
UC San Diego
UC San Diego Previously Published Works

Title
Regression of ranked responses when raw responses are censored

Permalink
https://escholarship.org/uc/item/0zr772g2

Authors
Donohue, Michael C
Gamst, Anthony C
Rissman, Robert A
et al.

Publication Date
2016-02-24
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0zr772g2
https://escholarship.org/uc/item/0zr772g2#author
https://escholarship.org
http://www.cdlib.org/


Regression of ranked responses when raw responses are censored

Michael C. Donohue1, Anthony C. Gamst2,3, Robert A. Rissman3, and Ian Abramson4

1Alzheimer’s Therapeutic Research Institute, University of Southern California

2Division of Biostatistics & Bioinformatics, University of California, San Diego

3Department of Neurosciences, University of California, San Diego

4Department of Mathematics, University of California, San Diego

February 25, 2016

Abstract

We discuss semiparametric regression when only the ranks of responses are observed. The model is

Yi = F (x′
iβ0 + εi), where Yi is the unobserved response, F is a monotone increasing function, xi is a

known p−vector of covariates, β0 is an unknown p-vector of interest, and εi is an error term independent

of xi. We observe {(xi, Rn(Yi)) : i = 1, . . . , n}, where Rn is the ordinal rank function. We explore a novel

estimator under Gaussian assumptions. We discuss the literature, apply the method to an Alzheimer’s

disease biomarker, conduct simulation studies, and prove consistency and asymptotic normality.

Keywords: rank-based regression; censored observations; semiparametric; robust; asymptotics.

1 Introduction

Rank-based statistics are often attractive for their robustness properties. Occasionally, due to some practical

measurement difficulties, we have no choice but to resort to ranks. For example, we might wish to analyze

webpage or team ranks without access to an underlying continuous response variable. Suppose data arises

from a monotone transformation of a linear model. How much information is lost when we observe ranks in

place of raw data and how well can we estimate the linear parameters of the regression? One might think

that the rank transformation, as depicted in Figure 1, causes a catastrophic loss of information about the

target parameter. It is clear that the scale of the linear parameter and any intercept term are irrecoverable,

however we can estimate the “direction” of the parameter (i.e. up to a scalar). Such an estimate can be useful

for inference regarding the relative importance of effects, predicting ranks, and semiparametric estimation of

response surfaces with parallel linear linear level sets. Response surfaces with linear (possibly non-parallel)
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level sets exhibit “asynergy ;” and synergy can be assessed by examination of the residuals of asynergistic

fits [Donohue et al., 2007].

Semiparametric rank-based estimators introduced by Han [1987] and Sherman [1993] actually yield
√
n-

consistent and asymptotically normal estimates for the direction of the parameter competitive with ordinary

least squares methods using the raw observations. These rank based estimators all involve maximizing

some form of rank correlation, and can be computationally complex in higher dimensions. We will explore

another asymptotically normal estimate which is admittedly less robust than these estimators, but which is

achieved by a simpler ordinary least squares computation. We prove consistency and asymptotic normality

under strong Gaussian assumptions. Simulation studies demonstrate the methods sensitivity to the Gaussian

assumptions.

We also apply the method and competitors to a dataset with an Alzheimer’s disease blood plasma

assay that is prone to batch effects [Donohue et al., 2014]. Bioassay florescence intensities are typically

parametrically calibrated, plate by plate, using standards of know concentration (e.g. Davidian and Haaland

[1990]). We explore the use of the rank transformation, also applied plate by plate, as an alternative

nonparametric standardization under the assumption that there is negligible biological variation across plates.

We then apply the rank-based regression methods under discussion.

1.1 A novel gaussian quantile rank-based regression

Consider the restricted rank-based regression problem under assumptions

(A1) xi ∼ Np(0,Σ)

(A2) εi ∼ N (0, σ2)

(A3) Yi = F (x′iβ + ε), F is monotone increasing

(A4) We observe zi = (xi, Rn(Yi)) for i = 1, . . . , n

However, we can assume without loss of generality that F is the identity map since F has no affect on the

observed ranks and it is a nuisance parameter. Furthermore let G denote the distribution of xi and H denote

the distribution for Yi (both of which are Gaussian). Let Hn be the empirical distribution function based

on a sample Y1, . . . , Yn. We seek a competing estimator to Spearmax (8), still based only on the observation

{(xi, Rn(Yi)) : i = 1 . . . n}, that takes advantage of two facts:

n−1Rn(Yi) = Hn(Yi) (1)

and

Φ−1(H(Yi)) = c(x′iβ0 + εi) (2)
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Figure 1: The rank transformation. Rank transformed responses (grey dots) retain information about the

parameter of interest, β0.
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for some constant, c, where Φ−1 is the standard normal quantile function (see Lemma 3.1 in Section 3). In

light of these facts, we propose the Gaussian Quantile Regression:

β̂n =
(
n−1

n∑
i=1

x′ixi

)−1
n−1

n∑
i=1

x′iΦ
−1(H∗n(Yi)), (3)

where H∗n(y) = (n+ 1)−1Rn(y). In the appendix we show consistency of βn and asymptotic normality of a

version of β̂n where Φ−1 is replaced with a truncated quantile function, Φ−1n .

In the next section we will discuss related background literature. In Section 3 we discuss consistency and

asymptotic normality. In Section 4 we describe simulations.

2 Background

2.1 R-Estimators

Note the distinction between our setting and that of classical “rank regression.” Rank estimators (R-

estimators) Jurec̆ková and Sen [1996], are not useful in our setting since they require observations of the

response. They utilize the ranks of the residuals, not the ranks of the responses. More specifically, R-

estimators solve arg minβ∈B ‖Ln(β)‖, where

Ln(η) =

n∑
i=1

(xi − x̄n)an(Rn(Yi − xiη)),

and an is an appropriate score function. Parzen et al. [1994] introduced a resampling method for inference

regarding β0 using R-estimates.

2.2 Monotonic linear index models and “Spearmax”

Han [1987] introduced a “semiparametric monotonic linear index model” of the form

Yi = D ◦ F (x′iβ0, εi) (4)

where Yi is an observed response, D is a monotone increasing function, F is strictly increasing in both

arguments, xi is a known p-vector, β0 is an unknown p-vector of interest, and εi is random error independent

of xi. Han also introduced a maximum rank correlation estimator

arg max
β∈B

1

n(n− 1)

∑
i 6=j

{Yi > Yj}{x′iβ > x′jβ} (5)

where {·} represents the indicator function and B is an appropriate subset of Rp, the unit ball say. The

necessity of restricting to Rp becomes apparent in light of the fact that scalar multiples of a particular β yield

the same rank correlation. The power of estimators of this type is that they exploit monotonicity without

making assumptions about the particular form of D or F . Assumptions regarding the error distribution
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are minimal as well. Sherman [1993] showed (5) is n-consistent and asymptotically normal. Cavanagh and

Sherman [1998] proposed a class of consistent and asymptotically normal estimators of the form

β̂n = arg max
β∈B

n∑
i=1

M(Yi)Rn(x′iβ) (6)

where Rn is the rank function

Rn(ai) =

n∑
j=1

{aj ≤ ai}, for (a1, . . . , an) ∈ Rn (7)

and M is either deterministic or Rn. When M is Rn, the quantity being maximized in (6) is a linear

function of Spearman’s rank correlation coefficient, and in this case we need only observe the ranks, not the

raw responses. When M = Rn we will refer to (6) as the Spearmax estimate of β0:

β̂n = arg max
β∈B

n∑
i=1

Rn(Yi)Rn(x′iβ) (8)

The problem of estimating β0 becomes one of maximizing a step function over B.

2.3 M-Estimators

The Spearmax estimator is related to the classical M -estimator Jurec̆ková and Sen [1996] for the linear

regression model:

arg min
β∈Rp

n∑
i=1

ρ(Yi − x′iβ)

for an appropriate absolutely continuous and differentiable ρ : R → R. The Spearmax estimate can be

written as a related minimization

arg max
β∈B

n∑
i=1

Rn(Yi)Rn(x′iβ) = arg min
β∈B

‖Rn(Y)‖2 + ‖Rn(Xβ)‖2 − 2

n∑
i=1

Rn(Yi)Rn(x′iβ)

= arg min
β∈B

‖Rn(Y)−Rn(Xβ)‖2

= arg min
β∈B

n∑
i=1

(Rn(Yi)−Rn(x′iβ))2

However, the rank functions involved make Spearmax distinct from classical M -estimation.

2.4 Current Status Data

Another interesting and related problem is rank-based regression for current status data Aragón and Quiróz

[1995], Abrevaya [1999] with survival analysis applications. The setting is also linear regression with the

response Yi not observable. We observe (Xi, Ci,∆i), where ∆i denotes the indicator on {Yi ≤ Ci}. Aragón

and Quiróz [1995] proposed and showed consistency of

arg max
β∈B

n∑
i=1

∆iRn(Ci − x′iβ) (9)
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and

arg max
β∈B

n∑
i=1

Rn(Ci − x′iβ)F̂β(Ci − x′iβ)

where F̂β is a uniform strongly consistent estimate of the distribution of (Yi−x′iβ). Abrevaya [1999] proved

asymptotic normality of (9).

2.5 Concomitants

Statistics related to our Gaussian Quantile Regression (3) appear in the concomitant literature. David and

Nagaraja [1998] provide a detailed review. We will summarize these results and provide a comparison to our

proposed estimator.

Yang [1981a] discussed related statistics of a more general form. Let (Xi, Yi), i = 1, . . . , n be a random

sample from a bivariate distribution with cumulative distribution function F (x, y). Let Yi:n denote the ith

order statistic and X[i:n] denote the the so-called ith concomitant, that is the X variable associated with

Yi:n. The term induced order statistics has also been used in place of concomitant by Bhattacharya [1974].

Under mild conditions, Yang proved asymptotic normality of statistics of the form

Sn = n−1
n∑
i=1

J(i/(n+ 1))K(X[i:n], Yi:n), (10)

where J is a smooth bounded function (possibly depending on n) and K is some real valued function on R2.

We can rewrite our Gaussian Quantile Regression (3) as

β̂n =
(
n−1

n∑
i=1

x′ixi

)−1
n−1

n∑
i=1

x′[i:n]Φ
−1(i/(n+ 1)),

where we generalize the definition of ith concomitant here to be the x vector associated with Yi:n. In the

notation of Yang’s statistics we have J = Φ−1 and K(x[i:n], Yi:n) = x[i:n]. Yang considers estimators of

E(Y |X = x), P(Y ∈ A|X = x) and var(Y |X = x) which include observations of raw Y values to which we

are not privy. Yang also only discusses the case p = 1. The method of proof used by Yang is based on earlier

methods of Stigler [1969] and Hájek [1968], namely Hájek’s projection lemma (see also Hettmansperger [1984]

page 50). The idea is to show Sn (10) and its projection

Ŝn =

n∑
i=1

E(Sn|xi, Yi)− (n− 1)E(Sn)

are asymptotically equivalent in terms of mean square. The asymptotic normality of the projection follows

from the central limit theorem since the summands are i.i.d. We will deploy a similar strategy of approx-

imating the dependent sum by an independent sum and invoking the central limit theorem. However, we

will see that our approximation is of the form:

n−1
n∑
i=1

xiΦ
−1(H∗n(Yi)) ≈ n−1

n∑
i=1

xiΦ
−1(Hn(Yi)).

6



The result is also i.i.d. summands, but in our regression setting, this approximation allows the target

regression parameter to emerge via the observation (2).

Yang [1981b] also proved asymptotic normality of

n∑
i=1

J(tni)X[i:n], max
1≤i≤n

|tni − i/n| → 0 (11)

for some deterministic double indexed sequence {tni}. Statistics of this form have applications to tests for

normality and independence. It is interesting to note that in an application of the rank-based regression, a

statistic such as (11) would be useful since it offers a test for the Gaussian assumption without raw response

observations.

2.6 L-Estimators and α-Regression Quantiles

Related to our proposed rank-based regression and the concomitant statistics such as (11) are the so called

L-estimators (linear combinations of functions of order statistics) Jurec̆ková and Sen [1996]. In the p = 1

location setting, these are statistics of the form

Ln = n−1
n∑
i=1

X[n:i]Jn(i/(n+ 1)).

L-estimators were first adapted to the linear regression problem with general p in 1973 by Bickel [1973].

Koenker and Bassett [1978] introduced α-regression quantiles β̂(α), 0 < α < 1 as the solution to

β̂ = arg min
β∈B

n∑
i=1

ρα(Yi − xiβ),

ρα(x) = |x|((1− α){x < 0}+ α{x > 0}),

where {A} is the indicator on A. Koenker and Basset also posed the problem as a linear program and derived

the asymptotic distribution.

3 Consistency and asymptotical normality

3.1 Consistency

In this section we will demonstrate Φ−1(H(Yi)) = c(x′iβ0+εi) and the consistency of β̂n (3). Table 1 collects

the notation and assumptions. Again, we assume without loss of generality that D is the identity map.

The first lemma is an impetus for the estimator since the target parameter appears from a composition

of a quantile function and a distribution function. The proof of the lemma relies on the assumption that all

the random variables are Gaussian or a linear combination of Gaussian random variables.

Lemma 3.1.

Φ−1(H(Yi)) = σ∗(x′iβ0 + εi)

where σ∗ = (σ2
β0

+ σ2)−1/2, σ2
β0

= β′0Σβ0.

7



Proof.

H(Yi) = P[Yj ≤ Yi] i 6= j

= P

 xjβ0 + εj√
σ2
β0

+ σ2
≤ xiβ0 + εi√

σ2
β0

+ σ2


= Φ

 xiβ0 + εi√
σ2
β0

+ σ2

 .

Now observe

Φ−1(H(Yi)) =
xiβ0 + εi√
σ2
β0

+ σ2
.

The following series of lemmas will be used to show L1 convergence of the summands, ξnij , and the fact

that cov(ξn1j , ξn2j) → 0 (proofs are in the appendix). These results and Chebychev’s Inequality will be

enough to yield consistency.

Lemma 3.2. ξnij
a.s.→ ξij as n→∞

8



Assumptions and Notation

(A1) xi ∼ Np(0,Σ), Σ is nonsingular

(A2) εi ∼ N (0, σ2)

(A3) Yi = F (x′iβ + ε), F is monotone increasing

(A4) We observe zi = (xi, Rn(Yi)) for i = 1, . . . , n

xi ∼ G for some distribution G

Yi ∼ H for some distribution H

σ2
β0

= β′0Σβ0

σ∗ = (σ2
β0

+ σ2)−1/2

Rn(y) =

n∑
j=1

{Yj ≤ y}

Hn(y) = n−1Rn(y)

H∗n(y) = (n+ 1)−1Rn(y)

ξi = xiΦ
−1(H(Yi))

ξij = XijΦ
−1(H(Yi))

ξni = xiΦ
−1(H∗n(Yi))

ξnij = XijΦ
−1(H∗n(Yi))

β̂n = (n−1
n∑
i=1

x′ixi)
−1n−1

n∑
i=1

x′iΦ
−1(H∗n(Yi))

Table 1: Gaussian Quantile Regression assumptions and notation.

Lemma 3.3. H∗n(Yi) ∼ Un where Un ∼ Unif{(n+ 1)−1, . . . , n(n+ 1)−1}.

Lemma 3.4. EΦ−1(Un)4 ≤ 6.

Lemma 3.5. Eξ2nij ≤ 3
√

2σ2
j , where Xij ∼ N (0, σ2

j ).

Lemma 3.6. Eξnij → Eξij as n→∞

Lemma 3.7. cov(ξnsj , ξntj)→ 0 as n→∞.

Theorem 3.8. The estimate β̂n is consistent for a scalar factor of β0.

9



Proof. Let ξ̄nj = n−1
∑n
i=1 ξnij . By Chebychev’s Inequality:

P[|ξ̄nj −Eξnij | ≥ δ] ≤ var(ξ̄nj)/δ
2

= (nδ)−2(n var(ξnij) + n(n− 1) cov(ξnsj , ξntj))

≤ δ−2(n−1Eξ2nij + n−1(n− 1) cov(ξnsj , ξntj))

≤ δ−2(n−13
√

2σ2
j + n−1(n− 1) cov(ξnsj , ξntj))

→ 0

So for each j ∈ {1, . . . , p} by the above and Lemma 3.6 we have,

|ξ̄nj −Eξij | ≤ |ξ̄nj −Eξnij |+ |Eξij −Eξnij |
P→ 0,

and therefore

ξ̄n
P→ Eξi = E

xi(x′iβ0 + εi)√
σ2
β0

+ σ2

 = σ∗Σβ0

We also have, as with the classical ordinary least squares setup,(
n−1

n∑
i=1

x′ixi

)−1
P→ Σ−1.

Finally we have:

β̂n =

(
n−1

n∑
i=1

x′ixi

)−1
ξ̄n

P→ σ∗β0.

3.2 Asymptotic normality

In order to prove asymptotic normality of our estimator we are forced to truncate the Gaussian quantile

function. For the extreme ranked data (Rn(Yi) /∈ (1−αn, αn)), this results in xiΦ
−1(Hn(Yi)) being replaced

with xiΦ
−1(1− αn) or xiΦ

−1(αn) where

αn = Φ

(√
1

2
log n

)
→ 1

More precisely, we define the truncated version of the Gaussian quantile function as

Φ−1n (x) =


Φ−1(1− αn), if x ∈ (0, 1− αn]

Φ−1(x), if x ∈ (1− αn, αn]

Φ−1(αn), if x ∈ [αn, 1)

(12)

We will demonstrate that truncating at this particular αn allows us to put a cn1/4 bound on the first

derivative of the quantile function. We prove asymptotic normality of the truncated version of the estimator

10



(3)

β̃n =

(
n−1

n∑
i=1

x′ixi

)−1
n−1

n∑
i=1

x′iΦ
−1
n (H∗n(Yi)) (13)

by applying the Central Limit Theorem to an i.i.d. version of our estimator, then applying Slutsky’s Theorem.

The three series in discussion are

S(2)
n =

√
n

(
n−1

n∑
i=1

x′iΦ
−1(H(Yi))− σ∗Σβ0

)
⇒ Np(0, A), (CLT)

S(1)
n =

√
n

(
n−1

n∑
i=1

x′iΦ
−1
n (H(Yi))− σ∗Σβ0

)
, and

Sn =
√
n

(
n−1

n∑
i=1

x′iΦ
−1
n (H∗n(Yi))− σ∗Σβ0

)
.

In the first line above (CLT), A is the p× p dispersion matrix associated with

x′1Φ−1(H(Y1)) = σ∗x
′
1(x′1β0 + ε1)

with entries

aij = cov(σ∗X1i(x
′
1β0 + ε1), σ∗X1j(x

′
1β0 + ε1))

=σ2
∗(E(X1i(x1β0 + ε1)X1j(x

′
1β0 + ε1))

−E(X1i(x
′
1β0 + ε1))E(X1j(x

′
1β0 + ε1)))

=σ2
∗(EX1iX1j((x

′
1β0)2 + σ2)− (e′iΣβ0)(e′jΣβ0))

=
1

σ2
β0

+ σ2
(EX1iX1j(x

′
1β0)2 + σ2e′iΣej − (e′iΣβ0)(e′jΣβ0)) (14)

Here ei denotes the p-vector with 1 as its ith component and 0’s elsewhere.

We show ‖S(2)
n − S(1)

n ‖
P→ 0, ‖S(1)

n − Sn‖
P→ 0, and apply Slutsky’s Theorem to conclude Sn is asymptot-

ically normal (proofs of lemmas are in the appendix).

Lemma 3.9. ‖S(2)
n − S(1)

n ‖
P→ 0

We will need two lemmas to prove ‖S(1)
n − Sn‖

P→ 0.

Lemma 3.10.

(Φ−1n (H(Y1))− Φ−1n (Hn(Y1)))2 ≤ σ∗2π
√
n(H(Y1)−H∗n(Y1))2

Lemma 3.11.

E1(H(Y1)−H∗n(Y1))2 ≤ 1

n+ 1

almost surely where E1 is the conditional expectation E1(·) = E(·|Y1,x1).

Lemma 3.12.

‖S(1)
n − Sn‖

P→ 0

11



Theorem 3.13.

Sn ⇒ Np(0, A)

Proof. From the preceding lemmas we have

‖Sn − S(2)
n ‖ ≤ ‖Sn − S(1)

n ‖+ ‖S(1)
n − S(2)

n ‖
P→ 0

Since S
(2)
n ⇒ Np(0, A) by the Central Limit Theorem, Slutsky’s Theorem gives us Sn ⇒ Np(0, A).

Finally we have asymptotic normality of our estimate in the following sense (proofs are in the appendix).

Corollary.
√
n(β̃n − σ∗Σ−1n Σβ0)⇒ Np(0,Σ−1AΣ−1),

where Σ−1n = (n−1
∑n
i=1 x

′
ixi)

−1.

Corollary. If the covariance matrix, Σ, is known then

√
n(β̇n − σ∗β0)⇒ Np(0,Σ−1AΣ−1),

where

β̇n = n−1Σ−1
n∑
i=1

x′iΦ
−1
n (H∗n(Yi))

4 Simulations

Our Truncated Gaussian Quantile Regression estimate (13) was pitted against the Spearmax estimate (8)

and the usual ordinary least squares (OLS) estimate gotten from the full data with raw response. The

Spearmax estimate was achieved by parameterizing β ∈ B, where B is the unit circle, by θ = arctan(β2/β1).

The solution to

arg max
θ∈(0,2π)

n∑
i=1

Rn(Yi)Rn(xi(cos θ, sin θ)′) (15)

was achieved by bound constrained numerical optimization [Byrd et al., 1995]. The constrained region was

centered on the true θ0 = arctan(2/1) = 26.6°. Figure 2 demonstrates the function to be maximized for a

particular sample of size twenty under the Gaussian conditions of the first simulation scenario (17).

We also consider an Empirical Quantile Regression estimate

˜̃βn =

(
n−1

n∑
i=1

x′ixi

)−1
n−1

n∑
i=1

x′iΦ̂
−1
x′
iβn

(H∗n(Yi)) (16)

where Φ̂−1x′
iβn

is the inverse of the empirical distribution of x′ĩ̃βn.

Covariates and errors were simulated under the Gaussian and stable distributions as described below.

From each of the 10,000 simulated trials, the estimated angle of β̂, θ̂, was recorded using each of the methods.

The sample standard deviation and bias from the 10,000 trials is graphically summarized for each scenario.

12
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Figure 3: Gaussian simulations. Simulated standard deviation and bias of the point estimates from 10,000

simulations of varying sample size. Covariates and error are simulated under Gaussian distributions.

4.1 Gaussian simulations

The first run of simulations follow

xi ∼ N

0,

 1 0

0 2

 , β0 =

 2

1

 , εi ∼ N (0, 1), i = 1, . . . , n. (17)

Simulated sample sizes ranged between n = 25 to n = 3, 000. Results are summarized in Figure 3. Gaussian

Quantile regression performs as well as OLS on the full data with moderate sample sizes. Spearmax performs

best on small samples and the Empirical Quantile Regression performs best on moderate sample sizes.

4.2 Impact of skewness

The second scenario simulated the two covariates and errors, independently from stable distributions with

fixed stability parameter α = 1, sample size n = 500 and the skewness parameter β ranging in -1 to 1.

Results of this scenario are summarized in Figure 4. Bias and SD of the Truncated Gaussian Quantile

14
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Figure 4: Impact of skewness. Simulated standard deviation and bias of the three point estimates from

10,000 simulations of size n = 500 drawing covariates and errors from the stable distribution with stability

parameter α = 1 and the given skewness parameter β.

estimator is greater with this heavy tailed distribution (α = 1), but it is unaffected by skewness parameter.

The Empirical Quantile distribution appears to mitigate some of the bias and SD induced by the skewness

of the covariate distribution.

4.3 Impact of stability

The third scenario simulated the two covariates and errors, independently from stable distributions with

fixed skewness parameter β = 0, sample size n = 500, and stability parameter α ranging in 0.2 to 2.0

(Gaussian). Results of this scenario are summarized in Figure 5. Here Spearmax shows an advantage over

OLS, and again, the Empirical Quantile Regression seems to mitigate some of the bias and SD induced by

the heavy tails of the distribution of x′β0.
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Figure 5: Impact of stability. Simulated standard deviation and bias of the three point estimates from

10,000 simulations of size n = 500 drawing covariates and errors from the stable distribution with skewness

parameter β = 0 and the given stability parameter α.
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coefficient estimate lower upper

Truncated Gaussian Quantile

Age 0.1631 −0.114 0.4852

ADAS −0.9866 −1.964 −0.2361 *

Empirical Quantile

Age 0.9969 0.981 1.0233 *

ADAS 0.0785 −0.121 0.2687

Spearmax

Age 0.7761 0.499 1.0278 *

ADAS −0.6306 −1.499 −0.0702 *

Table 2: Estimates of the effect of age, Alzheimer’s Disease Assessment Scale (ADAS), and their interaction

on a blood plasma assay of amyloid-β1−42 using three rank-based regression methods. Bootstrap 95%

confidence limits are estimated by 1,000 bootstrap resamples. Confidence intervals that exclude 0 are marked

by “*”.

5 Application to Alzheimer’s blood plasma assay

We apply the three rank-based regression models to baseline blood plasma assays of amyloid-β1−42. This data

has been previously described and analyzed [Donohue et al., 2014]. For the present analysis, we focus on the

association between response variable amyloid-β1−42 and predictors age at baseline and Alzheimer’s Disease

Assessment Scale (ADAS) in the cohort with Mild Cognitive Impairment (MCI). Assays were performed in

duplicate for each participant. The means of duplicate florescence intensities were rank transformed plate

by plate, under the assumption that the distribution of the assay on each plate should be similar. The

original investigation, using random effects to model duplicate observations and plate effects, found that

amyloid-β1−42 increased 0.16 pg/ml/year of age (SE=0.08, p=0.047), and in a separate model, found no

significant association between ADAS and amyloid-β1−42.

Table 2 shows the results of the alternative rank-based analyses. The Truncated Gaussian Quantile

regression method found that increased amyloid-β1−42 was associated with better ADAS scores (ADAS

increases with worsening); while the Empirical Quantile method found that increased amyloid-β1−42 was

associated increased age. The age association is consistent with the original investigation. The Spearmax

method found both coefficients to be significant at the 0.05 level. Notably, there was strong evidence that the

distribution of x̂′β from the Truncated Gaussian Quantile regression was not Gaussian (Anderson-Darling

p < 0.001). The R functions used for this analysis are provided in the Appendix.
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6 Discussion

We present a novel regression estimator applicable to Han [1987] monotonic index model under Gaussian

assumptions, when only the ranks of the responses and covariates are observed. The proposed estimator

is shown in simulations to be competitive with the known alternative, Spearmax, when the covariates and

errors are Gaussian. We prove the estimator is consistent and asymptotically normal. The appendix also

demonstrate how to attain consistent bootstrap confidence regions in the bivariate case. An obvious drawback

of our proposed rank-based estimate, compared to the Sherman [1993] class of estimates, is the strong

Gaussian assumptions. The assumption, however, yields the key equality (2), which allows β0 to emerge

asymptotically from the composition, Φ−1(H∗n(Yi)). This in turn allows for an estimate with computational

advantages over Spearmax.

The rank-based regression estimator demonstrated advantages over the Spearmax estimate in terms of

simulated standard error and bias in moderately sized (n ≥ 50) fully Gaussian setting. Although Spearmax

is more robust, when the dimension of the target parameter is large the computational benefits of the rank-

based regression may make it an attractive alternative. Where the Spearmax estimator requires maximizing

a step function over p−dimensions, the Gaussian quantile estimate requires only the ubiquitous numerical

approximation to the Gaussian quantile function and the ordinary least squares machinery. In the Alzheimer’s

example, the Truncated Gaussian approach required about 50% of the system time required by Spearmax.

Simulations demonstrate that Gaussian Quantile Regression is sensitive to heavy tailed covariates and

errors, but fairly robust to skewness. Empirical Quantile Regression offers some mitigation of effects of

heavy tails, but Spearmax is recommended if computationally feasible and there is reason to believe the

errors might be heavy tailed.

7 Appendix

7.1 Proof of Lemma 3.2

Lemma 3.2. ξnij
a.s.→ ξij as n→∞

Proof.

sup
Yi

|H∗n(Yi)−H(Yi)| ≤ sup
y

∣∣∣∣ n

n+ 1
Hn(y)−H(y)

∣∣∣∣
≤ sup

y

∣∣∣∣ n

n+ 1
Hn(y)−H(y)

∣∣∣∣+ sup
y
|Hn(y)−H(y)|

≤ 1− n

n+ 1
+ sup

y
|Hn(y)−H(y)| Hn ≤ 1

a.s.→ 0. Glivenko-Cantelli
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Therefore we get

ξnij = XijΦ
−1(H∗n(Yi))

a.s.→ XijΦ
−1(H(Yi))

=
Xij(x

′
iβ0 + εi)√

σ2
β0

+ σ2

= ξij .

7.2 Proof of Lemma 3.3

Lemma 3.3. H∗n(Yi) ∼ Un where Un ∼ Unif{(n+ 1)−1, . . . , n(n+ 1)−1}.

Proof. This is an expression of Renyi’s Theorem [Resnick, 1999, p. 96] which states

P[Rn(Yi) = k] = n−1 for k ∈ {1, . . . , n}

7.3 Proof of Lemma 3.4

Lemma 3.4. EΦ−1(Un)4 ≤ 6.

Proof. For n ≥ 1, note that 2n ≥ n+ 1 and therefore n−1 ≤ 2(n+ 1)−1. So we have:

EΦ−1(Un)4 =

n∑
k=1

Φ−1(k(n+ 1)−1)4n−1

≤
n∑
k=1

Φ−1(k(n+ 1)−1)42(n+ 1)−1

=
2

n+ 1

bn2 c∑
k=1

Φ−1(k(n+ 1)−1)4 +

n∑
k=dn2 e

Φ−1(k(n+ 1)−1)4


≤ 2

∫ 1/2

1

Φ−1(u)4du+ 2

∫ 1

1/2

Φ−1(u)4du

= 2EΦ−1(U)4

= 2EZ4 = 6

The third line in the above follows because Φ−1(1/2)4 = 0. This allows the Riemann approximation to be

left-handed where Φ−1(·)4 is decreasing (k < n/2), and right-handed where Φ−1(·)4 is increasing (k > n/2).

Figure 6 (with n = 20) demonstrates that the approximation can always be kept below the curve Φ−1(·)4.
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Figure 6: Depiction of the Riemann approximation of Φ−1(x)4 used in Lemma 3.4

7.4 Proof of Lemma 3.5

Lemma 3.5. Eξ2nij ≤ 3
√

2σ2
j , where Xij ∼ N (0, σ2

j ).

Proof.

Eξ2nij = E[XijΦ
−1(H∗n(Yi))]

2

≤
√

EX4
ijEΦ−1(H∗n(Yi))4 Schwarz Inequality

=
√

EX4
ijEΦ−1(Un)4 Lemma 3.3

=
√

3σ4
j · 6 = 3

√
2σ2

j Lemma 3.4

7.5 Proof of Lemma 3.6

Lemma 3.6. Eξnij → Eξij as n→∞

Proof. First, {ξnij} is uniformly integrable via the Crystal Ball Condition [Resnick, 1999, p. 184] since

supnE|ξnij | ≤ 3
√

2σ2
j by Lemma 3.5. Uniform integrability and ξnij

a.s.→ ξij gives us Eξnij → Eξij [Resnick,

1999, p. 191]

7.6 Proof of Lemma 3.7

Lemma 3.7. cov(ξnsj , ξntj)→ 0 as n→∞.
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Proof. Now {ξnsjξntj} is also u.i. since

E|ξnsjξntj | ≤
√

Eξ2nsjEξ
2
ntj ≤ 3

√
2σ2

j <∞

We also have ξnsjξntj
a.s.→ ξsjξtj and so E[ξnsjξntj ]→ E[ξsjξtj ].

cov(ξnsj , ξntj) = E[ξnsjξntj ]−EξnsjEξntj

→ E[ξsjξtj ]−EξsjEξtj = 0,

where the last equality follows by independence.

7.7 Proof of Lemma 3.9

Lemma 3.9. ‖S(2)
n − S(1)

n ‖
P→ 0

Proof. For any δ > 0 we have by the Markov Inequality

P[‖S(2)
n − S(1)

n ‖ > δ] ≤ δ−2E‖S(2)
n − S(1)

n ‖2

= δ−2n−1E

∥∥∥∥∥
n∑
i=1

x′i(Φ
−1(H(Yi))− Φ−1n (H(Yi)))

∥∥∥∥∥
≤ δ−2n−1E

n∑
i=1

∥∥x′i(Φ−1(H(Yi))− Φ−1n (H(Yi)))
∥∥

= δ−2E
∥∥x′i(Φ−1(H(Yi))− Φ−1n (H(Yi)))

∥∥
≤ δ−2E

[
‖xi‖2Φ−1(H(Yi))

2{H(Yi) ∈ (0, 1− α) ∪ (αn, 1)}
]

= δ−2σ2
∗E
[
‖xi(x′iβ0 + εi)‖2{H(Yi) ∈ (0, 1− α) ∪ (αn, 1)}

]
→ 0. (DCT)

The last line follows from the Dominated Convergence Theorem since

‖xi(x′iβ0 + εi)‖2{H(Y1) ∈ (0, 1− αn) ∪ (αn, 1)} a.s.→ 0

and

‖xi(x′iβ0 + εi)‖2{H(Y1) ∈ (0, 1− αn) ∪ (αn, 1)} ≤ ‖xi(x′iβ0 + εi)‖2 ∈ L1

by the Gaussian assumptions on xi.

7.8 Proof of Lemma 3.10

Lemma 3.10.

(Φ−1n (H(Y1))− Φ−1n (Hn(Y1)))2 ≤ σ∗2π
√
n(H(Y1)−H∗n(Y1))2

21



Proof. Note that the slope of Φ−1 at x is the reciprocal of the slope of Φ at Φ−1(x), which can be evaluated

in terms of the density as φ(Φ−1(x)). That is, the first derivative of Φ−1 for x ∈ (0, 1) is

d

dx
Φ−1(x) =

1

φ(Φ−1(x))

=
√

2π exp(Φ−1(x)2/2).

Recall Φ−1 is symmetric about 1/2 and Φ−1n preserves that symmetry. Also, the slope of Φ−1n is maximized

at the truncation points, i.e.

d

dx
Φ−1n (x) <

1

φ(Φ−1(αn))

=
√

2π exp

1

2
Φ−1

(
Φ

(√
1

2
log n

))2


=
√

2πn1/4.

By a first order Taylor series approximation we have

(Φ−1n (H(Y1))− Φ−1n (H∗n(Y1)))2 ≤ (
√

2πn1/4(H(Y1)−H∗n(Y1)))2

= 2π
√
n(H(Y1)−H∗n(Y1))2

as desired.

7.9 Proof of Lemma 3.11

Lemma 3.11.

E1(H(Y1)−H∗n(Y1))2 ≤ 1

n+ 1

almost surely where E1 is the conditional expectation E1(·) = E(·|Y1,x1).
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Proof. We have

E1(H(Y1)−H∗n(Y1))2

=H(Y1)2 − 2H(Y1)E1H
∗
n(Y1) + E1H

∗
n(Y1)2

=H(Y1)2 − 2H(Y1)

(
1

n+ 1
+
n− 1

n+ 1
H(Y1)

)

+ E1

(
1

n+ 1
+

1

n+ 1

n∑
i=2

{Yi ≤ Y1}

)2

=
3− n
n+ 1

H(Y1)2 − 2

n+ 1
H(Y1) +

1

(n+ 1)2

+ E1

 2

(n+ 1)2

n∑
i=2

{Yi ≤ Y1}+
1

(n+ 1)2

(
n∑
i=2

{Yi ≤ Y1}

)2


=
3− n

(n+ 1)2
H(Y1)2 − 4

(n+ 1)2
H(Y1) +

1

(n+ 1)2

+
1

(n+ 1)2
(
(n− 1)H(Y1) + (n− 1)(n− 2)H(Y1)2

)
=

5− n
(n+ 1)2

H(Y1)2 − n− 5

(n+ 1)2
H(Y1) +

1

(n+ 1)2

≤ 1

n+ 1

almost surely. The last inequality follows from H(Y1) ∈ [0, 1] almost surely.

7.10 Proof of Lemma 3.12

Lemma 3.12.

‖S(1)
n − Sn‖

P→ 0

Proof.

P[‖S(1) − Sn‖ > δ] ≤ δ−2E‖S(1)
n − Sn‖2

= δ−2n−1E

∥∥∥∥∥
n∑
i=1

xi(Φ
−1
n (H(Yi))− Φ−1n (H∗n(Yi)))

∥∥∥∥∥
2

≤ δ−2n−1E

n∑
i=1

∥∥xi(Φ−1n (H(Yi))− Φ−1n (H∗n(Yi)))
∥∥2

= δ−2E
∥∥xi(Φ−1(H(Yi))− Φ−1n (H(Yi)))

∥∥2
≤ δ−2σ2

∗2π
√
nE
[
‖xi‖2(H(Yi)−H∗n(Yi))

2
]

= δ−2σ2
∗2π
√
nE
[
‖xi‖2E1(H(Yi)−H∗n(Yi))

2
]

≤ σ2
∗2π
√
n

δ2(n+ 1)
E‖xi‖2

→ 0.
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7.11 Proof of Lemma

Corollary.
√
n(β̃n − σ∗Σ−1n Σβ0)⇒ Np(0,Σ−1AΣ−1),

where Σ−1n = (n−1
∑n
i=1 x

′
ixi)

−1.

Proof. Since Σ−1n
P→ Σ, we have

√
n(β̃n − σ∗Σ−1n Σβ0) = Σ−1n Sn ⇒ Np(0,Σ−1AΣ−1)

7.12 Proof of Lemma

Corollary. If the covariance matrix, Σ, is known then

√
n(β̇n − σ∗β0)⇒ Np(0,Σ−1AΣ−1),

where

β̇n = n−1Σ−1
n∑
i=1

x′iΦ
−1
n (H∗n(Yi))

Proof. Since Σ−1n
P→ Σ, we have

√
n(β̇n − σ∗β0) = Σ−1n Sn ⇒ Np(0,Σ−1AΣ−1)

7.13 Confidence intervals

Based on the asymptotic normality of our estimator, we can produce confidence regions by estimating its

bias and dispersion matrix. Alternatively we can use the weak dependence property that accompanies the

established
√
n-consistency to construct jackknife confidence intervals. This amounts to a bootstrap for

triangular arrays which are identically distributed across rows with a weak dependence condition. The

theory is similar in spirit to the stationary time series bootstrap, except the dependence here is not serial.

Recall the setup is Y = Xβ0 + ε along with our Gaussian assumptions and that we observe

X =


x1

x2

...

xn

 and Rn(Y) =


Rn(Y1)

Rn(Y2)
...

Rn(Y3)

 .

Our asymptotically normal estimator is

β̃n =

(
n−1

n∑
i=1

x′ixi

)−1
n−1

n∑
i=1

x′iΦ
−1
n (H∗n(Yi)).
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and we have shown
√
n(β̃n − σ∗Σ−1n Σβ0) = Σ−1n Sn ⇒ Np(0,Σ−1AΣ−1). Suppose p = 2 and let

θ0n = arctan

(
e2Σ−1n Σβ0

e1Σ−1n Σβ0

)
P→ arctan(β02/β01)

and

θ̃n = arctan(β̃n2/β̃n1)

By the bivariate delta method Lehmann [1999] we have

√
n(θ̃n − θ0n)⇒ N (18)

with zero mean provide βn1 is bounded away from zero.

In the previous section we explored the covariance structure (14) of our estimate, namely the limiting

dispersion matrix A. Since
√
n(θ̃n − θ0n) is admittedly not a pivot, we are forced to estimate its variance if

confidence intervals using the normal approximation are desired. Adapting the standard methodology from

the stationary bootstrap literature Kunsch [1989], Lahiri [1991], Politis and Romano [1992], as well as the

order statistics literature Sen [1998], we describe an appropriate functional jackknife procedure.

Observe the n leave-one-out jackknife subsamples of the form

β̃
∗
−i = (n− 1)−1

 ∑
{j:j 6=i}

x′jxj

 ∑
{j:j 6=i}

x′jΦ
−1
(n−1)(H

∗
−i(Yj)),

θ̃∗−i = arctan(β̃
∗
−i2/β̃

∗
−i1),

where H∗−i(Yj) = n−1
∑
{k:k 6=i}{Yk ≤ Yj}. Now our estimate of the variance is the sample variance of the

subsample estimates

var(θ̃n) ≈ σ̃2
n = n−1

n∑
i=1

θ̃∗2−i −

(
n−1

n∑
i=1

θ̃∗−i

)2

. (19)

If the bias is negligible, we have an approximate (1− α)100% confidence interval:[
θ̃n − zασ̃n, θ̃n + zασ̃n

]
,

where zα = Φ−1(1− α/2). We can also include a bias correction by estimating the mean of our estimate:

E(θ̃n) ≈ µ̃n = n−1
n∑
i=1

θ̃∗−i.

The bias corrected approximate confidence interval then takes the form[
θ̃n − µ̃n − zασ̃n, θ̃n − µ̃n + zασ̃n

]
.

To justify the consistency of these estimates consider, by Chebychev’s Inequality and (18)

P[|µ̃n −E(µ̃n)| > δ] ≤ δ−2 var(µ̃n) ≤ δ−2 var(θ̃∗−1) = δ−2 var(θ̃n−1)→ 0.

We also have

|E(θ̃n)−E(µ̃n)| = |E(θ̃n)−E(θ̃∗1)| = |E(θ̃n)−E(θ̃n−1)| → 0
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so that

|E(θ̃n)− µ̃n| ≤ |E(θ̃n)−E(µ̃n)|+ |E(µ̃n)− µ̃n|
P→ 0.

Therefore, µ̃n is a consistent estimate for E(θ̃n).

By another application of the delta method we have
√
n(θ̃2n − θ20n)⇒ N with mean zero. We then have

P

[∣∣∣∣∣n−1
n∑
i=1

θ̃∗2−i −E(θ̃∗21 )

∣∣∣∣∣ > δ

]
≤ δ−2 var

(
n−1

n∑
i=1

θ̃∗2−i

)
≤ δ−2 var(θ̃∗2−1)

≤ δ−2 var(θ̃2n−1)

→ 0.

Additionally, we have

|E(θ̃2n)−E(θ̃∗2−1)| = |E(θ̃2n)−E(θ̃2n−1)| → 0,

so that ∣∣∣E(θ̃2n)− n−1
∑

i = 1nθ̃∗2−i

∣∣∣ ≤ ∣∣∣E(θ̃2n)−E(θ̃∗2−1)
∣∣∣+
∣∣∣E(θ̃∗2−1)− n−1

∑
i = 1nθ̃∗2−i

∣∣∣→ 0.

Finally we have consistency of our variance estimate, |σ̃2
n − var(θ̃n)| P→ 0.

Recall that when the dispersion, Σ, is known, Corollary gives us asymptotic normality of the form

√
n(β̇n − σ−1∗ β0)⇒ Np(0,Σ−1AΣ−1),

where

β̇n = n−1
n∑
i=1

x′iΦ
−1(H∗n(Yi)).

In this case, with p = 2 we compute statistics of the form

θ̇n = arctan(β̇n2/βn1)

such that,
√
n(θ̇n − θ0)⇒ N , θ0 = arctan(β02/β01).

We can derive consistent estimators of the mean and variance similar to the unknown dispersion case

based on the jackknife observations

β∗−i = (n− 1)−1Σ−1
∑
{j:j 6=i}

x′jΦ
−1
(n−1)(H

∗
n(Yj)),

θ̇∗−i = arctan(β̇−i2/β̇−i1).

Additionally, with known Σ we can estimate the distribution of θ̇n directly by subsampling and using the

quantiles of this approximation to form confidence intervals, rather than the normal quantile approximations.

Specifically we have

Distθ̇n(x) ≈ Dist∗
θ̇n

(x) = n−1
n∑
i=1

{θ̇∗−i ≤ x}.
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Let θ̇∗(1) ≤ θ̇
∗
(2) ≤ · · · ≤ θ̇

∗
(n), denote the order statistics. then,

Q∗(α/2) ≈ θ̇∗(k1), Q
∗(1− α/2) ≈ θ̇∗(k2),

where k1 = bBα/2c, k2 = bB(1 − α/2)c + 1. We get a percentile jackknife confidence interval for β0 of the

form

[θ̇∗(k1), θ̇
∗
(k2)

].

The confidence interval can be shown to be consistent by an argument similar to that for the mean and

variance estimators.

We can further improve on the percentile jackknife confidence intervals by considering a studentized

bootstrap-t confidence interval. Consider

Sθ =
θ̇n − θ0√
var(θ̇n)

.

We can estimate DistSθ (x) = P(Sθ ≤ x) by a nested jackknife

Dist∗Sθ (x) = n−1
∑

i = 1n{θ̇∗i ≤ x
√

v̂ar(θ̇∗i ) + θ̇n},

where v̂ar(θ̇∗i ) is estimated in the same manner as (19). The estimate v̂ar(θ̇∗i ) is gotten from the sample

variance of (n− 1) jackknife subsamples of size (n− 2).

7.14 R Functions

# General Truncated Gaussian Quantile function

tgq <- function(x, cut)

{

alpha <- pnorm(cut)

ifelse(x < 1-alpha, -cut,

ifelse(x > alpha, cut, qnorm(x)))

}

# H (rank) transformation

fH <- function(x)

{

rank(x, na.last='keep')/(length(x[!is.na(x)])+1)

}

# Truncated Gaussian Quantile utility function for regression

ftgq <- function(x){
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n <- length(x[!is.na(x)])

tgq(rank(x, na.last='keep')/(n+1), cut=sqrt(log(n)/2))

}

Length <- function(x) sqrt(x%*%x)[1]

Norm <- function(x) x/Length(x)

# Truncated Gaussian Quantile Regression

tgqr <- function (formula, data, subset, FUN = ftgq, ...)

{

cl <- match.call()

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- quote(stats::model.frame)

mf <- eval(mf, parent.frame())

mf[,1] <- FUN(model.response(mf, "numeric"))

b <- lm(formula, data=mf, ...)$coef

Norm(b)

}

# Empirical Quantile Regression

eqr <- function (formula, data, subset, tol=1e-5,

maxiter=100, truncate = FALSE, ...)

{

cl <- match.call()

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- quote(stats::model.frame)

mf <- eval(mf, parent.frame())

mm <- model.matrix(formula, mf)

28



R <- rank(model.response(mf, "numeric"), na.last='keep')

#initial value

n <- nrow(mm)

mf[,1] <- R/(n+1)

beta_eq <- Norm(lm(formula, data=mf, ...)$coef)

p <- length(beta_eq)

beta_eq0 <- Norm(rep(1, p))

if(truncate){

alpha <- pnorm(sqrt(log(n)/2))

}

i <- 1

while(i < maxiter){

Finv0 <- approxfun(ecdf(mm%*%beta_eq)(mm%*%beta_eq),

mm%*%beta_eq, rule = 2)

if(truncate){

tFinv <- function(x){

ifelse(x < 1-alpha, Finv0(1-alpha),

ifelse(x > alpha, Finv0(alpha), Finv0(x)))

}

Finv <- tFinv

}else{

Finv <- Finv0

}

mf[,1] <- Finv(R/(n+1))

beta_eq <- Norm(lm(formula, data=mf, ...)$coef)

if(Length(beta_eq - beta_eq0)<tol){

break()

}else{

beta_eq0 <- beta_eq

i <- i+1

}

}

beta_eq

}

# Spearmax
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spearmax <- function (formula, data, subset, tol=1e-5,

maxiter=100, truncate = FALSE, ...)

{

cl <- match.call()

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- quote(stats::model.frame)

mf <- eval(mf, parent.frame())

mm <- model.matrix(formula, mf)

R <- rank(model.response(mf, "numeric"), na.last='keep')

p <- ncol(mm)

ncorfun <- function(b){

-cor(R, rank(mm%*%b, na.last='keep'))

}

res <- constrOptim(Norm(rep(1,p)), ncorfun, method = "Nelder-Mead",

ui = -Norm(rep(1,p)), ci = -Norm(rep(1,p))*2)

b <- Norm(res$par)

names(b) <- colnames(mm)

b

}
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