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ABSTRACT
Super high quality aspherical x-ray mirrors with a residual slope error of ∼100 nrad (root-mean-square) and a height error of
∼1-2 nm (peak-to-valley), and even lower, are now available from a number of the most advanced vendors utilizing deterministic
polishing techniques. The mirror specification for the fabrication is based on the simulations of the desired performance of the
mirror in the beamline optical system and is normally given with the acceptable level of deviation of the mirror figure and finish
from the desired ideal shape. For example, in the case of aspherical x-ray mirrors designed for the Advanced Light Source (ALS)
QERLIN beamline, the ideal shape is defined with the beamline application (conjugate) parameters and their tolerances. In this
paper, we first discuss an original procedure and dedicated software developed at the ALS X-Ray Optics Laboratory (XROL) for
optimization of beamline performance of pre-shaped hyperbolic and elliptical mirrors. The optimization is based on results of
ex situ surface slope metrology and consists in minimization of the mirror shape error by determining the conjugate parameters
of the best-fit ideal shape within the specified tolerances. We describe novel optical metrology instrumentation, measuring
techniques, and analytical methods used at the XROL for acquisition of surface slope data and optimization of the optic’s beamline
performance. The high efficacy of the developed experimental methods and data analysis procedures is demonstrated in results
of measurements with and performance optimization of hyperbolic and elliptical cylinder mirrors designed and fabricated for the
ALS QERLIN beamline.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5057441

I. INTRODUCTION

The development of fully coherent free electron lasers
and diffraction limited storage ring x-ray sources has brought
to a focus the need for higher performing x-ray optics with
unprecedented tolerances for surface slope and height errors
and roughness.1–5 For example, the proposed beamlines for

the future upgraded Advanced Light Source, ALS-U,6,7 require
mirrors characterized by a residual slope error of <100 nrad
(root-mean-square, RMS) and a height error of <1-2 nm (peak-
to-valley, PV). Such high quality aspherical x-ray mirrors are
now available from a number of the most advanced ven-
dors utilizing deterministic polishing techniques. For fabrica-
tion, the vendors usually use unique surface metrology tools
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and data processing algorithms, generally developed on site,
that are not available in the optical metrology labs at x-ray
facilities.

The mirror specification for fabrication is generally based
on simulations of the desired performance of the mirror in the
beamline optical system and is normally given with the accept-
able level of deviation of the mirror figure and finish from the
desired ideal shape. In the case of an aspherical x-ray mirror,
the ideal shape is usually defined with the beamline application
(conjugate) parameters (distances from the source and image
focal points to the mirror center and the corresponding graz-
ing incidence angles) and, more recently, with tolerances for
the parameters.

To fully exploit the potential of the optics at the beam-
lines, we need ex situ metrology methods and tools able to
characterize the optics with accuracy even better than the
optical specification (see, for example, Ref. 8 and references
therein). Besides measuring mirrors to ensure vendor com-
pliance to specifications, the role of ex situ metrology at an
x-ray facility is to assure the quality of the optical components
mounted on a steerable support, installed in beamlines, and
used as a part of the experimental systems.

In this paper, we present the results of our recent work at
the ALS X-Ray Optics Laboratory (XROL)9,10 developing novel
optical metrology instrumentation, measuring techniques, and
methods for data acquisition and analysis. We initially dis-
cuss an original procedure and dedicated software developed
at the XROL for optimization of the beamline performance of
pre-shaped hyperbolic and elliptical mirrors. The optimization
makes the most of the results of ex situ surface slope metrol-
ogy and consists in minimization of the mirror shape error
by determining the conjugate parameters of the best-fit ideal
shape within the specified tolerances. The determined optimal
conjugate parameters completely define the optimal align-
ment of the mirror at the beamline that effectively preserves
the desired shape of the mirror.

The high efficacy of the developed measurement and data
analysis procedures is demonstrated by results of measure-
ments and performance optimization of hyperbolic (SM1) and
elliptical (SM2) cylinder mirrors fabricated for the ALS QERLIN
beamline.11 For surface slope metrology with the mirrors, we
used the Developmental Long Trace Profiler (DLTP)12–14 and
verified the results via comparison with that of obtained with
the new Optical Surface Measuring System (OSMS),15–17 both
available at the ALS XROL.

The paper is organized as follows. In Sec. II, we first dis-
cuss the specification of the hyperbolic and elliptical cylinder
mirrors SM1 and SM2 designed for usage in the Wolter optical
system18,19 of the QERLIN spectrometer.11 The specification
is given in the terms of the mirror’s conjugate parameters
and their tolerances. Therefore, we next present the analytical
expressions describing the tangential surface slope and height
profiles of the ideal hyperbolic and elliptical cylinder mir-
rors as functions of their conjugate parameters. In Sec. III, we
present the results of high accuracy surface slope metrology
with the QERLIN hyperbolic and elliptical mirrors carried out
at the ALS XROL. In both cases, the measured surface figures
significantly deviate from the ideal shapes evaluated using the

derived analytical expressions with the specified central val-
ues of the conjugate parameters. A question naturally arises
whether the measured surface shapes of the optics corre-
spond to the desired shapes given by the conjugate param-
eters with the tolerances. In order to answer that question,
in Sec. IV, we briefly review the mathematical foundations of
the method of characteristic functions18–20 developed at the
XROL for ex situ optimal tuning of bendable optics. Here, such
methods have been extended to determine the optimal con-
jugate parameters of a pre-shaped mirror. The optimal conju-
gate parameters correspond to the ideal shape that best-fits
the shape measured by ex situ metrology with the mirror.
Realization of the developed analytical methods in dedicated
software has been applied to optimize the conjugate param-
eters of the QERLIN SM1 and SM2 mirrors, as discussed and
demonstrated in Sec. IV. We conclude (Sec. V) with a dis-
cussion of the obtained results and statement of the planned
work on the further development of the method and software
to account in the optimization of the peculiarities of mirror
applications such as non-uniform distribution of intensity of
the incident x-ray beam.20

II. SURFACE FIGURE OF HYPERBOLIC
AND ELLIPTICAL CYLINDER X-RAY MIRRORS
IN TERMS OF THE CONJUGATE PARAMETERS
A. Tolerance specification of pre-shaped x-ray
mirrors and new challenges for ex situ metrology

The QERLIN beamline11 under construction at the ALS
is a Double-Dispersion Resonance Inelastic X-ray Scattering
(RIXS) beamline. The high-resolution RIXS technique allows
probing the electronic excitations of complex materials with
unprecedented precision.21 Similar beamlines are in opera-
tion at the HZB/BESSY-II (Germany)22 and under construc-
tion at MAX-IV (Sweden)23 and TPS (Taiwan).24 The RIXS
process has a low cross section, compounded by the fact
that the optical spectrometers used to analyze the scattered
photons can only collect a small solid angle and have low effi-
ciency. A significant increase in the throughput of RIXS sys-
tems can be achieved by application of energy multiplexing so
that a complete RIXS map of scattered intensity versus photon
energy in, and photon energy out, can be recorded simultane-
ously.20 In the case of the ALS QERLIN beamline, this parallel
acquisition scheme should provide a gain in throughput of
over 100.11

The QERLIN spectrometer includes three aspherically
pre-shaped mirrors. The vertically deflecting hyperbolic (SM1)
and elliptical (SM2) mirrors constitute a Walter Type I opti-
cal schematic (Fig. 1) allowing the construction of a relatively
short spectrometer with minimized aberration due to a long
vertical focal length. A horizontally deflecting elliptical mirror
(SM3) focuses x-rays in the horizontal plane.

The mirror substrates made of single-crystal silicon have
overall dimensions of 160 (length) × 50 (width) × 50 (thickness)
mm3 with clear apertures (CA) of 150 mm × 20 mm for SM1
and SM2 mirrors, and 300 × 50 × 75 mm3 with a CA of 290 mm
× 20 mm for the SM3 mirror.
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FIG. 1. The Wolter Type I optical system consisting of a pair
of mirrors, one hyperbolic and one elliptical. F1 is the object
focus of the hyperbolic mirror, F2 is the common focus of
the mirrors, Fe is the image focus of the elliptical mirror, R2
is the distance from the virtual focus F2 to the center of the
hyperbolic mirror, Re is the distance from the elliptical mir-
ror’s center and the system focus (image position) Fe, and
θ is the grazing incidence angle at the hyperbolic mirror’s
center.

The mirrors have been fabricated using a deterministic
polishing process with the goal to match the desired shape
determined by the conjugate parameters specified with the
corresponding tolerances, as depicted in Table I. For all three
mirrors, the residual, after subtraction of the best-fit desired
shape within the specified tolerances, must have surface slope
errors less than 150 nrad (RMS).

Such a specification of the mirrors for the QERLIN spec-
trometer sets new challenges for ex situ metrology. It is not
enough just to measure the optics with required accuracy
and compare the result with the unique desired shapes. We
should be able to process the measured data and deter-
mine the optimal conjugate parameters, corresponding to
the desired hyperbolic or elliptical topology that best fits
the measured surface figure. A criterion for acceptance of
the best-fit parameters is their satisfaction to the specified
tolerances.

B. Description of hyperbolic cylinder mirror
in the terms of the conjugate parameters

Practically speaking, the fabrication, assembly, and mea-
surement of mirror shapes are performed in the rotated,
mirror-related coordinate (MRC) system centered in the mir-
ror center and with the tangential axis directed along the
tangent of the mirror center.

The basic equations describing the distributions of the
tangential surface height, slope, and local radius of curvature
of a hyperbolic cylinder x-ray mirror in the MRC system and
expressed in terms of the mirror conjugate parameters R1,
R2, and θ (Fig. 2) have been derived and thoroughly exam-
ined in report25 that is available upon direct request. Below,
we present the major results of the derivations needed for
the topics under discussion in this paper. In order to be in

TABLE I. Conjugate parameters specified for the QERLIN spectrometer mirrors.

RSM
a ∆RSM

b RMI
a ∆RMI

b θc ∆θc

Mirror (mm) (mm) (mm) (mm) (deg) (deg)

SM1 700.00 ±10 1781.97 ±10 2.00 ±0.03
SM2 1981.97 ±10 3600.00 ±10 2.00 ±0.03
SM3 1200.00 ±10 3288.18 ±10 2.00 ±0.03

aRSM and RMI are the specified center values of the source-to-mirror and
mirror-to-image distances.
b∆RSM and ∆RMI are the tolerances specified for the source-to-mirror and
mirror-to-image distances.
cθ and ∆θ are the central value of the grazing incidence angle and its
tolerance in degrees.

accordance with the definitions in Ref. 25, R1 and R2 are
positive scalars.

The derivations comprise a sequential transition from the
canonical description of hyperbola geometry with the general
equation,

x2

a2
−
y2

b2
= 1, (1)

(where a and b are the major real and “imaginary” semi-axes
of the hyperbola, a = (R2 − R1)/2 and b = sin θ

√
R2 R1 ), given

in the canonical coordinate system to the description via the
conjugate parameters in the MRC system (xR, yR)—Fig. 2.

First, the canonical coordinate system (x, y) in Fig. 2
is shifted in the vertical and horizontal directions, (x̃, ỹ)
= (x + X0, y + Y0), placing the mirror center (pole) given in the
canonical system with coordinates (X0, Y0),

X0 =
R2

2 − R
2
1

2
√
R2

2 + R2
1 − 2R2R1 cos(2θ)

, (2a)

Y0 =
R2R1 sin(2θ)√

R2
2 + R2

1 − 2R2R1 cos(2θ)
, (2b)

to the center of the (x̃, ỹ) coordinate system. In the shifted
system, the hyperbola equation (1) transforms to

ỹ(x̃) = b

√
(x̃ + X0)2

a2
− 1 − Y0, (3)

with the angle β between the tangent of the mirror pole and
the x̃-axis given by

β = arctan
[
(R2 + R1)tan θ

R2 − R1

]
. (4)

Next, we apply rotation transformation with angle −β to
the hyperbola in (3),

xR(x̃) = x̃ cos β + ỹ(x̃) sin β, (5a)

yR(x̃) = ỹ(x̃) cos β − x̃ sin β. (5b)

Technically, the transformations (3) and (5) with all
parameters expressed via the mirror conjugate parameters are
performed using the analytical capabilities of Mathematica™
software (version 11.1.1). The resultant expressions for xR(x̃) and
yR(x̃) are
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FIG. 2. Hyperbola geometry and the major parameters used
in the derivations. β is the angle between x-axis of the
canonic coordinate system of the hyperbola and the tangent
of the mirror center with the coordinates (X0, Y0). Axes ~xR
and ~yR define the mirror-related Cartesian coordinate sys-
tem; a and b are the major real and “imaginary” semi-axes
of the hyperbola. R1 and R2 are positive scalars.

xR(x̃) =
(R2 − R1)

2x + (R2 + R1)
[√

R1R2

√
(4(x + X0)2 − (R2 − R1)

2) sin θ − (R2 − R1)Y0

]
tan θ

(R2 − R1)
√

(R2 − R1)
2 + (R2 + R1)

2tan2θ

, (6a)

yR(x̃) =

√
R1R2

√
4(x̃ + X0)2 − (R2 − R1)

2 sin θ − (R2 − R1)Y0 − x̃(R2 + R1) tan θ√
(R2 − R1)

2 + (R2 + R1)
2tan2θ

. (6b)

The tangential surface slope distribution αR(x̃) for the hyperbolic mirror in the MRC system is derived by direct differentiation
of Eqs. (6a) and (6b),

tanαR(x̃) =
dyR(x̃(xR))

dxR
=

dyR(x̃)
dx̃

·

(
dxR(x̃)
dx̃

)−1

. (7)

This leads to the following expression for the surface slope distribution for the hyperbolic mirror:

tanαR(x̃) =
4
√
R1R2(R2 − R1)(x̃ + X0) sin θ − (R2

2 − R
2
1 ) tan θ

√
4(x̃ + X0)2 − (R2 − R1)

2

4
√
R1R2(R2 + R1)(x̃ + X0) sin θ tan θ + (R2 − R1)

2
√

4(x̃ + X0)2 − (R2 − R1)
2

. (8)

In order to compare the measured shape with the desired hyperbolic shape, we need to calculate the surface height and
slope distributions, yR(xR) and αR(xR) as functions of xR, rather than x̃ as in Eqs. (6) and (8). This problem is solved by reversing
Eq. (6a) to express the positions x̃ in the shifted (but not rotated) coordinate system as a function x̃(xR) of the measured positions
xR in the MRC system (xR, yR),

x̃(xR) =
sec θ

√
R1

2 + R2
2
− 2R1R2 cos(2θ)

[
(R2 − R1)

3xR + 2R1R2(R2
2
− R1

2) sin θ tan θ
]

(R2 − R1)
4
− 4R1R2(R1 + R2)2sin2θtan2θ

−

4(R2
2
− R1

2)
√
R1R2sin2θ

√
x2
R + xR(R1 + R2) cos θ + R1R2

[
R1

2
− 6R1R2 + R2

2 + (R1 + R2)2 cos(2θ)
]√

R1
2 + R2

2
− 2R1R2 cos(2θ)

. (9)

Then, the calculated positions x̃(xR) given by Eq. (9) are
placed into the expressions (6b) and (8) to calculate the sur-
face height and slope profilers, yR(xR) and αR(xR), used for
verification of the compliance of the measured shape and the
specification.

C. Description of elliptical cylinder mirror in the terms
of the conjugate parameters

The equations describing shape of an elliptical cylinder
x-ray mirror in the MRC system and expressed in terms of R1,
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FIG. 3. Ellipse geometry and the major parameters used
in the derivations. β is the angle between x-axis of the
canonic coordinate system of the ellipse and the tangent
of the mirror center with the coordinates (X0, Y0). Axes
~xR and ~yR define the mirror-related Cartesian coordinate
system; a and b are the major and minor semi-axes of the
ellipse.

R2, and θ (Fig. 3) are obtained in the derivations analogous to
those outlined in Sec. II C, above20 (see also Ref. 26 available
upon direct request).

In the case of an elliptical mirror, a = (R2 + R1)/2 and
b = sin θ

√
R2 R1 . The coordinates of the mirror pole (X0, Y0) are

X0 =
R2

2 − R
2
1

2
√
R2

2 + R2
1 + 2R2R1 cos(2θ)

, (10a)

Y0 =
R2R1 sin(2θ)√

R2
2 + R2

1 + 2R2R1 cos(2θ)
, (10b)

and the rotation angle β is

β = arctan
[
(R2 − R1) tan θ

R2 + R1

]
. (11)

The resulting expressions for xR(x̃) and yR(x̃) [compare with Eqs. (6a) and (6b) for a hyperbolic mirror] are

xR(x̃) =
x̃(R2 + R1)

2 + Y0 tan θ
(
R2

2 − R
2
1

)
− sin θ tan θ

√
R1R2(R2 − R1)

√
(R2 + R1)

2
− 4(x̃ + X0)2

(R2 + R1)
√

(R2 + R1)
2 + (R2 − R1)

2tan2θ

, (12a)

yR(x̃) =
sin θ

√
R1R2

√
(R2 + R1)

2
− 4(x̃ + X0)2 + x̃(R2 − R1) tan θ − Y0(R2 + R1)√

(R2 + R1)
2 + (R2 − R1)

2tan2θ

. (12b)

An expression for the surface slope distribution αR(x̃) for an elliptical mirror [compare with Eq. (7) for a hyperbolic mirror] is

tanαR(x̃) =
−4 sin θ

√
R1R2(R2 + R1)(x̃ + X0) + (R2

2 − R
2
1 ) tan θ

√
(R2 + R1)

2
− 4(x̃ + X0)2

4 sin θ tan θ
√
R1R2(R2 − R1)(x̃ + X0) + (R2 + R1)

2
√

(R2 + R1)
2
− 4(x̃ + X0)2

. (13)

By reversing Eq. (12a), we express the positions x̃ in the shifted coordinate system of the ellipse as a function x̃(xR) of the
measured positions xR in the MRC system (xR, yR),

x̃(xR) =
sec θ(R2 + R1)

√
R2

1 + R2
2 + 2R1R2 cos 2θ

(R2 + R1)
4 + 4R1R2(R2 − R1)

2sin2θtan2θ

[
xR(R2 + R1)

2
− 2

√
R1R2(R2 − R1) sin θ tan θ

(√
R1R2 −

√
R1R2 − x2

R − xR(R2 − R1) cos θ
)]

.

(14)

In order to calculate the surface height and slope distri-
butions, yR(xR) and αR(xR) of an elliptical mirror as the func-
tions of xR, one has to place x̃(xR) calculated with Eq. (14) into
the expressions (12b) and (13) the surface height and slope
profilers, yR(xR) and αR(xR), of the elliptical mirror.

The validity of the analytical expressions given above
in this section was verified by comparing the height and

slope profiles of the QERLIN SM1 and SM2 mirrors analyti-
cally calculated based on the derived expressions, with the
profiles numerically generated using the same set of mir-
ror’s conjugate parameters.25,26 For all the expressions, the
difference was on the level of inherent precision of the
numerical calculations with OriginPro™ software, used for the
simulations.
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III. SURFACE SLOPE METROLOGY WITH QERLIN SM1
AND SM2 MIRRORS
A. Measurement arrangement

For surface slope metrology with the mirrors, we used
the DLTP,12–14 an electronic autocollimator (AC) and movable
pentaprism based surface slope profiler, arranged for mea-
surements with side-facing optics, free of the perturbation of
the surface under test (SUT) shape due to gravity sag.

1. Measurement strategy
In order to suppress random noise and instrumental drift

error, each measurement run consisted 8 scans in the forward
and reversed DLTP scanning directions according to the opti-
mal scanning strategy.27 To minimize the impact of systematic
error, a series of 4 runs: two pairs of runs separated by a tilt
of 140 µrad with the substrate flipped in orientation between
recording slope traces of the titled pairs, was arranged for
each measured trace. Averaging of the measurements carried
out at the pitch tilts different by 140 µrad allows us to suppress
a periodic systematic error of the DLTP AC with the period of
about 280 µrad. By averaging the measurements performed
with the optic in two different orientations, direct and flipped,
we suppress the part of the systematic error that is even with
respect to the reversal of the tangential coordinate. A compre-
hensive description of the correlation methods developed and
used at the XROL for suppression of the measurement random
noise and error due to the instrumental drift and systematic
effects can be found in Ref. 16.

2. Tangential position alignment
When the mirror is placed on the DLTP for measurements

(Fig. 4), the tangential position alignment was determined

FIG. 4. The mirror SM1 with the serial number seen as placed on the DLTP for
surface slope measurements. The iris diaphragm on the left part of the picture
is used to collimate the AC light beam. For the measurements with the QERLIN
mirrors, the diaphragm orifice was adjusted to 2.5 mm diameter.

FIG. 5. Positioning of the substrate on the DLTP using a camera placed behind
each end of the mirror under measurement. A view of the autocollimator beam
through the 2.5 mm iris diaphragm in the front of the DLTP scanning pentaprism,
half obscured by the substrate.

using both a CCD camera placed behind each end of the sub-
strate (Fig. 5) and looking at the autocollimator signal reflected
through the iris diaphragm of the translational pentaprism
head and using nulling of the AC signal as it reflected from
the edges. The estimated absolute accuracy of the positioning
is less than 50 µm.

3. Aligning direct and flipped measurements
High accuracy positioning of the SUT is also required for

reliable averaging of the measurements carried out with the
SUT in the direct and flipped orientations.

To obtain an absolute position of the measured trace, with
150 mm specified CA length, the DLTP gantry is scanned over
a 170 mm coordinate domain in increments of 0.2 mm. Over-
scanning provides a record of the position of the substrate

FIG. 6. The SM1 downstream end of the direct and flipped measurements of a
tangential slope trace, shown after alignment based on cross-correlation analysis
in Fig. 7.
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FIG. 7. Plot of the cross-correlation of the direct dataset translated along the
coordinates of the flipped dataset, with maximum correlation at a translation of
0.055 mm, used in averaging of the direct and flipped measurements.

with respect to the DLTP gantry coordinates by observing
the characteristic surface shape perturbation at the edges of
the CA (see Fig. 6). The measurements in Fig. 6 are shown
after alignment based on cross-correlation analysis depicted
in Fig. 7.

B. Results of the measurements
1. Tangential slope measurements with SM1 mirror

Figure 8(a) shows the surface slope variation along the
tangential direction of the hyperbolic SM1 mirror. The trace
is the result of averaging 4 runs arranged as discussed in
Sec. III A 1. Additionally, the final trace was corrected to
account the DLTP systematic error measured in the dedi-
cated experiments described in detail in Ref. 14. The total slope
variation along the mirror CA is about 2.1 mrad. With all the
precautions applied, the repeatability of the measurements is
about 60 nrad (RMS).

The residual, after subtraction of the hyperbolic shape
determined with the specified central values of the mirror
conjugate parameters in Table I, is depicted in Fig. 8(a). The
PV and RMS variations of the residual slope distribution are
about 31 µrad and 9.1 µrad, respectively.

2. Tangential slope measurements with SM2 mirror
The measurement result in Fig. 8 presents only one tan-

gential slope trace of two specified for measurements with
each mirror along the tangential lines shifted by ±5 mm from
the sagittal center. In order to illustrate the approximate
invariance of the measured tangential slope distributions on
the sagittal shift in these sagittally plane mirrors, Fig. 9 shows
the residual surface slope variations along two tangential lines
of the elliptical SM2 mirror. Each measurement is also the
result of averaging 4 runs arranged as discussed in Sec. III A 1;
and the final slope trace was also corrected to additionally
account the DLTP systematic error.14 The total slope variation
along the mirror SM2 CA is about 2 mrad.

Similar to the case of the hyperbolic mirror in Fig. 8(b), the
residual slope variations in Fig. 9 are the results of detrending
the measured slope data with the elliptical shape correspond-
ing to the specified central values of the SM2 mirror conjugate
parameters in Table I. The PV variations of the residual slope
distributions are about 6.5 µrad.

Because of the dramatic deviation of the slope profiles
of SM1 and SM2 mirrors, as measured with the DLTP, from
the ideal shapes corresponding to the central values of the
specified conjugate parameters, we have also verified the
DLTP results via comparison with the measurements with the
new OSMS profiler,15–17 also available at the ALS XROL. The
NOM28,29-like gantry system of the OSMS is capable of two-
dimensional surface slope metrology over the spatial range
from the sub-mm scale to the clear aperture. The OSMS
gantry system incorporates the custom combined tip, tilt,
pitch, and rotation stage. The gantry system and the origi-
nal data acquisition software of the OSMS are designed16,17

to support two-dimensional multi-scan measurement runs
optimized for automatic suppression and compensation of

FIG. 8. (a) Surface slope variation along the tangential
direction of the hyperbolic SM1 mirror. (b) Residual, after
subtraction of the hyperbolic shape determined with the
specified central values of the mirror conjugate parame-
ters in Table I. The total slope variation along the mirror
CA is about 2.1 mrad. The PV and RMS variations of the
residual slope distribution are about 31 µrad and 9.1 µrad,
respectively.
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FIG. 9. [(a) and (b)] Residual (after detrending the ideal
elliptical shape corresponding to the specified central val-
ues of the mirror conjugate parameters in Table I) surface
slope distributions of the elliptical SM2 mirror measured
along two tangential lines shifted from the sagittal center by
±5 mm. The PV variations of the residual slope distributions
are about 6.5 µrad.

instrumental drifts and major angular and spatial systematic
errors with different types and arrangements of sensors.

The distinguishing feature of the OSMS profiler is imple-
mentation of four electronic autocollimators that allows us to
characterize the optics in the side-facing and face-up orien-
tations. With a face-up SUT, we use the OSMS measurement
arrangement with the sample-channel AC placed on the car-
riage and an additional AC in the reference channel for mon-
itoring carriage wobbling in the course of translation.17 Such
an arrangement provides surface slope measurements in the
sample channel free of the systematic error due to the vari-
ation of the length of the AC optical path.30,31 To the best
of our knowledge, the arrangement of an AC-based surface
slope profilometer with a movable, vertically oriented AC and
an additional AC in the reference channel was first consid-
ered in Ref. 32 and implemented and published in Refs. 15–17
and 33.

The measurements with the OSMS with face-up ori-
entation of the SM1 and SM2 mirrors have confirmed the
correctness of the DLTP metrology with the mirrors.

The major conclusion from the performed measurements
with the pre-shaped aspherical mirrors SM1 and SM2 is as
follows: the surface figures of both mirrors strongly devi-
ate from the ideal shapes determined with the central values
of the conjugate parameters, as specified in Table I. There-
fore, a more sophisticated analysis of the measured shapes of
the mirrors is required in order to understand the compli-
ance of the surface figures of the mirrors with the tolerance
specification.

IV. OPTIMIZATION OF THE CONJUGATE PARAMETERS
A. Extension of the method of characteristic functions

Mathematically, the procedure for optimization of the
conjugate parameters of a pre-shaped x-ray mirror, described
in the present paper, is similar to the method developed at
the ALS XROL for optimal tuning of bendable x-ray mirrors
(see recent publication20 and references therein). The idea

of the method consists in best fitting the shape error of a
bendable mirror with experimentally determined character-
istic functions of the mirror benders.20,34–36

In the procedure extended here to optimization of the
conjugate parameters of a pre-shaped x-ray mirror, the shape
error calculated by detrending the measured slope distri-
bution with the ideal shape is fitted with the characteristic
functions that are the partial derivatives over the conjugate
parameters of the analytical expression describing the desired
slope figure of the mirror (see Sec. II). In order to adapt the
optimal bending software,20,35,36 developed at the XROL, the
characteristic functions are calculated as normalized differ-
ences of the analytically calculated shapes corresponding to a
small change of the corresponding conjugate parameter with
respect to the specified central values.

Then, with the software, the linear regression analysis
method is applied to regress (best fit) the error between the
measured and the theoretical slope distributions. The deter-
mined vector of adjustments of the conjugate parameters is
applied to “tune” the theoretical distribution to best match the
measurement.

Because the three conjugate parameters that specify
hyperbolic and elliptical mirrors (see Table I) are interde-
pendent, we optimize different combinations of one or two
conjugate parameters:

(i) optimization of θ only at the desired central values of R1
and R2;

(ii) optimization of R1 and θ at the desired central values
of R2;

(iii) optimization of R2 and θ at the desired central value
of R1;

(iv) optimization of R1, R2, and θ subject to the conditions
R2 − R1 ≡ 2a or R2 + R1 ≡ 2a (in the case of a hyperbolic
or elliptical mirror, respectively);

(v) optimization of R2, under the condition R2 − R1 ≡ 2a
or R2 + R1 ≡ 2a (in the case of a hyperbolic or ellipti-
cal mirror, respectively) and at the desired central value
of θ.
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As an example of the developed optimization algorithms,
we consider the option (iv) in application to a hyperbolic cylin-
der mirror, where the parameters R1, R2, and θ are adjusted
under the condition R2 − R1 = R0

2 − R0
1 ≡ 2a. Here, R0

1 , R0
2 ,

and θ0 are the central values of the corresponding parame-
ters. This case can be thought of as a spatial translation of the
hyperbolic mirror at almost unchanged positions of the object
focus of the hyperbolic mirror, F1, and the common focus of
the hyperbolic and elliptical mirrors in the Wolter pair, F2 (see
Fig. 1).

Let us denote αi and α(R1, R2, θ ,xi) to be the measured
and the theoretical slope functions. The desired (ideal) slope
distribution α0(R0

1 , R0
2 , θ0, xi) corresponds to the central, ideal

values of the conjugate parameters.
In the case of hyperbolic cylinder mirror, in order to cal-

culate the characteristic functions for fitting R1 and θ under
the condition

R2 − R1 = R0
2 − R

0
1 ≡ 2a, (15)

we calculate [in addition to the ideal slope distribution: α0(R0
1 ,

R0
2 , θ0, xi)] the slope distributions

α1(R0
1 + δR1,R0

2 + δR1, θ0, xi), (16)

and
α2(R0

1 ,R0
2 , θ0 + δθ, xi). (17)

In Eq. (16), we change the parameter δR2 by δR1 in order
to account condition (15).

The calculated (shifted) distributions (16) and (17) do not
correspond to our usual sequence of measurements for set-
ting a bendable mirror. In the case of tuning the bendable
mirrors, we first measure the slope distribution with some ini-
tial parameters. This can be thought of as the parameter R0

1
changed by δR1. Next, we take the second measurement with
the first parameter changed. Finally, we change the second
parameter (this can be thought of as the parameter θ0 changed
by δθ) and perform the third measurement. This sequence of
the measurements helps us to minimize the spurious effect of
a possible backlash problem in the mirror bender mechanism.
In the case of optimization of the conjugate parameters of the
hyperbola, we do not have the backlash problem, and the char-
acteristic functions can be calculated with respect to the ideal
hyperbola.

The corresponding characteristic functions to be used for
optimization of the conjugate parameters are

fR1 (xi) =
α1(R0

1 + δR1,R0
2 + δR1, θ, xi) − α0(R0

1 ,R0
2 , θ0, xi)

δR1
(18a)

and

fθ (xi) =
α2(R0

1 ,R0
2 , θ0 + δθ, xi) − α1(R0

1 ,R0
2 , θ0, xi)

δθ
. (18b)

The goal of the optimization is to match the calculated
shape to that measured, or in other words, to fit the error with
the characteristic functions,

αi − α0(R0
1 ,R0

2 , θ0, xi) ≈ ∆R1 · fR1 (xi) + ∆θ · fθ (xi) + A0. (19)

The constant (independent of xi) parameter of fitting A0
has to be included in order to account for the possible over-
all tilt difference between the measured and the theoretical
slope distributions. After application of linear regression anal-
ysis with the three column regression matrix (see, for example,
Ref. 20 and references therein), we get a set of the best fit
adjustments for the parameters,

∆
∗
R1,∆

∗
θ , and A∗0. (20)

With the asterisk, we separate the estimate from the true
value of the parameters.

With the best-fit adjustments (20), we calculated the
parameters

(
R0

1 + ∆∗R1

)
,
(
R0

2 + ∆∗R1

)
, and

(
θ0 + ∆∗θ

)
of the best-fit

hyperbola,

αi ≈ α0(R0
1 ,R0

2 , θ0, xi) + ∆∗R1
· fR1 (xi) + ∆∗θ · fθ (xi) + A∗0, (21a)

or
αi ≈ α

∗(R0
1 + ∆∗R1

,R0
2 + ∆∗R1

, θ0 + ∆∗θ , xi) + A∗0. (21b)

The optimization algorithm outlined here, as well as other
optimization options listed above in this section, was real-
ized in dedicated software developed in the IDL develop-
ment environment platform. The software allows optimization
of the mirror conjugate parameters using linear regression
analysis to minimize the RMS variation of the residual slope
trace. Then, the predicted conjugate parameters are applied
to the analytical equations for the desired mirror shape, pre-
sented in Sec. II, to calculate the shape of the ideal hyperbolic
or elliptical cylinder mirror best-fit to the measurements.
In order to get the best possible set of the new conjugate
parameters (corresponding to the minimum possible resid-
ual slope error), it can be necessary to apply a few sequen-
tial optimization iterations. This is due to the non-exact
linearity of the optimization problem. Each next optimization
has to use the parameters predicted in the previous iteration
as the parameters of the new ideal hyperbola. Practically, in
order to optimize the conjugate parameters of a high qual-
ity elliptical or parabolic x-ray mirror, we usually need 1 or 2
iterations.

B. Optimal conjugate parameters for SM1 mirror
Table II summarizes the result of the three iterations

of optimization of the conjugate parameters of the hyper-
bolic cylinder mirror SM1 for the ALS QERLIN beamline for
four different optimization options. In the table, σPRED and
σACHIVED are the predicted and achieved residual (after sub-
traction of the corresponding predicted hyperbolic shape)
slope variations (RMS).

In the case of the QERLIN SM1 hyperbolic mirror, the
optimization procedure with two variables converges in two
iterations (see Table II). The third iteration was performed
to check the stability of the result. Optimization of the sin-
gle parameter θ converges in one iteration. The achieved RMS
error is close, but noticeably higher than the specified tol-
erance of 150 nrad (RMS). Therefore, we can conclude that
optimization by adjusting only the grazing angle is almost
acceptable. The two-parameter optimizations, when one of
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TABLE II. The results of the third optimization run for different optimization options applied to the slope distributions measured
with the hyperbolic cylinder mirror SM1. σPRE D and σACHIVE D are the predicted and achieved residual (after subtraction of
the corresponding predicted hyperbolic shape) slope variations (RMS). ∆∗R1

, ∆∗R2
, and ∆∗θ are the deviation of the optimized

parameters from the specified central values.

Parameter Specified/Ideal (i)a (ii)b (iii)c (iv)d

R1 (mm) 700.00 700.00 697.1156 700.00 697.492 22
R2 (mm) 1781.97 1781.97 1781.97 1763.017 74 1779.462 22
θ (mrad) 34.906 59 35.418 505 2 35.176 982 05 35.665 209 11 35.240 211 75
σPRED (µrad) . . . 0.163 0.126 0.125 0.126
σACHIEVED (µrad) 9.134 0.163 0.126 0.125 0.126
∆∗R1

(mm) ±10 . . . −2.884 . . . −2.508
∆∗R2

(mm) ±10 . . . . . . −18.952 −2.508
∆∗θ (mrad) ±0.52 +0.512 +0.270 +0.758 +0.334
Is it within the spec? . . . CLOSE YES NO YES

a(i) is the optimization of grazing incidence angle θ only at the fixed central values of distances R0
1 and R0

2 .
b(ii) is the optimization of R1 and θ at the fixed central values of distance R0

2 .
c(iii) is the optimization of R2 and θ at the fixed central values of distance R0

1 .
d(iv) is the optimization of R1 and θ at R2 − R1 = R0

2 − R
0
1 ≡ 2a.

the parameters is the grazing angle, lead to almost the same
result with RMS error on the level of 125 nrad, below the
specified tolerance.

The deviations ∆∗R1
, ∆∗R2

, and ∆∗θ of the optimized parame-
ters from the central values specified in Table I are presented
in the three last rows of Table II. They suggest that the opti-
mization of R2 and θ at R1 = R0

1 leads to the values of the
parameters unacceptably outside the specified tolerances.

There is one more optimization option realized in our
software that is not presented in Table II. We have empiri-
cally found that a shift of the mirror center along the ideal
hyperbola, determined by the central values of the conjugate
parameters, such that the both R1 and R2 are decreased by
4.775 mm allows us to get the mirror arrangement with the
RMS error close to the specification: 0.190 µrad (RMS). In this
case, the new grazing incidence angle is calculated from the
condition of the preservation of the value of the “imaginary”

semi-axis b = sin θ0

√
R0

2 R0
1 corresponding to the ideal hyper-

bola. The last relation is also applicable to any other point of
the same branch of the hyperbola, determined with the set

of parameters R1, R2, and θ: b = sin θ0

√
R0

2 R0
1 = sin θ

√
R2 R1 .

Therefore, in the case of the mirror shifted along the ideal
hyperbola, the new grazing incidence angle can be found as

θ = arcsin

sin θ0

√
R0

2R
0
1

R2R1


. (22)

In the case of the mirror shift by 4.775 mm, the corre-
sponding value of the grazing incidence angle is θ = 35.0734
mrad that is within the specified tolerance. Note that opti-
mization of the grazing angle for R1 and R2 equally shifted
(decreased) by 4.775 mm leads to an RMS error of 0.157 µrad
at θ = 35.0793 mrad; larger only by 6 µrad than the non-
optimized value.

The selection of the most preferable set of the optimized
conjugate parameters among the options (ii) and (iv) in Table II
has to be performed via simulation of the mirror performance
as a part of the optical schematic of the QERLIN spectrometer.
Such simulations are out of the scope of the present paper.

Figure 10 depicts the residual slope distribution of the
hyperbolic mirror corresponding to the optimization (ii) in
Table II. The residual slope variation is flat with an RMS
variation of 126 nrad.

C. Optimal conjugate parameters for SM2 mirror
Here, we use the developed optimization method and

software for the optimization of the conjugate parameters

FIG. 10. Residual slope distribution of the hyperbolic mir-
ror SM1 corresponding to the optimization (ii) in Table II.
The residual slope variation is flat with the RMS variation of
126 nrad.
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TABLE III. The results of the third optimization runs for different optimization options applied to the slope distributions mea-
sured with the elliptical cylinder mirror SM2. σPRE D and σACHIVE D are the predicted and achieved residual (after subtraction
of the corresponding predicted elliptical shape) slope variations (RMS). ∆∗R1

, ∆∗R2
, and ∆∗θ are the deviation of the optimized

parameters from the specified central values.

Parameter Specified/ideal (i)a (ii)b (iii)c (iv)d

R1 (mm) 3600.00 3600.0 3538.56 3600.0 3585.31
R2 (mm) 1981.97 1981.97 1981.97 2001.24 1996.66
θ (mrad) 34.906 585 35.024 31 34.809 68 35.243 50 35.140 17
σPRED (µrad) . . . 0.128 0.105 0.104 0.104 5
σACHIEVED (µrad) 1.885 0.128 0.105 0.104 0.104 5
∆∗R1

(mm) ±10 . . . −64.44 . . . −14.69
∆∗R2

(mm) ±10 . . . . . . +19.27 +14.69
∆∗θ (mrad) ±0.52 +0.118 −0.097 +0.337 +0.234
Is it within the spec? . . . YES NO NO NO

a(i) is the optimization of grazing incidence angle θ only at the fixed central values of distances R0
1 and R0

2 .
b(ii) is the optimization of R1 and θ at the fixed central values of distance R0

2 .
c(iii) is the optimization of R2 and θ at the fixed central values of distance R0

1 .
d(iv) is the optimization of R1 and θ at R2 + R1 = R0

2 + R0
1 ≡ 2a.

to best fit the measured surface slope distribution for the
SM2 elliptical mirror. Similar to the hyperbolic SM1 mirror, we
examine different combinations of the regressed parameters
listed in Sec. IV A. For some options, we apply a few sequen-
tial optimization iterations. Each next optimization uses the
parameters predicted in the previous iteration as the parame-
ters of the new ideal ellipse. The parameters predicted in three
optimization runs are given in Table III.

In the case of the QERLIN SM2 elliptical cylinder mirror
(Table III), the optimization procedure requires two iterations
only in the case of regression of R1 and θ at the central value of
the distance R0

2 . In all other cases, it is enough with one iter-
ation. The third iteration was performed to check the stability
of the result.

The only optimization that provides the conjugate param-
eters within the specified tolerances is the optimization option
(i) by adjusting only the grazing angle. The resultant RMS error
is 128 nrad.

The residual slope trace for the elliptical mirror SM2 after
detrending the measured slope distribution with the elliptical
shape optimized by regressing the grazing angle only is shown
in Fig. 11.

According to the data in Table III, a smaller residual slope
error of below 105 nrad (RMS) is possible if the mirror is shifted
by 14.69 mm downstream. Although such a shift is significantly
out of the specified tolerances, this result is in agreement with
slope errors achievable with the empirically predicted shifts
of 7.5 mm in the downstream directions, R1 = 1989.47 mm and

FIG. 11. Residual slope distribution of the elliptical mirror
SM2 corresponding to the optimization (i) in Table II. The
residual slope variation is flat with the RMS variation of
128 nrad.

FIG. 12. Residual slope, after subtraction of the elliptical
shape, corresponding to the downstream shift of 7.5 mm,
R1 = 1989.47 mm and R2 = 3592.50 mm, and the grazing
angle θ = 35.0837 mrad, optimized for the shift (see also
discussion in the text). The RMS variation of the residual
slope is 110.6 nrad.
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R2 = 3592.50 mm. In this case, we also optimally adjust the
grazing incidence angle, θ = 35.0837 mrad. The correspond-
ing residual slope distribution is shown in Fig. 12. The residual
slope variation is 110.6 nrad (RMS).

V. CONCLUSIONS
In the present paper, we have first described an origi-

nal procedure and dedicated software developed at the ALS
XROL for optimization of the beamline performance of the
pre-shaped hyperbolic and elliptical mirrors. The optimiza-
tion consists in minimization of the deviation of the mirror
surface slope profile from the desired hyperbolic or ellipti-
cal cylinder shape by optimization of the conjugate parame-
ters (distances from the source and image focal points to the
mirror center and the corresponding grazing incidence
angles) of the mirror beamline application within the spec-
ified tolerances. Mathematically, the set of the optimal
conjugate parameters is determined from the best fit of
the mirror surface shape error with analytically derived
fitting functions inherent (characteristic) to the desired
mirror shape (hyperbolic or elliptical) defined by the conjugate
parameters. The determined optimal conjugate parameters
completely define the optimal alignment of the mirror at the
beamline that effectively preserves the desired shape of the
mirror.

High efficacy of the developed surface slope metrol-
ogy and data analysis procedures has been demonstrated in
the measurements with and performance optimization of the
hyperbolic, SM1, and elliptical, SM2, cylinder mirrors fabri-
cated for the ALS QERLIN beamline.

The mirrors were measured at the ALS XROL using orig-
inal measurement tools and error suppression methods. The
accuracy of the measurement is estimated to be on the level
of 60 nrad (RMS). For the surface slope metrology with the
mirrors, we have used the DLTP12–14 and verified the results
via comparison with that of obtained with the new OSMS,15–17

both available at the ALS XROL. The measurements suggest
that the QERLIN SM1 and SM2 mirrors are fabricated with
shapes significantly different from the ideal shapes (corre-
sponding to the central values of the specified conjugate
parameters) with the PV deviations of 31 µrad and 6.5 µrad,
respectively. Note that the surface slope error specified for
the mirrors is <150 nrad (RMS).

Nevertheless, application of the optimization procedure
with the dedicated software allows us to prove that the surface
shapes of the mirrors are still within the specification given
with the tolerances. This means that specification with toler-
ances must assume post-fabrication global optimization of the
beamline geometry for its best performance.

As the necessary foundation for pre- and post-fabrication
simulation and optimization, we have provided the analyti-
cal expressions for calculation of the hyperbolic and elliptical
mirror tangential profiles in the height and slope domain as
the functions of the conjugate parameters of the mirrors. We
have also outlined the essentials of the optimization algorithm
realized in the dedicated software developed at the ALS XROL.
Our software applied here for optimization of the QERLIN SM1

hyperbolic and SM2 elliptical mirrors is an indispensable part
of our global beamline optimization.

In the case of the QERLIN SM1 and SM2 mirrors, the per-
formed optimization of their conjugate parameters has pro-
vided the best-fit desired shapes with the RMS deviation from
the measured profiles of ∼126 nrad (RMS) and ∼111 nrad (RMS)
that is well below the specified surface slope error of <150
nrad (RMS).

In this paper, we have used as a figure of merit for the
optimization the minimum of the RMS variation of the resid-
ual surface slope distribution. However, in the recent pub-
lication,20 it is shown that in the case of optimal tuning of
x-ray bendable mirrors, an additional improvement of the
mirror beamline performance is obtained in optimization by
accounting for the peculiarities of the mirror geometry and
x-ray beam intensity distribution. In the case of focusing mir-
rors, the figure of merit for the tuning is the minimum of the
RMS size of the focused beam. The efficacy of the optimiza-
tion has been demonstrated with examples of optimal tuning
of an elliptically bendable cylindrical mirror designed for the
ALS micro-diffraction beamline 10.3.2.20 We plan to extend the
method to the optimization of the conjugate parameters of the
pre-shape x-ray mirrors. Work in this direction is in progress.
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