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Abstract

Adapting to Wildfire Risk in the California Electric Power Sector

by

Cody Warner

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Professor Duncan Callaway, Co-chair

Professor David Anthoff, Co-chair

In recent years, the risk of catastrophic wildfire has escalated rapidly in the Western U.S. and
globally. Earlier spring snowmelt and increasing moisture deficits have caused a dramatic
rise in burned area. Climate warming does not act alone, however, in the explanation of
rising wildfire risk. Population migration to high-risk areas and historical fire suppression
policies have also contributed to the uptick in risk. These factors, in combination with
aging electric utility infrastructure, have left the electric-power sector acutely vulnerable to
catastrophic wildfire risk. In California, electric utilities are investing significant resources
to buy down their exposure to wildfire and adapt to a future with more climate extremes.
The research described in the following chapters dives into the costs and risk implications
of such high-stakes electric-power sector adaptation investments. Probabilistic machine-
learning models are trained and evaluated alongside econometric methods to address the
low-probability, high-consequence nature of wildfire outcomes. Spatially-granular, robustly
estimated measures of risk are shown to be fundamental ingredients to effective analysis of
wildfire risk, management, and policy. One of the overarching findings is that cost-effective
adaptation in the electric-power sector hinges crucially on the level of adaptation outside
the electric-power sector. Overall, cross-sector collaboration across all levels of wildfire risk
management is necessary to ensure electric-power sector adaptation investments deliver their
intended risk reduction benefits and mitigate the threat of catastrophic wildfire damages.
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“Examine each question in terms of what is ethically and aesthetically right, as well as
what is economically expedient. A thing is right when it tends to preserve the integrity,
stability, and beauty of the biotic community. It is wrong when it tends otherwise.”

- Aldo Leopold, A Sand County Almanac, 1949

“I recognize the right and duty of this generation to develop and use the natural resources
of our land; but I do not recognize the right to waste them, or to rob, by wasteful use, the
generations that come after us[...] The farmer is a good farmer who, having enabled the

land to support himself and to provide for the education of his children, leaves it to them a
little better than he found it himself. I believe the same thing of a nation.”

- Theodore Roosevelt, August 31, 1910
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Chapter 1

Introduction

1.1 Motivation

The research presented here is motivated by the overarching question: what policies and
investments can lead us to cost-effectively adapt to wildfire risk? Unequivocally, wildfire risk
has increased in recent years, particularly in the western forests of the United States [1–3].
Anthropogenic climate change has played a prominent role in this increase, but it is not the
sole actor. Population migration to the wildland urban interface (WUI), where ignition rates
are higher and fire behavior is more extreme, has caused an uptick in wildfire risk [4]. Policy
has played a role, too. The institutionalized federal forest policy of suppressing wildfires and
protecting the nation’s timber resources has caused a dearth of low-intensity “good” fire [5].

Adapting to wildfire, like other climate change-fueled natural disasters, will be challenging
and involve many levels of stakeholders. However, the task is not impossible. Unlike other
natural disasters, such as hurricanes or winter storms, the vast majority of wildfires are
caused by humans [6]. Moreover, their severity can be feasibly altered through known and
effective management strategies, such as prescribed burns and mechanical thinning of fuels
[7]. This makes wildfire a compelling setting to study adaptation strategies, policy, and
economics.

The research presented here focuses on the nexus between wildfire and the electric-power
sector, and in particular, the electric utility industry of California. The state is on the
front lines of climate change, both in terms of policy and the impacts of rising temperatures.
Despite the focus on California, the findings of this research inform ongoing policy discussions
across the world. Many other regions face similar escalations in wildfire risk caused by aging
electric distribution and transmission infrastructure. Australia, Hawaii, Texas, Canada, and
Southern Europe are recent examples of regions experiencing catastrophic wildfire outcomes
caused by electrical equipment.

I focus on the electric-power sector because a disproportionate share of wildfire damages
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observed in California has been caused by the electric grid. As discussed in the next chapter,
grid-caused ignitions frequently occur during strong wind events, when fires are more difficult
to suppress, and in close proximity to structures [8–10]. Consequently, a significant flow of
adaptation investment is being channeled through the electric-power sector in California.
Electric utilities have proposed spending $9 billion annually on adapting to wildfire [11–13].

I also focus on the electric-power sector because the costs of adapting to wildfire in the
electric-power sector have important implications for efforts to mitigate global greenhouse
gas emissions. A core pillar of de-carbonization policy boils down to deploying low-carbon
electric generating resources and “electrifying everything.” Rising electricity costs, brought
about by wildfire adaptation costs, threaten to undermine the incentives of this electrification
strategy. Whether one lives in a high-fire risk area or not, all grid-connected, rate-paying
electricity customers have a stake in ensuring cost-effective wildfire adaptation.

Lastly, from an economic perspective, studying wildfire risk is a fascinating and challeng-
ing task. The vast majority of wildfire ignitions do not lead to catastrophic outcomes. In fact,
low-intensity wildfires create positive benefits to the ecosystem and can reduce future wild-
fire severity [5]. The risks associated with wildfire are thus concentrated in low-probability
but extremely consequential events. Just one wildfire, the Camp fire, dealt approximately
two-thirds of all of Pacific Gas and Electric Company’s associated structure losses during the
study period discussed in the next chapter. Developing probabilistic models that accurately
capture the nature of such rare events data is a crucial ingredient to effective analysis of
wildfire risk management and policy.

My hope is that this dissertation will inform policymakers, electric utilities, and com-
munities that are grappling with a rapid rise in wildfire risk. In California, electric utilities
have recently crafted plans and models to assess their exposure to wildfire risk. However,
many electric utilities across the U.S. (and the world) do not have a clear accounting of
their risk exposure[14]. The findings presented throughout can aid policymakers, utilities,
and academic researchers who seek to develop rigorous risk models and evaluate the difficult
trade-offs inherent to climate change adaptation.

1.2 Structure

Chapter 2, titled “Risk-Cost Trade-Offs in Electric Power-Sector Wildfire Adaptation,” forms
the key building block of the dissertation. Using empirical data on ignitions, wildfire sizes,
adaptation investments, and costs, the chapter seeks to quantify the cost-effectiveness of
electric-power sector wildfire adaptation investments made by the largest U.S. electric distri-
bution utility. In doing so, the analysis combines machine-learning models and econometrics
to identify the causal effects of different types of wildfire adaptation investments on ignition
outcomes.

Overall, the analysis concludes that innovative grid management protocols can simulta-
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neously reduce wildfire risk and decrease the need for capital-intensive adaptation measures.
Burying powerlines underground, an archetype of system hardening, is shown to be less
cost-effective than fast-trip settings, one example of innovative grid management protocols.
However, electric utilities may prefer such capital-intensive system hardening due to more
certain risk reductions and the incentives that rate of return regulation offers for capital
investments.

The subsequent chapter, Chapter 3, is titled, “Measuring Uncertainty in the Cost-
Effectiveness of System Hardening Investments.” The analysis dives deeper into sources
of uncertainty that determine the cost-effectiveness of system hardening investments. The
probabilistic models developed in the preceding chapter form the basis of the methodological
approach.

The analysis sets up a contrast between factors that are endogenous to the electric utility
risk manager and factors that are exogenous. A point of emphasis is that exogenous factors,
like the amount of protection property owners take to reduce structure losses, can change the
cost-effectiveness of long-duration system hardening investments. This creates the potential
for such investments to become “stranded assets,” in which rate-paying customers are left
paying for under-performing assets. On the other hand, the analysis finds that large and
uncertain increases in extreme wildfire risk, which are also exogenous to the utility decision
maker, can significantly improve cost-effectiveness. The study finds that regions with the
largest uncertainty in wildfire behavior are also the regions where it is most cost-effective
to bury powerlines, which suggests such investments may provide additional benefits by
reducing extreme outcomes at the tail of the risk distribution. Overall, the findings of the
chapter conclude that cross-sector collaboration across all levels of wildfire risk management
is critical to ensuring cost-effective adaptation.

The final chapter, titled, “Charge Anxiety: The Effect of Wildfire-Induced Electricity
Outages on Battery-Electric Vehicle Adoption,” departs from the previous two and focuses
on possible unintended consequences of wildfire adaptation investments in the electric-power
sector. As explained in the introduction, such adaptation investments may come into conflict
with broader de-carbonization goals, specifically building and transportation-sector electri-
fication. The chapter explores the impact of wildfire-related electricity outages on electric
vehicle adoption across the state of California.

In doing so, the analysis provides insight into a relatively understudied area of electric
vehicle adoption called “charge anxiety.” A close cousin of range anxiety, charge anxiety
involves the potential for electric vehicle adopters to internalize the costs and frequency
of electricity outages when making an adoption decision. The findings of the econometric
analysis provide weak evidence that low-income customers and customers with long commute
times are most susceptible to “charge anxiety.” This echoes well-established energy justice
concerns related to electricity reliability, electric vehicle adoption, and rate affordability.
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Chapter 2

Risk-Cost Trade-Offs in Electric
Power-Sector Wildfire Adaptation

2.1 Introduction

Wildfire is the fastest growing economic climate risk [15]. The destructive potential of wild-
fires ignited by electricity infrastructure is particularly high because these ignitions frequently
occur during strong wind events and in close proximity to structures[8–10]. Some of the most
destructive fires recorded have been traced to utility infrastructure, including the 2009 Black
Saturday fires in Australia ($4.4B in losses)[16], the 2021 Dixie Fire in California (nearly one
million acres burned)[17] and the 2023 wildfires in Maui (101 fatalities, the deadliest wildfire
in the U.S. in the last century)[18, 19]. Faced with growing liabilities, utilities are spending
billions of dollars to adapt to these increasing risks.

Recent reports suggest there is significant under-investment in climate change adapta-
tion[20]. Factors that slow or impede cost-effective adaptation investments include a lack
of quantifiable returns on investment and a dearth of evidence on the effectiveness of alter-
native adaptation strategies[21]. This study quantifies the effectiveness of a multi-faceted
and multi-billion dollar effort to adapt to increasing wildfire risk. It presents an empirically
tractable framework for evaluating the causal impacts of alternative wildfire risk management
strategies on ignition outcomes, grid reliability, and ratepayer costs.

The central role that electric utilities play in climate change mitigation complicates the
evaluation of wildfire risk management in the electric power sector. There is a global move-
ment to decarbonize the sector and electrify end-uses that are currently powered by carbon-
intensive fuels[22, 23]. If utility spending on wildfire risk management increases electricity
rates, this will reduce incentives for households and firms to electrify. In addition, strategies
that de-energize lines during high-risk conditions could slow the pace of electrification by
reducing grid reliability. Utility decision-making must therefore strike a balance between
wildfire risk adaptation and climate change mitigation efforts that will require affordable
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and reliable electricity service.

The existing literature on climate change adaptation in the electricity sector has focused
primarily on the investments to accommodate increases in electricity demand induced by
rising temperatures and the need for cooling services[24–27]. Less attention has been paid
to managing wildfire risks, despite the rising costs of wildfire risk mitigation. In California
alone, the state’s three largest utilities are proposing to spend $9 billion annually, up from
$4.7 billion in 2019[11–13]. This utility spending far exceeds the amount that state and
federal governments spend on fuel reduction treatments: The state of California budgeted
less than $1 billion for the 2021-22 fiscal year on wildfire and forest resilience[28], and the
2025 U.S. Forest Service budget includes $207 million for hazardous fuel reductions[29].

This study also contributes to a nascent empirical literature on wildfire risk manage-
ment[30–34]. Much of this research has focused on efforts outside the electric power sector,
including building codes, fire suppression, and prescribed burns. In an electric power sector
context, some studies have investigated the consequences of preventative power shutoffs, the
cost implications of undergrounding, and the effect of vegetation management on outages[35–
40]. Others have focused on electric utility planning and wildfire risk management[14, 41,
42]. Leveraging detailed data on powerline-caused ignitions in California, ours is the first
to study ignition mitigation effectiveness, reliability impacts, and costs across a variety of
strategies.

Wildfire Risk Reduction Strategies

An electric utility has several approaches at its disposal to reduce ignition risk on its distri-
bution grid. These interventions can be classified into three categories.

System hardening includes measures such as undergrounding overhead powerlines,
covering overhead bare conductors with insulated material, and replacing or reinforcing dis-
tribution poles. These types of measures require upfront capital investment and take time to
deploy. Undergrounding can provide near permanent reductions in ignition risk, but capital
costs are significant.

Vegetation management can substantially reduce ignitions caused by vegetation con-
tact. “Enhanced” vegetation management removes all vegetation within twelve feet of over-
head lines. The risk reduction benefits of enhanced vegetation management are not as
permanent as system hardening investments because vegetation grows back over time.

Operational mitigations, including public safety power shutoffs (PSPS) and “fast-trip”
settings, differ from other categories of mitigation activities in that they can be deployed
in response to real-time wildfire conditions. PSPS events completely de-energize powerlines
during hours of extreme wildfire risk and require inspections before re-energizing them. Fast-
trip settings modify the sensitivity of existing protection equipment during periods of high
fire risk[43]. This equipment senses when a fault occurs, notably when lines contact another
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object. Faults lead to excess current flow, and protection equipment which senses that current
interrupts all current flow on the line. This should reduce ignitions by quickly clearing
faults[11], but there is limited empirical evidence. Although operational mitigations are
inexpensive to enable, they introduce costs in the form of electricity outages and inspections
when a fault does occur.

This chapter and the subsequent chapter focus on the wildfire mitigation activities of
Pacific Gas & Electric Company (PG&E), the largest utility in the United States. Figure
2.1 shows the utility’s service territory and the portions of its service territory that are
characterized as high-fire threat districts (HFTD). HFTD areas are defined by the California
Public Utilities Commission (CPUC) and denote locations where there is an increased risk for
utility-associated wildfires to occur, to spread rapidly, and to cause damage to communities.

Figure 2.2 shows how PG&E’s use of system hardening, vegetation management, and
operational measures has evolved over time. After $30 billion in wildfire liabilities caused
the utility to file for bankruptcy in 2019[44], the utility began to implement a range of wildfire
risk reduction approaches, including enhanced vegetation management and proactively de-
energizing (PSPS) lines during extreme wildfire conditions. In 2021, the utility piloted
fast-trip settings on approximately half of its high-fire threat district (HFTD) distribution
circuits, and the next year it expanded fast-trip settings to all HFTD circuits[11]. Over
the long-term, the utility plans to underground ten thousand circuit-miles, which covers
approximately 40% of the utility’s HFTD[45]. This proposal is controversial given the high
capital costs[46]. In 2020, PG&E’s cost to underground one mile of overhead distribution
line was $4.3 million[47]. The utility is projecting that these per-mile costs will drop to $2.8
million by 2026[48].

2.2 Data and Empirical Strategy

The following analysis makes extensive use of data on powerline-caused ignitions from the
California Public Utilities Commission (CPUC) and regulatory filings made by PG&E[17].
Between 2015 and 2022, 95 percent of PG&E’s 3,821 recorded ignitions occurred along
distribution (versus transmission) lines. Because overhead distribution lines are typically
uninsulated, contact with another object can readily produce ignitions. Table 2.2 shows
that PG&E’s distribution system comprises approximately 3,000 “circuits,” or distinct radial
paths that each connect a few hundred to a few thousand customers to the transmission
system. PG&E’s overhead distribution circuits span approximately eighty thousand miles,
with twenty-five thousand miles (31%) in the HFTD. Our analysis focuses on 772 distribution
circuits that lie, even partially, within the HFTD.

On average, circuits with at least one mile in the HFTD cause an ignition once every
three years. In contrast, circuits outside of the HFTD cause an ignition once every ten years
(see Table 2.3). The probability that an ignition from a distribution circuit causes large,
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catastrophic wildfire outcomes is low. Table 2.3 shows that 95% of ignitions lead to wildfires
less than ten acres, and only 0.5% of ignitions lead to wildfires exceeding 5,000 acres. This
low-probability and high-consequence nature makes the task of wildfire risk management
along powerlines particularly challenging to address.

Table 2.4 shows that between 2015 and 2022, 98% of PG&E’s 1.3 million acres burned
were ignited by vegetation contact (i.e., tree branch striking a powerline) in the HFTD. This
is despite vegetation contact accounting for 19% of the utility’s ignitions. Other causes of
ignitions along powerlines include balloons contacting powerlines, vehicles knocking down
distribution poles, or equipment failures. Since vegetation contact to powerlines represents
the overwhelming share of the utility’s total acres burned, this analysis focuses exclusively
on ignitions produced by vegetation contact on circuits in the HFTD.

Presumably, utilities will target wildfire risk mitigation efforts at circuits with the greatest
combination of ignition and wildfire risk. This non-random assignment of risk mitigation
“treatments” complicates the estimation of causal impacts. A comparison of post-treatment
ignition outcomes across treated versus untreated circuits could confound the effects of the
intervention with differences in baseline risk. The empirical strategy addresses this selection
problem in two steps. First, data collected before risk mitigation treatments were deployed
is used to train a machine learning model to predict daily ignitions for all PG&E distribution
circuits that overlap the HFTD. This model is used to predict “baseline” ignition risk for
all circuit-days in our post-intervention period. Second, caliper matching is used to isolate
comparisons between pairs of circuits with nearly identical levels of baseline ignition risk in
the post intervention period, but received different risk mitigation treatments. For enhanced
vegetation management, two tiers of treatment are defined, “high” and “moderate”.

Ignition Risk Model

Fire weather variables, such as wind speed, are highly stochastic and may interact non-
linearly to generate ignition events. To develop a measure of a circuit’s daily ignition risk, a
random forest model is trained using high-resolution weather data, topographic information,
and circuit characteristics. The methodology closely follows the approach in [49].

In the random forest model, the positive class is an ignition event caused by vegetation
contact on a given circuit-day. The ignition data are highly imbalanced, with the proportion
of positive events to negative events being only 0.03%. The imbalanced nature of the ignition
data is addressed by under-sampling the data. Models are evaluated based on the area under
the receiver operator characteristic curve (AUC).

The model is trained with ignition data occurring between 2015 and 2019, prior to
widespread implementation of PG&E’s wildfire programs. 3-repeat 10-fold cross-validation
is performed, and the training and testing data are split 75/25%. During this process, two
hyperparameters are tuned: the number of decision trees and the number of features con-
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sidered at each split. The ignition risk model produces an AUC value of 0.84 when used
to predict ignition events in the testing data. Prediction models with AUC values between
0.8-0.9 are generally considered excellent[50]. The confusion matrix, using a classification
threshold of 0.5, and ROC curve are shown in Figure 2.4a and 2.4b. Figure 2.5 provides a
list of the top twenty most important variables that predict ignitions.

The output of the ignition risk model is the probability of an ignition occurring on a given
circuit-day, and in all cases Bayes classification threshold of 0.5 is used to predict ignition
counts. Because under-sampling creates bias in the posterior probability distribution[51], an
adjustment is applied to the posterior probability estimates. The adjustment expresses the
posterior probability of the positive class in the original dataset as a function of the posterior
probability of the positive class after under-sampling and the proportion of negative class
events in the under-sampled dataset. After calibrating the probabilities, the ignition risk
model predicts 55 ignitions in the test data. The test data includes 45 actual ignitions. The
recall of the model in the test data is 84% but the precision of the model is low (0.9%).

Matching

To identify effects of enhanced vegetation management on ignition outcomes, the matching
strategy leverages documented “material shortcomings” in PG&E’s approach to allocating
these efforts. Monitoring inspections reports[52] have found that, as the company rolled out
its enhanced vegetation management program, it did not prioritize wildfire risk reduction
according to its highest risk circuits[53]. These shortcomings generated variation in treatment
across circuits with the same baseline ignition risk.

The matching strategy identifies circuits that would have faced the same ignition risk in
the post-intervention period, but received different levels of enhanced vegetation manage-
ment treatment. For each treated circuit, we use caliper matching to identify the two nearest
control circuits within a minimum distance – measured in terms of average daily ignition risk
– to a treated circuit as potential matches. Because the treatment effects may be heteroge-
neous across the amount of enhanced vegetation management performed on each circuit, the
caliper matching process is executed twice for two tiers of the vegetation management treat-
ment. The first treatment level consists of circuits that received “high” amounts of enhanced
vegetation management (50% or more of total circuit length), and the second treatment level
consists of “moderate” amounts of enhanced vegetation management (between 10% and 50%
of total circuit length). Figure 2.3 shows how the sizes of each treatment tier evolve over
time.

Figure 2.6 provides a visual summary of the matching strategy. The figure reveals that
treated circuits with higher average ignition risk are less likely to successfully match to
a control circuit with nearly identical ignition risk. This occurs because as a matter of
prioritizing risk management, the utility generally does not leave high-risk circuits untreated.
As a robustness check, the logistic regression model (described later) is run across the sample
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that does not drop these high-risk circuits that do not successfully match to a control circuit
(Table A.6). For a detailed list of steps to replicate the matching strategy, see Appendix A.

To identify the effects of fast-trip settings, the matching strategy must be modified.
PG&E deployed fast-trip settings to all circuits in the HFTD in 2022, so the within-time
period matching approach described above is not possible for fast-trip settings. Instead, the
matching strategy for fast-trip settings relies on an inter-temporal comparison and the fact
that fast-trip settings are a recent innovation.

Because PG&E did not use fast-trip settings prior to its partial pilot deployment in 2021,
the matching strategy compares similar high-risk location-days across the pre- and post-
intervention periods. The inter-temporal comparisons restrict the sample only to circuit-
days when wildfire risk was sufficiently high that the criteria for fast-trip enablement would
have been met, even in the pre-period when fast-trip settings had not been deployed yet.
One might be concerned that risk factors are distributed differently in the pre- and post-
intervention periods. Tables A.1 and A.2 test for differences in the pre- and post-intervention
periods, and Table A.2 finds similar conditions during high-risk days in the pre- and post-
period. This increases the confidence that differences in ignition outcomes are caused by
risk mitigation versus confounding factors. For more detail on how the fast-trip dataset is
constructed and the criteria the utility uses to enable fast-trip settings, see Appendix A.

No identification strategy is pursued to isolate the causal effects of undergrounding and
PSPS treatments on ignition outcomes; when a line is placed underground or de-energized,
its probability of causing an ignition by vegetation-contact is plausibly zero. The empirical
results, discussed in the next section, support this prior expectation. For covered conductor,
low deployment levels (see Figure 2.2) prevent a tractable identification strategy.

Logistic Regression Model

The conditional probability of a vegetation-caused ignition at location i on day t is modeled
as a function of variables Xit and unknown or unobserved factors ϵit. A logistic regression
model assumes the ϵit are drawn from a standard logistic distribution. This yields the
following closed form expression for the conditional ignition probabilities:

G(Xitβ) =
exp(Xitβ)

1 + exp(Xitβ)
(2.1)

Xitβ = α0 + α1θit + β1Fit+

β2(Di,Veg=Hi. ∗ Tit,Post=1) + β3(Di,Veg=Med. ∗ Tit,Post=1)+

β4Di,Veg=Hi. + β5Di,Veg=Med. + β6UGit + β7Zit,PSPS=1+

β8CCit + β9(Fit ∗Di,Veg=Hi. ∗ Tit,Post=1) + β9(Fit ∗Di,Veg=Med. ∗ Tit,Post=1) (2.2)
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Explanatory variables in the model include a binary variable indicating whether fast-
trip settings were enabled on a given circuit-day (Fit) and binary variables indicating the
circuit-level vegetation management treatment (Di). Vegetation management treatments are
defined across two levels, high and moderate, as described previously. Vegetation manage-
ment treatments are interacted with a treatment indicator (Tit) to capture the effect of the
treatment in the post-intervention period. Predicted ignition risk probability (θit), miles of
undergrounding (UGit) and covered conductors (CCit), an indicator for PSPS events (Zit),
and an intercept term (α0) are included.

2.3 Results

Effectiveness of Fast-Trip Settings and Enhanced Vegetation
Management

Parameter estimates are reported in Table 2.5. In the case of fast-trip settings, the estimated
incidence rate of −0.72 in the third column (β1) implies that enabling a circuit’s fast-trip
settings on a high-risk day reduces the circuit’s probability of causing an ignition by 72%
(54%-83% confidence interval), on average. Circuits with high levels of vegetation manage-
ment cause 57% (2%-82% confidence interval) fewer ignitions (β2) on high-risk days than
similarly risky circuits with minimal amounts of vegetation management.

For comparison, the first column of Table 2.5 displays estimation results for all HFTD
circuits without applying the matching strategies to isolate the causal effects of either miti-
gation type. The estimates in this first column likely confound the effects of risk mitigation
with differences in baseline risk, which is supported by the positive and statistically sig-
nificant treatment group effects (β4 and β5). Once the vegetation management strategy is
applied in the second column, and again when the data is filtered to high-risk days in the
third column, these coefficients attentuate to zero and are no longer significant.

The estimating equation also includes interactions between vegetation management and
fast-trip indicators. If a utility has cleared significant amounts of vegetation around an
overhead line and deployed fast-trip settings, risk reduction may be greater than either
measure can deliver independently. Consistent with this intuition, Table 2.5 shows that
combining enhanced vegetation management with fast-trip settings (β9) reduces ignition
risk by 92% on average.

In Figure 2.7, the coefficients from the logistic regression model are used to assess how
the utility’s efforts have reduced ignition risk over the study period. The figure shows that
in 2022 the utility’s powerlines would have caused four times as many ignitions absent its
wildfire mitigation efforts. A substantial share of the reduction in ignitions came from fast-
trip settings because, unlike capital-intensive system hardening, the utility could deploy this
operational measure rapidly across the distribution grid in response to hazardous conditions.



CHAPTER 2. RISK-COST TRADE-OFFS IN ELECTRIC POWER-SECTOR
WILDFIRE ADAPTATION 11

Cost-Effectiveness

Next, parameter estimates are combined with a cost model that implicates multiple sources
of uncertainty (e.g., the rate at which wildfire risk will escalate over the life of a capital
investment, unit costs, reliability impacts) and multiple cost dimensions (e.g. capital costs,
operating costs, reliability impacts). The results of this model are used in Figure 2.8 to
assess the relative cost-effectiveness of these adaptation strategies. Appendix A describes
the cost modeling in closer detail. Cost-effectiveness results for PSPS measures are omitted
because of a lack of confidence in reported costs.

Costs and avoided ignitions are measured as net present values over the lifetime of the
measure relative to a baseline that deploys routine vegetation management. Routine veg-
etation management costs are avoided when a line is placed underground. The key costs
included in the analysis are utility-reported capital and operating costs and customer relia-
bility costs. A value of lost load (VoLL) framework is used to value customer reliability costs
(see Figure 2.8 caption and Appendix A). The base case assumes ignition risk will increase
linearly to a 50% increase in 2050 and continues to increase at a linear rate thereafter. See
Appendix A for additional information.

Undergrounding cost-effectiveness estimates are constructed to reflect two different per-
spectives. The first (“social”) cost perspective considers upfront capital investment costs
and variable maintenance costs. The second (“regulator”) cost perspective includes the rate
of return on capital investment that the utility is authorized to earn as a cost. Uncertainty
in a variety of parameters is captured by error bars around the central estimate.

There are three takeaways from the cost-effectiveness analysis summarized in the left
panel of Figure 2.8. First, bearing in mind that fast-trip settings do not eliminate all ig-
nitions, fast-trip settings are far more cost-effective at reducing ignitions than vegetation
management or undergrounding. Crucially, this includes the additional costs to customers
that fast-trip settings impose in the form of electricity outages. VoLL estimates are highly
uncertain and heterogeneous, but Figure 2.8 shows that the size of this uncertainty is un-
likely to alter the conclusion that fast-trip settings are more cost-effective than vegetation
management and undergrounding. See Appendix A for additional background on customer
reliability costs.

Second, despite the significant capital costs, undergrounding powerlines is more cost-
effective than vegetation management. This is primarily because undergrounding fully elim-
inates vegetation-caused ignition risk well into the future. Unlike with undergrounding, the
cost-effectiveness of enhanced vegetation management is highly susceptible to assumptions
about how long its benefits will last (e.g., when will vegetation grow back).

Third, estimates of the cost-effectiveness of undergrounding differ significantly between
the “social” and “regulator” perspectives. Because undergrounding is highly capital inten-
sive, utilities earn a rate of return on these investments that is financed by electricity rate
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increases[54]. To put this return in perspective, PG&E is authorized to spend $3.6 billion
in capital on undergrounding 1,230 miles over the period 2023-2026[48]. Over an assumed
40-year lifetime and straight-line depreciation, our “regulator” cost perspective estimates
that the utility collects an additional $2.9 billion (net present value) from ratepayers via its
7.28% rate of return[55] on its capital base (see Appendix A). While some of this return
reflects the utility’s true cost of capital, previous research shows that the regulated rate of
return is often set above the true cost of capital[56]. When this is the case, a utility will
substitute capital for other inputs[57], leading to a more capital-intensive and possibly less
cost-effective wildfire mitigation strategy.

The right panel of Figure 2.8 moves beyond ignitions to understand how these measures
may reduce the destructive potential of powerline-caused ignitions. To do so, wildfire perime-
ters are simulated across numerous ignition points and weather conditions. To contain the
computational complexity of the simulations, the analysis focuses on a six-thousand mile
subset of distribution circuits, roughly comprising (1) the region of Napa, Sonoma, and Lake
counties and (2) the central Sierra foothills. Both regions experienced destructive grid-caused
wildfires during the study period.

The simulations are then used estimate the number of residential and commercially-zoned
parcels burned, per acre, for a representative set of ignitions and fire risk days. These parcel
per acre estimates are then multiplied by the historical size distribution of powerline-caused
wildfires over the study period. To capture variation in the destructive intensity of wildfires
due to factors outside of the electric power sector, such as fire suppression efficacy and home
hardening, the proportion of structures burned per parcel are varied. See Appendix A for
more detail on simulating and calibrating wildfire perimeters. In addition, Chapter 3 extends
this analysis to all high-risk distribution circuits in the utility’s service territory and explores
key drivers of heterogeneity.

The right panel of Figure 2.8 shows that fast-trip settings retain their cost-effectiveness
advantage over the other measures when assessed in terms of structures burned. In these cost
calculations, estimates are strongly dependent on assumptions about the share of structures
destroyed per burned parcel. This underscores the crucial role of mitigation actions outside
the electric power sector (e.g., suppression, home hardening) in determining wildfire risk
outcomes and cost-effectiveness within the electric power sector. Chapter 3 identifies regions
where cost-effectiveness estimates are more or less sensitive to such mitigation actions taken
outside of the electric-power sector.

The different strategies this chapter investigates represent different tradeoffs between
cost, wildfire risk mitigation, and deployability considerations. For example, fast-trip settings
provide a relatively inexpensive way to reduce ignition risk and can be rapidly deployed across
the distribution grid. However, current fast-trip protocols leave 28% of vegetation-caused
ignitions unmitigated on average. In contrast, undergrounding is much more expensive and
requires years to deploy, but is completely effective at reducing vegetation-caused ignitions.
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Because circuits differ significantly in terms of baseline ignition risks, there is no one-
size-fits-all risk mitigation strategy. Moreover, the optimal strategy at a given location can
evolve as new mitigation approaches are developed and refined. During the study period,
for example, the introduction of fast-trip settings as a viable risk mitigation regime altered
the frame of reference for other risk mitigation alternatives.

Figure 2.9 explores the implications for undergrounding. The vertical axis measures costs
per avoided ignition. The horizontal axis measures miles of distribution lines in ascending
order of baseline risk. The costs and ignition reduction benefits of undergrounding are
assessed against two baselines. The solid lines show how estimated undergrounding costs
per avoided ignition vary across line segments relative to a baseline regime that incorporates
only routine vegetation management. The higher the baseline risk at a location, the more
ignitions avoided, the lower the cost per avoided ignition, all else equal. The broken lines show
undergrounding costs relative to the baseline regime that includes both routine vegetation
management and fast-trip settings. Against this updated baseline, undergrounding delivers
smaller benefits in terms of avoided ignitions. The costs that undergrounding eliminates
(i.e., vegetation management, fast-trip costs, and outage impacts) are relatively small, so the
implied costs per avoided ignition increase significantly under the “with fast-trip settings”
baseline.

Figure 2.9 illustrates how incorporating fast-trip settings into standard practice signifi-
cantly reduces the amount of undergrounding investment needed to achieve a given ignition
risk reduction target. Consider, for example, PG&E’s ten-thousand mile target. If one
assumes that the utility is planning to underground the highest risk circuits, the ignition
risk model estimates a remaining risk of approximately 1,200 discounted ignitions along the
line miles that are not undergrounded if the baseline for comparison deploys only routine
vegetation management. Using the alternative baseline that enables fast-trip settings, the
miles of undergrounding required to achieve the same reduction in ignitions is significantly
reduced (arrows denote this reduction).

2.4 Discussion

As the frequency and intensity of wildfire and other extreme weather events increases, the
private sector will play an essential role in financing adaptation investments. To date, em-
pirical evidence on the impacts and relative effectiveness of adaptation investments has been
limited. Electric utilities are currently experimenting with a variety of measures to adapt
to heightened wildfire risk. These are high-stakes experiments with potentially significant
implications for affordability, reliability, and safety. This chapter develops an empirically
tractable framework for evaluating the effectiveness of these investments and for analyzing
tradeoffs between wildfire risks and consumer costs.

Operational measures like fast-trip settings can be deployed quickly and dynamically in
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response to evolving wildfire conditions at relatively low capital costs. The results indicate
that fast-to-deploy measures have played a vital role in cost-effective adaptation strategies to
date. Electric utilities around the world that face rapidly escalating wildfire risk and rising
electricity costs may benefit substantially from the deployment of dynamic operational mea-
sures. However, the analysis finds that the fast-trip protocols that have been demonstrated
in California leave an estimated 28 percent of ignition risk unmitigated, on average. This
stands in contrast to capital-intensive measures, like undergrounding, which are slower to
deploy, significantly more expensive, but eliminate risk with more assurance in the locations
they are deployed. The results do not point to the superiority of one mitigation measure
over another, however they do elucidate some key tradeoffs and illustrate how important
innovations in wildfire risk adaptation strategies can significantly change the cost-calculus
that guides private-sector investment choices.

The analysis comes with caveats. There are many sources of uncertainty in the cost-
effectiveness estimates, and the measures of avoided wildfire damages are model-dependent.
Innovative drilling techniques may reduce undergrounding costs greater than forecasted. On
the other hand, costs could exceed forecasts if the utility has targeted the most favorable,
cost-effective sites first. The deployment of fast-trip settings during the study period rep-
resents the utility’s initial efforts; operational risk mitigation strategies are being refined in
ways that could reduce costs and increase risk reduction effectiveness. While this analysis
estimates that the economic outage costs of fast-trip settings are small compared with the
additional investment costs of undergrounding, there are shortcomings when relying on point
estimates of the value of lost load to do this quantification. These considerations notwith-
standing, the results demonstrate how ongoing experimentation with low-cost operational
measures can avoid significant capital outlays, and the deployability of such operational
measures may especially benefit utilities with nascent wildfire mitigation programs.

The extent to which fast-trip settings– and future operational innovations– deliver real
cost reductions will depend in part on utility incentives. Regulated utilities, especially in
the electric power sector, are routinely authorized to earn generous returns on capital invest-
ments[56]. These incentives will lead utilities to favor capital-intensive mitigation options
over operational ones. Liability rules and public relations considerations encourage utilities
to drive electric power sector ignitions to zero. To the extent that these utility incentives
are misaligned with the best interests of consumers, regulatory oversight will be critical in
the negotiation of tradeoffs between risk reduction benefits and the societal costs of wildfire
mitigation. This paper provides a framework for thinking more systematically about these
risk-cost tradeoffs, and demonstrates how publicly available data and causal inference meth-
ods can be used to evaluate the cost-effectiveness of adaptation efforts. In no other sector
is the measurement of adaptation impact and cost-effectiveness more critical than in the
electric power sector, where adaptation investments, electricity costs, and decarbonization
policies are linked so tightly.
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2.5 Figures and Tables

Table 2.1: Data Sources

Data Type Variables Resolution Source

Climate Minimum relative humidity, wind ve-
locity, wind direction, accumulated
precipitation, maximum temperature,
downward surface shortwave radia-
tion, evapotranspiration, vapor pres-
sure deficit

4 km gridMET, Climatology Lab, Univer-
sity of California, Merced [58]

Climate Air temperature, hourly precipitation,
relative humidity, wind speed, wind di-
rection

RAWS weather
station

Mesowest, University of Utah [59]

Fuels 100-hour and 1000-hour dead fuel
moisture, energy release component

4 km gridMET, Climatology Lab, Univer-
sity of California, Merced [60]

Fuels Live fuel moisture RAWS weather
station

Mesowest, University of Utah [59]

Topography Mean forest canopy height, maximum
forest canopy height, elevation above
sea-level

30-meter LANDFIRE, USDA and U.S. Depart-
ment of the Interior [61]

Circuit Char-
acteristics

Installed year, length in HFTD-Tier 2,
Tier 3, and non-HFTD

Circuit PG&E 2020 Wildfire Mitigation Plan
[62]

High-Fire
Threat District

Perimeters of HFTD Tiers 2 & 3 Spatial poly-
gon

California Public Utilities Commission
[63]

Ignitions Location, voltage, cause, date, time,
size, fire potential index

Lat/long posi-
tion

California Public Utilities Commission
[17], PG&E 2023 Wildfire Mitigation
Plan [64]

Public Safety
Power Shutoffs

Circuit name, date, outage start and
end, outage duration, customers im-
pacted

Circuit California Public Utilities Commission
[65]

Fast-Trip Out-
ages

Circuit name, outage start and end,
customers impacted, ignitions occur-
ring during fast-trip enablement

Circuit PG&E 2023 Wildfire Mitigation
Plan[66, 67], PG&E 2022 Wildfire
Mitigation Plan [68, 69]

Vegetation
management &
system harden-
ing

Enhanced vegetation management, un-
dergrounding, and covered conductor

Circuit-miles PG&E 2020, 2021, 2022, and 2023
Wildfire Mitigation Plans [70–74]

Residential
and commer-
cial parcels

Perimeters of parcels, zoning classifica-
tions

Spatial poly-
gon

County GIS Services

Costs Undergrounding, enhanced and rou-
tine vegetation management, fast-trip
settings

Per mile and
aggregate

PG&E 2023 General Rate Case [47, 48,
75]
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Table 2.2: Length and Count of PG&E Distribution Circuits

Non-HFTD HFTD

Circuits (N) 2, 279 772
Total length (miles) 40, 340 40, 095
Total length in HFTD (miles) - 25, 308
Mean length per circuit (miles) 18 52
Standard dev. per circuit (miles) (25) (51)

Notes: Circuits are assigned to HFTD if they intersect, even partially, the HFTD perimeter. Of the
utility’s 772 circuits that intersect the HFTD, 25 thousand miles are located within the HFTD and
another 15 thousand miles (40 thousand miles - 25 thousand miles) are located outside the HFTD.

Table 2.3: PG&E Distribution Grid Ignitions

Non-HFTD HFTD

Ignitions per circuit-year (mean) 0.10 0.33

Acres burned per ignition (mean) 6 751
Acres burned per ignition (median) < 1 < 1

Percent of ignitions >10 acres 2.6% 4.5%
Percent of ignitions >300 acres 0.3% 1.3%
Percent of ignitions >5,000 acres 0% 0.5%

Notes: Using data from 2015-2022, circuits that overlap the HFTD cause an ignition once every three
years. In contrast, circuits outside the HFTD cause ignitions at a much lower rate– once every ten
years. Less than 5% of ignitions in the HFTD spread to more than 10 acres.
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Figure 2.1: Map of High-Fire Threat District (HFTD)

Notes: The map of the high-fire threat district (“HFTD”) shows areas where there is an increased risk for
utility-associated wildfires to occur, to spread rapidly, and to cause damage to communities. HFTD areas
are defined by the California Public Utilities Commission. Tier 3 features more severe wildfire risk than
Tier 2. Overlaid in red are ignitions caused by PG&E distribution circuits between 2014 and 2022. The
map inset displays an example distribution circuit and the locations of ignitions associated with the circuit
during the study period.
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Table 2.4: Ignitions and Acres Burned by PG&E Distribution Circuits

Non-HFTD HFTD

Ignitions Caused by Veg. Contact

Total 332 697
Mean per circuit-year 0.02 0.13
Standard dev. per circuit-year 0.14 0.42

Ignitions by Other Causes

Total (2015-2022) 1, 640 951
Mean per circuit-year 0.09 0.18
Standard dev. per circuit-year (0.33) (0.47)

Acres Burned by Veg. Contact

Total (2015-2022) 325 1,278,068
Mean per ignition 1 1,891
Standard dev. per ignition (2) (37,328)

Acres Burned by Other Causes

Total (2015-2022) 11,503 10,998
Mean per ignition 7 12
Standard dev. per ignition (91) (121)

Notes: The table indicates that an overwhelming share of acres burned from the utility’s distribution
circuits are caused by vegetation contact ignitions in the HFTD (98%), despite such ignitions accounting
for 19% of total ignitions. Excluding the Dixie Fire, which burned nearly one million acres, lowers this
share slightly to 93%.
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Figure 2.2: Deployment of Wildfire Prevention Measures

Notes: The vertical axis shows the deployment of select wildfire prevention measures measured in thousands
of circuit-miles. The miles deployed of operational mitigations are measured on a daily basis, while grid
hardening and vegetation management investments are shown on a cumulative basis. When the utility
calls a PSPS de-energization event on a given circuit, we assume all of the circuit’s HFTD miles are
de-energized, though in practice fewer miles may be de-energized due to grid architecture and installed
sectionalizing devices.
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Figure 2.3: Deployment of Enhanced Vegetation Management, by High and Moderate Treat-
ment Definition

Notes: Circuits that received enhanced vegetation management equal to 10-49% of their circuit length (in
miles) by the end of the study period are assigned to the ”moderate” enhanced vegetation management
treatment group. Circuits that received over 50% are assigned to the ”high” treatment group.
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Figure 2.4: Ignition Risk Model, Confusion Matrix, and Receiver Operating Characteristic
Curve

(a) Confusion Matrix

(b) Receiver Operating Characteristic Curve

Notes: (a) Plots the confusion matrix of the ignition risk model on the sample of testing data using a
classification threshold of 0.50. (b) Plots the receiver operating characteristic (ROC) curve, which produces
an area under the ROC curve of 0.844.
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Figure 2.5: Ignition Risk Model Feature Importance

Notes: The figure ranks the twenty most important features in the ignition risk model by feature impor-
tance. Feature importance reflects the decrease in accuracy of the model when the variable is excluded
from training and testing the model. Vapor pressure deficit, which captures how dry the air is and is
similar to relative humidity, is shown to be the most important predictor of ignition risk in our model.
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Figure 2.6: Matching on Predicted Ignition Risk

Notes: The horizontal axis plots the average daily ignition risk score of each circuit treated with vegetation
management. The vertical axis plots the same metric but for the two control circuits with the nearest
average daily ignition risk scores. If treatment and control circuits had identical baseline risk scores, they
would fall on the 45 degree line (in gray). The effect of caliper matching is visible in the different color
of points that fall sufficiently far off of the 45 degree line. If the absolute difference between a treated
and control circuit’s average daily ignition risk score is more than 10% of the standard deviation of the
sample’s risk score, then it is deemed an unsuccessful match. If both of a treated circuit’s two nearest
neighbors exceed this caliper, then the treated circuit is discarded from the analysis. The plot shows that
it is more difficult to find successful matches for higher risk circuits because most high risk circuits receive
enhanced vegetation management treatment.
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Table 2.5: Effects of Wildfire Prevention Measures on Ignition Probability

Incidence Rate - Vegetation-Caused Ignitions
Matching &

No Matching Matching High Fire Risk

(1) (2) (3)

β1: Fast-Trip (Fit) −0.27 −0.60∗ −0.72∗

(−0.58, 0.26) (−0.75, −0.33) (−0.83, −0.54)

β2: Veg. Mgmt. (Di=High x Tit=Post) −0.62∗ −0.57∗ −0.57∗

(−0.79, −0.29) (−0.77, −0.20) (−0.82, −0.02)
β3: Veg. Mgmt. (Di=Moderate x Tit=Post) −0.03 −0.01 0.26

(−0.27, 0.29) (−0.27, 0.34) (−0.14, 0.86)
β4: Veg. Mgmt. (Di=High) 1.18∗ 0.02 0.12

(0.77, 1.70) (−0.17, 0.26) (−0.12, 0.42)
β5: Veg. Mgmt. (Di=Moderate) 1.23∗ 0.05 0.05

(0.87, 1.67) (−0.11, 0.25) (−0.17, 0.32)
β9: Combined Effect (Di=High x Fit x Tit=Post) −0.89 −0.87 −0.92

(−1.00, 1.89) (−0.99, 2.27) (−1.00, 1.72)
β10: Combined Effect (Di=Moderate x Fit x Tit=Post) −0.77 −0.81 −0.88

(−0.97, 0.94) (−0.98, 0.88) (−0.99, 0.38)

Risk-score matching No Yes Yes
High-fire risk days only No No Yes
Matched control neighbors (N) - 2 2
Region FEs No No No
Risk-score, undergrounding, PSPS,
and covered conductor controls Yes Yes Yes
AUC 0.782 0.798 0.745
Observations 2,400,342 1,890,015 665,868
Log Likelihood −6,776.30 −8,168.87 −4,610.30

Notes: In all three columns, the dependent variable is a binary variable indicating whether vegetation contact caused an ignition
on a given circuit on a given day. The estimated coefficients are transformed to incidence rates for ease of interpretation. 95%
confidence intervals constructed using heteroskedasticity-consistent standard errors are shown in parentheses below the incidence
rate estimates. Asterisks (*) denote statistical significance at the 95% level. The sample in column (1) includes all circuits
with non-zero HFTD circuit-miles. Column (2) restricts the sample only to circuits that are treated with high (>=50% circuit
length) or moderate (10-49%) amounts of vegetation management and control circuits that are matched to each treated circuit
(see Methods). The sample in column (3) uses the same matched sample in column (2) but further restricts the sample to
days when wildfire conditions are elevated. Vegetation management effects are shown for both the high and moderate treated
groups. The first pair of vegetation management coefficients estimates the effect of the treatment after the treatment has taken
place. The second pair describes a group-specific effect. The third and final pair of vegetation management effects describes
the combined interaction between vegetation management and fast-trip enablement. For example, comparing the incidence
rate estimate of -0.92 for the combined effect with the -0.57 estimate for fast-trip enablement suggests ignitions are 35% less
likely when a utility both enables fast-trip settings and deploys high levels of vegetation management. In all three columns,
we condition on our ML-derived measure of daily ignition risk. To provide a sense of the regression model’s goodness of fit, we
report the area under the receiver operating characteristic curve (AUC).
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Figure 2.7: Ignitions Avoided by Wildfire Mitigation Investments

Notes: The vertical axis shows the number of ignitions predicted by our logistic regression model on
high-fire risk days. The circuits included in this analysis are ones that received high amounts of vegetation
management or control circuits that were matched to these treated circuits based on similar ignition risk.
Using the coefficients reported in column (3) of Table 1, the gray line predicts the number of ignitions in
each month assuming the utility invested in wildfire prevention measures at observed levels. The stacked
vertical bars represent the contributions of each key prevention measure to overall ignition reductions.
These measure-specific contributions to risk reduction are estimated by deploying each wildfire measure
in isolation, holding the deployment of all other measures at zero. Note that the sum of the stacked bars
may not equal the difference between the red dashed line and the gray line. This is because the ignition
reductions of each wildfire prevention measure are compared to a baseline of no other wildfire prevention
measures. If a circuit produces 3.0 ignitions over the period without any wildfire measures, then fully
undergrounding this circuit would reduce ignitions to zero and enabling fast-trip settings would reduce
ignitions to 0.8 [(3 * (100%-72%)] over the period. However, the sum of these two in isolation would
produce a total ignition reduction of 3.8, which cannot exceed 3.0 ignitions.
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Figure 2.8: Cost Efficiency of Electric Utility Wildfire Mitigation

Notes: The figure plots estimated electric utility investment costs per avoided ignition and per avoided
structure burned for each wildfire mitigation measure deployed across all HFTD circuits. For fast-trip
settings, we include estimated reliability costs borne by customers by applying a value of lost load to
electric service interruptions. In our central case, we assume a constant $5/kWh value of lost load. We
vary this parameter choice between $2.5/kWh and $7.5/kWh. For undergrounding, we consider two
different cost structures. The first, called the “social” perspective, only considers the per-mile costs of
undergrounding and discounts future benefits in terms of avoided ignitions using a real social discount rate.
The second, called the “regulator” perspective, adds in the return the utility earns on capital investment
under rate of return regulation as a cost. See Methods and Appendix A for more detail.
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Figure 2.9: Implications of Operational Measures, Risk Reduction, and Shifting Underground
Capital Investment

Notes: The plot on the left describes how our estimates of the cost per avoided ignition for a given un-
dergrounding investment vary across circuits. Specifically, the horizontal axis corresponds to hypothetical
levels of undergrounding investment across the HFTD, with the left side of the axis corresponding to
zero miles of undergrounding (0% of HFTD) and the right side corresponding to 25 thousand miles of
undergrounding (100% of HFTD). Ten thousand miles of undergrounding is used as a reference point,
which has been proposed publicly by PG&E. The plot on the left is constructed by ordering circuits in
terms of cost-effectiveness assuming all miles of the circuit are placed underground. See Methods and
Appendix A for additional detail on the cost analysis. The solid line plots cost per avoided ignition for
undergrounding under the assumption that no fast-trip settings (or other wildfire mitigation measures)
are deployed. However, when we plot the dashed line, we model the impact that fast-trip settings have
on reducing ignition risk during high-fire risk days on circuit-miles that are not placed underground. In
addition, the scenario depicted by the dashed line accounts for cost savings that undergrounding produces
in terms of reducing fast-trip program costs, reliability impacts, and routine vegetation management. The
plot on the right shows the total discounted ignitions over the lifetime of the undergrounding investment.
As 100% of the HFTD is placed underground on the right of the horizontal axis, total discounted ignitions
are zero.



CHAPTER 2. RISK-COST TRADE-OFFS IN ELECTRIC POWER-SECTOR
WILDFIRE ADAPTATION 28

Figure 2.10: Comparison of Predicted and Actual Wildfire Spread Sizes, by Month

Notes: The left panel of the figure plots the distribution of actual wildfires ignited by PG&E distribution
lines between 2015 and 2022. Small fires are defined as less than 10 acres. Medium fires are defined as
greater than or equal to 10 acres and less than 300 acres in size. Large fares are defined as greater than or
equal to 300 acres and less than 10,000 acres. Extreme fires are defined as greater than or equal to 10,000
acres. The plot on the right shows the predicted distribution of wildfire sizes using the random forest
model we train on 75% of actual wildfire ignitions by PG&E distribution circuits.
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Figure 2.11: Predicted Probability of Wildfire Spread Size

(a) Small (0, 10 acres) (b) Medium [10, 300 acres)

(c) Large [300, 10,000 acres) (d) Extreme [10,000, ∞)

Notes: Each plot shows the average predicted probability of a given wildfire size class (e.g., “small”:
less than 10 acres, “extreme”: greater than or equal to 10,000 acres), averaged across each circuit and
each day of the year during our study period. In addition to the average, the dashed lines plot the 5th
and 95th percentiles.
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Chapter 3

Measuring Uncertainty in the
Cost-Effectiveness of System
Hardening Investments

3.1 Introduction

Adapting to the risks of wildfire in the electric power sector involves many levels of wildfire
risk management beyond the electric power sector itself. The expected returns on a utility’s
investment in system hardening depend on a fire district’s defensible space policies, the
ability of firefighters to suppress wildfires, and the amount of fuel treatments applied to the
landscape to reduce wildfire severity. If forest management professionals deploy widespread
fuel treatments in the future that reduce wildfire severity, then the avoided damages from a
system hardening investment made today would be lowered. This nexus between the electric
power sector and the broader set of wildfire risk mitigation policies creates uncertainty in
the payoffs of electric power sector adaptation efforts.

All levels of wildfire risk management face uncertainty when making investment decisions,
but this uncertainty may affect the electric power sector uniquely because it is held financially
liable for the damages it causes from igniting wildfires. In California, public utilities face
strict liability for igniting wildfires due to inverse condemnation, allowing citizens to sue
public utilities for damages incurred to their private property regardless if the utility is found
negligible or not in its operations that led to the ignition [76]. In contrast, firefighters are
shielded from legal action if they are unable to prevent structure loss, and forest professionals
would not typically be sued if their fuel treatment projects proved ineffective. Property
owners face a financial incentive to protect their structures from wildfire damages, but market
failures in the insurance industry may reduce this incentive [77].

In the face of large potential liabilities and uncertainty in the amount of adaptation
outside the electric power sector, electric utilities may over-invest in wildfire adaptation to
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reduce expected losses. This may not be consequential for short-run adaptation investments;
the utility or regulator can update its wildfire mitigation strategy as new information about
non-electric power sector investments is learned each year. However, system hardening in-
vestments with longer lifetimes, like burying overhead powerlines, could become “stranded”.

“Stranded assets” are ones that lose economic value well ahead of their anticipated useful
lives, whether that is a result of changes in market forces, environmental shocks, or other
factors [78]. Stranded assets have been a focus of the literature on the electric and gas
utility industry [79–83]. The analysis described in this chapter contributes to this broader
literature on aging infrastructure and efforts to decarbonize the economy. One study finds
that the push to electrify buildings may leave customers who remain connected to the gas
distribution network stuck paying for legacy utility costs [82]. In a similar fashion, electric
distribution customers could be left paying for uneconomical system hardening investments
if their intended risk reduction benefits do not deliver in future periods.

The goal of this chapter is to decompose key sources of uncertainty that affect the returns
on an electric utility’s long-duration wildfire adaptation investments. Three categories of
uncertainty are considered: (1) factors outside the electric power sector, such as changes in
extreme wildfire risk, (2) factors within the electric power sector, such as the effectiveness of
operational mitigations, and (3) other economic and social factors, such as the discount rate.
Each of these categories is analyzed spatially across the varied landscape and fire regimes
of Pacific Gas and Electric Company’s service territory. In doing so, this analysis aims to
guide electric power sector adaptation investments to locations where they are cost-effective
and least likely to fall victim to becoming stranded assets.

The analysis finds that burying overhead powerlines may be most cost-effective in interior
regions of the utility’s service territory, where ignition and extreme wildfire risk is highest.
This is despite the lower structure density found in these regions. Uncertainty in extreme
wildfire risk is also highest in these interior regions bordering the Sierra Nevada Mountains
and Southern Cascades. To reduce the potential for extreme outcomes at the tail of the risk
distribution, system hardening investments may be best targeted to these regions.

Second, the possibility for underground powerlines to become “stranded” is significant.
An improvement in grid management protocols that reduces ignition risk, such as fast-trip
settings, can more than double the costs of undergrounding when assessed on the basis
of avoided structures burned. Similarly, a one standard deviation decrease in structure
risk, possibly caused by defensive actions taken by property owners, could raise the costs
of undergrounding by nearly 50%. These findings point to the importance of cross-sector
coordination across all levels of wildfire risk management to ensure electric utility customers
are not left paying for an uneconomical wildfire adaptation portfolio.
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3.2 Data

The majority of the electric power sector data used in this analysis is previously described
at length in the previous chapter and Appendix A. New sources of data include those from
the“Wildfire Risk to Communities” project (WRC), a joint collaboration between the U.S.
Forest Service’s Rocky Mountain Research Station, Pyrologix, LLC, and Headwaters Eco-
nomics.

Electric Utility Infrastructure

The analysis focuses on distribution circuits in Pacific Gas and Electric Company’s (PG&E)
high-fire threat district (HFTD). Specifically, the sample of circuits included in the analysis
is limited to circuits that span at least ten miles in the HFTD. There are 449 of these circuits
and they account for a total of 24,347 HFTD miles, which represents approximately 96% of
the utility’s high-risk distribution lines.

Table 3.1 shows the count and length of circuits by region. Regions are defined using
the protection districts from the California Department of Forestry and Fire Protection
(CALFire). See Figure 3.3 for a map of the boundaries of each region. On average, each
region contains 24 circuits and 1,300 miles of distribution lines. These regions aggregate
areas with similar fire regimes.

Data on operational mitigations, namely public-safety power shutoffs (PSPS) and fast-
trip settings, is included in the analysis. These mitigations are described at length in both
Chapters 2 and 4. Table 3.1 shows how the incidence of these measures varies across region.
Three regions (Amador-El Dorado, Nevada-Yuba-Placer, and Sonoma-Lake-Napa) account
for over half of all PSPS customer-hours.

Ignition Risk and Wildfire Spread

Ignition risk is evaluated using the machine-learning ignition risk model described in Chapter
2. It represents the probability of a vegetation-caused ignition occurring on a given day for
a given circuit. The rightmost column of Table 3.2 transforms daily ignition probability per
circuit to show the expected number of ignitions per circuit in a given fire season (defined
May 15 to November 15) by region.

Average circuit ignition risk tends to be highest in regions in the Northern Sierra Nevada
Mountains and Southern Cascades. Circuits in the Tehama-Glenn region, Amador-El Dorado
region, and Madera-Mariposa-Merced region all produce an ignition about once every three
years. Circuits along the central coast of California see much lower ignition risk of about
once every ten years.

The probability of wildfire spread model is also discussed at length in the previous chapter
and Appendix A. See Figures 2.10 and 2.11. This model estimates the probability that an
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ignition on a given distribution circuit would reach a given size in acres. The model is trained
used empirical data on PG&E-caused wildfires [17]. Table 3.2 shows that the probability
of extreme electric utility-caused wildfire spread (larger than 10,000 acres) is highest in
Southern Cascads (Lassen-Modoc region and Shasta-Trinity region) and generally lower in
more coastal and urban regions (Marin region, San Mateo-Santa Cruz region, and San Luis
Obispo region). This reflects the historical pattern of wildfire risk in the utility’s service
territory.

Table 3.2 contains additional summary statistics on key variables that inform the pre-
diction of ignition risk and wildfire spread in the machine-learning models. These variables
include vapor pressure deficit, average forest canopy height along the circuit, dead-fuel mois-
ture (100 hour and 1,000 hour time lags are used), and energy release component. Figure
2.5 shows additional variables that are important determinants of ignition risk.

Wildfire Risk to Communities (WRC) Project

TheWildfire Risk to Communities (WRC) project provides national geospatial data products
on wildfire hazard [84]. It was developed in collaboration with the U.S. Forest Service,
Pyrologix, LLC, and Headwaters Economics. This analysis relies on two key geo-spatial
products from the WRC dataset: (1) building counts in raster format and (2) conditional
risk to potential structures in raster format.

The building count data is created by combining two independent sets of building foot-
prints, one from ONEGEO and another from Oak Ridge National Laboratory and the Federal
Emergency Management Agency. The WRC project filters out small polygons that repre-
sent sheds or may reflect the shadows of rocks (footprint less than 40 m2). Footprints that
overlap uninhabitable land cover such as open water or permanent snow are removed. This
produces a raster dataset at a pixel size of 30 meters x 30 meters that contains the count of
buildings in each pixel.

The second key geo-spatial product is called conditional risk to potential structures
(cRPS). This product represents the potential consequences of a fire to a structure if both
a fire were to occur and a structure was located in that pixel. Its values range from zero
to 100, with zero indicating no damage to a structure and 100 indicating complete struc-
ture loss. The measure is developed by estimating flame length probability classes across
the landscape and assigning response function values based on flame length and vegetation
type. Importantly, cRPS reflects the potential risk to a generic residential structure and
does not account for actions taken by property owners to protect their homes. See WRC
documentation for more details on methods [85].

Table 3.3 summarizes the building count data and conditional risk to potential structures
by region. The data is further summarized by wildfire class sizes (small, medium, large, and
extreme) corresponding to the wildfire spread model discussed earlier (see Figure 2.11).
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Additional details on wildfire sizes are described in the Methods section next. The first
panel of Table 3.3 shows that structure density decreases with larger wildfire sizes. This is
driven by powerlines generally being located close to structures, so as fires spread further
from powerlines structure density decreases.

The middle panel of Table 3.3 shows that conditional risk to potential structures (cRPS)
tends to be highest in regions in the Central Sierra. The three regions with the highest
average cRPS (Nevada-Yuba-Placer, Tuolumne-Calaveras, and Amador-El Dorado) have an
average cRPS of 0.44. The three regions with the lowest average cRPS (Santa Clara, Marin,
and San Mateo-Santa Cruz) are urban and coastal regions (mean 0.25 cRPS).

The third and final panel of Table 3.3 multiplies structures per acre by cRPS to calculate
expected structures burned per acre. Here, the regions with the highest values are located
in more urban and coastal areas that feature high structure densities (Marin, Santa Clara,
and San Luis Obispo).

3.3 Methods

To evaluate the key sources of uncertainty that affect the returns on electric power sector
wildfire adaptation (i.e., undergrounding), the following five steps are taken. Additional
detail on each step is described next.

1. Calculate expected structure damages from ignition points along each circuit, calibrat-
ing to observed wildfire sizes and structure losses during the historical period.

2. Create a 40-year sample of circuit and weather data by randomly sampling historical
data (2015 to 2022), and combine the 40-year sample with expected structure damages.

3. Calculate the system hardening costs of undergrounding each circuit, the avoided struc-
ture losses, and other avoided costs associated with system hardening (e.g., customer
outages, fast-trip and PSPS costs), discounting them over the 40-year lifetime to net
present value.

4. Rank each circuit in terms of cost-effectiveness (total cost per avoided structure loss),
and record the point at which 80% of total structures are avoided as a benchmark.

5. Repeat above steps after shifting key variables by one standard deviation (i.e., ignition
probability) and compare changes in cost-effectiveness across regions.

Calculating Expected Structure Loss

Deriving a measure of expected structure loss at the circuit level that varies with daily
changes in fire weather is central to this analysis. The threat of structure loss along circuits
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can vary considerably due to differences in topography, vegetation type, wind velocity, fuel
moisture, structure density, firefighting resources, structure hardening, and mitigating ac-
tions taken by the electric utility. The following model takes these factors into consideration
when calculating expected structure loss.

It is worth underscoring that structure loss represents one source of damages caused by
wildfires. Several studies have demonstrated that public health losses from wildfire smoke
likely dwarf the damages to structures[86–88]. Other costs associated with wildfires include
direct fatalities, changes to ecosystem services, firefighting expenses, and disruptions to
economic activity and recreation [7]. This analysis will focus solely on structure loss because
it is the largest source of damages utilities are held liable for (utilities are also held liable
for firefighting expenses and direct fatalities). Future research should aim to incorporate
the damages from air quality impacts into the evaluation of electric power sector wildfire
adaptation efforts.

Calculation of expected structure loss (Yit) at circuit i on day t takes the following form1:

Yit = Pr(I = 1|Xit, Ci, Zit) ∗
S∑
s

Pr(s|Xit, Ci) ∗ δis ∗ Ās (3.1)

The first term of Equation 3.1 represents the probability of an ignition occurring for a
given circuit on a given day. The ignition risk model is described at length in Chapter 2.
Importantly, the probability of an ignition is adjusted to account for operational mitigations
the utility may take to reduce ignition risk (Zit). The two operational mitigations considered
are fast-trip settings and PSPS events. In the central case, when fast-trip settings are
enabled, ignition probability decreases by 72%. PSPS events are assumed reduce ignition
probability by 100%.

Next, the second term of Equation 3.1, Pr(s|Xit, Ci), reflects the probability of an ignition
spreading into a wildfire of size s. These wildfire class size probabilities are also discussed
at length in Chapter 2 and Appendix A. They are estimated by training a machine-learning
prediction model on historical wildfire sizes from PG&E fire ignition data. Fire suppression
is not explicitly modeled in this analysis, though the wildfire spread model implicitly controls
for fire suppression because it is trained on empirical wildfire sizes. The four wildfire class
sizes (s) considered are:

1. Small: < 10 acres

2. Medium: [10 acres, 300 acres)
1This equation is similar to the one used in the wildfire simulations in Chapter 2 and Appendix A,

but offers several improvements. Ignition probability and wildfire class size probability are identical to the
previous approach. Structures burned per acre is estimated with improved data from the cRPS data product
and then calibrated to historical structure losses.
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3. Large: [300 acres, 10,000 acres)

4. Extreme: [10,000 acres, ∞)

The third term of Equation 3.1 (δis) captures the number of structures burned per acre
by a wildfire of size s. Figure 3.1 provides an illustration of how δis is calculated for an
example circuit. First, ignition points are randomly sampled along each distribution circuit
because wildfire risk can vary depending on where the ignition occurs along the circuit. The
circuits included in the analysis span 50 miles, on average, and therefore can intersect a
variety of vegetation types and structure densities. Five ignition points are sampled for each
circuit.

Buffers equal to the average wildfire footprint (Ās) of each wilfire class size (s) are then
drawn around each ignition point. These buffers are shown surrounding each ignition point
in Figure 3.1. Each buffer is then intersected with the 30-meter raster data on (1) building
counts, (2) conditional risk to potential structures, and (3) the product of the two raster
datasets. Across all pixels intersected, δis is then calculated as the average of the product
of building counts (B) and cRPS. δis is adjusted to a per-acre basis to account for the 30-
meter pixel sizes equaling approximately 0.22 acres. Standard deviations of δis are recorded
across pixels for the uncertainty analysis. Equation 3.2 shows this mean calculation, where
p denotes pixels, Bi,s,p represents building count in pixel p intersected by fire size s, and
cRPSi,s,p similarly represents cRPS in a pixel intersected by a given wildfire size.

δis =

∑P
p Bi,s,p ∗ cRPSi,s,p

P
∗ 1

0.22
(3.2)

Lastly, the fourth term of Equation 3.1 (Ās) is the average wildfire footprint for a given
class size, using historical data from PG&E ignition data. Average wildfire footprint sizes are
multiplied by expected structure loss per acre (δis) to obtain total structure loss for wildfire
class size s at circuit i in Equation 3.1. In addition, the average wildfire footprint sizes are
used to draw buffers around ignition points for each wildfire class size (see Figure 3.1).

1. Ās=Small: 1 acre

2. Ās=Medium: 150 acres

3. Ās=Large: 2,000 acres

4. Ās=Extreme: 20,000 acres

Finally, expected structure losses are calibrated to historical data on structure losses
from PG&E-caused wildfires using a calibration factor α. Using incident-specific reports
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from CALFire, total structure losses from PG&E-caused wildfires during the 2015 to 2022
period are approximately 27,0002, denoted by µ. The Camp fire accounts for 18,804 of
the approximately 27,000 structures lost. Exclusion of the Camp fire would reduce the
calibration factor to 1.4.

α =
µ∑2022

2015

∑N
i Yit

=
27, 271

6, 358
= 4.3 (3.3)

Therefore, expected structure loss for a circuit i on day t is given by:

Ŷit = Yit ∗ α (3.4)

There are several advantages and disadvantages to this methodology that are important
to highlight. First, estimating wildfire class size probabilities is subject to small sample bias.
Extreme wildfire sizes are rare, 0.5% of all PG&E-caused ignitions, but drive a significant
portion of structure losses. Just one wildfire, the Camp fire, accounts for two-thirds of
observed structure losses. And yet, the Camp fire was only 15% of the size in acres of PG&E’s
largest wildfire, the Dixie fire. In short, Equation 3.1 inherently assumes an increasing
relationship between wildfire size and structure loss, but this simplified relationship does not
always hold with some of the state’s most extreme wildfires.

An important advantage of this approach is that it leverages a structure damage response
function (cRPS) at a highly granular 30-meter resolution. Rather than selecting a single
parameter for this damage function (0.4 in the case of the wildfire simulations in Chapter 2),
this approach captures how difficult it may be to fight fires and protect structures conditional
on local topography, land cover, vegetation type, and fuels. In addition, because cRPS values
are generated at a granular geo-spatial scale, a distribution of cRPS values can be created
and drawn from for the uncertainty analysis.

A disadvantage of the methodology described comes from the construction of buffers
around ignition points. In the wildfire simulations described in Chapter 2, wildfire perimeters
were grown using the Minimum Travel Time method. As a result, wildfire footprints tended
to grow in the direction of prevailing winds and follow the slopes and vegetation around
the circuit. This produces wildfire footprints that closely resemble actual wildfire footprints
(see Figure A.2). However, these wildfire simulations require significant computation time
and were thus limited to subset of distribution circuits. In this analysis, circular buffers are
drawn around each ignition point, which may not reflect the tendency of wildfires to grow
in specific directions surrounding each circuit.

2Destroyed structures are assigned a value of 1 and damaged structures are assigned a value of 0.5. The
Kincade fire is excluded because it was ignited by a transmission line. The Tubbs fire is excluded because it
was ignited by private electrical equipment.
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Creating the Circuit-Weather Sample

Next, a 40-year sample of weather data is constructed for each circuit included in the analysis.
The data sample is restricted to the fire season, defined as May 15 to November 15. The
sample is created by drawing randomly from the historical set of weather data from 2015
to 2022. The period of 40-years is based on the expected lifetime of underground powerline
assets.

The key variables recorded when creating the circuit-weather sample include the prob-
ability of ignition, the probability of each wildfire class size, and the presence of fast-trip
settings, PSPS events, and associated outage durations (Zit). Ignition risk or wildfire risk is
not assumed to increase in future years, however these variables are shifted up and down in
the following uncertainty analysis.

System Hardening Costs and Benefits

The calculation of system hardening costs and benefits closely follows the approach described
in Chapter 2 and Appendix A, with several changes. First, the analysis does not assume
the utility earns a return on its capital investment. In this way, the costs presented here
more resemble the“social” perspective shown in Figure 2.8. However, the cost analysis does
assume there is some financing cost the utility faces. The interest rate is set at 2.5% above
the real social discount rate. The central estimates assume a discount rate of 2.5% and an
interest rate of 5%. In Chapter 2, the “social” perspective does not assume there is any
financing cost for the undergrounding investment.

When an electric-utility undergrounds a powerline, it obviates the need to use operational
mitigations such as fast-trip settings and PSPS events. The cost analysis includes these
avoided operational costs as a benefit of undergrounding powerlines. Using historical data
on fast-trip and PSPS costs, the analysis assumes $20 per customer-hour of fast-trip outages
and $10 per customer-hour of PSPS outages. Customers also face an economic cost in the
form of outages when operational mitigations are activated. The cost analysis assumes a
value of lost load (VoLL) of $3 per kWh. See Chapter 2 and Appendix A for more details.

The cost model assumes a unit cost of $3 million per mile of undergrounding. See
Appendix A for a detailed discussion of unit cost sources for undergrounding. Annual un-
dergrounding costs, avoided structure losses, and other avoided costs such as outages are
discounted to net present value terms using a real social discount rate of 2.5%.

Benchmarking Cost-Effectiveness

The next step combines net present costs with net present avoided structure losses to calcu-
late cost per avoided structure burned. A benchmark is needed to assess cost-effectiveness
across sensitivity analyses and across regions. The system-wide average cost per avoided
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structure burned is not a useful benchmark because in some low-risk locations it is highly
uneconomical to underground powerlines.

In this case, the benchmark used is the marginal cost per avoided structure burned at
which 80% of total structure risk is mitigated. This parameter choice of 80% could be viewed
as arbitrary, but it is useful to ground it in the “prices vs. quantities” concept of mitigating
global greenhouse gas emissions [89]. In the absence of a full cost-benefit analysis, it is
unknown at what marginal cost undergrounding becomes uneconomical. Instead, a target is
set on total structure loss, akin to a target on emissions, and the marginal cost is observed at
that target. This target of 80% risk reduction produces an undergrounding quantity result
that tracks the utility’s publicly stated goal of undergrounding 10,000 miles of powerlines
[45]. However, the analysis could be replicated with lower or higher targets for robustness.

To construct the benchmark, circuits are ranked in terms of cost-effectiveness. The
analysis assumes the utility deploys the most cost-effective projects first. The first set of
results also reports that average cost per avoided structure burned at which 80% of structure
risk is mitigated.

Uncertainty Analysis

Finally, the last step involves shifting key parameters up and down to observe how sensitive
the cost-effectiveness benchmark is to each parameter. This decomposition analysis aims to
identify what factors may play the largest role in affecting the returns on system hardening
investments. Specifically, the goal of the analysis is to determine to what extent do exogenous
influences outside of the electric power sector play a prominent role in driving the returns on
electric power sector adaptation investments. A list of how each parameter is shifted follows:

1. Ignition Probability : Standard deviations are calculated for each circuit across all fire-
season days. Ignition probabilities are then shifted both up and down for each circuit
by one standard deviation. If ignition probability is equal to or less than zero, it is set
to the minimum value of 1 ∗ 10−6.

2. Extreme Wildfire Spread : Standard deviations of the probability of extreme wildfire
spread (≥ 10,000 acres) are calculated for each circuit using all fire-season days. The
probability of extreme wildfire spread is then shifted up and down by one standard
deviation. Because the probabilities across all wildfire class sizes must sum to 1, the
corresponding increase or decrease in extreme wildfire spread probability is offset by
even changes in small and medium wildfire class size probabilities.

3. Structure Risk : Figure 3.1 illustrates how each wildfire class buffer intersects many
pixels. Standard deviations for expected structure loss per acre (δ) for each circuit are
obtained through this variation across pixels. δ is then shifted up and down by one
standard deviation.
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4. System Hardening Costs : The central case assumes undergrounding costs of $3 million
per mile. The uncertainty analysis uses $2 million per mile as the low case and $4
million per mile as the high case.

5. Discount Rate and Interest Rate: The central real social discount rate used is 2.5%.
The low case uses 0.05% and the high case uses 4.5%. The corresponding low and high
interest rates (shifted symmetrically with the discount rate) are 3% and 7%.

6. Fast-Trip Settings : In the central case, fast-trip settings are assumed to be 72% effective
at reducing ignition risk when enabled. The low and high cases vary this effectiveness
by 20%. No sensitivity analysis is provided for fast-trip program costs, PSPS program
costs, or PSPS effectiveness.

7. Value of Lost Load : The central case assumes a VoLL of $3 per kWh. The low case
assumes a VoLL of $1 per kWh and the high case assumes $5 per kWh.

Finally, Monte Carlo methods are used to construct 95% confidence intervals. For the
Monte Carlo simulation, 100 runs are performed. For each run, a new 40-year sample of
circuit-weather data is randomly drawn. In addition, for each run the parameters described
above are randomly drawn from their corresponding distributions. Variation in the cost-
effectiveness of undergrounding across each Monte Carlo run allows for construction of 95%
confidence intervals shown in Figure 3.2.

3.4 Results

The next section discusses three sets of finding. The first provides an overview of under-
grounding cost-effectiveness on a system-wide basis, similar to results discussed in Chapter 2
(Figures 2.8 and 2.9). These results improve upon those discussed in Chapter 2 by estimat-
ing cost-effectiveness across all high-risk circuits, in contrast to the two regions that wildfire
simulations were performed in. The second set of results discusses regional heterogeneity in
undergrounding cost-effectiveness and its likely causes. The third set of results focuses on
decomposing the key sources of uncertainty that influence undergrounding cost-effectiveness.

System-Wide Cost-Effectiveness

The following sets of findings rely on a benchmark cost-effectiveness measure that is cal-
culated as the marginal cost per avoided structure burned at which 80% of system-wide
structure risk is mitigated. Figure 3.2b shows that the central estimate of this benchmark
is $5.0 million per avoided structure burned with a 95% confidence interval of $2.8 to $8.8
million per avoided structure burned. While this cost is much higher than the median struc-
ture value in California, structure losses represent just one source of damages from wildfires
and should not be used as the sole criterion in a cost-benefit analysis.
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Both Figures 3.2a and 3.2b show that 80% of structure risk can be mitigated by under-
grounding 8,900 miles of distribution lines. This suggests that 80% of the utility’s structure
risk is concentrated in 36% of the utility’s distribution-circuit miles. This finding is consis-
tent in the Monte Carlo simulation, producing a 95% confidence interval of 8,700 miles to
9,500 miles.

The total cost to mitigate 80% of structure risk is estimated at approximately $50 billion,
assuming per-mile costs of $3 million per mile, a discount rate of 2.5%, and an interest rate
of 5%. The Methods section and Appendix A discuss how additional costs are treated,
including outage costs and avoided operational expenses. While the benchmark marginal
cost per avoided structure burned for an 80% risk reduction is $5.0 million, the average
cost across all 8,900 miles buried is approximately half the marginal cost ($2.5 million per
avoided structure burned). This highlights the significant variation in cost-effectiveness
across undergrounding projects.

Regional Heterogeneity

Next, the analysis finds that this benchmark cost-effectiveness measure of $5.0 million per
avoided structure burned varies considerably across the regions of Northern and Central
California. Burying powerlines is most cost-effective in regions to north of the utility’s
service territory that border the Sierra Nevada mountain range (See Figure 3.3).

In the Butte Unit (BTU), where the Camp fire was ignited, 80% of the region’s struc-
ture risk can be mitigated at a low benchmark cost of approximately $1 million per avoided
structure burned. This finding of high cost-effectiveness in the Butte region is consistent
empirically. At the end of 2022, PG&E had directed one-third of its undergrounding invest-
ment to date to the Butte region, despite its distribution circuit miles accounting for less
than 5% of the utility’s total high-risk miles.3

The next three most cost-effective regions are all adjacent to the Butte region: Shasta-
Trinity, Tehama-Glenn, and Lassen-Modoc. Marginal cost per avoided structure burned
at which 80% of each region’s structure risk is mitigated ranges from $2.0 million to $2.3
million.

Regions where undergrounding is least cost-effective are located generally along the coast.
These regions span all the way to the utility’s northern border (Humboldt-Del Norte) and to
its southern border (Santa Barbara). Differences in ignition risk and extreme wildfire spread,
as opposed to structure density and conditional risk to structures, likely explain the regional
heterogeneity in cost-effectiveness. In coastal regions, the areas near high-risk distribution
lines feature approximately double the structure density compared to the more cost-effective
regions bordering the Northern and Central Sierra Nevada mountains. Despite the larger

3This may be explained partially by the necessary rebuild of the distribution network following the Camp
fire.
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structure count in coastal regions, ignition probability is less than half and the probability
of extreme wildfire spread is 10% of the respective values in the Northern interior regions of
the utility’s service territory.

This finding confirms the importance of extreme wildfire probabilities in explaining catas-
trophic wildfire outcomes and heterogeneity across regions. While extreme wildfire sizes are
very rare (0.5% of powerline-caused ignitions), they are a large driver of damages. Accurately
measuring these probabilities is a difficult task given small sample sizes, but it is a crucial
ingredient to effective deployment of adaptation investments. Tables 3.2 and 3.3 summarize
ignition risk, wildfire spread probability, and structure risk variables for each region.

Uncertainty Analysis

In Figure 3.4, key parameters (i.e., ignition risk, undergrounding unit costs) are shifted up-
wards and downwards, and their impacts to cost-effectiveness are recorded. The first finding
is that the unit cost of undergrounding, often a focus of regulatory proceedings and debate
among stakeholders, does not have the largest impact on cost-effectiveness. Instead, param-
eters related to ignition risk, including the effectiveness of fast-trip settings at mitigating
ignition risk, can produce a much larger impact.

Consider an improvement in undergrounding unit costs from $3 million per mile to $2
million per mile. This improvement would lower the cost per avoided structure burned by
42%. In contrast, an increase in the effectiveness of fast-trip settings from 72% to 92% would
raise the cost per avoided structure burned by 140%. Similarly, a one standard deviation
decrease in ignition risk, which can serve as a useful for proxy for other grid management
technologies developed in the future, leads to a doubling of cost per avoided structure burned.

This finding highlights concerns about underground powerlines becoming “stranded as-
sets”. The cost-effectiveness of undergrounding investments made today can be eroded by
future improvements in the effectiveness of operational mitigations deployed in later periods.
Adaptation strategies that embrace innovation across a range of system hardening and oper-
ational measures provides the utility with portfolio diversity; committing to a single system
hardening technology with a long lifetime may lead to the “stranded asset” problem and
reduced cost-effectiveness.

The second finding from the uncertainty analysis is that a one standard deviation increase
in the probability of extreme wildfire spread can cut the cost per avoided structure burned
by more than half from $5.0 million to $2.25 million. As the climate warms and periods of
drought intensify, wildfires may be more difficult to contain as drier fuels encourage extreme
fire behavior. On the other hand, widespread use of fuel treatments (e.g., prescribed burns,
mechanical thinning) and improved fire suppression resources could reduce the potential for
extreme wildfire spread in the future. Extreme burn severity could produce a negative feed-
back on future wildfire spread[90]. The uncertainty analysis finds that this parameter, which
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is exogenous from the utility’s perspective, plays a significant role in the cost-effectiveness
of its system hardening investments.

Figure 3.5 explores the extreme wildfire spread parameter in more depth by breaking out
the effect of a one standard deviation increase across each region. The purpose of this task
is to identify regions where undergrounding investments are subject to more uncertainty,
and in doing so, can inform future investment. The results of the figure find that regions in
the Northern Sierra Nevada mountains and Southern Cascades would experience the largest
changes in cost-effectiveness caused by a one standard deviation increase in extreme wildfire
spread. Specifically, the Butte region, the Nevada-Yuba-Placer region, and the Tehama-
Glenn region would experience a 60-69% decrease in cost per avoided structure burned under
a one standard deviation increase.

Given these three regions are already some of the most cost-effective areas to bury pow-
erlines, targeting undergrounding investments here may deliver the most cost-effective un-
dergrounding investments. Moreover, from the perspective of risk-averse wildfire manager,
directing undergrounding investment towards these regions could reduce the risk of catas-
trophic outcomes at the tail of the risk distribution. The three regions where a one stan-
dard deviation increase in extreme wildfire spread produce the smallest changes to cost-
effectiveness are to the south of the utility’s service territory and along the coast (San Luis
Obispo region, San Benito-Monterey region, and Santa Barbara region). For comparison, a
one standard deviation increase produces a 12-30% reduction in cost per avoided structure
burned.

Third, to simulate the potential for property owners to invest heavily in wildfire adap-
tation (e.g., defensible space, structure hardening), a similar exercise is undertaken with
respect to structure risk in Figure 3.6. Comparing Figure 3.6 with Figure 3.5, the effect of
a one standard deviation decrease in structure risk is on par with that of a one standard
deviation increase in extreme wildfire spread. Across all regions, the former produces an
average increase in cost per avoided structure burned of 48% while the latter produces a
decrease of 47%.

The Lassen-Modoc region stands out as an outlier in terms of its vulnerability to un-
certainty regarding structure risk. A one unit decrease in structure risk raises the cost per
avoided structure burned by approximately 140%. This stems intuitively from the region
displaying the largest variability in structures lost per acre across circuits and wildfire class
sizes. One possible explanation for why the region sees the largest variability in this param-
eter is that the region has some of the lowest structure density (0.05 structures per acre in
a 20,000 acre footprint around each circuit compared with territory average of 0.21 struc-
tures per acre; see Table 3.3). Despite the Lassen-Modoc region’s high ignition and wildfire
spread risk, its low structure density and accompanying uncertainty in structure risk makes
the returns on undergrounding in the region less certain. This finding suggests that the
deployment of system hardening investments should find an appropriate balance between
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high risk versus densely populated areas.

3.5 Discussion

This chapter addresses a pressing question focused on uncertainty and sources of hetero-
geneity in the cost-effectiveness of adapting to wildfire risk in the electric power sector. This
question is important to investigate because electric utilities are investing significant capital
to buy down wildfire risk that has escalated rapidly in recent years, and in all likelihood,
will continue to escalate.

Adaptation across all sectors, including the electric power sector, is needed critically [20].
However, capital investments with long lifetimes, such as burying powerlines, may fall victim
to a “stranded assets” effect. If innovation produces new approaches to manage wildfire risk
more cost-effectively, then the economics of burying powerlines may deteriorate and leave
utility customers tied to higher electricity costs.

The concept of stranded assets in the electric power sector has been studied in the context
of natural gas distribution and fossil-fuel generating facilities. However, existing literature
on electric power sector adaptation to wildfire has not addressed the vulnerability of such
investments to future uncertainty. The methodology used in this analysis provides a robust
framework to approach the problem. Machine-learning models are trained on empirical data
on powerline-caused ignitions and wildfire sizes. Evaluating these prediction models creates
useful measures of ignition and wildfire size probabilities. The distribution of these two
parameters are then used to study how uncertainty in ignition and wildfire risk influences
cost-effectiveness.

A main limitation of the methodological approach is that the uncertainty in ignition
risk and wildfire spread is derived using historical data. In future years, extreme autumn
wildfires in California are projected to increase in severity [90, 91], and climate change in
general will likely increase the occurrence of extreme weather events [92]. This suggests
that the historical distribution of fire weather may not sufficiently capture the presence of
extreme fire weather events that play an important role in determining the cost-effectiveness
of adaptation investments.

Another limitation concerns the structure risk data. The underlying cRPS data developed
by the U.S. Forest Service’s Wildfire Risk to Communities project assumes all structures are
a representative building. In doing so, it ignores local investments that property owners may
have access to reduce potential losses. For example, some fire districts may enforce defensible
space policies more strongly or have more local resources available to suppress fires. This
analysis ignores these possibilities, and instead assumes structure risk is purely a function
of probabilistic flame length and vegetation type.

The key findings of the analysis are threefold. First, 80% of the utility’s structure risk
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is concentrated in approximately one-third of its high-risk distribution lines. A regional
decomposition analysis suggests that the most cost-effective locations to underground are
located in the interior parts of the utility’s service territory along the Northern Sierra Nevada
mountains and Southern Cascades. The primary source of this heterogeneity stems from high
ignition and wildfire risk, despite these regions showing lower average structure densities.

Second, there is potential for undergrounding invesments to become stranded assets. An
improvement in the effectiveness of operational mitigations such as fast-trip settings can raise
the cost per avoided structure burned of an undergrounding investment by 140%. Similarly,
a one standard deviation decrease in ignition risk could double the cost per avoided structure
burned. One recommendation that emerges from this finding is that long-lived system hard-
ening investments like undergrounding should be evaluated carefully and continuously across
their lifetimes. Through the establishment of methods to assess their cost-effectiveness, these
adaptation investments can be deployed iteratively in future periods depending on how well
they achieve their intended risk reduction benefits.

Third, the analysis quantifies two exogenous sources of uncertainty to the electric utility’s
wildfire adaptation strategy. Unlike parameters such as the probability that its equipment
causes an ignition or the unit cost of system hardening, an electric utility wildfire risk
manager has little control over extreme wildfire behavior or property owner actions taken
to reduce structure loss. And yet, this analysis finds that these two exogenous sources of
uncertainty play a significant role in influencing the cost-effectiveness of undergrounding. A
one unit decrease in structure risk, possibly initiated by stricter building codes and defensible
space policies in high-risk areas, can produce a near doubling of the cost per avoided structure
burned associated with undergrounding.

Overall, the results of this analysis emphasize the need a coordinated approach to wildfire
risk management across all levels of stakeholders. Electric utilities are held financially liable
for the outcomes of wildfires ignited by their equipment, independent of the successes or
failures of mitigation actions taken outside the electric power sector. Due to the large
and uncertain liabilities electric utilities potentially face, they may seek to invest heavily
in capital-intensive system hardening investments such as undergrounding. However, the
cost-effectiveness of these long-duration capital investments are susceptible to future levels
of adaptation outside the electric power sector. Without adequate cross-sector coordination
of wildfire risk management, electric utility customers may be left paying for a high-cost and
under-performing wildfire adaptation portfolio.

3.6 Figures and Tables
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Figure 3.1: Illustration of Structure Risk Methodology

(a) Conditional Risk to Structures

(b) Building Count
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Figure 3.2: Estimated Structure Loss and Cost per Avoided Structure Burned

(a) Structure Curve

(b) Cost Curve

Notes: (b) The cost curve is constructed by ranking each circuit in terms of cost per avoided structure
burned. See Methods for cost-modeling assumptions. (a) The structure curve shows how total estimated
structures burned decreases with more undergrounding investment, assuming the most cost-effective circuits
are prioritized first. 95% confidence intervals are derived using Monte-Carlo simulation.
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Figure 3.3: Cost-Effectiveness Map

Notes: Cost per avoided structure burned represents the marginal cost at which 80% of each
region’s structure risk is mitigated. Regions are abbreviated as following: Amador-El Do-
rado (AEU), Butte (BTU), Frenso-Kings (FKU), Huboldt-Del Norte (HUU), Kern (KRN),
Lassen-Modoc (LMU), Madera-Mariposa-Merced (MMU), Marin (MRN), Mendocino (MEU),
Nevada-Yuba-Placer (NEU), San Benito Monterey (BEU), San Luis Obispo (SLU), San
Mateo-Santa Cruz (CZU), Santa Barbara (SBC), Santa Clara (SCU), Shasta-Trinity (SHU),
Sonoma-Lake-Napa (LNU), Tehama-Glenn (TGU), Tuolumne-Calaveras (TCU).
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Figure 3.4: Tornado Chart

Notes: The central estimates of cost per avoided structure burned indicate the marginal under-
grounding cost at which 80% of structure risk is mitigated. The error bars report the same value
after shifting key parameters up and down. For ignition risk and wildfire spread, the error bars
represent the effect of a one standard deviation change, where the standard deviation is measured
at the circuit-month level. For wildfire spread, the probability of “extreme” wildfire class size
is shifted up and down, and the opposite change in probability is applied to the probability of
“small” wildfire class size to ensure the probabilities of all class sizes sum to one. For structure
risk (structures burned per acre), standard deviations are obtained at the circuit-level and
measured across pixels, fire size classes, and sampled ignition points along a circuit. The error
bars for fast-trip settings are calculated assuming a high effect on ignition risk of 92% and a low
effect of 52%. The range of undergrounding costs is $2 million per mile to $4 million per mile.
The range of discount rates is 0.05% to 4.5%. The range of value of lost loads is $1 per kWh to
$5 per kWh.
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Table 3.1: Summary Statistics: Circuit Characteristics

Region Circuits (N) HFTD Miles PSPS Fast-Trip
Duration Duration

Amador-Eldorado 36 2,793 16.2 1.1
Butte 17 952 6.7 0.2
Fresno-Kings 9 842 0.4 0.3
Humboldt-Del Norte 17 848 1.6 0.3
Kern 3 101 0.1 0
Lassen-Modoc 9 326 0.8 0.1
Madera-Mariposa-Merced 17 1,710 1.5 0.6
Marin 13 434 3.5 0.2
Mendocino 21 1,304 3.5 0.1
Nevada-Yuba-Placer 49 2,839 17.8 0.7
San Benito-Monterey 25 910 0.3 0.3
San Luis Obispo 24 1,247 0 0.4
San Mateo-Santa Cruz 24 1154 6.7 1.4
Santa Barbara 13 487 0 0.1
Santa Clara 41 988 5.7 1
Shasta-Trinity 28 1,589 6.6 0.2
Sonoma-Lake Napa 67 2,839 25.2 1.1
Tehama-Glenn 11 780 2.5 0.1
Tuolumne-Calaveras 25 2,204 9.5 1

Total 449 24,347 108.6 9.3

Notes: PSPS and fast-trip durations are measured in millions of customer-hours
between 2018 and 2022. Fast-trip settings were piloted to half of HFTD circuits in
2021 and then deployed to all circuits in 2022. Only circuits with at least 10 miles
in the HFTD are included in the analysis. Therefore, total HFTD miles above are
slightly less than PG&E’s total of 25,300 HFTD miles.
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Table 3.2: Summary Statistics: Ignition Risk

Vapor Forest Energy Dead Probability of Circuit
Pressure Canopy Release Fuel Wildfire Spread Ignition

Region Deficit Height Comp. Moisture Small Med. Large Extr. Risk

kPa m Index % Ignitions

Amador-Eldorado 1.99 13.3 68.01 9.34 0.96 0.03 0 0.01 0.32
(0.94) (5.78) (19.83) (3.43) (0.03) (0.03) (0.01) (0.01) (0.14)

Butte 2.1 14.59 69.45 9 0.94 0.04 0.01 0.01 0.27
(0.99) (5.11) (20.82) (3.65) (0.04) (0.03) (0.01) (0.02) (0.1)

Fresno-Kings 2.18 9.32 74.18 8.18 0.9 0.09 0 0.01 0.27
(0.97) (4.42) (16.99) (2.66) (0.04) (0.04) (0.01) (0.02) (0.12)

Humboldt-Del Norte 1.14 12.57 41.84 14.41 0.97 0.02 0 0 0.15
(0.77) (3.4) (18.31) (4.2) (0.03) (0.02) (0) (0) (0.08)

Kern 2.47 0.82 81.51 6.95 0.88 0.11 0.01 0.01 0.09
(1.01) (0.62) (14.81) (2.12) (0.06) (0.06) (0.01) (0.02) (0.01)

Lassen-Modoc 1.59 15.12 66.75 9.56 0.91 0.04 0.01 0.04 0.14
(0.77) (5.91) (21.05) (3.65) (0.04) (0.02) (0.01) (0.03) (0.04)

Madera-Mariposa-Merced 2.1 11.16 70.98 8.71 0.92 0.06 0.01 0.01 0.31
(0.93) (4.82) (16.91) (2.74) (0.04) (0.03) (0.01) (0.01) (0.16)

Marin 1.09 8.37 42.28 13.83 0.98 0.02 0 0 0.1
(0.57) (3.51) (10.39) (2.36) (0.02) (0.01) (0.01) (0) (0.03)

Mendocino 1.24 10.44 43.68 14.01 0.97 0.02 0 0 0.18
(0.85) (4.32) (18.74) (4.1) (0.03) (0.02) (0.01) (0.01) (0.07)

Nevada-Yuba-Placer 1.96 15.75 69.54 9.07 0.95 0.04 0 0.01 0.22
(0.93) (5.6) (20.41) (3.53) (0.04) (0.04) (0.01) (0.02) (0.11)

San Benito-Monterey 1.32 6.43 49.08 12.69 0.95 0.04 0.01 0 0.11
(0.82) (5.53) (15.41) (2.92) (0.04) (0.03) (0.02) (0) (0.06)

San Luis Obispo 1.31 4.09 47.32 13.18 0.96 0.03 0 0 0.12
(0.76) (2.22) (12.66) (2.39) (0.03) (0.03) (0.01) (0) (0.1)

San Mateo-Santa Cruz 1.16 15.38 45.37 13.43 0.97 0.03 0.01 0 0.14
(0.64) (6.48) (12.42) (2.57) (0.02) (0.02) (0.01) (0) (0.07)

Santa Barbara 1.33 2.3 45.97 13.43 0.92 0.07 0.01 0 0.1
(0.66) (0.71) (10.21) (1.84) (0.03) (0.03) (0.01) (0) (0.04)

Santa Clara 1.37 7.74 52.29 11.82 0.97 0.02 0 0 0.08
(0.74) (4.96) (13.8) (2.64) (0.03) (0.02) (0.01) (0) (0.03)

Shasta-Trinity 2.1 9.07 65.48 9.61 0.95 0.03 0 0.01 0.26
(1.05) (4.84) (20.39) (3.81) (0.03) (0.02) (0.01) (0.01) (0.09)

Sonoma-Lake Napa 1.52 6.44 50.61 12.39 0.96 0.03 0.01 0 0.16
(0.83) (4.47) (16.96) (3.48) (0.04) (0.02) (0.02) (0.01) (0.06)

Tehama-Glenn 2.31 4.85 68.33 8.93 0.95 0.04 0.01 0.01 0.35
(1.08) (2.98) (18.59) (3.28) (0.04) (0.03) (0.01) (0.01) (0.1)

Tuolumne-Calaveras 1.9 13.25 66.69 9.56 0.94 0.05 0 0.01 0.25
(0.89) (6.52) (18.72) (3.21) (0.05) (0.04) (0.01) (0.01) (0.11)

Mean 1.65 10.02 57.39 11.21 0.95 0.04 0.01 0.01 0.19

Notes: Reported values are means for each circuit by region, and values in parentheses are standard deviations. However,
circuit ignition risk is measured as the total predicted count of ignitions during the fire season (May 15 to November 15)
in that region. Standard deviations for ignition risk represent annual variation. Dead fuel moisture reported above is for
1,000 hour time-lag fuels, such as dead fallen trees.
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Table 3.3: Summary Statistics: Structure Risk

Structure Density Conditional Structures Burned
per Acre Structure Risk per Acre

Region Sml. Med. Lrg. Extr. Sml. Med. Lrg. Extr. Sml. Med. Lrg. Extr.

AEU 0.61 0.52 0.37 0.27 0.39 0.41 0.44 0.46 0.2 0.16 0.11 0.08
(0.55) (0.35) (0.23) (0.18) (0.1) (0.09) (0.1) (0.1) (0.19) (0.11) (0.06) (0.05)

BTU 0.5 0.49 0.38 0.25 0.35 0.36 0.36 0.36 0.13 0.14 0.1 0.06
(0.56) (0.38) (0.29) (0.17) (0.09) (0.1) (0.09) (0.08) (0.15) (0.11) (0.08) (0.04)

FKU 0.15 0.13 0.07 0.05 0.38 0.4 0.42 0.43 0.04 0.04 0.02 0.01
(0.19) (0.07) (0.05) (0.03) (0.09) (0.07) (0.08) (0.08) (0.05) (0.02) (0.01) (0.01)

HUU 0.6 0.29 0.1 0.05 0.29 0.29 0.3 0.31 0.15 0.08 0.03 0.01
(0.59) (0.21) (0.09) (0.07) (0.04) (0.04) (0.05) (0.06) (0.15) (0.05) (0.02) (0.01)

KRN 0.32 0.08 0.03 0.02 0.34 0.34 0.34 0.35 0.11 0.03 0.01 0.01
(0.41) (0.11) (0.05) (0.03) (0.07) (0.06) (0.07) (0.08) (0.14) (0.04) (0.02) (0.01)

LMU 0.4 0.27 0.09 0.04 0.37 0.39 0.4 0.4 0.2 0.11 0.03 0.01
(0.8) (0.37) (0.11) (0.05) (0.11) (0.13) (0.15) (0.15) (0.46) (0.18) (0.04) (0.02)

MMU 0.5 0.29 0.15 0.08 0.36 0.37 0.4 0.42 0.16 0.09 0.05 0.03
(0.39) (0.18) (0.1) (0.05) (0.05) (0.05) (0.05) (0.05) (0.15) (0.06) (0.03) (0.02)

MRN 2.26 1.66 1.19 0.72 0.27 0.26 0.26 0.26 0.57 0.42 0.29 0.16
(1.64) (1.03) (0.76) (0.49) (0.03) (0.02) (0.02) (0.04) (0.42) (0.26) (0.19) (0.11)

MEU 0.51 0.38 0.25 0.13 0.32 0.33 0.33 0.34 0.14 0.1 0.07 0.04
(0.52) (0.46) (0.3) (0.13) (0.06) (0.07) (0.08) (0.1) (0.13) (0.1) (0.07) (0.04)

NEU 0.44 0.44 0.31 0.23 0.44 0.47 0.5 0.52 0.15 0.14 0.1 0.07
(0.47) (0.4) (0.29) (0.19) (0.13) (0.13) (0.14) (0.14) (0.17) (0.12) (0.08) (0.05)

BEU 0.71 0.65 0.4 0.21 0.28 0.29 0.31 0.32 0.14 0.13 0.07 0.03
(0.99) (0.86) (0.58) (0.31) (0.1) (0.09) (0.1) (0.11) (0.22) (0.15) (0.09) (0.04)

SLU 1.21 1.08 0.63 0.32 0.3 0.3 0.31 0.32 0.32 0.28 0.15 0.07
(1.24) (1.13) (0.6) (0.22) (0.05) (0.05) (0.06) (0.07) (0.35) (0.31) (0.15) (0.05)

CZU 1.2 1.17 0.88 0.59 0.24 0.25 0.25 0.25 0.23 0.23 0.15 0.09
(0.83) (0.75) (0.79) (0.48) (0.07) (0.05) (0.05) (0.05) (0.18) (0.15) (0.09) (0.05)

SBC 0.65 0.41 0.29 0.16 0.32 0.33 0.35 0.37 0.18 0.11 0.08 0.04
(0.72) (0.45) (0.37) (0.13) (0.05) (0.03) (0.03) (0.03) (0.18) (0.11) (0.09) (0.03)

SCU 1.32 1.31 1.17 1.12 0.25 0.26 0.27 0.26 0.27 0.26 0.2 0.13
(1.31) (0.95) (0.94) (0.82) (0.07) (0.07) (0.07) (0.06) (0.27) (0.18) (0.13) (0.06)

SHU 0.56 0.29 0.2 0.15 0.35 0.37 0.38 0.39 0.17 0.09 0.06 0.04
(0.77) (0.29) (0.19) (0.17) (0.08) (0.1) (0.1) (0.1) (0.23) (0.08) (0.05) (0.04)

LNU 0.99 0.79 0.52 0.34 0.29 0.29 0.3 0.3 0.25 0.21 0.13 0.07
(0.98) (0.68) (0.47) (0.27) (0.07) (0.06) (0.06) (0.06) (0.29) (0.2) (0.11) (0.05)

TGU 0.56 0.46 0.31 0.18 0.3 0.3 0.32 0.34 0.11 0.1 0.07 0.04
(0.77) (0.47) (0.36) (0.14) (0.06) (0.05) (0.05) (0.05) (0.11) (0.09) (0.07) (0.03)

TCU 1.05 0.65 0.39 0.21 0.38 0.39 0.43 0.46 0.35 0.21 0.13 0.07
(0.91) (0.43) (0.27) (0.14) (0.08) (0.07) (0.08) (0.1) (0.33) (0.14) (0.09) (0.05)

Mean 0.82 0.68 0.48 0.33 0.33 0.34 0.35 0.36 0.21 0.17 0.11 0.07

Notes: Regions are abbreviated for table fit. See Figure 3.3 or Table 3.2 for definitions. Each value represents the mean
value for each region, and standard deviations describe variation across circuits in each region. See Methods for defini-
tions and relevant data sources. Each value is sub-divided into fire size classes (i.e., small, extreme). Small fires are less
than 10 acres. Medium fires are 10-300 acres. Large fires are 300-5,000 acres. Extreme fires are larger than 5,000 acres.
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Figure 3.5: Regional Sensitivity to Extreme Wildfire Spread

Notes: The central estimates indicate the cost per avoided structure burned at which 80% of
a given region’s total structure risk is mitigated. The vertical bar indicates the value across
all regions. The open points denote the effect of a one standard deviation increase in extreme
wildfire spread probability, where the standard deviation is measured at the circuit-month level
within each region.
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Figure 3.6: Regional Sensitivity to Structure Hardening

Notes: The central estimates indicate the cost per avoided structure burned at which 80% of a
given region’s total structure risk is mitigated. The vertical bar indicates the value across all
regions. The open points denote the effect of a one standard deviation decrease in structure risk,
where the standard deviation is measured at the circuit level across wildfire class sizes, sampled
ignition points, and pixels intersected by wildfire class sizes. The decrease in structure risk can
serve as a proxy for policies that encourage homeowners to harden their homes or maintain
defensible space.
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Chapter 4

Charge Anxiety: The Effect of
Wildfire-Induced Electricity Outages
on Battery-Electric Vehicle Adoption

4.1 Introduction

Globally, the transportation sector contributes approximately 25% of greenhouse gas emis-
sions [93]. Widespread adoption of battery-electric vehicles (BEVs), paired with low-carbon
electricity generation, plays an essential role in plans to de-carbonize the economy. The
lowest-cost scenarios of the Net-Zero America study assume the electric vehicle stock grows
to 96% of all light-duty vehicles by 2050 [94]. Recent policy support, such as the U.S. Infla-
tion Reduction Act and the E.U. Net Zero Industry Act, aims to strengthen the uptake of
BEVs. The International Energy Agency projects that every other car sold globally in 2035
will be electric based on today’s energy, climate, and industrial policies [95].

Despite the importance of BEV adoption in achieving de-carbonization goals, barriers
to widespread adoption remain. In the U.S., electric vehicle registrations grew by 40% in
2023 compared with 2022, slower in relative growth than the previous two years [95]. Two
well-studied barriers to BEV adoption include range anxiety and price. Range anxiety arises
from a consumer’s perceived fear of completing a trip due to insufficient range or a lack
of charging infrastructure along their route. Range anxiety may pose the most significant
barrier to BEV adoption [96], and surveys of consumers have found that range anxiety and
the presence of public charging infrastructure are important determinants of BEV purchase
decisions [97–99].

High BEV purchase prices also discourage widespread adoption. In California, high-
income households make up nearly 50% of early BEV adopters but only 3.6% of the popu-
lation [100]. Low and middle-income households have been shown to repsond less to electric
vehicle subsidies, and the top 10% of households filing taxes claim 60% of federal electric
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vehicle subsidies [101, 102]. BEV manufacturers are addressing range anxiety and purchase
price concerns, with average BEV ranges increasing by 75% between 2015 and 2023. Between
2018 and 2022, the average medium-sized BEV retail price fell by about 10% [95].

This study focuses on a different determinant of BEV adoption. While range anxiety
and income effects are well-documented, little empirical evidence exists on the impact of
electricity outages on demand for BEVs. Charge anxiety arises when a consumer fears that
an electricity outage will interrupt their charging session, possibly leading to insufficient
battery charge to complete a desired trip. Charge anxiety can also arise when a consumer
lacks information on the reliability of public charging infrastructure. As climate change,
aging infrastructure, and greater energy demand threaten to increase electricity outages
[103, 104], it is critical to understand the relationship between electricity outages and BEV
adoption.

To quantify the effect of charge anxiety on BEV adoption, this study uses a novel
dataset on wildfire-related electricity outages in California. Wildfire-related electricity out-
ages provide a compelling empirical setting to test the relationship between outages and
BEV adoption. Unlike hurricanes or winter storms that cause outages across large portions
of metropolitan areas, proactive power shutoffs to reduce wildfire ignition risk narrowly af-
fect distinct neighborhoods depending on the locations of distribution circuits’ protective
devices. This means that one city block may experience an outage while a neighboring block
does not.

Using data from 2015-2021 across the California’s three largest electric utility service
territories, this study takes advantage of quasi-experimental variation to compare electric
vehicle adoption across adjacent census block groups before and after the policy was insti-
tuted to de-energize powerlines during periods of elevated wildfire risk. While the findings
are specific to California, the empirical evidence suggests low-income households and ones
with long commute times are influenced by electricity outages when considering the purchase
of a BEV.

4.2 Background

Relevant Literature

Much of the literature on BEV adoption focuses on range anxiety, affordability, and con-
sumer attitudes. One study shows that interactions between pro-environmental attitudes
and technological interest are strong predictors of plug-in hybrid electric vehicle adoption,
which may spillover to BEV adoption [105]. High levels of educational attainment, prior
ownership of a hybrid vehicle, and environmentalist attitudes have also been demonstrated
to explain BEV adoption [106].

The lack of empirical research on consumer behavior and attitudes toward charging qual-
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ity forms an important gap in the literature. Existing studies investigate the optimal loca-
tions of charging infrastructure (as in [107] and [108]) and the optimal sizes of public charging
stations (as in [109]). However, more research is needed to understand to what extent po-
tential BEV purchasers internalize the dis-amenities of electricity outages when choosing to
adopt a BEV or not. A recent field experiment in Calgary explores how financial incentives
can nudge charging behavior [110], but the focus of the study is not on interruptions to
charging sessions.

While this study contributes most directly to the literature on BEV adoption, it also
contributes to a nascent body of literature on wildfire-related de-energization events. One
study finds that climate change will lead to an increase in the population exposed to de-
energization events [9]. Surveys of households affected by de-energization events find evi-
dence of an increased willingness to adopt solar and battery storage, adopt fossil fuel backup
generation, and change landscaping to mitigate wildfire risk [39, 40]. Notably, one of the
surveys found that respondents who experienced a de-energization event were seven percent-
age points less likely to report that they planned to purchase an electric vehicle as their
next vehicle. However, the authors of the study noted that this self-reported effect was only
marginally statistically significant. Nevertheless, the survey results support the empirical
findings of this study.

California’s Powerline De-Energization Program

In recent years, prolonged periods of drought, historical fire management practices, and
migration to high-hazard areas have contributed to some of California’s most destructive
wildfire seasons [4, 90, 91, 111]. Electricity infrastructure is responsible for nine of Califor-
nia’s top twenty most destructive wildfires, with eight of those occurring in the last decade
[112]

The California Public Utilities Commission (CPUC) first granted authority to San Diego
Gas and Electric (SDG&E) to proactively de-energize its power lines due to wildfire risk in
2012 (this program is referred to as Public Power Safety Shutoffs) [113]. The utility requested
the authority from the CPUC several years prior following the October 2007 Witch, Guejito,
and Rice fires, which destroyed more than 1,500 homes and resulted in $5.6 billion in liabilites
for SDG&E.

After destructive fires caused by electricity infrastructure in 2017, the CPUC expanded
de-energization rules in July 2018 to California’s two largest investor-owned utilities, Pacific
Gas and Electric (PG&E) and Southern California Edison (SCE) [114]. The fundamen-
tal features of the de-energization rules include (1) a review of the reasonableness of the
de-energization event, (2) requirements for reporting such events to the CPUC, and (3)
requirements for notifying customers about potential de-energization events.

On October 23, 2017, SDG&E called its first de-energization event that affected residen-



CHAPTER 4. CHARGE ANXIETY: THE EFFECT OF WILDFIRE-INDUCED
ELECTRICITY OUTAGES ON BATTERY-ELECTRIC VEHICLE ADOPTION 58

tial customers, though its footprint was minimal. 60 residential customers and 31 commercial
customers in the community of North Descanso lost power for a little under 48 hours. Less
than two months later, SDG&E reported its first widespread de-energization event to the
CPUC. One circuit lost power for six consecutive days, and all affected circuits lost power
for an average of one and a half days.

PG&E proactively de-energized its first circuit nearly a year later in October 2018. This
event led to approximately two million customer-hours of outages. However, the next year,
the utility significantly expanded its use of PSPS, causing more than 100 million customer-
hours of outages in the summer and fall of 2019. Though wildfire conditions and the number
of customers served differs across each utility, SCE and SDG&E’s de-energization programs
resulted in fewer outage impacts in 2019, approximately five million and 1.3 million customer-
hours, respectively. In 2020 and 2021, PG&E reduced the scope of its de-energization pro-
gram to approximately 15 million customer-hours per year. This was in part due to natural
climate variability and in part due to other wildfire mitigation efforts such as system hard-
ening and vegetation management.

4.3 Data

Electric Vehicle Fleet Database

In partnership with the California Department of Motor Vehicles, the California Air Re-
sources Board maintains an inventory of registered vehicles in the state. As of the end of
2021, the data contains approximately 14 million vehicle registrations in the state of which
3.1% are battery-electric vehicles [115]. This compares with 0.6% in 2015, the first year data
is available. The database also tracks the registrations of plug-in hybrid electric vehicles
(PHEV). In this study, plug-in hybrid electric vehicles are excluded because it is unlikely
that charge anxiety plays a significant role in hybrid vehicle adoption.

The finest level of aggregation in the California Air Resources Board’s fleet database is
the census-block group (CBG). Census-block groups are larger in population than census
blocks but finer than census tracts and the typical postal code. The U.S. Census Bureau
designs CBGs to contain similar population sizes, so the area of a CBG will be larger in
rural areas compared to urban areas. The average population of a CBG in California in
2021 is approximately 1,500. In 2020, the U.S. Census Bureau amended the boundaries of
census-block groups as part of its decadal re-districting effort.

De-Energization Data (PSPS)

Under the CPUC’s de-energization rules, electric utilities must submit reports after a wildfire-
related de-energization event is called. The de-energization reports obtained from the CPUC
identify de-energization events by circuit number, the time the circuit was de-energized, the
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time power was restored, the total number of customers affected, and the number of resi-
dential, commercial, industrial, and medical baseline customers affected [65]

De-energization reports are matched to spatial data on the locations of distribution cir-
cuits using the name of the circuit. The locations of each utility’s distribution circuits are
obtained from wildfire mitigation reports that the utilities submitted in proceedings with
the CPUC. In many cases, a circuit will span across multiple CBG boundaries. In these
cases, de-energization events are allocated to CBGs based on the corresponding share of the
circuit’s length that overlaps with the CBG. This may produce some measurement error,
particularly in cases where certain segments of a circuit are de-energized rather than the
entire customer population served by the circuit.

Demographic Data

To complete the panel dataset, demographic characteristics obtained from the U.S. Census
Bureau’s American Community Survey (ACS) are merged with data on electric vehicle adop-
tion and de-energization events. Specifically, data on race, median household income, age,
educational attainment, and commute time are included.

4.4 Methods

One of the most widely used quasi-experimental estimators is the differences-in-differences
estimator [116]. This estimator compares the evolution of outcomes in groups affected by
a policy change against groups unaffected by the change– both before and after the policy
intervention. Recent research has offered useful improvements to the standard differences-
in-differences research design. Callaway and Sant’Anna (2021) propose a more flexible
differences-in-differences estimator that is better equipped to handle settings where groups
are exposed to the policy intervention in different time periods[117]. This approach avoids
the potential pitfalls of the standard two-way fixed effects regression model.

The core mechanics of the estimator are described next in Equation 4.1. For additional
detail, see [117]. The building block of the estimator is called a group-time average treatment
effect. This parameter represents the effect of the policy intervention– in this case the de-
energization program– for a specific treatment group G at a specific time period t. In this
setting, a treatment group G refers to an annual cohort of CBGs that were all first exposed
to a de-energization event in the same year g (i.e., CBGs served by PG&E that were first
de-energized in 2019).

The group-time average treatment effect takes the following form:

ATT (g, t) = E[(
Gg

E[Gg]
−

p(X)C
1−p(X)

E[ p(X)C
1−p(X)

]
)(Yt − Yg−1 −mg,t(X))] (4.1)
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Estimating the group-time average treatment effects first requires estimating a propensity-
score model. Propensity-scores, denoted p(x), for control units C are then used as weights
when comparing the evolution of BEV adoption in control units against treated units.

Weights for the treated and control units are then applied to the difference in electric
vehicle adoption Y in year t compared to electric vehicle adoption in the year prior to
de-energization exposure (Yg−1). For further robustness against model misspecification, the
“doubly-robust” approach leverages the fitted values from a linear regression model of electric
vehicle adoption on the relevant covariates X. Hence, mg,t(x) = E[Yt − Yg−1|X,C = 1]. See
[117] for additional detail.

A critical identifying assumption of the differences-in-differences model is the condi-
tional parallel trends assumption [117, 118]. This assumption requires, in the absence of
de-energization, that the electric vehicle market share of CBGs that were de-energized to
have evolved similarly to control CBGs, conditional on covariates such as race, income, and
commute times. The next section discusses the empirical strategy to estimate the effect of
de-energization events on electric vehicle market share, including the spatial discontinuity
research design, propensity-score estimation, and conditional parallel trends.

4.5 Empirical Strategy

One concern in this setting is the potential for selection bias. Specifically, if communities
that were de-energized for wildfire risk exhibit different characteristics than communities
that were never de-energized– and these characteristics are correlated with BEV adoption–
then a naive comparison of pre- and post-BEV adoption across treated and control units
may be susceptible to selection bias. As discussed in the literature review, such charac-
teristics include household income, commute times, and other hard to measure beliefs like
pro-environmental attitudes. To alleviate the potential for selection bias, the empirical strat-
egy relies on two key features: (1) spatial discontinuity methods and (2) propensity-score
weights.

Spatial Discontinuity

Spatial discontinuity methods compare the outcomes of treated and control units that are
located on opposite sides of a discrete border that delineates treatment status. An advan-
tage of using spatial discontinuity methods is that treated and control units located in close
proximity to each other may share similar observable characteristics (i.e., household income,
commute times) as well as difficult to observe characteristics (i.e., pro-environmental atti-
tudes, willingness to adopt new technology) [119, 120]. However, if households can select into
treatment status by observing where the discrete border is located, then spatial discontinuity
methods may still be subject to selection bias.
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In this setting, the spatial discontinuity approach compares BEV adoption outcomes
for CBGs that were de-energized against adjacent CBGs that were never de-energized. In
constructing the comparison group, the approach excludes any CBGs that do not share a
border with a CBG that was de-energized. Given de-energization events are targeted to
high-wildfire risk locations, this tends to exclude CBGs that are located in predominantly
urban areas. Figure 4.1 illustrates an example of the spatial discontinuity research design.
Throughout the rest of this article and its graphical elements, treated CBGs are referred
to as “de-energized,” control CBGs are referred to as “adjacent and not de-energized,” and
excluded CBGs are referred to as “not adjacent and not de-energized.”

In the short-run, it is unlikely households observe the unique topology of their electric
utility’s distribution grid and subsequently make decisions on where to live on the basis of
de-energization likelihood. In addition, due to the recent deployment of the de-energization
program during the study period and natural variation in fire weather, it would be difficult
for households to predict where each utility would call de-energization events. Therefore
in the short-run, the spatial discontinuity approach offers quasi-experimental variation in
de-energization status across CBGs. In the long-run, as utilities invest in more wildfire
risk mitigation measures that make de-energization more predictable in specific locations, it
is possible households consider the potential for de-energization when purchasing a home.
However, other amenities and factors such as price are likely stronger considerations.

Propensity-Score Weighting

The second feature of the research design that alleviates selection bias is propensity-score
weighting. As described previously, estimation of the group-time average treatment effects
includes propensity-score weights. In general, the propensity-score describes the conditional
probability of assignment to a treatment group given observed covariates [121–123]. In this
setting, the propensity-score represents the probability that a CBG would be de-energized
at any point during the study period conditional on demographics such as median household
income, mean commute times, and educational attainment.

When estimating group-time average treatment effects, propensity-score weights assign
greater weight to the outcomes of control units that have a high estimated likelihood of
being de-energized but never were de-energized. This approach alleviates selection bias in
the differences-in-differences estimator by prioritizing the outcomes of control units that
share similar characteristics to treated units.

Propensity-scores are estimated using a machine-learning prediction model with 3-repeat
10-fold cross-validation. The target for the random forest model is a binary variable indicat-
ing if a CBG experienced a de-energization event at any time during the study period. Ap-
proximately 24% of CBGs in the three utility service territories– PG&E, SCE, and SDG&E–
experienced a de-energization event during the study period. To alleviate imbalance when
training the prediction the model, the data is down-sampled. CBGs in the negative class
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(ones that were not de-energized) are randomly deleted from the training data such that an
equal amount of positive and negative classes are included in the training data. The data is
split 75% and 25% between the training and testing data.

Table 4.1 summarizes the key characteristics of the propensity-score prediction model.
The model is fit separately for each utility-service territory. In the testing data, area under
the receiver operating characteristic curve (AUC) values between 0.89 and 0.91 indicate
the model predicts de-energization status accurately and consistently across each territory.
The bottom panel of Table 4.1 shows the importance of using propensity-score weights
in combination with the spatial discontinuity method. Note the propensity-scores for the
adjacent and never de-energized CBGs are still lower than the de-energized CBGs. This
suggests that relying on the spatial discontinuity method without propensity-score weighting
may still be subject to selection bias.

Figure 4.2 shows how the combination of the spatial discontinuity approach and propensity-
score weighting reduces covariate imbalance between de-energized and control CBGs. On
average across the three utilities, CBGs that were de-energized tend to have a higher pro-
portion of white households (76%). In comparison, the proportion of white households in
CBGs that were not de-energized is 62%. Applying propensity-score weights and filtering to
adjacent CBGs narrows this difference in the control group (74%).

In SDG&E’s territory, median household income is meaningfully higher in de-energized
CBGs than control CBGs ($95,000 vs. $75,000 per year). Given the important role income
plays in determining electric vehicle adoption, this difference in income between treatment
and control groups raises selection bias concerns. Applying the propensity-score weights and
spatial discontinuity reduces this difference from $20,000 per year to $3,000 per year. In
PG&E and SCE territories, median household income is also higher in de-energized CBGs,
but the initial difference prior to propensity-score weighting and applying the spatial discon-
tinuity method is smaller ($7,000 and $13,000, respectively).

Commute times are meaningfully longer when comparing de-energized CBGs against
unaffected CBGs in SDG&E’s territory. In the median de-energized CBG, half of households
feature commute times of less than 30 minutes, while a higher two-thirds of households in
unaffected CBGs feature commutes of 30 minutes or less. The longer commute times for
de-energized CBGs reflects the tendency for de-energized CBGs to be located in rural and
wildfire prone terrain. The empirical strategy reduces this proportion in the control group to
53% compared with 51% in the de-energized group. Given the importance of range anxiety in
the BEV adoption literature, balancing commute times in the treatment and control groups
is critical to alleviating selection bias concerns.
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Parallel Trends

A foundational assumption to the differences-in-differences estimator is the conditional par-
allel trends assumption. As noted earlier, this assumption requires in the absence of de-
energization that the BEV market share of CBGs that were de-energized to have evolved
similarly to control CBGs, conditional on covariates. Figure 4.3 provides a visual inspec-
tion of the conditional parallel trends assumption for PG&E cohorts (cohorts are defined by
initial exposure year in the first panel of Table 4.1).

Figure 4.3 shows that the conditional parallel trends assumption is unlikely to be violated
for PG&E cohorts first exposed to de-energization in 2018 and 2019. For these first two
cohorts, BEV market share grew at a similar pace compared with control CBGs in the years
prior to de-energization. However, the conditional parallel trends assumption appears to
be violated for the cohort that was first de-energized in 2020 (third panel of Figure 4.3).
Between 2015 and 2018, the median CBG in this cohort had 0% BEV market share, while
the control group saw positive growth during the same period. This raises concerns that
the control group is not a valid comparison group for the specific set of CBGs that were
de-energized in 2020 in PG&E’s territory. Therefore, this treatment group is dropped from
the differences-in-differences estimator. Table 4.1 shows the cohort makes up less than 1%
of PG&E’s de-energized CBGs.

One treatment cohort is dropped for SCE and SDG&E due to similar concerns regarding
parallel trends. The CBGs that are dropped from the estimation process make up 0.1% and
7% of SCE and SDG&E’s de-energized CBGs, respectively.

4.6 Results

Figures 4.4-4.6 summarize the estimated average treatment effects by electric utility, com-
mute length, and income. A key advantage of Callaway and Sant’Anna’s average treatment
effect estimator is that it can be summarized flexibly across treatment groups, exposure
duration, or other sources of heterogeneity. In Figure 4.4, average treatment effects are ex-
pressed as a population-weighted average across all of a utility’s treated CBGs by time since
de-energization, similar to an event study.

The first conclusion is that, when expressed as a population-weighted average across
utilities, the effect of the de-energization policy on BEV market share is ambiguous. There
is a small estimated reduction in BEV market share in PG&E and SCE territories, but
the effect is not statistically significant. A portion of CBGs in PG&E’s territory that have
been exposed to the de-energization policy for three years (2018 cohort) show a large 40%
reduction in BEV market share by the third year of exposure. This effect is clearly visible
in the parallel trends plot (Figure 4.3). However, the 2018 PG&E cohort makes up 5% of
the utility’s de-energized CBGs, and thus may be an outlier.
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The second conclusion, shown in Figure 4.5, is that the effect of the de-energization
policy on BEV market share is correlated with commute time. In the first three years since
experiencing a de-energization event, CBGs with the longest average commute times saw a
9-11% decrease in BEV adoption relative to CBGs in the control group. CBGs with shorter
commute times, in contrast, show no statistically significant decrease in BEV adoption. This
suggests that range anxiety and charge anxiety may interact in meaningful ways. Households
with the longest commute times may be more reluctant to purchase a BEV if they experience
electricity outages that disrupt their charging session and make it less feasible to complete
a trip on a single charge.

The third conclusion, captured in Figure 4.6, is that income may also play a role in
explaining how charge anxiety manifests across households. CBGs in the income bracket
with the lowest median household income see a 15% reduction in BEV adoption in the first
three years since experiencing a de-energization event, on average. However, the effect is
not statistically significant. This effect differs markedly from CBGs in the higher income
brackets, which display a 1% increase in BEV adoption in the first three years, on average.
While the effects by income bracket are not statistically different from zero, they suggest
lower income groups may be more sensitive to electricity outages and charge anxiety.

In the appendix, robustness tests are shown using a conventional linear regression and
event-study framework. In terms of commute times, the robustness test reproduces a similar
correlation between longer commute times and decreasing BEV adoption. Unlike with the
group-time average treatment effect approach, this relationship is not statistically significant.
See Figures B.1 and B.2.

4.7 Discussion

Widespread adoption of BEVs is largely seen as a centerpiece of efforts to decarbonize
the economy and transition to net-zero. While some barriers to BEV adoption are well-
documented, such as range anxiety and price, little is known about how electric service
reliability may affect consumer willingness to adopt a BEV. A new policy to de-energize
powerlines during periods of elevated fire risk in California provides a compelling setting to
study charge anxiety. De-energization events are localized, which allows for a comparison
of BEV adoption in CBGs that experienced electricity outages to adjacent CBGs that were
unaffected. This spatial discontinuity research design, in combination with propensity-score
weighting, creates a credible control group to evaluate BEV adoption.

A main conclusion of this study is that households with the longest commute times
display the largest aversion to electricity outages and BEV adoption. These households see
a 9-11% reduction in BEV adoption compared with households that did not experience a
de-energization event. This suggests that households that are fearful of having sufficient
range to complete their trip are also concerned about electricity outages that may disrupt
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their charging session. The finding underscores the importance of a reliable electric grid and
reliable charging infrastructure in achieving policy goals to decarbonize the transportation
sector. Increasing the range of BEVs and deploying additional charging infrastructure can
alleviate range anxiety, but addressing charge anxiety through reliable electricity service is
critical, too.

A limitation of the analysis is that the potential for a reverse relationship between elec-
tric service reliability and BEV adoption is not considered. Some BEVs, notably the Ford
F-150 Lightning under a partnership with Sunrun, offer bi-directional charging [124]. The
technology allows BEV owners to supply power to their home during an electricity outage
by using the battery-electric storage that powers the vehicle. With bi-directional charging,
some households that face frequent electricity outages may prefer BEV ownership over an
ICE vehicle. Given the limited amount of BEV models that currently offer the technol-
ogy, it is unlikely that this relationship is meaningful during the study period. However,
future research should seek to better understand the role bi-directional charging can play for
households that face frequent electricity outages.

Another related limitation is that the presence of home battery-electric storage systems or
other forms of backup generation are not accounted for. Households with access to backup
generation may be less concerned about electricity outages when choosing to purchase a
BEV.

The second finding of this analysis is that income may explain some heterogeneity in
charge anxiety across households. While the results are not statistically significant, lower
income households show an estimated 15% reduction in BEV adoption, on average, compared
with households that were not de-energized. A possible explanation is that higher income
households may be more likely to own additional vehicles per household. Access to a second
vehicle, especially an ICE vehicle, would reduce concerns over charge anxiety. Another
explanation is that systematic issues related to energy poverty and affordability may make
lower income households more sensitive to interruptions to their charging session that disrupt
travel. This finding speaks to well-established concerns that the most vulnerable socio-
economic groups may bear the greatest costs of adapting to climate change [125].

Lastly, it is worth underscoring that the analysis does not offer a cost-benefit test of
the de-energization program. Despite the conclusions that such proactive electricity outages
reduce BEV adoption, reducing wildfire ignitions can provide substantial benefits in terms
of avoided structure damages, fatalities, ecosystem impacts, and more. Rather, the findings
emphasize the difficult trade-offs in the electric power sector between adapting to the height-
ened risks of climate change, such as wildfire, and pursuing deep de-carbonization goals. The
long-run effects of new operational strategies that reduce wildfire risk at the expense of grid
reliability need to be carefully studied to ensure harmony with electrification policies.
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4.8 Figures and Tables

Figure 4.1: Spatial Discontinuity

Notes: This map provides an example to visualize the spatial discontinuity method. It depicts
one circuit that was de-energized and the census block groups (CBGs) that are intersected by
the circuit. In addition, the map shows adjacent CBGs that were not affected by de-energization
events. These adjacent CBGs are used as controls in the differences-in-differences estimator, in
combination with propensity-score weights. CBGs that are not adjacent to a de-energized CBG
(shown in purple) are excluded from the estimation.
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Table 4.1: Propensity-Score Estimation

PG&E SCE SDG&E

Number of CBGs De-Energized
by Initial Exposure Year

2017 - - 22
2018 204 2 118
2019 3,642 563 63
2020 40 455 109
2021 197 320 -

CBGs De-Energized 4,083 1,340 312

All CBGs Never De-Energized 6,667 9,298 2,277
Adjacent CBGs Never De-Energized 1,845 1,290 351

Propensity-Score Model

True Positive Rate 81% 83% 87%
False Positive Rate 16% 22% 18%
AUC 0.90 0.89 0.91

Mean Propensity-Score

CBGs De-Energized 0.85 0.84 0.86
(0.15) (0.14) (0.14)

All CBGs Never De-Energized 0.21 0.31 0.28
(0.17) (0.21) (0.21)

Adjacent CBGs Never De-Energized 0.27 0.48 0.40
(0.20) (0.22) (0.24)
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Figure 4.2: Covariate Balance

Notes: The plot shows how the spatial discontinuity method and propensity-score weighting
alleviate covariate imbalance between de-energized CBGs and control CBGs.
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Figure 4.3: Conditional Parallel Trends for PG&E Cohorts

Notes: Shaded area represents interquartile range. Dashed lines indicate the first year each cohort
experienced a de-energization event. The cohort that was first de-energized in 2020 (rightmost
panel) is dropped from the differences-in-differences estimator due to concerns over violation of
the conditonal parallel trends assumption.
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Figure 4.4: Average Treatment Effect by Utility

Notes: Error bars represent 95% confidence intervals.
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Figure 4.5: Average Treatment Effect by Commute Length

Notes: Commute brackets are expressed as quartiles. The first quartile represents CBGs with
the shortest commute times, and the fourth quartile represents CBGs with the longest commute
times. Error bars represent 95% confidence intervals.
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Figure 4.6: Average Treatment Effect by Income Bracket

Notes: Income brackets are expressed as quartiles. The first quartile represents CBGs with the
lowest median household income, and the fourth quartile represents CBGs with the highest median
household income. Error bars represent 95% confidence intervals.
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Chapter 5

Conclusion

Adapting to climate change presents significant economic and environmental challenges. This
dissertation is guided by the critical question of “what policies and investments can lead us
to cost-effectively adapt to wildfire risk?” In exploring this question, I focus on the electric
power sector because its role is two-fold. It is both a critical agent in the push to de-carbonize
the economy and it is responsible for a disproportionate share of the losses from catastrophic
wildfire outcomes.

To reduce the losses from catastrophic wildfire, policymakers and communities need de-
tailed assessments of the costs and benefits of adaptation strategies. A key contribution
of the work presented in the preceding chapters is the rigorous measurement of the cost-
effectiveness of electric power sector wildfire adaptation investments. The results of this
cost-effectiveness analysis reveal that dynamic strategies to manage and operate the dis-
tribution grid during periods of elevated fire risk present promising opportunities to lower
risk.

Fast-trip settings are one of these operational techniques. Their rapid and successful de-
ployment across the distribution grid during the study period highlights the role of innovation
in adapting to climate change. As the distribution grid is being upgraded to accommodate
new controllable electric loads, including home battery systems and electric vehicles, a rare
opportunity exists to coordinate innovation across electrification efforts and wildfire risk
mitigation strategies.

Chapter 2 demonstrates that innovative ways to operate the distribution grid can signif-
icantly reduce the capital investment needed to achieve a given risk reduction. This finding
is critical, not only for jurisdictions where adaptation strategies are well under-way, but also
for jurisdictions that have yet to comprehensively assess their risk exposure. Fast-trip set-
tings, for example, require little upfront capital investment and can be scaled quickly across
the distribution grid. Thus, the benefits of operational strategies are two-headed: they can
reduce capital costs and scale quickly.
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Chapter 3 dives deeper into the uncertainty surrounding capital-intensive system hard-
ening measures. Innovation is not limited to grid management and operations; future tech-
nology could improve the costs of burying powerlines underground. The analysis shows that
system hardening measures with long lifespans (i.e., underground powerlines) are subject to
significant uncertainty regarding their intended risk reduction benefits. Forecasted reduc-
tions in unit costs deliver improvements to cost-effectiveness, but a host of other factors drive
uncertainty. For example, the amount of fuel treatments or the amount of structure hard-
ening that property owners invest in can substantially affect the returns on electric power
sector adaptation investments. This conclusion points to the need for cross-sector coordina-
tion when deploying capital-intensive adaptation strategies. Failure to do so could lead to
the “stranded assets” problem, in which system hardening investments perform below their
intended risk reduction goals and leave the customer base with higher costs.

Chapter 4 departs from the previous two and focuses on the possible unintended conse-
quences of grid protocols that de-energize powerlines during periods of elevated risk. The
chapter addresses how degrading grid reliability could affect a consumer’s decision to adopt
a battery-electric vehicle. This question is critical because innovative grid management tech-
niques reduce wildfire risk but can come with the important caveat that they cause customers
to lose power. The results of the analysis provide suggestive evidence that electricity outages
have slowed the pace of battery-electric vehicle adoption among potential adopters with long
commute times and in low-income locations. Despite the cost-effectiveness advantages oper-
ational mitigations present, the additional economic toll they enact on vulnerable population
segments needs to be accounted for.

Many open questions remain on the topic of adapting to wildfire risk, both within the
electric power sector and collectively across sectors. First, what role do we envision the
electric power sector playing in the future wildfire risk adaptation regime? Currently, the
electric power sector causes a disproportionate share of wildfire losses in California, but it
also carries the largest weight in terms of adaptation investments. Part of the reason is
that electric utilities are held financially liable for wildfire losses, even if those wildfire losses
hinge on the effectiveness of adaptation investments outside of the power sector. Another
explanation is that rate of return regulation encourages utilities to deploy capital-intensive
investments due to favorable returns the utilities can accrue. Looking ahead, adaptation
investments need to be pursued across sectors and stakeholders to avoid being concentrated
in one sector.

A related question focuses on the future of the electric utility business model as it si-
multaneously adapts to wildfire risk and transforms itself to accommodate intermittent,
low-carbon generation and growing electric loads. Historically, electric utilities have priori-
tized electric service reliability and financed growth through capital projects and its customer
base. What changes to the traditional electric utility business model are needed to rise to
these challenges? Is a new business model needed to ensure customers are not left with
the rising costs of wildfire adaptation? Pairing distributed energy resources (DERs) at the
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customer level with innovative grid management techniques could achieve dual adaptation
and electrification goals.

Outside of the electric power sector, questions remain on what policies can encourage
sustainable co-existence with fire. Answering these questions fundamentally requires an in-
terdisciplinary approach. Adapting to wildfire is a complex natural resource management
problem. Therefore, effective policy-making requires research from a range of disciplines–
including ecologists and economists. The research community should prioritize interdisci-
plinary approaches when evaluating wildfire risk, management, and policy.

The long-term incidence of catastrophic wildfire also remains an open question. For
example, how have the burdens of catastrophic fires in Paradise, CA or Lahaina, HI been
distributed across socio-economic groups? What can be learned from the responses of socio-
economic groups to catastrophic wildfire outcomes? Does the economy experience a short-run
shock, or are there long-run disruptions or migrations to less risky areas? In studying the
long-run impacts of catastrophic wildfires, much can be learned about how communities
adapt to extreme climate shocks and consequently what policies can support adaptation.

The findings presented throughout this dissertation and the open questions above suggest
one overarching point of emphasis: cross-sector collaboration is crucial in adapting to wild-
fire. The benefits of electric power sector adaptation depend fundamentally on the amount
of adaptation outside of the electric power sector. Policymakers, electric utilities, forest
managers, wildfire professionals, and academic researchers all should strive to develop and
measure risk reduction goals in concert. Aided by rigorous measurement of wildfire risk,
credible empirical data on adaptation investments, and sound policy-making, collaboration
across stakeholders can deliver a landscape and an economy that is well-adapted to wildfire.
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Appendix A

A.1 Cost Data

Enhanced Vegetation Management

Following Workpaper Table 9-15 from Exhibit PG&E 4, Chapter 9 - Vegetation Management,
PG&E recorded average per mile costs of $245K between 2018 and 2020[47]. In addition,
the utility cites forecasted per mile costs of $298K from 2021 to 2026. Therefore, the cost
analysis assumes a central per mile estimate of $250K per mile and low and high estimates
of $200K and $300K, respectively.

Enhanced vegetation management is modeled as an operational expense that is incurred
in the year the work is performed. However, the benefits of the vegetation management work
in terms of risk reduction continue to accrue in subsequent years until the vegetation grows
back. Due to data support, the analysis does not estimate empirically the rate at which these
benefits attenuate to zero. In the central case, the ignition benefits of enhanced vegetation
management are assumed to linearly decline to zero over a ten year lifetime. The sensitivity
analysis in Figure 2.8 varies this assumption between five and fifteen years. Because some of
the ignition benefits of enhanced vegetation management work are realized in future years,
avoided ignitions are discounted to 2022 terms using a real social discount rate of 2.5%[126].
The discount rate varies in the sensitivity analysis between 1% and 4%.

While the vast majority of enhanced vegetation management costs are incurred at the
time the work is performed, there are ongoing maintenance costs that the utility likely
incurs. For instance, the utility may need to reinspect segments of the circuit to determine
if sufficient clearance still exists between the overhead line and vegetation. The cost analysis
assumes annual per mile maintenance costs equal to 1% of the assumed unit cost.
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Undergrounding

In terms of per mile costs, Workpaper Table 4-23 from Exhibit PG&E 4, Chapter 4, Wildfire
Risk Mitigation cites forecasted underground costs of $4.3M per mile in 2022 dollars[47].
However, PG&E’s wildfire mitigation plan filed in February 2022 cites costs of $3.75M per
mile[127]. A decision on PG&E’s general rate case proceeding noted that the utility forecasts
$3.3M per mile in 2023 and $2.8M by 2026 for a four-year average of $3M per mile. The
decision continued by noting that the utility faces “significant uncertainty and variability
associated with wildfire mitigation activities and their associated costs.”[48]. The cost anal-
ysis uses $3.7M per mile as the central assumption and varies the per mile costs between
$2.9M and $4.3M. It is worth noting that it may take more than one mile of underground-
ing investment to replace one mile of overhead conductor, due to rerouting underneath the
ground to avoid existing underground infrastructure or natural obstacles. One source cites
that one mile of undergrounding only replaces 0.64-0.80 miles of overhead conductor[128].
This conversion factor is omitted from the cost analysis, but it would decrease the estimates
of the cost-effectiveness of undergrounding investments.

Unlike enhanced vegetation management, underground lines are considered capital assets.
Under rate of return regulation, the utility earns an authorized rate of return on its rate base,
which consists of the utility’s total assets net of accumulated depreciation[54]. This rate of
return on capital investment enters into the utility’s revenue requirement and is recovered
by ratepayers via retail electricity rates. Therefore, the cost to underground a line includes
both the capital cost (i.e., $3.7M per mile) and the rate of return the utility earns on the
newly underground line.

The cost analysis only models this additional return on capital when it considers the
“regulator” perspective in Figure 2.8. In the societal perspective, rate of return regulation
is ignored and the cost of undergrounding consists solely of the per-mile unit cost and
ongoing maintenance costs. In practice, there is likely a non-zero cost of financing the
capital investment that is less than the utility’s authorized return on capital.

To model the utility’s return on capital investment, the cost analysis linearly depreciates
the undergrounding asset over its assumed lifetime of 40 years. In each year, the value of the
depreciated undergrounding asset is multiplied by the utility’s cost of capital– 7.5%[55]. The
cost model then discounts each of these annual returns into 2022 terms using a ratepayer-
centric discount rate of 5% and sums them. The sensitivity analysis in Figure 2.8 varies the
assumed cost of capital between 5% and 10% and varies the ratepayer-centric discount rate
symmetrically between 2.5% and 7.5%.

In the “regulator” perspective, the cost analysis does not assume the entire capital cost
of the underground work is recovered by the utility in the year the undergrounding work is
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completed. If this was the case, retail electricity rates would have to adjust significantly in
the year the work was completed, rather than adjusting smoothly over the lifetime of the
asset. To model this, the cost analysis assumes each year the utility recovers the portion
of the undergrounding asset that is depreciated. By the end of the asset’s lifetime, it has
fully depreciated to zero, and the utility has recovered the full cost of the asset. Because
these costs are incurred in future years, they are discounted to 2022 terms and summed. In
contrast, in the societal perspective, the per-mile costs of undergrounding are incurred solely
in the year the work is completed and not spread out across future years.

Similar to enhanced vegetation management, ongoing maintenance costs associated with
the underground lines are accounted for. They are expressed as ongoing annual maintenance
costs equal to 1% of the per mile capital cost. However, unlike enhanced vegetation manage-
ment, the analysis assumes the undergrounding investment obviates the need for the utility
to complete routine vegetation management and tree mortality work on the line. Per mile
routine vegetation management costs are approximated using the utility’s recorded costs in
2016 and 2017, prior to the implementation of the enhanced vegetation management pro-
gram. The utility spent approximately $400M per year on routine vegetation management
and tree mortality in 2016 and 2017[47]. To calculate per mile costs, the analysis spreads
the $400M per year across the utility’s 25K miles in the HFTD to obtain a per mile estimate
of $16K. This likely overstates per mile routine vegetation management costs as the $400M
annual budget includes circuit-miles outside the HFTD. Discounted across the lifetime of
the undergrounding asset, this annual avoided routine vegetation management cost equals
approximately 11% of the $3.7M per mile undergrounding capital cost.

Given the longevity of the underground asset, a critical assumption concerns the potential
for future changes to ignition and wildfire risk. Relying on 30 different climate models, one
study estimates that the vast majority of climate projections lead to at least a 50% annual
increase in burned area in the Western U.S. in the period 2021-2050 relative to 1991-2020[90].
However, there is considerable uncertainty surrounding future increases to annual burned
area, not only due to uncertain climate projections but also due to feedback effects between
burned area and fuel availability. The cost model coarsely approximates this increase in
future wildfire risk by linearly increasing the measure of baseline ignition probability each
year until it reaches a 50% increase by the year 2050. The analysis continues to increase
ignition probability at the same linear rate after 2050 until the end of the undergrounding
asset’s lifetime. The sensitivity analysis varies this future risk increase between 25% and
75%. Though projections of future burned area are not equivalent to projections of powerline
ignition risk, there is a relationship between burned area and ignition probabilities, as the
model is strongly influenced by climate and fuel variables such as vapor pressure deficit and
dead fuel moisture.

As ignition risk increases in future years, the quantity of high-wildfire risk days may
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increase similarly. This is especially pertinent to fast-trip settings because fast-trip settings
are only enabled when elevated wildfire conditions are identified along a segment of a dis-
tribution circuit. This means an increase in ignition risk in future years will likely raise
the costs of the fast-trip program because the settings will be enabled more frequently and
subsequently increase the number of fast-trip induced outages.

To project an increase in high-fire risk days (when the utility’s fire potential index is
at R3 or greater), the analysis takes the following steps. For each circuit, calculate the
average number of high-fire risk days per year during 2015-2022. For example, suppose a
hypothetical circuit, which I refer to as Circuit A, experienced 80 high-risk days per year on
average from 2015-2022. Next, for each circuit, calculate the annual increase in ignition risk
relative to 2015-2022 as a percentage. For example, in 2023 Circuit A’s ignition risk increased
by 1% compared to 2015-2022 average, and in 2040, Circuit A’s ignition risk increased by
20%. Then calculate the number of high-risk days for each circuit based on its cumulative
increase in ignition risk. For example, in Circuit A would have 81 (80 * [1.0+1%]) high-fire
risk days in 2023, and in 2040, Circuit A would have 96 (80 * [1.0+20%]) high-fire risk days.
Finally, after rounding high-risk days to the nearest whole number, rank each day in terms of
ignition risk and assign the top “X” circuit-days as high-risk days where “X” is the quantity
calculated in the previous step. For example, for Circuit A in 2040, the top 96 days in terms
of ignition risk would be considered high-risk days.

Fast-Trip Settings

Due to the dynamic nature of fast-trip settings, their costs are modeled differently than
enhanced vegetation management and undergrounding. Fast-trip settings are inexpensive
to deploy, but when they are enabled on a circuit and an outage occurs, the utility must
dispatch ground patrols to inspect the circuit for damage before restoring power to customers.
In some cases, the utility may dispatch air resources, such as helicopters and drones, to
improve restoration times.

To assess the cost-efficiency of fast-trip settings, the cost model relies on PG&E’s fore-
casted annual budget for the fast-trip program of approximately $150M in 2022[75]. The
utility forecasts $151M in fast-trip expenses for 2023, declining to $134M by 2026. The cost
model assumes the $150M fast-trip budget applies only to the utility’s 25K HFTD circuit-
miles. In practice, due to the topology of the utility’s distribution network, circuit-miles
outside of the HFTD may be enabled with fast-trip settings when a circuit-segment within
the HFTD is enabled. In addition to the $150M fast-trip budget in 2022, the cost model
accounts for the utility’s recorded $18M in fast-trip expenses for the 2021 pilot program[75].

In evaluating the cost-efficiency of fast-trip settings on reducing structures burned, the
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analysis focuses on a smaller sample of approximately 6K HFTD circuit-miles (discussed in
the next section). The analysis apportions the $150M fast-trip budget to the reduced 6K
circuit-mile sample based on the share of fast-trip outages that occurred in the 6K sample
relative to the full 25K HFTD sample. The 6K circuit-mile sample accounted for approx-
imately 20% of fast-trip caused outages in terms of customer-hours and 25% of ignitions.

Fast-trip settings create additional costs to customers in the form of unplanned electricity
outages. In 2022 and 2023, fast-trip settings caused approximately six to seven million
customer-hours of outages per year. The cost model applies a constant value of lost load
(VoLL) to estimate the economic cost of these outages to customers. The central VoLL
parameter is $5/kWh, and the cost model varies this between $2.5/kWh and $7.5/kWh. Key
sources of heterogeneity in VoLL parameter estimates include the duration of the outage,
customer type, end-use, and whether the outage was expected or not[129]. Customer-hours
of fast-trip outages are mapped to end-use consumption using state survey data from the
U.S. Energy Information Administration[130].

Lastly, when the cost-efficiency of the fast-trip program is modeled in Figure 2.8, it is
modeled assuming that no undergrounding and enhanced vegetation management had taken
place. A finding from the reliability analysis is that these two measures reduce the duration
and frequency of fast-trip outages (see Table A.7). The costs of the fast-trip program are
adjustd upwards when no undergrounding and vegetation management efforts are deployed,
given more outages would have occurred in their absence. To make this adjustment, the
reliability model is used to predict the number of customer-hours of fast-trip outages ab-
sent the vegetation management and undergrounding investments. The reliability model is
described in Table A.7. The model finds that there would have been an additional 700K
customer-hours of fast-trip outages in 2022 absent these investments.

Public-Safety Power Shutoffs (PSPS)

Cost-effectiveness results for PSPS are not reported because of a lack of confidence in the
reported cost data. There are two reasons for lacking confidence. First, attachments to
the utility’s wildfire mitigation plan cite approximately $180 million and $264 million in
actual PSPS operational expenses in 2019 and 2020, respectively (Table 12)[131]. However,
the utility’s general rate case filings indicate only $141 million in recorded PSPS operations
in 2020 (Workpaper Table 2-11)[75]. This is nearly half the reported costs in the utility’s
wildfire mitigation plan in 2020. The effect of this wide range of actual recorded PSPS costs
is that ignition cost-effectiveness estimates will be highly uncertain. Second, the duration
of PSPS events declined considerably in 2020 compared with 2019, but the utility reports
increased PSPS costs. Customer-hours of PSPS outages declined by 76% between the two
years[131] (92 million customer-hours in 2019 versus 22 million customer-hours in 2020),
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and yet the utility reports a 46% increase in PSPS costs. This relationship does not inspire
confidence in reported PSPS costs because such operational expenses should be positively
correlated to PSPS use.

A.2 Modeling the Enablement of Fast-Trip Settings

Fast-trip settings are only enabled on circuits and days when the utility’s fire potential index
exceeds a threshold. PG&E combines data on weather, fuel moisture, topography, and fuel
type to predict the probability of large and catastrophic wildfires, and uses a random forest
classifier to predict wildfire risk, which is then summarized into six risk levels: R1, R2, R3,
R4, R5, and R5+. R1 and R2 correspond to very little or moderate fire danger. R3 denotes
high fire danger, R4 and R5 both denote critical fire danger, and R5+ is the greatest level of
fire danger. Fast-trip settings are enabled when the risk level is R3 and above. In rare cases,
PG&E enables fast-trip settings at R2, or on an R1 day if it occurs between two high-risk
days, but the analysis ignore these rare cases. PSPS events are typically called on R5+
days. For more detail on PG&E’s fire potential index, see section 8.3.6 of PG&E’s wildfire
mitigation plan[11].

To identify the effect of fast-trip settings on ignition outcomes, the analysis restricts
the sample only to those fast-trip enabled days (those with fire potential index above R3).
However, data on the utility’s fire potential index is only available on a fraction of circuit-
days, and therefore a model is trained to predict the circuit-days on which the fire potential
index was above R3, and therefore fast-trip settings are enabled. Specifically, the model uses
a sample of 997 observations of the utility’s fire potential index at the circuit-day level[64],
along with historical weather, fuel moisture, topography, and fuel type, to train a random
forest classifier that predicts when the fire potential index is high enough to enable fast-
trip settings, i.e. at R3 or greater on each circuit. As with the risk-score prediction model
discussed earlier, the model uses 3-repeat 10-fold cross validation and tunes hyperparameters.
Training and testing data are split75/25%. The model achieves an AUC value of 0.93 with
the testing data. Furthermore, PG&E reported that fast-trip settings were enabled on
approximately 60% of the circuit-days from May to October in 2022; using a classification
threshold of 0.5, our prediction model produces a result of 62%.

Only 11,500 HFTD circuit-miles had fast-trip settings enabled in 2021. These circuits
are identified through incident-specific data on fast-trip outages in 2021[68]. After 2021, all
HFTD circuits had fast-trip settings enabled.
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A.3 Simulating Wildfire Perimeters Using the

Minimum Travel Time Method

To estimate the potential number of structures burned by an ignition at a distribution circuit
on a given day, the analysis combines data on the actual acreages of utility-caused wildfires
with simulations of wildfire perimeters. As shown in Equation A.1, structures burned (Yit) at
distribution circuit i on day t are modeled as a function of (1) the probability that an ignition
grows to wildfire size s, (2) the number of residential and commercial parcels intersected (δ)
by wildfire size s, and (3) the proportion of structures burned per residential and commercial
parcel intersected by a wildfire (ω). Covariates include weather and environmental variables
(Xit) and fixed circuit variables (Ci).

Yit =
S∑
s

Pr(s|Xit, Ci) ∗ δi,s,t(Ās, Xit, Ci) ∗ ω (A.1)

The four wildfire class sizes (s) considered are:

1. Small: < 10 acres

2. Medium: [10 acres, 300 acres)

3. Large: [300 acres, 10,000 acres)

4. Extreme: [10,000 acres, ∞)

To estimate the first term of Equation A.1, Pr(s|Xit, Ci), the approach relies on empirical
data on the acreages of 1,893 grid-caused ignitions between 2014 and 2022. 95% of the
ignitions are considered “small” wildfires, 4% of the ignitions are considered “medium,” 1%
are considered “large,” and 0.5% are considered “extreme.” To predict which size bin s each
ignition falls into, a random forest classification model is trained on historical ignition size
categories as the target, and weather and environmental variables and circuit variables as
features. The training and testing data is split 75/25%. Repeated 10-fold cross-validation
is performed, and hyperparameters are tuned. The resulting model produces an AUC value
of 0.70. Key weather and environmental variables (Xit) and fixed circuit variables (Ci) that
influence model performance include average forest canopy height, relative humidity, wind
speed, and elevation. See Figure 2.10 for a comparison of actual wildfire sizes and predicted
wildfire sizes. Figure 2.11 shows how the distribution of predicted wildfire size probabilities
varies across each day of the year.

The second term in Equation A.1, δi,s,t(Ās, Xit, Ci), reflects the potential number of resi-
dential and commercial parcels intersected by an average wildfire in size bin (Ās) conditional
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on weather and circuit characteristics. In other words, if a “medium”-sized wildfire is ignited
at a given circuit, how many residential and commercial parcels would we expect that wild-
fire to intersect, conditional on the prevailing wind direction, dead and live fuel moistures,
and other covariates? Some circuits may be located near major roadways or natural fuel
breaks while others may be located in densely forested areas downhill from populated areas.
In addition, circuits can span hundreds of miles, and an ignition along one segment of a
circuit may produce a wildfire that is more or less likely to intersect a populated area than
an ignition along a different segment of the same circuit. A given wildfire size at the same
ignition point can produce different structure risk, too, depending on wind direction and the
locations of nearby structures.

Wildfire simulations are used to model the second term in Equation A.1, capturing im-
portant variation across circuits, within circuits, and across weather covariates by simu-
lating many wildfire perimeters. To do this, the Minimum Travel Time (MTT) model is
implemented using the command line applications developed by the Missoula Fire Sciences
Laboratory[132]. The approach follows the methodology of research on the effectiveness and
priorities of fire suppression in California[32]. The MTT model serves as the foundation
for more complex wildfire simulation applications. Unlike the more complex physical mod-
els such as FARSITE and FlamMap, the MTT model’s low computational cost makes it
well-suited for running many wildfire simulations[133].

The MTT model uses a detailed landscape file from the U.S. Geological Survey’s LAND-
FIRE program that includes remotely-sensed vegetation and topographic data at a 30-meter
resolution. The landscape file uses the 40 Scott and Burgan Fire Behavior Fuel Model. For
each circuit, the nearest RAWS weather station is found and corresponding wind speeds
and fuel moisture data are inputted. For computational efficiency, wildfire perimeters are
not simulated for all days of the year for each circuit. Rather, two high-wildfire risk days
per month are selected if available and one median day per month based on fuel moisture
levels, wind speeds, and relative humidity. A high-risk day is defined based on two of the
three conditions being met: peak wind speeds exceeding 22 miles per hour, 10-hour dead
fuel moistures being less than 5%, and relative humidity less than 25%. We then randomly
create ignition points along each circuit at a density of 1 ignition point every 5 miles, but
do not allow fewer than 3 or more than 15 ignition points.

Using the MTT model, wildfire perimeters are simulated at each ignition point and each
weather slice. The analysis allows the MTT model to grow wildfires over a duration of
24 hours and then records the wildfire perimeters at intervals of 1-hour, 8-hours, and 24-
hours to generate variation in wildfire sizes. Though a 24-hour duration is smaller than the
duration of extreme wildfires, the lack of fire suppression in the MTT model and the fact that
these extreme weather conditions are held constant across the entire 24-hour duration of the
simulation encourages the MTT model to produce relatively large wildfire perimeters. The
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average acreage of a 24-hour wildfire simulated between July and September is 72,000 acres
and the maximum is 340,000 acres. Figure A.2 provides example wildfire simulation output
for one circuit across two different weather slices, all ignition points along the circuit, and the
three duration intervals. Additional assumptions needed to run the simulations include an
ember spot probability of 0.01, 300-meter resolution, and use of the Scott-Reinhardt crown
fire method[134].

Next, each wildfire perimeter is intersected with the locations of residential and commer-
cial parcels obtained from county GIS services. Non-residential and non commercially-zoned
parcels, such as timber production zones, open space areas, and agricultural plots are ex-
cluded. These types of parcels are excluded to simplify the assessment of the potential
number of structures burned, acknowledging at the same time that wildfires generate signif-
icant economic impacts outside of direct structure loss.

At this point, the sample has on average 430 simulated wildfire perimeters – and corre-
sponding number of residential and commercial parcels intersected – for every circuit, taking
into account approximately 36 (12x3) weather slices, 3-15 ignition points, and 3 time inter-
vals (1-hour, 8-hours, and 24-hours) that act as a proxy for wildfire size. Because simulations
were not conducted for every day in the dataset, a random forest model is trained to predict
the number of residential and commercial parcels intersected across all circuit-days. The key
variables used to predict parcels intersected are wildfire size in acres, a circuit-specific effect,
and detailed weather characteristics. The prediction model produces an R-squared value of
0.872.

The prediction model is then used to estimate the number of parcels intersected by an
average wildfire in each wildfire size bin (“small,” “medium”, “large,” and “extreme”) for all
circuit-days in the sample. The estimated number of parcels intersected for a given wildfire
size bin on a circuit-day is captured by δi,s,t in the second term of Equation A.1. We calculate
the expected number of parcels intersected for a given circuit-day by multiplying δ by the
corresponding probability weights of each wildfire size bin s and summing the results up
across each wildfire size bin.

Our wildfire simulations do not account for the effects of fire suppression. However,
by deriving wildfire size probability weights using the empirical distribution of grid-caused
wildfires, we implicitly account for the ability of fire suppression resources to contain wildfires
during the wetter months of the year and to be less effective at containing fires during late
summer and early autumn.

Lastly, the third term of Equation A.1, ω, represents the proportion of structures burned
for every residential or commercial parcel intersected by a wildfire. In practice, it is not
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uncommon for a mapped wildfire perimeter to intersect a parcel boundary and produce no
structure damage or only partial structure damage because firefighting resources protected
the structure and/or the parcel owner removed fuels in the immediate vicinity of the struc-
ture. A value of 0.4 is assumed for this parameter based on reviewing incident-specific data
from CALFire. The sensitivity analysis varies this parameter from 0.2 to 0.6. Table 3.3 in
Chapter Two uses a geo-spatial data product from the U.S. Forest Service (conditional risk
to potential structures), and finds an average value of 0.33 to 0.36 depending on the size of
the wildfire footprint.

Due to the computational intensity of the simulations, structures burned are estimated
only for two key regions in the utility’s service territory. Chapter Two uses a similar ap-
proach, without simulating wildfire perimeters, to conduct this analysis across all high-risk
circuits. The first region is based on CALFire’s Lake-Sonoma-Napa (LNU) administrative
unit. The second region is based on two adjacent CALFire administrative units, Nevada-
Yuba-Placer (NEU) and Amador-El Dorado (AEU) units. These two regions are prioritized
based on their recent history of grid-caused wildfires and their differing fire regimes. Because
circuits or simulated wildfire perimeters in these regions may extend into neighboring coun-
ties, parcel data is collected from additional counties such as Mendocino and Marin counties.
The circuits in these regions span approximately six thousand HFTD miles, or about 25%
of the utility’s total overhead exposure in the HFTD.

A.4 Supplementary Figures and Tables
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Figure A.1: Comparison of Predicted and Actual Ignitions

Notes: Comparison of predicted and empirical ignitions. Using our preferred specification in column (3) of
Table 2.5, we compare the number of ignitions predicted by our econometric model against the number of
ignitions observed in our matched treatment and control sample on high-fire risk days. We find that the
fitted values of our econometric model reasonably predict actual observed ignitions, which is also supported
by an AUC value in Table 2.5 of 0.75. Our econometric model tends to under-predict powerline-caused
ignitions in 2019 and over-predict ignitions in 2020. The former period was a relatively low risk year for
wildfires given record snowfall totals while the latter period saw a record number of acres burned across
the state.
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Table A.3: Intertemporal Covariate Balance

High-Fire Risk Days
Pre Fast-Trip Post Fast-Trip

Covariate Units (2015-21) (2021-22)

Ignition Risk Score Daily Circuit Probability 0.00133 0.00137
(0.00070) (0.00071)

Relative Humidity Daily Minimum (%) 19.1 20.01∗

(3.9) (4.75)

Vapor Pressure Deficit kPa 2.08 2.19∗

(0.36) (0.41)

100 Hr. Dead Fuel Moisture % 8.8 8.8
(2.2) (2.3)

1,000 Hr. Dead Fuel Moisture % 9.8 9.8
(2.3) (2.4)

Energy Release Component Index 66.5 66.0
(12.1) (13.2)

Maximum Temperature Celsius 30.2 31.1∗

(2.1) (2.3)

Wind Speed Meters/Second 3.4 3.5
(0.8) (0.8)

Precipitation Millimeters/Day 0.05 0.11∗

(0.04) (0.21)

Notes: High-fire risk days before and after fast-trip settings were deployed. Asterisks denote
statistical significance of a two-sided t-test.
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Table A.4: Robustness Test - Inclusion of Regional Fixed Effects

Incidence Rate - Vegetation-Caused Ignitions
Matching &

No Matching Matching High Fire Risk

(1) (2) (3)

Fast-Trip (Fit) −0.25 −0.57∗ −0.73∗

(−0.57, 0.31) (−0.74, −0.29) (−0.83, −0.55)

Veg. Mgmt. (Di=High x Tit=Post) −0.62∗ −0.59∗ −0.59∗

(−0.80, −0.29) (−0.78, −0.22) (−0.82, −0.04)
Veg. mgmt. (Di=Moderate x Tit=Post) −0.01 0.01 0.30

(−0.25, 0.33) (−0.25, 0.37) (−0.12, 0.91)
Veg. mgmt. (Di=High) 1.04∗ 0.17 0.28

(0.63, 1.56) (−0.06, 0.45) (−0.003, 0.63)
Veg. mgmt. (Di=Moderate) 0.75∗ −0.12 −0.11

(0.44, 1.12) (−0.27, 0.07) (−0.31, 0.14)
Combined Effect (Di=High x Fit x Tit=Post) −0.89 −0.87 −0.92

(−1.00, 1.95) (−0.99, 2.34) (−1.00, 1.85)
Combined Effect (Di=Moderate x Fit x Tit=Post) −0.75 −0.80 −0.87

(−0.97, 1.14) (−0.98, 1.04) (−0.99, 0.45)

Risk-score matching No Yes Yes
High-fire risk days only No No Yes
Region FEs Yes Yes Yes
Matched control neighbors (N) - 2 2
Risk-score, undergrounding, PSPS,
and covered conductor controls Yes Yes Yes
AUC 0.776 0.757 0.752
Observations 2,400,342 1,890,015 665,868
Log Likelihood −6,679.31 −8,039.28 −4,519.75
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Table A.5: Robustness Test - One Matched Control Circuit

Incidence Rate - Vegetation-Caused Ignitions
Matching &

No Matching Matching High Fire Risk

(1) (2) (3)

Fast-Trip (Fit) −0.27 −0.36 −0.56∗

(−0.58, 0.26) (−0.62, 0.05) (−0.74, −0.27)

Veg. Mgmt. (Di=High x Tit=Post) −0.62∗ −0.59∗ −0.58∗

(−0.79, −0.29) (−0.78, −0.22) (−0.82, −0.02)
Veg. Mgmt. (Di=Moderate x Tit=Post) −0.03 −0.03 0.26

(−0.27, 0.29) (−0.28, 0.31) (−0.14, 0.86)
Veg. Mgmt. (Di=High) 1.18∗ −0.11 −0.05

(0.77, 1.70) (−0.28, 0.11) (−0.26, 0.23)
Veg. Mgmt. (Di=Moderate) 1.23∗ −0.10 −0.12

(0.87, 1.67) (−0.25, 0.09) (−0.31, 0.13)
Combined Effect (Di=High x Fit x Tit=Post) −0.89 −0.87 −0.92

(−1.00, 1.89) (−1.00, 2.19) (−1.00, 1.70)
Combined Effect (Di=Moderate x Fit x Tit=Post) −0.77 −0.81 −0.88

(−0.97, 0.94) (−0.98, 0.86) (−0.99, 0.38)

Risk-score matching No Yes Yes
High-fire risk days only No No Yes
Matched control neighbors (N) - 1 1
Region FEs No No No
Risk-score, undergrounding, PSPS,
and covered conductor controls Yes Yes Yes
AUC 0.782 0.785 0.732
Observations 2,400,342 1,282,899 446,254
Log Likelihood −6,776.30 −5,979.78 −3,397.59

Note:
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Table A.6: Robustness Test - Inclusion of Unmatched High-Risk Circuits

Incidence Rate - Vegetation-Caused Ignitions
Matching &

No Matching Matching High Fire Risk

(1) (2) (3)

Fast-Trip (Fit) −0.27 −0.55∗ −0.72∗

(−0.58, 0.26) (−0.71, −0.30) (−0.82, −0.56)

Veg. Mgmt. (Di=High x Tit=Post) −0.62∗ −0.63∗ −0.62∗

(−0.79, −0.29) (−0.80, −0.31) (−0.83, −0.13)
Veg. mgmt. (Di=Moderate x Tit=Post) −0.03 −0.03 0.20

(−0.27, 0.29) (−0.27, 0.29) (−0.16, 0.72)
Veg. mgmt. (Di=High) 1.18∗ 0.07 0.13

(0.77, 1.70) (−0.11, 0.29) (−0.09, 0.41)
Veg. mgmt. (Di=Moderate) 1.23∗ 0.05 0.09

(0.87, 1.67) (−0.11, 0.23) (−0.12, 0.34)
Combined Effect (Di=High x Fit x Tit=Post) −0.89 −0.88 −0.93

(−1.00, 1.89) (−0.99, 1.74) (−1.00, 1.14)
Combined Effect (Di=Moderate x Fit x Tit=Post) −0.77 −0.74 −0.85

(−0.97, 0.94) (−0.96, 0.83) (−0.98, 0.17)

Risk-score matching No Yes Yes
High-fire risk days only No No Yes
Region FEs No No No
Matched control neighbors (N) - 2 2
Risk-score, undergrounding, PSPS,
and covered conductor controls Yes Yes Yes
AUC 0.782 0.794 0.754
Observations 2,400,342 2,037,012 724,765
Log Likelihood −6,776.30 −9,491.70 −5,481.75

Note:
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Table A.7: Effect of Wildfire Mitigations on Fast-Trip Outages

OLS Model

Daily Fast-Trip
Customer-Hours
(1) (2)

Fast-trip (Fit) 87.8∗ 74.9∗

(5.0) (3.7)

Veg. mgmt. (Di=High) -0.5 -0.5
(0.4) (0.3)

Combined effect (Di=High x Fit) −12.8 2.1
(8.3) (7.6)

Veg. mgmt. (Di=Moderate) -0.6 -0.5
(0.4) (0.4)

Combined effect (Di=Moderate x Fit) −18.4∗ -3.7
(8.1) (7.4)

Underground miles (10s mi) 0.03 0.01
(0.02) (0.01)

Combined effect (Underground x Fit) −26.2∗ −21.3∗

(6.1) (5.4)
Ignition risk score (θ) 2,744.2 2,356.8

(1,924.9) (1,660.6)

Matched controls 1 2
Observations 149,550 220,324
Adjusted R2 0.02 0.01

Notes: The reliability model regresses daily customer-hours of fast-trip outages on the set of wildfire prevention measures,
an interaction of each wildfire prevention measure and whether fast-trip settings were enabled or not, and our measure
of ignition risk probability. Only data from 2022 is used in both columns– when fast-trip settings were deployed across
the entire HFTD. The first column uses the sample where circuits treated with vegetation management are matched to
a single control circuit based on ignition risk, and the second column uses the sample where circuits are matched to at
most two control circuits. We use a linear regression model here, in contrast to the logistic regression model earlier,
because customer-hours of fast-trip outages is a continuous variable. We find that when fast-trip settings are enabled
on a given day, a circuit will experience 75-88 customer-hours of outages, on average. In the first column, the enhanced
vegetation management combined effects show that when fast-trip settings are enabled and a circuit has received high
or moderate vegetation management, we expect 13-18 fewer customer-hours of fast-trip outages. This is a 15-21 percent
reduction in reliability impacts relative to circuits without enhanced vegetation management. However, as the second
column shows, the effect is not robust. Adding a second matched control reduces the magnitudes of the effects and the
statistical significance. In contrast, the effect of undergrounding on expected fast-trip customer hours is robust. On
days when fast-trip settings are enabled, we find that a circuit with 10 miles of overhead conductor placed underground
experiences 21-26 (28-30%) fewer customer-hours of fast-trip outages compared to circuits with zero miles. These results
demonstrate that undergrounding and vegetation management can reduce the reliability impact of operational measures
that de-energize powerlines.
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Figure A.2: Illustration of Wildfire Simulation

Notes: The plot shows pixels burned by wildfires simulated using the Minimum Travel Time (MTT)
model. Here we show the wildfires simulated for one distribution circuit across multiple ignition points
and two weather slices (October 22, 2020 and December 21, 2020). Ignition points are randomly sampled
across each distribution circuit to capture variation in wildfire risk within a distribution circuit. As a
proxy for variation in wildfire size, wildfires grow for a maximum of 24 hours but the perimeters of the
simulated fires are recorded at 1-hour, 8-hour, and 24-hour intervals. The perimeters are then intersected
with spatial data on the locations of residential and commercial parcels.
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Appendix B

B.1 OLS Robustness Tests

Figure B.1: OLS Robustness Test Average Treatment Effect by Utility

Notes:
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Figure B.2: OLS Robustness Test Average Treatment Effect by Commute Bracket

Notes:
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