] 

A.4 PJM emergency 
GLD (switches to 
regression for 
weather sensitive 
customers) 

From the full season select 1 day. The 
model uses Temperature humidity index 
(THI) to select the day closest to the event 
day in terms of weather. The weather terms 
are retained if significant otherwise dropped.  

Additive or weather 
sensitive adjustment. 
Scalar adjustment inflates 
the bias. 

Both Both [9] 

A.5 ISO-NE 
Emergency model 
[36] 

Simple average of 1 day prior for existing 
buildings and weighted average of 5 recent 
days for new buildings. 

Additive, scalar or weather 
sensitive adjustment. 

Both Both [9] 

A.6. High 3 of 3 Average 3 of last 3 eligible days. Giving 
weight to the recent days improves 
predictions. 

Scalar adjustment, based 
on pre-and post-event 
hours. 

Non-
weather-
sensitive 

Low 
 

[10] 

A.7 High 3 of 5  Average 3 of last 5 eligible days. Giving 
weight to the recent days improves 
predictions.  

Capped scalar adjustment 
based on the combination 
of pre and post event 
hours.  

Weather-
sensitive 

High. 
 

[10] 

A.8 High 4 of 5  Average 4 of last 5 eligible days. Giving 
weight to the recent days improves 
predictions. 

Capped scalar adjustment 
based on the combination 
of pre- and post-event 
hours.  

Weather-
sensitive. 

High [10] 
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 Model Data used Adjustments Weather 
sensitivity  

Load 
variability 

Ref
. 

A.9 PJM Economic 
Customer baseline 
(CBL), High 4 of 5 

From 2 months, select 4 days with the 
highest energy of 5 most recent admissible 
days. 

Additive or scalar.  
Weather sensitive 
adjustment and unadjusted 
models can inflate the bias.  

Both Both 
 

[9] 

A.10 High 5 of 5 Previous five business days. No adjustment. Both Both [9] 
A.11 Middle 4 of 6 Select 4 days by dropping the highest and 

lowest kWh days from 6 recent days. 
Preferred over “Middle 8 of 10”, as it uses 
shorter set of recent days. 

Additive or scalar.  
Weather sensitive 
adjustment and unadjusted 
models can inflate the bias. 

Both 
 

Both 
 

[9] 

A.12 High 3 of 10- Day 
matching 

Select 3 days closest to the event  No adjustment Both Both [10] 

A.13 High 3 of 10 – 
Weather matching 

From 1 year, select 3 days with outdoor air 
temperature (OAT) > 65°F (18°C). 

Morning adjustment. Both Both [23] 

A.14 High 5 of 10 
NYISO Day-Ahead 
Demand 
Response 
Program (DADRP) 
2001-2002/ PJM 
economic load 
response 2002 

From 1 month, select 10 admissible days 
excluding the days with accepted bids, while 
ensuring usage exceeds 25% of the 
previous month's peak hourly load. From 
these, choose the 5 days with the highest 
usage, maintaining the 25% threshold. 

Adjustments can be 
additive, scalar or 
temperature humidity index 
adjustment. 
Unadjusted model tends to 
underestimate. 

Both Both 
 

[8] 

A.15 High 5 of 10- 
Weather matching 

Use the data from May-October, sort them 
based on cooling degree hour (CDH) with 
65°F (18°C) as change point (CP). From the 
top 25 %, select the highest 5 days. 

Morning adjustment tends 
to make the model 
underestimate. 

Both Both 
 

[23] 

A.16  NY-ISO Standard 
Customer baseline 
(CBL)- High 5 of 
10 

From 1 month, select 10 days starting 2 
days before the event day excluding event 
and low usage days. From these, select the 
highest energy days. 

Weather sensitive and 
highly variable loads 
should use a capped, 
scalar adjustment based 
on the combination of pre 
and post event hours. 

Both Both [9] 

A.17 ERCOT 2002 
Middle 8 of 10 

Select 8 days by dropping the highest and 
lowest kWh days from 10 high energy days. 

Additive adjustment for 
weather sensitive and 
loads with low variability. 

Both Both [9], 
[33] 
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 Model Data used Adjustments Weather 
sensitivity  

Load 
variability 

Ref
. 

A.18 High 10 of 10, 
California 
Manufacturers and 
Technology 
Association 
(CMTA) proposed 
Optional binding 
mandatory 
curtailment 
(OBMC) and CA-
ISO CBL 2001 

Select 10 days closest to the event. Can have additive or 
scalar, based on either pre 
or post hours. 
Temperature humidity 
index (THI) adjustment is 
recommended for weather 
sensitive buildings. 

Both  Both 
 

[9], 
[31] 

A.19 High 10 of 10 
ISO-NE 2001- 02 
 

Exclude days with energy levels less than 
75% or greater than 125% of the average of 
a provisional baseline for four or more 
consecutive hours. From the remaining 
admissible days, select 10 

Can have additive and 
capped scalar adjustment. 
The scalar adjustment 
addresses the problem of 
zero baseline due to zero 
usage before curtailment.  

Both  Both 
 

[8] 

A.20 High 10 of 10- 
Weather matching 

Use the data from May-October, sort them 
based on cooling degree hour (CDH) with 
65°F (18°C) as change point (CP). From the 
top 25 %, select the highest 5 days. Another 
study uses 1 year data and selects 10 days 
with OAT > 80F (26°C). These days could 
be filtered further to extract the data only 
from 12-6pm or 12-9pm 

No adjustment 
recommended for events 
happening at the start of 
the week and buildings that 
pre-cool. 
Morning adjustment, tends 
to underpredict for 
buildings with variable load 
profiles that are not 
weather sensitive. 

Both  Both 
 

[23]
, 
[32] 

A.21 High 10 of 11, 
CAISO Demand 
Response 
Program (DRP) 

10 days with the highest energy 
consumption from the 11 days prior to the 
load shed day.  

No adjustments 
recommended. 

Both Both [8] 

A.22  High 3/5/10 of 20  From 1- 2 months, select 20 days with high 
energy consumption. From these, select the 
highest a) 3 or b) 5 or c) 10 days. One can 

Scalar adjustment. Both Both 
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 Model Data used Adjustments Weather 
sensitivity  

Load 
variability 

Ref
. 

also select the last 20 days [8]. 
A.23 EnerNoc  Use the data from May-October, sort them 

based on CDH with 65°F (18°C) as CP. 
From the top 25 %, select 20 days (weighs 
recent days more) with OAT > 65°F (18°C) 

Morning adjustment tends 
to underpredict. 

Both Both 
 

[23] 

A.24 Demand based 
match day 

From 3 months, select 20 days with temp 
>75°F (24°C).  

Additive capped (h-1 and 
h-2). 
Unadjusted model tends to 
increase the bias. 

Both Both 
 

[8] 

A.25 Match 3 days from 
3 months 

Sort 3 months data on a) maximum OAT, or 
b) degree hours, and select 3 days. 

Scalar capped adjustment. Weather 
sensitive. 

Both. [10] 

A.26  Match 4 days from 
3 months 

Sort 3 months data on a) maximum OAT, b) 
degree hour or c) degree day.  

Scalar capped 20% (h-3 
and h-4)  

Weather 
sensitive. 

Both. [10], 

[31] 
A.27 Match 5 days from 

3 months 
Sort 3 months data on a) maximum OAT, b) 
degree hour or c) degree day and select 5 
days.  

Scalar capped adjustment. Both Both [10] 
 

A.28 Binning Create 3 bins for temp less/equal/greater 
than 80°F (27°C). Sort data based on a) 
maximum OAT, b) degree hour or c) degree 
day. Baseline is the average peak period 
load on non-DR days in a bin.  

Scalar capped adjustment. Both Both 
 

[10] 
 

A.29 Pulse adaptive 
model 

1-year, weighted average. Predicts monthly 
or weekly quantity better than daily. 
Captures temporal periodicity. 

No adjustment. 
This is a proprietary 
algorithm. 

Both Both [26] 

A.30 Matching Model Identify a control day-pair and from the 
preceding year, select 10 matching day-pairs 
with lowest sum of square errors. The model 
selects multiple days to calculate the final 
baseline.  

Adjustments can be 
additive or regression-
based 

Weather 
sensitive. 

Both. [8], 
[33] 

A.31 Weather matching 
method 

From full season, select days with 
temperature greater than the pre-defined 
limit based on local weather conditions. 

Additive adjustment based 
on h-1 and h-2.  
Unadjusted model tends to 
underpredict. 

Both Both [8] 



25  

Table 7 : Models based on regression arranged in the increasing order of time-period used. “SLR” is simple linear regression, “MLR” is 
multiple linear regression, “PW” is piece-wise regression and “OLS” is ordinary least square. The abbreviations for ISOs and RTOs have 
been defined in the nomenclauture. Use cases include weather-sensitive (WS), non-weather-sensitive (NWS) buildings, low load 
variability (LLV), high load variability (HLV) or all of them. Abbreviations for independent parameters and adjustments have been described 
in Section 3. 
 
# Model Data used Adjustments Weather 

sensitivity  
Load 
variability 

Ref. 

R.1 Hybrid 
model [34] 

Annual utility bill data, 2-week data of electricity from 
swing months, OAT, specific humidity potential and/or 
occupancy. Variation of ASHRAE 3P (three 
parameter) change point model. 

No adjustments. Both. Low [13]
– 
[15] 

R.2 MLR: 
KEMA 
Customer 
baseline 
(CBL) [8] 

Select 20 days for regression from a month. Time 
variables, temperature humidity index (THI) and 
interaction between them. 

Time-based, either 
additive or scalar. 
Unadjusted models tend 
to inflate bias. 

Both Both [9] 

R.3 OLS: 
Degree Day 

1-2 months, degree day used as input. The model 
works well with daily data as well. It performs better 
when the full seasons data is used. Base temperature 
is 65°F (18°C) for both heating and cooling. 

Additive or scalar based 
on h-1 and h-2. 
Unadjusted models tend 
to inflate bias. 

Both Both [8] 

R.4 OLS: 
Lagged 
temperatur
e  

Summer data from Jun-Sep and time 5-10 am. Lagged 
temperature is used as input. 

Lagged	Temp =
∑ 𝑂𝐴𝑇	e!"/$%$%
"&'
∑ e!"/$%$%
"&'

	(Eq. 16)	 

Additive or scalar, based 
on h-3 and h-4. 
Unadjusted models tend 
to inflate bias. 

Both Both [8] 

R.5 SLR: OAT 
or THI 

1-2 months, OAT or THI can be used as input.  

𝑇𝐻𝐼 = OAT–0.55 ∗ 	�1 −
RH
100�

∗ (OAT–58°F)(Eq. 17)			 
 
The data is filtered to select on days with OAT > 58°F 
(14°C) 

Additive or scalar based 
on h-1 and h-2. 
Unadjusted models tend 
to inflate bias. 

Both Both [8] 

R.6 Time series Summer data from Jun-Sep, with weather variables.  No adjustments. Both Low [8] 
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# Model Data used Adjustments Weather 
sensitivity  

Load 
variability 

Ref. 

R.7. Hybrid: Day 
temperatur
e and time 
[34] 

1-2 years, OAT, time of day, day of the week and 2 CP 
(50 and 65°F or 10 and 18°C). Combination of 
ASHRAE 5P CP and OLS. 

No adjustments. Both. Low. [26]
, 
[28] 

R.8 PW: 
Change 
point model 
2P [34] 

1-2 years, OAT, two variations, a) all data is used for 
modeling, b) Filter the days based on average or 
maximum daily temperature and select either 10 or 30 
days. Selecting filtered days works better than using the 
entire season for training. Recommended for buildings 
that require year-round heating or cooling. 

Capped scalar (h-1 and 
h-2). Can also use 
morning adjustment. 
Unadjusted models tend 
to inflate bias. 

Both Both [23]
, 
[32] 

R.9 PW: 
Change 
point model 
3P [34] 

1-2 years, OAT, and day of week. Filtered four weeks 
of data, 12-9pm with OAT>80ºF (27°C). 
Recommended for buildings using electric AC or gas 
for heating. 

No adjustments. Both Both [32] 

R.10 Hybrid 
model 
CDD-HDD 
[34] 

1-2 years, OAT, and annual utility bill. Predicts monthly 
energy usage as a function of Cooling degree day 
(CDD)=55°F (12°C) and Heating degree day (HDD)= 
65°F (18°C). Variation of 3P CP.  

Adjustment should be 
scalar and time-based. 

Both Both [28] 

R.11 PW: 
Change 
point model 
4P 

1-2 years, OAT, and can have more inputs. Has better 
goodness of fit than 3P models for appropriate cases. 
Recommended for buildings with VAV HVACs (Variable 
air volume heating, ventilation, and air conditioning 
system).  

No adjustments. Both Both [34] 

R.12 PW: 
Change 
point model 
5P [34] 

1-2 years, OAT, CP determined by optimization and 
4°F apart. Can have more inputs. Recommended for 
buildings with simultaneous heating and cooling. 

No adjustments. Both Both [26] 

R.13 MLR [17], 
[19], [34], 
[53] 

Variable, OAT and can use up to six inputs. One 
variation is OAT with day of week (OAT+DOW) using 
four weeks of admissible days before the event. 
Recommended for commercial buildings 

No adjustments. Both Low [28]
, 
[32] 

R.14 MLR: 
ERCOT 
Customer 

1 year, weather, and calendar variables. The model 
consists of two equations, daily energy, and 24-hourly 
energy fraction equation.  

Adjustments can be 
additive, scalar or 
weather sensitive 

Both Both [9] 
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# Model Data used Adjustments Weather 
sensitivity  

Load 
variability 

Ref. 

baseline 
(CBL) [33] 

adjustment.  
Unadjusted models tend 
to inflate bias. 

R.15 MLR: Mean 
week model 

From 1-year, average data for each day of the week 
and hour. Separate model for occupied and 
unoccupied period. The model works better with longer 
modeling periods. This is a simple mean only model. 

No adjustments. Weather 
sensitive 

Low [21]
, 
[26]
, 
[28] 

R.16 Hybrid: 
TOWT 
Model with 
five change 
points [54]  

1 year, OAT, time of week, and five CP (45, 55, 65, 75, 
80°F or 7, 12, 18, 24, 27°C). It is a combination of 
mean week and change point model. Separate model 
for occupied and unoccupied modes. If occupancy is 
not recorded, it is determined based on the electric 
load profile of the building. Captures weekly periodicity 
and intra-day temperature dependence.  

No adjustments. Both Both [21]
, 
[26] 

R.17 Hybrid: 
TOWT 
Model (7-
day 
baseline) 
[55] 

Like R.15 but uses 7 weekdays for regression. It is 
recommended to use 5 or 10 weekdays, as the 
arrangement creates uneven representation for 2 
weekdays.  

Capped scalar (h-3 and 
h-4).  
Unadjusted model 
increases the bias. 

Both Both [21]
, 
[31] 

R.18 Hybrid: 
Weighted 
TOWT (70-
day 
baseline) 
[55] 

Like R.15 but uses 70 weekdays for regression and 
weights them. Two variations, 1) Weight 14 days and 
2) Weight 10 days. The weights decrease as the 
distance from the central day increases in both 
directions (before and after the event day). No major 
improvement observed by including a longer baseline. 

No adjustments. Both Both [21]
, 
[31] 

R.19 Hybrid: 
TOWT 
model with 
two CP [27]  

1-2 years, OAT with 2 CP, and day of the week. The 
CP should be at least 2.2°C (4°F) apart. and a 
minimum of 10% OAT measurements should exceed 
the first change point and a minimum of 10% should 
be below the second change point. 

Regression based 
adjustment that removes 
auto-correlation from the 
data. 

Both Both [28] 
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4.1. Reported model performance. 

To quantitatively evaluate model performance, the normalized mean bias error (NMBE) [10], [11], 

[26], [31], [32] and/or the median relative error (medRTE) [8], [23] for averaging and regression 

models is illustrated in Figure 3 and Figure 4, respectively.  The formulas for these metrics are 

shown below. For a comprehensive overview of metrics used by building modelers in the 

literature, refer to [56]. Figure 3 and Figure 4 only show the best adjustment, and the effect of 

adjustment is discussed in Section 5. 

 

Mean	percent	error	(MPE)	or	normalized	mean	bias	error	(NMBE) 	

=
1
n∑ (y$ − y#1)&

$'(

y6
∗ 	100		(Eq. 18)	 

Some models have n-p (where p=1) instead of n. “n” is the number of data points and “p” is the 

number of independent parameters in the model.  

 

Median	of	the	relative	hourly	error	(medRTE) 	= �
y$ − y#1	
y$

�	(Eq. 19) 

yi is actual load and y#1  is the predicted load for an account/building. 

 

It should be noted that these values are collected from multiple studies, which used different C&I 

building types, different numbers of buildings/customers for evaluation and different climatic 

conditions. In some cases, the studies reported the model accuracy for multiple accounts 

aggregated together instead of individual accounts [10]. Further, the objective of some of the 

studies may not to be limited to evaluation of different baseline models, but also to analyze the 

impact of different model elements on the accuracy of the models [31]. Also, some studies 

performed data cleaning and removed buildings/accounts that were erroneous [9]. As a result, if 

the reader were to compare the number of buildings reported in Figure 3 and Figure 4, with those 

reported in these studies or Table 1, they will find some variation. 

The effect of climatic conditions on the performance is not shown. But it was observed that the 

range of errors were wider for studies conducted in humid areas [9], [31] as compared to dry 

conditions [10], [21], [23]. The studies [8], [19], [26], [32] provide a wider range of climatic 

conditions and can be referred to for a mixture of climatic conditions. 

Figure 3 shows, in general, that adding more information to averaging models generally leads to 
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improved model performance, among the models reported in the literature. While fluctuations 

occur based on the value of X in "High X of Y models," detailed discussions on these variations 

are presented in the subsequent section. In weather matching methods, greater specificity offered 

by the selection of days with similar weather is associated with improved performance. It should 

be noted that one of the studies [10], had very few readings for extreme summer afternoons, and 

most of reported errors were in the range of 0 to 0.001. While it appears to be performing very 

well, it is advised to have more references before drawing conclusions. 

Figure 4 appears to show that for regression-based models adding more information decreases 

model performance. The reader is cautioned that several explanations for this apparent 

phenomenon may exist. While some degradation in model performance may be due to over-

parameterization, other factors likely contribute as well. These factors are discussed in detail in 

Section 5. 
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Figure 3: Reported performance of averaging models, generally organized in ascending order of training period and model complexity 
(reasons for multiple values provided in the callouts).  
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Figure 4: Reported performance of regression models, generally organized in ascending order of training period and model complexity 
(reasons for multiple values provided in the callouts). 
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5. Discussion 
This section analyzes the different modeling elements and provides recommendations from the 

literature along with discussions about their application.  

5.1. Input variables. 

5.1.1. Weather variables 

As seen in Section 3, temperature is used for identifying input days in weather matching models 

and as a weather variable for most regression-based models. This is done for a few reasons, 

including OAT’s physical relationship to conduction and infiltration loads, and because of the high 

correlation between OAT and other weather variables that influence building energy consumption 

such as humidity and solar radiation [8], [34]. Table 7 illustrates that ISO/RTOs generally prefer 

to use OAT as the sole input, which has been shown to be sufficient in many cases. Ref [45], [57], 

[58], [59], [60] mention that most researchers use OAT as the single independent variable for 

predicting energy in commercial buildings. 

Some models use degree days instead of OAT, as an input for models to normalize the effect of 

weather. For example, the Xenergy OLS regression model uses both heating and cooling degree 

days (Model R.3) [17], [37], [49], [61]. However, there is evidence that predictions can suffer if the 

balance point is not properly selected [17], [61]. This can be improved by choosing a reference 

temperature after regressing load data with OAT. It reduces the systematic error and is suitable 

for weather sensitive buildings but can be complex to implement and requires long term data [8]. 

This is a perennial problem in simplified changepoint modeling and would benefit from 

development of quick algorithms for determining balance points that do not require multi-linear 

regression with a great deal of data, as do current methods. 

Ideally, a robust model would include other relevant weather variables such as solar radiation, 
outdoor humidity, wind speed, etc. [8], [34], [49], but these are often omitted for a few reasons. 

First, some of these variables are co-linear with OAT and assigning coefficients to these variables 

in regression models presents statistical challenges. ASHRAE Guideline 14–2014 [34] explicitly 

recommends against using both OAT and humidity in a model because the collinearity can affect 

model stability and reduce the predictive accuracy. This can also be seen in Figure 4, where 

simple OAT models had similar or even better performance than multivariate models. 

However, excluding humidity from an OAT univariate model can lead to heteroscedasticity. One 

study [62] found that the model showed large errors at greater temperatures when the influence 

of humidity was high. A way around this issue could be to do a factor analysis for all the weather 
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variables and drop those which are not correlated to the energy data [63]. Another work around 

is illustrated in the PJM emergency GLD model for WS customers (Model A.4) [9], [31], which 

uses both OAT and RH as model inputs, discussed in Table 6. In this model, the data is regressed 

with the THI. If the coefficients are significant, the models use a THI-based regression method.  

Otherwise, it averages the days with least sum of squared differences between THI values, for 

the event and admissible days.  

One glaring lack of input variable is solar radiation, as many works have shown that often building 

thermal dynamics are driven primarily by solar radiation [38], especially for more contemporary 

construction with large glazing areas [64]. This lack is almost certainly caused by a lack of 

measured radiation [65]. While most weather stations measure temperature, wind speed, and 

humidity and thus these data are ubiquitous, much fewer have the multiple expensive 

pyranometers needed to properly characterize solar radiation. It is expected that as data-sharing 

becomes easier because of greater connectivity, this variable will be more widely available, and 

researchers should look to include it in baseline models. However, an additional obstacle to doing 

so is solar radiation’s collinearity with OAT. More advanced statistical techniques that manage to 

avoid putting unnecessary burden on modelers would be beneficial in solving some of the issues 

articulated above. 

5.1.2. Building variables 

High-level metadata such as age and floor area are sometimes available. For the most part, this 

information has only been used to normalize meter data, or benchmark buildings against other 

similar buildings [32]. The analysis did not find any instances of this information being used to 

improve model performance, suggesting a possible area for improvement as has been done 

previously for detailed physics-based models [66]. Again, as this data becomes more available it 

may be beneficial to incorporate it. 

Occupancy improves models with hourly or sub-hourly temporal resolution. While most physics-

based approaches and calibrated simulation require occupancy schedules, it is less common in 

the literature on baseline models [62], likely because it is typically unavailable. A few models have 

attempted to use occupancy as a variable by fitting a regression model on the metered data and 

defining a surrogate occupancy variable when residuals are positive (Model R.15) [26] [32], [33]. 

Another model derived the occupancy variable from the lighting and equipment load of the 

building (Model R.1) [18], [19], [20], while a few defined the variable based on visual inspection 

[45], [54].  
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However, the impact of including occupancy in the studies reviewed is not as effective as one 

would expect, as shown in Figure 4. This could be because the occupancy model is lacking, and 

perhaps even introducing additional error. To help address this, many means of measuring 

occupancy are being developed and deployed, such as CO2 measurement, Wi-Fi access point 

device counting, infrared sensing, and photogrammetric methods [67]. It is expected that this 

variable will be more available moving forward and can be instructive for baseline models. It 

should be noted that occupancy patterns often change during demand response events (e.g., 

occupants are told to go home early) and this must be considered. 

Discussion about including “business operations” is also found in the literature [32]. Building 

operations refers to the changes in the building schedule and changes made to the building 

equipment, e.g., retrofitting lights with energy efficient alternates. Though these variables affect 

building performance, they do not have a standard definition yet, nor have they been used in any 

baseline models [32]. One area of exploration that may prove fruitful is in expanding and updating 

the limited database of typical load profiles defined by building type [68].  

Other properties of buildings such as envelope construction, internal construction, furniture, etc. 
can add autocorrelation of time-lagged errors through the effect of building thermal mass. This 

challenge is generally overlooked by grid operators and those interested in remuneration of grid 

services. One way of dealing with these issues is to use “lagged variables,” which integrate 

building properties into the models without direct knowledge of physical parameters. When the 

model uses these variables, they may not need adjustments, as they are already incorporating 

the effects of time and building characteristics (Model R.4) [8]. 

Similarly, envelope construction can affect the relationship between weather variables and the 

building’s response (e.g. more glazing leads to greater sensitivity to solar radiation and outdoor 

temperature). One way to indirectly include information about the envelope is to use derived 

parameters such as “change point temperature” to capture the building response [17], [20], [34], 

[53]. Change point or balance temperatures define the minimum outdoor temperature at which a 

building requires cooling and speak indirectly to the performance of the building envelope and 

operating conditions. 

5.1.3. Time and calendar variables 

Time and calendar variables enable models to predict energy for different temporal resolution 

e.g., ERCOT CBL predicts the building energy on a daily scale (Model R.14) [9] [33], while the 

mean week model (Model R.15) [26] [21] [54] creates a different load profile for each day of the 
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week. These variables enable models to account for periodicity due to operation schedule [69], 

e.g. the model DDT performs separate regression for occupied and unoccupied periods (Model 

R.7) [26], [70]. Many studies [27], [31], [40], [71] have developed separate statistical models for 

different periods using the time and calendar variables. Greater availability of data is likely to allow 

for greater understanding of these effects [12]. 

5.1.4. Baseline aggregation 

Lastly some models use aggregated data from customers instead of using the individual readings. 

Aggregation is preferred when the buildings being modeled are highly variable and lower 

computational power is required [9]. The precision improves with the size of aggregation and if 

the aggregated accounts have similar weather and customer mix [10], [25], [28]. This finding is 

supported by another study for a different region in the USA. In this study [55], the difference 

between actual energy consumption and model-predicted consumption for a year was calculated, 

categorizing buildings based on the percentage difference.  

This method, akin to the load variability assessment discussed in Table 4, employed a cutoff of 

less than 35% for low load variability (LLV) and greater than 35% for high load variability (HLV). 

While the approach yielded unbiased and precise baselines through portfolio baselines, evidence 

suggests a potential underestimation compared to models using individual meter readings as 

inputs [14], [61]. Care should be taken while using aggregated data as averaging removes 

nuances in the data [8]. It is recommended to review time-series plots of a significant sample of 

demand response events before drawing conclusions [32]. 

5.2  Time periods 

Modeling decisions related to relevant time periods- data granularity, training period, prediction 

horizon- have been shown to affect model performance and are discussed presently. 

5.2.1. Data granularity 

Most models discussed ingest hourly data. One exception is the day-matching model (A.30), 

which uses 15-minute resolution to identify day pairs with the lowest SSE [8]. Of the regression 

models reviewed, only the ERCOT model (R.14) requires 15-minute resolution [33]. Generally, 

regression-based models perform effectively with hourly data. It is not likely that models will be 

improved by granularity in data finer than 15 minutes [45], though this resolution of data is likely 

to be available for many buildings in the near future, as the characteristic time scales in buildings 

are longer than this in most cases. In fact, finer resolution data is likely to lead to overfitting issues 
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and this is likely the reason there has been very little investigation of finer resolution models in 

the literature. 

5.2.2. Training days for averaging methods 

As discussed previously, models can ingest as few as three days’ data up to more than a year’s 

data.  There is evidence that the number of input days significantly affects accuracy [26]. A few 

studies suggest that length of training period affects model performance more than even length 

of prediction horizon [27], [31]. This can be seen in Figure 4, where the performance of OAT 

models generally improves with increasing training period. One study found accuracy improves 

as the number of input days increases from 0 to 18 [14], but gets worse from 18 to 39, and flattens 

beyond 39 days. This was backed by another study, that found when a 20-day period is used, 

factors like load changes or temporary variations in building operation [32] [18], which are 

generally overlooked by models ingesting fewer than 10 days’ data, can be included and improve 

the model. 

Despite the general trend of more data improving model performance up to around 20 days, most 

day matching methods use 10 or fewer days. In general, 10 days captures near-term trends while 

mitigating potential of gaming, which is deliberate action by customers during nonevent hours 

designed to manipulate baselines. [24]. However, fewer-day models may perform poorly for 

buildings that have highly variable building profiles, shed regularly, or have swings in weather and 

power. Adding adjustments can account for temporary variations to some extent [10], [24], and 

Middle X of Y methods can be used to discard outliers [33], [52], [72], but it is recommended to 

filter bad data like shutdowns or large swings in consumption before using day matching methods 

[25], [45]. There are numerous recommendations for accomplishing this filtering process in the 

literature, discussed previously. Nevertheless, regression methods are recommended for 

customers who shed load regularly or have variable load profiles. 

5.2.3. Training period for regression-based methods 

Regression models capture the effect of operative variables such as outdoor temperature, and 

therefore days with conditions unlike the shed day can be included. This leads to more data being 

used for regression models than averaging methods in almost all cases, and the amount of data 

used has been shown to affect model performance. Regression models have reported lower bias 

and variability with longer training periods for both WS and NWS accounts [8], [71]. Especially 

with buildings that shed load regularly and have variable load profiles, improvements have been 

documented from including a longer and diverse dataset [8], [19], [73].  
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However, like with any modeling endeavor, there exists tradeoffs among data availability, 

computational expense, and model performance and using a great deal of data is sometimes not 

possible or feasible. One study [26] also suggests that using long-term data for training may not 

necessarily improve the accuracy of predictions but using too little data has been shown to 

degrade model performance [21], [69], [71].  

To address these competing constraints, there is an emerging consensus around an optimum 

training period of around nine months for regression models. [28] suggest the 6–9 months of data 

is ideal for aggregated models like mean week (Model R.15). [26] similarly showed improved 

performance with longer training periods, with performance peaking at nine months of data. 

Similarly, [21] increasing performance with additional data up to 9-12 months. It should be noted 

that this amount of data may be insufficient for advanced regression methods and bin modeling 

[19], [73].  

Another way to reduce computational expense is to use filtering to reduce the number of input 

days while ensuring the days used to train the model are relevant and provide for accurate 

predictions. This is done in Model R.7, which sorts the input days based on average or maximum 

temperature and selects the 10 hottest days [23], [34]. Another model (Model R.19) filters and 

weighs the days closer to the event days [31], improving the model performance, also seen in 

Figure 4. In one study [18], a hybrid model using only two weeks of carefully selected data resulted 

in a NMBE of 12% for medium-sized offices and 7% for large-sized offices.  

 

It is not expected that constraints on availability of training data or computational power will play 

much of a role in determining model accuracy moving forward. Data availability is increasing 

rapidly with the deployment of advanced metering infrastructure, and computational power 

continues to increase as it has for decades. Moving forward, there is likely to emerge a constraint 

on the amount of data used that has to do with changing patterns of operation of buildings, i.e., 

the building is not used in exactly the same way it was 5 years ago.  While this phenomenon was 

not mentioned in the literature, other studies [74] have shown a shift in how buildings are being 

used, especially after the Covid-19 pandemic. 

5.2. Baseline estimation method 

As with most modeling problems, different methods are appropriate for different baselining 

problems. Averaging models are simpler [3] and thus have been used more often, as can be seen 

in Figure 2. Different averaging methods have strengths, weaknesses and domains of applicability 

as described in the literature and summarized in Table 8. 
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Table 8: Strengths and weakness of average based methods 

Approach Strengths Weakness 

Emergency 
models  

• Efficient for quick calculations with 
short datasets. 

• Evidence that it can be ineffective for 
frequent load shedding due to the same 
baseline estimation for all load shed days 
[24]. 

• Can be susceptible to pre-cooling and 
notable high bias observed in predictions 
[8], [9]. 

High X of Y 
(Day 
matching)  

• Simple model construct [24], [25].  
• Only 20 days needed for best 

performance [14]. 
• Further improvement achieved by 

assigning weight to days closer to 
the event [25], [26]. 

• High 10 of 10 excels in summer with 
low intra-day variation, serving as an 
industry benchmark for predicting 
annual peak load days, particularly in 
summer DR events [14], [24]. The 
model performs better than a few 
regression methods for WS and LV 
buildings [25], [32]  

• Can be ineffective for frequent load 
shedding, as the same baseline is 
estimated for all the load shed days [24]. 

• Has high gaming potential [24]. 
• Can be susceptible to pre-cooling and 

notable high bias observed in predictions 
[8], [9]. 

• Prior study [14] showed potential to over 
predict in swing seasons. 

• Data like shut downs or large swings in 
consumption need to be filtered [25], [45]. 

• Need to be adjusted for an accurate 
estimate [25] 

Middle X of 
Y (Day 
matching) 

• Can be effective for swing season 
predictions as it removes the high 
and low energy consumption from 
the input [25] 

• Susceptible to pre-cooling impact [9]. 
• Less commonly used, can be ineffective 

for frequent load shedding. 

Demand 
based 
matching 
(Day 
matching) 

• Identifying matching day pairs in 
energy consumption provides a 
theoretically simple method for 
baseline estimation [8]. 

• Requires 15-minute data for matching [8]. 
• Infrequently implemented and lacks 

widespread use.  
• Ineffective for frequent load shedding due 

to challenges in finding multiple distinct 
days each year that match the load shed 
energy consumptions [8]. 

Weather 
matching 

• Customized for local climatic 
conditions [8]. 

• Challenging to automate for multiple 
climates, requiring specific temperature 
threshold consideration for each climate. 
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The regression approach has a higher complexity and larger data requirement, but the same 

model can be applied to all event times or consecutive load shed days, unlike averaging methods 

[9]. Regression models allow the inclusion of multiple inputs to capture effects of weather, building 

and time and thereby improve the accuracy of the baseline estimate [18], [25]. Evidence suggests 

that gaming a regression model is difficult [24]. It should be noted, however, that there is still a 

preference for average-based methods simply because regression requires more data and is not 

as easy to quickly use to remunerate customers [8], [9], [24], [25]. Within the class of regression 

methods, several approaches have been articulated and tested in the literature. Their strengths 

and weaknesses are summarized in Table 9. 

 
Table 9: Strengths and weakness of regression based methods 

Approach Strengths Weakness 
OAT 
models 
(Simple 
linear 
regression 
or SLR) 

• Needs only one input. 
• Can use degree days to normalize 

weather effects [17], [37], [49], [61]. 
• Can use "lagged variables" to 

integrate thermal mass indirectly [8]. 

• Models disregard other weather variables 
[71]. 

• Integration of lagged variables and degree 
day tends to increase baseline estimate 
variability [17], [61]. 

OAT with 
other 
variables 
(Multiple 
linear 
regression 
or MLR) 
 

• Permits inclusion of interaction 
terms, building variables, and time 
variables [9]. 

• Documented improvement in 
performance from greater model 
specificity. 

• Capture intra-day load changes due 
to weather more accurately than 
average based methods [32].  

• Too many parameters can hinder 
computation and reduce accuracy [71]. 

• Collinearity among variables poses 
challenges [34]. 

• May require 15-minute data [9], [33]. 
• With fewer input days, it is less likely to 

capture weather conditions [14].  
• Adjustment calculations can be 

cumbersome [27]. 
Change 
point 
models 
(Piece-wise 
Regression) 
 

• Adaptable to seasonal shifts  
• Indirectly includes building envelope 

performance and operational 
conditions. 

• Can be extended to multiple variables 
[34]. 

• Serve as the industry benchmark [34]. 

• Requires an efficient algorithm for 
determining balance points without relying 
on complex multi-linear regression with 
extensive data [17], [71]. 

• The change point behavior introduces 
nonlinearity since CP is a parameter to be 
determined [71]. 

• Difficult to automate for multiple buildings.  
Time series • Cleans data to eliminate noise [50]. 

• Indirectly incorporates thermal mass 
effects. 

• Challenging to handle missing data [50]. 
• Implementation can be complex, lacks 

guidance. 
Hybrid 
models 

• Can adapt to use short-term data 
[18], [19], [20]. 

• Recommended when error terms 
exhibit first-order autocorrelation. 

• If using electricity data, inconsistent 
formats across utilities may pose 
challenges for automation [14]. 
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5.3. Adjustments 
Baseline models can be adjusted by a scalar or additive adjustment or left unadjusted. Unadjusted 

models may be beneficial for grid operators when the chances of gaming are high [8]. However, 

adjustments can reduce modeling error by more than half across all prediction time windows [9], 

[24], [31] as shown in Figure 6, especially for WS accounts [8]. Particularly for averaging methods, 

adjustments are recommended. A maximum adjustment of ±20% is recommended for day 

matching methods while ±40% has been recommended for weather matching methods [10], [18], 

[24], [31].  

Interestingly, a study by LBNL [27], managed to use adjustment to bypass time series modeling. 

Two error terms were calculated to remove the autocorrelation effect from days prior to the event 

and days following the event. The study added the error terms as adjustments, which made the 

model (Model R.17) robust to outliers and stable in its prediction performance [54], [71]. However, 

there is evidence that a full season lag model gives comparable predictive accuracy to an adjusted 

model [8], although some models with long training periods use adjustments nonetheless to 

reduce autocorrelation in the data [27], [71]. 

Figure 6 illustrates the effect of adjustments on model performance as discussed in the literature. 

A few general trends are evident. First, unadjusted models show a tendency to underpredict 

baseline for all cases (NWS/WS/Variable load/non-variable load). Adjustments help reduce this 

bias. Secondly, buildings with highly variable loads present challenges for baseline estimation, 

regardless of adjustment approach and thus the error reported for these buildings is greater in 

almost all cases. Weather sensitive adjustment appears to reduce model error for WS buildings 

and NWS as well. It should be noted that even though the building is classified as NWS, each 

building has some level of weather sensitivity which may not be captured by the method used for 

distinguishing. No broad trend is evident to recommend either scalar or additive adjustments over 

their counterpart. 

If models are to be adjusted, a decision must be made as to how they are adjusted. Additive 

adjustments are recommended for buildings with constant loads that are not weather sensitive 

[3],[6]. Multiplicative adjustments are recommended for both WS and NWS buildings. The 

adjustments rely on the scale of the building’s load profile and are believed to capture weather 

sensitivity and fluctuations in NWS accounts better than additive adjustment [8]. WS buildings 

lend themselves to weather sensitive adjustments (WSA), but WSA are not suitable for buildings 

dominated by internal loads [8]. Time-based adjustment was recommended in such cases [3],[6]. 

The adjustment process is a place where the issue of gaming often arises. Adjusting based on 
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pre-event hours has been recommended over post-event hours, or the combination of pre- and 

post-event hours [10], [31]. However, the use of pre-event hours can be problematic. It increases 

the chances of gaming and accidental inflation of baseline, since if buildings pre-cool it would 

increase the baseline [27]. Conversely, sometimes office buildings cancel operations when faced 

with a curtailment notice or industrial buildings, which take time to shut down, might start the 

process of load shedding early. When this happens, the load in the 2 hours before the shed is 

less than typical and modeled baseline is low. In such cases, either scalar adjustment based on 

third and fourth hour before the load shed or unadjusted full season daily degree day models is 

recommended [8], [25], [54]. Another study [24] recommends two hours prior to event notification 

instead of two hours prior to the event start, i.e., adjustment window should not overlap with the 

“ramp period” (period right before the shed) [25]. Others recommend adjustments based on 

morning operation, although this has issues as the building may be unoccupied [27], [31] and may 

have night setback strategies in place [40]. 

Besides gaming, adjusting in a way that does not punish energy efficiency, or variable load 

patterns, is a subject of discussion. Adjustments can be either symmetric (adjust either up or 

down) or asymmetric (only adjusted up). Disallowing symmetric adjustments punishes customers 

with variable loads that may happen to be low during an event (common for industrial customers) 

[24]. Asymmetric adjustments (only adjusted up) allow room for energy-efficient operation of 

buildings. It also has challenges like enabling customers to receive compensation for a planned 

shutdown that may coincide with an event day [24]. If gaming was not an issue for grid operators, 

nor the issue of eroding the baseline due to responsible operation for building operators, 

asymmetric adjustments would be suitable for both winter and summer programs [8], [9], [25].  It 

is not clear that a comprehensive answer that accomplishes the three competing objectives—

disincentivizing gaming, incentivizing long-term energy efficiency, and properly remunerating load 

shedding— has been developed. This is an area of research that may be fruitful. 

 



 

 
 
 
 
Figure 5: Effect of adjustments and impact of weather sensitivity and load variability on baseline models. The data has been extracted from [9] and 
the graph has been clipped between -0.1 to 0.1. This has resulted in the removal of few data points from variable loads for A.2 and A.10. The 
emergency model (A.2) had medRTE value of 0.3 for all adjustment and the High 4 of 5 (A.10) had a value of 0.15 for the unadjusted variation
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5.4. Limitations 
 
This study and the models discussed within in have several inherent limitations. First, the study 

is confined to models used by grid operators in the United States. The study discusses models 

used in different regions of the United States, which spans several climates, but primarily lies in 

a temperate climate region. In particular, locations with very humid climates may be expected to 

see model performance different from that described herein.  

 

The models described and the published results of their testing are also heavily weighted toward 

summer hours when cooling demand is greatest. In regions with substantial heating loads that 

are served via electrically driven heat pumps, a direction in which many countries including the 

United States are moving, it is likely that additional model refinement and/or development may be 

necessary. In regions of the world where space cooling is less prevalent, load profiles in the 

summertime will be affected less by variables such as weather. Space cooling is in 80% of 

commercial buildings [75] in the United States and thus it is expected that summer peak demand 

is strongly influenced by cooling, but this may be less so in other locations such as northern 

Europe. 

 

Conversely, in areas of the world such as South Asia, where cooling demand may account for 

over 70% of all grid demand [76] at peak, model performance may be expected to vary.  As 

cooling of buildings is expected to double or triple the required grid capacity in these regions of 

the developing world with hot and humid climates such as South Asia [66], while at the same time 

energy efficiency measures and the adoption of electric cars reduces the relative portion of 

electricity used for cooling in developed countries, model performance will need to be assessed 

and updated periodically in the near future. It is likely that regressions using only weather variables 

will be less useful in the United States in the future for these reasons, and the need for tools 

enabling demand response programs in the developing world is likely to increase vastly. 

 

Finally, another issue is that many buildings are served by a central plant, such as occurs on 

many campuses and some entire cities, primarily in Europe. Any reduction in cooling load is thus 

not fully realized as a reduction in electric power at the individual building, but instead can occur 

mostly at the plant. This reduction at the plant may be lagged in time from any action taken at the 

building, necessitating adjustment to models. 
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6. Conclusions 
While several previous works have discussed implications of using various baseline models in 

different applications, there has been no systematic and comprehensive evaluation of the 

rationale for choosing a particular baseline, which is provided herein. This work provides a 

comprehensive list of 50 baseline models used in research and industry. The salient features of 

the baseline models and the strengths and limitations of each method are discussed below. 

A few broad lessons can be drawn from a survey of extant literature, which may be instructive for 

improvement and application of models: 

 

• A consensus as to the proper set of input variables has not emerged, even for a particular 
building type. There are several reasons for this, including lack of availability of some data and 

concerns over statistical issues around using collinear inputs. The second issue is likely 
something that can be addressed using more advanced statistical methods but may then move 
the models into a degree of complexity that is beyond what is desired/acceptable for most 

users. Creating a robust model with all relevant inputs that nonetheless retains necessary 
simplicity is a challenge waiting for interested modelers. 

• This research pointed to a lack of “building” information in most models in practice, meaning 

metadata on construction of the building in question or information on how it is operated. In 

many cases this is because of lack of the metadata, and in others it is intentional to ensure 

models are agnostic to building type being modeled, or even whether the load being modeled 

is attributable to a building. In cases where greater accuracy is desired, a few purely data-driven 

workarounds have been developed including the use of a time-of-week variable as a surrogate 

for occupancy and building operation patterns, and the use of change-points, which are data-

driven indicators of building performance that do not require explicit information about the 

building. These both seem to improve model predictions. Similar creative workarounds, as well 

as direct input of building information from central repositories, may further improve baselines 

as well. 

• As in any modeling endeavor, in baseline modeling there exists a tradeoff between accuracy 

and computational complexity. Extensive filtering processes are reviewed herein and can 

reduce the amount of data needed to produce accurate predictions. Where little data is 

available, best practices can maximize model performance, nonetheless. These include 

aggregation of several similar load profiles and adding some physics to the model where 

possible, even if it is a simple regressed relationship between outdoor temperature and load. 
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This also alleviated the problem of having to determine appropriate adjustments and weighting 

factors as exists with simple averaging methods. Including other variables as discussed above 

will also likely help in these situations. This should be less of an issue as more advanced 

metering infrastructure is installed and data collected. 

• The issue of gaming remains a concern for some parties. A few mitigations were suggested 

in the literature, including making adjustments on days that are not near the shed day and 
using larger datasets. This also seems to be an area where improvement can be made, for 

example, in development of an algorithm that can detect gaming and adjust accordingly. 

• Perhaps the opposite of the issue of gaming is the concern over not punishing users who are 
developing energy efficiency programs that may already be shaping loads in a way that would 

reduce their compensation for additional demand shaping during a demand response event. 
Some work has been done looking at this issue, but it can likely use additional work. 

• It should be noted that all the methods studied may break down for customers with highly 
variable loads, and especially for customers whose loads are both highly variable and driven 
by internal loads such as equipment. Methods for predicting highly variable loads are still 

lacking and are likely much different than those for other buildings. One potential method for 
compensation of these customers might be an absolute target rather than a modeled shed, 

though more work is necessary in this area. 

• The integration of more advanced statistical techniques incorporating factors such as solar 

radiation, occupancy, and time variables holds promise for enhancing predictive accuracy. 
Given the observed relationship between the time and season of load shedding, future 
investigations should explore the inclusion of these temporal dimensions in modeling efforts. 

Similarly, considering the size and type of buildings could provide valuable insights for refining 
baseline models. 

 
As participation in demand response program grows and is starting to include residential, 

agricultural, and other customers not traditionally participating, further development of appropriate 

methods will be required. This review identifies the state of the art for C&I applications and a 

starting point for those investigations. 
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