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A Mathematical Model of Diffusion as a Length Sensor in Intraflagellar Transport 

Nathan L. Hendel 

 

Abstract 

An important question in cell biology is whether cells are able to measure size, either whole cell 

size or organelle size. Perhaps cells have an internal chemical representation of size that can be 

used to precisely regulate growth, or perhaps size emerges due to constraint of nutrients. The 

eukaryotic flagellum is an ideal model for studying size sensing and control because its linear 

geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The 

assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry 

cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, 

lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the 

flagellum is anticorrelated with the flagellar length, implying communication between the base 

and the tip and possibly indicating that cells contain some mechanism for measuring flagellar 

length. Although it is possible to imagine many complex scenarios in which additional signaling 

molecules sense length and carry feedback signals to the cell body to control IFT, might the 

already-known components of the IFT system be sufficient to allow length dependence of IFT? 

Here we investigate a model in which the anterograde kinesin motors unbind after cargo 

delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains 

into the flagellum. By mathematically modeling and simulating such a system, we are able to 

show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for 

length measurement. An analytical formulation of the model predicts the effect that physical 

parameters have on length, motivating experiments that can validate or disprove the model. 
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Introduction 

 

In order to live, function, and reproduce, cells have to build a complex world within 

themselves that is robust and adaptive. Cells build their organelles to be the right size and shape, 

and they do so through self-assembly. There is no blueprint to organelles, no predetermined plan. 

Instead, proteins must come together in the thousands and form intracellular structures with 

precise shapes. This is the key question of the field of cell geometry: how do cells build 

themselves and their organelles to be the right sizes and shapes? 

Nowhere is the importance of cell geometry as evident as in single-celled organisms. 

These organisms, as their name implies, consist of just one cell. They have no brain to rely on to 

pass down signals, and they have no tissues with neighboring cells they can rely on for support. 

Single-celled organisms have to build themselves to be able to swim, hunt, survive, and 

reproduce. 

The single-celled green algae Chlamydomonas reinhardtii is an unassuming oval-shaped 

cell with two flagella that protrude out into the pond water in which it lives. Flagella (also known 

as cilia in eukaryotes like Chlamydomonas) are long whip-like appendages that protrude from 

the cell body. Chlamydomonas uses these two flagella to swim by beating them in a cyclic 

pattern resembling a breast stroke. The cell body is about 10 micrometers long, and each cilium 

is an additional 10 micrometers. Chlamydomonas must build its two flagella to exactly the same 

length in order to swim straight. The curious thing about Chlamydomonas’s flagella is that when 

one is severed, it will grow back to the same length it was before it was cut (1). In fact, not only 

does its cut flagellum regenerate to its original length, the other flagellum will shrink as the cut 

one grows. It will shrink until they are the same length, and then both flagella grow back to their 

original length together (1). This is most likely to minimize the amount of time the cilia are 
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different lengths, thereby maximizing the amount of time the cell can swim straight. This 

demonstrates that Chlamydomonas has a high degree of internal geometry coordination. 

Since severed flagella grow back to their original length, Chlamydomonas somehow 

knows how long its flagella should be. But Chlamydomonas is just one cell and does not have a 

brain, so perhaps “knowing” is perhaps a misleading term. Still, somehow Chlamydomonas has 

the information about its ideal flagellar length encoded within it. Could it be a length sensor that 

signals to the cell body how long to build its flagella? Or a scarcity of resources where a cell of a 

certain size cannot build past a certain length?  

The question of how Chlamydomonas builds its flagella back to the same size every time 

is my research topic, and there are two reasons that make it a fruitful topic. The first is that the 

flagellum’s linear geometry makes it an ideal system for mathematical modeling. It offers a 

simple system for studying how cells construct and maintain their organelles. The second is that 

the flagellum is a well-conserved organelle across different species, meaning its structure and 

protein composition is consistent in many species (2). Flagella are common organelles in cells, 

and are not just used for locomotion but also for sensing and generating flow (3, 4). For example, 

human respiratory cells use cilia to clear mucus (5). There are many human diseases caused by 

malfunctioning cilia, known collectively as ciliopathies, that involve a variety of symptoms 

affecting development by altering developmental signaling pathways as well as physiological 

function such as mucus clearance (6, 7). Understanding how cells regulate ciliary length could 

provide insight into how to cure these diseases. 

In order to investigate how Chlamydomonas regulates the length of its flagella, it is 

necessary to learn the structure of the flagellum. Flagella are relatively simple organelles because 

they have a linear shape, and when they grow they get longer, not wider. This property simplifies 
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the study of their growth from a three-dimensional to a one-dimensional problem. The building 

process of a flagellum is fairly well understood. The internal structure of the flagellum is built 

out of the protein tubulin, which serves as a building block. Tubulin proteins form linear 

structures called microtubules, and the flagellum consists of several bundles of microtubules. 

The collection of microtubule bundles is sheathed by the cell membrane, analogous to a cat’s 

tailbone surrounded by skin. 

The motor protein kinesin-2 is the protein responsible for transporting tubulin from the 

base to the tip in a process called intraflagellar transport, or IFT (8–11). Kinesin-2 has two 

microtubule binding domains and uses them to walk along microtubules. Kinesins come together 

with other kinesins to form trains, and these trains bind a collection of proteins called IFT 

particles, which contain tubulin (12, 13). The train walks from the base of the cell to the tip, at 

which point it deposits the tubulin. The tubulin binds to the end of one of the microtubules, 

elongating the microtubule and thus the flagellum. This process resembles a group of people 

carrying a sack of bricks down a hallway. Unlike humans however, kinesins can only walk in 

one direction. The microtubule has a directionality due to the asymmetric structure of the tubulin 

subunits. One end is called the plus end because tubulin addition is faster at that end. Kinesin can 

only walk toward the plus end at the tip because of its own asymmetry.  

While the tubulin has been incorporated onto the end of the microtubule, the IFT particle 

(the sack in the metaphor) must return to the base. This is where dynein comes in. Dynein is a 

motor protein conceptually similar to kinesin because it can walk along microtubules carrying 

cargo, except it walks in the other direction. Dyneins carry the IFT particle from the tip back to 

the base to be reused in IFT (8, 9). 
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Intraflagellar transport is required not just for building flagella in the first place, but also 

for maintaining existing flagella (14). The IFT particles that are brought back by dynein then 

pick up tubulin and bind to another train of kinesin for transport to the tip. But even though IFT 

happens throughout the lifetime of the cell, the flagellum does not get longer forever. Tubulin at 

the tip can unbind from the microtubule, shortening the flagellum. This decay happens 

throughout the lifetime of the cell as well, and we believe that the rate of decay is constant and 

independent of the flagellar length (15). The flagellum grows through IFT and shrinks through 

decay, so the overall growth rate is the difference between the rate of IFT and the rate of decay. 

When the rate of IFT bringing tubulin to the tip is greater than the rate of decay, the flagellum 

will grow. When the rate of IFT is smaller than the rate of decay, the flagellum will shrink. The 

reason Chlamydomonas’s flagella have constant lengths for most of their lives is that these two 

length factors reach equilibrium: the rate of IFT exactly equals the rate of decay. This 

equilibrium is a “steady state,” and this type of model is referred to as the “balance point” model. 

A regenerating flagellum grows very quickly when the length is small. This is because 

the flagellum is shorter, so it takes less time for IFT to reach the tip and less time for the dyneins 

to bring the IFT particles back. The growth rate decreases as the flagellum grows, and the 

flagellum gradually approaches its steady-state length. Since flagellar decay is length-

independent, and the growth rate is length-dependent, the rate of IFT (which is the difference 

between these two) must be length-dependent (15, 16). This means that the cell modulates the 

rate of IFT based on the length of the flagellum. 

Evidence of this came in an experiment imaging IFT injection. Injection is the IFT 

initiation process, in which kinesins leave the cell body and enter the flagellum. The 

compartment of the cell connecting the cell body to the flagellum is called the transition zone, 
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representing the distal end of the basal body which nucleates the flagellum. In the basal body, 

kinesins come together to form trains, pick up their IFT particles, and collect tubulin (17). The 

trains are then launched through the transition zone into the flagellum to begin their transport. 

IFT trains walk at a constant speed along the flagellum, so the rate of injection is essentially the 

same as the rate of IFT, which is the same as the rate of flagellar growth. The study that 

validated the balance point model showed a very curious finding: the rate of injection is 

anticorrelated with the length of the flagellum (18). The longer the flagellum is, the less often 

IFT trains are injected. The observation made was that the distribution of IFT trains injected into 

the flagellum resembles an avalanche. Avalanches come from the piling up of some material like 

sand or rocks, and the pile is stable until it reaches a critical threshold of amount of material. 

Once it reaches this threshold, some of the material will fall down and exit the pile. The 

observation made in Chlamydomonas flagella is that the distribution of sizes of IFT trains and 

the distribution of dwell times between injection events follow the same stochastic pattern as 

avalanching. While the inner workings of the transition zone are not well understood, this pattern 

could happen if the kinesins were squeezing through a pore (19). So while we do not know the 

physical mechanism of avalanching, experiments have shown that accumulation of kinesin 

motors in the basal body leads to injection events. The longer the flagellum is, the less often the 

basal body reaches the critical threshold of kinesin accumulation. 

This confirms the balance point model’s claim that IFT is length-dependent, but it raises 

a fundamental question: how does the basal body know how long the flagellum is? The basal 

body and the tip of the flagellum are separated by the length of the flagellum, yet somehow the 

basal body can sense how long the flagellum is and how much IFT material to inject. At steady 

state, the length of the flagellum is roughly the same as the length of the cell body, so 
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Chlamydomonas has a tough engineering challenge. This single cell has to have a method for 

sensing long lengths.  

Conceptually this is analogous to the action at a distance problem that plagues physicists 

when they try to explain how two distant objects can interact. How does a positive charge 

“know” to move towards a negative charge? How does the Earth “know” to revolve around the 

Sun even though they are far away? These problems are solved with particles that are transmitted 

from one body to the other. Biology is often more complicated, so the puzzle here is to figure out 

how the tip of the flagellum transmits information about its length down to the cell body.  

Several models have been theorized. The goal now is to develop each model using theory 

so that we can motivate experiments that will reject or validate the model. One recent theory is 

that the IFT particles can measure the time it takes them to go from the base of the cell to the tip 

and back, and the cell is tuned to build its flagella to a length that would register as a certain 

amount of time for the IFT particles (20). This theory, called the “time-of-flight model” was 

developed and tested by Ishikawa and Marshall, who used theory to determine that slowing 

down dynein’s transport from the tip to the base (called “retrograde transport”) should decrease 

injection (21). When they used a Chlamydomonas mutant with lower retrograde transport speeds, 

they found the opposite: injection increased. Thus, they ruled out the time-of-flight model. 

 Another model considers the ion channels which are regularly spaced within the 

flagellum, transporting charged ions to the cell body. The “ciliary current” model claims these 

ion channels generate a current that acts as a length signal (22–24). The flagellum adds more ion 

channels as it grows, so the longer it is, the more ions it has within it. These charged ions travel 

down to the cell body and generate a current. In this model, the cell body recognizes the amount 

of charge, and the cell is tuned to build its flagella to a length that would register as a certain 
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amount of current from the flagella. This model is still considered possible, as experimental data 

has not ruled it out. 

 The other model that has not yet been ruled out is the diffusion model, which is the focus 

of this dissertation. In the diffusion model, the flagellar length is determined by a gradient of 

concentration of a diffusive molecule. In this system, we hypothesize that the diffusive molecule 

is the kinsin-2 motors that transport the IFT cargo to the tip. The concept here is that the kinesin-

2 motors are injected, walk to the tip, deposit the tubulin (elongating the flagellum), and then 

unbind. Once they are unbound, they begin diffusing.  

Diffusion is the process in which small objects move randomly through small thermal 

fluctuations in the material the objects are immersed in. If a large number of small objects are 

undergoing diffusion, the cumulative effect of the random motion is that the objects spread out. 

For example, if you have a tube that is closed on one end, and you put a drop of food coloring 

inside the tube at the closed end, the food coloring will spread out and eventually exit out the 

open end.  

In the diffusion model of flagellar length control, the kinesins start diffusing once they 

reach the tip. Since the flagellum is wrapped in a membrane and the only escape is back at the 

base, the diffusing kinesins will always eventually make it back, just like the food coloring in the 

tube. Once they make it back, they accumulate in the basal body. Once enough of them have 

accumulated in the basal body, an avalanche of kinesins is injected into the flagellum to be re-

used in IFT. This solves the issue of the cell injecting kinesin less often when the flagellum is 

longer: if the flagellum is longer, it takes longer for kinesins to reach the base, so it takes longer 

for enough kinesins to accumulate to trigger an avalanching event. When the flagellum gets 

longer and the rate of injection is small enough that it exactly balances out the decay rate, steady 
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state has been achieved. If the flagellum is too short, the growth rate will be higher than the 

decay rate. If it is too long, the decay rate wins out. This is a stable equilibrium, and will result in 

the same steady-state length every time the flagellum grows. 

 A critical piece of experimental evidence was published at the time as I was developing 

the model. Alex Chien and Ahmet Yildiz made an innovation in microscopy that allowed them to 

track a single train of kinesin-2 motors during their entire journey inside the flagellum, and found 

that the kinesin-2 motors indeed diffuse inside the flagellum once they reach the tip (25). They 

also showed that the dyneins that carry the IFT particles back to the base are themselves brought 

to the base as passengers on the kinesin IFT trains, but the kinesins are not brought back by the 

dyneins. Since we know that the kinesins are diffusing, the modeling question narrows to: is the 

diffusive return of kinesin sufficient to achieve length control?  

This dissertation brings together the two publications that I wrote with my collaborators 

and published during the course of my doctoral studies. The first, “Diffusion as a Ruler: 

Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport,” uses mathematics 

and simulations to show that kinesin diffusion is indeed sufficient to achieve length control (26). 

We also showed that if both flagella are drawing from a common pool of tubulin, the shrinking 

effect of the intact flagella occurs when the other flagella is cut, matching experimental 

observation. This paper was written primarily with my advisor Prof. Wallace Marshall, and we 

incorporated critical input from Prof. Matt Thomson, a UCSF faculty member at the time. This 

discovery means we can generate hypotheses that will test the theory. Some of this is done in this 

first paper, but it is much more developed in the second paper, “Speed and Diffusion of Kinesin-

2 Are Competing Limiting Factors in Flagellar Length-Control Model” 12/16/20 11:54:00 AM. 

This second paper was a result of a team of Prof. Marshall, Dr. Rui Ma, Prof. Hongmin Qin, and 
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me. This paper explores the predicted flagellar lengths based on the physical parameters of the 

system using the diffusion model as the theory. This lets us generate hypotheses to test in the lab. 

For example, we can use the results of this study to predict how much length would change if we 

tested a mutant with IFT trains that move half as fast. The advantage of this form of analysis is 

that we can motivate experiments that we never would have thought to do in order to test the 

theory. In the discussion section of the paper, we discuss the possibility that a completely 

overlooked parameter in the length control field, the beating of the flagella as the cell swims, 

could have an effect on length.  

The diffusion model is the simplest solution to the puzzle of length control given the 

experimental evidence collected over the years. It is an elegant model, because it circumvents the 

need for the cell to have a black-box signaling mechanism with a currently unknown signaling 

source, and instead asserts that the cell can harness the passive physics of diffusion to build 

itself. Now that the diffusion model is well-developed, it is ripe for experimentalists to go to the 

lab and perform experiments to test the theory. 
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Chapter 1 

Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport 

 

The text of this chapter of the dissertation is a reprint of the material as it appears in Biophysical 

Journal. The co-authors listed in this publication directed and supervised the research that form 

the basis for this chapter of the dissertation. Below is a copy of the entirety of the publication: 

 

Hendel, Nathan L., Matthew Thomson, and Wallace F. Marshall. “Diffusion as a Ruler: 

Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.” Biophysical 

Journal 114, no. 3 (February 6, 2018): 663–74. https://doi.org/10.1016/j.bpj.2017.11.3784. 
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Abstract 

An important question in cell biology is whether cells are able to measure size, either whole cell 

size or organelle size. Perhaps cells have an internal chemical representation of size that can be 

used to precisely regulate growth, or perhaps size is just an accident that emerges due to 

constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and 

control because its linear geometry makes it essentially one-dimensional, greatly simplifying 

mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in 

which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then 

deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to 

begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind 

of communication between the base and the tip and possibly indicating that cells contain some 

mechanism for measuring flagellar length. Although it is possible to imagine many complex 

scenarios in which additional signaling molecules sense length and carry feedback signals to the 

cell body to control IFT, might the already-known components of the IFT system be sufficient to 

allow length dependence of IFT? Here, we investigate a model in which the anterograde kinesin 

motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to 

power entry of new IFT trains into the flagellum. By mathematically modeling and simulating 

such a system, we are able to show that the diffusion time of the motors can in principle be 

sufficient to serve as a proxy for length measurement. We found that the diffusion model can not 

only achieve a stable steady-state length without the addition of any other signaling molecules or 

pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate 

that has been observed in quantitative imaging studies.  
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1. Introduction 

How does the cell control the size of its organelles? This question has been puzzling cell 

biologists for decades. Cells must have a robust and efficient procedure for building organelles 

with a specific size and shape. The stochastic kinetics of polymerization typically leads to 

formation of structures with widely varying sizes in the absence of any size-dependent assembly 

or disassembly processes (1). But organelles are thousands of times bigger than the materials 

used to build them. How can molecular pathways of assembly sense and respond to organelle 

size to yield organelles of a necessary size for proper function? This problem is extremely 

difficult to solve in the general case considering the many different types of organelles and their 

often highly complex structures. In order to simplify the problem, we will just consider the 

eukaryotic flagellum. Flagella (also known as cilia) are long whip-like appendages protruding 

from certain cells and are used for both locomotion and sensing. Unlike a prokaryotic flagellum, 

which is made of a tube of a single polymer, the eukaryotic flagellum is a more complex 

structure made of nine microtubule doublets underlying a protrusion of the plasma membrane. 

These doublets are nucleated by the basal body. The flagellum is the perfect organelle to model 

mathematically because it has a linear geometry: when it grows, it gets longer but not wider, 

making it essentially a one-dimensional organelle. 

Here, we will consider the flagella of Chlamydomonas reinhardtii, a eukaryotic alga that 

has two flagella. When Chlamydomonas develop, their flagella grow with decelerating kinetics, 

ultimately leveling out to a steady-state length (2). This slow-down in growth suggests that some 

part of the flagellum-building mechanism is feedback-regulated by length such that growth 

ceases when the flagellum reaches a certain length. In cells with two flagella, an interaction is 

observed such that when one flagellum is severed, the other flagellum will shorten until the two 

flagella reach the same length (2). This length equalization also suggests some form of feedback 
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control between the two flagella. The present study examines how these types of length-

dependent control of assembly might happen.  

Most of the flagellum-building machinery is known. To build a flagellum, cells use a 

process called intraflagellar transport, or IFT (3, 4, 5, 6). IFT, diagrammed in Figure 1.1A, is 

mediated by complexes of approximately 20 polypeptides called IFT proteins, which contain 

numerous protein-protein interaction domains capable of binding the building blocks of flagella 

such as tubulin and axonemal dynein arms. These IFT protein complexes associate into linear 

arrays known as “trains” (7,8). IFT trains are pulled to the distal tip by heterotrimeric kinesin-2 

motors (9,10). Upon reaching the tip, the contents of the cargo add to the length of the flagellum. 

Flagella are thus undergoing continuous incorporation of new tubulin and other building blocks. 

To counter this, tubulin is continually removed from the flagellar tip at a constant, length-

independent rate (11). Since this decay rate is constant, in order to achieve a steady state, the rate 

of IFT must be length-dependent (11,12). 

IFT trains are recruited from docking sites on the basal bodies (13) into the flagellum to 

begin transport through a process called injection. The physical mechanism of injection is 

unknown, but it is thought to involve IFT trains moving through some sort of selective pore or 

barrier similar to a nuclear pore (14, 15). While the molecular details of the injection process 

remain unclear, quantitative imaging studies (16) have revealed that motors are recruited into the 

flagellum according to a pattern of dynamics similar to how sand dropped onto a sandpile will 

fall off (avalanche) if the pile is high enough. For example, the more time elapses before a train 

is injected, the larger the train is, and the larger a train is injected, the more time will elapse 

before the next injection event. The sizes of the injection events are power-law distributed, 

similar to the size of avalanching events in sandpiles and other avalanching systems. These 



 18 

similarities suggest a simple model in which IFT proteins and motors accumulate at the basal 

body, gradually exerting more force on the pore until eventually a cluster of motors pushes 

through the pore, injecting a train (16). In such a scenario the rate at which motors accumulate at 

the base would ultimately be what determines the rate of injection. 

Quantitative live cell imaging (16, 17) has shown that the rate of injection of motors is 

anticorrelated with the length of the flagellum. Furthermore, quantitative analysis of IFT cargo 

loading suggests that cargo loading is also length-dependent (18). These length-dependencies 

imply some kind of communication between the base and the tip. Perhaps some sort of additional 

signaling pathways have evolved that can sense length, transduce length into some form of 

molecular signal, and then use this signal to modulate the injection of IFT proteins at the base of 

the flagellum. Several possible models for length-sensing pathways have been described and 

analyzed (16, 19). Each of these models invokes additional molecular pathways that could 

transduce length into a signal that would gate entry of IFT particles through a pore. But what if 

no such additional pathway exists?  Might the IFT machinery itself be capable of responding to 

changes in flagellar length? 

Here we consider a model that takes into account the return of IFT motors from the 

flagella tip. IFT is a cyclical process: IFT trains and motors move to the tip, deliver cargo, return 

to the cell body, and then are re-injected (20). Experimental data has addressed how motors are 

recruited into the flagellum, how motors get to the tip, and how the flagellum grows and shrinks. 

Two aspects of the IFT system that have been less intensively studied are how motors are sent to 

the pool at the basal body and what happens to the anterograde kinesin motors after they deliver 

their cargo to the tip. We propose a simple model to answer both of these questions: after 

dropping off their cargo, the kinesin motors unbind and diffuse back to the base, where they are 
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then added back into the pool of accumulated motors waiting to be injected. The initial evidence 

for a diffusive return of the kinesin motor was the failure to observe processive retrograde traces 

in kymographs of IFT using GFP-tagged kinesin subunits (17), and the fact that when retrograde 

IFT is inhibited, IFT proteins accumulate at the flagellar tip, but the kinesin motor does not (21). 

Direct tracking of individual trains by a novel bleach-gate method has shown that kinesin 

undergoes diffusion after dissociation from trains at the distal tip (22). In considering simple 

models for IFT that incorporate diffusive return of kinesin, we observed that the rate of diffusive 

return of kinesin motors to the pool at the flagellar base can serve as a proxy for flagellar length 

measurement, leading us to propose that the diffusion of the IFT kinesin motor may, itself, be the 

long-sought length sensor that regulates IFT injection. The complicating factor in such a model 

is that the source of the diffusing molecule, kinesin, is itself dependent on the rate of injection, 

which in turn is dependent on the rate of diffusive return. This mutual feedback between 

injection and return raises the question of whether such a system is capable of stably achieving a 

unique length at steady state. It is also not obvious how this type of system will perform when 

two flagella are considered simultaneously. 

In this paper, we investigate this hypothesis using a fine-grained agent-based model that 

is analyzed using computer simulations together with a coarse-grained differential equation 

model that can be solved analytically. In the agent-based model, we explicitly model the 

flagellum and motors and run time dynamics simulations. In the differential equations model, we 

solve the steady state form of the diffusion equation with boundary conditions that incorporate 

active delivery of IFT to the tip and diffusive return to the base. Each model is detailed below. 

The result of our analysis is that diffusive return of kinesin, when combined with a simple model 

for IFT-mediated flagellar assembly, does indeed predict a stable flagellar length control system 
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capable of achieving a unique steady state length and of equalizing the lengths of flagella in a 

biflagellate cell, without the need to add any additional components beyond what is already 

known from prior studies of IFT.  

2. Agent-Based Model 

As a starting point to look for potential length dependencies in the IFT system, we 

implemented a simplified model of the individual components of the system (Figure 1.1B) and 

asked what predictions this model might make about length dependence. We built an agent-based 

model to simulate kinesin and microtubule growth dynamics through stochastic rules grounded 

in biochemistry. Specifically, we used Python’s built-in object oriented programming methods to 

explicitly model individual motors and the flagellum they populate. 

The flagellum has attributes including length and environmental variables including 

decay rate and diffusion coefficient. Each motor has attributes including position, transport 

speed, a Boolean to indicate whether it is in the flagellum or in the base, and another Boolean to 

indicate whether it is bound (in active transport) or unbound (diffusing) if it is in the flagellum. 

To simulate dynamics, we cycle through each motor and test a series of conditionals to determine 

how it should adjust its position. If it is on the flagellum and bound, its position increases by a 

constant. If its position reaches the flagellum’s length, indicating that it has reached the tip of the 

flagellum, it unbinds (changes its state from active transport to diffusion), and the flagellum 

grows by the designated growth increment. If it is in the flagellum and unbound, it moves 

randomly to the left or to the right. If it is unbound and reaches the base, it is absorbed into the 

base and becomes inactive. At each time step, we count the number of motors in the base, and if 

that value is greater than a variable for avalanche threshold, we use a Weibull distribution to 

determine how many avalanche out and move into the flagellum, and reactivate into active 
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transport. We chose a Weibull distribution because it can fit the long-tailed distribution of train 

sizes that have been experimentally determined (16). The Weibull distribution has a 

multiplicative constant that we set to the difference between the number of motors in the base 

and the threshold for avalanching, plus a constant we could vary. Meanwhile, at each time step, 

the flagellum shrinks by the decay rate constant. Table 1 lists parameters we used, and how we 

obtained the values used for simulation.   

It is important to note that this model does not specifically represent the IFT particles.  It 

is assumed that each motor is associated with an IFT particle carrying a fixed quantity of 

material, as represented by the growth size per motor. 

This model lets us consider the journey of a single motor (Fig. 1.2A). In the example 

shown, it starts in active transport at position 0. The conditional that checks if it is bound 

commands its position to increase by the active transport step size. This process continues until 

the position of the motor is equal to the length of the flagellum. This position represents the tip, 

and at this stage, the motor’s bound parameter is changed to False (representing diffusion), and 

the length of the flagellum is increased by the build size parameter. In the next time step, the 

conditional that checks if the motor is bound sees that it is not bound, and this time it adjusts its 

position by the root mean square diffusion length multiplied by either 1 or -1, determined 

randomly. This simulates the randomness of diffusion. Once its position reaches 0 (the base), its 

Boolean value stating whether it is in the flagellum is set to False to indicate absorption to the 

basal pool. Every time step, a random power law number generator determines how many motors 

that are inactive at the base are injected onto the flagellum. If that number is zero, or if it is 

nonzero but this motor is not among those injected, this motor will stay stationary at position 

zero. Once it gets injected, it goes back into the flagellum in active transport, and the entire 
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process repeats for the remainder of the simulation. By simulating many motors within the same 

flagellum, each adding length to the flagellum upon reaching the tip and then diffusing back, 

combined with constant shortening of the flagellum, we can simulate the overall growth 

dynamics of a single flagellum, as shown in figure 1.2B. Simulations over time show that this 

system allows the flagellum to grow to a defined length with decelerating kinetics.  

Because motors undergo random motion as they return, and are released from the base in 

a way that depends on the time history of their return, it is expected that flagellar growth rates 

will fluctuate, and indeed our simulations confirm that the length does indeed fluctuate around a 

steady state average length. We found that the magnitude of this fluctuation varied between 

simulated flagella with different parameter values even if they reach the same steady-state length 

(Fig. 1.2C), indicating that fluctuation contains additional information about the system beyond 

what the steady-state length provides. By counting motors in different states, we can ask how the 

pool of diffusing motors is distributed along the length.  We find that the probability of finding a 

motor at a given distance from the tip is approximately linear, consistent with the expected form 

of a diffusional gradient at steady state (Fig. 1.2D).    

Having found that the simple agent-based model of diffusive kinesin return is able to 

produce a defined flagellar length, the key question is whether the length-dependence of IFT 

injection can be recapitulated. As shown in Figure 1.2E, the average injection size per unit time 

of injected IFT trains in the simulation shows an inverse dependence on flagellar length, as 

previously reported in experimental measurements (16, 17). 

The length control system modeled here is stable, as indicated by simulated experiments 

in which the length is transiently perturbed. As illustrated in Figure 1.2F, a transient externally 

imposed elongation of a flagellum at steady state, achieved by simply resetting the length to a 
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longer value, is followed by a shortening back to the steady state length. This implies that the 

steady state length is determined by the input parameters rather than the transient state of the 

flagellum. 

3. Dependence of length on model parameters  

 
The agent-based model described above is a minimalist representation of the IFT system, 

but while our simulations show that stable length is achieved, it is not obvious from the 

successful simulations why the model works or how the parameters of the model contribute to 

the value of the steady state length. In order to gain a physical understanding of how this model 

achieves length control, we investigated a more idealized model that will allow us to solve for 

the steady state solution analytically. By reducing the model a to classical boundary value 

problem, we can solve for system behavior as a function of key parameters in closed form. If we 

make the assumption that active transport time and expected time delay of injection is small 

relative to the timescale of diffusive return, we can model this system as a diffusion problem 

with a constant source of free motor protein at the tip of the flagellum and a sink at the base. If 

we also assume that no diffusing motors re-bind to the flagellum, we can apply Fick’s first law of 

diffusive flux in steady state. This law strictly applies to steady state, however we can still use it 

to study the dynamics of flagellar growth by invoking a separation of timescales. We assume that 

the timescale of flagellar length changes due to growth and shrinkage, which happens on the 

timescale of minutes to hours, is slow relative to the timescale over which diffusion establishes a 

stable gradient, such that the system can be viewed as being in a quasi-steady state. (This similar 

to the classic statistical mechanics problem of slowly expanding a box containing gas: when the 

expansion of the box is slow, the system is reversible and equilibrium statistical mechanics 
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theory can be applied. A simple validation of this is that a single motor reaching the tip increases 

the length by 1.25nm in our simulation with default parameters, and it takes 4.5 nanoseconds for 

a diffusing motor’s mean square displacement to equal 1.25nm, which is negligible compared to 

the roughly 18 seconds it takes to diffuse back to the base). 

The strategy for deriving an expression for steady state length is to determine the 

expected flux of diffusing motors arriving at the base, equate the flux to the number of motors 

diffusing from the tip (following our assumptions that injection time and active transport time are 

very small compared to diffusion time), convert that flux into a dynamic growth term, and then 

find the steady state at which this growth is balanced with the decay term. 

The resulting expression for steady state length is the following: 

𝐿(( = *+,-./
0
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2
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where N is the number of diffusing motors, D is the diffusion coefficient, 𝛿𝐿 is the increment of 

flagellar growth when a motor reaches the tip, and d is the decay rate. The derivation is below. 

 

The time it takes a random walker to move a root mean square distance L is: 
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The current of motors I reaching the base is equal to the number of diffusing motors N divided 

by the average time it takes to diffuse to the base. 
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In the approximation in which motors that have reached the base immediately transport back to 

the tip, the flagellum grows at a rate given by the current of motors reaching the base multiplied 

by the growth increment per motor 𝛿𝐿. The competing decay term d is length-independent. 
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An identical result can be obtained by solving the diffusion equation for appropriate boundary 

conditions and expressing the motor return rate in terms of the flux at steady state. 

This model predicts that the steady-state length of the flagellum is proportional to the 

square root of its diffusion coefficient, motor number, and unit length increase per motor. It also 

predicts that steady-state length is inversely proportional to the square root of the decay rate. 

Note that since the model proposed does not invoke any unknown transducer molecules or 

pathways, but instead directly represents all of the molecular players, there is no need for any 

undetermined constant of proportionality. 

By running simulations in the agent-based model over a range of parameters, we can 

verify that this relation matches the results of fine-grained agent based simulations (Fig 1.3).  

Specifically, we see close matches between theory and simulation as we vary diffusion 

coefficient (Fig 1.3A), number of motors (Fig 1.3B), length increase per motor (Fig 1.3C), and 

decay rate (Fig 1.3D). When simulated lengths are plotted versus the prediction of equation (1.1), 

we observe a virtually identical match (Fig 1.3E), with < 5% deviation on average. This is also 

true when parameters are varied in combination (Fig 1.3F). To simulate our assumptions, these 

simulations have an avalanching threshold of 1 motor and an active transport speed of 200 𝜇m/s 

(enough to go the entire length of the flagellum in one time step). The similarity between the 

predictions of equation 1.1 and the simulated lengths indicate that equation 1.1 accurately 

describes the length of diffusion-regulated flagella. For all parameter combinations simulated, a 
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single steady-state length is achieved. We used a Markov model to verify that the presence of a 

unique stable steady state solution is intrinsic to the model (see Supplemental Figure S1.1). 

Equation 1.1 above describes the steady state flagellar length in the limit of instantaneous 

injection and active transport. To determine whether deviations from these assumptions might 

have a significant effect over a large region of parameter space, we simulated flagella with a 

wide range of the parameters not included in equation 1.1. Specifically, we scanned over IFT 

velocity and avalanching parameters and held all other parameters constant. The effects on 

steady-state length are displayed in figure 1.4. The Weibull distribution used to determine 

avalanching dynamics has two parameters: the power and the prefactor. Figure 1.4A shows the 

final lengths generated by varying the power, and figure 1.4B shows the finals lengths generated 

by varying the prefactor. Both indicate that the Weibull parameters do not significantly affect 

length, implying that the specifics of IFT injection do not affect final length. This can be 

understood by considering that the avalanching dynamics dictate that on average, larger 

injections lead to more time between injections. So in steady state, the average build rate of the 

flagella is independent of avalanching parameters. The avalanching threshold (Fig 1.4C) affects 

the final length because increasing the threshold increases the average number of motors in the 

base at any given time, thereby decreasing the number of diffusing motors and decreasing the 

steady state length. Essentially, 

𝑁>?@AB??CD = 𝑁 −𝑁7EFB(E.  (1.2) 

The velocity of motors only affects the final length in low velocity regimes (Fig 1.4D). This is 

also due to the effective decrease in motors in diffusion. The number of motors in active 

transport, diffusion, and the base combined is conserved, so the longer a motor is in active 

transport or waiting at the base, the less often it is diffusing. To calculate the fraction of motors 
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inside the flagellum in diffusion, we must consider the time it takes to complete active transport 

and diffusion, and treat this as the probability of drawing a diffusing motor. The time it takes for 

a particle to diffuse a root mean square distance L is L2/(2D), and the time it takes for a motor 

with constant speed v to move a distance L is L/v. The sum of these two is the mean total time to 

complete active transport and diffusion, so the probability of drawing a diffusing motor is  
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which simplifies to 
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To confirm the relations in equations 1.2 and 1.3, we superimposed the curves onto 

figures 1.4C and 1.4D, respectively. The low root mean square residuals to these curves shows 

that these corrective terms adequately describe the changes in length associated with avalanching 

threshold and transport velocity. Combining equations 1.2 and 1.3 yields an overall correction 

for the N used previously for the number of motors used to predict steady state length: 

𝑁B>> = (𝑁 − 𝑁7EFB(E) Q
N
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R,   (1.4) 

where Neff is the effective number of motors, the number of motors in diffusion. 

 

Figure 1.4E shows the steady state length in simulations with random values for velocity and 

avalanching threshold. The predicted length values are generated using equation 1.1 with the 

value for Neff plugged in for N. Note that the final length is included in the expression for Neff, so 

we used the final length from the simulation in the expression for the prediction instead of 

solving for L directly, since our goal is just to show the validity of the equation. 
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4. Coordination of multiple flagella 

The model as it stands only includes a single flagellum, whereas Chlamydomonas cells 

have two. Experimental evidence shows that the two flagella in a given cell interact. Indeed, one 

of the most dramatic experiments in the length control literature is the demonstration that cells 

can equalize the lengths of their two flagella after one has been cut (called the “long-zero” 

experiment) (2). This is crucial for swimming, but more importantly, it creates the striking visual 

impression that each flagellum “knows” how long the other one is. In models that involve length 

sensor pathways, this coordination can be explained by some sort of molecular cross-talk 

between the length sensing pathways. In the diffusion-based length control model described here, 

there is no length-sensing pathway per se, and instead length influences growth rates simply by 

the timescale of diffusive return. This raises the question of whether the model can account for 

length equalization.  

To answer this question, we expanded the model to simulate two flagella competing for a 

common pool of material (Fig 1.5). We imagine the material in question to be tubulin, but in fact 

the axoneme is a complex structure with many proteins in it, some of which are involved in its 

assembly, and we do not currently know which axonemal structural protein is the limiting factor 

in terms of flagellar length. To include the effect of pool depletion in our model, we changed the 

amount that the flagellum grows when a motor reaches the tip from a constant to a proportion of 

the size of the free pool. For a total pool size T, flagellar lengths L1 and L2, and a constant of 

proportionality kpool, the build size of an injected motor becomes  

𝜕𝐿 = 𝑘UVV?(𝑇 − 𝐿N − 𝐿+)  (5) 
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Note that we express the size of the pool T in units of length, so the pool can be thought of as the 

maximum possible total flagellar length. In the early growth phase, L1 and L2 are small, so the 

build size of an injected motor is big (Fig 1.5A). Later, the flagella are longer, so the smaller 

amount of available material leads to a smaller build size (Fig 1.5B). Note that the building 

material does not have to be fully depleted for the flagella to stop growing, since the kinesin 

availability is still in competition with the constant decay. 

Figure 1.6 shows the results of the new simulation. To simulate the long-zero experiment, 

we simulated a two-flagella cell until it reached steady state then set the length of one flagellum 

to zero (Fig 1.6A). The length of the cut flagellum was subtracted from the total pool size, since 

the flagellar material gets lost after being cut. At this stage, we increased the pool size slowly 

over time until it returned to its original value. The cut flagellum then grows as the long 

flagellum shrinks. Once they reach the same length, they grow together to steady state. This is 

consistent with experimental long-zero dynamics. We have a new prediction for final length by 

replacing the constant 𝜕𝐿 in equation 1.1 with the pool size-dependent expression in equation 

1.5.  
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Note that in steady state, 𝐿N = 𝐿+ = 𝐿((. 

We validated the equation by simulating over a wide range of parameters and comparing 

the two sides of the equation (Fig 1.6B). Since Lss is in both sides of equation 1.6, we plotted the 

two sides of the equation against each other. On average, there is < 5% deviation between the 
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two sides of the equation, indicating that equation 1.6 accurately describes the steady-state 

lengths of two diffusion-regulated flagella competing for a common pool of material. 

The effect of T on the steady state length depends on the relative size of T compared to 

the other parameters. In regimes with low T compared to the ratio of build terms and decay 

terms, the common pool is limiting, and the final flagellar lengths will approach T/2. In the 

opposite regime, with high T, kinesin remains the limiting factor, and the only effect of T is the 

steady state build size.  

 

5. Discussion 

5.1 Diffusion as a ruler    

In this model of length sensing, the cell does not employ a sensor, such as the molecular 

rulers used for bacteriophage tail length, but rather harnesses the fact that the time scale of 

diffusion is a function of the distance over which a particle must diffuse. This model is similar to 

a chemical reaction in which a chemical X has an assembly term and a degradation term. The 

concentration of X over time is given by a simple differential equation, and the steady state 

concentration is determined by a combination of biochemical parameters. The flagellum is a 

similar system because the length has assembly and disassembly terms, and here we predict 

which specific biochemical parameters are involved (equation 1.1). There is a competition 

between a growth flux term (𝛿𝐿 ∗ 𝑁 ∗ 𝐷) and a decay term d. Two of these parameters,	𝛿𝐿 and N, 

implicitly contain additional meaningful parameters such as active transport velocity, 

avalanching threshold, and the size of the shared pool of material (equation 1.6). It is important 

to note that the square root in equation 1.1 comes from the geometry of the system.  
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We (19) and others (24) have previously noted that diffusive movement of a signal from 

one end of the flagellum to the other could be used as a length-measuring scheme.  However 

these prior models always invoked a “black box” in the form of some machinery that responds to 

the signal to alter flagellar dynamics. For example, our previous models (19) invoked the idea of 

a flagellar gate or pore whose opening was regulated by the diffusible signal. Because the nature 

of this black box was not known, for example its input-output relation, it was not possible to 

confidently make predictions to be compared with experiments. Our model described here avoids 

the need for any unspecified black boxes, because the kinesin motor that drives IFT is, itself, the 

diffusing entity. This allows the parameters of our model to be directly related to experimental 

predictions. For example, equation 1.6 can be used to determine how variation in different 

experimentally accessible parameters should alter length. 

 

5.2 Relating model to genetics of length control 

The simple mechanism modeled here is sufficient to explain length-dependent IFT 

injection and stable length control without needing to invoke any new molecular players beyond 

those already known. But this does not mean that the model works independently of molecular 

entities. All of the model parameters are determined by the biophysical and enzymatic properties 

of the known molecular component of the IFT system. It is to be expected that mutations in these 

molecules can alter flagellar length in predictable ways, potentially allowing the model to help 

interpret the mechanistic basis of previously described flagellar length-altering mutants. 

The diffusion constant of kinesin is mainly a property of the size of the molecule and the 

viscosity of the flagellar matrix, and is thus unlikely to be dramatically altered with point 

mutations. But it is not hard to imagine that mutations might alter the dynamics of the injection 
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system at the base. Previous research shows that the lf4 mutant makes the flagellum longer and 

increases the injection rate but without eliminating the length dependence of injection (16). Such 

a phenotype could correspond to lowering the threshold of motor buildup required for injection 

avalanching, which is a parameter in the agent-based model. High thresholds lead to lower 

injection frequency and lower steady state length, and low thresholds lead to higher injection 

frequency and higher steady-state length, as shown in the correction for N in equation 1.4 and its 

effect on steady-state length (eq. 1.6). This implies that it is possible that the LF4 gene controls 

the threshold for how big the pile can be before an avalanche occurs.  

Another mutant that we can examine is the FLA10 gene, which codes for the kinesin 

motors (9). Temperature-sensitive fla10 mutants with intact flagella start to lose their flagella 

when the temperature shifts into the region that disables FLA10 (9). Growth of fla10 mutants at 

intermediate temperatures, which partially disable the motors, leads to intermediate steady-state 

flagellar lengths (11). In our model, this translates to a reduction in N, the number of motors in 

the system. We note that the square-root dependence of steady state length on motor number 

(equation 1.1) means that length will decrease sub-linearly with decreasing motor number. To 

reduce length by a factor of 10 would require a reduction in motor number by a factor of 100.  

Thus, one prediction of this model is that the quantity of motors can be partially depleted, for 

example in the fla10 mutation at permissive temperature, and have little detectable effect on 

length.   

 

5.3 Comparison with other studies 

A recent study on mouse axons (23) studies the diffusion of kinesin motors as a 

mechanism for recycling. Their model for simple diffusion has the same linear distribution of 
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diffusing motors, but they find that the diffusing motors have a nonzero binding rate onto the 

flagellum from diffusion, and therefore the number distribution is exponential. The mouse axon 

system has a fixed length, but their work provides an example in biology of diffusion and 

recycling of kinesin. 

Models based on diffusion as a length measurement system have been proposed by Levy 

(24) and by Ludington (16, 19). In the model by Levy, the proposed source of the diffusing 

molecule was the base, not the tip, and it was assumed that the diffusing species directly affected 

assembly, as opposed to our model in which the diffusing molecule affects transport. In the 

Ludington 2013 model, RanGTP was the diffusing substance, and the link to injection was 

indirect, requiring a gating of entry by activated Ran (16). In the diffusion model investigated in 

Ludington 2015, the identity of the diffusing molecule was not specified and again a transducer 

system was assumed to couple the diffusive molecule to the injection system (19). Finally, we 

note that while a strength of our model is that length can be sensed and converted into length-

dependent IFT injection without the need to invoke any other molecular players, it has been 

shown that kinases inside the flagellar compartment do show length-dependent activity (25, 26). 

Likewise, flagellar disassembly can become length dependent when flagella grow outside of a 

normal length range (27). It is interesting to consider whether these molecular activities may be 

dependent on IFT injection or diffusive return. 

 

5.4 Future Prospects 

A fundamental puzzle of flagellar length control has always been how a molecular signal 

could be generated that depends on length. Our prior results indicated that IFT injection was 

length dependent but did not explain the origin of the length dependence, thus raising the 
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possibility that some complex length-measuring molecular pathway may exist. The results 

presented above establish that diffusive return of kinesin motors is, at least in principle, capable 

of providing a length measurement system for regulating IFT injection as a function of flagellar 

length, without requiring any additional regulatory or sensing components. In other words, the 

IFT system may contain its own measurement method based on the physics of diffusion. It is 

interesting to consider whether this type of measuring system could be at work in other linear 

cellular structures such as microvilli or microtubules.  
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Table 1.1. 
Parameter Default value How value was obtained 
Number of motors 200 Marshall et al, 2001 (11) 
Active transport speed 2 um/s Chien et al., 2017 (22) 
Growth size per motor 1.25 nm Marshall et al., 2001 (11) 
Decay rate 0.01𝜇m/s Marshall et al., 2001 (11) 
Diffusion coefficient 1.75 𝜇m2/s Chien et al., 2017 (22) 
Weibull distribution 
power 

2.85 Ludington et al., 2013 (16) 

Weibull distribution 
prefactor 

10 Arbitrary 

Avalanche threshold 30 motors Ludington et al., 2013 (16) 
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Figures 

 
Figure 1.1. Agent-based model of IFT 
(A) Diagram of IFT. Kinesin-2 motors form trains that carry IFT particles containing tubulin to 
the plus end of the microtubule bundle, the tip of the flagellum. Dynein motors carry the IFT 
particles back to the base. (B) Model version of IFT. Kinesin motors pile up at the base (1), and 
once the pile is large enough, some are injected into the flagellum with cargo (2). Each motor 
constantly moves towards the tip of the flagellum (3). Once they reach the end, they flagellum 
gets longer (4), and the kinesin motors unbind and diffuse (5). Once they diffuse back to the 
base, they are absorbed and re-enter the pile in the base (6). While this is happening, the 
flagellum is shrinking at a length-independent rate. 
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Figure 1.2. Results of agent-based simulation 
(A) (Blue) journey of a single motor in a zoomed-in window of the flagellum’s early growth, 
(green) flagellar length. (B) Flagellar length over time in simulated minutes. (C) Expanded 
window of two simulated flagella’s lengths over time as they approach steady state. The blue 
trace is for a flagellum with a small number of motors and a small decay rate, and the green trace 
is for a flagellum with a larger number of motors, larger diffusion coefficient, and larger decay 
rate. The standard deviation of the blue trace is 1.40e-3 𝜇𝑚, the standard deviation of the green 
trace is 6.69e-3 𝜇𝑚 in the time frame shown. (D) (Blue) Distribution of diffusing motors along 
flagellum using the average of 103 simulations with identical parameters and a Gaussian kernel 
density function applied to the means at each position, (green) linear fit. (E) Plot of injection size 
as a function of flagellar length. The points were generated by simulating 10 cells, taking their 
injection times and sizes, and binning them into measurements of average injection size per unit 
time in each of the 50 evenly-spaced bins. (F) Stability of length control system. Plot shows 
simulation in which length was manually increased to double its steady state length at t=30 min. 
(Blue) is before the manual increase, (green) is after, showing restoration to initial steady state 
length. The time step in each simulation was 0.01 seconds. 
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Figure 1.3. Comparison of analytical solution of diffusion equation to agent-based model  
Each plot shows the steady-state lengths given by equation 1.1 and agent-based simulations by 
varying a single parameter at a time. The varied parameters are: (A) diffusion coefficient D, (B) 
number of motors N, (C) length increase per motor 𝛿𝐿, (D) decay rate d, (E) plot of length 
predicted from equation 1.1 compared to simulation results. In this panel, all individual 
parameter variation simulated in the plots from panels A, B, C, and E are plotted in the same 
graph, with the parameter set used in each simulation inserted into equation 1.1 to yield the 
predicted length, then plotted against the final steady-state length simulated by the agent-based 
model. (F) Simulated steady-state lengths of flagella with randomly selected values for D, N,	𝛿𝐿, 
and d. In this panel, all four variables were simultaneously varied, instead of varied individually 
as in panel E. Each subplot has the curve predicted from equation 1.1 superimposed onto the data 
in green, along with a root mean square value for the residual between the simulated lengths and 
the prediction. The points in all panels were uniformly sampled in log space, so there are the 
same number of points between the default and one order of magnitude below as there are 
between the default and one order of magnitude above. 
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Figure 1.4. Effect of remaining parameters on steady-state length 
Each plot shows the steady-state lengths for simulations altering variables not included in 
equation 1.1. The varied parameters are: (A) Weibull distribution power, (B) Weibull 
distribution prefactor, (C) avalanching threshold (number of motors built up in the base required 
to trigger an avalanche), and (D) velocity of motors in active transport of IFT. The varied 
parameters in (A)-(C) are involving in the avalanching mechanism. Each panel has a line in 
green superimposed on the data representing the effect that variable has on steady-state length. In 
(A) and (B), we claim there is no significant effect. In (C), equation 1.2 is superimposed on the 
simulated data, and panel (D) has equation 1.3 superimposed. In (E), the threshold and transport 
velocity are both randomly generated and simulated, and equation 1.4 is superimposed. Root 
mean square residuals between the simulated lengths and the predictions are displayed in the 
legends of each panel. 
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Figure 1.5. Two-flagella model 
Diagram of model expanded to include a second flagellum and a shared pool of material. The 
amount of building material each motor carries is proportional to the remaining amount of shared 
material in the pool (Eq. 1.5). (A) Early on in the growth of the flagella, the amount of material 
is high, and therefore the amount of building material each motor carries is high. (B) Later in the 
growth of the flagella, the material pool has been partially depleted to build the flagella, so the 
build size per motor has decreased.  
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Figure 1.6. Simulation with expanded two-flagellum model 
(A) Length over time plots for simulation of two flagella competing for a common pool of 
material. At the time point indicated by the red star, we manually set the length of flagellum 
traced in green to zero and subtracted its prior length from the pool size. We then resumed the 
simulation, slowly increasing the pool size until it reached its original value. This is a simulation 
of the “long-zero” experiment. (B) Comparing the prediction of equation 1.6 to the simulated 
length. Since the right hand side of equation 1.6 includes L, we plotted the left hand side of eq. 
(1.6) on the y-axis and the right hand side on the x-axis. The values for steady-state length were 
calculated by averaging the steady-state lengths of the two flagella. The green line superimposed 
onto the data is y = x, showing where the two sides of equation 1.6 are equal. 
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Supplemental Material 

Transition Matrix Model 

Here we seek a more abstract model that can be analyzed mathematically to yield a more 

intuitive understanding of why the model works the way it does. To this end, we modeled the 

flagellum as a column vector N(t), with each element in the vector representing the number of 

motors at that location processing along the flagellum at time t. We then extended that vector to 

twice the length of the flagellum, with each element in the second half representing the number 

of motors diffusing at the corresponding location. Finally, we extended the vector by one 

element to represent the number of motors in the base. We can then represent the dynamics of 

the entire system using a stochastic matrix M such that M*N(t) = N(t+1).  

Supplemental figure 1.1A shows an example transition matrix M representing the 

dynamics of a flagellum of length 4. To construct M, we need to consider several constraints. 

First, the number of motors in the system must be conserved, so the sum of the elements in the 

state vector N(t) must remain constant throughout all t. The columns can be thought of as the 

spread of a point source after one time step. Specifically, if the value of the state vector 

component at position j at time t is nj , the transition matrix will redistribute those nj motors into 

a new distribution, governed by the values in M. Since every motor needs to end up in some 

position (given conservation of total motor number), the entries in the whole column must sum to 

1. The condition that each column in M must sum to 1 defines M as a left stochastic matrix. This 

property of the matrix will help us later determine the steady state of the system and solve the 

length control problem. 
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Second, the matrix must simulate active transport for the top half of the state vector, 

diffusion for the bottom half, and absorption/recruitment to send motors from the bottom value 

to the top value. Since we constructed the state vector such that the first L values represent bound 

(i.e. transporting) motors, the top left quadrant of the transition matrix M will represent the active 

transport dynamics. Active transport is simply moving some percent of motors one unit forward 

and keeping the remaining motors at their current position at each time step, so the active 

transport quadrant of the matrix will have positive values on the diagonal and one position under 

the diagonal. 

The diffusion region of the transition matrix must apply to motors that have moved past 

position L in the state vector. This means that the lower right quadrant of the transition matrix M 

must simulate the dynamics of diffusion. We can incorporate the random walk nature of 

diffusion into this matrix by stating that the probability of staying in the same position is high, 

and the position of moving one position to either side is low. This simulates the Gaussian spread 

of a diffusing point source after a small time (we keep the time small so there is a negligible 

chance of diffusion two units away). 

Notice that the first column incorporates the reflecting boundary condition that motors 

cannot go past the tip, so the odds of staying at the tip are the odds of not moving anywhere (here 

0.98) plus the odds of moving past the tip and bouncing off (here 0.01). Also note that the way 

our state vector is constructed, motors diffusing in the direction of the base are going down the 

state vector towards lower rows. This matches the order in which vector elements representing 

diffusing kinesins are specific in the state vector. 
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With the aforementioned elements of M specified, we are able to represent how the 

motors can actively transport to the tip, unbind, diffuse back to the base, and absorb at the base 

so that motors enter the inactive pool. We still need to add the final element of our dynamics into 

the matrix: injection. A simple way to do this is to assume that at each time step, the base sends p 

percent of the motors in the base back to the flagellum for active transport. This means that 1-p 

represents the proportion of motors that stay in the base. Such an assumption is a simplified 

representation of the quasi-periodic avalanching process, and may need to be relaxed in future 

simulations. The last column in M represents the spread of motors that were previously at the 

base. To incorporate avalanching and recruitment into this column, we simply make the column  

[p 0 0 … 0 0 1-p]T, where p is the probability of a motor being injected. 

Now all the columns in the matrix sum to 1, so the condition for being a stochastic matrix 

are satisfied. The probability of different states evolves in a strictly deterministic manner 

determined by successive matrix multiplications.  For example, if the diffusion half of the state 

vector is [0 1 0 0]T, applying M will result in a new state vector whose elements are real numbers 

in the range 0 to 1 that represent the probability of a motor occupying that position in the state 

vector. This makes sense physically in the assumption that there are a large number of motors in 

the system, and since the number is on the order of 200 motors, this is a reasonable 

approximation.  

 One limitation of this construction of the transition matrix is that it assumes a 

constant flagellum length. The length determines the size of the matrix, so to simulate length 

dynamics over time, we would need to continuously alter the size of the matrix. To avoid this 

inconvenience, we can instead directly calculate the steady state behavior as a function of 

flagellar length. The steady state solution 𝑁(( must satisfy 𝑀 ∗ 𝑁(( = 𝑁((, so 𝑁(( is an 
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eigenvector of M with eigenvalue 1. The Perron-Frobenius theorem states that the largest 

magnitude eigenvalue of stochastic, nonnegative, and irreducible matrix is always simple and 

equal to 1. Our motor transition matrix is stochastic (i.e. Markov) because the columns each sum 

to 1. It is nonnegative because all values are greater than or equal to zero. Finally, it is 

irreducible because each node has a path to get to every other node after some number of time 

steps. For example, a motor in the middle of active transport has a path leading through every 

subsequent active transport node, then it connects to a diffusion node, and each diffusion node is 

connected to a subsequent diffusion node, the last one connects to the base node, which connects 

to the first active transport node. This means we can apply the Perron-Frobenius theorem for 

nonnegative irreducible matrices to this stochastic matrix, proving that the eigenvalue of 1 

always exists and is unique, and corresponds to a principal eigenvector corresponding to the 

steady state number distribution (NSS in our example). This also means that the system is robust, 

and all sizes of the matrix M will yield a steady state solution. Because all other eigenvalues 

must have magnitudes less than 1, the corresponding eigenvectors will decay in any 

superposition state, so the same steady state solution will always be attained regardless of initial 

state. No change to the numerical values of the parameters in the model will cause the matrix M 

to violate the conditions of the Perron-Frobenius theorem, hence there will always be a unique 

steady state no matter how the parameters are altered. This property of stable length control is a 

robust feature of the system. 

This method represents IFT in a flagellum at any fixed length, which determines the size 

of the state vector and transition matrix. The flagellum grows when motors with cargo reach the 

tip, and shrinks through a constant, length-independent decay. When the number of motors 

arriving at the tip times the growth per motor equals the decay in some time interval, the net 
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length change will be zero. Since motors in active transport move at a constant rate, the number 

of motors injected into active transport is the only factor that controls the number arriving at the 

tip per second. This value can be expressed as the number of motors in the base multiplied by p, 

the fraction of motors in the base that get injected into active transport. We can therefore define 

the critical rate of motors that must arrive at the tip to maintain a steady state length as G = 

d/(𝛿𝐿 ∗ 𝑝), where d is the decay rate and 𝛿𝐿 is the growth increment when a single motor reaches 

the tip. The value of the steady state number density vector NSS in position (2L+1) is the number 

of motors at the base. This means that when NSS(2L+1) > G, there are enough motors at the tip 

that the flagellum will grow. If NSS(2L+1) < G, there are too few motors to counteract the decay, 

so the flagellum will shrink. This means that when NSS(2L+1) = G, the growth factor from 

motors at the tip perfectly cancels the decay rate. Therefore, when NSS(2L+1) = G, the matrix is 

the right size to encode a flagellum that reaches steady state length. 

We can find this matrix by creating transition matrices corresponding to a range of 

lengths, finding each matrix’s principle eigenvalue, and examining the value of the 

corresponding eigenvector at position (2L+1). Supplemental figure 1.1B shows the values at this 

position as a function of L. The horizontal line represents the value of G given by the default 

parameters in the agent-based model. The matrix that intersects the line at G is the one with the 

steady state length. The difference between this steady state length and the result from the agent-

based model may be explained by the different implementation of avalanching between the 

models. Note the inverse relationship between injection rate and flagellar length, matching 

experimental results (16). A possible future direction for this model is making the separation 

between elements in the matrix correspond to a smaller unit of length, or perhaps a continuous 

differential equation, allowing us to precisely predict final length. The equilibrium here is stable, 
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reiterating the point that the length would modulate until it reaches steady state. It also means 

that this system is robust, because any parameter adjustment would retain the stable equilibrium. 

This model also predicts that the gradient of diffusing motors is linear (Supp. fig. 1.3C), like in 

the agent-based model. The benefit of the matrix model in addition to the agent-based model is 

that it provides an intermediate level of scale that proves stability and robustness, and that it is 

efficient to vary biochemical parameters and find the steady state solution.  
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Supplemental Figures 

 
Supplemental figure 1.S1 Markov matrix model 
(A) Example of a transition matrix, here with length 4, active transport rate of 0.1, diffusion 
spread of 0.1, and injection rate of 0.2. The relative sizes of the active transport rate and 
diffusion rate are roughly equal to the biological parameters used in the agent-based model, but 
the injection rate is simplified to a length-independent proportion. Based on the active transport 
and diffusion parameters, this matrix advances a state vector forward in time by 0.05 seconds. 
(B) Steady-state injection rate as a function of length compared to the value G required for 
equilibrium. (C) Steady state number density (principal eigenvector) for one set of parameters. x 
= 1:4 is active transport, x = 5:8 is diffusion, x = 9 is base. Note that the eigenvector can be 
scaled to an arbitrary magnitude, here it makes sense to normalize it to sum to the number of 
motors in the system, which we set to 200 for consistency with the agent-based model. 
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Chapter 2 

Speed and Diffusion of Kinesin-2 are Competing Limiting Factors in Flagellar Length Control 

Model 

 

The text of this chapter of the dissertation is a reprint of the material as it appears in Biophysical 

Journal. The co-authors listed in this publication directed and supervised the research that form 

the basis for this chapter of the dissertation. Below is a copy of the entirety of the publication: 

 

Ma, Rui, Nathan L. Hendel, Wallace F. Marshall, and Hongmin Qin. “Speed and Diffusion of 

Kinesin-2 Are Competing Limiting Factors in Flagellar Length-Control Model.” Biophysical 

Journal 118, no. 11 (June 2, 2020): 2790–2800. https://doi.org/10.1016/j.bpj.2020.03.034. 
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Abstract 

 

Flagellar length control in Chlamydomonas is a tractable model system for studying the general 

question of organelle size regulation. We have previously proposed that diffusive return of the 

kinesin motor that powers intraflagellar transport can play a key role in length regulation. Here 

we explore how the motor speed and diffusion coefficient for the return of kinesin-2 affect 

flagellar growth kinetics. We find that the system can exist in two distinct regimes, one 

dominated by motor speed and one by diffusion coefficient. Depending on length, a flagellum 

can switch between these regimes. Our results indicate that mutations can affect length in distinct 

ways. We discuss our theory’s implication for flagellar growth influenced by beating and provide 

possible explanations for the experimental observation that a beating flagellum is usually longer 

than its immotile mutant. These results demonstrate how our simple model can suggest 

explanations for mutant phenotypes.  

 

Statement of Significance 

 

The eukaryotic flagellum is an ideal case study in organelle size control because of its simple 

linear shape and well-understood building mechanism. In our previous work, we proved that 

flagellar length in the green algae Chlamydomonas can be controlled by the diffusive gradient of 

the kinesin-2 motors that deliver building blocks to the tip. In this study, we expand on the 

analytical formulation of the diffusion model to show how physical parameters affect final length 

and regeneration time, enhancing the model's potential to explain length mutants and motivate 

future research with precise predictions. 
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1. Introduction 

 

Biologists have long been trying to understand how cells build themselves. The proteins 

that cells synthesize must come together to form massive organized structures without any 

guidance. A striking case of this is that some single-celled organisms can regenerate missing 

pieces, implying that the cell has some form of design specifications embedded within it that 

allow the cell to reconstruct the correct form. The single-celled algae Chlamydomonas 

reinhardtii is an ideal organism for studying single cell organelle regeneration because it has two 

linear flagella that grow back upon being cut or shed (1). The kinetics of flagellar growth have 

been well documented, and much is known about the inner components of the flagellum and its 

growing process, but how the flagellum consistently reaches the same steady-state length is a 

mystery. Multiple different theoretical models have been developed to explain this robust 

regeneration, and recent work demonstrated the feasibility of a model in which the length of the 

flagellum is governed by a diffusive gradient across its length (2, 3).  

In this study, we further develop the diffusion model by deriving the growth curve 

analytically as a function of time and the relevant physical parameters. This shines light onto 

which factors are limiting at different stages in the growth. It also lets us predict steady-state 

length from observed physical parameters and predict physical parameters from observed steady-

state length. 

In order to understand the length control model, one must first understand how a 

Chlamydomonas cell builds its flagella. The flagellum is made of nine doublet microtubules, and 

to get longer, new tubulin (the building blocks of microtubules) must be delivered to the flagellar 

tip. The mechanism for transporting tubulin to the tip is called intraflagellar transport, or IFT (4–

8). In IFT, tubulin and other building materials such as axonemal dynein arms are bound to 
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protein complexes of ~20 polypeptides called IFT particles. These IFT protein complexes form 

linear arrays called “trains” and are pulled to the distal tip by heterotrimeric kinesin-2 motors (9–

12). Upon arrival at the tip, the tubulin and other building blocks are added to the flagellum, 

increasing its length. To counter this length increase, tubulin is continually removed from the 

flagellar tip at a constant, length-independent rate (13, 14). Cytoplasmic dynein-2 motors carry 

the IFT particles back to the base (15, 16). IFT happens continuously throughout the lifespan of a 

Chlamydomonas cell, and when the rate of IFT-driven assembly equals the rate of length-

independent tubulin removal, steady-state length is achieved. 

IFT begins through a process called “injection” in which IFT trains are released from 

docking sites at the flagellar basal body and transition zone and transported into the flagellum 

itself (17). Injection is not fully understood, but it appears that IFT material injects into the 

flagellum from the basal body upon accumulation of motors in the basal body. Quantitative live 

cell imaging has shown that the rate of injection is a decreasing function of the length of the 

flagellum (18, 19). This implies some sort of sensing mechanism that allows the basal body to 

sense the flagellar length. The sensing mechanism here is unknown, and is the core puzzle that 

length control models try to solve (18, 20, 21).  

The flagellar length regulation problem is an ideal system for mathematical biology 

because the flagellum has a simple geometry, easily simplified building and degrading process, 

and a mysterious control mechanism that has eluded scientists of all disciplines for generations. 

As a result, there have been several models for length control that have been studied in detail 

(20). Some models, such as the time-of-flight model in which the IFT particles can be somehow 

deactivated if they have been in the flagellum for a long time, have been ruled out when 

experiment failed to confirm predictions from the model (21). Several models can still explain all 
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experimental results, including the ciliary current model in which ion channels lining the 

flagellum at regular intervals regulate the electric potential inside the flagellum and thus regulate 

length (20). In this study we will further develop the diffusion model, in which the length-

dependent rate of IFT is generated by the kinesin motors diffusing back to the basal body from 

the tip, using the time it takes to diffuse back as a proxy for length measurement (2).  One reason 

that we focus on this model is that the diffusion model is the most parsimonious in the sense that 

it does not require any additional components other than those already known to explain length 

regulation. The other models require additional molecular components to transduce a length-

dependent signal to the IFT injection system. Moreover, the diffusion model has the most 

support from experimental results, most notably from a recent study in which kinesin motors 

were observed to diffuse from the tip to the base but are not actively transported back to the base 

(22), while the other components of IFT trains are transported back to the flagellar base by IFT 

dyneins (15, 16). When retrograde IFT stopped, all other parts of the IFT train, but not kinesin, 

are accumulated at the flagellar tip (23). By further developing the diffusion model, we make 

predictions that will motivate experiments that would not have been obviously useful in 

distinguishing length control models. 

In the model explored by Hendel et al., the longer the flagellum, the longer it takes for 

kinesins to diffuse back to the base, and therefore the longer it takes for enough kinesins to 

accumulate in the base to power injection (2). This explains, in principle, how longer flagella 

inject less building material per second. The model assumes that kinesins are conserved and not 

drawn from the cell body in significant number. This would eliminate the need for a currently 

undiscovered signaling pathway, and would allow the already-known components of IFT to 

generate its own length dependence. In this study, we will take the conclusions from Hendel et 
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al. and further develop the analytical formalism of the diffusion model to show how altering the 

diffusion coefficient and IFT velocity would affect observables like steady-state length and 

regeneration time (2). Hendel et al. mainly focused on diffusion coefficient and briefly focused 

on motor velocity, but here we examine flagellar growth when considering these two parameters 

together. This study provides a mean-field description of our previous stochastic simulations in 

Hendel et al., 2018. The model is mathematically rigorous and analytically tractable, thus 

providing a clearer picture to look at different regimes for different parameters than the 

stochastic simulations. We identified three factors that limit flagellar growth at different phases 

of its regeneration, which lead to two possible rate-limiting steps of flagellar growth at steady 

state. We then used the upgraded model to attempt to explain observed length changes in length-

altering mutants by calculating what changes in diffusion coefficient and IFT velocity are 

necessary. We arrived at the conclusion that changes in diffusion coefficient may be responsible 

for the length changes in the mutants.   

2. Model  

 

We treat the flagellum as a linear track for kinesin motors (Figure 2.1). The position on the track 

is labeled by 𝑥 with 𝑥 = 0 corresponding to the base and 𝑥 = 𝐿(𝑡) corresponding to the tip of 

the flagellum, where 𝐿(𝑡) is the length of the flagellum at time 𝑡. We distinguish four 

populations of kinesin motors: (i) motors that actively carry cargos from the base to the tip with a 

constant velocity 𝑣; (ii) motors that accumulate at the tip after the delivery; (iii) motors that 

diffuse back to the base from the tip with a diffusion coefficient 𝐷; (iv) motors that accumulate 

at the base when diffusion is completed.  
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The linear number density of active motors 𝜌@(𝑥, 𝑡) of type (i) is governed by the equation 

(2.1a) 𝜕7𝜌@(𝑥, 𝑡) = −𝜕j𝐽@(𝑥, 𝑡), 

with the convective current 

(2.1b) 𝐽@(𝑥, 𝑡) = 𝑣	𝜌@(𝑥, 𝑡).  

The number of type (ii) motors 𝑁7 dwelling at the tip is described by 

(2.2) 0,l
07

= 𝐽@(𝐿, 𝑡) − 𝑘7𝑁7, 

where 𝑘7 is transition rate for a motor dwelling at the tip switching to a diffusive state.  

The linear number density of diffusive motors 𝜌0(𝑥, 𝑡) of type (iii) obeys the simple 

diffusion law: 

(2.3a) 𝜕7𝜌0(𝑥, 𝑡) = 	−𝜕j	𝐽0(𝑥, 𝑡), 

with the diffusive current 

(2.3b) 𝐽0 = 	−𝐷𝜕j𝜌0(𝑥, 𝑡). 

The number of type (iv) motors 𝑁m accumulating at the base is described by 

(2.4) 0,n
07

= 𝐽0(0, 𝑡) − 𝑘H𝑁m, 

where 𝑘H is the injection rate of motors from the reservoir at the base to the flagellum track. 

Experimental evidence indicates that injection actually resembles a threshold switch (18), but 

since this version of the model is a mean field description rather than a stochastic simulation, we 

decided to approximate the thresholding as a first-order process in which injection is 

proportional to the number of motors in the base. On average, this will result in the same number 

of injections per second. This is especially true in steady state, when the rate of injection is also 

at steady state. 

The total number of motors 𝑁 includes all four populations of motors and reads 

(2.5) 𝑁 = 𝑁m + 𝑁7 + ∫ (𝜌@ + 𝜌0)𝑑𝑥
/
q .  
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We assume the total number of motors is conserved and this imposes the boundary conditions at 

the base 

(2.6a) 𝐽@(0, 𝑡) = 𝑘H𝑁m, 

and at the tip 

(2.6b) 𝐽0(𝐿, 𝑡) = 𝑘7𝑁7.  

The growth dynamics of the flagellum are governed by the equation 

(2.7) 0/
07
= 𝐽@(𝐿, 𝑡)𝛿 − 𝑟0, 

where 𝛿 denotes the length elongation caused by the arrival of a single kinesin motor, and 𝑟0 

denotes the de-polymerization speed which is independent of the length.  

3. Results 

We can numerically solve the dynamic equations of (2.1)-(2.4) and (2.7) to have the 

exact growth curve 𝐿(𝑡) for a flagellum of length 𝐿 as a function of time 𝑡. The parameters used 

in our numerical solutions are listed in Table 1. Due to the small elongation increment 𝛿, we can 

also make a quasi-static assumption that at each length 𝐿, the spatial distribution of molecular 

motors reaches steady state for that particular length 𝐿 (see Appendix A). The analytical results 

obtained by this quasi-static assumption almost exactly overlap with the exact numerical solution 

(Figure 2.2a, c and e). Therefore, for the rest of the paper we only show results obtained with the 

quasi-static assumption.  
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3.1. The rate-limiting step changes as the flagellum grows 

Typical growth curves of the flagellum are demonstrated in Figure 2.2 for three diffusion 

coefficients. Each growth curve rapidly increases at first and then slowly plateaus to the steady-

state length. The growth can be divided into different stages based on the rate-limiting step. To 

see this, we express the growth rate of the flagellum under the quasi-static assumption as  

(2.8) 0/
07
= ,.

J
L	M	

J3
3K	M		

2
sl
	M	 2st

− 𝑟0 = 	
,.

7uvwxyz	M7{x||	M	7{}z~~
− 𝑟0 , 

where 𝑡������ =
/
�
 denotes the time for a motor to transport the assembly unit of the flagellum 

from the base to the tip, 𝑡���� =
/3

+-
 denotes the root-mean-square time for a motor to diffuse back 

to the base from the tip, and 𝑡����� =
N
Zl
+ N

Zt
 denotes the total time a motor dwells at the base and 

at the tip. At short length scale, 𝑡����� always dominates over the other two time scales, and 

motors spend most of their time dwelling at the tip and the base (Figure 2.2b, d and f, green 

lines). In this regime, the duration that the motor spends traveling between the base and the tip is 

negligible, so the flagellar growth rate is independent of length. When the flagellum grows 

longer, either the diffusive time 𝑡���� dominates if 𝐷 is small (Figure 2.2b), or the transportation 

time 𝑡������ dominates if 𝐷 is large (Figure 2.2f). For an intermediate 𝐷, the growth is divided 

into three stages, in which the dominant time scales are 𝑡����� , 𝑡������ and 𝑡���� (Figure 2.2d). 

Measurements of flagellar growth kinetics have clearly shown that growth rates are constant for 

flagella shorter than 4-5 microns (1). In a different algal species, Spermatozopsis similis, flagella 

grow at a constant rate over their whole length, suggesting that in that organism, 𝑡����� is always 

the dominating factor (20). 
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3.2. Diffusion vs. active transport as the rate-limiting step at steady state 

The diffusion time 𝑡���� scales with 𝐿+, while the motor transportation time 𝑡������ scales 

with 𝐿. At steady state, depending on the flagellar length 𝐿((, either active transport or motor 

diffusion becomes the rate-limiting step. For a sufficiently long flagellum, 𝑡���� always dominates 

over 𝑡������. However, the steady-state length 𝐿(( might not be long enough to have 𝑡���� greater 

than 𝑡������. In Figure 2.3a, we show the three time scales at steady state as a function of 

diffusion coefficient 𝐷. For small 𝐷, 𝑡���� dominates over the other time scales. However, as 𝐷 

increases, 𝑡������  becomes greater than 𝑡����, and the steady-state length of the flagellum becomes 

limited by the active motor transport. If we fix the diffusion coefficient but vary the motor 

velocity, the growth will change from 𝑡������-dominance to 𝑡����-dominance (Figure 3B). A phase 

diagram is shown in Figure 2.3c. Generally, a larger diffusion coefficient 𝐷 favors motor-limited 

growth, and a faster motor speed 𝑣 favors diffusion-limited growth.   

3.3. A dramatic increase in steady-state length 𝐿(( requires a dramatic increase in 

diffusion coefficient 𝐷 if motor velocity 𝑣 is small 

The steady-state length of the flagellum 𝐿(( can be obtained by setting 0/
07

 in Equation 

(2.8) to zero. This leads to the analytical result 

(2.9) 𝐿(( = −-
�
+ �−+-

Zt
− +-

Zl
+ *-

�
1
+
+ +-,.

F�
 .  

 

The steady-state length 𝐿(( increases with both diffusion coefficient 𝐷 and motor velocity 𝑣. For 

a small motor velocity, increasing the diffusion coefficient does not lead to significant increase 

in 𝐿(( because it is mainly set by the small motor velocity (Figure 2.4a, green line).  For instance, 
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if the motor velocity 𝑣 is 1𝜇𝑚/s and 𝐿(( is 5𝜇𝑚, it would be impossible to increase the length to 

10	𝜇𝑚 because even in the limit of an infinitely large diffusion coefficient 𝐷 → ∞, the maximum 

length 𝐿(( is 9.5𝜇𝑚. The analytical proof of this limit is derived in Appendix B.  

However, if the motor velocity	𝑣	is 2	µm/s, the diffusion coefficient 𝐷 must only 

increase from 1.8 µm+/s to 11.1 µm+/s to increase the length to ten microns, the typical length 

of wild type C. reinhardtii cells. Similarly, for a small diffusion coefficient, increasing the motor 

velocity does not lead to a significant increase in 𝐿(( either (Figure 2.4b, green line).    

3.4. Growing time T of the flagellum increases with motor velocity and diffusion.  

In this section, we study the time 𝑇 a flagellum needs to grow to its steady state. We 

define the growing time 𝑇 as the amount of time to reach 95% of the steady-state length, i.e., 

𝐿(𝑇) = 0.95	𝐿((. Figure 2.5 plots numerical solutions of T as a function of motor speed and 

diffusion coefficient. One might expect that a fast-transporting motor or a fast-diffusive motor 

will reduce the time to construct a flagellum, but the results show that the growing time 𝑇 

increases with the diffusion coefficient 𝐷 and the motor velocity 𝑣 (Figure 2.5a and b). This is 

because the steady-state length also increases with 𝐷 and 𝑣. The reduction in time due to 

increased 𝑣 or 𝐷 cannot compensate for the increased time due to length elongation.  

3.5. Parameter changes that maintain the steady-state length but alter the growing 

time. 

One may notice that the contour lines for the steady-state length 𝐿(( do not exactly 

overlap with the contour lines for the growing time 𝑇 (Figure 2.6a). The implication of this 

difference is that growth kinetics do not uniquely determine the steady-state length, and one can 

alter the growing time 𝑇 while maintaining the steady-state length 𝐿(( constant, or vice versa.  A 
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recent experiment found that mutants in ida5, which affect actin, show slower growth kinetics 

(i.e. longer 𝑇) but reach the same steady-state length as wild-type (24).  Based on our model, this 

could be a result of the combination of reduced motor velocity and enhanced diffusion 

coefficient (Figure 2.6b and c). Our model predicts that the change in the growing time is larger 

for longer flagella, which can be tested by future experiments.  

4. Discussion 

In this paper, we have presented a mean field description of our previous stochastic 

simulation to account for flagellar growth. The key to achieving length regulation is that the 

number of kinesin motors is finite. As the flagellum elongates, it takes more time to transport the 

assembly unit from the base to the tip and to retrieve the kinesin motors from the tip to the base, 

therefore the assembly rate of the flagellum is reduced. Steady-state length is reached once the 

assembly rate equals the disassembly rate. This reaction-diffusion based mechanism of length 

regulation is also present in the growth of stereocilia, which are made of a bundle of actin 

filaments (25), and a series of models have indeed shown that the reaction-diffusion mechanism 

is sufficient to account for length regulation in that organelle (25-27).  We have modeled a 

reaction-diffusion mechanism for flagella which, because it also involves an interplay between 

motors and diffusion, ends up being quite similar in its form to the previously described models 

for length regulation in stereocilia.  However, in stereocilia, the polymerization rate of actin 

filaments is reduced by the resisting force from the membrane. The steady-state length is reached 

when the retrograde flow of actin filaments is balanced by actin polymerization at the tip (25–

27). We also note that in the present version of our model, we only consider the growth of a 

single flagellum but neglect the coupling between the two flagella for Chlamydomonas. In ref. 

(28), the authors studied the coupling mechanism to account for length equalization when one of 
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the flagella is severed. In our model, length equalization can be achieved by having a shared pool 

of tubulins and replenishment of kinesin motors (2).  

A large part of the explanatory and predictive power of the model is in generating 

hypotheses to explain length mutants and motivating experiments to test these hypotheses. We 

can now examine a length mutant, note its length change from wild type, and determine what 

changes in velocity and diffusion are necessary to achieve the length change. Here we discuss 

pf14, a mutant that is missing the radial spoke head in the flagellum. In wild-type 

Chlamydomonas, the two flagella beat in a cyclic pattern resembling a breast stroke: a semi-

circular power stroke to swim forward followed by a recovery stroke to return them to their 

initial position. pf14, on the other hand, has paralyzed flagella and cannot swim. What is 

puzzling about this mutant is that its flagella are about half as long as wild type. pf14 mutants are 

3-6 µm in length, while wild type flagella are usually 10-12 𝜇𝑚 (29). This short flagella 

phenotype is common among the group of motility mutants, especially the ones with completely 

paralyzed flagella (30–35). To our knowledge, no study has explained the connection between 

paralysis and length decrease – in fact, researchers have viewed intraflagellar transport and 

flagellar beating as two independent processes. This is reasonable, since beating relies on 

axonemal dynein and other regulatory and structural components to bend doublet microtubules, 

components that are not involved in IFT. Even when detached from the cell body, the flagellum 

equipped with the motility apparatus is capable of producing a high-frequency waveform as long 

as ATP is provided (36). 

While it is possible that the length change comes from a structural instability caused by 

the mutation, could it instead be because the paralysis of the flagella alters the IFT-diffusion 

system that could be responsible for length control? All existing measurements of IFT kinetics 
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have been carried out in immotile flagella, either in paralyzed mutants or in wild-type cells 

whose flagella are adhered to a glass surface. Consequently, there is no experimental information 

about how IFT kinetics might or might not change in beating flagella compared to immotile 

flagella. Here we use our model to explore the plausibility of the idea that flagellar beating can 

influence IFT kinetics and thus might act as a wrongfully neglected factor in the length control 

system. In the sections below, we propose mechanisms through which flagellar beating can 

influence IFT kinetics. Through some back-of-the-envelope calculation, we show the effective 

contribution of each mechanism to the length change of motile flagella compared with immotile 

ones. We focus on mechanical mechanisms that are directly related to flagellar beating, but 

neglect chemical mechanisms that might exist in the mutants. For instance, experiments have 

shown that the presence of substrate can enhance the diffusion of substrate (37, 38). The 

diffusion constant of kinesin motors therefore can be influenced by ATP concentration in wild 

type and in mutants. This biochemical regulation is out of the realm of the paper.  

4.1. An increase in diffusion coefficient is necessary for the increase of steady-state 

length.  

Based on our model, there are four aspects of IFT kinetics that can be influenced by 

flagellar beating. They include kinesin motors dwelling at the base and at the tip, actively 

transporting from the base to the tip, and passively diffusing from the tip to the base. Altering the 

dwelling time of kinesin motors at the tip or at the base has a minor effect on the steady-state 

length of flagella. This is because the rate-limiting step at steady state is either active transport or 

passive diffusion, as have demonstrated in section 3.2. With the parameters given in Table 1 but 

a low diffusion constant 𝐷 = 2	µm+/s for an immotile flagellum, even if the injection rate 

increases from 1	𝑠_N to infinity, the steady-state length only increases from 5.2µm to 5.5µm 
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according to Eq. (2.9). Therefore, we exclude the possibility of an altered injection rate at the 

base or an altered dwelling time at the tip as the explanation for the length difference between 

motile and immotile flagella. We consider the other two aspects of IFT kinetics for the 

significant increase in length in a beating flagellum compared to an immotile one: (i) The motor 

velocity remains unchanged and the increase is due to enhanced diffusion. (ii) The diffusion 

coefficient remains unchanged and the increase is due to increased motor velocity. In a paralyzed 

mutant, the experimentally measured diffusion coefficient is 𝐷 = 1.68	 ± 0.04	µm+/s	and the 

motor velocity is 𝑣 = 	2.1	 ± 0.4	µm/s (22). With assumption (i), to account for length increase 

in a beating flagellum from 5µm to 10µm, the diffusion coefficient needs to increase from 

1.75µm+/s to 10.55	µm+/s. With assumption (ii), it is impossible to account for the length 

increase because even in the limit of infinitely large motor velocity 𝑣 → ∞, the length of the 

flagellum approaches a maximum of 5.65µm. Therefore, an enhanced diffusion coefficient is 

necessary and sufficient to account for the observed length increase. In any case, there is no 

plausible way that flagellar beating would alter the velocity of the motor. However, we can 

imagine several ways that beating could alter the diffusion coefficient of kinesin, which we will 

consider in turn.  

4.2. Centrifugation effect of kinesin motors 

The first mechanism we considered was inspired by the experimental observation that 

kinesin-2 is less dense than the flagellar matrix and floats to the top when a matrix preparation is 

centrifuged at high speed (H. Qin unpublished data). Based on this observation, we consider a 

model in which the roughly circular beating of the flagellum is enough to cause a significant 

centripetal force on the kinesin motors back towards the base, speeding up the diffusive return 

time. To model this scenario, we approximated the flagellum and its beating as a cylindrical rod 
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revolving around one of its ends like the hand of a clock. The contents of the cylinder will 

experience a centrifugation effect, and the kinesins will move towards the base if they are less 

dense than the surrounding solution. While this is not equivalent to increasing the diffusion 

coefficient, it is an increase in the speed of diffusive return. Approximating the beating as a 

circular motion will exaggerate the centripetal force because the recovery stroke of the beating 

does not have the same circular appearance as the power stroke. To estimate the magnitude of 

this effect, we solved the equation for centripetal force to obtain the drift velocity: 

(2.10) 𝑣����� =
(D_D�)�3F

�
, 

where 𝑚 is the mass of kinesin, 𝑚q is the mass of the solution displaced by the motor, 𝜉 is the 

friction coefficient (equal to 𝑘𝑇/𝐷 where 𝑘 is Boltzmann’s constant, 𝑇 is the temperature, and 𝐷 

is the diffusion coefficient), 𝜔 is the rotation rate, and 𝑟 is the length of the rod. Plugging in the 

relevant values 𝐷 = 2	µm+/s, 𝑘𝑇 = 4.1	pN ∙ nm,  𝑚 = 0 (extreme case where kinesins are 

massless, to give the maximum possible effect), 𝑚q = 4 × 10_++	kg, 𝜔 = 300	rad/s , and 𝑟	 =

10µm, we get that the drift velocity 𝑣0FH>7 is on the order of 10_¬	µm/s, which means it would 

take three years for the kinesins to get from the tip to the base with this effect alone. If we 

translate the time sped up by the centrifugation drift into diffusive time, it amounts to an 

effective diffusion constant of 𝐷��� which satisfies  

(11) F3

+-z||
= F

�{­x|w
.  

The effective diffusion constant increase 𝐷��� is only on the order of 10_®	µm+/s, which is 

negligible compared with measured value of 𝐷~2µm+/s. We can therefore rule out the 

centrifugation effect as a means of generating any substantial length increase upon beating. 
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4.3. The increased diffusion coefficient in a beating flagellum might be explained by 

shear-thinning.   

An alternative way that flagellar beating could influence diffusive return of kinesin is via 

shear of the flagellar matrix (Figure 2.7a). If we think of the flagellum as an elastic rod, when it 

is bent, parts of the rod are stretched and parts are compressed. The maximum shear 

displacement Δ can be calculated as (39).  

(10) Δ = 𝑎[𝜓(𝑠, 𝑡) − 𝜓(0, 𝑡)],   

where 𝑎 is the radius of the rod, and 𝜓(𝑠, 𝑡) is the tangent angle along the arclength 𝑠 at time 𝑡. 

The corresponding shear rate is 

(11) 𝜒 = N
@
0¶
07

.  

We select 7 frames in a periodic beating cycle of a flagellum and calculate the shear 

displacement and shear rate by measuring the tangent angle at equally spaced points along the 

arclength of the flagellum (Figure 2.7 b-f). In a beating period of 𝑇 = 0.014	𝑠 (40), the variation 

of the shear displacement 𝛿Δ	 ≡ max(𝛥) −min	(Δ) is typically around 0.4 𝜇𝑚. Here the 

maximum and minimum are taken with respect to the time 𝑡 in a period. The shear displacement 

of the flagellum can induce shear flow in the cytoplasm and this shear flow can enhance the 

diffusion of particles in the cytoplasm. To estimate how this affects the diffusion coefficient, we 

adopted Taylor dispersion theory which yields an estimate of the diffusion coefficient amplified 

by the shear flow by a factor of 1+𝑃𝑒+/192, where 𝑃𝑒 = 𝑑	𝑣½¾���/𝐷q is the Péclet number, with 

𝑑~0.25	µm being the diameter of the flagellar cross-section, 𝑣½¾��� =
.¶
^
~28	µm/s being the 

shear flow rate, and 𝐷~2	µm+/s being the diffusion constant without shear flow (41). These 
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numbers give a Péclet number 𝑃𝑒~3.5, and the resulting amplification factor 1.06 is too small to 

account for the required increase in diffusion constant. We thus conclude that shear is not large 

enough to increase diffusion constant significantly by means of an advective mechanism. Could 

shear have any other effect? 

It is well known that solutions made of soft polymers become less viscous under shear 

deformation. This effect is known as shear thinning. In an equilibrium solution, the diffusion 

coefficient 𝐷 of a particle and its friction coefficient 𝜉 obey the Einstein relation 𝜉𝐷 = 𝑘¿𝑇, 

where 𝑘¿ is the Boltzmann constant, and 𝑇 is the absolute temperature. Because the friction 

coefficient 𝜉 is proportional to the viscosity 𝜂, we would expect that the product of the viscosity 

𝜂 and the diffusion coefficient 𝐷 is also a constant. Therefore, a reduction in viscosity 𝜂 caused 

by shear-thinning might account for the increase in diffusion coefficient 𝐷. Based on our 

measurements, the maximum shear rate |𝜒|D@j 	≡ max	(|𝜒|) of the flagellum is around 600	s_N 

(Figure 2.7F). The onset shear thinning rate for biopolymer solutions depends on many factors, 

such as protein concentration, temperature, ionic strength and even the geometry of the 

container. The typical onset shear thinning rate for a polysaccharide solution is ~10	𝑠_N  and the 

reduction in the viscosity can be orders of magnitude (42). Recent work on bioink (alginate plus 

cellulose) shows that the shear thinning effect takes place at very low shear rate (43). Therefore 

the shear magnitude is large enough to potentially cause shear thinning in the matrix of flagella, 

and this effect may contribute to enhanced diffusion by reducing the viscosity. Our results thus 

suggest a novel hypothesis to explain the link between flagellar motility and length, namely, that 

paralyzed mutants have shorter length because the diffusion constant for kinesin is decreased due 

to a loss of shear thinning in the flagellar matrix. Our modeling results suggest a need for future 

experiments to measure viscosity inside the matrix.  
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Appendix 

A. Derivation of the growth rate (8) under quasi-static assumptions. 

In physiological conditions, the length elongation of flagellum is much slower than the motor 

transportation-diffusion cycle. This is reflected in the small elongation unit 𝛿 in Eq.(2.7). We can 

therefore make the quasi-static assumption that at any fixed length 𝐿, the distributions of the four 

populations of motors reach steady state for that particular 𝐿. This implies that all the time 

derivatives in Eqs. (1-4) become zero. The distribution of the active motors (i) is homogenous 

over the flagellum track, and the constant density reads 

 

(2.A1)    𝜌@(  = 𝜌@q =
,/�

J
L	M	

2
sl	
	M	 2st

	M	J
3

3K

 

For the diffusive motor, the spatial distribution shows a gradient and reads 

 

(2.A2)    𝜌0( = 𝜌0q
j
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For the motors accumulated at the base, the number is 

 

(2.A3) 𝑁m =
,/Zt
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.  

 

For the motors accumulated at the tip, the number is 

 

(2.A4) 𝑁7 =
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Substituting Equation (2.A1) into (2.7), we obtain (2.8), which is the key equation of our 

discussion for the dynamics of flagellum growth.   

B. Derivation of the steady-state length in the limit of large diffusion coefficient 

Denoting 𝛽 = − N
Zt
− N

Zl
+ ,.

F�
, we can rewrite Eq. (2.9) as 

(2.B1)	𝐿(( = 	− -
�
+	�*-

�
1
+
+ 2𝛽𝐷 = −-

�
+ -

�
�1 + +Ã�3

-
.  

In the limit of 𝐷 → 	∞, we can invoke the Taylor series (1 + 𝑥)Z = 1 + 𝑘𝑥 + 𝑂(𝑥+) for |𝑥| ≪ 1 

to expand the term in the square root and get  

(2.B2) 𝐿(( = −-
�
+ -

�
Q1 + N

+
∗ +�

3Ã
-

+ 𝑂 * N
-3
1R = 𝑣𝛽 + 𝑂(N

-
). 

Therefore 𝐿(( → 𝑣𝛽 in the limit of 𝐷 → 	∞.  

The expression of 𝑣𝛽 can be also derived in an intuitive way: at steady state the total 

length 𝑁𝛿 delivered by kinesin motors divided by the time for such delivery /
``

�
+ N

Zl
+ N

Zt
 must 

equal to the depolymerization rate 𝑟�.  

(2.B3) ,.

	J
``
L M

2
sl
M 2
st

= 𝑟0 

Solving Eq. (2.B3) gives exactly 𝐿(( = 𝑣𝛽.   
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Table 2.1: Parameters of the model.  

Parameters Description Reference Value Varied range References 
𝑣 Kinesin motor 

velocity 2 µm/s 0.1 – 10 µm/s (22) 

𝐷 Kinesin motor 
diffusion coefficient 20	µm+/s 0.1 – 80 µm+/s (22) 

𝑘H Injection rate of 
motors at the base 1 s_N 1 s_N Arbitrary 

𝑘7  Transition rate to 
diffusive state for 
motors dwelling at 
the tip 

0.5	𝑠_N 0.5	𝑠_N 

(22) 

𝑟0 Spontaneous 
depolymerization 
speed of flagellum  

0.004 µm/s 0.004 µm/s 
(24, 44) 

𝑁 Total number of 
motors 40 40 (13) 

𝛿 Elongation length of 
the flagellum upon 
the arrival of a motor 
at the tip  

0.00125 µm 0.00125 µm 

(13) 
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Figures 

 

 

Figure 2.1: Illustration of the model 
Molecular motors carry the building blocks for flagellar assembly from the base to the tip and 
travel with a constant speed 𝑣. When reaching the tip, the motors unload the cargo and the 
flagellum elongates by a unit of 𝛿.	The motors dwell at the tip and switch to a diffusive state with 
a transition rate 𝑘7. The motors diffuse back to the base with a diffusion coefficient 𝐷 and 
accumulate at the base, waiting for injection into the flagellum with a transition rate 𝑘H. The 
flagellum has a spontaneous disassembly rate of 𝑟0. The total number of molecular motors is 
assumed to be constant.    
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Figure 2.2: Growth dynamics of the model 
(a, c, e) Growth curve of the flagellum for small diffusion coefficient 𝐷 = 2	µm+/s in (a), 
medium 𝐷 = 8	µm+/s in (c) and large 𝐷 = 20	µm+/s in (e). The blue curve represents the 
numerical solution, i.e., the exact solution. The orange curve represents the analytical solution 
obtained by the quasi-static assumption. The two curves almost overlap to the extent that the blue 
one is invisible. The horizontal lines represent the length at which the rate limiting step changes. 
(b, d, f) The time a single motor spends on different steps during a transportation-diffusion cycle 
for the same diffusion coefficient as in (a, c, e). The three curves include 𝑡������ for a motor to 
travel from the base to tip (orange),  𝑡���� for a motor to travel from the tip to the base via 
diffusion (blue), and 𝑡����� for a motor to dwell at the tip waiting before diffusing and at the base 
waiting for injection (green).     
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Figure 2.3: Influence of the motor velocity 𝑣 and diffusion coefficient 𝐷 on the rate-limiting step 
at steady state  
(a) The three time scales as a function of diffusion coefficient 𝐷. (b) The three time scales as a 
function of motor velocity 𝑣. (c) Phase diagram for the rate limiting step at steady state.   
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Figure 2.4: Influence of the motor velocity 𝑣 and diffusion coefficient 𝐷 on the steady-state 
length 𝐿½½ of the flagellum  
(a) The steady-state length 𝐿(( as a function of diffusion coefficient 𝐷 for different motor 
velocities. (b) The steady-state length 𝐿(( as a function of motor velocity 𝑣 for different diffusion 
coefficients. (c) The contour plot of 𝐿(( as a function of both diffusion coefficient 𝐷 and motor 
velocity 𝑣.  
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Figure 2.5: Influence of the motor velocity 𝑣 and diffusion coefficient 𝐷 on the growing time 𝑇 
of the flagellum  
(a) The growing time 𝑇 as a function of diffusion coefficient 𝐷 for different motor velocities. (b) 
The growing time 𝑇 as a function of motor velocity 𝑣 for different diffusion coefficients. (c) The 
contour plot of 𝑇 as a function of both diffusion coefficient 𝐷 and motor velocity 𝑣.  
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Figure 2.6: Possible parameter changes that keep the steady-state length 𝑳𝐬𝐬 constant while 
altering the growing time 𝑻   
(a) Overlay of the contour plots for growing time 𝑇 (blue) and for steady-state length 𝐿(( (red). 
From left to right, the contours for growing time 𝑇 are 50, 100, 150, and 200 min, and for steady-
state length 𝐿½½ are 5, 10, 15, 20, and 25 𝜇𝑚. (b, c) Relative change of motor velocity (left axis) 
and growing time (right axis) as a function of the diffusion coefficient along the contour of 𝐿(( =
10µm in (b) and 𝐿(( = 15µm in (c). The reference velocity is defined as 𝑣∗ = 𝑣(𝐷 = 20µm+/s) 
and the reference growing time 𝑇∗ = 𝑇(𝐷 = 20µm+/s).  
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Figure 2.7: Beating of the flagellum leads to enhanced diffusion of motors. (a) The flagellum is 
depicted as a rod. Bending of the rod leads to stretching on one side and compression on the 
other side. The two blue curves represent curves on the rod’s surface that have the same length as 
the central axis (black line). The red circle represents all the end points on the rod’s surface that 
have the same length with the central axis. The shear induced by periodic beating of the 
flagellum can enhance the diffusion of molecular motors via the shear-thinning mechanism, thus 
increasing the length of flagella compared to paralyzed mutants. (b) Selected beating shapes of a 
flagellum in a beating cycle. The number indicates the order of the sequence. (c, d) Shear 
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displacements Δ in (c) and its variation 𝛿Δ in a beating period in (d). (e, f) Shear rates 𝜒 in (c) 
and its maximum in a beating period in (f).    
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