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Abstract

To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by 

integrating genome-wide data on copy number alterations and gene expression with full 

annotation for major known somatic mutations in this cancer. This revealed non-random patterns 

of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct 

clinical outcomes, and led to the discovery of a striking association of EGFR mutations with 

under-expression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. 

DUSP4 is involved in negative feedback control of EGFR signaling and we provide functional 

validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss 

also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer 

patients. Another novel observation is that of reciprocal relationship between EGFR and LKB1 

mutations. These results highlight the power of integrated genomics to identify candidate driver 

genes within recurrent broad regions of copy number alteration and to delineate distinct 

oncogenetic pathways in genetically complex common epithelial cancers.
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Introduction

The complexity of the highly aberrant cancer genomes seen in most human carcinomas has 

presented a formidable analytical challenge that has been the focus of recent efforts in 

genome-wide microarray profiling of gene expression and genomic copy number alterations 

(CNAs). However, such analyses performed independently face certain important 

limitations. Copy number profiling alone is best suited for the delineation of relatively focal 

high-amplitude events such as small high-level amplicons or narrow homozygous deletions; 

it provides few leads into larger regions of gains or loss that may span almost entire 

chromosome arms, changes commonly seen in human carcinomas. Expression profiling 

alone has provided fewer insights than expected into carcinomas with complex karyotypes 

because the gene expression changes contributed by passenger genes from regions of CNAs 

add considerable noise to these datasets. Finally, it is likely that there are certain patterns of 

CNAs (and associated gene expression changes) that cooperate with specific known (and 

unknown) mutations. Here, we harnessed the power of an integrated genomic approach to 

begin to reduce the complexity of lung adenocarcinoma and formulate new hypotheses 

regarding common cooperating events in this cancer.

The landmark discovery in 2004 that lung adenocarcinomas sensitive to the EGFR tyrosine 

kinase inhibitors contain somatic mutations in the EGFR kinase domain [reviewed in 

(Sharma et al. 2007)] represented a remarkable convergence of clinical observations and 

kinome sequencing efforts. However, many of the mutations described so far in lung 

adenocarcinomas may represent the “low-hanging fruit” and their cooperating genetic 

alterations remain largely unknown. It is likely that further advances in treating lung 

adenocarcinoma will require a deeper understanding of its biology and heterogeneity, 

beyond what is possible by individual genomic technologies. Although a number of studies 

have performed extensive DNA copy number profiling (Kendall et al. 2007; Weir et al. 

2007; Kwei et al. 2008), gene expression profiling [reviewed in (Meyerson et al. 2004)] or 

mutation screening (Davies et al. 2005; Marks et al. 2007) to characterize the lung 

adenocarcinoma genome, these individual approaches are reaching a point of diminishing 

returns, uncovering low prevalence mutations or amplifications but not clarifying the 

broader picture of how common mutations interact with common CNAs in this cancer.

We report an initial analysis of the largest integrated genomic dataset of lung 

adenocarcinoma assembled to date. We demonstrate how major mutated human lung cancer 

genes such as EGFR and KRAS appear as strong candidates without a priori knowledge, 

based on the integration of copy number and gene expression data. We further show how the 

integration of these data with mutational screening for all major known lung cancer genes 

leads to the identification of additional novel candidate lung cancer genes that may be 

targets of pathogenic mutations or CNAs. Specifically, we find that EGFR mutations in lung 

adenocarcinomas are strongly associated with low expression of DUSP4 due to broad single 

copy losses at 8p. Dual-specificity phosphatases (DUSPs) are known to be transcriptionally 

up-regulated by mitogen-activated protein kinase (MAPK) signaling as a negative feedback 

mechanism (Owens and Keyse 2007) and DUSPs and other negative regulators of kinase 

signaling are emerging as putative tumor suppressors in other cancers (Furukawa et al. 2003; 

Shaw et al. 2007).
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Results

Patterns of mutations in lung adenocarcinomas

Frozen samples of 199 primary lung adenocarcinomas from 199 patients were processed for 

genomic analyses (See Supplementary Materials and Methods). Basic clinical and 

pathologic data are summarized in Supplementary Table 1. We used a variety of approaches 

including Sanger sequencing, mutation-specific PCR assays, and mass-spectrometry-based 

genotyping, to profile the mutational status of established somatic lung cancer genes, 

including EGFR, KRAS, BRAF, ERBB2, PIK3CA, LKB1, PTEN, and TP53 (see 

Supplementary Materials and Methods). Mutations in at least one of these genes were 

detected in 140/199 cases (70%) (Figure 1A). Mutations in EGFR, KRAS, ERBB2, or BRAF, 

present collectively in 98/199 cases (49%), were completely mutually exclusive, as expected 

from published data. Mutations in EGFR and LKB1 may also be largely mutually exclusive, 

with only 1/43 EGFR-mutant tumors also showing a mutation in LKB1, compared with 

27/156 EGFR-wild type tumors (p=0.012). Mutations in TP53 were frequent (27%) and 

commonly occurred with other mutations. Few cases showed mutations in PTEN (4%) or 

PIK3CA (2%), in line with prior studies (Samuels et al. 2004; Marks et al. 2007).

Recurrent genomic copy number alterations

Array-based comparative genomic hybridization (aCGH) was performed using Agilent 44k 

arrays. Frequent gains were seen on chromosome arms 1q, 5p, 7p, 8q, 12q, and 14q, and 

frequent losses on 3p, 6q, 8p, 9p, 13q, and 17p (Figure 1B). These major CNAs are 

consistent with those reported in other lung adenocarcinoma datasets (Kendall et al. 2007; 

Weir et al. 2007). We focus below on 8p losses, one of the most common broad CNAs in 

lung adenocarcinoma, occurring in approximately ¼ of cases. We also identified focal, 

recurrent, high-amplitude CNAs defined heuristically as minimal common regions (MCR) 

of amplification or deletion (see Supplementary Materials and Methods), several of which 

contain well-described oncogenes or tumor suppressor genes that may be driving the 

selection for these CNAs (Supplementary Table 2). For instance, focal high level 

amplification at 14q13 centered on TITF1, recently recognized in approximately 12% of 

lung adenocarcinomas (Kendall et al. 2007; Weir et al. 2007), was also revealed here. Other 

MCRs may define new cancer genes and we list the boundaries of these intervals and 

propose genes of interest within them (Supplementary Table 2).

Non-random patterns of CNAs associated with EGFR/KRAS mutations and survival

Simple aCGH recurrence plots fail to convey associations between genomic CNAs and 

hence are not useful in defining distinct pathways of lung adenocarcinoma pathogenesis. We 

therefore applied an unsupervised clustering algorithm based on non-negative matrix 

factorization (NMF) to extract recurrent associations between CNAs (see Methods). An 

analysis of cluster membership (Supplementary Figure 1) showed stable assignments to two 

or three clusters suggesting the existence of up to three distinct patterns of CNAs within the 

lung adenocarcinomas in this set. These clusters are shown in aggregate in Figure 2 (and 

with case-by-case data in Supplemental Figures 2 and 3). Analysis of the two-cluster 

classification (clusters designated kA and kB) revealed that the kA subgroup, containing 

about 60% of cases, was distinguished by 1q and 8q gains as well as losses at 5q and 16q. 

Chitale et al. Page 3

Oncogene. Author manuscript; available in PMC 2010 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The remaining cases were in the kB subgroup and were characterized by gains of 7p 

(containing EGFR) and 12q (containing MDM2), and losses at 8p and 10q. In the three-

cluster classification (clusters k1-3 respectively), the k2 cluster, similar to the kA cluster, 

was defined by gains of 1q and 8q. The k3 cluster, similar to the kB cluster, was defined by 

gains of 7p and 12q. A third cluster, k1, was marked by losses at 5q and 16q and gains at 5p 

and 14q (containing TITF1).

To complement the above analysis, we also examined, in a simple pair-wise fashion, six of 

the CNA associations highlighted by the NMF clustering. This confirmed that many of the 

associations were statistically significant per moderate copy number thresholds (see 

Methods). These included associations between EGFR-containing 7p11.2 gains and 8p 

losses (p=0.007), gains of 1q and 8q (p=0.009), gains of 7p and 12q (p=0.004), losses at 8p 

and 10q (p<0.001), and gains at 5p and 14q (p=0.02). Except for the latter (Kwei et al. 

2008), none of these associations have been noted previously. The co-occurrence of 7p gains 

and 10q losses was not significant.

The unsupervised clustering of the CNA data also showed a strong correlation with EGFR 

and KRAS mutation status (Supplementary Table 3). In both the two-cluster and the three-

cluster classifications, EGFR mutant tumors were distributed in a highly non-random 

fashion, with most falling into the kB or k3 cluster, respectively (both p<0.0001), while 

KRAS-mutant tumors were enriched in the kA and k2 clusters (respectively, p=0.0004 and 

p<0.0001).

Finally, Kaplan-Meier survival analysis of these NMF clusters showed a significant survival 

advantage for patients whose tumors were in the EGFR-mutant-rich kB cluster in the 2-

cluster separation (p=0.006) (Figure 3). In the 3-cluster separation, the EGFR-mutant-rich 

k3 cluster showed a survival advantage over the k1 cluster (p=0.03) while patients within the 

KRAS-mutant-rich k2 cluster were in an intermediate group for clinical outcome. For 

comparison, Kaplan-Meier survival analysis based on EGFR mutation status alone did not 

detect statistically significant differences in the present dataset (Supplementary Figure 4). 

Overall, these analyses indicate that the genetic heterogeneity of lung adenocarcinoma is not 

random and that coordinated genomic alterations may reflect underlying distinct oncogenic 

pathways with different clinical outcomes.

Associations between CNAs and expression profiles

As genomic gains are expected to alter the expression of biologically relevant genes, we 

examined the mRNA expression profiles (based on Affymetrix U133A array hybridizations) 

of cases defining MCRs of gain in order to identify copy-number driven gene expression 

changes within or surrounding these MCRs (Supplementary Table 4). As expected, the 

expression profile of cases defining the MCR of gain at 7p11.2 demonstrated highly 

significant over-expression of EGFR. Similarly, KRAS was significantly over-expressed in 

cases defining the MCR of gain at 12p12. Likewise, the expression profile of cases defining 

the MCR of gain at 12q14 demonstrated significant over-expression of MDM2. For cases 

defining the MCR of gain at 5p15, SKP2 (Zhu et al. 2004), was significantly over-expressed, 

while TERT was not. The overexpression of SKP2 (at 5p13) reflects the fact that samples 

used to delineate MCRs individually have, by definition, broader regions of gain that 
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overlap the MCR. As for TERT, other strong candidate genes within certain MCRs were not 

found to be significantly over-expressed by transcriptomic analysis, including MYC on 8q24 

and TITF1 on 14q13 (Weir et al. 2007; Tanaka et al. 2007; Kendall et al. 2007). It should be 

emphasized, however, that some transcripts may not be adequately measured by microarrays 

for technical or biological reasons and therefore these data cannot be used in isolation to 

exclude driver genes. Finally, the analysis of genes significantly over-expressed in cases 

defining the MCR of gain at 8q24 highlighted COPS5, previously shown to drive selection 

for 8q amplicons along with MYC (Adler et al. 2006).

Associations between genomic copy number losses and gene expression profiles were 

considerably less robust, yielding few if any significant genes in comparable analyses of 

samples with either 9p21 or 19p13 losses (results not shown). This may be due to the 

narrower range of expression values seen in the context of genomic losses compared to gene 

amplifications.

Associations between genomic gains and activating mutations at specific genes

EGFR expression at the mRNA level correlated well with gene copy number by aCGH, as 

shown in an integrated representation of expression, copy number, and mutation data 

(Supplementary Figure 5). This analysis also reveals that EGFR-mutation is associated with 

generally higher levels of EGFR expression among both EGFR-amplified and non-amplified 

cases (Supplementary Figure 5). A similar analysis of the 12p12 MCR and KRAS mutation 

status demonstrated a trend for cases defining the MCR to harbor a KRAS mutation, but this 

did not reach statistical significance (not shown). We did not detect any relationship 

between LKB1 mutations and (single copy) deletions at 19p13; this may either reflect the 

less reliable detection of single copy losses compared to multiple copy gains in the midst of 

admixed non-neoplastic cells, or the reported finding that mutations and deletions at LKB1 

generally do not co-occur (Ji et al. 2007). There was no evidence of genomic loss at PTEN 

in the 8 PTEN-mutant tumors. Finally, among associations between mutations and unrelated 

loci, we also found a significant co-occurrence of EGFR mutations and p16/CDKN2A 

deletions (p=0.007), that largely reflects their mutual association with 8p losses, as described 

below. This finding is also consistent with the reported loss of p14ARF expression in 

EGFR-mutant lung cancers (Mounawar et al. 2007).

Associations between expression profiles and mutations

Supervised analyses of Affymetrix U133A expression profiles based on EGFR, KRAS, and 

p53 mutation status were performed (Table 1, Supplementary Table 5). The other five 

mutated genes (BRAF, ERBB2, PIK3CA, LKB1, PTEN) did not yield robust profiles, but 

these analyses lacked power given the lower numbers of samples with mutations in these 

genes. Notably, the number of significantly differentially expressed genes in EGFR-mutant 

cases was much greater than in KRAS-mutant cases (probe sets significant at FDR <5%: 

2571 and 103, respectively). This observation is all the more striking given the marginally 

stronger statistical power of the KRAS analysis (48 KRAS mutants vs only 43 EGFR 

mutants). This suggests either that the impact of KRAS mutation on gene expression is less 

distinctive than that of EGFR mutation, or that EGFR mutations arise in a more restricted 

and homogeneous cell type than KRAS mutations, or that there is biological or etiologic 
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heterogeneity among KRAS-mutant tumors (Riely et al. 2008). The more distinctive 

expression profile of EGFR-mutant cases was also supported by an unsupervised clustering 

analysis (Supplementary Figure 6). We limit ourselves here to three notable observations. 

First, both the EGFR and KRAS lists contain the respective mutated genes, as measured by 

multiple probe sets, at or near the top (Table 1), presumably reflecting a consistent level of 

expression required for their oncogenic effect plus their amplification in a subset of cases. 

Secondly, we noted that different members of the DUSP family of MAP kinase 

phosphatases, known to be transcriptionally induced by MAPK signaling to provide 

negative feedback regulation of the same, are highly differentially expressed in EGFR- and 

KRAS-mutant tumors (Table 1). In the latter tumors, DUSP6 was relatively over-expressed, 

consistent with its previous description in other KRAS-mutant signatures (Sweet-Cordero et 

al. 2005), as was DUSP4 (Supplementary Table 5). In contrast, DUSP4 was the single most 

highly significantly under-expressed gene in EGFR-mutant tumors, an unexpected finding 

given that it is normally up-regulated by MAPK signaling (Owens and Keyse 2007). We 

follow up this observation further below. The third observation emerging from these two 

lists is the over-representation of genes from specific chromosomal regions, notably under-

expressed genes from 8p (including DUSP4) on the EGFR-mutant list and over-expressed 

genes from 1q on the KRAS-mutant list (Table 1). These reflect the non-random associations 

of 8p loss and 1q gain with EGFR and KRAS mutations, respectively (see above). Finally, 

the expression profile of p53 mutation was also robust but its discussion is beyond the scope 

of this report (Supplementary Table 5).

Loss of DUSP4 at 8p in EGFR mutant tumors

As demonstrated above, DUSP4, a dual specificity MAP kinase phosphatase (a.k.a. MKP-2), 

was almost uniformly under-expressed in EGFR mutated cases relative to lung 

adenocarcinomas lacking EGFR mutations (Table 1). A more detailed comparison of 

DUSP4 transcript levels showed that expression was significantly lower in EGFR-mutant 

lung adenocarcinomas than in normal lung, KRAS-mutant tumors, and tumors lacking both 

mutations (Figure 4A). A substantial proportion of EGFR mutant tumors demonstrated 

single copy genomic loss at 8p12 that included DUSP4. This proportion ranged from 35% to 

67% of EGFR-mutant cases depending on the stringency of the sample-specific thresholds 

used to consider DUSP4 deleted. Conversely, a substantial proportion of DUSP4-deleted 

tumors contained EGFR mutations, ranging from 41% to 56%, again depending on the 

aforementioned stringency. Regardless of the threshold used to score deletions, the 

association of DUSP4 genomic loss and EGFR mutations was highly significant (p<0.0001).

Integration of gene expression with copy number and EGFR mutation status showed that, 

while low DUSP4 transcript levels correlated well with DUSP4 genomic loss, this 

relationship was most evident among EGFR-mutant tumors (Figure 4B). We also confirmed 

by dual-color fluorescence in situ hybridization the co-occurrence of DUSP4 single-copy 

loss and EGFR amplification in the same tumor cells in EGFR-mutant cases that had both 

findings by aCGH (Figure 4C). Notably, DUSP4 does not reside in a narrow MCR of loss 

and therefore would not have emerged as a strong candidate based on algorithms using copy 

number data alone, but is the top candidate based on the expression profile of EGFR mutant 

tumors (Table 1), highlighting the value of an integrated genomics approach. Finally, we 
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also screened DUSP4 for somatic mutations. A total of 101 lung adenocarcinoma samples 

(99 tumor DNAs and cell lines H1299 and H522) were sequenced but no somatic mutations 

of DUSP4 were identified.

Given the significant co-occurrence of EGFR mutations and p16/CDKN2A deletions 

(p=0.007) described above, we examined their relationship with DUSP4 deletions. This 

showed that p16/CDKN2A deletions and DUSP4 deletions are strongly correlated 

(p=0.0001) (Supplementary Figure 7). Indeed, among DUSP4-diploid tumors, EGFR 

mutations and p16/CDKN2A deletions were not associated, indicating that their co-

occurrence is largely secondary to their mutual association with DUSP4 deletions.

A distinct clinical subset of lung adenocarcinoma defined by DUSP4 loss

Patients with tumors harboring DUSP4 deletion had a better overall survival than patients 

whose tumors did not show this alteration (p=0.042 for difference between survival curves; 

p=0.031 from univariate Cox proportional hazards regression; hazard ratio of 2.06) (Figure 

4D). Although DUSP4 loss associates with EGFR mutations, it is notable that EGFR 

mutation status alone had only a sub-significant effect on overall survival in the present set 

of patients (p=0.18 for difference between survival curves; p=0.159 from univariate Cox 

proportional hazards regression; hazard ratio of 1.66) (Supplementary Figure 4).

Preferential suppression of EGFR-mutant lung adenocarcinoma growth by DUSP4

This candidacy of DUSP4 as the prime driver gene for 8p loss in EGFR mutant tumors is 

biologically plausible given its known transcriptional up-regulation by, and negative 

feedback regulation of, MAPK signaling (Owens and Keyse 2007). By microarray analysis, 

DUSP4 expression is decreased following inhibition of mutant EGFR in the H1975 lung 

adenocarcinoma cell line (Kobayashi et al. 2006). We have also found that DUSP4 is 

transcriptionally up-regulated by mutant EGFR signaling in HBECs (Supplementary Figure 

8). Thus, we hypothesized that the oncogenicity of mutant EGFR may be enhanced by loss 

or attenuation of the negative autoregulatory loop normally provided by DUSP4. We 

therefore examined the impact of DUSP4 on the growth of lung adenocarcinoma cells. First, 

we used RNA interference by short interfering RNAs (siRNA) to study the effects of 

reducing DUSP4 levels in 6 lung adenocarcinoma cell lines with available data on DUSP4 

genomic copy number [data from ref. (Garnis et al. 2006); Affymetrix SNP array data, K. 

Michel & R. Thomas, unpublished; Agilent 244K aCGH data, J. Bean & W. Pao, 

unpublished] and DUSP4 transcript levels relative to HBECs (Figure 5A). In the 3 lung 

adenocarcinoma cell lines with moderate to high DUSP4 expression, all diploid for 8p, 

namely PC9, HCC827, and H358, DUSP4 knockdown enhanced growth significantly at 48 

hours (Figure 5A). In contrast, in the 3 lung adenocarcinoma cell lines with already low 

DUSP4 expression, associated in 2/3 lines with 8p single copy deletion (H1650 and H3255), 

DUSP4 knockdown had essentially no effect. To confirm these findings in an isogenic 

background, we examined the effect of DUSP4 knockdown in HBECs with or without 

EGFR L858R (Figure 5B). This showed that reducing DUSP4 levels enhances growth in the 

presence of EGFR L858R but not in the parental line.
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Next, we examined the growth effects of re-expressing or increasing the level of DUSP4 by 

transfection with a DUSP4-GFP expression plasmid. The expression and appropriate 

subcellular localization of the fusion protein were confirmed respectively by western 

blotting using a GFP antibody (Supplementary Figure 9A) and fluorescence microscopy, the 

latter showing the expected nuclear localization of DUSP4 (Supplementary Figure 9B). In 

H1650 and H3255, both characterized by EGFR mutation, 8p loss (J. Bean & W. Pao, 

unpublished data), and low DUSP4 expression, as well as in H358, a KRAS-mutant lung 

adenocarcinoma line with moderate DUSP4 expression, transient transfection with the 

DUSP4-GFP expression plasmid resulted in a significant reduction in growth (Figure 5C). 

Interestingly, attempts to derive corresponding stable transfectants (in H1650) were 

unsuccessful because of loss of GFP-positive cells after one week of antibiotic selection in 

the DUSP4-GFP-transfected cultures (but not in the GFP-transfected ones) (Supplementary 

Figure 10), an observation consistent with the growth inhibition observed in the above 

transient transfection experiments. Similar difficulties in isolating stable DUSP4 cDNA 

transfectants have been observed in other settings (Tresini et al. 2007). Overall, these data 

provide functional validation of the growth suppressive effects of DUSP4 in lung 

adenocarcinoma lines with activating mutations of kinase signaling pathways.

Discussion

Several levels of data here support the link between DUSP4 loss and EGFR-mutant tumors. 

Our analysis of the aCGH data showed that lung adenocarcinomas display non-random 

patterns of co-occurring gains and losses, one of which is characterized by 7p gains 

(including the EGFR locus) and 8p losses. These tumors frequently showed EGFR mutation 

(p<10-4), which is not unexpected as mutant EGFR alleles are known to undergo selective 

amplification (Takano et al. 2005). However, the 8p losses were broad and MCR analysis 

did not yield a candidate sub-region on this chromosome arm. Previous studies of lung 

cancers have noted 8p losses, but also failed to narrow the putative target region (Weir et al. 

2007). Allelic losses on 8p are well described in other carcinomas, including breast, prostate, 

and bladder, with most studies finding a complex pattern that cannot be reduced to a single 

minimally deleted region [reviewed in (Adams et al. 2005)]. Notably, DUSP4 has also been 

proposed as a driver of 8p losses in breast cancer (Armes et al. 2004). Our integrated 

genomics strategy showed that DUSP4, at 8p12, was the most consistently under-expressed 

gene in EGFR mutant cases compared to EGFR wild type cases (nominal p<10-9, two-sided 

stratified Wilcoxon). By aCGH, using a moderate stringency threshold, the DUSP4 region 

showed evidence of single-copy genomic loss in approximately 24% of lung 

adenocarcinomas, including approximately 45% of EGFR mutant cases (p<10-4), while the 

latter accounted for only 21% of cases in our dataset. No somatic mutations in DUSP4 were 

detected, suggesting haploinsuffiency as the basic alteration, an oncogenic mechanism 

recently illustrated by RPS14 loss in the 5q- myelodysplastic syndrome (Ebert et al. 2008). 

We also show that re-expression of DUSP4 in EGFR-mutant lung adenocarcinoma lines 

with 8p loss and low endogenous DUSP4 results in reduced growth, and conversely, 

knockdown of DUSP4 in cell lines with high DUSP4 leads to enhanced growth. Since 

DUSPs are known to be transcriptionally up-regulated by MAPK signaling as a negative 

feedback mechanism, the data support the hypothesis that DUSP4 loss cooperates with 
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EGFR mutation to allow full oncogenic activation of the MAPK pathway. Clinically, 

DUSP4 loss has a significant impact on overall survival, further supporting its biological 

significance in lung adenocarcinoma.

MAPK pathway activation by signaling through growth factor receptors is modulated by 

negative feedback inhibition at the receptor (O'Reilly et al. 2006), at the level of RAS (e.g. 

by sprouty proteins) (Shaw et al. 2007), and at the level of ERK (by DUSPs). DUSP4 

functions in the nucleus to dephosphorylate and thereby inactivate the ERK, JNK, and p38 

MAP kinases (Owens and Keyse 2007). In addition to its role in regulating MAPK-mediated 

mitogenic signals, DUSP4 has also been implicated in the control of replicative senescence 

and of p53-mediated apoptosis (Tresini et al. 2007; Shen et al. 2006). DUSP4 is among 

several DUSPs well-described as transcriptional targets of MAPK signaling (Schulze et al. 

2004; Amit et al. 2007). Suppression of mutant EGFR signaling in the H1975 lung 

adenocarcinoma cell line causes down-regulation of DUSP4 (Kobayashi et al. 2006). More 

broadly, there is a growing recognition that disruption of negative feedback control of 

MAPK signaling is an important component of oncogenic kinase signaling (Amit et al. 

2007). Finally, our finding that EGFR mutations and p16/CDKN2A deletions are linked 

through their mutual association with DUSP4 losses suggests that the deregulated mitogenic 

signaling that occurs in the context of combined DUSP4 loss and EGFR mutation (or 

possibly other mutations activating the MAPK pathway) may drive selection for loss of the 

locus encoding p16CDKN2A and p14ARF, known mediators of senescence or apoptosis in 

response to inappropriate mitogenic signals (Lowe and Sherr 2003; Michaloglou et al. 

2005). This recalls the relationship between p16CDKN2A deletions and BRAF and EGFR 

mutants in melanoma and glioma, respectively (Michaloglou et al. 2005; Ohgaki and 

Kleihues 2007). Finally, as mutant EGFR and p16 bypass together fail to fully transform 

HBECs (Sato et al. 2006), the addition of DUSP4 knockdown to such experiments will be of 

interest.

Although the association of EGFR mutation status with DUSP4 genomic loss and under-

expression was striking, the genomic losses on 8p were consistently broad, suggesting the 

possibility of more than one driver gene. We note two other regions of interest on 8p, the 

TNFRSF10 TRAIL receptor gene cluster at 8p21.3, similarly implicated by our data on the 

basis of decreased expression in EGFR-mutant tumors (Table 1) and previously proposed as 

a tumor suppressor locus in lung cancers (Lee et al. 1999), and a slightly more telomeric 

gene on 8p21.3, DOK2, encoding an adaptor protein that suppresses KRAS activation. 

Evidence for DOK2 as another lung adenocarcinoma tumor suppressor on 8p, based on a 

mouse knockout model that leads to the development of lung adenocarcinomas and also in 

part on the present integrated dataset, is presented elsewhere (Niki et al. 2007). All 27 

stringently detected DUSP4-deleted tumors (including the 15 EGFR-mutant cases) also 

showed loss of the TNFRSF10 gene cluster and DOK2. Five additional cases showed losses 

of these two gene loci without DUSP4 deletion; interestingly, none of these 5 samples 

showed EGFR mutations and 4 were instead KRAS-mutant. This difference between 

DUSP4/DOK2-codeleted and DOK2-deleted/DUSP4-intact cases was significant (p=0.046), 

suggesting that lung adenocarcinomas harbor two types of 8p deletions, with those that 

extend more centromerically to include DUSP4 being more strongly associated with EGFR 
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mutations. Indeed, a mapping of 8p losses in relation to EGFR or KRAS mutation status 

strengthens the notion of mutation type-specific patterns of 8p loss (Figure 6). The 

observation that 8p losses in lung adenocarcinomas are consistently broad may reflect a 

selective advantage provided by the reduced function of more than one gene (here two 

different negative regulators of kinase signaling), a multiple driver gene model that may also 

hold for other regions of broad gains or losses.

Several other previously unrecognized or underappreciated associations emerged from this 

integrated genomic analysis. We found a significant inverse relationship between mutations 

in EGFR and LKB1, strengthening observations from others (Matsumoto et al. 2007; Ding et 

al. 2008). LKB1 cooperates with mutant KRAS in mouse lung tumorigenesis (Ji et al. 2007). 

Other associations that may point to distinct oncogenic pathways include coamplification of 

1q21-23 and 8q24 (including MYC) (p=0.009), and coordinate gains at 5p15 (including 

TERT) and 14q13 (including TITF1) (p=0.02).

We have described here an initial analysis of the largest integrated genomic study of lung 

adenocarcinoma assembled to date. The identification of DUSP4 as a novel growth 

suppressor in lung adenocarcinoma exemplifies the type of emergent observation made 

possible by the integration of multiple levels of genomic data in large, well annotated 

datasets. The present associations between mutation status, copy number changes and 

expression data strengthen the notion that there exist at least 2 or 3 distinct, recurrent 

oncogenic pathways that drive lung adenocarcinoma. Similar insights are now emerging in 

other cancers based on the systematic integration of multiple levels of genomic data (The 

Cancer Genome Atlas Research Network 2008; Parsons et al. 2008).

Methods

See Supplementary information for complete methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Survey of major known mutations in 199 lung adenocarcinomas. EGFR, KRAS, BRAF, 

and ERBB2 mutations are mutually exclusive. Mutant samples (columns) are sorted by 

grouped mutations per one-way average-linkage hierarchical clustering on binary data. 

Black represents samples with single mutations, while red are samples harboring mutations 

in more than one gene. Sample numbers are indicated at left, 140 cases harbored at least one 

mutation. Samples without detected mutations in these genes are not shown. B. Recurrent 

genomic copy number alterations in 199 lung adenocarcinomas. Frequency of gain (red) and 

loss (blue) is shown by genomic position across the 22 autosomes. Centromeres are 

identified by dotted vertical lines; acrocentric p-arms and loci lacking array coverage are 

indicated as gaps. The most prevalent losses are at 8p and 9p21; among gains, 1q, 5p, and 8q 

are most frequent.
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Figure 2. 
Unsupervised clustering of genomic copy number data in 199 lung adenocarcinomas. The 

NMF method was used to generate K=2 and K=3 clustering, both of which showed stable 

cluster assignments whereas clustering into more than 3 groups did not yield stable clusters 

(Supplementary Figure 1). Red is gain and green is loss with the color intensity indicating 

the level of copy number change; white is no change. Selected notable gains and losses 

defining individual clusters are indicated. Approximate proportions made up by each cluster 

are shown as percentages. The two-cluster classification shows that the kA subgroup 

(n=118) is notable for 1q and 8q gains. The kB subgroup (n=81) is characterized by gains of 

7p and 12q, and losses at 8p and 10q. In the three-cluster classification, the k2 cluster (n=64) 

was similar to the kA cluster (arrow), being defined by gains of 1q and 8q. The k3 cluster 

(n=65) was similar to the kB cluster (arrow), showing gains of 7p and 12q. The additional 

cluster k1 (n=70) was marked by gains at 5p and 14q.
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Figure 3. 
Impact of aCGH cluster assignment on overall survival. Kaplan-Meier survival showed a 

survival advantage for patients whose tumors were in the EGFR-mutant-rich kB cluster 

(designated B) in the 2-cluster separation (p=0.006). In the 3-cluster separation, the EGFR-

mutant-rich k3 cluster (designated C) showed a survival advantage over the k1 cluster 

(designated A) (p=0.03). Outcome differences between the KRAS-mutant-rich k2 cluster 

(designated B) and the other two clusters were not statistically significant.
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Figure 4. 
A. Comparison of DUSP4 levels in normal non-neoplastic lung tissue samples, and lung 

adenocarcinomas with different EGFR and KRAS mutation status. DUSP4 expression is 

significantly lower in EGFR-mutant lung adenocarcinomas than in normal lung tissue or 

other subsets of lung adenocarcinoma. P-values are from two-sided Wilcoxon test. B. 

DUSP4 copy number versus expression, annotated for EGFR mutation status. Samples with 

alterations are as indicated in the legend. The correlation of copy number to expression for 

the DUSP4 locus is highly significant (p<0.0001 and R=0.43, Pearson's product moment 

correlation). EGFR mutant samples generally had lower DUSP4 expression for a given 

DUSP4 copy number, compared to samples lacking EGFR mutation. C. DUSP4 / EGFR 

dual color FISH. DUSP4 signals are red, EGFR in green. Arrows indicate the single DUSP4 

signal in each nucleus; there are multiple EGFR signals per nucleus in this EGFR-mutant 

lung adenocarcinoma. D. DUSP4 loss defines a favorable clinical subset of lung 

adenocarcinoma. The p=0.042 for difference between survival curves; p=0.031 from 

univariate Cox proportional hazards regression; hazard ratio of 2.06 (95% confidence 

interval: 1.02-4.20). Data are from 198 samples with complete data for both variables.
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Figure 5. 
A. DUSP4 knockdown enhances growth of lung adenocarcinoma cell lines. In 3/3 cell lines 

with moderate to high DUSP4 expression, DUSP4 knockdown by two different siRNAs 

(D1, D2) resulted in growth enhancement (all p<0.05 except H1975) relative to control 

siRNA (C). In contrast, in 3/3 EGFR-mutant cell lines with low baseline DUSP4 expression, 

DUSP4 knockdown had no significant effect. For comparison, EGFR knockdown reduced 

the growth of 4/5 EGFR-mutant lines. EGFR knockdown did not suppress growth of the 

KRAS-mutant H358 line. Thymidine incorporation was measured 48-72 hours after 

transfection. DUSP4 expression was measured by Q-RT-PCR, normalized to TBP 

expression and expressed as the ratio of the cell line expression to that of HBECs. B. 

DUSP4 knockdown preferentially enhances growth of human bronchial epithelial cells 

(HBEC) in the presence of mutant EGFR. To confirm the findings shown in A. in an 

isogenic background, we examined the effect of DUSP4 knockdown in HBECs stably 

transfected with EGFR L858R. Reducing DUSP4 levels (using D1 siRNA as in A.) 

enhances growth compared to control siRNA (C) in the presence of EGFR L858R (p<0.05) 

but not in the parental line (thymidine incorporation measured 48-72 hours after 

transfection). DUSP4 knockdown was confirmed by RT-PCR as shown in the adjacent 

agarose gel image. C. DUSP4 cDNA transfection inhibits cell growth of lung 

adenocarcinoma cell lines. Thymidine incorporation was measured 24 hours after DUSP4 

cDNA transfection. Transfection efficiencies, estimated by FACS analysis of GFP-positive 

cells after 24 hours of transfection, were 54-60% for H1650 cells, 20-44% for H3255 cells, 

and 46% for H358 cells. V: vector-transfected cells; D: DUSP4-GFP cDNA transfected 

cells. For all three figure parts, significant differences relative to control are shown by 

asterisks if p<0.05 (*) or p<0.01 (**) (t-test, 2 tails, equal variance analysis).
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Figure 6. 
8p losses stratified by mutation group. The frequency of deletion on 8p in the region from 20 

to 32 megabases (blue, left-axis) is plotted by chromosomal position, along with the position 

and direction of transcription for three gene loci of interest: DUSP4, DOK2, and the TNF 

receptor cluster. The frequency of mutation in EGFR and KRAS (right-axis) is plotted by 

chromosome 8p position, for samples showing 8p losses at a given point in 8p. This 

highlights the higher frequency of EGFR mutations among cases with 8p losses overall and 

shows that this association is strongest in a region encompassing DUSP4. In contrast, KRAS 

mutations are less common in 8p-deleted cases and when present, appear to preferentially 

affect cases whose 8p losses include DOK2 and the TNF receptor cluster.

Chitale et al. Page 18

Oncogene. Author manuscript; available in PMC 2010 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chitale et al. Page 19

T
ab

le
 1

E
G

F
R

 a
nd

 K
R

A
S 

ex
pr

es
si

on
 p

ro
fi

le
s.

 T
op

 2
5 

ge
ne

s 
sh

ow
n;

 c
om

pl
et

e 
lis

ts
 p

ro
vi

de
d 

in
 S

up
pl

em
en

ta
ry

 T
ab

le
 5

.

G
en

es
 d

if
fe

re
nt

ia
lly

 e
xp

re
ss

ed
 in

 E
G

F
R

 m
ut

an
t 

ve
rs

us
 w

ild
 t

yp
e 

tu
m

or
s

G
en

es
 d

if
fe

re
nt

ia
lly

 e
xp

re
ss

ed
 in

 K
R

A
S 

m
ut

an
t 

ve
rs

us
 w

ild
 t

yp
e 

tu
m

or
s

Sy
m

bo
l

C
yt

ob
an

d
SW

S
P

-v
al

ue
Sy

m
bo

l
C

yt
ob

an
d

SW
S

P
-v

al
ue

D
U

SP
4*

8p
12

-p
11

-6
.7

2.
4E

-1
1

M
C

L
1*

1q
21

5.
1

3.
3E

-0
7

E
G

F
R

*
7p

12
6.

4
1.

4E
-1

0
IG

F
2B

P
3*

7p
11

-5
.0

5.
2E

-0
7

P
R

D
M

4*
12

q2
3-

q2
4.

1
-6

.4
1.

8E
-1

0
K

R
A

S*
12

p1
2.

1
5.

0
7.

1E
-0

7

T
X

N
R

D
1

12
q2

3-
q2

4.
1

-6
.0

1.
5E

-0
9

P
R

N
P

IP
1p

32
-4

.9
8.

0E
-0

7

G
T

F
2E

2
8p

21
-p

12
-6

.0
1.

6E
-0

9
F

T
SJ

2
7p

22
-4

.9
8.

3E
-0

7

G
P

R
17

7
1p

31
.3

6.
0

1.
8E

-0
9

SN
R

P
D

3
22

q1
1.

23
-4

.8
2.

0E
-0

6

M
G

C
13

09
8*

7p
13

6.
0

2.
0E

-0
9

K
IA

A
10

33
12

q2
4.

11
4.

7
2.

8E
-0

6

G
A

L
N

T
10

*
5q

33
.2

5.
9

3.
5E

-0
9

R
H

O
B

2p
24

4.
7

2.
9E

-0
6

L
R

R
C

31
3q

26
.2

5.
8

5.
0E

-0
9

M
E

D
18

1p
35

.3
-4

.6
3.

6E
-0

6

K
IA

A
03

19
L

1p
34

.2
5.

8
7.

9E
-0

9
PA

C
 8

86
K

2
1p

36
.1

1
-4

.5
7.

3E
-0

6

M
K

L
2

16
p1

3.
12

5.
8

8.
8E

-0
9

L
A

N
C

L
2

7q
31

.1
-q

31
.3

3
-4

.5
8.

1E
-0

6

R
A

D
51

L
1

14
q2

3-
q2

4.
2

5.
7

1.
2E

-0
8

U
SP

2
11

q2
3.

3
-4

.5
8.

4E
-0

6

K
IA

A
04

95
1p

36
.3

2
5.

7
1.

3E
-0

8
F

O
X

R
E

D
2

22
q1

2.
3

-4
.4

1.
3E

-0
5

R
H

C
E

1p
36

.1
1

5.
7

1.
4E

-0
8

R
P

L
13

A
19

q1
3.

3
4.

3
1.

5E
-0

5

H
IP

1
7q

11
.2

3
5.

6
1.

7E
-0

8
SM

P
D

L
3A

6q
22

.3
1

4.
3

1.
6E

-0
5

G
P

R
17

2B
17

p1
3.

2
5.

6
2.

2E
-0

8
ST

K
24

13
q3

1.
2-

q3
2.

3
4.

3
1.

6E
-0

5

T
N

F
R

SF
10

B
8p

22
-p

21
-5

.6
2.

5E
-0

8
M

A
F

F
22

q1
3.

1
4.

3
1.

7E
-0

5

C
16

or
f5

8*
16

p1
1.

2
5.

5
3.

2E
-0

8
N

X
P

H
4

12
q1

3.
3

-4
.3

1.
8E

-0
5

R
N

F
40

16
p1

1.
2-

p1
1.

1
5.

5
3.

2E
-0

8
C

7o
rf

30
7p

15
.3

-4
.3

2.
0E

-0
5

M
Y

ST
1

16
p1

1.
2

5.
5

4.
0E

-0
8

L
O

C
81

69
1

16
p1

2.
2

-4
.3

2.
0E

-0
5

A
D

C
Y

9
16

p1
3.

3
5.

4
6.

1E
-0

8
SN

H
G

3-
R

C
C

1
1p

36
.1

-4
.3

2.
0E

-0
5

L
R

R
C

47
1p

36
.3

2
5.

4
6.

8E
-0

8
T

R
M

T
5

14
q2

3.
1

-4
.3

2.
0E

-0
5

K
Y

N
U

2q
22

.2
-5

.4
7.

5E
-0

8
P

P
IE

1p
32

-4
.2

2.
1E

-0
5

R
F

K
9q

21
.1

3
-5

.4
8.

2E
-0

8
IV

N
S1

A
B

P
1q

25
.1

-q
31

.1
4.

2
2.

2E
-0

5

H
L

A
-D

M
A

6p
21

.3
5.

3
9.

7E
-0

8
D

U
SP

6
12

q2
2-

q2
3

4.
2

2.
3E

-0
5

Oncogene. Author manuscript; available in PMC 2010 February 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chitale et al. Page 20
N

ot
e:

 f
or

 g
en

es
 th

at
 w

er
e 

re
pr

es
en

te
d 

on
 th

es
e 

lis
ts

 o
f 

th
e 

to
p 

25
 g

en
es

 b
y 

m
or

e 
th

an
 o

ne
 A

ff
ym

et
ri

x 
pr

ob
e 

se
t (

in
di

ca
te

d 
by

 *
),

 o
nl

y 
th

e 
to

p 
sc

or
in

g 
pr

ob
e 

se
t i

s 
sh

ow
n;

 S
W

S 
=

 s
tr

at
if

ie
d 

W
ilc

ox
on

 s
ta

tis
tic

 
w

ith
 th

e 
si

gn
 o

f 
th

e 
st

at
is

tic
 in

di
ca

tin
g 

ei
th

er
 o

ve
r-

 o
r 

un
de

r-
ex

pr
es

si
on

; t
w

o-
si

de
d 

p-
va

lu
es

 c
al

cu
la

te
d 

fr
om

 a
 n

or
m

al
 d

is
tr

ib
ut

io
n;

 P
A

C
88

6K
2 

in
di

ca
te

s 
ge

no
m

ic
 c

lo
ne

 c
on

ta
in

in
g 

E
ST

 c
or

re
sp

on
di

ng
 to

 
A

ff
ym

et
ri

x 
pr

ob
e 

se
t 2

13
68

5_
at

.

Oncogene. Author manuscript; available in PMC 2010 February 07.




