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ABSTRACT OF THE DISSERTATION

Synge’s Theorem, Systole, and Positive Intermediate Ricci Curvature
by
Savanna Gail Gee
Doctor of Philosophy, Graduate Program in Mathematics

University of California, Riverside, June 2023
Dr. Frederick Wilhelm, Chairperson

In 1997, Wilhelm [15] proved the following generalization of Synge’s Theorem: let
(M, gnr) be a compact Riemannian n-manifold with Ricy (M, gas) > k and sys; (M, gar) >
77\/?; if n is even and M is orientable, then M is simply connected; if n is odd, then
M is orientable (Theorem 1.2). Furthermore, he proved that this lower bound on sys; is
optimal when k =n — 1. In 2020, Mouillé [6] proved that S3 x S% admits a metric g, with

Rica(S3 x S3,g4) > 0 (Theorem 1.4).

In this dissertation, we first show that the metric g, (which is a Cheeger defor-
mation) is canonical variation. This follows from a more general result we prove (Theorem
1.7), which is that if (M, g/) is a Cheeger deformation by (G, gr;) that satisfies what we call
the generalized Petersen-Wilhelm hypothesis (Definition 2.16), then for all p € M, the orbit
G(p) is normal homogeneous and gy|, is canonical variation with respect to the Riemannian
submersion 7 : (M, gar) 23, (M/G,g). Moreover, if G(p) is totally geodesic for all p € M,

then g, is canonical variation (Theorem 1.8).

vii



We then develop a technique for finding an optimal lower bound on Ricy for any
Riemannian manifold (M, gps) with dimension n > 4. Specifically, for any p € M, unit
vector € T,M, and k € N such that 2 < k < n — 2, we prove that min Ricy(z;e) =

Ric(z) — max Ric,,—1—(z;e) (Theorem 1.9).

From there, letting Zs act on S x S3 in two ways—as the antipodal map a :
(N1,N2) + (=Ny,—N3) and as f : (N1, Na) — (—Nj, Na)—we study for each value of

t € (0,1) the manifold 53%253 paired with the unique metric g; that makes the quotient map

(83 % 83, g¢) — (SSZXQSS , @) a local isometry. In particular, we establish ¢-independent and
2
t-dependent upper bounds on the product min Ricy, (%ﬁs,ﬁ) . (sysl (%ﬁ,@)) when

k =2,3,4 (Theorems 1.5 and 1.6).

Finally, we notice that our upper bounds are smaller than Wilhelm’s upper bounds.

We conclude that when restricted to the family {(SSZXQSS,§> |0<t< 1}, we have estab-

lished an improved upper bound on min Ricy, - (sys;)? when k = 2,3, 4.
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Chapter 1:

Introduction

1.1 Motivation

In 1936, Synge proved the following theorem:

Theorem 1.1 (Theorem 6.3.6 in [10]). Let (M,gnr) be a compact Riemannian n-

manifold with sec(M, gyr) > 0.
1) If n is even and M is orientable, then M is simply connected.

2) If n is odd, then M is orientable.

In 1997 publication [15], Wilhelm proved that if a lower bound on the length of the
shortest noncontractible closed curve in M—called the first systole of M and denoted
sys; (M, gar)—is imposed, the conclusions of Synge’s Theorem hold when the assumption

sec(M, gpr) > 0 is replaced with the assumption Ricg (M, gar) > k:



Theorem 1.2 (Main Theorem in [15]). Let (M, gn) be a compact Riemannian n-

manifold with Rick(M, gpr) > k and sys; (M, gar) > m/%,
1) If n is even and M is orientable, then M is simply connected.

2) If n is odd, then M is orientable.

Remark: Theorem 1.2 is a generalization of Synge’s Theorem. Indeed, when k£ = 1, Theorem

1.2 is Synge’s Theorem.

Alternatively stated:

Theorem 1.3 (Alternative Version of Theorem 1.2). Let (M, gnr) be a compact

2
Riemannian n-manifold with min Ricy (M, gar) - (sysl(M, gM)) > (k- 1)m2.
1) If n is even and M is orientable, then M is simply connected.

2) If n is odd, then M is orientable.

Remark: The product min Ricy, - (sys;)? is invariant under rescaling of the metric. That is,

2 2
for all A € R, min Ricy, (M, A\2gps) - (sysl(M, )\QgM)) = min Ricg (M, gar) - (sysl(M, gM)) .

Wilhelm proved that this bound on min Ricy, - (sys;)? is optimal when k = n — 1 (positive

Ricci curvature). Example A in [15] proves optimality when n is even and k =n — 1:



Ezample A in [15]: Equip S™ (m > 2) with its usual metric g and equip

S™ x 8™ with the product metric g + g. Let Zs act as the antipodal map on

both factors of S™ x S™. The quotient space SmZXZSm is even-dimensional,

SmMx Sm

compact, orientable, and not simply connected (w1 = Zs). If we equip 7

with the unique metric g that makes the quotient map q : (S™ x S™, g+g) —

(szésm,g) a local isometry (see Definition A.1 and Section 1.3.3 in [10]),

then

winic (F°25" 5) (o, (S5 5)
ZQ ') Y81 ZQ » 9

— (m—1) (\/iw)Q = @2m-2)r? = ((2m = 1) = 1)7* = (k - 1)n*.

This example does not work when k = 2,3, ...,2m — 2. Indeed, when k < m,

secg+g( (U, 6) , (6, w) ) =0 forall v,we TS™
= minRic, (5™ x S™,g+9g) =0 when k <m

A2 min Ricy, (SXS ) =0

7o g
m m m m 2
—> min Ricy, (st,g) . <Sysl (SXS,g>) =0< (k- 1)7T2
Z2 Z2



and when m+1 < k <2m — 2,

min Ricg (8™ x S™,g+g9) =k—m

(Smxsm )ka
<S

Lo ™o S S™x ST \\?
—> min Ricy, ) . <Sysl (Z,g>)
2

A.2 . .
= min Ricg

= (k= m)(VZm)? = 2(k — m)r? < 2 <l<: _ M) 2 = (k= 2)r? < (k — D)2

A key result of Mouillé’s dissertation [6] is a metric on S% x S that admits positive inter-

mediate Ricy curvature:

Theorem 1.4 (Theorem A in [6]). The manifold S* x S® admits a metric g, such
that Ricy(S3 x S3,g,) > 0. The metric g is a Cheeger deformation of the usual

product metric g + g on S3 x S with respect to the left diagonal action of S>.

(SBX5379Z)
Zo

In this dissertation, we study the Riemannian manifold Equipping 2°X5° 7 5° with

3 3
S3x.8 —)a

the unique metric g7 that makes the quotient map ¢ : (S3 x S3,g,) — ( , g

2
local isometry, we explore how close we can get min Ricy, (53 , gg) . (Sysl (%ﬁ,@))

to (k — 1) 7% when k = 2,3, 4.

RESEARCH QUESTION

W 2
How close can we get min Ricy (Sszxfa,W) . (sysl (332253,ﬁ)) to (k— 1) 72 when

k=2,347




In Lemma 3.13, we prove that this Cheeger deformation (S%x S3, gy) is a canonical variation,

which we denote by (5% x S3, ;). Our results are written in terms of g; rather than g,.

1.2 Statement of Results

1.2.1 Main Theorems

Let
e 53 x 82 be equipped with the canonical variation metric g;.
e a:5%x 93— 5% x 83 be defined by (N1, Na) +— (—Ny, —N3).
o f:59%x 8% 93 x 53 be defined by (N1, Na) — (—N1, Na).
o 78> H, = {id,a} CIso{S3 x S3, g }.
o 7§ = Hy={id, f} CTs0{S? x 3, g;}.

M = SSZXGS3 be equipped with the unique metric gf that makes the quotient map
2

7d (93 x 83, g,) — (M, g) a local isometry.

o N = % be equipped with the unique metric g{ that makes the quotient map

2

(93 x 83, g) — (N, g{) a local isometry.



We proved the following two theorems (1.5 and 1.6):

Theorem 1.5. For allt € (0,1),

N

1a’) min Ricy (M, g") (sys1 (M, g ) < 27°.
1b’) min Rics (M, gf) (sy51 (M, g¢ ) < 25%71? ~ 0.468372.

2
1¢’) minRicy (M, gft) - (sysl (M, gf)) < s*r? ~ 0.234172.

2') minRics (N, gf) - (sys1 (V,9f) )" < (S22 22 131761,

2b’) min Ricg (N,gf) . (sysl (N,gg))2 < ( 4‘2"5 )7‘(‘ ~ 0.35972.

< (42 72 ~ 0.17957.

o
O\
N~—
2
=
&
o
V)
—
2
K
5
~
—~
w
<
%
._.
/N
2
Q
ey
~
~
(V]
A

where v € (0,1) satisfy 75 + 6r* — 19r2 +8 = 0 (r ~ 0.7143) and s € (0,1) satisfy

s5 — 251+ 952 —4 =0 (s ~ 0.6956).

Theorem 1.6 below displays less understandable but more precise bounds on the product

min Ricy, - (sysy)? for k = 2,3,4:



Theorem 1.6. For allt € (0,1),

. . 2 . _$2 4_ a2
la) min Ricy (M, gf) - (sysl (M, gf)) < min {4 =, W} 24272,

2
1b) min Ricg (M, g¥) - <sysl (M, g,?)) <m {t2 %} - 222,

. . 2 . 2 o442
1c) min Ricg (M, gf) - (sysl (M, gf)) < min {%, W} - 2t% 72,

2a) min Ricy (N, g{) .

<sysl (N,g{) )2 < mln{42t27 4t‘1t246_1512+6} <t2 1) T
2b) min Rics (N, gtf> . (Sy Z) )2 <m {t2 4té2it12+4} . (tQ;rl) T

2 winfis (1) o () i (5. St (52)

n
it
N
)

RESEARCH CONCLUSION
We improved Wilhelm’s bound on min Ricy, - (sys;)? restricted to the families

{(M, 9¢) ’ 0<t< 1} and {(N, g{) ‘ 0<t< 1} of Riemannian manifolds.




1.2.2 When Cheeger Deformation and Canonical Variation Coincide

Under certain assumptions, Cheeger deformation and canonical variation coincide:

Theorem 1.7. Let (M, gnr) be a Riemannian manifold. Let G be a compact Lie
group that acts isometrically on M. FEquip G with a bi-invariant metric gy, and
let gp be the Cheeger deformed metric on M defined in Definition 2.4. Suppose the
generalized Petersen- Wilhelm hypothesis is satisfied (Definition 2.16). Then for each

peM,

1) The intrinsic metric on G(p) is normal homogeneous.

2) gelp s canonical variation with respect to 7 : (M, gar) 23, (M/G,g) with rescal-

ing factor p%g where A\, is as in Corollary 2.18.
P

When we add to Theorem 1.7 the assumption that the orbits of G ~ M are totally geodesic,

we get a more impressive result:

Theorem 1.8. Assume the same setup as in Theorem 1.7. If the orbits of G ~ M

are totally geodesic, then M\, in Corollary 2.18 is independent of p. That is, gy is

canonical variation with respect to m : (M, gar) 23 (M/G,g) with rescaling factor
62
JZED




1.2.3 An Optimal Lower Bound on Ricy

In our effort to calculate min Ricy, we discovered the following optimal inequality:

Theorem 1.9. Let (M, gnr) be a Riemannian n-manifold with n > 4. Let p € M.
For all unit v € T,M, k € N such that 2 <k <n — 2,

min Ricg(x; @) = Ric(z) — max Ric,—1_(z;e)
where the minimum is taken over all orthonormal k-frames orthogonal to x and the

mazimum s taken over all orthonormal n — 1 — k frames orthogonal to x.

Remark: It is notable that M need not be be compact nor complete for the conclusion of

Theorem 1.9 to hold.

n—1

Proof. Let p € M and x € T,M satisfy |z|;,, = 1. Then Ric(x) = Zsec(x,ei) where
i=1

{ei}?:]l is an orthonormal basis for the orthogonal complement of z, which we denote zt.

For1<k<n-2,
n—1—k

n—1 k
Z sec(z, ;) = Zsec(w,vj) + Z sec(x, up)
i=1 j=1

(=1



where {vj};?zl is any collection of k vectors from {e;}?={" and {u,}}= 7" are the remaining

vectors. Thus,

Z sec(x, uy)

n—1—k
/=

k
Ric(z) =) sec(z,v;) +
j=1 1

= Ricg(z;v1,v2, ..y vg) + Ricn_1-g(z;u1, u2, .o Up—1-1)

= Ricg(x;v1,v2,...,v;) = Ric(x) — Ricy—1—g(z;u1, ug,y ooy Up—1—k)-

Fixing x, the equation above implies Rick(x;v1, ve, ..., vi) decreases as
Ric,—1-g(x; uy, ug, ..., up—1—k) increases. That is, for any particular z,

Ricg(z;v1,v2, ..., vk) > Ric(x) — max Ric,_1_(z;e).

This bound is optimal for k = 2,3, ...,n—2. Indeed, for all values of k, Ricy(x;e) is a contin-
uous function on the compact space Gry, (iL'J‘) (see Definition A.3 and Theorem A.4), which
implies max Ric,,_1_1(z; ®) is attained by some (n — 1 — k)-frame {w1,wa, ..., w,_1_1} C x+
(see Theorem A.5). If we complete this to an orthonormal basis

{2, w1, w2, oo Wno1-k, Y1, Y2, s Yk}
for T, M, then

Rle(IE, Y1,Y2, 7yk) = RIC(CC) - RiCn_l_k(.’E; w1, w2, --"wn—l—k)-

It follows that
min Ricg(x; @) = Ric(z) — max Ric,—1_(z;e)
where the minimum is taken over all orthonormal k-frames orthogonal to # and the maxi-

mum is taken over all orthonormal n — 1 — k frames orthogonal to z. |

10



Chapter 2:

Background

2.1 Riemannian Submersions

Riemannian submersions play an important part in defining Cheeger deformation and

canonical variation (see Section 2.2.1 [Step 3] and Definition 2.12).

Definition 2.1 (page 5 in [10]). A map F : (M, gn) — (B, ¢p) is a Riemannian

submersion if and only if

1) F is a submersion

2) For each p € M, de‘ker(de)J_ is a linear isometry.

Definition 2.2 (9.7 in [1]). Let F': (M, gxr) — (B, gB) be a Riemannian

submersion.

1) VF =ker(dF) is the vertical distribution of F.

2) HE = ker(dF)* is the horizontal distribution of F.

11



Remark: Vectors in VI are tangent to the fibers of F', and vectors in #!" are perpendicular
to the fibers of F.

Remark: When the submersion is clear, we sometimes denote V' by V and H! by H.

Let G be a group acting on a Riemannian manifold (M, gas) on the left. Recall that G
acts freely on M if and only if ap = p for some p € M implies a = e (see page 162 of [4]),

and G acts isometrically on M if and only if for all a € G, f, : (M,gpm) — (M, gnr)

defined by p +— ap is an isometry (see page 23 of [5]). Theorem 2.3 below is vital for defining

Cheeger deformation (see Section 2.2.1 [Step 3]).

Theorem 2.3 (Theorem 5.6.21 in [10]). Let (M, gar) be a Riemannian manifold. If
a compact Lie group G acts freely and isometrically on M, then the quotient manifold
M/G can be given a Riemannian metric g so that the quotient map F : (M, gnr) —

(M/G,79) is a Riemannian submersion.

2.2 Deformation of a Riemannian Manifold

2.2.1 Cheeger Deformation

Let (M, gar) be a Riemannian manifold. Let G be a compact Lie group that acts isometri-

cally on M. Equip G with a bi-invariant metric gp; (see Theorem A.6). Let ¢ > 0.

12



The following algorithm was developed in 1973 by Cheeger in [2]:

STEP 1:| Equip G x M with the product metric £2gp; + gnr.

STEP 2:| Let G ~ (G x M) on the left by a(b,m) = (ba™!, am).
Remark: This action is free and isometric.
Remark: Every orbit of this action has a unique point of the form (e, p), so we can suppose

vectors in T'(G x M) are based at (e, p) for some p € M.

STEP 3:| Equip the quotient space GEM with the metric gy that makes the quotient map

q: (G x M, gy + gu) — (GXTM,gO a Riemannian submersion (see Theorem 2.3).

Remark: The quotient space GEM is diffeomorphic to M (see Theorem A.7).

Definition 2.4. {(M, ge) | € > 0} is a family of Cheeger deformations of

(M7gM)

The following two results describe the quotient map ¢ and its differential dg(c):

Theorem 2.5. (1.2 in [11]) The quotient map q : G X M — M can be identified
with the action map from G ~ M. That is, q(a,p) = ap for alla € G and p € M

(see Theorem A.7).

13



Theorem 2.6. (1.0.3 in [13]) Let p € M and v € T,M. Let g be the Lie algebra of
G. Then for oll k € g,

dq(epy (k,v) = Kprp(k) + v.

Next, we identify Vge )"

Definition 2.7 (1.0.1 in [13]). Let p € M and g be the Lie algebra of G. Define

d
Kyp:g—TM by k— %exp(tk)p‘tzo.

Remark: Ky is linear and takes k € g to the value at p of the Killing field generated by k.

Theorem 2.8 (3.0.2 in [14]). Let p € M and g be the Lie algebra of G. Then

Vew = {(= b Knpl0) [ £ € 0}

To prove Lemma 4.1 later in this document, we rely on the following definitions:

Definition 2.9 (page 22 of [14]). Let p € M and v € T,M. Let g be the Lie algebra

of G. Define vy € g x T,M to be the vector satisfying
1) @y is horizontal with respect to q : (G x M, gy + gn) — (M, gg)

2) g projects to v under d(projps)(ep) : 8 X TpyM — T, M.

14




To better understand vy, write U1 = (¥y, Uar) where Uy is the g-component of ¥, and Uy is
the T),M-component of ;. By Condition 2 in Definition 2.9, Up; = v. Denote 9y by K, (v).

By Condition 1 in Definition 2.9 with ¢ = 1, we have for all k € g,

(g + 930 (71 (= b Kaap®)) ) 220 = (g gan) (o)) (= b Kaalh)) ) =0

— gbi</£p(v),k> = gM(v,KM,p(k))

Definition 2.10 (page 22 of [14]). Let g be the Lie algebra of G. For all p € M,
Kp : Ty M — g is defined implicitly by the fact that for all k € g,

i (Fap(v), k) = guM (v, KM,p(k)).

Remark: kp is linear (see Proposition 2.1 in [13]).

Then for all £ > 0, v, = (Lzz(f—),v) since gbi(ﬁp(v),k) =gm (U,KMJ,(k)) —

gy (f#, k) =gm (v, KMm(k)).

Definition 2.11 (page 22 of [14]). Forpe M v € T,M, and { > 0,

15



2.2.2 Canonical Variation

Definition 2.12 (Definition 9.67 in [1]). Let F': (M, gn) — (B, gB) be a Rieman-
nian submersion. Let u,v € V¥ and x,y € H¥. Suppose t € R satisfies 0 < t < 1.

The canonical variation g; of the metric gy is defined by setting

1) gt(U, U) = t2gM(ua ’U)
2) gi(x,y) = gm(z,y)

3) gi(u,z) =0.

Canonical variation has a number of useful properties:

Theorem 2.13 (9.68 in [1]). Let F': (M, gn) — (B, gB) be a Riemannian submer-
sion and (M, g;) be the canonical variation of (M, gyr) with respect to F. Then for
allt € (0,1),

1) F:(M,g:) — (B,gB) s a Riemannian submersion.

2) HE is the same (independent of t).

3) If the fibers of F' are totally geodesic with respect to gyr, then they are totally

geodesic with respect to gy.

16



The following theorem describes how V9 compares to VIM:

Theorem 2.14 (Lemma 2.2 in [8]). Let F' : (M, gnr) — (B, gp) be a Riemannian
submersion and (M, g;) be the canonical variation of (M, gn). Let UyW € V and
X,Y € H. Then for allt € (0,1),

1) VWU = VWM.

2) HVEU = 2HVIMU.

3) VIY = VY.

4) VWEW = VMW,

2.2.3 Interpolating Between Cheeger and Canonical

Ly,

For each p € M, we can decompose the Lie algebra g of G as T.G), ® (T.Gp) ™ =g, ®m,

(the notation here is adopted from [13]).

Theorem 2.15 (Proposition 2.1 in [13]). For each p € M, K p|m, : mp — T,G(p)

s a linear isomorphism.
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Definition 2.16. Let (M,gy) be a Riemannian manifold. Let G be
a compact Lie group that acts on M isometrically. Equip G with
a bi-invariant metric gy and let g be the Lie algebra of G. The

generalized Petersen-Wilhelm hypothesis is satisfied if and only if for all

p € M and for all ki, ks € my, gui(k1, k2) =0 = gur (Karp(kr), Karp(ke)) = 0.

Remark: This is a generalization of assumption (1.5) in [11], which requires for all p € M and
for all k1, ks € g that gi(k1,k2) = 0 = gur (Karp(k1), Karp(ks)) = 0 holds. Definition
2.16 is a generalization of (1.5) in the sense that every action G ~ M satisfying (1.5) also

satisfies Definition 2.16, but not the other way around.

Lemma 2.17. Let (V,(,)v) and (W, (,)w) be inner product spaces of dimension n.

Let L: (V,(,)v) — (W,{,)w) be a linear isomorphism with matriz representation

_)\1 0 --- 0_

0 X - 0
0

0 0 - \

If for all vi,v2 € V, the implication (vi,va)y = 0 = (L(v1), L(v2))y, = 0 holds,

then)\lz)\gz---:)\n.
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Applying Lemma 2.17 to Ky p|m,, we conclude that actions satisfying (1.5) in [11] must also
satisfy for all p € M either G, = G (Kpp = 0) or Gy, = {e} (Kuyp = Kyrplm,)- Indeed, if
dim(g) = n and dim (TpG(p)> = m < n, then Ky, is an m x n matrix with n —m zero

columns (Kjplg,) and an m x m diagonal submatrix (Kps,p|m,):

_O 0 A O 0_

0 0 0 A 0
0

0 0 0 O A

Then n x 1 vectors (1,0,---,0,1,2,3,--- ;m — 1, m) and

n—m m

(-1-2-3—---—=(m—=1)—m,0,---,0,1,1,--- ,1) are perpendicular, but their

n—m m

respective images m x 1 images (A, 2,3\, -+, (m — 1)A,mA) and (A, A\, A, -+, A, \) under

K p are not, so (1.5) is not satisfied.

Proof. (of Lemma 2.17) (by induction) Let By = {v1, v, ..., v, } be an orthonormal basis for
V. By assumption, L(v;) L L(v;) for all i # j, so {L(v1), L(va), ..., L(v,)} is an orthogonal

basis for W, and By = {wy, ws, ..., w, } where w; = % is an orthonormal basis for V.
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It follows that the matrix representation for L is

_)\1 0 - o_

0 Ay -+ O
0

0 0 An

where A\; = |L(v;)|w. We proceed by induction.

Base Case: Take v1,vy € By and consider vectors v1 4+ vy and vy — vg. Since (vy + v, v1 —

va)y = 0 implies (L(vy + v2), L(vy — v2))w = 0, we get

<L(1}1) + L(Ug), L(Ul) — L(U2)>W =0
— <)\1w1 + Aowo, Mqwy — )\2U)2>W =0

— <)\1w1, /\1w1> — <)\2w2, )\21U2>W =0

w
— M- \=0

= o = 1+A] = Ay = A because we can replace wo with —wsq if Ao = —A1.

Induction Assumption (TA): Assume A\ = Ao = -+ = A1 = A\

Consider the orthonormal basis By = {v1,vs,...,v,} for V. Let v € span{vy,va,...,vp—1}
v

and consider vectors
vl

+ vp, — v, € V. These vectors are orthogonal, so their im-

lvly

ages L (L + vn) and L (L — vn) are also orthogonal by assumption.

v v[v

20



Thus,

R Gt

— —|L)liy — [L(va) iy =0
‘U‘V

1A) 1
L Xl — L)y =0

|U|V

1

== )\2\1)]%/ — \)\nwnhz,v =0

vl§,
— XX =0
= A\, = A =— )\, = A because we can replace w, with —w, if A, = —A. [ |

Corollary 2.18. Assume the generalized Petersen- Wilhelm hypothesis is satisfied.

Then for each p € M, there exists a constant \, € R such that for all k € m,,

|KM,p(k)‘gM = Ap‘k|gbi'

Proof. Apply Lemma 2.17 with (V, (,)v) = (mp, gni), (W, (,)w) = (T,G(p), gm), and L =

K plm, (see Theorem 2.15). [ |

We are now equipped to prove Theorems 1.7 and 1.8.
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Proof. (of Theorem 1.7)
(1) Let p € M. By Theorem A.8, F}, : G/G) — G(p) defined by aG, — ap is an equivariant
diffeomorphism. By the definition of an equivariant map (see Definition A.9), there is a

commutative diagram

where a € G, 0, is the map bG), — abG), corresponding to the action G ~ G/G), and ¢, is
the map bp — abp corresponding to the action G ~ G(p). Differentiating, we generate the

following commutative diagram.

(dFp)ecy]
(T[er] G/Gp7 gnh,p) il (TpG(p), gm)
A6e)iecy | | dtears
(T[aG’p} G/Gpa gnh,p) (d—[]> (TapG(p)a gM)
p)[aGp

where gnp, , is the normal homogeneous metric on G/G), induced by the submersion (G, gni) —

(de)[er] KM,p|mp

G/Gp. We can identify (Ti.q,|G/Gp, gunp) —— (TG (p), gn) with (my, gui)
(T,G(p),gm), so Theorem 2.15 and Corollary 2.18 together imply that—after a rescaling
on gpi—(dFy)eq,) is a linear isometry. Since G/G)p and G(p) are homogeneous Riemannian
manifolds, d(6a)[eq,) and d(pa)p are linear isometries. By the commutative diagram above,
(de)[aGP] is a composition of linear isometries and is hence itself a linear isometry for all

a € G. Therefore, F}, is an isometry.
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(2) See (1.1) to (1.8) in [11].

Since q : (G x M,gu; + gu) — (M, g¢) is a Riemannian submersion, dq, q :
q ( ?p) H(ﬁ,p)

q

(ep)’ decompose g x

(H'(]&p),ﬁgbi + gM) — (Tp,M, g¢) is an isometry. To understand #H

T,M = g & T,G(p) ® (T,G(p) " = (8 x T,Gp) & ({0} x (1,G(p) ™).

It follows from Theorem 2.8 that for all vectors z € (T,G (p))J'gM , (6, x) € H?ep). Indeed,
for all k € g, (Cgui + 9ar) ( (0,2) , (= k. Knip(k)) ) = =i (0, k) + gar (w2, Knrp(R)) = 0.

That is, {0} x (T,G(p) " CH] ).

To find H‘(]e p)ﬂ(g@TpG(p)), let k1 € my and a, b € R and consider vector (akl, bKM,p(kl)) €

g @ T,G(p). For all k € g,

(Cgui + gar) ((akr, bKarp(k)), (=, Karp(k))) =0

= —Caui(ak1, k) + gur (bKarp(kr), Knip(K)) = 0.

If k € gy, then —gu; (aky, k) +gar (bKasp(k1), Karp(k)) = 0 for all ky € my,. If k € my, and
k1 L k, then —%g, (alﬁ, k) + gum (bKM@(kl),KM’p(k:)) = 0 by Definition 2.16. If k € m,

and k7 is proportional to k, then

(Cgui + gr) ((akr, bErp(k1)), (= b Kngp(kr)) ) =0
= —Caui(aky, k1) + gar (bKarp k1), Karp(kr)) =0

= —al’|ky|} +bKnp(k)l;, = 0.

am
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Since k1 € my = |Knp(k1)|;,, > 0, the equation above does not hold when a = 0 (unless

2
‘QJVI

b is also zero, but then (ak‘l, bK M’p(/ﬁ)) = 0, which is uninteresting). Thus,

—al’|ky 2, 4+ b Knrp(k1)2, =0

2
loar

b
= Ll + a|17<]\4,Z,(/<:1)|§M =0

b
= |k gbi + )\|KM7p(k:1)\£2]M = 0 setting o= A
Clk1fg,

|KM7p(k1)‘31u

So with this value of A, vector (kl, )\KMp(k:l)) is horizontal with respect to q. That is,
by ooy e k) | R C MY
TRy IZ, Mp(k) ‘ em, e CHI,

— {(|KM,p(k:) 3Mk7£2|k’3biKM7p(k)) | ke mp} C HY

e?p'

Let X1 = {(IKarp(k)[2, k. CLk[2, Knrp()) | b €my} and X5 = {0} x (T,G(p)) . Then

X1® Xy CHE, and

= dim(m,) + dim ((T,G/(p)) ™)

= dim (T,G(p)) + dim ((T,G(p)) " ) = dim(M) = dim(HZ,).

Therefore,

#He, = { (1Kap ()2, kL2, Ko () | k€ my} e ({0} x (1,G(p) ).
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So for all k € m,, and all z € (T,G(p)) "M,

[Calculation A]

(1Kp W k. IR a0,

2gni+gm

= ‘dQ(e,p) (|KM,P(k) ; k7€2|k’_¢2]biKM’p(k)>‘2

am ge

Kt (1Kap (03, ) + 1k, Kasglb)|

- ‘(ﬁ’k‘?}bi + |KMvp(k)’?1M) KM,p(k)r

ge

2
= (P12, + K0, ) 1Ko (R,

2
K B2k 0PlkI2 K k
— ‘KM,p(k’)P — ‘(’ M7p( )gM 7 ’ ’_%1 M’p( )> Lgnitam

9ge 2
(21k2, + K p(R)]2,,)

_ LI p(R) gy |Elgy; + €Kl gy, B a5 (F) G,

9mMm 9bi

2
(21K, + [Knp(B),,)

. €2|KM7P(k) §M|k’§bi + €4|k|3bi 2
— 2 |KM’P(k) gm
(62“{7’{2%1 + ‘KM,P(k) 2 )

9m

9bi

O, (1K (k) 2, + CIRE,) |
- 2
(2 1k12, + 1K arp(R) 2, )

KMvp(k) ’3]»[

S Y
PRI, + [Rarg ), 2 Wl
s PIKE

1 B Kary ()2
M7
PG+ R, o

0 9
= sl

25



[Calculation B]

(0.2)]

Contan ‘dq(e7p) (6, $> z

¢

R 2
2 | Ky (0) + 2
ge
o 2
- |x|g[
2 o 2
= “r|g( - ‘( ) ) P2guitou - |x’gM'

[Calculation C]

— X
(g + gar) <(|KM,p<k> packs CLEL K p()) (‘)v ew))
Ibi

— X
=g (dq(em) (|KM:P(k)|§A4k’£2|k|§biKM’p(k)) ,dQ(e,p) <0’ 02|k ))

9bi

2.6 =) T
= (KM,p <|KM7p(k:)]§Mk:) + Ik Karp(k), Karp (0) PR )
9bi

T
= 94( (€2|k|§bi + ‘KM,p(kN?;M) KM,p(k)7 €2|k‘\2 >

Ibi
IR, + Ky
52‘k|2

9bi

2
Blase g, (K, (k). 2)

which implies

9e(Eprp(k), )
S Clk|2 . (gngi+gM)<(|KM,p(k)|§Mk7g2|ky§b,KM,p(k)),(67 S ))
¢ ’k|gbi + |KM,p(k) am ' ¢ |k;|9bi
62“{:‘2

9Ibi
= gm (Karp(k), x)
ClkR2, + [Knp(k)2,, "

=0.

26



It follows that for all p € M, there is a constant A, € R* (where ), is as in Corollary 2.18)
such that

o g(v,w) = ﬁgz\/](v,w) for all v,w € V] [Calculation A]

e g(z,y) = gu(w,y) for all 7,y € H7 [Calculation Bj

e g(v,x) = gu(v,z) =0 for all v € V and x € H] [Calculation CJ.

That is, g is canonical variation at each point p € M (see Definition 2.12). |

Proof. (of Theorem 1.8) Let p € M and consider (G(p), gm|r,c(p)). Cheeger deforming

(G(p); gml1,c(p)) With respect to (G, gpi) gives (G(p),gg\Tpg(p)). Rescaling gun|7,c(p) by

ﬁ (where A, is as in Corollary 2.18) gives ﬁgM‘Tpg(p). Both metrics gar|r,q(p) and

ﬁthﬂpg(p) are homogeneous, and they agree at p since g;(v, w) = ﬁgM (v, w) for all

v,w € V] by Part 2 of 1.7. Therefore, they agree on the entirety of G(p), i.e. Ay = A, for
218 |K,p(k)

all p’ € G(p). Since \, = = loas , it follows that for any vertical vector field V' tangent
bi

to M, Dv|KM7p(kJ)’gM =0.
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Furthermore, if x € T,M is m-horizontal and we extend x to a horizontal vector field X

that is basic along an orbit of G ~ M (i.e. a fiber of 7), then for all k € g,

= 29um (va(]\pr(k)KMvp(k)aX> =0
— Dxgur (Karp(k). Karp(k)) = 0 by Kozsul's formula

— Dx‘KMyp(k‘) =0.

2
|9M

So Dv|Knp(k)|g, = 0 for all vertical V € TM and Dx|Kpyp(k)[?

= 0 for all horizontal

X € TM together imply that |Kar,(k)|g,, is constant so that A, from Corollary 2.18 is
independent of p. Hence, the rescaling factor ng_% is independent of p, so gy is canonical
P
62

variation with p-independent rescaling factor eyl |
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2.3 Curvature

2.3.1 Positive Intermediate Ricci Curvature

Definition 2.19. Let (M, gn) be a Riemannian n-manifold. Let k € N sat-
isfy k < n—1. Then M has positive kth-intermediate Ricci curvature, denoted

Ricy (M, gn) > 0, if and only for any p € M, any unit vector v € T,M, and any

orthonormal (k 4 1)-frame {v, e1, e, ..., ex} in T,M, ¥ | secy,, (v, e;) > 0.

Remark: Rici (M, gy) >0 <= sec(M, gpr) > 0.
Remark: Ric,—1(M, gyp) >0 < Ric(M,gp) > 0.

Remark: Ricy(M, gn) >0 = Ricy1(M, gur) > 0.

Some examples of Riemannian manifolds with positive intermediate Ricci curvature: If
(M, gn) and (N, gn) are non-negatively curved Riemannian manifolds, then Ricg(M X
N,gym+gn) > 0for all k& > max{m,n}+1. Specifically, for m > 2, Ricy(S™ x S™,g+g) > 0

for all k > m + 1 so that Rics(S® x S3,g+ ¢g) > 0. By Theorem 1.4, Rica(S® x 53, g¢) > 0.
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2.3.2 A-Tensor

The A-tensor is crucial to curvature calculations within a Riemannian submersion.

Definition 2.20 (page 460 in [9]). Let F' : (M,gn) — (B,gpB) be a Riemannian

submersion. Let Ey,Ey € TM. Then Ag,E2 = VVyg, (HE2) + HVyE, (VE?).

The A-tensor has several useful properties:

Theorem 2.21 (2'in [9]). Let F : (M, gn) — (B, gB) be a Riemannian submersion.

Forany E € TM, Ap = Ayg.

Theorem 2.22 (Lemma 2 in [9]). Let F : (M,gyn) — (B, gp) be a Riemannian

submersion. If XY € HE, then AxY = %V[X, Y].

Theorem 2.23 (3'in [9]). Let F : (M, gn) — (B, gB) be a Riemannian submersion.

If X, Y € HY, then AxY = —Ay X.

Theorem 2.24 (9.21d in [1]). Let F : (M, gn) — (B, gB) be a Riemannian sub-

mersion. If Ve VI and X,Y € HY, then gur (AXY, V) = —gm (Y, AXV)‘
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The following lemma describes how the A-tensor changes under canonical variation:

Theorem 2.25 (Lemma 9.69a in [1]). Let F : (M, gy ) — (B, gB) be a Riemannian
submersion and g; be the canonical variation of gy with respect to F. Let V. € VI
and X,Y € HY. Then

1) A%Y = APy

2) ALV =t2AV.

2.3.3 Formulas

We use several of O’Neill’s curvature formulas stated in [9]. Some of these formulas experi-
ence a change in sign so they are consistent with the sign convention of the (1,3) curvature
tensor as defined in Petersen’s textbook [10]. Furthermore, the Riemannian submersion 7
that we study in this dissertation (see Section 3.2) has totally geodesic fibers (see Lemma

3.12), so we add this assumption to O’Neill’s theorems whenever the T-tensor is involved

(T = 0; see Theorem A.10).

Vertizontal Curvature Equation

Theorem 2.26 (Corollary 1 Part 2 in [9]). Let F' : (M, gn) — (B, gB) be a Rie-

mannian submersion with totally geodesic fibers. Let V€ VI and X € HY. Then

A%V,
SngM(X, V) = W
9mMm am
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Horizontal Curvature Equation

Theorem 2.27 (Corollary 1 Part 3 in [9]). Let F : (M, gn) — (B, gp) be a Rie-
mannian submersion. Let X, Y € T B have horizontal lifts X’,f/ € TM. That is,
X,Y € H and dF (5() =X, dF ()7) —Y. Then
2
3|42y
X gmMm

—ou (X.7)°

secqp (X, Y) = secy,, ()?,17) +—5 3
%,,, 7]

9m

Mixed Curvature Equations (3-1)
Theorem 2.28 (Theorem 1 Part {1} in [9]). Let F : (M,gn) — (B,gB) be a

Riemannian submersion with totally geodesic fibers. Let U, V,W € VI and X,Y,Z €
HE . Then

1) Ry, (U, V,W,X) =0.
2) Ry, (X,Y,Z,V)

= —g3 (VY (AR'Y), V) + g (Alons Vo V) + 901 (AR (VE'Y), V).
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Mixed Curvature Equations (2-2)
Theorem 2.29 (Theorem 3 Parts {2} and {2’} in [9]). Let F : (M, gn) — (B, gB)

be a Riemannian submersion with totally geodesic fibers. Let V,W € V¥ and X,Y €

HE . Then

1) RQM (X7 V? Yv W) = —9Mm (V‘(‘]/M (Ag(MY)v W) + gm (AgM

(vrx) ¥ W)

+ g (AL (VY), W) — g (AR'V, AW,

2) Ry, (V, W, X, Y) = —gut (V" (ALY ), W) + gu <A<VQMX)Y W)
+ gn (AR (VEY), W) + gur (VI (A21Y), V)
— g (A(ngX)Y v) — g (AR (ViY), V)

—gm (A‘)’(MV, AP W) +9m (AﬁgM W, AP V) :

Theorem 2.29 (above) can be simplified if X,Y € H! are assumed to be basic. Recall that
if F: M — N is a smooth map between smooth manifolds, then X € TM and Y € TN
are F-related if and only if for each p € M, dF,(X;) = Yp(,) (see page 182 of [4]). Let
F :(M,gnm) — (B,gp) be a Riemannian submersion. A vector field X on M is basic if

and only if X € H and is F-related to a vector field Y on B (see page 460 in [9]).
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Theorem 2.30 (Theorem 2.29 with Basic Assumption). Let F': (M, gnr) — (B, gB)
be a Riemannian submersion with totally geodesic fibers. Let V,W € V¥ and X,Y €
HE be basic. Then

1) Ryp (X, V,Y,W) = —gur (V¥ (AR'Y), W) — gar (AP1V, AR W)

2) Ry (V,W, X, Y) = —gus (V4 (ALY), W) — gur (A1, AR W)

+ gn (VI (AR1Y), V) + gur (AP W, ALV,

The proof of Theorem 2.30 uses the following fact:

Theorem 2.31 (Proposition 4.5.1 Part (1) in [10]). Let F : (M, gn) — (B, gB) be

a Riemannian submersion. Let V € VI and X € HT be basic. Then [V,X] € VI,

Proof. (of Theorem 2.30) Since X,Y € HI are basic, gy (A*‘(”v/’gMX)Y, W) and
Vv

am (A&M (ViMY), W) can be simplified as follows.

p 2.21 g
gar (A(Aégva)Ya W) - (A&V%MX)Y’ W>
2.23 gM gm
=0 g (A (HVIY X)), W)
N —gar (AP VRV + HIV. X)), W)
2.31 gM gm
= g (ASM (MY V), W)

2 g0 (HVRV, APW) P2 gop (ARV, AW
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gu (AL (VY)W ) = gar (V (AR (VEY)), W)
2.20 gum M
= gu (V(AY' (HVP'Y)), W)
=gm (V (AR (HV§MV)), W) by work above, which shows that
AP (HVPIX ) = AP (HVLV)
= g (AR (HVMV) W)

= —gur (HVPV,ALW) =2 —guy (AP, AQTW) .

So Ry, (X, V,Y,W) %2

—qum (vg/M (AR1Y), W) +9m <A?g€/MX)Y, W>
+ gn (AR (VRY), W) = gar (AL, AP1W)
= —gur (VM (ARTY), W) + gus (AR1V, AP1W)

— gur (APVARW) — guy ALV, AP W)

= gt (VI (AL1Y), W) = gar (APV, AQIW)
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and Ry, (V. W, X,Y) 2 g0y (V0 (A9Y). W) + gar (4020

v.w)
gur (AL (VY)W ) + gr (V! (AR1Y), V)
(AgggM OV V) = g (AR (V) V)

— gur (ALV, APTW ) + gug (AW, APV
= —gut (VI (AQY), W) + gug (ALY, APTW)
— gt (APTV ALTW) + gu (Vi (AR1Y), V)
— gu (AW, APV + g (APTW, APV
— gur (AQTV, APTW ) 4 gag (AR1W, APV
= —gr (VI (AR'Y ), W) — gar (APV, AL1W)

+ gn (VI (ALY), V) + gar (APIW, ARV
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Chapter 3:

Deforming (S° x S°%,g + g)

3.1 Cheeger Deformation of (S® x S3,g + g)

This section corresponds to Section 2.2.1. Let g be the usual metric on S3 and £ > 0.
STEP 1:| Equip S x (52 x $3) with the product metric £2g + (g + g).
STEP 2:| Let S ~ <S3 x (83 x 53)) on the left by a:(y, (p,m)) = (y:n_l, (zp, :nm))

AT
STEP 3:| Equip the quotient space w &~ §3 x 83 with the metric g, that makes
the quotient map gq : (53 x (83 x S3),02g + (g +g)) — (W,ga > (83 x 83, g0) a

Riemannian submersion (see Theorem 2.3).

Definition 3.1 (see Definition 2.4). Then {(5’3 x S3,90) | £ > 0} is a family of

Cheeger deformations of (S® x S3, g+ g).
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Definition 3.2 (see Definition 2.7). Let 5 = Im(H) be the Lie algebra of S® and
(N1, N) € 83 x S3.
KS3><S3,(N1,N2) 15 — T(Nl,Ng)(S3 X 53)

d
a Eexp(ta)(Nl,Ng)‘t = (aN1,aN).

Lemma 3.3 (see Theorem 2.8). Let (N1, No) € S3 x S3. Then

Vgl,(Nl,Nz)) = {( - a, (aNl,aNg)) ‘ a€s= Im(H)} .

Lemma 3.4 (see Definition 2.10). Let (N1, N2) € S% x 83 and o, 8 € 5 = Im(H).

Then K‘(Nl,Ng) ((OéNl,BNg)) =+ ,B

Proof. For (N1, N3) € S2 x 3 and «, 8 € s,

K(N1,N2) ((OZNL ﬁNQ)) = H(Nl,N2)< (CVNL 6) ) + HJ(NI,NQ)( (6, ,BNQ) )
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Let v € s = Im(H). Then

g(H(Nl,N2)< (aNh(j) )/Y) 2 (g+ 9)( (aN176) ; ('YNL'YNQ))

= g(f’v(Nl,Ng)<(OéN1, ,7 = g(aN1,vN1)
la? if vy =«
— g(’i(Nl,NQ)(<OlN17

ifvla

<~ ,{'(NI,NQ)((QN17 = Q.

Similarly, IQ(NLNQ)( (6, 6]\72) ) = p. |

Definition 3.5 (see Definition 2.11). Let (N1, No) € S3 x S% and o, 8 € 5 = Im(H).
a+p

Then for all £ > 0, vg & ( (aN175N2))

3.2 Canonical Variation of (8% x S3,g + g)

This section corresponds to Section 2.2.2. Consider the left diagonal action of S on S3 x §3

given by p(N1, N2) = (pN1,pNa). Since
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e S3is a closed Lie group

o fp:(SP xS g4g9)— (S*xS5%g+9)

given by (N1, N2) — (pN1,pN3) = Lp((Nl, NQ)) is an isometry for all p € S3, and

e the diagonal S3 action on S3 x S2 is free,

there is a Riemannian metric g on the quotient manifold SZE{? ® =~ 93 that makes the quotient

map 7 : (S3x 83, g+g) — (Si%si?’ = 83,§> a Riemannian submersion (see Theorem 2.3).

Lemma 3.6. Let 5 = Im(H) denote the Lie algebra of S3. Then for all (N1, No) €

3 % 8%, Vi, Ny = {(@N1,aNs) | a €5}

Proof. Let (N7, N2) € S3 x S3.

V(ﬂ-Nl,Ng) = ker (dﬂ-(Nl,Ng))

= {U € Tiny np) (57 x 8%) ‘ dm(ny Ny (V) = 6} 2 T(Nl,Ng)(Sg(NlaNQ))'

Since dm(n, ny) T(NI,NQ)(S?’ x %) — TW( 53 is linear, the Rank-Nullity Theorem

(N1,N2))

implies dim (V(WNLNQ)) =6—3=23. So T{n;,n) (5’3(N1, NQ)) is a 3-dimensional subspace

of a 3-dimensional space V(”Nl’ No)» which means Ty, n,) (53(N1, N2)> = VZTNL Na)* [ |

Lemma 3.7. Let s = Im(H) denote the Lie algebra of S3. Then for all (N1, No) €

3 x S%, Hiy, wp = {(aN1,—aly) | a € 5},
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Proof. Theorem 2.13 Part 2 tells us that H is independent of ¢, so we will calculate H?Nl Na)

with respect to g + g.

Let W = {(OéNl,—OéNg) | v € 5}. Recall that Vi, v, 0 {(BNl,ﬂNg) | B € 5}. Since

(9 +9)((0N1, —aNa), (5N175N2)> =0forall a,f €5, W CHiy -

Then dim(W) = dim(s) = 3 = dim <H7(TN1,N2)) = W ="M\, n) "

Definition 3.8 (see Definition 2.12). The canonical variation g; of g+ g on S x S3
with respect to the Riemannian submersion m is defined for all (N1, N3) € S3 x S3
and a, B € s = Im(H) by

1) g:((aN1,aN2), (BN1, BN:)) = 2(g + g) (a1, aNz), BNy, BN) )

2) gi((alNi,—aNa), (BN1, —BN2)) = (9 + g) (a1, —aNz), (BN1, —BNz) )

3) gt((OZNl,OéN2)7 (BN, —5N2)> =0.

Lemmas 3.9 and 3.10 below are necessary for curvature computations:

Lemma 3.9. Equip S with its usual metric g. Let o, 8 € s = Im(H). Consider the
vector fields on S3 defined by V,, : N — aN and Vg : N+ BN. Then

V%ﬂVa = ViyaN = (a x B)N.
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753

((Re(aB) +Im(aB))N)

= (Re(af)N)™ + (Im(aB)N )T = 0+ Im(aB)N 2* (a x B)N.

183 tan. to S3

Corollary 3.10. Equip S®x S® with its usual product metric g+g. Let a, 3,7, € 5 =
Im(H). Consider the vector fields on S3x S3 defined by Vo5 : (N1, Na) = (N1, BNo)
and Vs : (N1, Na) = (vN1,0N32). Then

1) Vi Vg = VI 5 (@1, BN2) = ((@ X 7)N1, (8 % 6)N; )

2) [VysVag] = [(YN1,6N2), (@1, BNp)| = (2(e x ¥)N1,2(8 x 8)Ny).

Proof.

Vi Vas = VN, o8z (@N1, BN2)

— (vgNlaNl, Vo, BNz) 9 ((a x v)N1, (8 x 6)N2).
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[VwWwJZ[wNLéNﬁJaNLBNg]
O v (N1, BND) — VIS o (yNy, ON)

= ((a X v)N1, (8 x 6)N2) — ((fy X a) Ny, (0 % ﬁ)N2) by calculation above

:(mawaLuﬁxaNg. ]

Lemma 3.11. The quotient S* at the base of the Riemannian submersion 7 : (S3 x

S3,9+g) — S xS% o =~ §3 G) has constant curvature 2.
TAS3

Proof. Let vi,v9 € TpS3. Then vy, vy have horizontal lifts v = (aNy, —aNy) and vy =

(BN1,—BN2) in Ty, n,)(S? x §?) and

secg(v1,v2)

= secy (dﬂ'(Nl,Nz) ((aNl, —aN2)> » AT (N, No) ((ﬁNl, ,8N2))>

2 secgsg (a1, —aNy), (BN1, —BN) )

+ 2

+
|(aN1, —aN9) |2, - |(5N17—5N2)|3+g—(9+9)((04N1,—04N2);(5N17—5N2)>2

1 3 2
- Zcu]wm((azvl, —alNy), (BN, =BN2) ) + 5 [ALG, oy (BN, —BNo)|

g+g
1
4 7 ‘VV —aNa,—aNz) (—BNa, 5N2)‘g+g
33:601 2(Bx N Bx M) =1+2@) =2 -
2 4 b 2 g+g 2 4 '
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[ Lemma 3.12. The fibers of m are totally geodesic with respect to g for allt € (0,1). ]

Proof. Since the fibers of 7 are submanifolds of S® x S3 (see page 459 of [9]), we can
apply Theorem A.10. Let E,F be arbitraty vector fields on S® x S3. Then for some

v, 3 € 5 =Im(H) and (N1, Na) € S® x S3, VE 2 (N7, vN»), and

3.6
F=VF +HF* (aNy,aNy) 4 (BNy, —BNa)

= (aN1,aNy) + ((B* + BX)Ny, (8% + )Nz )

= (N1, aNo) + (B“Ny, —B*No) + (BT*N1, —B+*Ny).

So TEH9F “2" HVII(VF) + VWi (HF)

= HV?;F]\%WNQ)(@Nh alN2) + VV?;L]\’;WNQ) ((/BO‘NL —B%Na) + (B N1, —/BMN2))

== Hv?’j]\g}h'yNg)(aNb aNQ) + VV?,;FI\%I’,YN2)(IBQN1’ _BQNQ)

+ VR agy (BT N1, =B No)

(0 x )N (0 x ) Na) £ V(87 x N1 (57 x )0Ve)

+ V((BL‘Y X 7) N1, — (B x 7)N2)

o
B\ [=>)

= (.

Then by Theorem 2.13 Part 3, we get that 7' = 0 with respect to g; for all ¢ € (0,1). |
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3.3 Cheeger to Canonical (83 x S3,g + g)

This section corresponds to Section 2.2.3.

Lemma 3.13 (see Theorem 1.8). The Cheeger deformation of (S°x S3, g+g) defined
in Section 3.1 is canonical variation with rescaling parameter t* = %. That is, for
all (N1, N2) € §2 x S3 and o, B € 5 = Im(H),

1) gf((aNlaaN2)7 (5N1,5N2)> = %(9 +Q)((0¢N1,04N2): (ﬁNl,BNz))

2) ge((aN1,—aNs), (BN1, —BN2)) = (g + 9)((alN1, —aNz), (BN1, —N3))

3) ge((aNl,OéJ\@), (BN, —5N2)) =0.

Proof. This follows from Theorem 1.8. The Cheeger deformation of (S3 x S3, g+ g) defined
in Section 3.1 satisfies the generalized Petersen-Wilhelm hypothesis (Definition 2.16) since

for all a, f € s = Im(H) such that o L, S,

3.2

(9+9) (KS3XS3,(N1,N2)(a)a K53x53,(N1,N2)(5)> = (g+g) ((OéNl, aN3), (BN, ﬁNz))

= g(aNy, BN1) + g(aNa, BN3) = 0.

The fibers of 7w are totally geodesic by 3.12.

45



Furthermore, for all v € s = Im(H) satisfying |y|, = 1,

2

‘KS3><S3,(N1,N2)(’Y)‘52;+9 - 7N177N2)’52]+g

= g(YN1,7N1) + g(yNa, 7Na) = [yN1 |2 + [7No[; = 2.

46



Chapter 4:

Lemmas and Formulas for Curvature

Calculations

4.1 Zero Curvature

Lemma 4.1. Let s = Im(H) denote the Lie algebra of S®. Let (N1, N3) € S3 x S3
and P be a plane in T(NLNQ)(S?’ x S3). Then for all t € (0,1), secy,(P) =0 <

P = span{(aNl, aNg), (aN, —ozNg)} for some a € s.

The proof of Lemma 4.1 requires the following result:

Theorem 4.2 (Lemma 3.6 in [6]). Let (M,gy) and (N,gn) be positively curved
Riemannian manifolds. A plane P tangent to M x N has curvature zero with

respect to the product metric gy + gy if and only if it can be written as P =

span{ (v,@) , (6, w) } for somev € TM and w € TN.
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Proof. (of Lemma 4.1) Recall Lemma 3.13, which states that (S x S3,¢;) is a

Cheeger deformation (S% x S3, g,) with £? = ff;. With this in mind, assume plane P in

T(NLNQ)(S?’ x S3) satisfies curv,, (P) = 0. Let Py be the horizontal lift of P with respect to

q: (5’3 x (83 x %), g +g +g) — (8% x 83, g¢). Then dq (75[) = P. Decompose Py =
o~ ) ~ 5 211 .

projgs (Pg) + projgsy g3 (Pg) := P + Pum. Then (Py), "= Py and if Py = span{vi,va},

then Pg = span {KJ(NI,NQ)(Ul)a H(Nl,NQ)(W)}-

curvg, (P) =0 = CUIVy2g gty (ﬁg) =0
= curvpe, (Pg) + curvgyy (Py) =0
= Ccurvep, (”(Nl,Nz)(Ul)a R(N17N2)(v2)) =0 and curvgy, (vi,v2) =0

since curv(S3, ¢) > 0 and curv(S® x S3, g+ g) > 0.

curvgig (vi,v2) =0

22 span{vy,va} = span{(aNl,G) , (6, 5Ng)} for some a, f € s = Im(H).
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Then curvee, (R(Nl,Nﬂ(vl), H(NLNQ)(UZ)) =0
— carve (s ((091:0)) v ((6.58)) ) =0
24 curve,(a, B) =0
— B is proportional to a
— Py = span{(aNl, 6) , (6, aNQ)} for some a € 5 = Im(H)

= Pu = span{(aNy, aNs), (aNy, —aNs)} for some o € s = Im(H).

It follows that P = span{(aNi, aN2), (N1, —aN2)} for some o € s = Im(H) since P =

dq (ﬁﬁ) =dq (@e) =dgq (mz) + dq (Me) where

- 3 2a
dq ((OCNl,OéNz)z) £ 4q <£27 (aNl,aNz))

2.6 2c

= Kg3453 (N, Ny) (£2> + (aNy, aNg)

2 2 2 +2

¥ (N1, aN3) + (aNy, aNa) = —— (N1, aNa)

0 02

and dq ((aTl,—a\Ng)K) & dq (6, (aNy, —QN2))

= Kgsxss,(n1,N0) (6) + (aNy, —aNa) = (N1, —aNy).
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By Theorem 2.26,

2
‘A?;Nl,—aNg)(O‘Nl’ aNg)
gt

secgt((OzNhaNz), (aNy, —aN2)) = (@7, —alNo) | (a7, a2, where
A?;Nh—od\b) (aN1, aly) = t2A€IJS\Jf1,—aN2) (N1, aN2)
UV vy (@1, aNy)
L H((a x )Ny, —(a x a)N2) =0
= ’A?;NhfaNg)(aNl?aNQ) zt =0
= Sngt((OéNl,OéNQ),(OéNl,—O[NQ)) = 0. [ |

4.2 Vertical Curvature

Lemma 4.3. Let g be the usual metric on S® and (N1, N2) € S3x S3. Let s = Im(H)

denote the Lie algebra of S®. Let o, 8 € s satisfy a Ly B. Then for allt € (0,1),

1

secg, (a1, ala), (BN1, BN2) ) = 75

Proof. Since the fibers of 7 are totally geodesic for all values of ¢ (see Lemma 3.12), the
intrinsic curvature computed in the fibers of 7 and the extrinsic curvature computed in the
ambient manifold S? x S are equal. For this reason, all curvature calculations in this proof

are made in S3 x S3.
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Suppose |a|y = |B]g = 1. Then

secg, ((aNl, aNa), (BN, /3N2)>

= t%secngg((aNl,aNz), (BN, 5N2))
curvg+g<(ozN1, aNz), (BN1, /3N2))
(N1, aNg)[2,, - [(BN1, BN2) |24, — g((aNl,ozN2), (5N1,5N2))2

CUrvgg ((aNl, alNg), (BN, ﬁNg))
t2 2-2—-0

1 1 )
- E(Curvg(aNla/BNl) + Curvg(ozNg,ﬁNg)) = 472(2) =53

4.3 Horizontal Curvature

Lemma 4.4. Let g be the usual metric on S® and (N1, Na) € S3x S3. Let s = Im(H)

denote the Lie algebra of S®. Let o, € s satisfy a 1y B. Then for allt € (0,1),

secgt((aNl, —aNg), (BNy, _BNQ)) —9_ gtz.
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Proof. Suppose |a|s = || = 1. Then

secg, ((aNl, —alNa), (BN, —5]\72))

2.27
= S€Cg (dﬂ'(Nl,Ng) ((Ole, —a’Ng)) y dﬂ-(Nl,Ng) ((BNl, —ﬁNg)))
3‘A€;N1,faN2)(ﬁN1’_ﬁNQ)‘gt

[(aN1, —aN2) |2 - [(BN1, —=BN2)[7, — 9t<(04N1, —aNz) , (BN, —5N2))2

where Sng<d7r(N17N2)((aN1,—QNQ)),dﬂ-(NLNQ)((/BNl?—BNQ))> 311,

and ’ ‘A?;Nl’_aNQ)(BNh —AN) Et
(@i, —aN), - [(8N1, ~BN2)2, — go((@lNy, —aNa) , (BN1,—BN2))
_ z A% o (BN —/31\@)\1
22 ALy (BN1, BN
= % ‘A?;FJ%I,,QNQ)WNL *5N2)Et
= 2|((8 % )Ny, (6 x @) o) zt
_ th (8% )N, (8 x a)V2) ];g - Zt (2) = gﬂ.
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4.4 Vertizontal Curvature

Lemma 4.5. Let g be the usual metric on S® and (N1, Na) € S3x S3. Let 5 = Im(H)

denote the Lie algebra of S®. Let o, € s satisfy a 1y B. Then for allt € (0,1),

2

seCy, ((OéNl, —alNy), (5N175N2)) =

Proof. Suppose |a|, = ||y = 1. Then

secgt((aNl, —aNy) , (ﬂN1,5N2)> 2.26

2.25
|(r, =) [3, - [(B, B)3,

2.20 tt Hvé];rlgfl aNQ)(ﬁNl,ﬂNz)Et
(o )2, - 1. I,

33;70 t4 ((5 x a)N1, —(B X Q)N2) zt
|(a, =) 3, - 1(B, B)I;,

21 4 (( x a)Ny, —(8 x oz)Ng)‘ "

T o0y Pl Ay

_ )

T 2.42(2) 2

2
g
A(;Nl,—aNg)(ﬁNla BNQ) ‘gt

|(c, =) 3, - [(B, B,

2
‘t2A~E’L€,h_aN2)(/3N1, BN2) ‘gt
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4.5 The 3-1 Rules

Lemma 4.6. Let U V,W € V™ and X € H™. Then for all t € (0,1),

R,,(U,V,W,X) = 0.

Proof. This follows from Part 1 of Theorem 2.28 and Theorem 3.12.

Lemma 4.7. Let V € V™ and X,Y,Z € H™. Then for all t € (0,1),

R, (X,Y,Z,V) =0.

Proof.
2.28
Ry, (XY, 2,V) "2 = g (V3 (AYY), V) +:(AGy Y. V) +g: (A (V5Y), V).
| ——
Part (1) Part (2) Part (3)

Calculation of Part (1)

. (1
a(VE(457). V) 2 g (9% (G671 V)

_ % 2, <v92‘ @[X, Y}V> ,v)

1 . 1 ,
=5 2t%(g + g) (V‘?_g <2[X7 YP’) : V) by Koszul’s formula

2 g+ g) (VALY V)
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Calculation of Part (2)

2.21
i (42 YoV ) 2 g (Athe V.V

Calculation of Part (3)

g (AL (VEY), V) = . (V(A%(VEY)), V)

V(VEHVEY)), V)

2.14

(
o (V(VEHIEY)), V)
= Gt (

V(VEH(HYEY)), V)
=2+ g (VI HVEY)), V)

F e (V(AFTEY).V) = £l + o) (457 (TFY) V).
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Let a, 3,7,v € 5 = Im(H). Define vector fields on S% x $2 by X : (N1, Na) — (N1, —aN3),

Y : (N1, Na) = (BN1,—BN2), Z : (N1, Na) = (yN1, —yN2),and V : (N1, N2) = (vN1,vNa).

R, (X,Y,Z,V)

— (g4 9) (VALY + g+ 9) (ALL V)

+#2(g+ 9) (AL (VY), V)

2 Ryg(X,Y, Z,V)
A4 1
4

3.10 %(g +g>((2(u x a)N1, =2(v x a)N2), (2(y x B)N1,2(7 x W\’?))

(9+9)(1X, VLY, 2)) = (g + 9) (X, 2. [V V)

_ %(9 +9)((2(v x @)N1,2(7 x @) Na), (2(v x B)N1, —2(v x B)N2) )

w
o0

4.6 2V-2H Curvatures

Lemma 4.8. Let o, 3,7,v € s = Im(H) be unit with respect to the usual metric
g on S3. Let (N1,N3) € S x S and define vectors in T(N17N2)(S3 x 83) by x =
(aN1,—aN3), y = (BN1,—BN2), v = (vNy,—vN3), and w = (wNy1,wNs). Let - be
the usual dot product on R3. Then for all t € (0,1),

1) Ry, (z,0,y,w) = —=2t3(a x B) - (v x w) —2t* (v x B) - (w X ).

2) Ry, (v,w,z,y) = —A4t2(ax B)- (v xw) =24 (v x B) - (wx a) +2t*(w x B) - (v X ).
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Proof. If V.W € V™ and X,Y € H™ are basic, then

Ry, (X, V,Y,W)*2

—gu(V§(ALY), W) — g1 (A V, ALW) where
gt (VI (ALY), W) = g, (V(V?}(A%;Y)), w)
gt Y% vgt Ag+gy) W)

= oV
2 g (V(VETEY)Y), W)
gt(V vg-f-g V9+9Y) ) W)
= oV

gt V(V g+g g+gy)) W)

=g+ ) (VIVEIALY)) ) = (g +9) (VALY W)

and g, (Agtu Aggw) 225 (tQAi’,J“"V, tQAgng)

2 g (HVGIV HVOW ) 22 i g+ o) (HVETV, HYLHW).
Extend vectors v,w to w-vertical vector fields on S% x S3 defined by V : (Ny, Na)
(vN1,vNg) and W : (N1, Na) — (wNi,wN2) and extend vectors z,y to basic m-horizontal
vector fields X : (pNy,pN2) — (paNi, —palNs2) and Y : (pNi,pN3) — (pBN1, —pSNa).
These vector fields are basic since {(pole, —paNs) | € 5’3} and {(pﬁNl, —pBNy) | € 53}
are orbits under the left diagonal action of S3 on S% x S2, so dr maps each of these orbits

to a single vector, making X and Y each m-related to constant vector fields.
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By Theorem A.15, V¥ (A% 9Y) only depends on ALY along a curve cy () in S3 x S5

that satisfies ¢y (0) = (N1, N2) and ¢}, (0) = (vN1,vNa). For s € [0, 2), define
cy(s) = ((coss + (sin s)v) N1, (cos s + (sin s)u)N2>.

We only need to understand Agjg Y along cy (s), so we only need X|., (5 and Y|, (4. For
notational simplicity, let coss + (sins)v

= pu(s). Then X|. (4 : (pv(s)N1,pu(s)Na) =
(py(S)Oéle py(s)aNg) and Y‘cv(s) : (pV(S)Nl,pV<S)N2) — (py(S),BNb pu(s)/@NQ)

gtg
AX|CV(S)Y|CV(S)

2.20
B VVSEZQ(S)QN1 -p (S)aN2> (pV(S)ﬂNl’ _py(S)6N2)

. T(S3xS3)
- (v (P X(S)OtNl -p (S)aNz) (pl/(S)ﬁNl’ _py<3>ﬁNQ>>

4,04

B Vv{i’l/x(]ia]\/vl _pu(S)CYN2) (pV(s)/BNI’ _py(s)’BNQ)

since V C T(S% x §%) = projy o Projr(s3x53) = Projy

A.16 v (py(s)vﬂ(i;?ia]%) (ﬁNl, —ﬁNg))

1%
= pu(s) (VH(Q;;?AL_@M) (BN, — BNg)) since left multiplication by p,(s) preserves V

%
= pu(s) (V‘z‘:‘i{ o) (BN, —BNg)) since V C T(S3 x §%)

1

w®
o

pu(s)((8 x )N1, (8 x a)N2)

((p(5)(8 % ) PN, (2 (5)(5 % ) 5)) puls) N2
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where

P (s)(B x a)py(s)
= ((cos s+ (sins)v) (8 x a) (cos s — (sins)v)
= (cos 5)%(8 x a) + (cos s)(sin s) (VB x @) = (B x @) — (sins)w(B x a)v
= (cos s)(8 x @) + (cos s)(sin 5) (v(8 x a) = (Fx @)(7)) — (sins)*w(8 x o)y
= (cos5)2(8 x @) + (cos 5)(sin 5) (V(B x @) = (B x )] — (sins)*v(8 x )
= (cos 5)2(8 x a)
+ (cos s)(sin ) (Re(u(ﬁ x @) + Im(v(8 x a)) — (Re(v(8 x a)) — In(v(8 x a))))
— (sin 8)20(8 x a)v
= (cos 8)2(8 x ) + 2(cos s)(sin s)Im (v(8 x a)) — (sin5)*v(8 x a)v

Al3 (cos 5)*(B x @) +sin(2s) (v x (8 x a)) — (sins)*v(8 x a)r.

To simplify notation, let (vN1,vN3) = vN and

(0628 x OBET) 61 V1 (50103 % ) e
- (p,,(s)(ﬁ X oz)p,,(s)) pu(s)N.

Then V9HA9H9yY
= VI (n(5)(B % ) (3)) pu(s)N
= VI3 ((coss)2(8 x @) + sin(2t) (v x (8 x @)) = (sin 5)v(8 x a)v) p,(s)N
"2V (cos (8 x a)p(s)N + VIR sin(20) (v x (8 % @)p(s)N

— VI (sin s)*v(B x a)vp,(s)N
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where V919 (cos s)2(8 x a)p,(s)N

Al ((i(cos 5)2) (B x a)py(s)N + (cos 5)2v§}g(5 X a)pV(S)N)

s=0

=((8xa)xv)N

Vg;g sin(2s) (v x (8 x a))py(s)N

All (((Zs sin(25)> (v x (B x a))p,(s)N +sin(2s) VI (v x (B x a))p,,(s)N)

s=0

=2vx (Bxa)N

and VI 9 (sins)?v(B x a)vp,(s)N

(568 ) v(8 x (N + (sins)PTLE(S x a)opu(s)N )

s=0

= 0.

Therefore, V{9 ALY = (8 x a) x V)N +2(v x (8 x @))N

= (v x (Bx )N = ((vx (B x )Ny, (v x (8 xa)Ny).
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Thus,

Also,

g+ 9) (VAL Y), W)
=129 (v x (8 x @) N1,wN1) + t2g (v x (B x @) Na, wNa)
=" g (v x (B x a)) N1, wN1) + tgga (v x (B x @) N1, whN1)
8921 x (B x a)) - w
419

=" 2% (B xa)- (vxw)

=2t%(a x B) - (v x w).

t4(g + g) (Ag;rg‘/’ Ag;ﬂ]w)
8 oy o )

332170 t4g((V X B)N1, (w x a)N1) + t49((7/ X B)Na, (w x a)N2>
ALT thgpa ((1/ X B)N1, (w x a)N1) + 1 gpa ((V X B)Na, (w X a)N2)

A oy % B) - (w x a).
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So Ry, (z,v,y,w) = —2t%(a x B) - (v x w) — 2t* (v x B) - (w X ).

Similarly, Ry, (v, w,z,y)
2 g (VE(ARY), W) — g (AGV, ALW)
gt gt gt gt
+ 9m (VW (AXY), V) + gt (AYW> AXV)
= (g +9) (VI (ALY), W) — (g + ) (ALHV, AL W)
+ g+ 9) (VI (ALY), V) + (g + g) (AW, ALV
= —2t2(a X [)-(vxXw)— 2t4(1/ X f) - (w %X )

+2t%(a x B) - (w x v) 4+ 2tHw x B) - (v x a)

= 4t*(ax fB) (rxw) =2 v x f) - (wxa)+ 2 wx B) (vxa).
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4.7 The Three Quaternion Rule

Lemma 4.9. Let o, 5,7 € s = Im(H) be perpendicular with respect to the usual

metric g on S3. Consider the basis

(CMNl,OéNQ) (/BNlaﬂN2) (7N17’YN2)

(aN1,—aN2) (BN1,—fBN2) (vNi,—yN2)

Jor Tin, Ny (S? % S%). Then for allt € (0,1), the (0,4) curvature tensor Ry, evaluated

on combinations of these basis vectors such that all three of «, B, and ~y are included

s equal to zero.

Proof. Case 1 (4V 0H)

Case La: Ry, ((,0), (o), (8,6), (7)) Z"0.

Case 1b: Rg‘f((O‘Nh aNz), (BN1, BN2), (YN1,7N2), (OéNhozNz)) =0

Case 2 (3V 1H)

These curvatures are zero by Lemma 4.6.

Case 3 (2V 2H)

According to Lemma 4.8, mixed curvatures of this type depend on dot products in R? of the

form (g1 X g2)- (g3 X q4) where ¢; € s = Im(H). Since there are four positions for quaternions
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in (g1 X q2) - (g3 X q4), it must be the case that exactly one of «, 3, or « is repeated. Suppose
(WLOG) the repeated vector is o and v = v x (3.
Case 3a: (a x ) - (8 x ) =0 since a x a = 0.

Case 3b: (ax ) - (axv) =~v-(axvy)=0since v Ly (a x 7).

Case 4 (1V 3H)

These curvatures are zero by Lemma 4.7.

Case 5 (0V 4H)

[\~

%0.

Case ba: Ry, ((aNb —aNs), (aN1, —aN2), (BN1, —BNa2), (71, *VNz)) E

A.

[\

L. m

Case 5b: Ry, ((aN1, —alNs), (BN1, —BNz), (YN1, =7Na), (aNy, —aNs))

4.8 Curvature of Product Planes

Lemma 4.10. Let (N1, No) € S x S3 and g be the usual metric on S3. Let a, 3 €

s = Im(H) satisfy o Ly . Then for all t € (0,1),

1) secq( (ad3). (5.532) ) = 222
2) Sngt( (aN1,6> , (5N1,6>> =% j_ =
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Proof. Suppose |a|gs = |f]y = 1.

secgt( (a]\&,ﬁ) , (6, 6N2)) To use the curvature formulas we derived in the previous

sections, we must write each of these vectors as a linear combination of a m-vertical and a

m-horizontal vector (see Lemma 3.6 and Lemma 3.7).

(aN176) = 3(aN1,aNz) + §(aNi, —aNy) and ((1 BNQ) = 3(BN1,BN2) — 3(BN1, —BNy).
So

curvy, ((04N17 0), (0, ,BNQ))

— curvy, (oM, alNy) + 3 (oM, ~aNy), 3 (3N, M) - (N1, ~BN2) )
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There are 2* = 16 terms in this calculation, but half of them are zero by Lemma 4.6, Lemma,

4.7, Lemma 4.1, and Theorem A.22, giving

= Rgt (alNy, alNa), (BN, BN2), (BNy, BN2), (alNy, alNy))
1
~ 15 Ra (a1, alo). (BN1, BN2). (BN1, ~BN2), (a1, —aNe)
gt(aNlaaNQ (BN1, —BN2), (BN, BN2), (N1, —aN>

1

)
)
+ Rgt(aNl,aNQ ), (BN1, —BNa), (BN, —BNa), (aNy, aNy) )
+ 16 Ra (@1, —aN2), (BN1, BN2), (BN1, BN2), (al1, —aa))

)

1
_7Rgt (aN1, —aN2), (BN1, BN2), (BN1, —BN2), (aN1, aNo

16}%%( (a1, —aNy), (BN1, —BNz), (BN, BNz), (N1, alNy) )
(OéNh—OéNz (5N1,—5N2),(5N17—5N2),(OéNl,—OéNz)>

gt

= icurvgt ((aNl, aNy), (BN, ﬂNg)) + icurvgt ((ole, —aNs), (BNy, —BNQ))

16 16
1 1

+ ECUI’Vgt ((OéNl, aNs), (BNy, —BNg)) + Ecurvgt ((OéNl, —aNs), (BNy, /BNQ))
1

— éRgt ((OéNl, —C(Ng), (5N1, ﬂNQ), (5]\[1, —IBNQ), (Och, CKNQ))

- éRQt ((aNla aN2)7 (ﬁNh/BNQ)a (/BNla _BN2)7 (aNl, —aN2)>
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B % (aNl’aNQ)‘ZtKﬂNl’BN?”Etsngt((aNlaOZN2), (5N1,,3N2)>

+ 16l (@, —al) (3N, ~ BN )2 secy, (a1, ~ala), (BN, ~6N2))

+ 16 (@N1, N[5, (BN, —B N[5 secy, (N1, aNa), (BN1, —5N2) )

+ el (@NT, —ao) 2 | (BN, 5N:) 2 secy, ((ay, —aNa), (BN, N2))

- %Rgt ((OéNh —aNy), (BN, BN2), (BN1, —BN3), (OéNl,OéN2)>
1

~ gl ((aNlaaN2)7 (BN1,BN2), (BN1, —BNa), (N1, —oaNg))

1
= 1 1(@Ny, aN2)[J + 7 [(aNy, —aNa)[g,

1
= ~t*|(aN1,aNo)[2, , + 1 (N, —aNy)[2,,
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e (o.7) (5,1

ol ) 00 = T T G
’ ’ gt

<1t4 t2+1)( 2 )( 2 )2t4—4t2+2
- \2 2)\t2+1)\#2+1/)  (#2+1)2 °

e (o,0). (%.))

We calculated curvy, (%(aNl, aNy) + %(aNl, —aNg), %(ﬁNl,BNg) — 3(BNy, —BNQ)) :

We need curvy, (%(aNl, aNg) + %(aNl, —aNy), %(ﬁNl,/BNQ) %(,BNl, BNQ)) )

To make this second calculation, we can use the work we did for the first as follows:

T80 (@1, aNa), (N1, BNa), (BN1, BN2), (aVs, ala)) lﬁRg, ((al1,aN2), (BN:, BN2), (BN1, BN2), (a1, @)

[~ R (N1, o), (BN:, BNa), (BN, ~BNo), (2N, —aa)) S Ro (a1, aNy), (BN1, BN:), (BN, ~B1), (@, ~ay))
[~ R (@M1, @Na), (3N, ~BNa), (BN, BNa), (aMi, —aNa) Rg,((aNl aN2), (BN, ~BN2), (BN1, BNz), (N1, —aNN2))
+%Rq,((am,am),(ﬁzvl,—ﬂNz),(ﬁNl ~BNo), (aly,al) ) | g,((aNl alz), (BN1, ~BNy), (BN, —BNz), (aN1, aN;))
+%Rg (@1, —aNs), (BN, BNa), (BN1, BN2), (a1, —aN3)) +1 Rgl (@1, —aNs), (BN, BNa), (BN, BNp), (N, —aN2))
E|1163gz(ﬂva—aNz)-,(ﬂNhﬁNz),(ﬂNl —BN2), (a1, aNz)) \+—Rg‘((aN1 —aN,), (BN1, BNa), (BN1, —BN2), (N1, aNz)
[~ Rac (@M1, ~aNy), (8N:, ~61Ny), (BN1, BNy, (@i, aly)) o Ro (N1, ~aly), (N1, ~BNa), (BN1, BNa), (o, aly))

+ 16 Ra (@M1, ~ala), (BN, ~5N), (8N, ~BN2), (als, —aNy) + 16 B ((@N1, —ala), (BN, ), (BN, ~BN2), (ay, —aly))

So

curvgt((aNl ) (5]\717 ))
) e ) o)

2)(2t%) < ) + - (22) + %<4t2—2t4>
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Chapter 5:

Proofs of Main Theorems

5.1 Minimal Displacement Calculations

Definition 5.1 (page 247 of [10]). Let (M, gar) be a Riemannian manifold and f :

(M, gn) — (M, gar) be an isometry. The displacement of f with respect to ga,

denoted Displ, (f): M — R, is defined by p+— disth< ,f(p)).

Definition 5.2. Let (M, g) be a compact Riemannian manifold and f : (M, gnr) —

(M, grr) be an isometry. The minimal displacement of f with respect to gu,

denoted minDisply (f), is defined by minDispl,, (f) = Z1;r€11]\r/} {DisplgM (f)|p}

Lemma 5.3. Let g be the usual metric on S® and g; be the metric on S® x S from
Definition 3.8. Define a : S® x S3 — 83 x 83 by (N1, N2) — (—=N1,—N3). Then
1) minDispl,, ,(a) = V2.

2) minDisply, (a) = V2t for all t € (0,1).
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Proof. |minDispl,, ,(a)| Let v : [0,1] — 53 x S% be an arbitrary, constant speed curve

in 3 x S3 connecting point (N7, N3) to its antipode (—N7, —N3). Then 7(t) is given by
t = (71(t),72(t)) where v1(t),2(t) are constant speed curves in S® satisfying 1(0) =

N17'71(1) = —Nl,’yQ(O) = N27f)/2(1) — _NQ'

1
Eyra) =5 [ 10A®A50) 2,

1/t 2 1 1 2
=5 | @5 [ pamfar

N =
DN

= By(n) + Eyl2) "2 2 (Lo(m))” + 5 (Lo())” 2

A.23
= Lgi14(v) = \/ 251 4(7) > V2.

That is, for any smooth, constant speed curve (t) in $% x S3 connecting points (N7, Na)
and (=N, =Na), Lyyg(7) > V2. This implies disty 4 (N1, Na), (N1, No)) > /27, which
implies minDispl_, ,(a) > V2. If we choose 71 (t) and ¥2(t) to be geodesics, then Ly 4(y) =

V27, Therefore, minDispl,, ,(a) = V2.

minDisply, (a) | Let o € s = Im(H) satisfy |a], = 1. Define v : [0,7] — 5% x S by

s+ (cos s)(N1, No)+(sin s)(aN1, aNs). Then v(s) is a curve in S% x S connecting (N7, N»)

to (—=N1,—N3), and its length with respect to g; is

La() = [T 1/(9)lads

_ / | — (sins) (N1, No) + (cos ) (a1, aNo)|  ds
0

= /07r [(a, a)v(s)|,,ds = /Owt|(a,a)’y(8)|g+gds = /7r V2 ds = /2rt.

0
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Curve v(s) is minimal with respect to g + g since Ly1,(7) = v2m. If we suppose c(s) is
another constant speed curve in S% x S parametrized on [0, 7], then |c/(s)]g+y > V2 =
17'(5)|g+¢- Furthermore,

[ ()]2, = |c/(s)” + ()]},

= |¢/)V[2, + 1< ()™,

2.12 2 2
= t2|61(8)v{g+g + |C/(S)H|g+g
2 2 2 2
= t2]c’(s)v|g+g+t2|c’(5)H|g+g —t2|c’(s)H‘9+g + |c’(s)H|g+g
21 ()34

= 21(5) 21y + (1= DM, > 2@+ - )M, > 2@ = W)

= |(s)5, 2 W ()5, = Lau(c) > Lg,(7)-

2
’gt

Thus, 7(s) is minimal with respect to g; for all ¢ € (0,1). Therefore, minDispl,, (a) =

Lg,(v) = V2rt. [

Lemma 5.4. Let g be the usual metric on S and g; be the metric on S3 x S from
Definition 3.8. Define f : 83 x 83 — 83 x 83 by (N1, No) — (=N, No). Then
1) minDispl,,(f) = .

2) minDispl,, (f) =7 ’527*1 forallt € (0,1).

Proof. | minDispl . ,(f)| The proof that minDispl , ,(a) = V27 in Lemma 5.3 can easily

be adapted to show minDispl, ,(f) = .
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minDispl,, (f)| Let a € s = Im(H) satisfy |a[; = 1. Define v : [0,7] — S3 x 83 by

S ((cos s)N1 + (sins)aNy, Ng). Then v(s) is a curve in S® x S connecting (N7, N3) to

(=N1, N2), and its length with respect to g + g is

Lgyg(vy / |’7 8)|g+gds

_ / |(— (sins)Ni + (cos s)ole,O)‘g+gds

= /0 |(a'yl(s),0)|g+gds where 71 (s) = (cos s) Ny + (sin s)aN;

:/0 ]a'yl(s)]gds = .

Curve ~v(s) is minimal with respect to g + g since Lgy4(y) = m. If we suppose c(s) is
another constant speed curve in $3 x S® parametrized on [0, 7], then Lyyg(c) > Lyig(y),

which implies by Theorem A.23 that Eq4(c) > Eg44(y). More specifically,

g+g / ‘C |g+gds
10 \V2 T aH 2
_ /0 ()2, s + /0 I (s)M[2, ,ds
A28 T2 a2 T M2
> 2Eg+g(7): 0 h/ (S)‘nggdSZ 0 ’7 (S) |g+gd3+ 0 h/ (8) ’g+gd5

iy s ™ s
— [ st [ Bagds = [T s+ [T (6 s
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Consider the Riemannian submersion 7 : S% x §3 — 5 Agg’ defined in Section 3.2. The

curve 7(7) in the quotient space is minimal since it is a geodesic of length 7/2 in a sphere

with constant curvature 2 (see Lemma 3.11). Indeed,

v§

g oy (71' o )/ A.24

Vgﬂ( )dTF(’)/,)

2.1 —g
= vi]lrr(

LGP
A16 - (Vg+gH7>
1
g+g i _
- (vz(a —a)ni(s )2(04, O‘)’Yl(s))
1 1 1 ) )
3.10 dﬂ( ari(s) x gami(s), am(s) x a’n(s)) — 0

= m oy is a geodesic

0
22 1AMy |2
2 [ an(ef () 2 ds
21 [T
2@ ds
™1 2 _ , 1 1
= [" |5t —aims)| ds since /(s) = (e, a)m(s) + (o —a)n(s)
gt
™1 T
frmd — 2 = —
; 4( )ds 5
2
A.23 m T
= Lg(woy)Qz 5 = Lg(ﬂ'oy)—ﬁ.
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The fact that () is minimal implies

Ey(moc) > Ey(mon)

= /“|<woc>/<s>|§dsz/”|<wov>'<s>|§ds

/ ldr (e \,ds>/ jdr(+/ ()| ds

. /0 dr (¢(5)7) + dr (¢/()") E ds > /(:’dw (v()Y) +dr (+/()%) E ds
B [lutas [

ﬂb

2
v ()] ds
g

2

T 2 T
21 / c’(s)H‘ ds > / ”y’(s)H‘ ds.
0 9tg 0 g+g
2 . 2
d(s)"|  ds © ’y/(s)H’ ds + a. Then
gty 0 gty

eyl s+ [Teer) RO
c (s ’ ds+/ (s ds>/ ~¥( ds+/ ~¥( ds
/0 ( ) e ) g+g | g+g g+g
* Q 2 2 2
L c(s)V’ ds+/ 7( 7“‘ ds+a2/ 'y/sv
g+g g+g 0 g+g g+g
2 2
V ds+a > / ’y’(s)V’ ds
g+g 0 g+g
o [T av]? 2 (M|
=t (/ c(s) ‘ ds—i—a)Zt/ v'(s) ‘ ds
0 gtg 0 gty
T ool v T T IPINIE
= / t“1c (s) ds+ta > / t“1v'(s) ds.
JO g+g J0 9+g
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Thus, for all ¢t € (0,1),

T JH
:/0 ]c’(s)\gtds—/l |gtds+/ 1/ (s)™ 2, ds

= u/ /2\(~’(.ﬁ')v\§+gdﬁ+/ 49 oo
(0 /7 )7
9 / 217/(s)” ‘(/Md* 24 +/ |/ (s |q+qu
JO
(*) t2 — 2 d
. V()Y [5+ s at P lyrots+a

= / 1Y (s \fhds —1—/0 ]'y'(s)Hgtds + (1 —t)a

_ /0 W () ds + (1 = 12)a = 2By, (7) + (1 — £2)a > 2E,,(+)
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5.2 Proofs of Theorem 1.5 and Theorem 1.6

Proof. (of 1.6) Let g be the usual metric on S® and «, 8,7 € s = Im(H) be perpendicular

with respect to g. Let (N1, No) € S3 x S3.

— ’Proof of 1a and Za‘ —

RiC4<(OtN17 —aNs); (N1, aN3), (BN1, BN2), (YN1,vN2), (BN1, —51\72))

= secCg, ((O[Nl, *O[NQ), (ole, OéNQ)) + secg, ((O&]\fl7 *OZNQ), (ﬁNl, ﬂNg))

4.1 4.5

+ secy, ((Ole, —OzNQ), (”le, ’)/NQ)) + secg, ((Ole, —OzNg), (/6N27 —5]\72))

4.5 4.4

Rica ( (M, 0) (TLans) . (0.68)  (0.0V2) . (331.) )

= secCy, ( (aNl, 6) , <6, aNg) ) + secy, ( (aNl, 6) , (6, ﬁNg) >

4.1 4.10

+ secy, ( (ole, 6) : (6, 7N2) ) + secy, ( (aN1, 6) ; (5N1, 6) )

4.10 4.10
2t — 412 + 2 21t4—4t2+2+ 2 4t*—6t2+6
(12 +1)2 (12 +1)2 24+1 (2+1)2

=0+
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4—t2 4t —6t> +6
Therefore, min Ricy(S® x S3,¢¢) < min{ + .

2 7 (241)2

— Calculation 1a —

2 412 4*—6t2+6
min Rica (5% x %, g1) - (minDisplgt(a)) < min{ > 2+ 1; .2t52§2.

(+%%) The subgroup H, = {id,a} C Iso(S®xS3, g;) acts properly discontinuously on S x 53.
Thus, the quotient map 7, : % x S — S%lsg is a covering map (see Theorem A.25).

Furthermore, 53§S3 can be equipped with a smooth structure such that m, is a smooth

covering map (see Theorem A.26). Finally, for each ¢ € (0, 1), there is unique metric gf on

FX5 such that m, @ (S3xS3, g;) — (S 25 g{}) is a Riemannian covering map (see Section
a a

1.3.3 in [10] and Definition A.27). Then m, : (S®x S3, g;) — (S?’;ass,gf) is a local isometry

forall ¢ € (0,1), so curvature is preserved (see Theorem A.2). Thus, min Ricy (531293 , gf) =

min Ricy(S3 x 3, ¢;) for all t € (0,1). Consider the curve v : [0, 7] — S x S? connecting
(N1, N2) to (—Nj,—N3) defined by s +— (coss)(Ni, Na) + (sins)(aNy,aN2). This v is

a segment in S* x §% with length Lg,(y) = minDisply,(a) = V27t (see proof of Lemma

5.3 for details). In 53;1153’ the projection m,(7y) is a loop since 74 (7(0)) = ma (N1, Na) =

7a(a(N1,N3)) = ma(—Ni,—Na) = ma(y(7)). Furthermore, 7,(y) is noncontractible (see

A2

Theorem A.28). Thus, (*) sys; (331233’9?) < Lga(ma 0y) = Lg,(y) = minDispl,, (a).
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Therefore, for all t € (0,1),

(xS, x5 N\
min Ricy Ta,gt - | sysy Taagt

4—t2 M —6t2+6
* o272,

2
< min RiC4(S3 X Sg,gt) . (minDisplgt(a)) < min{ 2 (211

— Calculation 2a —

2 4 — 2 441 — 612 t2+1
5.4

Adapt (* * *). Use v : [0, 7] — S x S defined by s ((cos s)N1 + (sin s)aNl,N2> from

the proof of Lemma 5.4. Conclude that for all ¢ € (0, 1),

oo (sPx s, s x50 A\
min Ricy Tf,gt - | sys; Tfugt

(%) 2
< min RiC4(S3 X S?’,gt) . (minDisplgt(f)>

o [4—t2 4t —6t2+6 24+1\ ,
< min , : ™.
2 (12 +1)2 2
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— ’Proof of 1b and 2b‘ —

RiCB((ale —aNs); (N1, aNa), (BN1, BN3), (N1, 7N2)>

= secCy, ((aNl, —aNy), (alNy, ozNg)) + secg, ((aNl, —aNs), (BNy, /BNQ))

4.1 4.5

+ secy, ((aN1, —aNs), (N1, VNQ))

Rica( (a1,0); (3.aM) . (5.53) . (5.0V2) )

= seCy, ( (aNl, 6) , <6, aN2> ) —i—secgt( (aNl, 6) , (6, ﬂNg) >

4.1 4.10
+ secy, < (ole, 6) , (6, 7N2) )
4.10
_O+2t4—4t2+2 20 — 4?2 +2 At — 817 + 4
= (t2 ¥ 1)2 (t2 + 1)2 - (t2 + 1)2

4t —8t2 +4
Therefore, minRic3(S® x S, g;) < min {tQ, “}

(t2 + 1)2

— Calculation 1b —

R : -, 2 _ . 4t — 8t° + 4
min Ricz(S% x S3, g;) - (mlnDlsplgt(a)) < min {tQ, @i [ 2272
5.3
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Then for all ¢t € (0,1),

(xS, x5 N\
min Ricg Ta, g | - | 8ysy Ta’ 9y
(%)

2 At — 812 + 4
< min Ric3(5% x 53, g;) - (minDisplgt(a)) < min {tZ, (7524‘1)_;} 227,

— Calculation 2b —

o o 2 At —8t* +4| (241
min Rics (5% x 2, g;) - (mlnDlSPIgt(f)> < min {t27 2+ 1)?2 ' 2 .
5.4

Then for all ¢t € (0,1),

. [(S¥xs? 5% x 53 :
min Ricg <Hf,g[> . (sysl ( H, ’ggc))

C o 2 , 41 — 8% 4 4 t2+1
<" min Ricz(S® x S%, g;) - (mlnDlspIgt(f)) < min {tQ, 1) : 5 w2

— ’Proof of 1c and 2c‘ —

RiCQ((ale —aNs); (alN1, aNa), (BN1, BN2))

= secCy, ((aNl, —aNy), (alNy, OZNQ)) + secg, ((aNl, —aNs), (BNy, BNQ))

4.1 4.5
2 1
:O_l_E:5:§RIC3((O[N1,—OZNQ);(aN1,QN2),(ﬁN17/6N2)7(’YN1/7N2)>'
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RiCQ( (aNl,G) ) (6, OZN2) s (67 /BN2)>

= secy, ( (aNl, 6) , (6, aNg) ) + secy, ( (a]\h, 6) , (6, ,8N2) )

4.1 4.10
_O+2t474t2+2 2t — 42 42
- (t2+1)2 - (t2+1)2

= ;Ric;:,< (ole, 6) ; (6, aNQ) ) (6, 5N2) , (6, ’YN2> >

— Calculation 1c —

2 1 2
min Ricy (5% x 5%, g1) - (minDisply, (a) )" = 5 minRics(S* x 5°,g1) - (minDisply, (a))

4 2
- ;mm{ta 4t8t+4} 922

0t ) =
4t* — 8t2 4+ 4
. 2 2, _2
_mm{t,(ﬂ_*_l)2 S/

Then for all ¢ € (0,1),

' ‘ SS > SS " 5'3 % 513 . 2
min Rico Ta,gt < | sysy Taagt

(k)

2 44t — 812 + 4
< min Ricy (8% x S3, g;) - (minDisplgt(a)) < min {tz, 8+} 22,

(tQ + 1)2
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— Calculation 2¢ —

9 2
min Ricy(S® x 52, g4) - (minDisplgt(f)) = %minRic;),(S3 x S3 g¢) - (minDisplgt(f))

1 At — 812 + 4 241
< Lomle t* — 8t + N Eaks 2
2 (t2-|-1)2 2
—

5.4

oy At —8t2+4 2+1\ ,
= min ¢ t~, . T,
(t2 +1)2 4

Then for all ¢t € (0,1),

(S x s 53 x §3 ?
min Ricy <Hf,g{> . (sysl ( Hf 791{))

(%) 2
< minRiCQ(S?’ X 53,gt) . (minDiSplgt(f))

4t* — 8t2 + 4 2 +1
. 2 2
< min {t , (t2 n 1>2 . 1 .

Proof. (of 1.5)

— ’Proof of 1a’ and 2a" —

By la and 1b in Theorem 1.6,

. 24—t 41 —6t2+6
ImnR1C4(M,gf)-(sysl(M,gf)) §m1n{ > e - ot% 2,

min Ricy (N,gtf) . (sysl (N’gg) )2 < r11111{4—21527 4tit;_‘6_tj)j6} . <t2 ;_ 1) 2.

4—12 4t -6t +6
2 (2+1)2

— 5+ 6t* — 192 + 8 = 0.
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By viewing https://www.desmos.com/calculator/tjlcpczd9g, we see that the degree-

six polynomial t5 4 6t* — 19t? 4 8 has a real root in (0,1) approximately equal to 0.7143.

Let r be this solution to the equation t® + 6t* — 19t + 8 = 0.

Then, by viewing https://www.desmos.com/calculator/b0go9j32b2, we see

4—t2 4 —6t2+6

min {

2 7 (2 41)2

}

%%2 when 0 <t <r

Lot2 —
%.2# when r <t <1
442 _ 4 when 0 <t <r
% whenr <t <1

<2

and by viewing https://www.desmos.com/calculator/acbtOsxvlt, we see

4—t2 4 —6t2+6

2 +1

min {

2 7 (2 41)2

}

2

4-12 241
2

3 when 0 <t <r

4 g2 2
w-tjl when r <t<1

(t2+1)2

4 2
%M when 0 <t <r

% when r <t <1
4 2
— 3 4
% ~ 1.3176.
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— |Proof of 1b’ and 2b’| —

By 2a and 2b in Theorem 1.6,

2 At — 82 + 4
min Ricg (M, g¢') - (sysl (M, gf)) < min {tQ, +} - 2t% 72,

(t2+1)2
o > A4t -8t +4) [2+1
min Rics (N,gtf) ) (SYS1 (N,g{)) < min {tQ, CESIE } ( 5 2.
4t* — 82 + 4
= T 6 ot 492 4 =0,
(t2+1)2 +

By viewing https://www.desmos.com/calculator/vnotpxutz7, we see that the degree-
six polynomial t® — 2t* 4 9¢2 — 4 has a real root in (0, 1) approximately equal to 0.6956. Let

s be this solution to the equation % — 2¢t* + 9¢2 — 4 = 0.

Then, by viewing https://www.desmos.com/calculator/dr02mmdk5k, we see

. 24t4—8t2+4 , 2. 2t2 when 0 <t <s
min t,w 2t:
%-th when s <t <1
214 when 0 <t <s

8t6—16¢448¢2

1) when s <t <1

< 2s% ~ 0.4683
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and by viewing https://www.desmos.com/calculator/ms51lsqdyjf, we see

min 4 2 4t —8t2+4| *+1
T(#2+1)2 2

IN

— ’Proof of 1¢’ and 2c" —

2
min Rice (M, gf') - (SYS1 (M, gf))

2
min Rice (M, gf') - (SYS1 (M, gf))

14442
2

1241

84—|—82
2

1.6

1

1
2

IN

< min {t

min

2
tQ-% when 0 <t <s

4 o2 2
W'% when s <t <1

when 0 <t <s

4 2
2442 when s <t < 1

~ 0.359.

o 4tt — 812+ 4 2
T (124 1)2

4P — 82+ 4
2. 27 TR 9422
{ GRS "

(2s*7?) for all t € (0,1) by 2a’

= s*n? ~ 0.234172

1.6

< min

1

1
< Z

-2

X

min

<s4

34—1—32

4

o Att —8t? 4+ 4 241\ ,
By o\ )"

o 4t* —8t2 + 4 241\ ,
Brerye (L2 )7

+ 52

5 ) 72 for all t € (0,1) by 2b/

) 2 ~ 0.179572.
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Appendix A:

Other Definitions and Theorems

Referenced

Definition A.1 (page 12 and page 196 in [10]). A map f : (M,gn) — (N, gn) is

a local isometry if and only if for each p € M, there is a neighborhood U C M of

p such that f|, : U — f(U) is an isometry. Alternatively, f is a local isometry if

and only if for all p € M, the differential df, : TyM — Ty, N is a linear isometry.

Theorem A.2 (Proposition 5.6.1 in [10] and Proposition 7.6 in [5]). Let f :
(M, gr) — (N, gn) be a local isometry. Then

1) F maps geodesics to geodesics.

2) If f is a bijection, then f is distance preserving.

3) The Riemannian curvature tensor is invariant under f.

Definition A.3 (Example 1.36 in [4]). Let V' be an n-dimensional real vector space.
For any integer 0 < k < n, the Grassmanian is the set Gx(V') of all k-dimensional

linear subspaces of V. It is a k(n — k)-dimensional smooth manifold.
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Theorem A.4 (Problem 21-13 in [4]). Let V' be an n-dimensional real vector space.

The Grassmannian Gi(V') is compact for each integer 0 < k < n.

Theorem A.5 (Theorem 27.4 in [7]). Let X, Y be topological spaces. Let f : X — Y
be continuous, where Y is an ordered set in the order topology. If X is compact, then

there exists points ¢ and d in X such that f(c) < f(z) < f(d) for every z € X.

Theorem A.6 (Exercise 1.6.24 in [10]). Ewvery compact Lie group admits a bi-

invariant metric, i.e. both left and right translations are isometries.

Theorem A.7 (Theorem 4.31 in [4]). Suppose N, N1, Ny are smooth manifolds, and
fi: N — Nj and fo : N — Ny are surjective smooth submersions that are constant

on each other’s fibers. Then there exists a unique diffeomorphism f : N1 — Ny such

that fo fi = fo.

Remark: Our use of Theorem A.7 to show GE,M & M sets N =Gx M, Ny = GE,M,

Ny = M, fi equal to the quotient map G x M — GEM , and fo equal to the action map

of G~ M.

Theorem A.8 (Theorem 2.18 in [4]). Let G be a Lie group, let M be a homogeneous
space (with respect to G), and let p be any point of M. The isotropy group Gy is a
closed subgroup of G, and the map F : G/G, — M defined by F(aG,) =a-p is an

equivariant diffeomorphism.
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Definition A.9 (page 164 in [4]). Suppose G is a Lie group and M and N are
smooth manifolds endowed with smooth left or right G-actions. Let 0 be the action
of G on M and ¢ be the action of G on N. A map F : M — N is equivariant with
respect to the given G-actions if and only if the following diagram commutes for each

a€@G:

S
E
=

S
|
=

Theorem A.10 (page 460 in [9] and Exercise 5.9.20 in [10]). Let F : (M, gn) —
(B,gB) be a Riemannian submersion. Let E,F € TM. Then TpF = Hyp(VF) +

VVvE(HF), and if N is a submanifold of M, then N is totally geodesic <= T = 0.

Theorem A.11 (Theorem 2.2.2 in [10]). The assignment X — VX on (M, gn) is
uniquely defined by the following properties.

1) VauiswY =aV,Y +8V,Y and Vx (Y1 + Ys) = VxY) + VxYs.

2) For functions f : M — R, Vx(fY)=(Dxf)Y + fVxY.

3) VxY —VyX =[X,Y].

4) Dzgu(X,Y) =gmu(VzX,Y) +gu(X,VzY).

Theorem A.12 (Exercise 7-22 in [4]). Quaternionic multiplication is associative.

89




Theorem A.13 (Exercise 7-22 in [4]). Let a;,b;,¢;,d; € R. Quaternionic multipli-

cation is defined by

(a1 +bii+c1j + dik)(ag + bai + coj +dok) =  arag — biby — cic2 — dida
+ (a1bg + biag + c1da — dica)i
+ (a1ca — bida + craz + dib)j

I (a1d2 + bicg — c1be + diaz)k.

Theorem A.14 (Corollary 3.19 in [3]). Let (M, gni) be a Riemannian manifold paired
with a bi-invariant metric. Let XY, Z, W € TM. Then

Ry, (XY, Z,W) = 1gus (X, W1, V. 21) — 19w (IX. 20, [¥, W]).

Theorem A.15 (Lemma 2.2.4 in [10]). Let M be a manifold and V an affine con-
nection on M. If X is a vector field on M and ¢ : I — M a smooth curve
with ¢(0) = v € T,M, then V,X depends only on the values of X along c, i.e.,

if Xoc=Yoc, then Ve X = V.Y,

Theorem A.16 (Exercise 2.5.12 in [10]). Let (M, gn) be a Riemannian manifold

and f: (M,gn) — (M, gn) be an isometry. Then df (VxY) = Varx)df (Y).

Definition A.17 (Example 1.1.3 in [10]). The standard Riemannian metric

on 8™ is defined for all p € S™ by gsn ((p, v), (p,w)) = grasr (p, V), (P, w)) =" v w.
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Definition A.18 (Example 1.1.1 in [10]). The standard Riemannian metric

on R” is defined for all p € R™ by ggrn((p,v), (p,w)) =v - w.

Theorem A.19. Let a,b,c € R3.
a-(bxc)=—a-(cxb)
=-b-(axc)

=—c-(bxa).

Theorem A.20 (Proposition 3.1.1 in [10]). The (0,4) Riemannian curvature tensor
R(X,Y, Z, W) is skew-symmetric in the first two and last two entries. That is,
R(X,Y,Z,W) = —R(Y, X, Z,W).

R(X,Y,Z,W)=—R(X,Y,W, Z).

Theorem A.21 (page 84 in [10]). Let (M,gn) be a Riemannian manifold with
constant sectional curvature k. Let p € M and vy,va,v3,v4 € Ty,M. Then

R(v1,v2,v3,v4) = kgnr(ve, v3)gar(v1,v4) — kgar(v1, v3)gar(v2, va).

Theorem A.22 (page 522 in [12]). Suppose (M, g) is a Riemannian manifold with
curvg(M) > 0. If x,y € TM such that curvg(x,y) = 0, then

R(y,z)x = R(z,y)z = 0.
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Theorem A.23 (Proposition 5.4.1 in [10]). Let (M, gar) be a Riemannian manifold
and c(t) : [a,b] — M be a constant speed curve. Then c(t) is length minimizing if

and only if it is energy minimizing. Furthermore, L(c) = \/2(b— a)E(c).

Theorem A.24 (Proposition 3.24 in [4]). Let F : M — N be a smooth map between
smooth manifolds, and let v : I — M be a smooth curve. For anyty € I, the velocity

at t = tg of the composite curve F'oy: 1 — N is given by

(F o) (to) = dF (7 (to))-

Theorem A.25 (Theorem 81.5 in [7]). Let X be path connected and locally path
connected. Let G be a group of homeomorphisms of X. The quotient map F': X —
X/G is a covering map if and only if the action of G is properly discontinuous. In

this case, the covering map is reqular and G is its group of covering transformations.

Theorem A.26 (Proposition 4.40 in [4]). Suppose M is a connected smooth n-
manifold, and F : E — M s a topological covering map. Then E is a topological

n-manifold and has a unique smooth structure such that w is a smooth covering map.

Definition A.27 (page 12 in [10]). Let (M, grr) and (N, gn) be Riemannian mani-

folds. A map F : M — N is o Riemannian covering map if and only if

1) F is a smooth covering map

2) F is a local isometry.
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Theorem A.28 (Lemma 54.2 in [7]). Let E, B be topological spaces and F : E — B
be a covering map. Let F(eg) = by. Let the map F : I x I — B be continuous with
F(0,0) = bg. There is a unique lifting of F' to a continuous map F:IxI—EFE

such that ﬁ(0,0) = eo. If F is a path homotopy, then F is a path homotopy.
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