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Type I Interferons in NeuroHIV

Victoria E. Thaney1 and Marcus Kaul1,2

Abstract

Infection with Human Immunodeficiency Virus (HIV)-1 continues to cause HIV-associated neurocognitive dis-
orders despite combined antiretroviral therapy. Interferons (IFNs) are important for any antiviral immune re-
sponse, but the lasting production of IFNa causes exhaustive activation leading eventually to progression to AIDS.
Expression of IFNa in the HIV-exposed central nervous system has been linked to cognitive impairment and
inflammatory neuropathology. In contrast, IFNb exerts anti-inflammatory effects, appears to control, at least
temporarily, lentiviral infection in the brain and provides neuroprotection. The dichotomy of type I IFN effects on
HIV-1 infection and the associated brain injury will be discussed in this review, because the underlying mech-
anisms require further investigation to allow harnessing these innate immune factors for therapeutic purposes.
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Introduction

Infection with Human Immunodeficiency Virus (HIV)-1
continues to cause HIV-associated neurocognitive dis-

orders (HAND) despite combined antiretroviral therapy
(cART) (50,108). HIV-associated dementia (HAD) is the
most severe manifestation of the disorders, and there is
currently no treatment available for any form of HAND.
Several lines of evidence strongly suggest that neurode-
generation occurs as a consequence of HIV-1 infection and
neurotoxic immune stimulation of microglia and macro-
phages (MF) in the brain (12,37,39,42,60–62,85,86,97) and
impairment of neurogenesis (44,66,94,111).

Beyond activation of MF and microglia, infection with
HIV-1 triggers an innate immune response that includes in-
terferons (IFN) (20,22,76,98). While IFNs are important for
an antiviral immune response, the lasting production of IFNa
and -c causes an erroneous and exhaustive activation leading
eventually to immune suppression and progression to AIDS
(22,76,98,104). Moreover, expression of IFNa in the HIV-
exposed central nervous system (CNS) has been linked to
cognitive impairment and inflammatory neuropathology
(7,9,80,106,107). In contrast, IFNb exerts anti-inflammatory
effects (54,55,73), appears to control, at least temporarily,
HIV and SIV infection in the brain (8,9,25,38,64,65,83), and
to provide neuroprotection (120). However, in HIV-1 in-
fection, expression of IFNb appears to be transient in con-
trast to that of IFNa (9,76,80). Transient expression of IFNb
has been observed in the CNS of SIV-infected macaques in

association with extended viral control and delayed pro-
gression to disease in the brain (3,9) as well as in transgenic
(tg) mice expressing in their CNS the viral envelope pro-
tein gp120 of the CXCR4-utilizing HIV-1 isolate LAV
(121,123). Moreover, treatment of the gp120tg mouse model
of HIV-associated brain injury with exogenous recombinant
IFNb resulted in neuroprotection against toxicity of the viral
envelope protein (120). The dichotomy of type I IFN effects
on HIV-1 infection and the associated brain injury will be
discussed in this review because the underlying mechanisms
require further investigation to allow harnessing these innate
immune factors for therapeutic purposes.

HIV-1 Infection Associated with Neurotoxicity

HIV-1 infects microglia/MF and T cells through the che-
mokine receptors CCR5 and CXCR4, which, in conjunc-
tion with CD4, function as coreceptors for the virus
(6,15,23,24,30,32). Interestingly, in the absence of intact virus,
the HIV-1 envelope protein gp120 of CCR5-preferring,
CXCR4-preferring, and dual-tropic viral strains all can trigger
macrophage neurotoxicity and induce injury and apoptosis,
in vitro and in vivo, in both primary human and rodent neu-
rons (17,43,52,61,62,68,69,72,86–88,112,114,121). More-
over, in MF, HIV-1 infection and exposure to just the viral
proteins gp120 or Tat seems to initiate a similar neurotoxic
phenotype (42,43,74,117). Although HIV-1 primarily in-
fects macrophages and microglia in the CNS, the virus and
its envelope protein also cause impairment of neurogenesis
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by interfering with the proliferation of neural progenitor
cells (44,66,94,111).

Neuropathology of HIV-1 Infection

The neuropathology associated with HIV-1 infection in
the CNS is characterized by astrocytosis, myelin pallor,
infiltration of MF, increased number of resident microglia
and multinucleated giant cells, diminished synaptic and
dendritic density, and selective neuronal loss (18,78,79,92).
However, the increased number of microglia and MF, de-
creased synaptic and dendritic density, evidence of ex-
citotoxins, and selective neuronal loss are the pathological
hallmarks most closely associated with the clinical signs of
HAND/HAD. Many regions of the brain can be affected,
including frontal cortex, hippocampus, substantia nigra,
putamen, basal ganglia and cerebellum, and HAND/HAD is
associated with evidence of neuronal apoptosis (reviewed in
(11,34,60,63,71)).

Interferons

IFNs were identified over 50 years ago and were char-
acterized for their ability to ‘‘interfere’’ with viral replica-
tion (57). These cytokines are produced and secreted in
response to pathogenic host invasion and inflammation by a
variety of nucleated cells both in the CNS and the periphery,
including astrocytes, microglia, neurons, macrophages, and
T lymphocytes (29). These cytokines play critical roles in
immunomodulatory activities that affect both the innate and
adaptive immune responses (51). IFNs are separated into
three different families based on the receptor type used. The
type I IFN family encodes 13 IFNa subtypes in humans (14
in mice), a single IFNb gene, IFNx, IFNj, and IFNe, which
together signal through the IFN-a/b receptor (IFNAR) that
is composed of IFNAR1 and IFNAR2 subunits (110). In
contrast, the type II IFN family consists solely of IFNc,
which is produced primarily by T cells and natural killer
cells, whereas the type III group is composed of IFNk1,
IFNk2, IFNk3, and the recently discovered IFNk4 (21,100).

HIV-1 Infection and IFNs

HIV appears to invade the CNS soon after peripheral
infection, but severe neurological symptoms do often not
present until later stages of disease progression (82). This
delay in clinical manifestations can be explained by the
host’s ability to mount an antiviral immune response, which
results in viral control during the acute stages of infection
(3). In the periphery, HIV triggers a rapid nonspecific acti-
vation of the innate immune system, followed by a slower,
but antigen-specific, adaptive immune response (84). In the
brain, the blood–brain barrier restricts access of T and B
cells, and therefore shifts the burden of HIV control to local
innate immune defense mechanisms (115). IFNs are a major
component of the first line of host defense against HIV and
critical mediators of the immune response in the brain (47).
Important for the periphery and the brain, IFNa, -b and -c all
can inhibit HIV-1 infection of MF and CD4+ T cells
(45,75,89,113).

During HIV infection, Type I IFN induction and secretion
can be activated by several different mechanisms and the
extent of induction depends on cell type and viral structure

available for recognition by cellular Pattern Recognition Re-
ceptors (2). Intracellular sensing of HIV infection includes the
Toll-like receptors (TLRs), of which TLR-7 is responsible for
recognition of viral single-stranded (ss) RNA in endosomes.
Cytosolic DNA sensors include the enzyme cyclic guanosine
monophosphate–adenosine monophosphate (cGAMP) syn-
thase (c-GAS) and IFNc-inducible protein 16 (IFI16), which
detects HIV reverse-transcribed DNA products, and retinoic
acid-inducible gene-1 (RIG-1), which senses viral RNA (31).

Plasmacytoid dendritic cells (pDC) are major producers
of type I IFN/IFNa in the periphery and can be activated by
free HIV particles as well as virus-infected CD4+ T cells
(70). When HIV is taken up by pDC through endocytosis,
TLR7 detects endosomally delivered ssRNA and activates
the myeloid differentiation primary response gene 88
(MYD88) signaling pathway. This signaling cascade leads
to activation of IFN Regulatory Factor 7 (IRF7) and acti-
vation of the nuclear factor-jB (NF-jB) transcription factor
to promote robust production of IFNs, specifically IFNa
(10,14,70). In conventional Dendritic Cells (cDCs) and
macrophages, HIV cDNA can be detected by c-GAS or
IFI16 that can activate stimulator of IFN genes (STING) in
the endoplasmic reticulum and induce IFN production
through IRF3 and NF-jB. Finally, cytosolic RIG-1 can
detect genomic viral RNA and trigger a STING-dependent
immune response and the activation of IRF3 (2,31).

Because of its pronounced antiviral activity, IFNa has
been investigated for HIV-1 treatment in several settings:
before the introduction of cART, as part of a structured
treatment interruption strategy, in acute HIV infection, as a
component of salvage therapy and most recently, in attempts
of eradication of viral reservoirs (102,122). Early attempts of
treating established HIV infection had been disappointing or
inconclusive, perhaps in part because under chronic condi-
tions, IFNa eventually suppresses the function of the im-
mune system, which then facilitates viral persistence and
progression to AIDS (122). Therefore, it may not be sur-
prising that one recent study suggested that blocking type I
IFN signaling during chronic HIV infection–in this case with
an antibody against IFNAR2–facilitates the restoration of
immune function (127). However, other recent investigations
related to HIV eradication suggest that IFNa in combination
with cART and viral reactivation agents may support the
elimination of HIV-1 reservoirs (41,56,93,105,116). The
CNS is a HIV-1 reservoir and as such presents a major
challenge for viral eradication (35,46,91). Given that IFNa
clearly has a temporary antiviral effect on HIV-1, timing of
IFNa treatment, time of onset and length of application, may
be critical factors for successful eradication.

Type I IFN Signaling and IFN-Stimulated Genes

Both IFNa and IFNb exert their effects by signaling in an
autocrine and paracrine manner through the JAK/STAT
pathway to activate transcription of antiviral genes that are
known collectively as IFN-stimulated genes (ISGs) (31,109).
IFN signaling induces dimerization of its cell surface recep-
tors, IFNAR1 and IFNAR2, and activates the receptor-
associated protein tyrosine kinases Janus kinase 1 (JAK1)
and tyrosine kinase 2 (TYK2). These signaling events lead to
phosphorylation, dimerization, and nuclear translocation of
cytoplasmic signal transducer and activator of transcription
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(STAT) molecules. The IFN-stimulated factor 3 (ISGF3)
complex, which consists of a STAT1-STAT2 heterodimer and
the cytoplasmic protein IFN-regulatory factor 9 (IRF9), binds
to IFN-stimulated response elements (ISRE) in the promoters
of most ISGs and activates a classical antiviral response. On
the other hand, STAT1 homodimers bind gamma-activated
sequences (118) and induce proinflammatory ISGs (58).

Altogether, these pathways result in an induction of nu-
merous antiviral factors that restrict or interfere with HIV/
SIV replication at different stages of the viral life cycle. HIV
restriction and resistance factors include: tripartite motif-
containing protein 5a (TRIM5a), sterile a motif domain and
histidine aspartic acid (HD) domain 1 (SAMHD1), apoli-
poprotein B mRNA-editing enzyme catalytic polypeptide-
like 3 (APOBEC3), tetherin, IFN-induced transmembrane
(IFITM) proteins, schlafen 11 (SLFN11), and MX2. Fur-
thermore, some of these restriction factors can enhance the
expression of an antiviral response by sensing viral particles
(31,109).

Type I IFNs in the Normal and HIV-Infected CNS

A mouse model with genetic depletion of endogenous
IFNb signaling develops a Parkinson’s Disease-like phe-
notype with motor and cognitive learning deficiencies, a
significant reduction in dopaminergic neurons, impaired
neuronal autophagy, and presence of a-synuclein-containing
Lewy bodies in the brain (33). Interestingly, when these
animals were treated with IFNb, neuronal growth, branch-
ing, autophagy flux, and a-synuclein degradation in neurons
were restored (33). This study revealed the critical role of
physiological IFNb signaling for normal brain homeostasis
and function. Similarly, we detected impairment of spatial
learning and memory in the absence of IFNAR1 (Hina
Singh, Amanda Roberts, and Marcus Kaul, unpublished
results). These findings are also in line with the observation
in the normal brain of low-level baseline expression of IFNa
and–b, which seems to be required for an effective type I
IFN response in case of a viral infection (1,120).

Several studies have been published on the antiviral and
neuromodulatory activities of type I IFNs in the CNS, yet
the question of whether these cytokines hinder or facilitate
HIV disease and HAND progression over time remains
controversial (122). Of note, whereas IFNAR1-signaling of
type I IFNs is critical for antiviral immunity, IFNa and IFNb
promote different additional biological responses in the
CNS (47) in that IFNb expression is associated with an anti-
inflammatory response in the brain and IFNa is linked to
increased neurocognitive dysfunction and inflammatory
neuropathology (47).

Mice lacking functional IFNAR1 show increased sus-
ceptibility to fatal disease in most experimental RNA-virus
infections of the CNS (19,36,47,90,103). For example, one
study investigating the role of IFNAR1-mediated responses
in antiviral control involved chimeric HIV-1 (EcoHIV),
wherein gp80 of the ecotropic murine leukemia virus re-
places HIV-1 gp120 to permit productive infection of mice
(99). In this model, IFNAR1 knockout (KO) mice infected
with EcoHIV presented with enhanced virus infiltration into
the brain and inflammatory pathology, thus implicating type
I IFN responses in control of HIV neuropathogenesis (49).
However, since this model lacks expression of HIV gp120 in

the brain, which is a critical component associated with HIV
neurotoxicity, the role of IFNAR1 responses is not yet
known in the context of gp120-induced neuronal injury.

Increased production of IFNa in the brain is a double-
edged sword that provides antiviral protection, but also
promotes inflammatory neuropathology and cognitive im-
pairment. Transgenic mice that chronically produce IFNa in
astrocytes show decreased susceptibility to neurotropic viral
infection, but develop progressive inflammatory encepha-
lopathy, gliosis, and neurodegeneration (4).

In humans, elevated IFNa expression in the CNS is
associated with neurodegenerative disorders, such as Aicardi–
Goutieres syndrome and Cree encephalitis (26,125). More-
over, antiviral therapy with IFNa in patients infected with
hepatitis C and herpes virus is known to have side effects
such as cognitive slowing, amnesia, and impaired executive
functions (28,106,124). In the context of HIV infection,
three separate studies showed that HIV patients with de-
mentia have significantly higher levels of IFNa in the CSF
compared with those without dementia (67,96,101). More-
over, elevated IFNa levels in the CNS correlate with in-
creased atrophy in the frontal cortex of HAD patients and
severity of dementia (80,96,101). In addition, a recent study
found that IFNa in the CSF also correlates with milder
forms of neurocognitive impairment and soluble neurofila-
ment light chain (NFL), a marker of neuronal injury (7).
These observations suggest that IFNa is involved in the
pathogenesis of HAND before the development of dementia
and in the presence of cART. Finally, under certain chronic
conditions, IFNa can suppress the function of the immune
system, which then promotes viral persistence and pro-
gression to AIDS (122).

The role of IFNa in the CNS has also been characterized
in a SCID mouse model. Experiments where HIV-infected
human macrophages were injected into the SCID mouse
brains demonstrated that HIV infection causes significant
increases in IFNa expression in the brain, which strongly
correlated with cognitive deficits (107). Furthermore,
blocking IFNa with neutralizing antibodies significantly
improved cognitive impairment and decreased microgliosis
in these animals (106).

In contrast to IFNa, IFNb exerts anti-inflammatory effects
and appears to be able to control HIV and SIV infection in
the brain. Studies of SIV-infected macaques show that IFNb
is the main type I IFN that is produced by the brain during
acute infection and its expression is associated with viral
control in the brain (9). Previous studies showed that ob-
struction of endogenous IFNb signaling in an experimental
autoimmune encephalomyelitis mouse model produced
more severe and chronic neurological symptoms, as well as
increased microglial activation that can contribute to ex-
tensive tissue damage in the brain (119).

In the classical model of type I IFN signaling, IFNb
production leads to induction of IFNa (53). However, during
SIV infection brains induce protective antiviral responses
through the production of IFNb, without production of IFNa
(5). Meanwhile, in the periphery acute infection with SIV
results in significant IFNa increases (5). This differential
regulation during SIV infection in the brain depends on
CCL2, which is predominantly produced by astrocytes upon
viral infection (126). CCL2 binds to the CCR2 receptor
on macrophages to selectively suppress IFNa expression
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without altering expression of IFNb and antiviral ISGs, such
as MX1 (128). Several SIV studies strongly suggested that
tight temporal regulation of the type I IFN response, in
particular of IFNa expression, is critical to the avoidance of
pathogenic lentiviral infection (16,48,59).

Similar to the observation in the SIV-infected macaques,
we detected transiently increased IFNb mRNA expression in
the brains of HIVgp120tg mice at 1.5, but not 3 or 6 months
of age (120). These tg mice express the viral gp120 of the
HIV-1 isolate LAV under the control of a modified GFAP
promotor in astrocytes in their CNS and recapitulate key
features of brain damage seen in HIV/AIDS patients (121).
As such, HIVgp120tg mice display a decrease of synaptic
and dendritic density, an increased number of activated
microglia, and pronounced astrocytosis (121). HIVgp120tg
mice also develop significant behavioral changes, such as
impaired spatial learning and memory at 8–9 months (81)
and reduced swimming velocity at 12 months of age (27).
Moreover, HIVgp120tg mouse brains share a significant
number for differentially expressed genes with human HIV
and HIV encephalitis (HIVE) patients, including evidence of
an endogenous IFN response (40,81). However, while CCL2
expression was significantly elevated, IFNa remained at
baseline level in HIVgp120tg mouse brains. Similar to the
SIV model, the absence of an increase in IFNa in associa-
tion with significantly elevated IFNb in the brains of
HIVgp120tg mice at 1.5 months might be due to upregu-
lated CCL2.

As an antiviral therapeutic tool, IFNb seems to cause less
adverse side effects than IFNa (95). Moreover, due to its
immunomodulatory effect, IFNb is FDA approved for the
treatment of multiple sclerosis, which is an inflammatory
neurodegenerative autoimmune disease (77,95). IFNb can
also induce expression of factors that have neuroprotective
activities, such as nerve growth factor (13), and the CCR5
ligands, CCL4 and CCL5 (65,121). In fact, using mixed
neuronal–glial cerebrocortical cell cultures, we recently
showed that IFNb confers neuronal protection against the
toxicity of HIVgp120. Moreover, treatment of HIV gp120tg
mice with exogenous recombinant IFNb through intranasal
delivery resulted in neuroprotection, including neuronal den-
drites and presynaptic terminals in cortex and hippocampus
(120). Figure 1 summarizes in a schematic model the effects
of IFNa and IFNb in the HIV-infected brain and HAND.

In summary, based on the available data, it seems highly
reasonable to further investigate whether IFNb as part of the
innate antiviral immune response, or if therapeutically ad-
ministered, can provide a beneficial effect in controlling
chronic HIV-1 infection and delay or prevent the develop-
ment of HAND and its most severe manifestation, HAD.
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FIG. 1. Schematic model of the effects of IFNa and IFNb in the HIV-infected brain and HAND. HIV-1 reaches the brain
apparently soon after peripheral infection and resides in perivascular MF and microglia. These cell types are the primary sites
of productive viral infection in the CNS, although all neural cell types can express the HIV coreceptors, CCR5 and CXCR4.
HIV-infected and uninfected stimulated MF and microglia produce neurotoxins that damage neurons presumably engaging
various receptors and mechanisms, all culminating in synaptic and dendritic injury and eventually neuronal apoptosis. HIV-
infected MF and microglia may, at least temporarily, produce IFNa and IFNb. CCL2 released by astrocytes, however, can
suppress IFNa production by MF and microglia. IFNa and IFNb can interact with all cells in the CNS since all express the two
IFNAR subunits. Stimulation with IFNa and IFNb generally induces ISGs and an antiviral state in all cell types. However, the
spectrum of ISGs induced may be different for each type I IFN. IFNa seems to promote inflammatory processes and directly
and/or indirectly compromise neuronal function and thus may contribute to the development of HAND. In contrast, IFNb seems
to overall limit inflammatory processes and contribute to neuroprotection by counteracting injurious mechanisms. In vivo,
exogenous IFNb can be delivered to the brain through intranasal application. CNS, central nervous system; HAND, HIV-
associated neurocognitive disorder; IFN, interferon; IFNAR, IFN-a/b receptor; ISG, IFN-stimulated gene; MF, macrophages.
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