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Abstract

Flow measurement evolved into the primary method for

measuring the composition of Internet traffic. Large ISPs

and small networks use it to track dominant applications,

dominant users, and traffic matrices. Cisco’s NetFlow is

a widely deployed flow measurement solution that uses a

configurable static sampling rate to control processor and

memory usage on the router and the amount of report-

ing traffic generated. Proposed enhancements to the ba-

sic Sampled NetFlow solve some of its problems. Smart

Sampling reduces the overhead of reporting and storing

the flow records generated by NetFlow by sampling them

with probability proportional to their byte counts. Adap-

tive NetFlow limits memory and CPU consumption at the

router by dynamically adapting the sampling rate used by

NetFlow.

In this paper we propose “Flow Slices”, a flow mea-

surement solution that can be deployed through a soft-

ware update at routers and traffic analysis workstations.

Flow Slices, inspired from Smart Sampling and Adap-

tive NetFlow, introduces novel ideas such as – separating

sampling rate adaptation from measurement bins; con-

trolling the three resource bottlenecks at the router (CPU,

memory, reporting bandwidth) using separate “tuning

knobs”; basing smart sampling decisions on multiple fac-

tors; a flow measurement algorithm related to sample and

hold; new estimators for the number of bytes and flows.

The resulting solution has smaller resource requirements

than current proposals and it enables more accurate traf-

fic analysis results. We provide theoretical analyses of

the unbiasedness and variances of the estimators based

on Flow Slices and experimental comparisons with other

flow measurement solutions such as Adaptive NetFlow.

1 Introduction

The role of traffic measurement in operating large scale

IP networks requires little or no introduction. Traf-

fic measurement allows network operators to make in-

formed decisions about provisioning and extending their

networks, and it helps solve many operational problems.

Specialized devices operating on relatively low traffic

links can perform complex security analyses that reveal

malicious activities [18, 20], monitor complex perfor-

mance metrics [6], or simply capture packet (header)

traces with accurate timestamps [7] to be analyzed of-

fline. Much simpler solutions such as SNMP coun-

ters [16] are deployed on even the highest speed links,

but they only give measurements of the total volume of

the traffic. Flow level measurement at routers [2, 3] of-

fers a good compromise between scalability and the com-

plexity of the traffic analyses supported since it can offer

details about the composition of the traffic mix.

In this paper, we propose a new flow measurement so-

lution: Flow Slices. The contributions of this paper are

both practical and theoretical and we summarize the most

important ones here.

� Flow Slices has separate parameters controlling the

three possible bottlenecks at the router: process-

ing load, memory, and reporting bandwidth. This

makes it easier to fit this solution into various im-

plementation scenarios.

� The flow slicing algorithm at the core of this solu-

tion provides more accurate results than packet sam-

pling using the same amount of memory and it en-

ables new measures of traffic such as estimates for

the number of active flows.

� Flow Slices separates sampling rate adaptation from

binning and thus provide a solution with the robust-

ness of Adaptive NetFlow without paying the extra

cost in memory and measurement bandwidth due to

binned measurement. See Table 1 for a comparison

of various flow measurement solutions.

� We propose multifactor smart sampling that takes

into account multiple factors such as byte counts,

packet counts, and the existence of SYN flags in the

flow record to determine the sampling probability

for individual flow records. For comparable config-

urations this decreases significantly the variance in

estimates of the number of flow arrivals while in-

creasing only slightly the variance for byte counts

when compared to Smart Sampling.

� Optional binned measurement allows us to elimi-

nate binning error in the analysis phase, while still

maintaining the memory and reporting bandwidth

overheads below those of Adaptive NetFlow.

� We propose novel estimators bb, bf , bA(1), and bA(2)

for various measures of traffic. See Section 4 for a

discussion of these and other estimators.

Before we explain Flow Slices, we briefly review some

of the previous work in this area of Internet flow mea-

surement.



Issue Sampled NetFlow Adaptive NetFlow Flow Slices

Memory usage Variable Fixed Fixed

Volume of flow data reported Variable Fixed Fixed

Behavior under DDoS with spoofed sources Panicky flow Reduction in Small reduction

and other traffic mixes with many flows expiration accuracy in accuracy

Estimates of traffic in small time bins Less accurate Accurate Less accurate

Reporting overhead when using small bins Unaffected Large increase Unaffected

Lifetime of flow record in router memory Min(active timeout, Bin length Min(slice length,

flow length + flow length +

inactive timeout) inactive timeout)

Resource usage at end of time bin N/A Reporting spike or N/A

extra memory

Processing intensive tasks Counting Counting and Counting

renormalization

Counting TCP flow arrivals (using SYNs) Yes Yes Yes

Counting all active flows No Separate flow Yes

counting extension

Counting all active flows at high speeds No Hardware flow No

counting extension

Table 1: Sampled NetFlow, Adaptive NetFlow and Flow Slices differ in the types of measurements they support, in

how they adapt to different traffic mixes, and in their resource consumption (memory usage and reporting traffic).

2 Related work

NetFlow [17], first implemented in Cisco routers, is

the most widely used flow measurement solution today.

Routers maintain flow records collecting various bits of

information. Flows are identified by fields present in the

header of every packet1: source and destination IP ad-

dress, protocol, source and destination port, and type of

service bits. The flow record keeps information such as

the number of packets in the flow, the (total) number of

bytes in those packets, the timestamp of the first and last

packet, and protocol flag information such as whether

any of those packets had the SYN flag set. NetFlow uses

four rules to decide when to remove a flow record from

router memory and report it to the collection station: 1)

when TCP flags (FIN or RST) indicate flow termination,

2) 15 seconds (configurable “inactive timeout”) after see-

ing the last packet with a matching flow ID, 3) 30 minutes

(configurable “active timeout”)’ after the record was cre-

ated to avoid staleness and 4) when the memory is full.

On every new packet, NetFlow looks up the corre-

sponding entry (creating a new entry if necessary) and

updates that entry’s counters and timestamps. Since for

high speed interfaces, the processor and the memory

holding the flow records cannot keep up with the packet

rate, Cisco introduced Sampled NetFlow [22] which up-

dates the flow cache only for sampled packets. For a

configurable value of a parameterN , a packet is sampled

with one in N probability.

1Technically the incoming router interface is also part of the flow
identifier.

One problem with NetFlow is that the memory re-

quired by the flow records and the bandwidth con-

sumed to report them depends strongly on the traffic

mix. In particular, large floods of small packets with

randomly spoofed source addresses can increase mem-

ory and bandwidth requirements by orders of magnitude.

Adaptive NetFlow [10] solves this problem by dynami-

cally adapting the sampling rate. Adaptive NetFlow di-

vides the operation of the flow measurement algorithm

into equally spaced time bins.2 Within each bin, the al-

gorithm starts by sampling aggressively (high sampling

probability). If memory is consumed too quickly, it

switches to less aggressive sampling. It then “renormal-

izes” existing entries so that they reflect the counts they

would have had with the new sampling rate in effect from

the beginning of the bin. At the end of the bin, all entries

are reported.

Using fixed size bins in Adaptive NetFlow increases

the memory utilization and can cause bursty spikes in

bandwidth consumption as compared to Sampled Net-

Flow. Memory utilization is higher because, to oper-

ate seamlessly between bin-boundaries, Adaptive Net-

Flow requires two sets of records (double-buffering),

one for current bin and one for records in the previous

bin while they are being transmitted. Without double-

buffering, flow records that expire at the bin-boundary

need to be transmitted immediately at very high band-

width in order to create space for the next set of entries.

2Typically, traffic statistics are analysed in time bins, and hence, bin
sizes are chosen based on the granularity of traffic statistics.



Large flows spanning multiple bins will be reported sep-

arately for every bin increasing the bandwidth consump-

tion. Table 1 gives a summary comparison of Sampled

NetFlow, Adaptive NetFlow and Flow Slices.

These flow records are then used to estimate the num-

ber of bytes or packets in various traffic aggregates of

interest. This can give network operators information

about dominant applications, the network usage of vari-

ous clients, traffic matrices, and many other useful statis-

tics [12, 19, 1, 14]. Smart Sampling [8] is a way of

reducing the data used by such analyses without signif-

icantly affecting their results. Smart Sampling retains

flow records with probability proportional to the size of

their byte counter. The flow records can also be used to

estimate the number of active flows which is important

when looking for denial of service attacks, scans, and

worms in the traffic mix. Unfortunately, if we use Sam-

pled NetFlow it is impossible to recover the number of

flows in the original traffic from the collected data [5]

unless we use protocol information. By looking at the

SYN flag information in flow records it is possible to ac-

curately estimate the number of TCP flows in the traffic

mix [9].

3 Description of flow slices

The core flow slicing algorithm is based on the sam-

ple and hold algorithm [11]. After presenting the core

algorithm, we discuss four extensions: adding packet

sampling to scale to high speed links, using an inactiv-

ity timeout to reduce memory usage at router, adding

binned measurement to reduce binning error during anal-

ysis, and adding a variant of smart sampling to control

the volume of flow data reported. The version of Flow

Slices described used for Table 1 has the first two exten-

sions. We also discuss the configuration parameters of

the complete flow slicing solution and how they can be

set adaptively based on the current traffic mix.

3.1 Core algorithm

The core flow slicing algorithm addresses the problem

of reducing the memory usage of the flow measure-

ment module. Sampled NetFlow and Adaptive NetFlow

use random packet sampling: they only handle sampled

packets. Just as sample and hold [11], flow slicing uses

sampling only to control the creation of flow entries,

once a sampled packet creates an entry for a flow, all

its subsequent packets are counted (not just the sampled

ones). This increases the accuracy of the estimates of

packet counts, without changing the memory require-

ment. We use the “flow slicing probability” p to control

the creation of flow entries. We expire and report each

entry exactly t seconds after its creation, irrespective of

the rate at which packets arrive for a particular flow. 3.

Just as in the case of NetFlow, the entry associated with

a flow has a byte and packet counter updated at every

packet, timestamps for the first and last packet, and it

stores protocol information such as whether any of the

packets counted against the entry had the SYN flag set.

To ensure unbiasedness of estimators, on creation of an

entry we do not initialize the byte counter to the number

of bytes b
first

in the packet that caused the creation of

the entry, but to b

first

=p (see Section 4.2 for more de-

tails).

The slice length t is related to the “active timeout” of

NetFlow which controls for how long an active entry is

kept before expiring and being reported (default 30 min-

utes). Both of these parameters limit the staleness of the

data (i.e. if we have a long-lived flow, we know that its

traffic will be reported with at most this much delay).

By dynamically adapting the flow slicing probability,

we can control the rate at which entries are created and

freed, thus ensuring that the algorithm stays within its al-

located memory budget M . By keeping the rate at which

entries are created, on average slightly below M=t, we

can also keep the rate at which flows records are reported

smooth. In contrast Adaptive NetFlow proposes expiring

all active entries at the end of the measurement bin, so

it either has a large peak in reports, or it requires buffers

that increase the memory usage by almost a factor of two

if the reporting of the records is smoothed out over the

next measurement bin. We do not however, discuss dy-

namic adaptation in much detail in this paper, as adap-

tation techniques similar to that in [10] can be applied

in this context using feedback from the current memory

usage. Note however, that in our adaptation, we do not

require the costly operation of renormalization that is re-

quired in Adaptive NetFlow. Next we discuss some of

the tuning knobs we provide to control the three resource

bottlenecks (CPU, Memory, Bandwidth).

3.2 Scaling to high speeds

The flow slicing probability p controls the memory

usage, but since we do a lookup in the flow memory for

every packet, flow slicing does not control the process-

ing load. In the presence of limited processing power,

we add a random packet sampling stage in front of the

flow slicing stage (see Figure 1). A simple solution is

to set the packet sampling probability q statically to a

value that ensures that the processor performing the flow

measurement can keep up even with worst case traffic

mixes. Based on Cisco recommendations [17] for turn-

ing on NetFlow sampling for speeds higher than OC-3,

3We call our proposal “flow slices” because each entry tracks a
“slice” of length t from the flow. We could extend the flow slice termi-
nation condition to protocol specific hints such as FIN or RST flags, but
since these are not reliable in the presence of packet sampling which we
use as a first stage, we ignore them in this paper.
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packet sampling

reduces volume of reports
multifactor smart sampling

Figure 1: Architecture

we set q to 1=4 for OC-12 links, 1=16 for OC-48, etc.

With these packet sampling rates, and with worst case

traffic consisting of the link entirely full with 40 byte

packets, the flow measurement module has more than

0:5� per packet and it has time to perform between 8

and 9 (wide) DRAM accesses on average.

3.3 Adding an inactivity timer

Most flows in the Internet are short-lived. If our only

mechanism for removing an entry is its expiration after

the slice length t and we use a large value for t, at any

moment in time, most of the entries in the flow mem-

ory will belong to flows that are no longer active and

just use up memory waiting to expire. On the other hand

having a very short slice length can lead to an increase

in reporting traffic and loss of accuracy. Adding an inac-

tive timeout parameter t
inative

to flow slices reduces the

memory spent on obsolete entries. Experimental results

in Section 6.1 show that we could significantly reduce

the memory requirement if we deploy inactivity timers.

An adaptive algorithm for setting the flow slicing rate can

turn this reduction in memory usage into an increase in

accuracy.

3.4 Adding binned measurement

With flow slices we have the same problem as with Net-

Flow if we want to perform traffic analysis using time

bins: for flow slices that span time bins, we can only

guess how many of the flow’s packets were in each bin,

and this introduces errors in the results. This problem

is even more pronounced when analysis is required in

very small time bins to capture more precise traffic dy-

namics. We can extend flow slices to support binned

measurement of traffic by keeping multiple sets of byte

and packet counters, one set for each bin the slice passes

through. By keeping separate counters for each bin, the

binning error is eliminated entirely, at the cost of in-

creasing the size of the flow records. Note that the re-

porting bandwidth costs of this solution are significantly

smaller than those of the solution used by Adaptive Net-

Flow where an entire record is reported for each bin. The

byte and packet counters are 8 bytes whereas a complete

record is 48 bytes.

The number of counters per record has to be one larger

than the number of bins required to fit a slice because the

flow slice can overlap only partially with the first and last

bin. The choice of the size of the measurement bin sup-

ported is a compromise between resource consumption

at the router and accuracy of results. Reasonable choices

can range anywhere from the slice length t to 20 times

smaller. For brevity, we do not explore this further in the

paper, but note that depending on the final goal, flow slic-

ing algorithm can be extended with additional resources

to obtain desired accuracy.

3.5 Controlling the reporting bandwidth

Smart sampling has been proposed as a way of reduc-

ing the number of flow records without causing much

error. Smart sampling focuses on measuring the number

of bytes in arbitrary aggregates of traffic and thus smart

sampling favors flow records with large byte counters

over those with small flow counters. Common packet

sizes vary between 40 and 1500, so while the packet

counts are not proportional to the byte counts, they are

closely correlated. Thus smart sampling will ensure that

the errors introduced in packet counts are also small. The

situation is different with flow arrival counts. These de-

pend heavily on flow records with the SYN flag set, and

most such records come from small flows which are dis-

criminated against by smart sampling. Thus the errors

introduced by smart sampling in the flow arrival counts

are significant.

We propose a new variant of smart sampling, mul-

tifactor smart sampling which takes into consideration

not just byte counts, but also packet counts and SYN

flags. While multifactor smart sampling still favors flow

records with large byte and packet counts, it also favors

records with the SYN flag, thus ensuring that the errors

introduced into the flow arrival counts are not large ei-

ther. Because the exact rule used to determine the mul-

tifactor smart sampling probability r depends on estima-

tors of byte and packet counts, we postpone its discussion

to Section 4.5.

3.6 Setting the parameters of flow slicing

Routers or other network devices performing flow mea-

surement have three types of resources that can become

bottlenecks: processing power, flow memory, and re-



Parameter What it controls How it is set

Flow slicing probability Memory usage at router Adaptively based on memory usage

Flow slice length Staleness of reported data Statically based on user preferences

Inactivity timeout Reduces memory usage Statically based on typical inter packet arrival time

Packet sampling probability Processing load at router Statically based on worst case traffic

Bin size (optional) Binning error Statically based on user preferences

Smart sampling thresholds Volume of flow data reported Statically or adaptively based on target volume

Table 2: Configuration parameters for Flow Slices.

porting bandwidth. Flow slices use three different “tun-

ing knobs” to control these three resources: the packet

sampling probability q controls the processing load, the

flow slicing probability p controls the memory usage

and the thresholds determining the smart sampling pro-

bability r control the volume of data reported. This

can result in more accurate traffic analysis results than

using a single parameter, the packet sampling probabi-

lity, to control all three resources, as Adaptive NetFlow

does. This distinction would be irrelevant in practice if

the only scarce resource would be the processing power

at the router, so it is useful to perform a quick sanity

check before proceeding any further: can an unfavor-

able traffic mix push the memory requirements or re-

porting bandwidth so high that they become a problem?

Let’s first assume a traffic mix consisting of back to back

minimum sized packets, each belonging to a different

flow (a massive flooding attack with randomly spoofed

source addresses). With the packet sampling rates from

Section 3.2, the traffic measurement module would re-

ceive a packet every 0:5�. Even with an aggressive in-

active timeout of t
inative

= 5 seconds, we need a flow

memory that can fit 10; 000; 000 flow records, which at

64 bytes/record[17] requires 610 megabytes. When re-

ported flow records take 48 bytes (ignoring overheads),

so at 2; 000; 000flow records/second, which requires 768

megabits/second. These numbers are orders of magni-

tude above what one can comfortably afford. The exper-

iments from Section 6 use realistic traffic mixes to eval-

uate the benefits of Flow Slices as compared to Sampled

NetFlow and Adaptive NetFlow as opposed to patholog-

ical traffic scenarios.

For each of the parameters of Flow Slices listed in

Table 2 we need to decide whether to set them statically

as part of the router configuration, or dynamically adapt

them to the current traffic mix. Of the three main tuning

knobs, the flow slicing probability p should definitely be

set dynamically to allow the router to protect from mem-

ory overflow when faced with unfavorable traffic mixes.

The thresholds controlling the smart sampling probabi-

lity can also be set adaptively. In this paper we consider

that the packet sampling probability q is static based on

recommended values for different link capacities. Flow

Slices would work just as well with a dynamic packet

sampling probability that could go above the conserva-

tive static value, but since it is hard to guarantee the sta-

bility of such approach without pushing the packet sam-

pling rate adaptation logic into hardware (which raises

deployment problems), we chose not to explore such a

solution in this paper.

The observant reader might have noticed that without

the optional binned measurement feature Flow Slices re-

semble Sampled NetFlow. If the dynamic adaptation al-

gorithms set the flow slicing probability p and the smart

sampling probability r to 1 the two solutions perform ex-

actly the same processing. We consider this to be an im-

portant feature. The difference between Sampled Net-

Flow and Flow Slices is in how they react to unfriendly

traffic mixes and environments with strong constraints

on resources. While both Adaptive NetFlow and Flow

Slices provide robustness to unfavorable traffic mixes,

Adaptive NetFlow forces the user to adopt the binned

measurement model (which can increase memory usage

and the volume of reports) even when the traffic mix is

favorable.

4 Estimators based on flow slices

In this section we discuss formulas for estimating traffic

based on the flow records provided by Flow Slices. In

practice, the user would be interested in the number of

bytes, packets or flows in the entire traffic mix or a por-

tion of it (e.g. the HTTP traffic, the traffic coming from

a certain customer, etc.). All our estimators focus on a

single flow. To compute the total traffic the user has to

sum the contributions of all individual flow records. If

the estimators for individual flows have the property of

unbiasedness, the errors in the estimates for individual

flows will not accumulate, but cancel out (to some ex-

tent). This is the reason why, in this section, we not only

discuss the various estimators, but also show that they are

unbiased.

For the purposes of our analysis, a bin is an arbitrary

interval of time. This is not to be confused with the traf-

fic analysis bins or Adaptive NetFlow’s definition of bin.

We will start by focusing on the simple case of a sin-

gle bin, with slice length t and inactive timeout t
inative



Name Meaning

p flow slicing probability

q packet sampling probability

r smart sampling probability

s size of flow (in packets) before flow slicing



s

packet counter in flow record

bs estimate of the size of flow before flow slicing (0 if flow not sliced)

S original size of flow (in packets) before packet sampling
b

S estimate of the original size of flow (0 if flow not sampled or not sliced)

b size of a flow in bytes before flow slicing



b

byte counter in flow record
b

b estimate of the number of bytes in flow based on flow slices (0 if flow not sliced)

B original size of flow in bytes before packet sampling
b

B estimate of the original size of flow in bytes (0 if flow not sampled or not sliced)
b

f contribution to the estimate of the number of active flows (0 if flow not sliced)

ba contribution to the estimate of the number of flow arrivals (0 if flow not sliced)
b

A

(1) contribution to first estimator of number of flow arrivals (0 if flow not sampled or not sliced)
b

A

(2) contribution to second estimator of number of flow arrivals (0 if flow not sampled or not sliced)

z

s

smart sampling threshold controlling the influence of bS on r

z

b

smart sampling threshold controlling the influence of bB on r

z

a

smart sampling threshold controlling the influence of bA(1) on r

Table 3: Notation used in this paper.

larger than the size of the bin and flow memory empty at

the beginning of the bin.

Next we will look at how the estimators generalize

when we remove these constraints. Table 3 summarizes

notation used throughout the paper.

4.1 Estimating packet counts
The packet counter 

s

in an entry is initialized to 1 when

the first packet of the flow gets sampled, and it is incre-

mented for all subsequent packets belonging to the flow.

Let s be the number of packets in the flow at the input of

the flow slicing algorithm. Equation 1 gives the formula

for our estimator bs for the number of packets in the flow.

bs = 1=p� 1 + 

s

(1)

Lemma 1 bs as defined in Equation 1 is an unbiased es-

timator of s.

Proof: By induction on the number of packets s.

Base case: If s = 1, the only packet of the flow is

sampled with probability p and in that case it is counted

as 1=p�1+1 = 1=p packets. With probability 1�p it is

not sampled (and it counts as 0). Thus E[bs℄ = p � 1=p+

0 = 1 = s.

Inductive step: By induction hypothesis, we know

that for a flow with s

0

= s � 1, E[

b

s

0

℄ = s

0

= s � 1.

Also since the flow slice length t and the inactive time-

out t
inative

are larger than the bin size, we know that

once the flow gets an entry, all its packets within the bin

will get counted by 
s

. There are two possible cases: the

first packet of the flow gets sampled, and we get 
s

= s,

or it doesn’t and than the value of 
s

and bs will be the

same as those for a flow with s

0

= s � 1 packets for

which the sampling decisions are the same as for the rest

of the packets of our flow.

E[bs℄ = p � (1=p� 1 + s) + (1� p)E[

b

s

0

℄

= 1� p+ ps+ (1� p)(s� 1) = s

�

If we sample packets randomly with probability q be-

fore applying the flow slicing algorithm, we will want

to estimate the number of packets S at the input of the

packet sampling stage. Since E[s℄ = qS, it is easy to

show that bS = 1=qbs is an unbiased estimator for S.

4.2 Estimating byte counts

Before discussing, the solution adopted by flow slices to

estimate the number of bytes in a flow, we show why

a simpler solution does not work. We could have the

byte counter 
b

in the flow entry just count the total num-

ber of bytes in the packets seen once the flow record is

created. Just like with the packet counter, we need an

additive correction to account for the packets missed be-

fore the creation of the entry. We can get an unbiased

estimate for the number of packets missed, but not for



their total size, because we do not know their sizes. We

could assume that the packet sizes are uniform within

the flow, but this would lead to systematic biases because

they are not. As the proof of Lemma 2 shows, storing the

size of the packet that was sampled and caused the cre-

ation of the entry would solve the problem because using

it to estimate the total number of bytes in the packets

not counted does lead to an unbiased estimator. But this

would require another entry in the flow record. We de-

cided instead to store this information in the byte counter

itself by initializing 
b

to b
first

=p when the entry is cre-

ated (b
first

is the size in bytes of the sampled packet).

Let b be the number of bytes of the flow at the input of

the flow slicing algorithm.

b

b = 

b

(2)

Lemma 2 bb as defined in Equation 2 is an unbiased es-

timator of b.

Proof: By induction on the number of packets in the

flow s. Let b
i

for i from 1 to s be the sizes of the indi-

vidual packets. By definition the number of bytes in the

flow is b =

P

s

i=1

b

i

. For convenience of notation we

index the packet sizes in reverse order, so b

1

will be the

size of the last packet and b
s

the size of the first one.

Base case If s=1, the only packet is sampled with pro-

bability p and in that case it is counted 
b

= b

1

=p = b=p

bytes. With probability 1 � p it is not sampled (and it

counts as 0). Thus E[

b

℄ = p � b=p+ 0 = b.

Inductive step By induction hypothesis we know that

if the first packet is not sampled we are left with the last

s

0

= s � 1 packets and E[

b

℄ = b

0

= b � b

s

. If the first

packet gets sampled, we count it as b
s

=p and we count

the rest exactly because the flow slice length t and the

inactive timeout t
inative

are larger than the bin size.

E[

b

℄ = p � (b

s

=p+ b

0

) + (1� p)b

0

= b

s

+ pb

0

+ (1� p)b

0

= b

s

+ b

0

= b

�

If we sample packets randomly with probability q be-

fore applying the flow slicing algorithm, we will want to

estimate the number of bytes B at the input of the packet

sampling stage. Since E[b℄ = qB, it is easy to show that
b

B = 1=q

b

b is an unbiased estimator for B.

4.3 Estimating the number of active flows

We use two definitions for counting flows: active flows

and flow arrivals. A flow is active during a time bin if

it sends at least one packet during that time bin. Multi-

ple TCP connections that happen to share the same port

numbers are considered a single flow and they will be re-

ported in the same flow record under our current assump-

tions4. Active flows with none of their packets sampled

by the flow slicing process will have no records so at

least some of the flow records we get we should count as

more than one active flow so that the total estimate will

be unbiased. Our rule is to count records with a packet

counter 
s

of 1 as 1=p flows and other records as 1 flow

and this gives us unbiased estimates for the number of

active flows.

b

f =

�

1=p if 
s

= 1

1 if 
s

> 1

(3)

Lemma 3 bf as defined in Equation 4 has expectation 1.

Proof: There are three possible cases: if a packet be-

fore the last gets sampled, 
s

> 1, if the last packet

gets sampled 

s

= 1, and if none of the packets gets

sampled there will be no flow record, so the contribu-

tion of the flow to the estimate of the number of active

flows will be bf = 0. The probability of the first case is

p

s�1

= 1� (1� p)

s�1, the probability of the second is

p(1� p

s�1

) and that of the third is (1� p)(1� p

s�1

).

E[

b

f ℄ = p

s�1

� 1 + p(1� p

s�1

) � 1=p+

(1� p)(1� p

s�1

) � 0 = 1

�

The estimators for the number of bytes and packets in

a flow were trivial to generalize to the case where we ap-

ply random packet sampling before flow slicing because

the expected number of packets and bytes after packet

sampling was exactly q times the number before. For the

number of active flows there is no such simple relation-

ship and actually it has been shown that it is impossible

to estimate without significant bias the number of active

flows once random sampling has been applied [5]. But

by changing slightly the definition of flow counts we can

take advantage of the SYN flags used by TCP flows.

4.4 Estimating flow arrivals

Flow arrivals are defined only for TCP flows which

should start with one SYN packet. A flow is considered

to have arrived in a bin if its SYN packet is in that time

bin. Flows active during a certain bin, but with their SYN

packet before the bin do not count as flow arrivals for that

bin (but they count as active flows). If we look a the core

flow slicing algorithm we can use the following estimator

to compute the number of flow arrivals.

b

f =

�

1=p if SYN flag set

0 if SYN flag not set
(4)

4This way of defining flow counts is equivalent to an SQL query
doing “COUNT DISTINCT” on flow identifiers seen during the time
bin.



Given that the SYN flag is set in the flow record if it

was set in any of the packets counted against the record,

it is trivial to prove that bf leads to unbiased estimates of

the number of flow arrivals if we make an assumption.

Assumption 1 Only the first packet for the flow can

have the SYN flag set.

The flow arrival information is preserved by random

packet sampling. Duffield et al. propose two estima-

tors of the number of flow arrivals that work based on

flow records collected after random sampling of the traf-

fic [9]. The formulas for the individual contributions of

flow records to the total estimate of the number of flow

arrivals are as follows.



M

(1)

=

�

1=q if SYN flag set

0 if SYN flag not set



M

(2)

=

�

1=q if SYN flag set and s = 1

1 if SYN flag not set or s > 1

Duffield et al. show [9] that both estimators are unbi-

ased E[



M

(1)

℄ = E[



M

(2)

℄ = 1 for flows that have ex-

actly one SYN packet (which is implied by assumption

1). Both estimators overestimate the number of flow ar-

rivals if flows have more than 1 SYN packet. For flows

without any SYN packets which according to our defi-

nition of flow arrivals5 should not be counted, we have

E[



M

(1)

℄ = 0 and E[



M

(2)

℄ > 0, so to make the second

estimator unbiased we need another assumption.

Assumption 2 The first packet within the bin for every

flow has the SYN flag set.

Since the flows retaining SYN packets after the ran-

dom packet sampling stage will retain a single SYN

packet, and M (1) estimates the number of flow arrivals

based on the number of such flows, we can easily com-

bine it with ba to obtain an estimator for the number flows

arrivals for the combined algorithm that does random

packet sampling and flow slicing.

b

A

(1)

=

�

1=(pq) if SYN flag set

0 if SYN flag not set
(5)



M

(2) treats separately flows that only have a SYN

packet after packet sampling and the others that sur-

vive it. Fortunately we can differentiate between the two

types of flows even after flow slicing is applied: if a flow

with a single SYN packet is sampled by flow slicing its

record will have 

s

= 1 and the SYN flag set; if any

other flow is sampled by flow slicing and it has 
s

= 1

it means that only its last packet was sampled thus it will

not have the SYN flag set because that would put it into

the category of flows with a single SYN packet surviving

the packet sampling. Thus we can combine M (2) with ba

to obtain another estimator.

5Our definition of flow arrivals differs from that used in [9].

b

A

(2)

=

8

<

:

1=(pq) if SYN flag set and 
s

= 1

1=p if SYN flag not set and 
s

= 1

1 if SYN flag not set and 
s

> 1

(6)

Note that if assumption 1 is violated and we have more

than one SYN packet at the beginning of the flow, say due

to SYN retransmissions, both estimators will be biased

towards overcounting. But if repeated SYNs are a rare

enough occurrence, the effect on a final estimate based

on many flow records will be small.

4.5 Multifactor smart sampling

To reduce the number of flow records, while maintain-

ing accurate byte counts, smart sampling [8] proposes

sampling the flow records with a size dependent proba-

bility r = min(1; b=z) where z is a threshold parameter

controlling the tradeoff between the loss in accuracy and

the reduction in the volume of reports. We can adapt

smart sampling to flow slices using r = min(1;

b

B=z)

and we could still estimate byte, packet and flow arrival

counts based on the smart sampled flow records using
b

S = 1=r

b

S, bB = 1=r

b

B, and bA = 1=r

b

A

(1). But using this

formula for r results in a variance for bA much larger than

that of bA(1) because it discriminates against flows with

few bytes, and since most flows have few bytes, they will

also produce most flow records with the SYN flag set –

and these are exactly the records bA(1) relies on.

We propose a new variant of smart sampling, mul-

tifactor smart sampling which takes into consideration

not just byte counts, but also packet counts and SYN

flags. By picking a smart sampling probability of r =

min(1; bs=z

s

+

b

B=z

b

+

b

A=z

a

) we can balance the re-

quirements of the three estimators. The three individ-

ual thresholds control the tradeoff between accuracy and

reduction in report volume separately for the three esti-

mators of bytes, packets and flow arrivals.

4.6 Dynamically adjusting the flow slicing

probability

Flow Slices dynamically adjusts the flow slicing probabi-

lity p to the current traffic. This adjustment can happen in

the middle of a time bin. Which one of the many values

of p should we use in our estimators? Are the estimators

still unbiased? Actually none of the proofs depends on

having a single value for p, and they would all work if

we replaced it with a separate p

i

for every packet. All

the estimators would need to use the value of the packet

slicing probability in effect at the time the sampling of

a packet caused the creation of the entry. This doesn’t

necessarily mean that one needs to extend the flow entry

with one more field, because it already holds the times-

tamp of the first packet and that can be used to determine



the flow slicing rate if the router keeps a small log of

recent adjustments to it.

When the flow record expires and it is reported, the

report should include the value of the flow slicing proba-

bility p in effect at the time the entry was created. Sim-

ilarly if the smart sampling thresholds z
s

, z
b

, and z

a

are

adjusted dynamically, the report should include their cur-

rent value so that one can compute r during analysis. But

reporting all these parameters doesn’t require an increase

in the flow record size. For example they can be reported

just once in every report packet if their value is the same

for all the records reported together.

4.7 Bins, timeouts, and flow reconstruction

To simplify our discussion of the estimators we started

with some strong assumptions: all records last longer

than the bin length, counters count only packets within

the bin of interest, and the flow memory is empty at the

beginning of the bin. In this section we relax these as-

sumptions and discuss the effects of these relaxations on

the estimators.

4.7.1 Continuous operation

The most elementary relaxation of the assumption is to

consider continuous operation of the algorithm: records

still last longer than the bin length, and we still have

separate counters for each bin, but there can be active

records at the start of our bin, records created earlier.

The simplest case is that of records spanning the entire

bin. The byte and packet counters will reflect the actual

traffic, so we use bS = 1=q

s

and bB = 1=q

b

. If we do

not have a packet sampling stage we can also compute
b

f = 1 if 
s

> 0 and bf = 0 otherwise. bA = 0 because

the flow started in an earlier bin.

If a flow record expires within the bin we run the anal-

ysis on, it can be the only record for the flow, but it is

also possible that another record for the same flow would

get created after the first record’s expiration. For byte

and packet counts which are additive we can just add the

counters from the first record to the estimates from the

second bs = bs

1

+ bs

2

and bb =

b

b

1

+

b

b

2

. The analysis

of unbiasedness carries through because we can consider

that the bin is actually two sub-bins, one ending when

the first record ends and the other starting at the same

time. Since we have unbiased byte and packet estimates

for both sub-bins, our estimates for the sum of the bins

will still be unbiased.

If 
s1

> 0, we know that the flow sent packets during

the bin, so we set bf to 1, otherwise we use Equation 3

with 
s2

since an unbiased estimator for whether the flow

was active in the second sub-bin will tell use whether it

was active overall. This approach preserves overall un-

biasedness, but it makes analysis more complicated be-

cause the two flow records representing the flow cannot

be processed independently anymore: the contribution of

the second record to the flow count of the bin depends on

whether there was a first record with the same flow iden-

tifier. When the router reports the records, they might

not be near each other, so the analysis has to do “flow re-

construction”: keep a hash table with flow identifiers and

find flow records with the same flow identifier covering

parts of the same bin. The consequence of not doing

flow reconstruction is running the risk of double count-

ing such flows with more than one record (which might

be acceptable in many settings).

By our definition of flow arrivals from Section 4.4, as

long as assumption 1 holds, if a flow has a record that

starts before the start of the bin, we should use bA = 0, ir-

respective of whether we have a second flow record (pos-

sibly with a SYN flag) or not. If we have a second flow

record with the SYN flag set we can clearly say that as-

sumption 1 does not hold, but if we do not do flow recon-

struction we might count it separately against the flow

arrival count. In many setting this type of overcounting

is not a big concern.

4.7.2 Slices shorter than bins

When the inactive timeout t
inative

is short or when the

analysis is over long time bins (say hours), flow slices

can be shorter than the bin size. It can happen that we

have more than two records for the same flow within the

same bin. For byte and packet counts we can just add

the individual estimates for the different records and we

get an unbiased estimator for the entire bin. For active

flows we cannot get an unbiased estimate, not even with

flow reconstruction. For flow arrivals, by using bA(1) for

the individual records6 and summing the contributions

without any flow reconstruction gives unbiased estimates

as long as assumption 1 is not violated.

4.7.3 Binning errors

So far we assumed that Flow Slices uses binned mea-

surement. This guarantees that as long as the analysis is

on time intervals that are exact multiples of the measure-

ment bins used, it will be easy to determine exactly how

many of the packets and the bytes counted by the record

were within the bin. But by default Flow Slices doesn’t

use bins, and for records that span bin boundaries, the

user will have to guess how the packets and bytes were

actually divided between the bins. We can prove that

our reconstruction of how the traffic divides between the

bins is unbiased only if we make an assumption about

the spacing of the packets.

Assumption 3 For every flow at the input of the flow

slicing algorithm, the time between the arrivals of all

6For a record started before the beginning of the bin, even if it
has the SYN flag set we consider that the SYN packet was one of the
flow’s packets that arrived before the beginning of the bin and thus have
b

A

(1)

= 0.



pairs of its consecutive packets is the same.

We use the following algorithm for distributing the

packets of reported by a flow record that spans bins be-

tween the bins covered by the record. We consider 
s

packet arrival events, the first one is the timestamp of the

first packet counted by the entry, the last one the times-

tamp of the last packet counted by the entry and the re-

maining 

s

� 2 evenly spaced between them. We con-

sider that 1 packet arrived at every packet arrival event,

except for the first event which has 1=p packets, and dis-

tribute the packets between bins accordingly. This can

be shown to be an unbiased way of distributing pack-

ets between bins under assumption 3. We recommend

distributing the 

b

bytes of the flow between bins pro-

portionally with the number of packets counted against

each bin. Assumption 3 is not enough to prove this dis-

tribution of bytes between the bins to be unbiased, we

would need an additional assumption about uniformity of

packet sizes. For flow arrivals, we do not have a binning

problem because we assume that the first packet counted

by the flow record is the one with the SYN, so we count

the flow arrival against the bin the first packet is in.

We cannot achieve provably unbiased binning for

bytes and packets under realistic assumptions about inter

packet arrival times and packet size distributions within

flows. We turn to measurements instead to see how much

the binning error is on typical traffic. We recommend us-

ing such experimental results to decide whether increas-

ing the size of the flow record by adding multiple coun-

ters to do binned measurement is worth it.

5 Variances of estimators

The estimators discussed in the previous section were all

defined on an individual flow and to compute a measure

(say the number of packets) for a larger aggregate, the

analyst would sum the values of the estimators for the

flow records matching the aggregate. The sampling de-

cisions for different flows are fortunately independent7

and thus the variance of the estimates for aggregates are

the sum of the respective variances for the estimators for

individual flows. In this section we focus on studying the

variances of the various estimators for individual flows.

We also show that the variances of the estimators based

on the core flow slicing algorithm are lower than those of

estimators based on random sampling used by Adaptive

NetFlow to control memory usage. As in Section 4, we

start with a simplified setting of a single bin in isolation

and then proceed to more realistic settings. The proofs

for the variance results from this section can be found

aprefvarianceproofs.

7Strictly speaking once we add algorithms that adapt various sam-
pling parameters dynamically based on resource consumption we in-
troduce small correlations between decisions, but these correlations are
so small we can safely ignore them.

5.1 Packet count variance

For the core flow slicing algorithm we can compute the

variance of the packet count estimator.

V AR[bs℄ = 1=p(1=p� 1)(1� (1� p)

s

) (7)

Note how this variance is strictly lower than the vari-

ance of results based on random packet sampling (1=p�

1)s except for the case of s = 1 when the two variances

are equal since in this case both algorithms have proba-

bility p of estimating the packet count as 1=p and proba-

bility 1� p of estimating it as 0. The higher s, the larger

the difference between the variance of results based on

flow slicing when compared with packet sampling. Since

using the same sampling probability will give the same

memory usage for flow slicing and ordinary sampling,

this comparison of variances shows us that flow slicing

is a superior solution. The advantage is most apparent

when estimating the traffic of aggregates with much traf-

fic coming from large flows.

The same conclusion holds if we compare the combi-

nation of packet sampling and flow slicing used by Flow

Slices to the pure packet sampling used by Adaptive Net-

Flow and Sampled NetFlow. Here the fair comparison is

with Sampled NetFlow using a packet sampling proba-

bility of pq. We can conceptually divide this into a first

stage of packet sampling that samples packets with pro-

bability q and a second one that samples them with pro-

bability p. The first stage has identical statistical proper-

ties for the two solutions, thus the difference in the accu-

racy is given by the second stage, but comparing the sec-

ond stages reduces to comparing flow slicing and packet

sampling using the same probability p.

5.2 Byte count variance

We can also compute the variance of the estimates for the

number of bytes8.

V AR[

b

b℄ = 1=p

s

X

i=1

(1� p)

i�s+1

b

2

i

(8)

Note how this variance is strictly lower than the vari-

ance of results based on random packet sampling (1=p�

1)

P

s

i=1

b

2

i

(except for the case of a single packet flow).

This shows that for byte counts too, flow slices are a bet-

ter solution than ordinary sampling.

5.3 Flow count variance

We can also compute the variance of the estimates for the

number of active flows, but we cannot compare against

packet sampling because there are no unbiased estimates

for the number of active flows based on packet sampled

data.

8Remember that we number the packet sizes b
i

in reverse order with
b

1

being the size of the last packet and b

s

that of the first one.



V AR[

b

f ℄ = (1� p)

s�1

(1=p� 1) (9)

5.4 Continuous operation

If we consider continuous operation for the algorithm,

we can have at the beginning of the bin a record for our

flow. If the slice spans the entire bin, it counts every-

thing exactly and thus the variance of all estimator is 0.

If the slice ends in the current bin, we can divide the flow

into two parts: one covered by this older record and the

rest. For the first part we have 0 variance for the byte

and packet counts and for the second part we can apply

formulas 7 and 8, but instead of s being the number of

packets of the flow in the bin, it should be only the num-

ber of packets in this second part and the b
i

be the sizes

of those packets. For the flow count estimate, if the num-

ber of packets in the first record is 0 (whether it is 0 or

not is not something that depends on the random flow

slicing decisions in the current bin), the variance of the

estimate is 0, otherwise formula 9 applies. Thus hav-

ing flow records active at the beginning of the bin does

not increase the variance of the packet, byte and flow

count estimates, on the contrary, it can reduce them sig-

nificantly.

6 Experimental evaluation

We divide the experimental evaluation section into two

parts. In the first group of experiments, we evaluate the

efficacy of the core flow slicing algorithm. Later, we

compare flow slicing with Adaptive NetFlow to show the

efficacy of Flow Slices both in terms of memory usage

and accuracy of estimates. For our evaluations, we ob-

tained real OC-48 traces from Cooperative Association

of Internet Data Analysis (CAIDA[4]).

6.1 Accuracy of the core flow slicing algo-

rithm

In this section, we evaluate the core flow slicing algo-

rithm against the “full-state” approach. These experi-

ments provide more insight into the efficacy of the flow

slicing algorithm and the reaction to changing various

variables such as flow slicing probability, slice length on

the memory usage and the mean relative error.

First, we fixed the slicing probability to 0.008 (equal to

1 in 125 flows) and the slice duration to 60 seconds. Fig-

ure 2 shows the scatter plot of ratio of the estimated flow

size (in number of packets) and the actual true flow slice

on the y-axis and the true flow size on the y-axis. Note

that the plot only shows flows that have more than 5000

packets throughout the duration of the trace (1 hour).

From this scatter plot, we can see that most of the flows

have been accurately estimated within 10% error mar-

gin. Also, as the flow sizes became bigger, the estimate

converges to the true estimate as these flows are more
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Figure 2: Scatter plot for accuracy of flow slices.
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Figure 3: Trade-off between Mean Relative Error and

Memory Usage as we increase sampling probability

rapidly sampled and once sampled counted fully. Note

also the presence of two-sided errors clearly depicting

the “unbiased-ness” of our estimates using Flow Slices.

What is the affect of flow slicing probability on the ac-

curacy of these estimates ? According to the theory in

Section 5.1, increasing slicing probability increases the

accuracy of estimated flow sizes. In other words, the

mean relative error as defined as ratio of the mean of the

error to the actual value should decrease. Also, clearly

as the slicing probability increases, the memory usage

should increase almost linearly. In Figure 3, the mean

relative error for flows larger than 5000, and the corre-

sponding memory usage have been plotted with varying

slicing probability on the x-axis. Apart from the empiri-

cal value of the mean relative error, we also plot the the-

oretical value for this based on the formula obtained in

Section 5.1. From this figure, we can see that the results

are as calculated theoretically. Increasing slicing proba-

bility decreases the mean relative error although amount

of memory usage increases almost linearly.

Extrapolating Bins from Flow Slices: The goal of this

experiment is to study the affect of binning from flow



Flow Size ANF Flow Slices(60s) Flow Slices (180s) Flow Slices (300s)

Pkts. Bytes Pkts. Bytes Pkts. Bytes Pkts. Bytes

> 1% 0.025 0.048 0.023 0.021 0.02 0.020 0.0140 0.038

0.1-1% 0.113 0.158 0.06 0.079 0.055 0.064 0.045 0.059

0.01-0.1% 0.31 0.406 0.21 0.303 0.183 0.265 0.179 0.244

Web (80) 0.0121 0.0464 0.0074 0.0177 0.0215 0.0101 0.0071 0.0567

Mail (25) 0.0003 0.0326 0.0670 0.0376 0.0141 0.0307 0.0176 0.0252

SSH (22) 0.1894 0.1916 0.1033 0.5267 0.0020 0.0381 0.0088 0.5670

News (119) 0.0381 0.0167 0.0214 0.0139 0.0032 0.0149 0.0001 0.0028

FTP (20) 0.0294 0.0233 0.0475 0.0005 0.0238 0.0123 0.0485 0.1061

Table 4: Results comparing Adaptive Netflow and Flow Slices with different Slice durations. The total number of

packets are about 35 Million.
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Figure 4: Scatter Plot that depicts the errors introduced

in extrapolating bin measures from slices.

slices. We plot in Figure 4, the ratio of estimated to the

actual size of the flow in a given bin to the flow size on

x-axis. For this experiment, we used a slice length of 90

seconds and divided it up equally into 10 bins of size

9 seconds each. Figure 4 shows that larger the flows,

binning error is insignificant. However, for relatively

smaller flows extrapolating from flow slices results in

much higher error. Since we divide up the entire volume

of traffic for a particular flow equally among all the bins

(except the first bin which gets a slightly higher amount),

error can be dependent on the burstiness of the traffic.

Of course, to capture the fine grained traffic slices, the

extension proposed in Section 3.4 could be applied but

that would result in higher memory requirement. An-

other important thing to note here is the unbiased-ness of

the estimate as we can see two-sided errors.

6.2 Comparison with Adaptive NetFlow

In this subsection, we compare Flow Slices with Adap-

tive NetFlow, a previously proposed solution that is

based on packet sampling. For the purposes of evalua-

tion, we fix the packet sampling probability to 1 in 1024

for Adaptive NetFlow. To be fair in our comparisons

with Flow Slices, we split the 1=1024 probability into

two parts consisting of packet sampling (1=16 for our

OC-48) and flow slicing probability (1=64). We picked a

random 5 minute OC-48 trace obtained from CAIDA for

our comparisons. Also, instead of monitoring individual

flows, we aggregated based on the destination IP address

in the flow as they tend to be much larger and hence sig-

nificantly farther from statistical noise. This also allows

for a fairer comparison between the two schemes as the

final aggregates instead of individual flows are usually

most important for traffic analysis.

Table 4 illustrates the comparison of error obtained

by Adaptive NetFlow and Flow Slices both for packet

counts and byte counts. Clearly, in the first group of

flows that are larger than 1% of the total traffic volume,

Flow Slices performs slightly better than Adaptive Net-

Flow. When we used the slice length of 300s, we found

that Flow Slices has about 11% less mean relative error

than that of Adaptive NetFlow. We believe this is due

to the fact that once a flow is sampled by Flow Slices,

it remains in the memory until the slice expires hence

leading to more accurate results. In the second group

of flows that contained traffic volume between 0.1% and

1% of total traffic, once again Flow Slices provide better

accuracy than Adaptive NetFlow by about 4-7%. Finally,

as expected for really small flows, sample and hold based

algorithms perform better than ordinary sampling and we

can see that Flow Slices performs better than Adaptive

NetFlow by almost 7-13%.

In the second part of the Table 4, we show how Adap-

tive NetFlow and Flow Slices estimated the individ-

ual traffic breakdown for common traffic types such as

WWW, Email etc. Both Flow Slices and Adaptive Net-

Flow estimated close to the actual packet counts for Mail,

News, Web traffic, SSH and FTP. For SSH, the case when

slice duration was 60 seconds and 300 seconds had sig-

nificant error but, slice length of 180 seconds produced

more accurate byte counts. Too few connections (only



Slice Memory Volume ANF

60 7122 21056 21526

180 15917 22979 21526

300 21587 21587 21526

Table 5: Comparing memory used and volume of records

generated by Flow Slices and Adaptive NetFlow (ANF).

Here, we used 300 seconds for bin size of Adaptive Net-

Flow. We did not use any inactivity time-out for flow

slices here.

Slice/ Memory Volume

Bin Slices ANF Slices ANF

60 3233 5484 27589 27491

180 4022 13983 24602 23859

300 4617 21526 23398 21526

Table 6: Memory used and Volume of Records generated

by Flow Slices and Adaptive NetFlow (ANF) for similar

Adaptive NetFlow binning and Flow Slice durations. We

used an inactivity timeout of 15 seconds for these exper-

iments

74) found in the trace, coupled with very little volume

(0.03% traffic) could be attributed to this error in accu-

racy. In general, however, we can see that byte counts

and packet count errors are fairly low to show that flow

slices helps obtain accurate estimates to flows. Unbiased

errors statistically equate out as the constituent number

of flows increases as well as size of the aggregate.

Memory Requirements: The total volume of flow

records generated by Adaptive NetFlow and Flow Slices

was found to be roughly comparable. Adaptive NetFlow

generated about 21526 records, while Flow Slices de-

pending on the slice length, generated about 21000 to

24000 records. However, the key gain that Flow Slices

have in comparison to Adaptive NetFlow is in the area

of run time memory. We saw that if we used 60 seconds

as the slice length, Flow Slices operate within a third of

the number of records that Adaptive NetFlow requires

thus making it more memory efficient than Adaptive Net-

Flow. The second key observation from Table 5 is the

fact that the total volume of records output by Adaptive

NetFlow and Flow Slices is roughly comparable. This is

expected since both Adaptive NetFlow and Flow Slices

are run with similar final probabilities (1 in 1024).

Effect of Inactivity Timeouts: In Table 6, we show the

effect of introducing “Inactivity Timeouts” on the mem-

ory usage for the Flow Slices algorithm. A flow record

that sees no activity for a pre-defined inactivity period is

immediately flushed out of the memory. The inactivity

timeout we used for this experiment is 15 seconds. So,

short flows that last for less than 15 seconds typically get

flushed out much faster than the rest of the flows thus

saving memory usage. As expected, with this inactivity

timeout, we see that Flow Slices gain an order of magni-

tude memory savings in comparison with Adaptive Net-

Flow. Note also the slight increase in run-time memory

as we increase the slice length relative to the case when

inactivity timeouts are not used (Compare column 2 of

Table 5 and Table 6). The reason is that only really long

flows tend to occupy space when we increase the slice

length. Short flows are not affected by the slice dura-

tion. Since the number of long flows tends to be small,

memory is re-used more efficiently than when inactivity

timeouts are not applied. For Adaptive NetFlow, reduc-

ing the bin size has a similar affect that increases the vol-

ume of flow records but reduces the operational mem-

ory footprint. Clearly, for comparable volumes of flow

records, Flow Slices operate with a much smaller mem-

ory footprint when inactivity timers are enabled. This

is much more pronounced when we use larger values of

slice lengths. For example, when a slice length of 300 is

used, we see that Flow Slices generate only 10% more

flow records, but operates with a memory footprint 5

times smaller than the Adaptive NetFlow counterpart.

From these results, we have empirically verified the

efficacy of the Flow Slices in comparison with Packet

Sampling based algorithms such as Adaptive NetFlow.

When we apply inactivity timeouts to the Flow Slices,

it results in much better spatial re-use of memory while

suffering little loss in accuracy and little increase in the

total volume of flow records.

7 Conclusions and future work

Processing, memory, and bandwidth constraints make it

impossible for high speed routers to provide full flow

measurements thus forcing us to consider some type of

data reduction. Different flow measurement solutions

perform this data reduction differently, and one can com-

pare them by comparing their resource consumption and

the amount of error the data reduction causes in various

analyses one wants to perform on the flow data. We mo-

tivated our design of Flow Slices with the desire to sup-

port accurate estimates for the number bytes, packets and

flows in arbitrary large aggregates within the traffic.

Flow Slices offer a unique mix of qualities among flow

measurement solutions: dynamic adaptation of sampling

parameters to keep resource usage within limits, separate

parameters for controlling the three potential resource

bottlenecks, efficient use of available resources, and al-

gorithmic solutions for minimizing the errors introduced

by the data reduction. These qualities are possible due to

novel algorithms such as the core flow slicing algorithm

and multifactor smart sampling and various new estima-

tors. Our experiments also confirm that compared to the

currently used Sampled NetFlow and to another solution

that can be deployed by a simple software upgrade at rou-



ters, Adaptive NetFlow, Flow Slices constitute a better

flow measurement solution.

But the fact that Flow Slices support well the traffic

analyses discussed in this paper, does not mean there is

no room for improvement. There are many useful anal-

yses of unsampled flow data that we haven’t considered.

For example correlation between various flows has been

used to classify data transfers: the existence of a con-

trol connection on the ftp port between two IP addresses

can help identify a highport to highport connection as

a passive ftp transfer, the existence of a prior connec-

tion to the central Napster servers has been used to iden-

tify subsequent highport to highport connections as Nap-

ster traffic [19], connections to computers that use well

known peer to peer ports and the existence of both UDP

and TCP connections between computers have been used

to identify highport to highport p2p traffic [13]. Addi-

tional metrics such as flow duration and the variability of

packet inter arrival times have been used to divide flows

into different application categories [21]. We are confi-

dent that progress in data reduction solutions by traffic

measurement solutions for high speed links might some-

day enable these and many other useful analyses and turn

the Internet into a better understood and more reliable

network.
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A Proofs of variance results
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A.2 Proof of Equation 8
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A.3 Proof of Equation 9
Let p
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s�1 be the probability that flow

slicing selects one of the packets of the flow before the
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