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Abstract

Koopman Operators and System Identification for Stochastic Systems

by

Mathias Wanner

The use of the Koopman operator framework in dynamical systems has greatly expanded

in recent years. Instead of considering the evolution of the state of a system, the Koopman

semigroup tracks the evolution of observables on the state. Since the Koopman operator

defined for an arbitrary dynamical system is linear, it allows us to use linear system

theory and spectral methods to analyze nonlinear systems. This framework has also

been extended to stochastic systems. Since the evolution of observables can only be

defined probabilistically for random systems, stochastic Koopman operators are defined

by taking the expectation of the future value of observables.

In the first part of this thesis, we review the basic theory of random dynamical systems

and stochastic Koopman operators. We can use these operators to represent a nonlinear

RDS as an infinite dimensional linear operator. The basic theorems and definitions are

given in this section, which will help form the foundation for the algorithms discussed

in the second and third sections. Further, some simple examples are given for which the

stochastic Koopman operator is well understood. These examples will recur as we use

them to test the algorithms in the second section.

The second section is devoted to the analysis of Dynamic Mode Decomposition (DMD)

algorithms. DMD algorithms approximate a finite section of the (stochastic) Koopman

operator using data from a trajectory. However, these methods are sensitive to noise,

and will give a biased approximation if the observables contains randomness. To combat

this, we introduce an new DMD variant which can approximate a finite section of the

vii



stochastic Koopman operator even when the data contains measurement noise. Further,

we extend this algorithm for use with time delayed observables to create a variant of

Hankel DMD which will converge for stochastic systems. We then demonstrate these

algorithms on numerical examples.

In the final section, we will discuss the Sparse Identification of Nonlinear Dynamics

(SINDy) algorithm for stochastic differential equations. The SINDy algorithm allows one

to generate a representation of an ODE using a dictionary of functions and data from a

trajectory. This algorithm has been extended to SDEs, but the accuracy is limited by the

numerical approximations of the drift and diffusion functions. We demonstrate how we

can use higher order approximations to these functions to generate a far more accurate

representation of the SDE. We then test these approximations on several examples.
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Stochastic Koopman Operators
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Stochastic Koopman Operators Chapter 1

1.1 Introduction

The Koopman framework for dynamical systems was originally introduced by Bern-

hard Koopman, John Von Neumann, and Torsten Carlemann in the 1930s [33, 34, 12].

This new framework represented a shift in viewpoints for the analysis of dynamical sys-

tems. Rather than study objects in the state space of the system (e.g. trajectories, fixed

points, invariant sets) the Koopman framework focuses on the evolution of observables,

or functions, on the state. The Koopman operator, which evolves an observable with the

flow of the system, is a linear operator (albeit an infinite dimensional one). Since the

Koopman operator is linear, this allows us to the methods of linear algebra and functional

analysis to study nonlinear dynamical systems; in particular, we can study its spectrum

[54, 48, 52].

The study of the spectrum of the Koopman operator has been fruitful. Eigenfunctions

of the Koopman operator have been linked to the geometric objects in the state space

of the system [51, 43, 42]. It can be used for linearization and model reduction of large,

complex, nonlinear systems [38, 64]. The framework as also been further extended for

the control of nonlinear systems [44, 7, 56, 60].

For random dynamical systems, we can similarly define a stochastic Koopman oper-

ator, which gives the expected evolution of an observable [54, 48]. Like its deterministic

counterpart, this operator also converts a nonlinear system into an infinite dimensional

linear operator. For Markov processes, the semigroup of stochastic Koopman operators

(or Markov semigroup) can be used to study these nonlinear systems using spectral meth-

ods [15]. Connections have also been made between the eigenfunctions of the stochastic

Koopman operator and the geometry of the system. For example, level sets of eigenfunc-

tions have been connected to the stochastic isochrons [28] and have been shown to give

deterministic factor maps if they have unitary eigenvalues [48].
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Stochastic Koopman Operators Chapter 1

In this section, we will review the basics of Koopman operator theory and its extension

for random dynamical systems. We will also cover some of the basic definitions of the

stationary and ergodic measures which will be used in later sections. Finally, we will

present some motivating examples for which the spectrum of the stochastic Koopman

operator can easily be computed.

1.1.1 Koopman Operators for Deterministic Systems

Consider the dynamical system (discrete or deterministic) on the measurable space

(M,B),

ẋ = F (x) or x+ = F (x), x ∈M. (1.1)

For a discrete time system, the state space M can be an arbitrary set, but for the

continuous time system M will be some manifold.

Rather than track the evolution of x within M , which may not have coordinates, the

Koopman framework tracks the evolution of observables, or functions, on M .

Definition 1 An observable is any B-measurable function f : M → C.

Definition 2 Let St be the flow of 1.1. The Koopman family of operators is defined by

U tf = f ◦ St.

Studying the Koopman evolution of observables has several benefits. First, the state

of the system can be reconstructed from a sufficient set of observables, so no information

is lost moving to the observable space. Second, a certain choice of observables may lead

to a simple representation of the system with linear dynamics. Additionally, since the

Koopman operator is a linear operator, it allows us to use spectral methods to study the

system.

3



Stochastic Koopman Operators Chapter 1

1.2 Random Dynamical Systems

We will consider a random dynamical systems as defined in [3]. A random dynamical

system can be thought of having two parts: a driving flow, θ on a probability space and

a set of maps acting on the state space which form a cocycle over θ.

Definition 3 Let (Ω,F, P ) be a probability space, and {θt}t∈T be a group or semigroup

of measurable transformations on Ω which preserve the measure P . (Here T represents

the time.) Now, let (M,B) be a measurable space, and let T : Ω × T ×M → M be a

measurable map. We say T forms a random dynamical system (RDS) on M if the maps

T tω := T (ω, t, ·) from M →M form a cocycle over θ(·), i.e.

T 0
ω = idM , and T t+sω = T tθs(ω) ◦ T sω. (1.2)

Intuitively, we are interested in the random flow T tω on M . The dynamics on Ω

represents the “unknown” system which will drive the randomness of the flow on M . We

call (Ω,F, P, θ) a driving dynamical system and θt a driving flow. Further conditions can

be imposed upon the cocycle to define continuous, smooth, or linear random dynamical

systems.

The semigroup representing time, T, will reflect whether we are dealing with a con-

tinuous or discrete time system. For discrete time systems, we will have T = N or N+.

In this case we will also denote Tω := T 1
ω . For continuous time systems, T = R or R+. If

T is a group (i.e. T = R or N), then T tω is invertible, with inverse T−tω [3].

For a given RDS, the trajectory of the system will depend on the initial state, x0, as

well as the initial condition of the driving flow, ω0. We will denote the trajectories of the

RDS and the driving flow as

xt = T tω0
x0 and ωt = θtω0.
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Stochastic Koopman Operators Chapter 1

1.2.1 Markov Processes and Ergodic Measures

Random dynamical systems commonly arise from three different cases: products of

random mapping, random differential equations, and stochastic differential equations [3].

Of particular interest to us will be the RDS generated by identically and independently

distributed random maps (discrete time) and stochastic differential equations driven by

Brownian motion (continuous time). For these system, the process {T tωx, x ∈ M} has

the time homogeneous Markov property (see [14],[31]).

The Markov property states that the future evolution of the system depends only

on the current state, not the past, while the time homogeneous property states that the

transition probabilities law does not vary over time. To put this precisely, let {Ft}t∈T be

a filtration on (Ω,F , P ). Given an initial condition (or probability distribution) for x0,

the trajectory xt will be a random process on Ω.

Definition 4 The process xt is Markov with respect to the filtration {Ft} if xt is Ft

adapted and

P (xt|Fs) = P (xt|xs)

for all t > s. It is time homogeneous if, in addition, it satisfies

P (xt+s|Fs) = P (xt|F0).

Put in terms of the transition maps, this means that T tωs
is independent of the past Fs.

Often, the filtration considered will be the natural filtration of xt, the one generated by

the past of the process:

Fxt = σ{xs : s ≤ t}.

The two canonical examples of these processes are processes generated by i.i.d. ran-

dom maps (in discrete time) and stochastic differential equations driven by Brownian
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Stochastic Koopman Operators Chapter 1

motion.

Example 1 (RDS Generated by i.i.d Random Maps) Let S be a set of maps from

M to M . Let (Ω,F , P ) be a probability space and let Tω0 , Tω1 , Tω2 , ... be an i.i.d. sequence

of S valued random variables. Then we can define the cocycle of maps

T 0
ω = I, T tω = T1(ω) ◦ T2(ω) ◦ . . . ◦ Tt(ω),

where ω = (ω0, ω1, ω2, ...) ∈ SZ+
. Here the driving flow is the shift map acting on the

probability space (SZ+
,FZ+

, P Z+
),

θω = θ(ω0, ω1, ω2, ...) = (ω1, ω2, ω3, ...).

Here FZ+
is the σ-algebra of cylinder sets and P Z+

is the product measure. For more on

this representation of the RDS, see [31, 20].

Example 2 (RDS Generated by an SDE) Consider the SDE

dX = a(X)dt+ b(x)dWt.

The cocycle of maps for this system is given by

T tωx = x+

∫ t

0

a(x)dt+

∫ t

0

b(x)dWt.

Here ω is identified with a realization of a Weiner process, {Wt : t ∈ R+}, F is the Borel

σ-algebra, and P is the measure associated with the Weiner process. The driving flow is

the Weiner shift

θsWt = Wt+s −Wt.

6



Stochastic Koopman Operators Chapter 1

(See [3], Appendix A, [15].)

1.2.2 Stationary and Ergodic Measures

When we proceed to the analysis of system identification methods using DMD and

SINDy algorithms, specializing to Markov systems will give us tools to evaluate integrals

using time averages. To do this, we will also need to assume that our system is stationary,

meaning it has a stationary measure, µ.

Definition 5 A measure µ is called invariant, or stationary, if

µ(A) =

∫
M

∫
Ω

χA(Tωx)dP dµ,

where χA is the indicator function for A ⊂M .

If µ is a stationary measure, we have the equality

∫
M

∫
Ω

f(T t1+s
ω x, ..., T tn+s

ω x) dPdµ =

∫
M

∫
Ω

f(T t1ω x, ..., T
tn
ω x) dPdµ (1.3)

for any s, t1, ..., tn ([20], p.86). The stationary measure on M is related to the disintegra-

tion of the invariant measure of the skew product system on M × Ω (See [3],[4],[55]).

With a stationary system, we will be able to evaluate integrals with respect to the

measure using time averages over a trajectory. However, using a single trajectory will

only evaluate the time average over whichever invariant set the trajectory starts within.

To sample the entire space using a single trajectory, we require the measure µ to be

ergodic.

7



Stochastic Koopman Operators Chapter 1

Definition 6 A set A ⊂M is called invariant if

∫
Ω

χA(T tωx) = χA(x)

for almost every x.

Definition 7 A stationary probability measure µ is called ergodic if every invariant set

has measure 0 or 1.

With these assumptions in place, the ergodic theorem gives us a tool to evaluate

integrals using the data from a trajectory.

Lemma 1 Suppose µ is an ergodic measure. Let

h(x, ω) = ĥ(T t1ω x, T
t2
ω x, ..., T

tn
ω x)

for some t1, t2, ..., tn, with h ∈ L1(µ× P ). Then we have

lim
m→∞

1

m

m−1∑
j=0

h(xj, ωj) =

∫
M

∫
Ω

h(x, ω)dPdµ (1.4)

for almost every (x0, ω0) with respect to µ× P .

Proof: This is theorem 2.2 in chapter 1 of [31], applied to the sum on the left hand

side of (1.4).

1.3 Stochastic Koopman Operators

The stochastic Koopman family of Operators is defined similarly to deterministic

Koopman operators. However, since a random system can have many possible real-

izations (depending on ω) we cannot directly define the stochastic Koopman operator
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Stochastic Koopman Operators Chapter 1

before. Instead, the stochastic Koopman operators are defined using the expectation of

the evolution of observables.

Definition 8 The stochastic Koopman operator, Kt, is defined for for random systems

by

Ktf(x) = EP (f ◦ T tω(x)) =

∫
Ω

f ◦ T tω(x)dP.

It is easy to see that the stochastic Koopman operator is linear, since it follows from the

linearity of function composition and integration.

Definition 8 is valid for any random dynamical system. However, in order for definition

8 to be more useful, we require this family of operators to be consistent in a certain sense:

the stochastic Koopman family of operators should form a semigroup:

Kt+sf = Ks ◦ Ktf, s, t ≥ 0. (1.5)

To guarantee this, we need the process {T tωx, x ∈ M} to have the time homogeneous

Markov property. When this is the case, (1.5) is guaranteed by the Chapman-Kolmogorov

equation ([15]). As mentioned above, an RDS generated by products of i.i.d. maps and

stochastic differential equations driven by Brownian motion will have these properties.

In the context of Markov processes, the stochastic Koopman operator is also known as

the Markov propagator or transition operator [18],[75].

When we have a semigroup of stochastic Koopman operators, we can represent the

semigroup using a single operator which generates the semigroup. For discrete time

systems, this comes from the stochastic Koopman operator for the one time step map

Definition 9 For a discrete time system, the Koopman generator is the map given by

Kf = K1f = E(f(T 1
ω))

9



Stochastic Koopman Operators Chapter 1

so that

Kt = (K)t

as the notation would suggest.

For continuous time systems, this operator is the infinitesimal generator of the sub-

group.

Definition 10 Suppose the Koopman semigroup is strongly continuous. For a continu-

ous time system, the Koopman generator is given by

KS = lim t→ 0+K
tf − f
t

if it exists. Then

Ktf = eK
S

f.

To guarantee that this limit exists for all functions f , we require the Koopman family to

be a strongly continuous semigroup. For an SDE driven by a Weiner process we can show

that this limit exists for sufficiently smooth functions, and find an explicit expression of

the generator.

Example 3 (Stochastic Differential Equation) For an RDS generate by an SDE,

as given in Example 2,

dXt = a(x)dt+ b(x)dWt.

The limit above will exists for all twice differentiable functions with bounded first and

second derivatives. For this system, the stochastic Koopman generator is the backwards

Kolmogorov operator:

KSf(x) = a(x)∇f(x) +
1

2
Tr
(
b(x)∇2f(x)b(x)T

)
,

10



Stochastic Koopman Operators Chapter 1

where Tr denotes the trace of a matrix and ∇2f(x) is the hessian of f [15].

1.3.1 Stochastic Koopman Operators on L2 Spaces

Definition 8 gives the action of the stochastic Koopman operator on an arbitrary

function, provided the expectation in the definition is finite. However, to truly define the

operator, we also need to specify the function space on which it acts. For an RDS with

an invariant measure µ, we consider the function space L2(µ). This space of functions (or

rather, equivalence classes of functions) gives us a Hilbert space structure and is naturally

suited to the stochastic Koopman operator for the RDS.

Operator Norm

When considering the Hilbert space L2(µ), the stochastic Koopman operator is a

continuous linear operator with unit norm. To see this, we first note that for any f ∈

L1(µ), we have

∫
M

Ktfdµ =

∫
M

∫
Ω

(f ◦ T tω(x))dPdµ(x) =

∫
M

fdµ (1.6)

which follows almost immediately from definition 5. We can then bound ‖K‖2 ≤ 1 using

‖Ktf‖2
2 =

∫
M

∣∣∣∣∫
Ω

f ◦ T tω(x)dp

∣∣∣∣2 dµ ≤ ∫
M

∫
Ω

|f |2 ◦ T tω(x)dPdµ = ‖f‖2
2

=

∫
M

Kt|f |2dµ =

∫
M

|f |2dµ = ‖f‖2
2.

It follows that ‖K‖2 = 1 since K meets this bound with its action on the constant

function.

11



Stochastic Koopman Operators Chapter 1

Adjoint of the Stochastic Koopman Operator in L2(µ)

Since L2(µ) is a Hilbert space, we can also consider the L2 adjoint of Kt. The adjoint

of Kt propagates densities forward in time. For a measure ν, the time evolution of ν is

given by

Ltν(B) = E
(
ν
((
T−tω
)
B
))
.

The adjoint of K, then, evolves densities functions which are in L2(µ). If g ∈ L2(µ) and

ν = gµ, then we have

Ltν = Lt(gµ) = (Kt)∗g∗µ.

To verify that this is the adjoint, we have

〈Ktf, g〉 =

∫
M

EP
(
f(T tω(x))

)
g∗(x)dµ = EP

(∫
M

f(T tω(x))dν

)
=

∫
M

f(x)d(Ltν)(x) =

∫
M

f(x)(Kt)∗g∗(x)dµ = 〈f, (Kt)∗g〉.

We can write the adjoint as

(Kt)∗g(x) =

∫
M

g(y)P (t, dy, x) =

∫
Ω

g(T−tω x)dP (x),

where P (t, B, x) =
∫

Ω
χB(T tωx)dP is the transition probability from x to B over time t.

The last inequality is only valid if T tω is almost surely invertible (such as when the RDS

is defined over two sided time).

We can also consider the adjoint of the infinitesimal generator, KS. For Markov sys-

tems, the generator KS is given by the backwards Kolmogorov operator. For sufficiently

smooth functions, its adjoint is given by the forward Kolmogorov or Fokker-Planck op-

12



Stochastic Koopman Operators Chapter 1

erator [57, 21]. Given the SDE defined in example 2, this operator reads

KSg =
d∑
i=1

∂

∂xi
[ai(x)g(x)] +

d∑
i,j=1

∂2

∂xi∂xj
[Di,j(x)g(x)], (1.7)

where D(x) = b(x)b(x)T .

1.4 Spectrum of the Stochastic Koopman Operator

One of the primary motivations for the using the Koopman operator framework is

to use spectral methods of analysis for nonlinear systems. The stochastic Koopman

operator represents the possibly nonlinear evolution of a system as an infinite dimensional

linear operator on the space of observables. Since Kt a linear operator, we can find its

eigenvalues and eigenfunctions, and use them to study the system.

We will make a distinction between the eigenfunctions for the discrete and continuous

time cases.

Definition 11 We say the a function φ is a stochastic Koopman eigenfunction with

eigenvalue λ if

Ktφ = λtφ

in the discrete time case and

Ktφ = eλt

in the continuous time case.

In discrete time, this definitions corresponds to eigenvalues of the one step Koopman

operator K. For continuous time systems (SDEs), it corresponds to eigenvalues of the

generator provided the eigenfunction φ is sufficiently smooth [15].

13
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Given a set of eigenfunctions, φ1, φ2, ..., φd which seperate the points of the state space

M , we can find a representation of the RDS using those functions as coordinates. This

gives us a system with a linear expected evolution, but the noise of the system may

behave nonlinearly. For a discrete time system, we have

Φt+1 = Aφt + n(ω, x), (1.8)

where

Φt =



φ1
t

φ2
t

...

φdt


and



λ1 0 . . . 0

0 λ2
. . .

...

...
. . . . . . 0

0 . . . 0 λd


.

The noise term is simply defined by n(ω, x) = Φ(Tωx)− AΦ(x), and has zero mean.

For the SDE case, we get a representation linear drift but a nonlinear diffusion func-

tion.

dΦt = AΦtdt+ b(Φt)dWt, (1.9)

where b(Φt) is the nonlinear diffusion function. This representation and the diffusion

function b can be computed using Ito’s formula.

1.4.1 Spectral Expansions

Given an eigenfunction, the expected evolution is easy to compute using definition

11. Further, the representations (1.8) and (1.9) allow us to compute the evolution of

eigenfunctions as a linear system with some zero-mean additive noise. We can also use

this to compute the evolution of an arbitrary (vector valued) function f using a spectral

expansion. Suppose we have a set of eigenfunctions φ1, φ2, ... which form a basis for
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L2(µ). Then we can write

f =
∞∑
i=1

viφi.

The stochastic Koopman evolution of f is given (in discrete time) by

Ktf =
∞∑
i=1

viλ
t
iφi. (1.10)

(For continuous time, we would replace λti with eλit.) This spectral expansion is in analogy

to the deterministic Koopman mode decomposition given in [49, 52]. The quantities vi

are called the Koopman modes associated with the observable f , and are calculated using

vi = 〈f, φi〉.

Here 〈·, ·〉 denotes the L2(µ) inner product.

However, in order for expansion (1.10) to be valid, we need the eigenfunctions to span

a dense subset of L2(µ). This will be the case for the random rotation and linear system

examples below. More generally, if Kt is a compact operator, the spectrum contains only

eigenvalues (except at the accumulation point 0, [65] Theorem 4.25), and we have this

type of expansion. The expansion (1.10) can be extended to vector valued observables.

In this case, the Koopman modes vi would be vectors whose elements are the modes for

each component of f .

1.4.2 Example: Random Rotation

A first, simple example of a RDS for which we can compute the eigenvalues and

eigenfunctions of the stochastic Koopman operator is that of a random rotation on a

circle

θt+1 = θt + n(ωt) (mod 2π),
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where n(ωt) is an i.i.d. random variable in [−π, π). For this system, the eigenfunctions

are the complex harmonics φi = eiθ, i ∈ Z, with the eigenvalues given by

λi =

∫
Ω

ein(ω)dP.

(See [25],[15] Example 2.) We can generalize this example to all compact Abelian groups.

Example 4 Let A be a compact Abelian group. Consider the random dynamical system

given by Tω(x) = x+ n(ω), or

xt+1 = xt + n(ωt),

where n(ωt) is an i.i.d. random element of A.

Theorem 1 The stochastic Koopman operator for this system has discrete spectrum, and

the eigenfunctions are the continuous characters, φi, of the group A. The eigenvalues are

given by

λi =

∫
Ω

φ(n(ω))dP.

Proof: Since A is a compact Abelian group, A has a unique Haar measure µ which

can be normalized such that |µ| = 1 ([66], 1.1.3). The measure µ is the invariant measure

for the RDS. In fact, since µ is a Haar measure, µ is preserved by Tω for all ω.

Now, consider a continuous character φi of A. Since φ is multiplicitive, we have

Kφ(x) =

∫
Ω

φ(Tωx)dP =

∫
Ω

φ(x+ n(ω))dP =

∫
Ω

φ(x)φ(n(ω))dP

=

(∫
Ω

φ(n(ω))dP

)
φ(x) = λφ(x).

This establishes that φ is an eigenfunction with eigenvalue

λ =

∫
Ω

φ(n(ω))dP.

16
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The fact that these are all of the eigenfunctions and that the spectrum is discrete follows

from the Plancherel Theorem ([66], Theorem 1.6.1), which shows that the continuous

characters are dense in L2(µ).

For these systems, all of the eigenfunctions are known (and do not depend on the

distribution of n(ω)), and we can compute all of the eigenvalues. The Koopman mode

decomposition (1.10) follows directly from the Fourier expansion on compact Abelian

groups. The continuous time analogue to these systems would be an SDEs on a n-

dimensional torus with constant drift.

1.4.3 Example: Linear System

Another example for which we can establish some results about the spectrum is an

affine system. A similar example is also considered in [15], Proposition 1.

Example 5 Let A : Ω → Rd×d and ν : Ω → Rd be such that A(ωt) and ν(ωt) are i.i.d.

random variables. We can define the one step map Tω(x) = A(ω)x + ν(ω), which gives

the system

xt+1 = A(ωt)xt + ν(ωt).

For this system, we will consider the stochastic Koopman operator acting on the

space of analytic functions, H. Depending on the invariant measure µ, this space may be

dense in L2(µ). For example, if µ is a Gaussian distribution, this will be true since the

Hermite polynomials form an orthonormal basis for this space. For the operator acting

on H, we have the following results

Theorem 2 Consider the system in Example 5. Suppose that all of the moments and

joint moments of A and ν up to order n are finite. The following are true

1. The subspace Pn of all polynomials up to order n is invariant under K. The re-
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striction of K to this subspace using monomials as a basis will be block triangular.

2. If the monomials form a basis of L2(µ), the spectrum of K on L2(µ) is discrete.

3. If the matrices A(ω) commute and are diagonalizable, the eigenvalues of K are of

the form

λ = EP

(
d∏
i=1

λi(ω)ai

)
P,

where λ1(ω), ..., λd(ω) are the eigenvalues of Aω and ai ∈ Z+.

4. If A(ω) = A is a constant matrix and is diagonalizable, then the eigenvalues are of

the form

λ =
d∏
i=1

λaii ,

where λ1, ..., λd are the eigenvalues of A.

Proof:

1. The assumption that all of the moments are finite guarantees that the action of

K on any monomial is finite, so Kp is well defined for any polynomial. For any

monomial of degree n, p =
∏d

i=1(xi)ai , we have

Kp = E

(
d∏
i=1

(
d∑
i=1

Ai,jxj + νi

)ai)
,

which is a polynomial of degree n. The block triangular structure of the restriction

of K follows from the nested structure of Pn.

2. Assertion 2 immediately follows from assertion 1, since every monomial falls in a

finite dimensional invariant subspace.

3. If the matrices A(ω) commute and are diagonalizable, they are simultaneously
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diagonlizable, so we can find a matrix T such that

TA(ω)T−1 =



λ1(ω) 0 . . . 0

0 λ2(ω)
. . .

...

...
. . . . . . 0

0 . . . 0 λd(ω)


,

where λ1, ..., λd are the eigenvalues of A(ω). Letting y = Tx, we can use monomials

in y as a basis for P\. The action of K on the monomial p =
∏d

i=1(yi)ai is given by

Kp = E

(
d∏
i=1

(λi(ω)yi + νi)
ai

)
= E

(
d∏
i=1

λi(ω)

)
p+ p′,

where p′ is a polynomial of degree n− 1. This shows that restriction of K to Pn is

triangular, with diagonal elements E
(∏d

i=1 λi(ω)ai
)

, which proves the assertion.

4. Assertion 4 immediately follows from assertion 3.

From Theorem 2, we can find a spectral expansion as in (1.10) for analytic functions.

From assertion 2, this will also allow us to find spectral expansions for L2(µ) provided the

polynomials span L2(µ). For example, if A(ω) = A is constant and ν(ω) has a guassian

distribution, µ will also be a gaussian and this will be the case. Similarly, for the con-

tinuous time analogue of this system, the Ornstein-Uhlenbeck process, the polynomials

also form a basis of L2(µ) and the spectrum is discrete (the Hermite-polynomials are the

eigenfunctions [39]).
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2.1 Introduction

While the Koopman or stochastic Koopman operators provide many tools for the anal-

ysis of dynamical systems, computing the spectrum of the operator is nontrivial. Even

for systems generated from SDEs (which are often simpler than discrete time systems),

solving for the stochastic Koopman eigenfunctions equates to finding the eigenfunctions

of a partial differential operator, often on an unbounded domain. Further, for many

complex systems and processes the governing equations cannot be derived through first

principles or the models generated by them may be too complicated, meaning we cannot

solve for the eigenfunctions analytically.

Instead, the eigenvalues and eigenfunctions are often computed in a data-driven set-

ting. Given an observable, we would like to find the Koopman mode decomposition of f

1.10 using the data from f measured along a trajectory x0, x1, ..., xn. An early method

of Koopman mode decomposition is generalized Laplace analysis, which was based on

the generalized Laplace transform [47]. However, this method of decomposition requires

knowledge of the eigenvalues a priori and does not work for random systems.

Another data driven method is Dynamic Mode Decomposition (DMD), which was

introduced in [67] and shown to be connected to KMD in [64]. DMD algorithms attempt

to find a matrix which approximates a finite section of the Koopman operator [53]. There

are many different variants of DMD (e.g. [68, 59, 37, 24]) and it can be used for a wide

array of applications such as fluid flows [64, 49, 50], soft robotics [5, 22], and infectious

disease [61]. These algorithms can be used for both deterministic systems and for random

systems generated by i.i.d. random maps [74]. However, many DMD algorithms possess

a major drawback; they can fail if the data from the observables contains measurement

noise or other randomness. In this case, the results from standard DMD algorithms are

biased [17].
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Total Least Squares (TLS) DMD ([17], [23]) was developed to remove the bias for

systems with measurement noise, but only converges when the underlying dynamics are

deterministic. In [70], subspace DMD was introduced to converge for observables with

additive noise even when the underlying dynamics are random. While many of these

methods can combat the bias from measurement noise in DMD, they impose relatively

strict assumptions on either the dynamics or the structure of the noise.

Of particular interest are Krylov subspace based DMD methods, where the iterates of

a single observable under the Koopman evolution is used to (approximately) generate an

invariant subspace of the Koopman operator [8],[53]. For deterministic systems, Hankel

DMD uses time delays of a single observable to generate the Krylov subspace, and the

DMD spectrum was shown to converge to the spectrum of the Koopman operator[2, 1].

This allows us to generate a model of a deterministic system using the data from a

single trajectory of a single observable. However, for random systems, the time delayed

observables contain randomness from the dynamics, and Hankel DMD does not converge.

Further, the noise introduced is neither i.i.d. nor independent of the state. In [15], a new

stochastic Hankel DMD algorithm was shown to converge, but it requires the Stochastic

Koopman evolution of the observable, which in general requires multiple realizations of

the system.

In this section, we describe a new DMD algorithm which allows us to work with a more

general set of noisy observables. This algorithm provably approximates the stochastic

Koopman operator in the large data limit and allows for more general randomness in

the observables than i.i.d. measurement noise. With these weaker conditions, we can

use time delayed observables to form a Krylov subspace of observables, which gives us a

variation of Hankel DMD for random systems. This allows us to compute a realization

of the stochastic Koopman operator using data from a single observable over a single

realization of the system.
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2.2 Dynamic Mode Decomposition

Dynamic Mode Decomposition is an algorithm which allows the computation of an

approximation of a finite section of the Koopman operator from data. Since we are dealing

with data, for the remainder of this chapter we will assome our RDS acts on discrete

time, and the operator K is the one step stochastic Koopman operator. Assuming the

eigenfunctions, φj, of K span our function space, we can decompose any (possibly vector

valued) observable f using the Koopman mode decomposition (1.10)

f =
∑
j

vjφj.

The expected evolution of f is then given by

EP (f(Tωx)) =
∑
j

vjKφj(x) =
∑
j

λjvjφj(x). (2.1)

As noted in Section 1.4.1 the functions φj are the Koopman eigenfunctions with eigenvalue

λj, and the vectors vj are called the Koopman modes associated with f . However, the

expansion above can contain an infinite number of terms. In order to work with (2.1)

using finite arithmetic, we must restrict ourselves to a finite dimensional subspace of our

original function space.

Let F be a finite dimensional subspace of L2(µ) and F̄ be its orthogonal complement.

Let P1 and P2 be the projections on to F and F̄ . For any function g ∈ L2(µ), we can

compute the Koopman evolution as

Kg = P1Kg + P2Kg = P1KP1g + P2KP1g + P1KP2g + P2KP2g.

The operator P1KP1 maps F into itself. For any g ∈ F , we have P2g = 0, so we can
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view P1KP1 as an approximation of K provided ‖P2KP1‖ is small. If F is an invariant

subspace under K, we have ‖P2KP1‖ = 0, and Kg = P1KP1g for all g ∈ F . If we let

f1, f2, ..., fk be a basis for F , we can represent the restriction of P1KP1 to F as a matrix

K that acts on the basis by

K

[
f1 f2 . . . fk

]T
=

[
Kf1 Kf2 . . . Kfk

]T
. (2.2)

Remark 1 The matrix K can also be thought of as the matrix acting (on the right) on

the vector of coefficients of functions represented in the basis f1, . . . , fk: for any function

g ∈ F we can write

g =
k∑
j=1

ajfj = a

[
f1 . . . fk

]T
,

and a =

[
a1 . . . ak

]
is the row vector of coefficients of g. Then (aK) is the row vector

of coefficients for Kg, since

Kg = K(a

[
f1 . . . fk

]T
) = a

[
Kf1 . . . Kfk

]
= aK

[
f1 . . . fk

]T

2.3 Basic DMD Algorithms

Dynamic mode decomposition algorithms compute the spectral expansion (1.10) by

approximating the matrix K from data. If we can measure the observables f1, f2, ..., fk

along a trajectory x0, x1, ..., xn, we can form the vector valued observable f : M → Rk by

f =

[
f1 f2 . . . fk

]T
.
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Each f(xt) is called a data snapshot. Given a data matrix whose columns are snapshots

of f ,

D =

[
f(x0) f(x1) . . . f(xn)

]
,

we can construct an operator A : Rk → Rk, called the DMD operator, which (approxi-

mately) maps each data snapshot to the next one, i.e.

Af(xi) ≈ f(xi+1).

Standard DMD algorithms (see [67, 74, 53],[37] and the sources therein) construct a

matrix C to minimize the squared error

C = argmin
A

n−1∑
i=0

‖Af(xi)− f(xi+1)‖2
2. (2.3)

Algorithm 1: Extended Dynamic Mode Decomposition (EDMD)

Let x0, x1, ..., xn be a trajectory of our random dynamical system and f : M → Ck be a

vector valued observable on our system.

1: Construct the data matrices

X =

[
f(x0) f(x1) . . . f(xn−1)

]
, Y =

[
f(x1) f(x2) . . . f(xn)

]
.

2: Form the matrix

C = Y X†,

where X† is the Moore-Penrose psuedoinverse.

3. Compute the eigenvalues and left and right eigenvectors, (λi, wi, vi) i = 1, 2, ..., k, of
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C. Then the dynamic eigenvalues are λi, the dynamic modes are vi, and the numerical

eigenfunctions are given by

φ̂i = wTi X.

Let f1, f2, ..., fk be the components of f . If we let f̂i be the ith row of X,

f̂i =

[
fi(x0) fi(x1) . . . fi(xn−1)

]
,

we see that f̂i represents fi by evaluating it along a trajectory. With standard DMD,

we construct the DMD operator C represented in the basis f̂1, f̂2, ..., f̂k. The numerical

eigenfunctions, φ̂i will be approximations of eigenfunctions of the (stochastic) Koopman

operator evaluated along our trajectory.

The realization of the matrix C will depend on the basis f̂1, ..., f̂k. This choice will

also affect the conditioning of the pseudo-inversion in EDMD. If the basis leads to an

ill conditioned matrix X, the algorithm will be numerically unstable. To combat this,

EDMD is usually implemented using a truncated singular value decomposition of X.

This leads to the second algorithm [67].

Algorithm 2: SVD implemented EDMD

Let x0, x1, ..., xn be a trajectory of our random dynamical system and, f1, f2, ..., fl, l ≥ k,

be a set of l observables on our system.

1: Construct the data matrices

X =

[
f(0) f(1) . . . f(n− 1)

]
, Y =

[
f(1) f(2) . . . f(n)

]
.
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2: Compute the truncated SVD of X using the first k singular values.

X = WkSkV
∗
k .

3: Form the matrix

A = S−1
k W ∗

kY Vk.

4. Compute the eigenvalues and left and right eigenvectors, (λi, wi, ui) i = 1, 2, ..., k, of

A. Then the dynamic eigenvalues are λi, the dynamic modes are

vi = WSui,

and the numerical eigenfunctions are given by

φ̂i = wTi V
∗
k .

The benefit of SVD based EDMD is that it offers more numerically stability. If X

has a large condition number, the pseudoinversion of X can introduce large errors to

the DMD operator which may make Algorithm 1 unusable. To combat this, Algorithm

2 computes the SVD of X and truncates the matrix Sk to include only the dominant

singular values. Since Sk has a smaller condition number than X, the inversion of Sk in

Algorithm 2 is more numerically stable than the psuedoinversion of X. Intuitively, the

truncated SVD used in Algorithm 2 chooses a better conditioned basis of observables to

construct the DMD operator. The matrix A generated in Algorithm 2 is the same as the

matrix C produced by Algorithm 1 using the k−dimensional observable fnew = S−1
k W ∗f .
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2.4 Convergence of DMD for Random Systems

The utility of Algorithms 1 and 2 comes from the convergence of the dynamic eigen-

values and numerical eigenfunctions to eigenvalues and eigenfunctions of K.

Proposition 1 Let T be an i.i.d. random system with ergodic measure µ. Let F be

a k dimensional subspace of L2(µ) which is invariant under the action of K, and let

f1, f2, ..., fk span F . Let λj,n be the dynamic eigenvalues and vj,n be the dynamic modes

produced by EDMD using the trajectory x0, x1, ..., xn. Then, as n → ∞, the dynamic

eigenvalues converge to the eigenvalues of K restricted to F for almost every initial con-

dition (x0, ω0) with respect to (µ×P ). If the eigenvalues of K are distinct, the numerical

eigenfunctions converge to a sampling of the eigenfunctions along the trajectory.

The proof of Proposition 1 is fairly standard in the DMD literature (e.g. [74]) and does

not differ from the deterministic case, but we include it for completeness. The key idea

is that we can use the ergodic time average to evaluate the integrals

∫
M

∫
Ω

fi(Tω)f ∗j dP dµ.

Proof: Let f1, f2, ..., fk, and K be as described in (2.2). Let Xn, Yn, and Cn be the

matrices produced by Algorithm 1 for the trajectory x0, x1, ..., xn, and let ω0, ω1, ..., ωn

be the evolution of the noise. Let f =

[
f1 f2 . . . fk

]T
as above. Define the matrices

G0 =

∫
M

[
f1 f2 . . . fk

]T [
f ∗1 f ∗2 . . . f ∗k

]
dµ =

∫
M

f f∗ dµ

and

G1 =

∫
M

[
Kf1 Kf2 . . . Kfk

]T [
f ∗1 f ∗2 . . . f ∗k

]
dµ =

∫
M

K f f∗ dµ = KG0.
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We can see that G0 has full rank, since if v was in its nullspace we would have

‖f∗v‖2 = v∗G0v = 0,

which implies v = 0 since f1, f2, ..., fk are linearly independent. This gives us K = G−1
0 G1.

Now, let G0,n = 1
n
XnX

∗
n and G1,n = 1

n
XnY

∗
n . We have G0,n → G0 and G1,n → G1 for

almost every initial condition (x0, ω0). To see this, by Lemma 1 we have

lim
n→∞

G1,n = lim
n→∞

1

n

n−1∑
m=0

f(xm+1)f∗(xm) = lim
n→∞

1

n

n−1∑
m=0

f(Tωmxm)f∗(xm)

=

∫
M

∫
P

f(Tωx)f∗(x) dPdµ =

∫
M

K f(x) f∗(x) dµ = G1,

and similarly for G0, we have

lim
n→∞

G0,n = lim
n→∞

1

n

n−1∑
m=0

f(xm)f∗(xm) =

∫
M

∫
Ω

f(x)f∗(x) dPdµ = G0.

Since G0 has full rank and G0,n → G0, G0,n is full rank for n large enough, so G−1
0,n

exists and

lim
n→∞

G−1
0,nG1,n = G−1

0 G1 = K.

Because G0,n = 1
n
XnX

∗
n, we know Xn has full row rank for n large enough, so

Cn = Yn(Xn)† = YnX
∗
n(XnX

∗
n)−1 =

(
1

n
YnX

∗
n

)(
1

n
XnX

∗
n

)−1

= G−1
0,nG1,n,

which shows that Cn → K. This shows that the dynamic eigenvalues, λj,n, converge to

the eigenvalues of K, λj, as n→∞.
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To show the numerical eigenfunctions converge to samplings of our eigenfunctions,

let wj,n and wj be the left eigenvectors of Cn and K, respectively. Consider the functions

φj,n = wTj,nf and φj = wTj f . We know φj is a Koopman eigenfunction, since

Kφj = K(wTj f) = wTj K f = λjw
T
j f = λjφj.

If K has distinct eigenvalues, the vectors wj,n each converge to wj, so φj,n → φj. The

numerical eigenfunctions, φ̂j,n, are the values of the function φj,n sampled along the

trajectory x0, ..., xn−1.

The proof of Proposition 1 is based on the convergence of time averages to inner

products of functions in L2(µ). In particular, the i, jth entry of G0,n and G1,n converge

to 〈fi, fj〉 and 〈Kfi, fj〉, respectively, where 〈·, ·〉 is the L2(µ) inner product. As such,

we cannot glean any information about dynamics outside the support of µ. There could

be an eigenvalue/eigenfunction pair, (λ, φ), such that φ is zero on the support of µ.

Such a pair cannot be captured by EDMD from a single trajectory since φ = 0 almost

everywhere with respect to µ. In particular, if µ is a singular measure concentrated

on some attractor, the eigenvalues governing the dissipation to the attractor cannot be

found using ergodic sampling.

2.5 Linear System Identification

The proof above shows that Dynamic Mode Decomposition converges for random

dynamical systems with i.i.d. dynamics. However, it is important to note that although

the systems can have randomness, the observables cannot. The stochastic Koopman

operator acts on functions, f : M → C, which depend only on the state of the system. If

we allow our observables to have some noise (i.e. dependence on ω), the proof fails. In
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particular, observables with i.i.d. measurement noise and time delayed observables (used

in Hankel DMD) both have some dependence on ω, and therefore cannot be used with

the above DMD methods.

Examining the failure of standard DMD on linear systems with measurement noise

is instructive. Consider the system

xt+1 = Axt + νt, yt = xt + nt. (2.4)

where ν, n : Ω → Rd are i.i.d. Gaussian random variables on (Ω,F , P ). Here xt would

be the state of our system, while yt would be the observable with measurement noise.

We will assume that the noise nt has zero mean and the system has invariant measure

µ. Given data y0, y1, ..., yN from a trajectory of the system, let

Y0 =

[
y0 y1 . . . yN−1

]
and Y1 =

[
y1 y2 . . . yN

]
.

The DMD matrix C for this system is given be the least squares estimate

C = argmin
A

n−1∑
i=0

‖Ayi − yi+1‖2
2

or C = Y1Y
†

0 . If the measurement noise nt is identically zero (i.e. yt = xt), we can

find an unbiased estimate of A using this least squares estimate (see [40] Chapter 7 and

Appendix II). However, if nt is nonzero, we cannot directly use the least squares method

to produce an unbiased estimate.

To see why this fails with noise, we rewrite the least squares estimate as

C = Y1Y
†

0 =

(
1

N

N−1∑
i=0

yi+1y
∗
i

)(
1

N

N∑
i=0

yiy
∗
i

)−1

= G1G
−1
0
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assuming G0 is of full rank. Then as N →∞

G0 =
N−1∑
i=0

(xi + ni) (x∗i + n∗i )→
∫
Rd

x x∗dµ+ EP (ni+1ni∗) =

∫
Rd

x x∗dµ+ cov(ni, ni),

where cov(a, b) denotes the covariance matrix of two random variables. Similarly

G1 →
∫
Rd

Axx∗dµ+ cov(ni+1, ni) = A

(∫
Rd

x x∗dµ

)
+ cov(ni+1, ni) + cov(νi, ni).

Here the G0 and G1 matrices are biased by the covariance of the noise as opposed to the

noiseless case. Solving C = G1G
−1
0 will propagate the bias to the DMD operator C.

2.5.1 Instrumental Variables

One method of correcting the bias in the least squares estimate is to use instrumental

variables [62, 63, 40, 69]. The idea is to use an extra set of variables ζ = [ζ1 . . . ζd]T ,

called instruments, which are independent from the noises nt, nt+1, and νt. If we have

measurements of ζt along the trajectory in addition to yt, we can construct the time

averages

G0 =
1

N

N−1∑
i=0

yiζ
∗
i → EP

(∫
Rd

x ζ∗dµ

)
+ cov(nt, ζt) = EP

(∫
Rd

x ζ∗dµ

)

and

G1 =
1

N

N−1∑
i=0

yi+1ζ
∗
i → AEP

(∫
Rd

x ζ∗dµ

)
.

where all of the covariance terms go to zero due to independence. Then we can compute

A = G1G
−1
0 , assuming G0 is full rank. More explicitly, the instrumental variable (IV)
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method is given by

A = argmin
B

∣∣∣∣∣
N−1∑
i=0

(Byi − yi)ζ∗i

∣∣∣∣∣
2

. (2.5)

The argument above gives us three conditions on our instruments to compute an

unbiased estimate for A.

1. ζt is independent from nt and nt+1,

2. ζt is independent from νt,

3. And the matrix

G0 = EP
(∫

Rd

x ζ∗dµ

)
has full rank.

One of the potential drawbacks of instrumental variables is the necessity for an extra

set of observables meeting conditions 1-3. However, we can often generate the instruments

by taking time shifts of other observables. For the system described in (2.4) the three

conditions above can be met by using ζt = y1, provided A is full rank. Using this choice

of instruments, if we let

Z =

[
y−1 y0 y1 . . . yN−2

]
then we can solve the instrumental variables regression (2.5) as

A = Y1Z
∗ (Y0Z

∗)−1 .

Remark 2 We note that we choose ζ to be an d-dimensional variable, so G0 will be a

square matrix. However, we could define ζ to be and l-dimensional variable for l > d.

In this case, the regression (2.5) becomes overdetermined, and would be solved using the
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pseudoinverse of G0. This is called an extended IV method. This can be beneficial, since

the overdetermined problem may be better conditioned.

2.6 DMD with Noisy Observables

In order to adapt the IV method for use in DMD, we must first define our requirements

for “noisy observables.”

Definition 12 A noisy observable is a measurable map f̃ : M × Ω → C. This means

that the random function f̃ω = f̃( · , ω) : M → C is a B measurable function for almost

every ω.

For notation, we will always denote a noisy observable, f̃ , with a tilde and denote the

space of noisy observables as H . We will also define f to be its mean:

f(x) =

∫
Ω

f̃ω(x)dP.

In what follows, we will assume that f exists and is in L2(µ). To avoid some clutter in

the equations and algorithms, we will also denote the time samples of an observable with

a hat: f̂(t) = f̃(xt, ωt).

With these definitions, we can interpret f as the “true” observable on the system,

whereas f̃ is the “measured” observable, which comes with some degree of uncertainty.

We are interested in the evolution of f rather than f̃ , since it depends only on the

evolution in the state space and not the noise. Computing the DMD operator using

standard EDMD directly with the data from f̃ can fit the model to the noise and give a

poor approximation of the system.
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2.6.1 DMD Observables and Instruments

In order to extend the DMD algorithms using IV methods, we will need to make use

of two sets of observables. We will call them the “DMD observables” and “instruments”

to avoid confusion. First, we will have the DMD observables, f̃ = [f̃ 1 ... f̃k]T . These

will be analogous to the observables used in standard DMD; they will form the basis

for the finite section of the stochastic Koopman operator. The second set will be the

instruments, g̃ = [g̃1 ... g̃l]T . These will be used purely for regression purposes. The

means of these variable will be denoted f = EP (f̃) and g = E(g̃).

First, in order to approximate integrals from data, we will need some ergodicity

assumptions on our observables. Namely, we will need time averages to converge in a

similar sense to Lemma 1. In particular, we will need

lim
n→∞

1

n

n−1∑
j=0

f̂(t+ j)ĝ(t) =

∫
M

∫
Ω

f̃θjω(T jωx)g̃ω(x)dP (ω)dµ(x), (2.6)

for two vector valued noisy observables f̃ and g̃ and almost every initial condition (x0, ω0).

In order for these time averages to be finite, we also require f̃ , g̃ ∈ L2(µ× P ).

Remark 3 While we make the ergodicity assumption for generality, we will show that

(2.6) holds for observables with i.i.d. measurement noise and time delayed observables,

the primary observables of interest in this paper. More generally, we can consider the skew

product system Θ on M × Ω given by Θ(x, ω) = (Tωx, θω) and treat f̃ as an observable

on M × Ω. If µ × P is an ergodic measure for Θ, we can evaluate time averages as in

(2.6).
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DMD Observables and Instruments

The DMD observables are the noisy observables f̃ 1, ..., f̃k. Their means, f 1, ..., fk

will be the basis of the finite section of K produced using DMD. In order to compute the

stochastic Koopman evolution of f i, we will need to place further restrictions on f̃ i.

We require that the random function f̃ iωt
to be independent of Tωs for all s < t (or

equivalently, f̃ iθtω is independent of Tω for all t ≥ 0). Roughly speaking, these conditions

mean the random function f̃ωt cannot be predicted by the past of the dynamics on M .

The independence condition gives us

∫
Ω

f̃θjω(T jωx)dP (ω) =

∫
Ω

∫
Ω

f̃ψ(T jωx)dP (ψ)dP (ω) =

∫
Ω

f(T jωx)dP = Kjf(x). (2.7)

We will also need to select a set of instruments g̃1, ..., g̃l. Since the instruments are

only needed for regression, we do not need to find their stochastic Koopman evolution.

Instead, we will require that g̃ωt is independent of Tωt , f̃ωt , and f̃ωt+1 (equivalently, g̃ω

is independent from Tω, f̃ω, and f̃θω). These independence conditions will allow us to

compute the IV regression without bias. Finally, we will impose a rank requirement on∫
M

f g dµ to ensure that the linear regression is fully determined. If f 1, ..., fk are linearly

independent, this can be guaranteed by assuming span{fk, ..., fk} ⊂ span{g1, ..., gl}.

Assumption 1 The observables f̃ and instruments g̃ satisfy the following:

1. The functions f̃ and g̃ are in L2(µ× P ) and ergodic in the sense that (2.6) holds,

2. The observable f̃ωt is independent of Tωs for s < t,

3. The instrument g̃ωt is independent of Tωt, f̃ωt, and f̃ωt+1.
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4. The matrix

G0 =

∫
M

f(x, ω)g(x, ω)∗dµ

has full rank, where f = EP (f̃ω) and g = EP (g̃ω).

Recalling that xt is a Markov process with respect to the filtration {Ft}, we can

replace the independence assumptions between the variables and random maps with

ones on the filtration.

Assumption 2 The observables f̃ and instruments g̃ satisfy the following:

1. The functions f̃ and g̃ are in L2(µ× P ) and ergodic in the sense that (2.6) holds,

2. The observable f̃ωt is independent of Ft,

3. The instrument g̃ωt is Ft measureable, and

4. The matrix

G0 =

∫
M

f(x, ω)g(x, ω)∗dµ

has full rank, where f = EP (f̃ω) and g = EP (g̃ω).

The conditions of assumption 2 imply those of 1, but are stronger. For example, condition

3 gives us g̃ωt is independent of Tωs for all s ≥ t, not just s = t. However, they are simple

to state, and provide an interpretation of the dichotomy between the instruments and

DMD observables. The instruments contain information that is available up to time t,

while the DMD observables contain the information which becomes available at or after

time t.

2.6.2 Noise Resistant DMD Algorithms

With the assumptions on our observables in place, we can now present the DMD

algorithms for noisy systems.
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Algorithm 3: Noise Resistant DMD

Let f̃ ∈ H k, and g̃ ∈ H l, l ≥ k. As before, let f̂(t) = f̃(xt, ωt) and ĝ(t) = g̃(xt, ωt)

denote their samples along a trajectory at time t.

1: Construct the data matrices

X =

[
f̂(0) f̂(1) . . . f̂(n− 1)

]
,

Y =

[
f̂(1) f̂(2) . . . f̂(n)

]
,

and

Z =

[
ĝ(0) ĝ(1) . . . ĝ(n− 1)

]
.

2: Form the matrices G̃0 = 1
n
XZ∗ and G̃1 = 1

n
Y Z∗.

3: Compute the matrix

C = G̃1G̃
†
0.

4: Compute the eigenvalues and left and right eigenvectors, (λi, wi, vi) of C. The dynamic

eigenvalues are λi, the dynamic modes are vi, and the numerical eigenfunctions are given

by

φ̂i = wTi X.

Proposition 2 Let f̃ ∈H k and g̃ ∈H l satisfy assumption 1 or 2. Suppose the compo-

nents of f , f1, ..., fk, span a k-dimensional invariant subspace, F , of K. Then the matrix

C generated by Algorithm 3 converges to the restriction of K to F as n→∞.
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Proof: Let K be the restriction of K to F . Let G̃0,n and G̃1,n be the matrices

generated in Algorithm 3 with n data points. From the assumption, g̃ω is independent

from f̃ , f̃θω , and Tω. Using (2.7), define

G0 =

∫
M

∫
Ω

f̃ω(x)g̃∗ω(x)dPdµ =

∫
M

∫
Ω

f̃ω(x)dP

∫
Ω

g̃∗ω(x)dPdµ =

∫
M

f g∗dµ (2.8)

and

G1 =

∫
M

∫
Ω

f̃θω(Tωx)g̃∗ω(x)dPdµ =

∫
M

∫
Ω

f̃(Tωx)dP

∫
Ω

g̃∗ω(x)dPdµ = K

∫
M

f g∗dµ.

(2.9)

This gives us K = G1G
†
0 since G0 is full row rank. We will show that G̃0,n → G0 and

G̃1,n → G1 as n→∞. Taking the limit of G0,n with (2.6) and using (2.8), we have

lim
n→∞

G̃0,n = lim
n→∞

1

n

n−1∑
m=0

f̂(m)ĝ∗(m) =

∫
M

∫
Ω

f̃ω(x)g̃∗ω(x) dPdµ = G0

and similarly G̃1,n → G1 using (2.9). Since G0 has full rank and G̃0,n → G0, we have

G̃†0,n → G†0, so G̃1,nG̃
†
0,n → K.

It follows from Proposition 2 that the eigenvalues and eigenvectors of C go to those

of K. Therefore, the dynamic eigenvalues limit to Koopman eigenvalues. The numerical

eigenfunctions, however, are more complicated. If wi is a left eigenvector of K, we have

wTi f is a Koopman eigenfunction. The numerical eigenfunctions, however, limit to wTi X,

which a sampling of wTi f̃ . In this regard, the numerical eigenfunction is a sampling of an

eigenfunction with some zero mean noise added to it.
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2.6.3 Observables with i.i.d. Measurement Noise

Often, when measuring an observable on a system, the measurement will be imprecise.

The error in the measurement are often modeled as an i.i.d. random variable. We call

an observable with this type of noise an observable with measurement noise:

Definition 13 A noisy observable, f̃ , is an observable with i.i.d. measurement noise if

f̃θtω is an i.i.d. random function and is independent of the random maps Tθsω for all s.

Let f = EP (f̃ω). We note that for any given ω, the measurement error,

ẽω(x) = f̃ω(x)− f(x),

can vary over the state space M ; it does not need to be a constant additive noise.

Since f̃ωt is an i.i.d. random variable and independent of Tωt for all t, the ordered pair

(xt, f̃ωt) ∈M ×L2(M) is an ergodic process, with ergodic measure ν = µ× f̃∗(P ), where

f̃∗(P ) is the pushforward of P . This allows us to evaluate the time averages as in (2.6).

The proof of this follows from the lemma below and the fact that i.i.d. processes are

mixing ([20], Theorem 4, page 143).

Lemma 2 Let xt and yt be independent stationary processes. If xt is ergodic and yt is

mixing, then (xt, yt) is ergodic.

Proof: The result follows from Theorem 6.1 on page 65 of [58], where we can

represent the processes as a measure preserving shifts on the space of sequences of xt and

yt ([58], page 6).

If the components of f̃ are observables with measurement noise, it turns out we don’t

need second observable to use in Algorithm 3. Instead, we can use a time shift of f̃ to

generate g̃. The i.i.d. property of f̃ will give us the independence properties we need.
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Corollary 1 Suppose f̃ ∈ H k is a vector valued observable with i.i.d. measurement

noise, and the components of f = EP (f̃ω) span a k-dimensional invariant subspace, F ,

of L2(µ). Suppose further that the restriction of K to F has full rank. Then Algorithm

3 converges setting ĝ(t) = f̂(t− 1).

Proof: Let K be the resriction of K to F . By Lemma 2, (xt, f̃ωt) is an ergodic

stationary sequence. Then, using ergodicity and the independence properties of f̃ , we

have

lim
n→∞

1

n

n∑
m=1

f̂(m)ĝ∗(m) = lim
n→∞

1

n

n−1∑
m=0

f̂(m)f̂∗(m− 1) =

∫
M

∫
Ω

f̃θω(T j+1
ω x)f̃∗ω(x) dPdµ

=

∫
M

∫
Ω

f̃θω(Tωx)dP

∫
Ω

f̃ω(x)dPdµ = K

∫
M

f f∗dµ,

which has full rank since K has full rank. Similarly,

lim
n→∞

1

n

n∑
m=1

f̂(m+ 1)ĝ∗(m) = lim
n→∞

1

n

n−1∑
m=0

f̂(m+ 1)f̂∗(m− 1) = K2

∫
M

f f∗dµ.

The rest of the proof follows Proposition 2.

Remark 4 It is useful to note that if Tω and θ were invertible (i.e. the RDS is defined

on two-sided time), we would be able to define g̃ω = f̃θ−1ω ◦ (T−1
ω ), and g̃ would meet

the conditions of assumption 1 exactly. However, if they are not invertible, we cannot

necessarily define g̃ω ∈ L2(M) explicitly since Tω may not be invertible. However, since

we are still able to evaluate time averages, the proof is nearly identical. Alternatively, we

could let Ft be the sigma algebra generated by the past of (xt, f̃ωt−1),

Ft = σ{(xs, f̃ωs−1) : s ≤ t}.

With this definition of the filtration, the instruments and DMD observables meet the
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condition 2 and 3 of assumption 2 exactly.

2.7 Time Delayed Observables and Krylov Subspace

Methods

Another important type of noisy observable are time delayed observables. Allowing

time delayed observables in DMD is useful for two reasons. First, time delays allow us

to enrich our space of observables. Oftentimes, there are functions on our state space

which cannot be measured by a certain set of observables, but can be observed if we

allow time delays. For example, the velocity of a moving mass cannot be observed by

any function on the position, but can be approximated using the position at two different

times. Second, using time delays allows us to identify an invariant (or nearly invariant)

subspace spanned by the Krylov sequence f,Kf, ...,Kk−1f .

Of particular interest is an analogue of Hankel DMD for random systems, which

uses a Krylov sequence of observables to generate our finite subspace. With Hankel

DMD, we use a single observable, f , and its time delays to approximate the sequence

f,Kf, ...,Kk−1f . If f̃ is an observable with measurement noise (or has no noise), we can

define

f̃(x, ω) =

[
f̃(x, ω) f̃(Tωx, θω) . . . f̃(T k−1

ω x, θk−1ω)

]T
.

By (2.7), its mean is ∫
Ω

f̃ dP =

[
f Kf . . . Kk−1f

]T
,

where f = EP (f̃). We can then use time delays of f̃ to approximate the Krylov sequence

f,Kf, ...,Kk−1f . Additionally, if we set g̃(t) = f̃(t− k) in Algorithm 3, we will have the

necessary independence conditions, and the time averages will converge as in (2.6) due
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to the pair (xt, f̃ωt) being an ergodic stationary variable.

Corollary 2 (Noise Resistant Hankel DMD) Let f̃ be an observable with measurement

noise, with time samples f̂(t) = f̃(xt, ωt). Let its mean, f , be such that the Krylov

sequence f,Kf, ...,Kk−1f spans a k-dimensional invariant subspace F and the restriction

of K to F has full rank. Let

f̂(t) =

[
f̂(t) f̂(t+ 1) . . . f̂(t+ k − 1)

]T
,

and

ĝ(t) = f̂(t− k) =

[
f̂(t− k) f̂(t− k + 1) . . . f̂(t− 1)

]T
.

Then the matrix A generated by Algorithm 3 converges to the restriction of K to F . If

f̃ has no noise (i.e. f̃(x, ω) = f(x)) we can use

ĝ′(t) = f̂(t− k + 1) =

[
f̂(t− k + 1) f̂(t− k + 2) . . . f̂(t)

]T
.

We refer to Corollary 2 as a variant of Hankel DMD for random systems since the X, Y,

and Z matrices in Algorithm 3 will be Hankel matrices and it generates a Krylov subspace

of K. For a different choice of g̃ (i.e. g̃ = f̃), this is equivalent to Hankel DMD.

Proof: Using (2.7), we can see that the components of f are f,Kf, ...,Kk−1f , which

spans F . Additionally, using the independence properties of f̃ , we have f̃ωt and f̃ωt+s

are independent for s ≥ k. Since (xt, f̃ωt) is ergodic by Lemma 2, we can take the time

averages

lim
n→∞

1

n

n+k−1∑
m=k

f(m)g∗(m) = lim
n→∞

1

n

n−1∑
m=0

f(m+ k)f∗(m) =

∫
M

∫
Ω

f̃θkω(T kωx)f̃∗ω(x)dPdµ

=

∫
M

∫
Ω

f̃θkω(T kωx)f̃∗(x)dPdµ = Kk

∫
M

f f∗dµ,
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which has full rank since K has full rank. Similarly, we can take the time average

lim
n→∞

1

n

n+k−1∑
m=k

f(m+ 1)g∗(m) = Kk+1

∫
M

f f∗dµ,

and the rest of the proof follows Proposition 2. If f̃ω = f , f̃ωt and f̃ωt+k−1
are independent,

and we can take the time averages using ĝ(t) = f̂(t− k + 1).

Remark 5 Similar to remark 4, we could define a filtration to meet the conditions of

assumption 2. However, since we need to show the rank condition anyways, this does not

do much to shorten the proof.

Corollary 2 allows us to compute an approximation of K using the data from a single

observable evaluated along a single trajectory. However, the method does not require

that the we only use time delays of a single observable. In general, even if f̃ is vector

valued, we can take time delays of f̃ as in Corollary 2 so long as we span the proper

subspace. The instruments, g̃, is also generated in the same way.

2.8 Conditioning of Algorithm 3

Asymptotically, the convergence rate of Algorithm 3 is governed by the rate at which

G0,n and G1,n converges to G0 and G1, as defined in the proof of Proposition 2. This

is governed by the convergence rate of ergodic sampling. However, Algorithm 3 also

requires the pseudo-inversion of G0,n ≈ G0. If the matrix G0 is ill-conditioned, small

errors in the time averages approximations of G0 and G1 can cause large errors in our

DMD operator. The condition number of G0, κ(G0), can become large if either set of

observables, f1, ..., fk or g1, ..., gl, are close to being linearly dependent.
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Both of these issues arise particularly often when using Hankel DMD. With Hankel

DMD, we use the basis f,Kf, ...,Kk−1f as our basis for F . This is often a poor choice

of basis, as f and Kf may be close to being linearly dependent. This is particularly the

case when data from a continuous time system is sampled with a short period, such as

from a discretization of an ODE or SDE. Similarly, if j is large or K has eigenvalues

close to zero, Kjf and Kj+1f may be close to being linearly dependent, which will cause

conditioning issues.

2.8.1 SVD Based Algorithms

To combat these conditioning issues, we have some leeway in the observables we

choose for f̃ and g̃. Looking at G0, we have

G0 =

∫
M

g f∗ dµ =

∫
M

[
f 1 f 2 . . . fk

]T [
g1∗ g2∗ . . . gl∗

]
dµ. (2.10)

Ideally, {g1, ..., gl} and {f 1, ..., fk} would be orthonormal bases for F , so κ(G0) would

be 1. However, we rarely can choose such bases a priori. Instead, we can try to augment

f̃ and g̃ with extra observables and use the singular value decomposition to choose k

observables which form a better conditioned basis for F , similar to Algorithm 2. This

brings us to the SVD implementation of Algorithm 3.

Algorithm 4: SVD implemented Noise Resistant DMD

Let f̃ ∈ H l1 , and g̃ ∈ H l2 , l1, l2 ≥ k be noisy observables on our system. Let f̂(t) =

f̃(xt, ωt) and ĝ(t) = g̃(xt, ωt) denote the time samples of the observables.
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1: Construct the data matrices

X =

[
f̂(0) f̂(1) . . . f̂(n− 1)

]
,

Y =

[
f̂(1) f̂(2) . . . f̂(n)

]
,

and

Z =

[
ĝ(0) ĝ(1) . . . ĝ(n− 1)

]
.

2: Form the matrices G̃0 = 1
n
XZ∗ and G̃1 = 1

n
Y Z∗.

3: Compute the truncated SVD of G̃0 using the first k singular values:

G̃0 ≈ WkSkV
∗
k .

5: Form the matrix

A = S−1
k W ∗

k G̃1Vk.

6: Compute the eigenvalues and left and right eigenvectors, (λi, wi, ui) of A. The dynamic

eigenvalues are λi, the dynamic modes are

vi = WkSkui,

and the numerical eigenfunctions are

φ̂i = wiS
−1
k W ∗

kX.

Similar to Algorithm 2, Algorithm 4 uses the SVD to choose a basis of observables
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to use in Algorithm 1. It is equivalent to performing Algorithm 3 using data from the

observable (S−1
k W ∗

k )f̃ , while leaving the instruments g̃ unchanged. It is important to note

that Algorithm 4 uses the components of (S−1
k W ∗

k )f to as a basis for F where f = EP (f̃)

as usual. When we add observables to f̃ , we must ensure that we stay within our invariant

subspace. One way to guarantee this is to use time delays of our original observables.

2.8.2 Extended Instrumental Variables

Typically, augmenting f̃ with extra observables and using Algorithm 4 to truncate the

singular values is an effective way to improve the conditioning of the problem. However,

we have an alternate tool at our disposal. While each component of f must lie within

F , the components of the instrument g can be arbitrary, and we do not need to take an

SVD to truncate the extra observables in g. Since we do not need to worry about leaving

our invariant subspace, we can add arbitrary functions of g̃ (e.g. powers of g̃) to our

instruments and still expect convergence. This corresponds to an extended instrumental

variables method (see [40], chapter 7.6). However, while this can improve conditioning,

it also can slow down the convergence of the time averages, and should only be done

when the error stems from poor conditioning.

2.9 Numerical Examples

In this section, we will test the various DMD algorithms presented in this paper

using both observables with measurement noise and time delayed observables. For each

system and each DMD method, we generate five realizations of the DMD operator and

compare the eigenvalues with analytically obtained true (or approximate) eigenvalues

of the stochastic Koopman eigenvalues. For each system, we compare the NR-DMD

algorithm with both standard DMD and TLS-DMD, the last of which is unbiased for
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deterministic systems with measurement noise. Since the purpose of this paper is to

provide a new algorithm that is provably unbaised, we will use parameters for each

algorithm which ensures that the regression is sufficiently well conditioned. Comparisons

on the speed of convergence and numerical stability of various DMD algorithms not the

primary purpose of this paper.

2.9.1 Random Rotation on a Circle

Consider a rotation on the circle. The dynamical system is defined by

xt+1 = xt + ν, (2.11)

where ν ∈ S1. If we perturb (2.11) by adding noise to the rotation rate we obtain the

random system

xt + 1 = xt + ν + π(ωt) (2.12)

where π(ωt) ∈ S1 is an i.i.d. random variable. For the stochastic Koopman operator

associated with (2.12), the functions ϕn(x) = einx are eigenfunctions with eigenvalues

λi = E(ein(ν+π(ω)), since

Kϕi(x) = E(ϕi(Tωx)) =

∫
Ω

ein(x+ν+π(ω))dP = einx
∫

Ω

ein(ν+π(ω))dP = ϕi(x)λi.

We can compare these eigenvalues with the results obtained from our different DMD

algorithms. We will set our system parameter to ν = 1
2

and draw π(ωt) from the uniform

distribution over [−1
2
, 1

2
]. In this case the eigenvalues are λi = i−iein

n
. For the first

test, we will compare EDMD, TLS-DMD and NR-DMD using a set of observables with
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measurement noise. We will let our observable be

f̂(t) = [sin(xt), ..., sin(5xt), cos(xt), ..., cos(5xt)]
T + m(t), (2.13)

where m(t) ∈ [−0.5, 0.5]10 is measurement noise drawn from the uniform distribution.

EDMD and TLS-DMD are applied directly to the data from measurements of f̃ and for

NR-DMD we let g̃(t) = f̃(t− 1).

For the second test, we let f = sin(x) + sin(2x) + sin(3x), and use time delays to

generate f̂ :

f̂(t) =

[
f(xt) f(xt+1) . . . f(xt+d).

]T
. (2.14)

To perform Hankel DMD, we take five time delays (d = 5 in (2.14)) to generate f̃ , and

use the data directly in EDMD and TLS-DMD. However, if we try to perform Noise

Resistant Hankel DMD using these observables, Algorithm 3 is poorly conditioned and

and the eigenvalues are inaccurate. Instead, we use 24 time delays of f̃ to generate f̃

(setting d = 24 in (2.14) and letting ĝ(t) = f̂(t − 24)), and use Algorithm 4, the SVD

implemented NR-DMD, to truncate to the leading six singular values. Finally, we use

Algorithm 4 again using only eight time delays to generate f̃ , but augment ĝ with extra

instruments to improve conditioning. We let ĝ to contain the observables f̂ , f̂ 2, and f̂ 3,

as well as 42 time shifts of each of these functions:

ĝ =

[
f̂(t− 42) f̂(t− 42)2 f̂(t− 42)3 . . . f̂(t) f̂(t)2 f̂(t)3

]T
.

As can be seen in Figure 2.9.1, EDMD and TLS-DMD fail to accurately approximate

the eigenvalues of K in both tests. For the first test, NR-DMD gives accurate approxima-

tions to the eigenvalues of K. Approximating the stochastic Koopman operator using the

time delayed observables, (2.14) is more difficult because the conditioning of the matrix
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Figure 2.1: (Left) Outputs of EDMD and NR-DMD using (2.13) as observables on
(2.12) with 25 000 data points. EDMD and TLS-DMD show a clear bias in the ap-
proximate eigenvalues while NR-DMD captures them accurately.
(Right) DMD outputs from EDMD and NR-DMD using (2.14) as observables on (2.12)
with 25 000 data points. NR-DMD is implemented using Algorithm 4 to improve
conditioning, and is performed a second time with extended instrumental varialbles.
EDMD and TLS-DMD show a bias in the eigenvalues while NR-DMD gives an unbi-
ased approximation of the eigenvalues in both cases.
Each algorithm is run five times on different sample trajectories.

G0 is very poor, which amplifies the errors in our time averages. However, including

extra time delays and using Algorithm 4 to truncate to the leading singular values ob-

tains accurate results. Further, the precision is increased when we augment g̃ with extra

instruments.

2.9.2 Linear System with Additive Noise

Consider the linear system in R4:

x(t+ 1) =



0.75 0.5 0.1 2

0 0.2 0.8 1

0 −0.8 0.2 0.5

0 0 0 −0.85





x1(t)

x2(t)

x3(t)

x4(t)


= Ax(t). (2.15)
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We can perturb (2.15) by perturbing the matrix A with a random matrix δ and adding

a random forcing term b. We obtain the random system

x(t+ 1) = (A+ δt)x(t) + bt, (2.16)

where bt ∈ R4 and δt ∈ R4×4 are i.i.d. random variables. Let (wi, λi), i = 1, ..., 4 be the

left eigenpairs of A. If bt and δt are assumed to have zero mean, wTi x is an eigenfunction

of K with eigenvalue λi. For this example we will assume each component of bt and δt is

drawn from randomly from a uniform distribution. The components of bt will be drawn

from [−0.5, 0.5] while those of δt will be drawn from [−0.25, 0.25]. As before, we will

test EDMD, TLS-DMD, and NR-DMD using observables with measurement noise and

time delayed observables. For the first test, we will use state observables with Gaussian

measurement noise:

f̂(t) = x(t) + m(t) (2.17)

where each component of m(t) ∈ R4 is drawn from the standard normal distribution. As

before, will let ĝ(t) = f̂(t− 1).

For the second test, to generate the time delayed observables, we only use the first

component of the state, f̂(t) = x1(t), and use three time delays:

f̂(t) =

[
f̂(t) f̂(t+ 1) f̂(t+ 2) f̂(t+ 3)

]
. (2.18)

We will apply Algorithm 1 directly to this matrix, while for Algorithm 3 we let ĝ(t) =

f̂(t− 3).

Figure 2.9.2 shows that the eigenvalues generated by EDMD and TLS-DMD again fail

to accurately approximate those of K. However, for both sets of observables, NR-DMD

estimates the eigenvalues of K well. Since we did not run into conditioning issues, we did
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Figure 2.2: (Left) Outputs of EDMD, TLS-DMD, NR-DMD using state observables
with measurement noise (2.17) on 5 000 data points from (2.16).
(Right) Outputs of Algorithm EDMD, TLS-DMD, and NR-DMD using (2.18) as ob-
servables on (2.16) with 5 000 data points. For both cases, NR-DMD is unbiased in
approximating the eigenvalues while EDMD exhibits a clear bias.
Each algorithm is run five times on different sample trajectories.

not test the results using Algorithm 4 or extended instrumental variables.

2.9.3 Stuart Landau Equations

Consider the stochastic Stuart Landau equations defined by

dr = (δr − r3 +
ε2

r
)dt+ εdWr (2.19)

dθ = (γ − βr2)dt+
ε

r
dWθ, (2.20)

where Wr and Wθ satisfy

dWr = cos θ dWx + sin θ dWy

dWθ = − sin θ dWx + cos θ dWy
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for independent Wiener processes dWx and dWy. It was shown in [71] that for small ε

and δ > 0, the (continuous time) stochastic Koopman eigenvalues are given by

λl,n =


−n2ε2(1+β2)

2δ
+ inω0 +O(ε4) l = 0

−2lδ + inω0 +O(ε2) l > 0,

where ω0 = γ − βδ.

Let γ = β = 1, δ = 1/2, and ε = 0.05 in (2.19) and (2.20). Define the observables

fk(r, θ) = eik(θ−(log(2r)).

First, we will let

f̂(t) = [f1(xt), f−1(xt), ..., f6(xt), f−6(xt)]
T + m1(t) + im2(t), (2.21)

where each component of m1(t) and m2(t) is drawn independently from a normal dis-

tribution with mean 0 and variance 1/4. For NR-DMD, we let ĝ(t) = f̂(t − 1). The

(continuous time) eigenvalues generated by the DMD algorithms are shown from a simu-

lation with a time length of 1,000 with a time step of 0.05 (20,000 data points)in Figure

2.9.3.

To test Hankel DMD, we use the observable

f =
6∑

k=1

(fk + f−k),

and let f̃ contain f and d time delays of f :

f̂(t) =

[
f(xt) f(xt+1) . . . f(xt+d)

]
. (2.22)
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Due to the poor conditioning of Algorithms 1 and 3, the eigenvalues they generate are

highly inaccurate, so we instead use the SVD implementation of DMD and NR-DMD.

In each case, we let d = 399 and truncate the SVD to the leading 12 singular values. As

usual, we let ĝ = f̂(t− d) for Algorithm 4. The results shown in Figure 2.9.3 are from a

simulation with 200,000 data points and a time step of 0.05.

Figure 2.3: (Left) Outputs of EDMD, TLS-DMD, and NR-DMD using observables
with measurement noise (2.21). The data is taken over 20 000 data points from
(2.19) and (2.20) with a time step of 0.05. The eigenvalues produced by DMD are
biased towards the left hand plane and TLS-DMD biases them towards the imaginary
axis. The eigenvalues captured by NR-DMD are accurate. (Right) Outputs of SVD
implemented EDMD, TLS-DMD, and NR-DMD using (2.22) as observables on (2.19)
and (2.20). The DMD operator is truncated to the leading 12 singular values. The
Algorithms used 200 000 data points with a time step of 0.05. NR-DMD captures
most of the eigenvalues without bias while EDMD and TLS-DMD bias all eigenvalues
towards the imaginary axis.
Each algorithm is run five times on different sample trajectories.

As can be seen in Figure 2.9.3, EDMD exhibits a clear bias towards the left of the

complex plane and TLS-DMD biases them towards the imaginary axis when using observ-

ables with measurement noise, although it appears to accurately estimate the imaginary

part of the eigenvalue. NR-DMD, on the other hand, appears to give a mostly accurate

spectrum. When using time delayed observables for Hankel DMD, Algorithms 1 and 3

were very poorly conditioned, and gave eigenvalues far outside the windows shown in
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Figure 2.9.3. Instead, SVD implementations of DMD were used for EDMD, TLS-DMD,

and NR-DMD. The DMD operators were truncated to the 12 dominant singluar values.

We again see that the imaginary parts of the eigenvalues seem to be captured, but the

real parts are all biased to the right for EDMD and TLS-DMD. The SVD implemented

NR-DMD, however, again captures the correct spectrum, but with some error for the

most dissipative eigenvalues.
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Numerical Methods for Stochastic
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3.1 Introduction

In the previous various dynamic mode decompositions algorithms were discussed.

These algorithms provide a powerful tool for estimating system parameters from data.

However, DMD might not generate a feasible model for some systems. For example, the

system may not have a finite dimensional invariant subspace, the linear model generated

by DMD may be too large, or the regression necessary for DMD may be too poorly

conditioned.

There is a wide variety of methods that can be used for system identification, ranging

from classical methods, [40] to the DMD methods discussed in the previous section to

neural networks [36, 35] and many others. These methods vary in their their complexity,

training methods, model sizes, and interpretability. DMD methods are advantageous

for their simplicity; the models are strictly linear. Sparse Identification of Nonlinear

Dynamics (SINDy) is a method which allows for some complexity (allowing nonlinear

models over the purely linear ones generated by DMD) while the sparse solution promotes

simple, interpretable models.

The SINDy algorithm, developed by Brunton et. al. [9] estimates the parameters of

an ordinary differential equation from data. It does this by using a dictionary of functions

and finding a sparse representation of the derivative in this dictionary. The data for the

derivative can be obtained using finite differences of data from the state. For ODEs, the

performance of this algorithm has been analyzed in [76].

SINDy has several extensions and adaptations; it has also been extended to identify

control systems [10, 27], adapted to systems with implicit solutions [41, 26], and formu-

lated in ways to improve its robustness to noise [19, 46, 45], to name a few. Addition-

ally, different methods for computing the sparse solution have been proposed, including

LASSO [72], the sequential thresholding presented in the original paper [9].
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SINDy has also been extended to estimate the parameters of stochastic differential

equations. In [6], it was demonstrated that we can use the SINDy algorithm to estimate

both the drift and diffusion functions in an SDE. The drift and diffusion are estimated

from the data of the state using the Kramer-Moyal formulas. This method was expanded

on in [16]; solution methods based on binning and cross validation were introduced to

reduce the effects of noise. Callaham et. al [11] expand upon this method by adapting

it to applications for which the random forcing cannot be considered white noise.

In the section, we conduct a numerical analysis for using SINDy for stochastic system

and introduce improved methods which give higher order convergence. As mentioned,

in [6] the drift and diffusion are approximated using the Kramer-Moyal formulas. We

demonstrate the convergence rates of the algorithm with respect to the sampling period

and the length of the trajectory. The approximations given in [6] only give first order

convergence with respect to the sampling frequency. A similar analysis of the Kramer-

Moyal estimates based on binning can be found in [13]. Additionally, since they only

converge in expectation, we may require a long trajectory for the variance of the estimate

to be tolerable. Combined, these can make the data requirements to use SINDy for an

SDE very demanding. To help remedy this, we demonstrate how we can develop higher

order approximations of the drift and diffusion functions for use in SINDy.

This section is organized as follows: First, we will review the SINDy algorithm and

some concepts from SDEs which we will be using in this paper. We will then conduct a

numerical analysis of the algorithms presented in [6], including bounds on the error of the

estimates. Next, we will present new, higher order methods and show the convergence

rates of these methods. Finally, we will test all of these methods on several numerical

examples to demonstrate how the new methods allow us to compute far more accurate

approximations of the system for a given sampling frequency and trajectory length.
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3.2 Sparse Identification of Nonlinear Dynamics (SINDy)

In the previous section, our dynamic mode ecomposition algorithms were defined for

systems in discrete time. For this section, we will be considering the SINDy algorithm

for continuous time systems, namely ordinary differential equations and stochastic dif-

ferential equations. Specifically, we will be using SINDy to find approximations of the

drift and diffusion functions of an SDE.

3.2.1 Overview of SINDy

Consider a system governed by the ordinary differential equation

ẋ = f(x), x ∈ Rd. (3.1)

If the dynamics of the system, f , are unknown, we would like to be able to estimate the

function f using only data from the system. The SINDy algorithm [9] estimates f by

choosing a dictionary of functions, θ = [θ1, θ2, ..., θk] and assuming f can be expressed

(or approximated) as a linear combination of these functions. The ith component of f ,

fi, can then be expressed as

fi(x) =
k∑
j=1

θj(x)αi,j = θ(x)αi,

where θ =

[
θ1 . . . θk

]
is a row vector containing the dictionary functions and αi =[

αi1 . . . αik

]T
is the column vector of coefficients. Given data for f(xj) and θ(xj) for

60



Numerical Methods for Stochastic SINDy Chapter 3

j = 1, ..., n, we can find the coefficients αi by solving the minimization

αi = argmin
v

n∑
j=1

|fi(xj)− θ(xj)v|2. (3.2)

This optimization can be solved by letting

Θ =



θ(x1)

θ(x2)

...

θ(xn)


, F =



f(x1)

f(x2)

...

f(xn)


, and α =

[
α1 α2 . . . αd

]
,

and computing α = Θ+F.

3.2.2 Approximating f(x)

Typically, data for f(x) cannot be measured directly. Instead, it is usually approx-

imated using finite differences. The forward difference gives us a simple, first order

approximation to f :

f(x(t)) =
x(t+ ∆t)− x(t)

∆t
+O(∆t). (3.3)

The approximation (3.3) is derived from the Taylor expansion of x,

x(t+∆t) = x(t)+ẋ(t)∆t+ẍ(t)
∆t2

2
+... = x(t)+f(x(t))∆t+

∂f

∂x

∣∣∣
x(t)
f(x(t))

∆t2

2
+..., (3.4)

for f sufficiently smooth. The Taylor expansion (3.4) is also used to derive higher order

methods, such as the central difference,

f(x) =
x(t+ ∆t)− x(t−∆t)

2∆t
+O(∆t2). (3.5)
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We can use these finite difference to populate the matrix F used in the optimization

(3.2), knowing that we can control the error with a small enough step size.

3.2.3 Sparse Solutions

Since we are choosing an arbitrary dictionary of functions, {θ1, . . . , θk}, the condition-

ing of the minimization (3.2) can become very poor. Additionally, if the the dictionary

is large and contains many redundant functions, having a solution which contains only

a few nonzero entries would help to provide a simple interpretable result. The SINDy

algorithm addresses these by using a sparse solution to (3.2). There are multiple methods

for obtaining a sparse solution such as the least absolute shrinkage and selection opera-

tor (LASSO) or the sequentially thresholded least squares algorithm [9]. Using a sparse

solution will give us a simpler identified system and improves the performance over the

least squares solution.

3.3 Review of SDEs

Consider the Ito stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt (3.6)

where Xt ∈ Rd and Wt is d-dimensional Brownian motion. The function µ : Rd → Rd is

the drift, a vector field which determines the average motion of system, while σ : Rd →

Rd×d is the diffusion function, which governs the stochastic forcing. The diffusion, σ, is

also assumed to be positive definite. Motivated by SINDy, we wish to estimate µ and σ2

from data. We note that we are estimating Σ = 1
2
σ2 and not σ directly. However, if σ is

positive definite, which is assumed, σ2 uniquely determines σ.
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3.3.1 Ergodicity

As with the DMD algorithms in the previous section, SINDy represents functions

using the data vectors evaluated along the trajectory. In order to relate the the data

vectors to the functions, we will assume that the process Xt has an ergodic measure ρ

(we note that in this section we are using ρ as the ergodic measure, since µ represents the

drift). For this system, we will assume that both (1.4) and its continuous time analogue

hold.

lim
T→∞

1

T

∫ T

0

f(Xt)dt =

∫
Rd

f(x)dρ(x) and lim
N→∞

1

N

N−1∑
i=0

f(Xti) =

∫
Rd

f(x)dρ(x) (3.7)

hold almost surely. Some sufficient conditions that ensure that the SDE (3.6) generates

a process with a stationary or an ergodic measure are given in e.g. [30].

With this ergodic measure, the natural function space to consider is the Hilbert space

L2(ρ). For any two functions f, g ∈ L2(ρ), we can use time averages to evaluate inner

products.

lim
T→∞

1

T

∫ T

0

g∗(Xt)f(Xt)dt = lim
N→∞

1

N

N−1∑
i=0

g∗(Xtn)f(Xtn) =

∫
Rd

g∗f dρ = 〈f, g〉. (3.8)

For notational simplicity, we will also use the brackets 〈·, ·〉 to denote the matrix of inner

products for two row vector-valued functions: if f =

[
f1 . . . fk

]
and g =

[
g1 . . . gl

]
,

〈f, g〉i,j = 〈f j, gi〉, or equivelently, 〈f, g〉 =

∫
Rd

g∗f dρ.
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3.3.2 Ito-Taylor Expansion

In order to evaluate the performance of different SINDy methods on SDEs, we will

need to use the Ito-Taylor expansion of the solution. Let Σ = 1
2
σ2. Following the notation

of [32], let

L0 =
d∑
j=1

µj
∂

∂xj
+

d∑
j,l

(Σ)j,l
∂2

∂xj∂xl

be the operator for the Ito equation (3.6) and define the operators

Lj =
d∑
i=1

σi,j
∂

∂xi
.

These operators will give us the coefficients for the Ito-Taylor expansion of a function f .

Denoting ∆W i
t = W i

t+∆t −W i
t , the first couple of terms are

f(Xt+∆t) =f(Xt) + L0f(Xt)∆t+
d∑
i=1

Lif(Xt)∆W
i
t + (L0)2f(Xt)∆t+

d∑
i=1

LiL0f(Xt)

∫ t+∆t

t

∫ s1

t

dW i
s2
ds1 +

d∑
i=1

L0Lif(Xt)

∫ t+∆t

t

∫ s1

t

ds2dW
i
s1

+ . . .

The general Ito-Taylor expansions can be found in Theorem 5.5.1 of [32]. We will use

the Ito-Taylor expansion to develop estimates for µi and σi,j. For the purposes of this

paper, we will be able to specialize to a few cases, which will allow us to quantify the

error in our estimates while also being simpler to manipulate than the larger expansion.
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Weak Expansion

The first specialization of the Ito-Taylor expansion will be a weak expansion, which

will allow us to estimate the expected error in our estimate.

E(f(Xt+∆t)|Xt) = f(Xt) +
k∑

m=1

(L0)mf(Xt)
∆tm

m!
+R(Xt). (3.9)

with R(Xt) = O(∆tm+1).

This expansion follows from the Proposition 5.5.1 and Lemma 5.7.1 of [32]. Theorem

5.5.1 gives the general Ito-Taylor expansion, while Lemma 5.7.1 shows that all multiple

Ito integrals which contain integration with respect to a component of the Weiner process

have zero first moment. The remainder term is then a standard integral.

We will consider the expansion (3.9) with the functions f(x) = xi to get

E(X i
t+∆t|Xt) = X i

t + µi(Xt)∆t+
k∑

m=2

(L0)m−1µi(Xt)
∆tm

m!
+O(∆tk+1) (3.10)

to estimate the drift. To estimate the diffusion, we will let f(x) = (xi − X i
t)(x

j − Xj
t ),

with Xt held constant at the value at the beginning of the time step, to get

E(f(Xt+∆t) |Xt) = 2Σi,j(Xt)∆t+ g(Xt)∆t
2 +O(∆t3) (3.11)

where

g =

(
L0Σi,j + µiµj +

d∑
k=1

Σi,k ∂µ
j

∂xk
+ Σj,k ∂µ

i

∂xk

)
.

Strong Expansions

We will also use the strong Ito-Taylor expansion, which will give a bound on the

variance of our estimates. These immediately follow from Proposition 5.9.1 of [32]. First,
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if we apply it to f(x) = xi, we have

X i
t+∆t −X i

t = µi(Xt)∆t+
d∑

m=1

σi,m(Xt)∆W
m
t +Rt, (3.12)

where E(|Rt|2|Xt)dρ = O(∆t2).

Similarly, we can apply the same proposition to f(x) = (xi−X i
t)(x

j−Xj
t ), and which

gives us (after moving around some of the terms)

(X i
t+∆t −X i

t)(X
j
t+∆t −X

j
t ) = 2Σi,j(Xt)∆t+

d∑
k,l=1

(σk,iσl,j(Xt) + σk,jσl,i(Xt))I(i,j) +Rt,

(3.13)

where E(|Rt|2|Xt) = O(∆t3) and I(i,j) =
∫ ∆t

0

∫ s1
0
dW i

s2
dW j

s1
. When we create estimates

of µi(Xt) and Σi,j(Xt), the expansions (3.12) and (3.13) will be useful in bounding the

variance of these two estimates.

Remark 6 For the expansions, it is implicit that we must assume that all (up to the

necessary order) of the coefficient functions, La1La2 ...Lanf , satisfy the integrability re-

quirements with respect to the multiple Ito integrals set forth in chapter five of [32].

Additionally, we will also assume that the remainder terms will be square integrable with

respect to the ergodic measure. In particular, we will assume

∫
Rd

|R(x)|2dρ(x) = O(∆tm+1)

in the weak expansion and

∫
Rd

R2(x)2dρ(x) = O(∆t)
(
or O(∆t2)

)
in the strong expansions, where R2(x) = E(|Rt|2 | Xt = x). This assumption will allow
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us to take time averages and expect them to be finite. Following the proofs in [32], it

can be seen that these can be guaranteed imposing similar conditions on the coefficient

functions.

3.4 SINDy for Stochastic Systems

Given data for the drift and diffusion matrix of (3.6), we can set up an optimization

problem similar to (3.2). Similar to the deterministic case, we can also approximate µ and

Σ using finite differences. As before, we assume we have a dictionary θ = [θ1, θ2, ..., θk]

and that each of the components of µ and Σ lie in the span of the components of θ:

µi = θαi and Σi,j = θβi,j.

Suppose we have the data from a trajectory of length T with sampling period ∆t. If

we let ∆X i
tn = X i

tn+1
−X i

tn , we can approximate the drift using

µi(Xtm) ≈
X i
tm+1
−X i

tm

∆t
=

∆X i
t

∆t
. (3.14)

Similarly, we can approximate the diffusion with

Σi,j(Xtm) ≈
(X i

tm+1
−X i

tm)(Xj
tm+1
−Xj

tm)

2∆t
=

∆X i
tm∆Xj

tm

2∆t
. (3.15)

It was shown in [6] that we can use the approximations (3.14) and (3.15) to set up

the minimization problems

α̃i = argmin
v

N−1∑
m=0

∣∣∣∣∆X i
tm

∆t
− θ(Xtm)v

∣∣∣∣2 . (3.16)
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and

β̃i,j = argmin
v

N−1∑
m=0

∣∣∣∣∣∆X i
tm∆Xj

tm

2∆t
− θ(Xtm)v

∣∣∣∣∣
2

. (3.17)

Under the assumptions set forth in Remark 6, we can show that as ∆t→ 0 and T →∞,

the coefficients given by (3.16) and (3.17) converge to the true coefficients; α̃i → αi and

β̃i,j → βi,j.

If we define the matrices

Θ =



θ(Xt0)

θ(Xt1)

...

θ(XtN−1
)


, and Di =



∆X i
t0

∆X i
t1

...

∆X i
tN−1


, (3.18)

We can express (3.16) and (3.17) concisely as

α̃i = argmin
v

∥∥∥∥Di

∆t
−Θv

∥∥∥∥ and βi,j = argmin
v

∥∥∥∥Di �Dj

2∆t
−Θv

∥∥∥∥ .
(Here Di�Dj represents the Hadamard, or element-wise, product.) These equations are

solved by α̃i = ∆t−1Θ+Di and β̃i,j = (2∆t)−1Θ+(Di �Dj), respectively.

Theorem 3 Let Xt be an ergodic drift-diffusion process generated by the SDE (3.6).

Consider the optimization problems (3.16) and (3.17) using data from a trajectory of

length T sampled with frequency ∆t. Suppose the components of θ are linearly independent

and span the subspace F , and that the assumptions on the Ito-Taylor expansions outlined

in Remark 6 are met. If µi or Σi,j lie in F , then the vectors given by corresponding

optimization converges in probability to the true coefficients as T → ∞ and ∆t → 0.

That is, α̃i → αi or β̃i,j → βi,j.

The formal proof of Theorem 3 will be subsumed into the stronger Theorems 4 and
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5, which give rates for the convergence. However, to demonstrate the idea of the proof,

by the assumptions we have Θ has full rank and µ = θαi, Σi,j = θβi,j.

α̃i = (Θ∗Θ)−1Θ∗
Di

∆t
=

(
1

N
Θ∗Θ

)−1(
1

N∆t
Θ∗Di

)
,

where N = T/∆t is the number of data samples. The first quantity can be evaluated

using ergodicity, as N →∞

1

N
Θ∗Θ =

1

N

N−1∑
m=0

θ∗(Xtm)θ(Xtm)
N−→ 〈θ, θ〉.

For the second expression, the definition of the stochastic integral gives us

Θ∗Di =
N−1∑
m=0

θ∗(Xm)(X i
tm+1
−X i

tm)
∆t−→
∫ t0+T

t0

θ∗dX i

as ∆t→ 0. Finally, using (3.6) and (3.8), we can show

1

N∆t
Θ∗Di ∆t−→ 1

T

∫ t0+T

t0

θ∗dX i T−→ 〈µ, θ〉 = 〈θ, θ〉αi (3.19)

as ∆t → 0 and T → ∞. The limit as ∆t → 0 gives the convergence of the sum to the

stochastic integral and the limit as T →∞ allows us to sample almost everywhere on the

stationary measure for the ergodic convergence. Similarly, we can use the convergence

N−1∑
m=0

θ∗(Xtm)(X i
tm+1
−X i

tm)(Xj
tm+1
−Xj

tm)
∆t−→
∫ t0+T

t0

θ∗d[X i, Xj], ∆t→ 0

to show that 1
2N∆t

Θ∗(Di � Dj) → 〈Σi,j, θ〉 = 〈θ, θ〉βi,j. (Here [X, Y ]t is the quadratic

covariation process of Xt, and Yt.) This would establish the result, except that we used

the iterated limits ∆t→ 0 and T →∞ in (3.19) without showing the double limit exists.
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This is where we would use the integrability assumptions in Remark 6, which are used

in the proofs of Theorems 4 and 5.

Theorem 3 demonstrates how the least squares solutions converge to the true coef-

ficients of the SDE. However, the SINDy algorithm finds a sparse solution, which can

greatly improve the accuracy of the results over the least squares solution. To set this up,

the two optimizations (3.16) and (3.17) can be summarized using the normal equations,

Θ∗Θα̃i =
1

∆t
Θ∗Di (3.20)

and

Θ∗Θβ̃i,j =
1

2∆t
Θ∗(Di �Dj). (3.21)

We can then solve equations (3.20) and (3.21) using a sparse solver, such as the one

proposed in [9] to obtain a sparse solution.

3.5 Numerical Analysis of Stochastic SINDy

Theorem 3 claims that as ∆t → 0 and T → ∞, the coefficients given by the (3.16)

and (3.17) converge to the true parameters of the SDE (3.6) as ∆t→ 0 and T →∞. In

this section, we will look at the accuracy and variation of the approximations for finite

∆t and T . In this setting, we will be using “big ‘O’” notation to denote convergence as

∆t→ 0, and we will be using “little ‘o’” notation for the convergence as T →∞.

The SINDy algorithm will give us vectors of coefficients, α̃i and β̃i,j, for the system.

We will be interested in the error of these vectors relative to the true coefficients αi and

βi,j,

err = α̃i − αi or err = β̃i,j − βi,j.
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(We note that this error is specifically for the vector αi or βi,j being estimated, even

though it is not indexed. Since each vector is estimated separately, there should be

no confusion.) This error will be a random variable depending on the realization of

the system. To evaluate the performance of the algorithms, we will use the mean and

variance of this error:

errmean = ‖E(err)‖2 and errvar = V ar(err) = E(‖err − E(err)‖2
2).

The mean error and variance measure the bias and spread in the estimates α̃i and

β̃i,j. These errors in the coefficients can be quantified using the errors in the estimates

of µi and Σi,j given in (3.14) and (3.15) at each step. We will present the analysis for

the drift coefficients, αi, noting that analysis for the diffusion follows the same path.

3.5.1 Drift

As mentioned, the error in α̃i stems from the error in the approximation in (3.14)

µi(Xtn) ≈
Xtn+1 −Xtn

∆t
.

We can define the error

etn =
X i
tn+1
−X i

tn

∆t
− µi(Xtn).

The order of the error, et, at each time step will directly determine the error in the

coefficients α̃i. We can use Ito-Taylor expansions for Xt to bound both E(|et|) and

E(|et|2). The weak Ito-Taylor expansion (3.9) gives us

E(et |Xt) =
1

∆t

(
µi(Xt)∆t+ L0µi(Xt)

∆t2

2
+O(∆t3)

)
−µi(Xt) = L0µi(Xt)

∆t

2
+O(∆t2).

(3.22)
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Similarly, we can use the strong truncation (3.12) to obtain

et =
d∑

m=1

σi,m(Xt)
∆Wm

t

∆t
+
Rt

∆t
,

where E(|Rt|2|Xt) = O(∆t2). Then, taking the expectance of e2
t , we get

E(|et|2 |Xt) =
d∑

m=1

σi,m(Xt)
2

∆t
+O

(
∆t

−1
2

)
. (3.23)

Now, let E be the matrix containing the time samples of et,

E =

[
et0 et1 . . . etN−1

]T
=
Di

∆t
−Θαi,

using θ(Xt)α
i = µi(Xt). Then we have

err = α̃i − αi = Θ+D
i

∆t
−Θ+Θα = (Θ∗Θ)−1Θ∗E. (3.24)

Using ergodicity, we have

(
1

N
Θ∗Θ

)−1

= (〈θ, θ〉+ o(1))−1 = 〈θ, θ〉−1 + o(1), (3.25)

which allows us to evaluate the first term in (3.24):

err = (〈θ, θ〉−1 + o(1))

(
1

N
Θ∗E

)
. (3.26)

Bounding the mean and variance will follow from bounds on the mean and variance of

1
N

Θ∗E.

Theorem 4 Consider the optimization problem given by (3.14) and (3.16). Then the
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bias is bounded by

errmean ≤
C1

2

(
‖L0µi‖2 +O(∆t) + o(1)

)
∆t

and

errvar ≤
C2

T

(
d∑

m=1

‖σi,m‖2
4 +O

(
∆t

1
2

)
+ o(1)

)
,

where

C1 = ‖〈θ, θ〉−1‖2‖θ‖2 and C2 = ‖〈θ, θ〉−1‖2
2‖θ‖2

4 (3.27)

depend only on the choice of θ.

Proof: For the mean error, we will need to bound the quantity 1
N
‖E (Θ∗E)‖. We

have

E
(

1

N
Θ∗E

)
= E

(
1

N

N−1∑
n=0

θ∗(Xtn)etn

)
= E

(
1

N

N−1∑
n=0

θ∗(Xtn)E(etn |Xtn)

)
.

Then, using ergodicity and (3.22), we obtain

E
(

1

N
Θ∗E

)
= E

(
1

N

N−1∑
n=0

θ∗(Xtn)

(
∆t

2
L0µi(Xtn) +O(∆t2)

))

=
∆t

2

(
〈L0µi, θ〉+ o(1)

)
+O(∆t2).

Finally, using (3.26), we get

‖E(err)‖ =
∥∥(〈θ, θ〉−1 + o(1)

)∥∥
2

(
∆t

2

(
〈L0µi, θ〉+ o(1)

)
+O(∆t2)

)
≤ ‖〈θ, θ〉−1‖2

(
‖θ‖2‖L0µi‖2 +O(∆t) + o(1)

) ∆t

2
= C1

(
‖L0µi‖2 +O(∆t) + o(1)

) ∆t

2
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This bounds the mean error. To find the variance, we have

V ar

(
1

N
Θ∗E

)
≤ E

(∥∥∥∥ 1

N
Θ∗E

∥∥∥∥2

2

)
= E

∥∥∥∥∥
N−1∑
n=0

θ∗(Xtn)etn

∥∥∥∥∥
2

2

 ≤ E

(
N−1∑
n=0

‖θ∗(Xtn)‖2
2|etn|2‖

)

= E

(
N1∑
n=0

‖θ(Xtn)‖2
2 E
(
|etn|2 |Xtn

))

Now, using (3.23) with this equation, we have

V ar

(
1

N
Θ∗E

)
≤ E

(
1

N2

N−1∑
n=0

‖θ(Xtn)‖2
2

(
d∑

m=1

|σi,m|2

∆t
+O

(
∆t

−1
2

)))

=
1

N∆t

(
d∑

m=1

〈(σi,m)2, ‖θ‖2
2〉+O

(
∆t

1
2

)
+ o(1)

)

≤ 1

T
‖θ‖2

4

(
d∑

m=1

‖σi,m‖2
4 +O

(
∆t

1
2

)
+ o(1)

)
.

Then

V ar(err) =
(
‖〈θ, θ〉−1‖2

2 + o(1)
)
‖θ‖2

4

(
1

T

(
d∑

m=1

‖σi,m‖2
4 +O

(
∆t

1
2

)
+ o(1)

))

=
‖〈θ, θ〉−1‖2

2‖θ‖2
4

T

(
d∑

m=1

‖σi,m‖2
4 +O

(
∆t

1
2

)
+ o(1)

)

=
C2

T

(
d∑

m=1

‖σi,m‖2
4 +O

(
∆t

1
2

)
+ o(1)

)

As shown in Theorem 4, in expectation, the accuracy of our estimate depends primarily

on the sampling period ∆t, and not on the length of the trajectory. The length of the

trajectory instead controls the variance of the estimate, which is proportional to 1/T .

Up to the leading term, the variance does not depend on the sampling period. This

pattern will persist as we develop higher order methods for estimating the drift, where
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the sampling frequency determines the bias and the length of the trajectory determines

the variance.

3.5.2 Diffusion

The analysis of the diffusion coefficients follows the same argument. The approxima-

tion for Σi,j given in (3.15) is

Σi,j(Xtm) ≈
(X i

tm+1
−X i

tm)(Xj
tm+1
−Xj

tm)

2∆t
=

∆X i
tm∆Xj

tm

2∆t
.

Then we can define the error

et =
(X i

t+∆t −X i
t)(X

j
t+∆t −X

j
t )

2∆t
− Σi,j(Xt).

We can use the weak Ito-Taylor expansion (3.11) to bound E(et |Xt):

E(et |Xt) = g(Xt)
∆t

2
+O(∆t2), g =

(
L0Σi,j + µiµj +

d∑
k=1

Σi,k ∂µ
j

∂xk
+ Σj,k ∂µ

i

∂xk

)
.

(3.28)

To calculate the squared error, E(|et|2|Xt), we will use the strong expansion (3.13).

This gives us

et =
1

2∆t

(
d∑

k,l=1

(σk,iσl,j(Xt) + σk,jσl,i(Xt))Ii,j +Rt

)
(3.29)

with E(|Rt|2|Xt) = O(∆t3). From Lemma 5.7.2 of [32], we have

E(I(k,l)I(m,n)) =


0, (k, l) 6= (m,n)

∆t2

2
, k = m, l = n.
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Then, squaring (3.29), we get

E(|et|2 |Xt) =
1

4∆t2

d∑
k,l=1

(σk,iσl,j(Xt) + σk,jσl,i(Xt))
2 ∆t2

2
+O(∆t

1
2 )

=
1

8

d∑
k,l=1

2
(
(σk,iσl,j(Xt))

2 + σk,iσl,jσk,jσl,i(Xt)
)

+O(∆t
1
2 )

= Σi,i(Xt)Σ
j,j(Xt) + Σi,j(Xt)

2 +O(∆t
1
2 ).

Then we have

E(|et|2 |Xt) = Σi,i(Xt)Σ
j,j(Xt) + Σi,j(Xt)

2 +O(∆t
1
2 ). (3.30)

Theorem 5 Consider the optimization problem given by (3.15) and (3.17). Then the

mean error is bounded by

errmean =
C1

2
(‖g‖+O(∆t) + o(1))∆t,

where

g =

(
L0Σi,j + µiµj +

d∑
k=1

Σi,k ∂µ
j

∂xk
+ Σj,k ∂µ

i

∂xk

)
.

The variance is bounded by

errvar =
C2

4

(∥∥Σi,iΣj,j + (Σi,j)2
∥∥+O(∆t

1
2 ) + o(1)

) ∆t

T
.

The constants C1 and C2 are the same as those given in (3.27).

Proof: The proof follows that of Theorem 4, except using equations (3.28) and

(3.30) to bound |E(et |Xt)| and E (|et|2 |Xt), respectively.

Similar to Theorem 4, the proof above shows that the mean error converges with order
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∆t. However, unlike the estimate for the drift, when estimating the diffusion the variance

is proportional to both ∆t and 1/T . This will also hold true for higher order estimates

of the diffusion.

3.6 Higher Order Methods

From Theorems 4 and 5 we can see that the quantities ∆t, T , C1, and C2 will

control the magnitude of the error. The constants, C1 and C2, depend only on the

choice of the dictionary θ, which determines the conditioning of the problem. The SINDy

algorithm also uses a sparsity promoting algorithms which can improve the conditioning

of the problem and force many of the coefficients to zero, which can reduce the error

[9],[6]. However, even if the sparsity promoting algorithm chooses all of the correct

coefficients, we have just shown that there is still a limit to the accuracy of the estimation

determined by the sampling frequency and trajectory. The primary purpose of this

section is to analyze alternate methods of approximating µi and Σi,j which can improve

the performance of SINDy (with respect to ∆t).

The methods above resulted from first order approximations (3.14) and (3.15) of

µi(Xt) and Σi,j(Xt), respectively. Higher order approximations of these data points can

in turn lead more accurate approximations of the functions in the output of SINDy. We

can generate better approximations for the drift using multistep difference method. The

use of linear multistep methods (LMMs) to estimate dynamics is investigated in [29] for

deterministic systems. While the estimates for the diffusion will be similar, they can not

be achieved strictly using LMMs.

In order to achieve a higher order approximation, we will need to use more data points
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in the approximation at each time step. As such, we will define

Θn =



θ(Xtn)

θ(Xtn+1)

...

θ(XtN+n−1
)


and Di

n =



X i
tn −X

i
t0

X i
tn+1
−X i

t1

...

X i
tN+n−1

−X i
tN−1


. (3.31)

With this definition, Θn contains the data of θ time delayed by n steps. With the earlier

definition of Θ, we have Θ = Θ0. Similarly, Di
n contains the data for the change in X

over n time steps, with Di
1 = Di using the earlier definition of Di.

3.6.1 Drift

First, we will look to make improvements on estimating the drift. These estimates will

be simpler than those for the diffusion. As mentioned, these approximations are directly

analogous to the linear multistep methods used in the simulation of deterministic systems.

Second Order Forward difference

The first order forward difference, which is used to approximate µi in Theorem 4, is

also commonly used to approximate the derivative f(x) in the differential equation ẋ =

f(x). In fact, if we compare the weak Ito-Taylor expansion (3.9) with the deterministic

Taylor series for an ODE, (3.4), we see that they are almost identical. There are many

higher order methods which are used to approximate f in the simulation of ODEs. By

analogy, can expect that these methods would give an approximation of the same order

for µi (in expectation). One of the simplest of these would be the second order forward
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difference,

µi(Xtn) ≈
4(Xtn+1 −Xt)− (Xtn+2 −Xt)

2∆t
=
−3X i

tn + 4X i
tn+1
−X i

tn+2

2∆t
. (3.32)

Similar to before we can define the error in this approximation to be

et =
−3X i

t + 4X i
t+∆t −X i

t+2∆t

2∆t
− µi(Xt).

Using the weak Ito-Taylor expansion (3.9), it is easy to see that

E(etn |Xtn) = −(L0)2µi(Xtn)

3
∆t2 +O(∆t3), (3.33)

which shows that this method does indeed give a second order approximation of µ. Using

this approximation, we can set up a matrix formulation of (3.32):

Θ0α
i ≈ 1

2∆t

(
4Di

1 −Di
2

)
,

If we set up the normal equations, this becomes

Θ∗0Θ0α̃
i =

1

2∆t
Θ∗0
(
4Di

1 −Di
2

)
. (3.34)

Theorem 6 Consider the approximation α̃i obtained from (3.34). The mean error is

bounded by

‖E(err)‖2 =
C1

3
(‖(L0)2µi‖+O(∆t) + o(1))∆t2
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and the mean squared error by

E
(
‖(err)‖2

2

)
=
C2

T

(
d∑
j

‖σi,j‖2
4 +O(∆t

1
2 ) + o(1)

)
.

The constants C1 and C2 are the same as those given in (3.27).

The proof of Theorem 6 is similar to that of Theorem 4, but requires some extra algebraic

manipulation to bound the mean squared error.

Proof: The proof of the estimate on the mean error follows from (3.33) and the

proof of Theorem 4. Now, to let Θ0 be defined as in (3.31) and

E =

[
e0 e1 . . . eN−1

]T
.

To estimate the variance, we need to find E(‖ 1
N

Θ∗0E‖2
2). To do this, we will use the strong

expansion (3.12) and obtain

et =
1

2∆t

(
d∑

m=1

σi,m(3∆Wm
t −∆Wm

t+1) +Rt

)

with E(|Rt|2) = O(∆t2). Then, using the

1

N
Θ∗0E =

1

N

N−1∑
n=0

θ∗(Xtn)etn =
1

N

N−1∑
n=0

θ∗(Xtn)

(
d∑

m=1

σi,m(Xtn)
3∆Wm

tn −∆Wm
tn+1

2∆t
+
Rtn

2∆t

)

=
1

2T

N−1∑
n=0

θ∗(Xtn)

(
d∑

m=1

(3σi,m(Xtn)− σi,m(Xtn−1))∆W
m
tn +Rtn

)
+R1

=
1

T

N−1∑
n=0

θ∗(Xtn)

(
d∑

m=1

(σi,m(Xtn) +Rm
tn)∆Wm

tn +Rtn

)
+R1

where

R1 =
1

T

d∑
m=1

(
θ∗(Xt0)σ

i,m(Xt0)∆W
m
t0
− θ∗(XtN )σi,m(XtN )∆Wm

tN

)
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and E(|Rm
tn|

2) = O(∆t). The second line comes from rearranging the indices of the sum

which gives the remainder R1 and the last line uses the Ito-Taylor expansion of σi,m,

which gives the remainder Rm
tn . Combining all of the errors gives us

1

N
Θ∗0E =

1

T

N−1∑
n=0

d∑
m=1

θ∗(Xtn)σi,m(Xtn)∆Wm
tn +R

with E(R2) = O(∆t2). Taking the expectance of the square of this last equation gives us

E

(∥∥∥∥ 1

N
Θ∗0E

∥∥∥∥2

2

)
≤ 1

T 2

N∑
n=0

d∑
m=1

‖θ∗(Xtn)‖2
2σ

i,m(Xtn)2∆t+O(∆t
3
2 ).

Using this, the rest of the proof follows that of Theorem 4.

Remark 7 These methods can easily be generalized to higher order methods using higher

order finite differences, as will be done in section 3.6.1. However, the least squares

solution only yields correct results for forward differences. Other finite difference methods

can cause certain sums to converge to the wrong stochastic integral. For example, a central

difference approximation for µi,

µit ≈
X i
t+∆t −X i

t−∆t

2∆t
,

gives us Θ1α
i ≈ 1

2∆t
Di

2. The normal equations for the least squares solution

Θ∗1Θ1α̃
i =

1

2∆t
Θ∗1D

i
2 (3.35)

gives the wrong results, because as ∆t→ 0, 1
2
Θ∗1D

i
2 converges to the Stratonovich integral
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instead of the Ito integral,

1

2
Θ∗1D

i
2 →

∫ T

0

θ∗(Xt) ◦ dX i
t 6=

∫ T

0

θ∗(Xt) dX
i
t ,

and α̃i will not converge to the correct value. To prevent this, (3.35) can instead be solved

using

Θ∗0Θ1α̃
i =

1

2∆t
Θ∗0D

i
2,

which gives the proper convergence. This amounts to using Θ0 as a set of instrumental

variables for the regression.

Trapezoidal Method

The second order method above uses additional measurements of X i
t to provide a

more accurate estimate of µi. Alternatively, we can use multiple measurements of µi to

better approximate the difference X i
t+∆t−X i

t . Consider the first order forward difference

given by (3.14).

µi(Xtn) ≈
X i
tn+1
−X i

tn

∆t
.

Theorem 4 used this difference to give an order ∆t approximation of µi. However, it turns

out that 1
2
(µi(Xt) + µi(Xt+∆t)) gives a much better approximation of this difference:

1

2

(
µi(Xtn) + µi(Xtn+1)

)
≈
X i
tn+1
−X i

tn

∆t
. (3.36)

We will call this approximation the trapezoidal approximation, since this is exactly the

trapezoidal method used in the numerical simulation of ODEs. If we consider the error

in this equation,

et =
X i
tn+1
−X i

tn

∆t
− 1

2

(
µi(Xtn) + µi(Xtn+1)

)
,
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we can use the weak Ito-Taylor approximations of Xt and µi(Xt) to show that

E(et |Xt) = −(L0)2µi(Xt)
∆t2

12
+O(∆t3). (3.37)

This not only gives us a second order method, with respect to ∆t, but the leading

coefficient for the error is much smaller (by a factor of 1/8) than the second order forward

difference.

To set up the matrix formulation of (3.36), we have

1

2
(Θ0 + Θ1)αi ≈ 1

∆t
Di

1. (3.38)

We can multiply (3.38) by Θ∗0 on each side to obtain

1

2
Θ∗0(Θ0 + Θ1)α̃i =

1

∆t
Θ∗0D

i
1. (3.39)

We can use this equation analogously to the normal equation; we will solve for α̃i either

directly using matrix inversion or by using a sparse solver.

Remark 8 We note that we cannot solve (3.38) using least squares,

α̃i 6= 2

∆t
(Θ0 + Θ1)+Di

1.

Similar to Remark 7, this leads to sums converging to the wrong stochastic integral.

Theorem 7 Consider the estimation α̃i given by solving (3.39). The mean error is

bounded by

errmean ≤ C1
∆t2

12
(‖(L0)2µi‖2 +O(∆t) + o(1))
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and

errvar ≤
C2

T

(
d∑
j=1

‖σi,j‖2
2 +O(∆t

1
2 ) + o(1)

)
.

Proof: Letting E be the matrix containing the samples of et. We have

1

∆t
Di

1 =
1

2
(Θ0 + Θ1)αi + E.

Using this in (3.39) gives us

1

2
Θ∗0(Θ0 + Θ1)α̃i =

1

2
Θ∗0(Θ0 + Θ1)αi + Θ∗0E,

so the error is

err = α̃i − αi =

(
1

2
Θ∗0(Θ0 + Θ1)

)−1

Θ∗0E.

Since E(θ(Xt+∆t)|Xt) = θ(Xt) +O(∆t), we can use ergodicity to evaluate

1

2N
Θ∗0(Θ0 + Θ1)→ 〈θ, θ〉+O(∆t) + o(1).

The proof of first inequality then follows the proof of Theorem 4 and (3.37). The second

inequality also follows using

E
(
‖et‖2

2 | Xt = x
)
≤ 1

∆t

d∑
m=1

|σi,m(x)|2 +O(∆t
−1
2 ),

which can easily be derived using the Ito-Taylor expansions.

General Method for Estimating Drift

We have given methods which give second order estimates of αi. To generate meth-

ods which give even higher order approximations, we note the similarities of the above

84



Numerical Methods for Stochastic SINDy Chapter 3

methods to linear multi-step methods used in the numerical simulation of ODEs. Using

the general LMM as a guide, we set up a general method for approximating µi:

k∑
l=0

al µ
i(Xtn+l

) ≈
p∑
l=1

bl (X
i
tn+l
−X i

tn), (3.40)

or (
k∑
l=0

alΘl

)
αi ≈

p∑
l=1

blD
i
l .

Keeping Remark 7 in mind, we can solve this using

(
k∑
l=0

alΘ
∗
0Θl

)
α̃i = bl

p∑
l=1

Θ∗0D
i
l . (3.41)

The coefficients in (3.40) can be chosen to develop higher order methods. However, due

to the stochastic nature of the problem, large amounts of data may be required to achieve

the order in practice. We will need enough data to average over the randomness in the

SDE, and the higher order methods can be sensitive to noise. More detailed investigation

into the convergence of certain classes of methods for dynamics discovery can be found

in [29] for deterministic systems.

3.6.2 Diffusion

In this section we will discuss improvements to the estimate for the diffusion. For

some systems, particularly when the drift is large relative the diffusion, the first order

approximation given above may not be sufficient to obtain an accurate estimate of the

diffusion coefficient. Using similar ideas to the previous section we can use the Ito-Taylor

expansions to develop more accurate estimates of Σi,j(Xt). However, these methods will

be more complex; in addition to samples of Xt, some of these methods may also require
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data from the drift, µi(Xt) and µj(Xt).

Drift Subtraction

Before discussing the higher order methods, we can make an improvement upon the

first order method. By correcting for the effects of the drift in the first order method, we

can make significant improvements to the constant controlling the error. The Ito-Taylor

expansion for Xt gives us

X i
t+∆t −X i

t = µ(Xt)∆t+
d∑

m=1

σ(Xt)∆W
m
t +Rt,

where ∆Wt = Wt+∆t −Wt is the increment of a d-dimensional Wiener process and Rt

is the remainder term. This equation, with the remainder term excluded, actually gives

the Euler-Marayama method for simulating SDEs. In essence, the approximation (3.15)

uses

X i
t+∆t −X i

t ≈
d∑

m=1

σi,m(Xt)∆W
m
t

to approximate the increment of the Wiener process. However, (3.15) tosses out the

µ(Xt)∆t term because it is of a higher order. If we include it, we get the more accurate

d∑
m=1

σi,m∆Wm
t = (X i

t+∆t −X i
t)− µ(Xt)∆t−Rt. (3.42)

We can use this to generated a better approximation of Σi,j,

Σi,j(Xt) ≈
(X i

t+∆t −X i
t − µi(Xt)∆t)(X

j
t+∆t −X

j
t − µj(Xt)∆t)

2∆t
. (3.43)

This approximation will be more accurate than (3.15), but it will have the same order

with respect to ∆t. Letting et be the error in (3.43), we can use the weak Ito-Taylor
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expansion to show

E(et |Xt) = f(Xt)
∆t

4
+O(∆t2), f = L0Σi,j +

d∑
m=1

(
Σi,m ∂µi

∂xm
+ Σj,m ∂µ

j

∂xm

)
.

This gives an improvement over (3.28) by removing the µiµj∆t term in f (compared to

Theorem 5). While this may not be an increase in order, if the contribution of the drift

dominates the diffusion in an SDE, this term will give the main contributions to the

error. As we will see in the numerical experiments, this leads to a drastic improvement

in accuracy for some problems.

In order to implement this method, we will need an approximation of µi. However,

we can use the methods above to represent the drift as µi(Xt) ≈ θ(Xt)α̃
i. We can use

this to set up the matrix equations

Θ∗0Θ0β̃
i,j =

1

∆t
(Di

1 −Θ0α̃
i)� (Dj

1 −Θ0α̃
j), (3.44)

and solve for β̃i,j.

Remark 9 The equation (3.44) assumes that the same dictionary θ is used to estimate

µi, µj and Σi,j. In general, we could used separate dictionaries to estimate each of the

parameters, since all we need are the approximations of the samples of µi(Xt) and µj(Xt)

to estimate βi,j.

3.6.3 Second Order Forward Difference

While subtracting the drift from the differences X i
t+∆t − X i

t gives marked improve-

ments, we can also generate a higher order method using a two step forward difference,

similar to the drift. The analysis for the estimation of the diffusion constant using the two

step forward difference is essentially identical to that of the drift, so we will go through
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it briefly. Define the approximation

Σi,j ≈
4(X i

t+∆t −X i
t)(X

j
t+∆t −X

j
t )− (X i

t+2∆t −X i
t)(X

j
t+2∆t −X

j
t )

4∆t
. (3.45)

As usual, letting et be the error in this approximation, we can use the Ito-Taylor expan-

sions (3.9) and (3.13) to show that

E(et) = O(∆t2) and E(|et|2) = O(∆t).

This will gives us a second order method for the diffusion coefficients. We did not include

the constants for the order ∆t2 for brevity, since the number of terms in the expressions

can get quite large. We can use the approximation (3.45) to set up the matrix equations

Θ∗0Θ0β̃
i,j =

1

4∆t
Θ∗0
(
4Di

1 �D
j
1 −Di

2 �D
j
2

)
, (3.46)

which we can solve for β̃i,j.

Theorem 8 Consider the estimate β̃i,j given by solving (3.46). Then we have

errmean = O(∆t2) + o(1)

and

errvar =
1

T
O(∆t) + o(1/T ).

The proof of Theorem 8 is similar to the previous proofs. Additionally, we only give the

leading order of the error, so deriving the bounds for E(et|Xt) and E(|et|2|Xt) is simpler

than the previous methods.
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Trapezoidal Method

Extending the trapezoidal approximation to estimating the diffusion coefficient is

slightly trickier. Let ∆X i
t = X i

t+∆t − X i
t . If we attempt use the analogue to (3.36), we

get

Σi,j(Xtn+1) + Σi,j(X − t) =
∆X i

tn∆Xj
tn

∆t
+Rtn ,

with

E(Rtn) =
∆t

2
f(Xt) + o(∆t2), f = 2µiµj +

d∑
k=1

(
Σi,k ∂µ

i

∂xk
+ Σj,k ∂µ

j

∂xk

)
,

which is still only an order ∆t method. However, we already demonstrated in (3.42) that

correct the difference ∆X i
t for the drift can improve our approximation of

∑d
m=1 σ

i,m∆Wm
t .

We will use the same trick here, except we will improve upon (3.42) by using the average

values of µi and µj instead of the value at the left endpoint:

d∑
m=1

σi,m∆Wm
t ≈ (Xt+∆t −Xt)−

∆t

2
(µ(Xt) + µ(XT+∆t)).

If we use these differences to generate the trapezoidal method, we get

Σi,j(Xt+∆t)−Σi,j(Xt) ≈
(
∆X i

t − ∆t
2

(µi(Xt) + µi(Xt+∆t))
) (

∆Xj
t − ∆t

2
(µj(Xt) + µj(Xt+∆t))

)
2∆t

.

(3.47)

If we consider the error in (3.47), using the appropriate Ito-Taylor expansions we can

show

|E(et |Xt)| = O(∆t2) and E(|et|2) = O(∆t).
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Then, using the usual matrix notation, we can set up the equation

Θ∗0(Θ0 + Θ1)β̃i,j =
1

∆t

(
Di

1 −
∆

2
t(Θ0 + Θ1)αi

)
�
(
Dj

1 −
∆t

2
(Θ0 + Θ1)αj

)
. (3.48)

We can solve this equation to get an order ∆t2 approximation of βi,j.

Theorem 9 Consider the estimate β̃i,j given by solving (3.48). Then we have

errmean = O(∆t2) + o(1)

and

errvar =
1

T
O(∆t) + o(1/T ).

The proof of Theorem 9 is similar to the previous proofs, using the appropriate error

bounds. Although the order of the error is identical to that of Theorem (8), we will see

that this method tends to have lower error. We did not include the constant terms for

these errors for brevity, since the higher order Ito-Taylor expansions involve many terms.

Drift Diffusion

Name Equation Leading Error Term Equation Error

FD-Ord 1 (3.20) C1

2
‖L0µi‖2∆t (3.21) O(∆t)

FD-Ord 2 (3.34) 2C1

3
‖(L0)2µi‖2∆t2 (3.46) O(∆t2)

Trapezoidal (3.39) C1

12
‖(L0)2µi‖2∆t2 (3.48) O(∆t2)

Drift-Sub - - (3.44) O(∆t)

Table 3.1: Summary of the methods for estimating the drift (µi) and the diffusion (Σi,j).
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3.7 Numerical Examples

In this section, we demonstrate the performance of the methods presented above on

numerical examples. For each example, we will generate approximations α̃i ≈ αi and

β̃i,j ≈ βi,j. However, to present the data more simply, instead of computing the mean

and mean squared error for each vector α̃i and β̃i,j, we will be aggregating the errors

across all the coefficients. We will compute the mean error, normalized for the norms of

αi and βi,j using

Errm =

(∑d
i=1 ‖E(α̃i)− αi‖2

2∑d
i=1 ‖αi‖2

2

) 1
2

or Errm =

(∑d
i≥j≥1 ‖E(β̃i,j)− βi,j‖2

2∑d
i≥j≥1 ‖βi,j‖2

2

) 1
2

.

Similarly, we will calculate the normalized variance

Errvar =

∑d
i=1 V ar (α̃i)∑d
i=1 ‖αi‖2

2

or Errvar =

∑d
i≥j≥1 V ar

(
β̃i,j
)

∑d
i≥j≥1 ‖βi,j‖2

2

.

Since these errors are based on aggregating the errors for all of the components of αi or

βi,j, they will demonstrate the same convergence rates as in Theorems 4-9. The constants,

however, may be different.

For each example, we will estimate the drift and diffusion using each of the methods

described. The drift will be estimated using the first and second order forward differences,

as well as the trapezoidal approximation. For the diffusion, we will use the first and second

order forward differences, the drift-subtracted first order difference, and the trapezoidal

method. For the drift-subtracted estimation, we will use the estimation for µ generated

by the first order forward difference. Similarly, for the trapezoidal approximation for Σ,

we will use the estimate generated by the trapezoidal approximation for µ.
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3.7.1 Double Well Potential

Consider the SDE

dXt =

(
−X3

t +
1

2
Xt

)
dXt +

(
1 +

1

4
X2
t

)
dWt (3.49)

This equation represents a diffusion in the double well potential U(x) = 1
4
x4 − 1

2
x2.

Without the diffusion, the trajectories of this system will settle towards one of two fixed

points, depending on which basin of attraction it started in. With the stochastic forcing,

the trajectories will move around in one basin of attraction until it gets sufficiently

perturbed to move to the other basin. We also note that for the majority of the trajectory,

the state will be near the point where the drift is zero, so the dynamics will be dominated

by the diffusion. At these points, the trajectory will behave similarly to Brownian motion.

For the SINDy algorithm, we will use a dictionary of monomials in x up to degree 14:

θ(x) =

[
1 x . . . x14

]
.

This basis will be used to estimate both the drift and diffusion. To generate the data for

the algorithm, we simulated (3.49) using the Euler-Maruyama method 1,000 times with a

time step of 2×10−4 seconds and a duration of 20,000 seconds. The initial condition was

drawn randomly for each simulation from the standard normal distribution. The SINDy

methods were then run on the data from each simulation for different sampling periods,

∆t, and lengths of the trajectory, T . We use a minimum ∆t of 0.002 so the simulation has

a resolution of at least ten steps between each data sample. The truncation parameters

for the sparse solver were set at λ = 0.005 for the drift and λ = 0.001 for the diffusion.

As can be seen from from figure 3.7.1, the expected errors in all three methods were

converging to zero as ∆t → 0. For small ∆t, the expected estimate was within 1% of
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the true value. Additionally, the two higher order methods showed that, in expectation,

they produce more accurate results and appear to converge more quickly, in line with

Theorems 4, 6, and 7. For these methods, the expected error was as much as an order of

magnitude smaller, depending on the size of ∆t.

The variance, however, is rather large relative to the size of the expected error for

all three methods. This is likely due to the system tending to settle towards the points

x = ±1/
√

2 where the drift is zero. Near these points, the dynamics are dominated by

the diffusion, making it difficult to estimate the drift. As can be seen (noting the scale

of the center plot), the variance does not change a great amount as ∆t decreases, as is

predicted for the estimates of the drift. As shown in the rightmost plot, the variance

decreases as the length of the trajectory increases. In order to more fully benefit from

using the higher order methods to the full extent, we would need a long enough trajectory

Figure 3.1: (Left) The mean error in the estimation of the drift coefficients for the
double well system (3.49) is plotted as a function of ∆t. The error is approximated
using 1,000 trajectories of length T = 20, 000 seconds.
(Center, Right) The variance for each method is plotted against the sampling period,
∆t, and the trajectory length, T . For the trajectory length is fixed at T = 20, 000 sec-
onds for the center plot, while the sampling period was fixed at ∆t = 0.004 = 4×10−3

for the rightmost plot.
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Figure 3.2: (Left) The mean error in the estimation of the diffusion coefficients for the
double well system (3.49) is plotted as a function of ∆t. The error is approximated
using 1,000 trajectories of length T = 20, 000 seconds.
(Center, Right) The variance for each method is plotted against the sampling period,
∆t, and the trajectory length, T . For the trajectory length is fixed at T = 20, 000
seconds for the center plot, while the sampling period was fixed at ∆t = 0.04 = 4×10−3

for the rightmost plot.

to control the variance.

For the diffusion, figure 3.7.1 shows again that, as ∆t → 0, all of the methods do

indeed converge in expectation. The Drift-Sub method slightly outperforms FD-Ord 1,

the error is typically reduced by about 20%− 30%. Of the two higher order method, the

trapezoidal method typically yields the best results, often an order of magnitude better

than FD-Ord 1. FD-Ord 2 also gives substantial improvements for small ∆t. Contrary

to the drift, the variance in the estimate of the diffusion does decrease as ∆t goes to zero.

The decrease appears to be roughly proportional to both ∆t and 1/T , which is in line

with the Theorems 5, 8, and 9.
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3.7.2 Noisy Van-Der-Pol Oscillator

Consider the ODE ẋ1

ẋ2

 =

 x2

(1− (x1)2)x2 − x1

 .
This is the Van-Der-Pol equation, which describes a nonlinear oscillator. We can perturb

this equation by adding noise, we get the SDE

dX1
t

dX2
t

 =

 X2
t

(1− (X1
t )2)X2

t −X1
t

 dt+ σ(Xt)dWt, (3.50)

where Wt is a two dimensional Wiener process. For the simulations, we let

σ(x) =
1

2

1 + 0.3x2 0

0 0.5 + 0.2x1

 .
We chose this system to represent a different type of limiting behavior. For this sys-

tem, the dynamics settle around a limit cycle. While they will have a certain amount of

randomness, the trajectories will demonstrate an approximately cyclic behavior. In par-

ticular, this also means that the drift will rarely be near zero, as opposed to the previous

example where the drift was often small.

The dictionary we will use for the SINDy algorithm consists of all monomials in x1

and x2 up to degree 6:

θ(x) =

[
1 x1 x2 x1x2 . . . (x1)2(x2)4 x1(x2)5 (x2)6

]
.

This basis will be used to estimate both the drift and diffusion. To generate the data for

the algorithm, we simulated (3.50) using the Euler-Maruyama method 1,000 times with
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a time step of 2 × 10−5 seconds and a duration of 1,000 seconds. Each component of

the initial condition was drawn randomly for each simulation from the standard normal

distribution. The SINDy methods were then run on the data from each simulation for

different sampling periods, ∆t, and lengths of the trajectory, T . As before, we use

∆t ≥ 2 × 10−4 to ensure that sampling period is at least 10 times the simulation time

step. The truncation parameters for the sparse solver were set at λ = 0.05 for the drift

and λ = 0.02 for the diffusion.

In figure 3.7.2, we first note that the variance very quickly drops to about 5×10−5 and

stays roughly constant as ∆t decreases. This falls very much in line with the Theorems

4, 6, and 7 which assert that the variance does not depend on the sample frequency, it

only decreases with the trajectory length T . For the expected error, the FD-Ord 2 and

trapezoidal methods show drastic improvements over FD-Ord 1, with the trapezoidal

Figure 3.3: (Left) The mean error in the estimation of the drift coefficients for the
Van-Der-Pol system (3.50) is plotted as a function of ∆t. The error is approximated
using 1,000 trajectories of length T = 1, 000 seconds.
(Center, Right) The variance for each method is plotted against the sampling period,
∆t, and the trajectory length, T . For the trajectory length is fixed at T = 1, 000 sec-
onds for the center plot, while the sampling period was fixed at ∆t = 0.008 = 8×10−3

for the rightmost plot.
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Figure 3.4: (Left) The mean error in the estimation of the diffusion coefficients for the
Van-Der-Pol system (3.50) is plotted as a function of ∆t. The error is approximated
using 1,000 trajectories of length T = 1, 000 seconds.
(Center, Right) The variance for each method is plotted against the sampling period,
∆t, and the trajectory length, T . For the trajectory length is fixed at T = 1, 000 sec-
onds for the center plot, while the sampling period was fixed at ∆t = 0.008 = 8×10−3

for the rightmost plot.

method reducing the error by almost two orders of magnitude on some values of ∆t. For

the larger ∆t, the slopes of the graphs demonstrate that these methods are converging at

twice the order of the first order forward difference, as predicted by Theorems 4, 6, and

7. However, both second order methods quickly reach a point where the performance

remained constant at about 2 × 10−4. This is due to the lack of data to average over

the random variation to sufficient precision. With sufficient data, we would expect the

performance to continue to improve proportionally to ∆t2.

For the diffusion, figure 3.7.2 demonstrates a greater separation in the performance of

the different methods compared to the double well system. Here, the FD-Ord 1 and drift

subtracted methods both demonstrate the same first order convergence, as predicted in

Theorem 5, but the drift subtracted method demonstrates a substantially lower error,

ranging from half an order to almost a full order of magnitude better. FD-Ord 2 begins at

97



Numerical Methods for Stochastic SINDy Chapter 3

roughly the same error as FD-Ord 1 for large ∆t, but convergences faster, as predicted by

Theorem 8, until it gives over an order of magnitude improvement for small ∆t. Finally,

although it is difficult to judge the speed of convergence for the trapezoidal method, it

gives the most accurate results across all ∆t. The variance for all of the methods behave

similarly to the Double Well example and as expected, decreasing as ∆t→ 0 and T →∞.

3.7.3 Noisy Lorenz Attractor

Consider the ODE

ẋ =


ẋ1

ẋ2

ẋ3

 =


10(x2 − x1)

x1(28− x3)− x2

x1x2 − 8
3
x3

 = f(x).

This is the Lorenz system, which is famously a chaotic system exhibiting a strange

attractor. If we perturb this equation by adding noise, we get the SDE

dXt = f(Xt)dt+ σ(Xt)dWt, (3.51)

where Wt is a three dimensional Wiener process. For this example, we let

σ(x) =


1 + sin(x2) 0 sin(x1)

0 1 + sin(x3) 0

sin(x1) 0 1− sin(x2)

 .

To generate the data for the algorithm, we simulated (3.50) using the Euler-Maruyama

method 1,000 times with a time step of 2×10−5 seconds and a duration of 1,000 seconds.

Each component of initial condition was drawn randomly for each simulation from the
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standard normal distribution. The SINDy methods were then run on the data from

each simulation for different sampling periods, ∆t, and lengths of the trajectory, T . The

truncation parameters for the sparse solver were set at λ = 0.05 for the drift and λ = 0.02

for the diffusion.

We will use different dictionaries to estimate the drift and diffusion. For the drift,

the dictionary consists of all monomials in x1, x2, and x3 up to degree 4:

θ(x) =

[
1 x1 x2 . . . x1x2(x3)3 (x2)2(x3)3 x2(x3)4 (x3)5

]
.

As before, figure 3.7.3 shows that the variance of the estimate for the drift decreases

steadily as T → ∞, while it approaches a minimum value as ∆t decreases and remains

constant after reaching that minimum. In terms of the mean error, this example gives

Figure 3.5: (Left) The mean error in the estimation of the drift coefficients for the
Lorenz system (3.51) is plotted as a function of ∆t. The error is approximated using
1,000 trajectories of length T = 1, 000 seconds.
(Center, Right) The variance for each method is plotted against the sampling period,
∆t, and the trajectory length, T . For the trajectory length is fixed at T = 1, 000
seconds for the center plot, while the sampling period was fixed at ∆t = 0.08 = 8×10−2

for the rightmost plot.
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Figure 3.6: (Left) The mean error in the estimation of the diffusion coefficients for
the Lorenz system (3.51) is plotted as a function of ∆t. The error is approximated
using 1,000 trajectories of length T = 1, 000 seconds.
(Center, Right) The variance for each method is plotted against the sampling period,
∆t, and the trajectory length, T . For the trajectory length is fixed at T = 1, 000
seconds for the center plot, while the sampling period was fixed at ∆t = 0.02 = 2×10−2

for the rightmost plot.

the clearest confirmation of the convergence rates demonstrated in Theorems 4, 6, and

7. The slopes of the plots show that the error with FD-Ord 1 is roughly proportional to

∆t, while the FD-Ord 2 and trapezoidal methods converge at double the rate. For small

∆t, the second order methods do not seem to improve, due to the lack of sufficient data

to compute the averages to high enough precision.

To estimate the diffusion, we used a dictionary consisting of all monomials in sin(x1),

sin(x2), and sin(x3) up to degree four:

θ(x) =

[
1 sin(x1) sin(x2) . . . sin(x1) sin(x2) sin2(x3) sin(x2) sin3(x3) sin4(x3)

]
.

The error plot in figure 3.7.3 provides the most compelling example of the improvements

of the higher order methods for estimating the diffusion. FD-Ord 1 clearly demonstrates
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its order one convergence as ∆t→ 0 (Theorem 5), but the error is quite large compared

to the other methods. Even at our highest sampling frequency, ∆t = 2 × 10−4, we

only get slightly accurate results, with an error over 20%. For this system, the drift

subtracted method, although still first order, provides great improvements over FD-Ord

1, nearly two orders of magnitude better for most ∆t. FD-Ord 2 also demonstrates the

second order convergence given in Theorem 8, giving very accurate results for small ∆t.

Finally, the best performance again comes from the Trapezoidal method, which gives

the best performance across all ∆t. As expected from Theorem 9, we can see that it

converges faster than FD-Ord 1, but the convergence rate is not as clear as that of the

other methods.

As for the variance, it decreased for all four methods as T increased and ∆t decreased,

as expected. However, the Trapezoidal and drift subtracted methods both showed a sub-

stantially lower variance. This is likely because the drift tends to dominate the diffusion

in this system. Both the drift subtracted and trapezoidal methods correct for this, pre-

venting the drift from having an effect on the estimate of the diffusion.

3.8 Conclusion

As was shown in this and previous papers ([6],[16],[11]), the SINDy algorithm can be

used to accurately estimate the parameters of a stochastic differential equation. However,

the significant amount of noise involved requires one to use either use great deal of data

(i.e. a long time series) and/or methods which improve the robustness of SINDy to

noise. Unfortunately, even if SINDy should identify all of the correct dictionary functions

present in the dynamics, we showed that the sampling frequency limits the accuracy of

the results when using the first order Kramer-Moyal formulas to estimate the drift and

diffusion. The necessity for high sampling frequencies, combined with long trajectories,
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make SINDy a data hungry algorithm.

The higher order estimates presented in this paper allow us to overcome the O(∆t)

convergence given in [6]. With the higher order methods we can compute accurate

estimations of the SDEs using far lower sampling frequencies. In addition to making

SINDy a more accurate system identification tool, these improvements also greatly reduce

the data requirements to feed the algorithm. By achieving accurate results at lower

sampling frequencies we can reduce the data acquisition constraint, which makes SINDy

a more feasible system identification method for SDEs.
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Conclusion
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In this dissertation, we discussed the application of the stochastic Koopman operator

to random dynamical systems. The Koopman operator allows us to represent nonlinear

systems with a linear operator and give a spectral expansion of the evolution of observ-

ables. We demonstrate DMD algorithms which allow us to compute finite sections of the

stochastic Koopman operator and approximations of the spectral expansion from data.

We then continue onto algorithms which allow us to identify nonlinear representation

SDEs. We improve the SINDy algorithm by introducing methods of approximating the

drift and diffusion functions with higher order rates of convergence.
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4.1 Summary of “Noise Resistant Dynamic Mode

Decomposition”

In this section, we analyzed the convergence of DMD algorithms for random dynamical

systems, culminating in the introduction of a new DMD algorithm that converges to the

spectrum of the stochastic Koopman operator in the presence of both random dynamics

and noisy observables. This allows us to avoid the bias in standard DMD algorithms that

can come from “overfitting” to the noise. We then specialized the algorithm to handle

observables with i.i.d. measurement noise and time delayed observables and showed that

measurements of a single set of observables was sufficient to generate an approximation of

the stochastic Koopman operator. In particular, we demonstrated that a single trajectory

of a single observable could be used to generate a Krylov subspace of the operator, which

allows us to use DMD without needing to choose a basis of observables.

This algorithm provides a method for modeling complex systems where a determin-

istic model is unfeasible. This could be because a full state model would be to complex,

observables of the full state are unavailable, or measurements come with uncertainty. A

possible extension of this algorithm could adapt it to handle data from systems with

control inputs, which could be used to develop control algorithms for random dynamical

systems.
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4.2 Summary of “Numerical Methods for Stochastic

SINDy”

In the section, we analyzed the performance of SINDy for stochastic differential equa-

tions. As was shown in this and previous papers ([6],[16],[11]), the SINDy algorithm can

be used to accurately estimate the parameters of a stochastic differential equation. How-

ever, the significant amount of noise involved requires one to use either use great deal of

data (i.e. a long time series) and/or methods which improve the robustness of SINDy to

noise. Unfortunately, even if SINDy should identify all of the correct dictionary functions

present in the dynamics, we showed that the sampling frequency limits the accuracy of

the results when using the first order Kramer-Moyal formulas to estimate the drift and

diffusion. The necessity for high sampling frequencies, combined with long trajectories,

make SINDy a data hungry algorithm.

The higher order estimates presented in this paper allow us to overcome the O(∆t)

convergence given in [6]. With the higher order methods we can compute accurate

estimations of the SDEs using far lower sampling frequencies. In addition to making

SINDy a more accurate system identification tool, these improvements also greatly reduce

the data requirements to feed the algorithm. By achieving accurate results at lower

sampling frequencies we can reduce the data acquisition constraint, which makes SINDy

a more feasible system identification method for SDEs.
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[38] Yueheng Lan and Igor Mezić. Linearization in the large of nonlinear systems and
koopman operator spectrum. Physica D: Nonlinear Phenomena, 242(1):42–53, 2013.

[39] Todd K Leen, Robert Friel, and David Nielsen. Eigenfunctions of the multidi-
mensional linear noise fokker-planck operator via ladder operators. arXiv preprint
arXiv:1609.01194, 2016.

[40] L. Ljung. System Identification: Theory for the User. Pearson Education, 1998.

[41] Niall M Mangan, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Inferring
biological networks by sparse identification of nonlinear dynamics. IEEE Transac-
tions on Molecular, Biological and Multi-Scale Communications, 2(1):52–63, 2016.
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