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Abstract

This dissertation examines the complex structure of scientific organization and
publication behavior. Since the last century, the number of scientific publications
has exponentially risen, and researchers are now more connected than ever. This
has led to an increasing interest in quantifying the structure of academia at var-
ious levels, for exampling university rankings and journal impact factors. In the
current work, abstracts of scientific publication will be analyzed with respect to
three different features of academia. First, the internal structure of a scientific
community will be examined. What are the research topics prevalent in a com-
munity? Which are neglected? Does collaboration between researchers facilitate
or hinder topic popularity? We find that more central authors in the commu-
nity publish on a distinct set on research areas than non-central authors. Second,
the connectivity between different scientific communities will be analyzed. Using
quantitative methods, the overlap in scientific content between related scientific
fields will be measured. Despite claims from within the community, the quanti-
tative analysis shows very little overlap between supposedly related areas. Third,
temporal change of scientific fields will be investigated. Taking two unrelated
fields, philosophy and biology, the change of topics is evaluated over time. It is
shown that biology as a field undergoes more change than philosophy, and the
patterns of topic change differ across the two fields. In biology, topics either in-
crease or decrease in popularity, while in philosophy their popularity fluctuates
up and down over time.

These different aspects of scientific organization will be examined using
topic models, a tool from natural language processing, and extended by various
methods for each chapter. The theoretical discussion will argue that the results
obtained in the case studies are heavily influenced by group cognition, that is,
pressures and influences inherent to social groups.

This dissertation, Topic modeling in scientometrics: Community, connectivity,
and change, is submitted by Till Christian Bergmann in 2016 in partial fulfillment
of the degree Doctor of Philosophy in Cognitive and Information Sciences at the
University of California, Merced, under the guidance of dissertation committee
co-chairs Teenie Matlock and Rick Dale.

xvii



CHAPTER 1
Introduction

Science and academia are complex systems with many agents at different levels.
At the micro-level, individuals pursue research and hold academic positions.
At the mesa-level, these individuals form collaboration teams, departments and
universities and pursue goals together. At the macro-level, the universities are
linked together by global communication and collaborations. This complexity
makes quantification and evaluation of these structures difficult. How are
different universities linked together? How are different fields of science
connected? Which individuals push the boundaries of science further? How
should funding agencies allocate funding across this vast system? The field
of scientometrics tries to answer such questions using quantitative, large-scale
methods (Leydesdorff, 2001; Leydesdorff & Milojević, 2015). Increase in
computation power and the rising availability of accessible databases of scientific
information has made such an approach possible.

Researchers in scientometrics have looked at varying levels of
organizational structure. For example, at the macro-level, attempts have been
made to rank universities world-wide (Shin, Toutkoushian, & Teichler, 2011).
Such rankings are not only important for universities for their prestige, but also
affect how their research is perceived and can influence whether students will
attend the university. At the mesa-level, scientometrics studies the relationship
between different scientific fields, as well as the internal structure of those
fields. Using citation data, Goldstone and Leydesdorff (2006) analyzed how the
interdisciplinary field of cognitive science draws inspiration from other fields,
and which fields in turn are likely to cite cognitive science, thus measuring
which fields are influenced by cognitive science. Other approaches have relied on
departmental affiliation of the authors (Gentner, 2010) and previous publication
history (Bergmann, Dale, Sattari, Heit, & Bhat, 2016) to model the diversity of
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a field. Studies have also identified which publications are especially impactful
based on their citations and which years have shaped the current state of fields
(Marx, Bornmann, Barth, & Leydesdorff, 2014; Wray & Bornmann, 2015). The
pattern of papers cited in a paper is also tied to how well that paper is received,
for example, both papers with high and low impact typically have more diverse
citation patterns than papers with a medium impact, meaning they cite papers
from multiple disciplines (Shi, Leskovec, & McFarland, 2010). Predicting impact
of papers has also been modeled on the interdisciplinarity of the co-authors
(Bhat, Huang, Rodriguez, Dale, & Heit, 2015), as well as using several features
like the content of the paper and whether the authors are established in the
community (Yan, Tang, Liu, Shan, & Li, 2011; Dong, Johnson, & Chawla,
2015). Using the content of papers, various papers have analyzed the scientific
themes within fields and how they change over time (Hall, Jurafsky, & Manning,
2008; De Battisti, Ferrara, & Salini, 2015). Other historical analyses rely
on author-provided keywords (Bentley, 2008). At the micro-level, traditionally
the number of publications have been used as a measure for an individual’s
productivity, impact, and success. Large scale databases such as Google Scholar
have made it possible to directly link citation counts to these publications, and
attempts such as the h-index have been made to subsume citation counts into one
single measure (Hirsch, 2005). As there is a continuing trend to publish in teams
of authors, the micro-level does not play a huge rule in current scientometrics
research, instead focus is given to how these teams of collaborators work together
(Börner et al., 2010).

As evident from this list of studies, scientometrics uses a variety of
variables as their measure of interest. Most of the variables are directly tied to
scientific output and thus seem good choices for quantitative analysis, such as
the abstract or title of papers, the list of authors and citation data. However,
some variables are more constrained: Keywords are often restricted by journals to
a certain set, and author department affiliation do not always accurately model
the research they work on. For example, Gentner (2010) used departmental
affiliation to argue that cognitive science is dominated by psychologists, but
often universities do not have a separate cognitive science department, making
the psychology department the most suitable affiliation for cognitive scientists,
no matter what their exact research areas are within cognitive science. In this
dissertation, abstracts of scientific publications are thus used as the basis of
analysis, as they are arguably the richest data source and directly tied to the output
of scientists.
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Using the abstract data, the dissertation will analyze three different
aspects of scientific organization through case studies:

1. What is the internal structure of a scientific community? Which different
research areas are represented, and how are they related to the status of the
authors working in these areas?

2. What is the connectivity between several scientific communities? Is there an
overlap of scientific content between seemingly related fields?

3. How do scientific fields change over time? Do certain fields change more
than others, and do they change in different ways?

Although the questions posed above are quite different in their nature,
their analysis all rely on one computational tool, topic modeling. Topic modeling
is a suite of natural language processing algorithms that allow the automatic
extraction of topics, or gists, of large numbers of documents. Instead of having
to go through documents manually, topic modeling can be used to automatically
analyze them and represent them as a mixture of topics, where topics are defined
a set of semantically related words. Chapter 2 will give an in-depth introduction to
topic modeling, and how to use it to analyze scientific abstracts. It will explain the
conceptual motivation behind topic modeling, the mathematical implementation
of the inference mechanism, and features code-examples on how to run topic
modeling in the programming language R (R Core Team, 2016).

The subsequent three chapters will use topic modeling to answer the
three questions outlined above. Chapter 3 investigates the first question, the
internal structure of a scientific community: Which kinds of topics are discussed
within the community? Which topics are important within this community?
Which topics are more to the periphery? Using the EvoLang (Evolution of
Language International Conference) conferences as a case study, topic modeling
will be combined with a social network analysis of collaborators to answer these
questions. This combination allows to not only infer the topics present at the
conference, but also how they are related to individual authors and author
teams. The results indicate that certain topics are overrepresented within the
scientific community, while others are neglected. Importantly, these results are
partly incongruent with the posited goal of interdisciplinarity of the EvoLang
community. Such analyses can thus help community to evaluate their current
state, and whether research on certain topics needs to be encouraged.

Chapter 4 uses topic modeling to look at scientific connectivity across
different fields. How are sub-fields within cognitive science related? Specifically,
what is the relation between cognitive linguistics to general linguistics and
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Figure 1.1: Chapter 3 looks at internal ties within a community, here depicted
by the orange network. Chapter 4 looks at relationships between such scientific
communities, while Chapter 5 studies the change in communities over time.
Scientific communities are represented by orange networks.

cognitive science? Claims from cognitive linguists posit that cognitive linguistics
is more related to cognitive science than other linguistics journals. Using topic
modeling, the overlap between the output of different journals will be analyzed
and measured, quantifying the subjective claims by members of the cognitive
linguistics community. The topic model analysis is extended by a analysis of
citation patterns, examining the relationship between the content of papers and
their references. For example, does citing more cognitive science papers result in
content that is more similar to the content of cognitive science papers?

Lastly, Chapter 5 uses topic modeling to quantify scientific change over
time. By using historical data going back to 1980, the popularity of topics can
be tracked through time with spline regression. The current case study looks at
two distinct fields, biology and philosophy, which differ greatly in their subject
matter and internal organization. The results indicate that topic models are a
suitable way to track popularity of research themes over time, and furthermore,
that topics in biology change more than in philosophy. The changes also show
that topics in biology either rise or fall in popularity, representing topic overhaul,
while topics in philosophy both rise and fall at different times, meaning that topics
in philosophy are more akin to trends disappearing and reappearing.
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Figure 1.1 shows the different aspects of scientific communities analyzed
in the chapters. Scientific communities here are represented by the social
networks in orange. Each chapter looks at a different dimension of these
structures. Chapter 3 focuses on the internal structure, Chapter 4 at differences
and similarities between communities, and Chapter 5 at internal changes over
time. The use of topic models in all the analyses underlines its flexibility and
extensibility, as it can easily be combined with other methods.

Lastly, the discussion chapter (Chapter 6) will tie the findings of the
previous case studies together, and relate the findings of each case study to the
“big picture” of collective behavior in academia. The case studies both reveal
insight into the communities analyzed, but also relate to the more general study
of how scientific communities interact and organize themselves. The qualitative
analyses of the communities in Chapter 3 and Chapter 4 can help the communities
to identify internal problems, and can lead to re-structuring and re-orienting
of future research goals. Chapter 5 shows that different scientific fields change
and progress differently, which affects how scientific work should be evaluated.
Beyond the communities, the studies also provide support for the use of topics
models in scientometric research, as it allows to study a wide range of academic
aspects. The discussion chapter will also argue that a framework from cognitive
science, group cognition, is one of the driving factors behind the results in the case
studies. Scientists do not work in isolation and are part of a network at multiple
scales. Graduate students work closely with their advisors, who are influenced by
their colleagues and the bigger scientific community they are part of. It is argued
that the increasingly interconnected network of scientists has a profound effect on
the research areas scientists work on and which areas receive the most attention
within the community.

The dissertation thus contributes to the fields of information science,
cognitive science and scientometrics and in several ways:

1. It makes use of one single computational method, topic modeling, to study
different aspects of scientific structure and shows that valuable information
can be gained through it.

2. It provides insight for members of the scientific communities analyzed in the
case studies, allowing communities to evaluate their current state of affairs.

3. It quantitatively shows that humanities differ from hard sciences in the way
they change over time, suggesting that the fields should be evaluated in
different ways, an aspect often neglected in current scientometrics work.
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4. It argues for a unifying framework to study the behavior of scientists, filling
a hole in current scientometric research which lacks theoretical explanation
behind their findings.

5. It provides a “playground” of real world data to study group cognition,
which traditionally has relied on agent based models or experiments.

Before continuing to the case studies, the next section will explain topic
modeling in more detail and lay the methodological groundwork the dissertation.



CHAPTER 2
An introduction to topic modeling

2.1 Introduction

Advances in computational power and new techniques have made it possible
to analyze large collections of texts automatically. Such large collections of text
include newspaper articles going back a century, customer reviews on products
or restaurants, and, in the case of this dissertation, scientific articles. The
digitalization of such data has brought the opportunity to study these data in more
detail, but the complexity and largeness of the data has also made it impossible
for humans to sift through each document manually.

In the 1990s, first advances were made to detect latent semantic
similarities between words based on their occurrences in documents. Latent
Semantic Analysis (LSA, also Latent Semantic Indexing, LSI) (Deerwester,
Dumais, Furnas, Landauer, & Harshman, 1990; Landauer, Foltz, & Laham, 1998)
converts raw documents into document-term-matrices, in which cells represents
the frequency a certain term (row) in a given document (column). An example
document-term-matrix can be constructed from the two documents below:

1. The dog is chasing the cat.
2. The cat is running away from the dog. The cat runs around the corner.

When dealing with actual data, the documents are of course much
longer, and do not just consist of one or two sentences. Table 2.1 shows the
document-term-matrix for these two documents, after words have been stemmed
(e.g. “running” becomes “run”) and punctuation removed. As both words and
documents are now represented as vectors, document-term-matrices can be used
to compare the similarity between words, as well as between documents by taking
different similarity measures such as cosine similarity. However, as your dataset

7
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grows, so does your document-term-matrix, and it becomes increasingly sparse:
A lot of words will only occur in few documents, resulting in a lot of zero cells.
Thus, LSA uses singular value decomposition (SVD) to reduce the dimensions,
and find the dimensions at which the variability is greatest.

Table 2.1: Example of a document-term-matrix

around away cat chase corner dog from run the

Doc1 0 0 1 1 0 1 0 0 2
Doc2 1 1 2 0 1 1 1 2 4

One of the drawbacks of LSA is the lack of transparency in similarity
assessments: While it is possible to get a numeric representation of how similar
two documents or terms are, it is not possible for humans to assess why.
It is therefore not particularly useful when trying to summarize documents
automatically, and it is more useful for comparisons between documents.

Topic modeling tries to alleviate this and represent documents as a
mixture of topics that make up the gist of the document. The basic underlying idea
is that each document comprises multiple topics, and each word in a document is
assigned a topic. Each topic is thus a distribution over terms, that is, a distribution
that expresses how likely it is for a word to occur in that topic. An example would
be articles in a newspaper. Articles in newspapers cover a range of different topics,
such as economics and sports. Topic models assume that each article is biased to
talk about certain topics, rather than the whole range of topics. For example, an
article in the sports section might talk about championships and winning, while
an article in the economy section will rarely talk about these topics. In turn, such
topics are also biased to include different terms. A topic about championships
will be biased to include terms such as ring or cup, compared to words such as
income or budget, which are more likely to occur in an economics topic.

Instead of a document-term-matrix (reduced via SVD), LDA represents
documents as a probability distribution over topics.1 For example, a document
in the sports section might consist of 90% sports topic, but also 10% economy.
Another document in the sports section might deal mainly with players’ salary,
and thus the distribution might be more evenly 50/50. Table 2.2 shows a
hypothetical representation of documents as a mixture of T topics. The topics
themselves are represent by a distribution over terms. Topic 1, sports, will give
higher probability to sports terms than topic 2, about economy. An example
distribution is shown in Table 2.3. These matrix representations allows us to

1In this work, we will use the word probability distribution to mean probability density function.
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perform computations on documents, such as comparing similarities between
documents and calculating popularity of topics over all documents, as well as
succinctly summarize documents by their most used topics. Topic models thus
have more flexibility and transparency in analyzing documents than LSA and
other methods.

Table 2.2: Example topic distribution by document. Each cell represents the
probability of a given topic (column) present in a given document (row).

Topic 1 Topic 2 . . . Topic T

Doc1 0.8 0.19 . . . 0.01
Doc2 0.1 0.89 . . . 0.01

Table 2.3: Example of term distribution topic. Each number expresses the
probability that the term occurs under the topic. These probabilities differ across
topics.

Topic 1 (sport) Topic 2 (economy)

championship 0.3 income 0.3
ring 0.15 budget 0.2
victory 0.1 salary 0.15

salary 0.08 trade 0.1

2.2 Latent Dirichlet Allocation

2.2.1 Generation of documents

While different types of topic models exist, we will concentrate on the most
simple, and earliest type, Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan,
2003). LDA automatically infers the topic and term distribution seen in the section
above by probabilistic inference. Before the method of inference will be described
in more detail, the generative aspect of LDA will be explained as it is conceptually
helpful. The generative aspect means that new data can be generated once all
parameters have been learned.

As mentioned above, in LDA each document is represented by a mixture
of topics - some topics will be highly represented, some a little bit, and others not
at all. More formally, a topic is a distribution over words. These topics are not
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defined by topic modeling a-priori, instead they are automatically extracted based
on the distribution of words in the corpus. The topics are post-hoc interpreted and
labeled by the researchers, but as will be shown later, a topic model that fits the
data well will allow such interpretation easily. A sports topic might include words
such as championship, basket and assist to a high degree, while an economics topic
is biased towards words such as income, budget and salary. LDA assumes that a
document is generated in the following way:

1. Randomly sample a distribution over topics.
2. For each word in the document:

(a) Randomly choose a topic from the distribution generated in the first
step.

(b) Randomly choose a word/term from the corresponding distributions
over the vocabulary.

This generative process can be illustrated by a toy example. Figure 2.1
shows an example of term distributions for the two topics, economy and sports. The
probabilities differ across the topics. For the generation of a new document, we
start by assigning it a topic probability distribution. For example, it can consists of
80% sports topic, and 20% economy. For each word in the document, first, a topic
is chosen from the prior topic distribution (in this case, 80% sports, 20% economy),
and then a word from that topic given the prior term distribution (illustrated in
Figure 2.1).

The technical details of topic modeling can be conveyed concisely in the
following way. Both the term distribution φ and topic distribution θ are drawn
from a Dirichlet distribution, θ ∼ Dir(α), φ ∼ Dir(β). A Dirichlet distribution
is a continuous multivariate probability distribution, which is commonly used
in Bayesian statistics. In other words, a Dirichlet distribution represents a
distribution over multinomial distributions. Step 1 of the above procedure
translates to sampling one of these multinomial distributions from the Dirichlet
prior α. For example, with the number of topics T = 20 and α = 0.1, the resulting
topic distribution θd for a document d takes the shape as depicted in Figure 2.2.
Each topic (on the x-axis) is given a probability value (shown on the y-axis). The
parameter α controls the shape of this distribution. A high value means that all
values within the resulting multinomial θd are close to the mean, while a lower
value increases the variance (Figure 2.3).

For the second step, each word w is assigned a topic zw from the topic
distribution θd. In the example, there is a high probability that the assigned topic
will be topic 4 (pz=4 = 0.058), while there is only a low probability for topic
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Figure 2.1: Sample term distributions by topic.

1 (pz=1 < 0.0001). After having drawn a topic zw, a term is sampled from the
similarly generated multinomial φz over all words in the vocabulary. An example
of φ was shown previously in Figure 2.1.

The steps for generating a document with LDA are now the following:

1. For each topic z (where z is from 1 to T) generate a multinomial term
distribution φz from a Dirichlet prior β to represent which terms are probable
in which topics.

2. For each document d, draw a multinomial topic distribution θd from a
Dirichlet prior α to represent which topics are probable in this document.

3. For each word wdi in document d:

(a) Draw a topic zdi from θd

(b) Draw a word wdi from φzdi

Of course, when dealing with real data, documents do not need to be
generated, instead, we want to infer the posterior distributions θ and φ. The next
section will deal with the problem of turning the steps around, and inferring the
posteriors.
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Figure 2.2: A topic distribution θd for a document d drawn from a Dirichlet prior.
The topic distribution is biased towards 4 and 8, which means the document is
mostly generated from words under those two topics.

2.2.2 Inferring the posterior

Gibbs Sampling

For practical applications, instead of generating new documents, we want to
find out the topic distribution θ and term distribution φ. That is, for any given
document d, what are the topics expressed in that document, and which terms are
used for these topics?

One approach, first formulated by Griffiths and Steyvers (2004), is to
use Gibbs sampling, a common algorithm within the Markov Chain Monte Carlo
(MCMC) family of sampling algorithms (Casella & George, 1992; Gelfand, 2000).
Gibbs sampling is useful when it is difficult (or impossible) to draw samples
from a joint distribution of multiple variables, but easy to draw samples from
conditional distributions. Let us assume our model has two parameters, θ1 and
θ2.2 Under Bayesian inference, the parameter space for the variables is the joint
distribution of the parameters, P(θ1, θ2 | D), where D is the data provided. This
joint distribution can take any form. One complex example is shown in Figure 2.4.
When the number of parameters increase, this joint distribution becomes more
and more complex, and is often impossible to solve analytically. The approach
taken in Gibbs sampling is instead to sample from the conditional probability
distributions P(θi | θj 6=i, D). In the case of two parameters, the conditional
probabilities are P(θ1 | θ2, D) and P(θ2 | θ1, D). In Figure 2.4, we can sample

2Using θ to stand for parameters is standard Bayesian notation, and not related to the topic
distribution in this example.
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Figure 2.3: Different values of the Dirichlet parameter affect the distribution of the
resulting multinomial. A low value (top left) results in a distributions where a few
points are more probable than others, while a high value (bottom right) results in
an even distribution. For this example, the number of topics T was set to 10.

θ1 given a θ2 value, and vice-versa. By iterating this process, the continious
sampling from conditional probabilities equates to taking a random walk through
the parameter space, where more time is spend in regions of the space that are
more likely.

In each step of the Gibbs sampling procedure, a new value for a
parameter is sampled according to its distribution conditioned on all other
variables. This happens by cycling through all parameters sequentially. The
updated values are immediately used as soon as they are updated. If there
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Figure 2.4: A complex joint probability distribution P(θ1, θ2). The x- and
y-axis express the values of θ1 and θ2, respectively, while the z-axis represents
the probability density of those values. Gibbs sampling equates to taking a
probabilistic random walk through this parameter space, spending more time in
the regions that are more likely.

are three parameters, θ1, θ2, θ3, the algorithm can be summed up as follows:

1. Initialize θ
(0)
1 , θ

(0)
2 , θ

(0)
3 to some value.

2. for each iteration i:

(a) Draw a new value θ
(i)
1 conditioned on values θ

(i−1)
2 and θ

(i−1)
3 .

(b) Draw a new value θ
(i)
2 conditioned on values θ

(i)
1 and θ

(i−1)
3 .

(c) Draw a new value θ
(i)
3 conditioned on values θ

(i)
1 and θ

(i)
2 .

Gibbs sampling applied to LDA

Instead of finding estimates for the posterior distributions of θ and φ, Griffiths and
Steyvers (2004) use an alternative approach of estimating the posterior distribution
over the assignments of word tokens to topics, z, as both θ and φ can be calculated
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from z. For each word token i, zi is an integer value [1 . . . T] representing the topic
that it is assigned to. Once the topic assignment is known for each word token, we
can easily calculate the distributions θd for each document and φj for each topic,
as the words in each document are known.

Using Gibbs sampling, each document di and each word token in that
document wdi is considered in turn, and its topic assignment zi computed
conditioned on the topic assignment on all other word tokens (Steyvers & Griffiths,
2007). In other words, the probability that a specific topic j is assigned to the
current word wdi depends on the probability that the same word has been assigned
that topic in other positions in the corpus. Formally, this posterior can be written
as:

P (zi = j|z−i, wi, di, ·) ∝
CWT

wi j
+ β

W
∑

w=1
CWT

wj + Wβ

CDT
di j

+ α

T
∑

t=1
CDT

dit
+ Tα

(2.1)

where · is all other known information, such as the Dirichlet priors and
all other words w−i and documents d−i; and ∝ means proportional to, as in y ∝
x ≡ y = kx.

CWT and CDT are matrices of counts with dimensions W × T (number
of unique words in vocabulary × number of topics) and D × T (number of
documents times number of topics) respectively:

• CWT
wj is the count of word w assigned to topic j, not including current instance

i.
• CDT

dj is the count of of topic j assigned to some word token in document d
not including current instance i.

Conceptually, the first ratio is the probability of wi under topic j, and the
second ratio the probability of topic j in document di. Once many tokens of word i
have been assigned a topic j (across all documents), it will increase the probability
that subsequent tokens of word i get the assignment topic j. Similarly, if topic j
has been used multiple times within a document, it will increase the probability
that any word within that document is assigned topic j.

Estimates of the topic distribution θ and term distribution φ can then be
calculated using the following formula (Griffiths & Steyvers, 2004; Steyvers &
Griffiths, 2007):
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θ
′(d)
j =

CDT
dj + α

T
∑

k=1
CDT

dk + Tα

(2.2)

φ
′(j)
i =

CWT
ij + β

W
∑

k=1
CWT

kj + Wβ

(2.3)

The Gibbs sampling procedure now can be written as:

1. assign each word token wi a random topic [1 . . . T]
2. For each word token wi:

(a) Decrement count matrices CWT and CDT by one for current topic
assignment.

(b) Sample a new topic from equation 2.1.
(c) Update count matrices CWT and CDT by one with the new sampled

topic assignment.

3. Repeat above step iter times.
4. Calculate φ′ and θ′ from Gibbs samples z using equation 2.2 and 2.3.

Each Gibbs sample consists of a set of topic assignments to all N words
in the corpus. There is an initial period, known as the burn-in period, where
the samples are poor estimates and are usually discarded. After this period, the
samples start to approach the target distribution. To get a representative sample,
samples are saved at regularly spaced intervals to prevent correlation between
them (a common problem in MCMC).

While Gibbs sampling has been commonly used in the inference step for
LDA, other methods are possible. The original paper by Blei et al. (2003) uses
variational inference, and Griffiths and Steyvers (2004) show that Gibbs sampling
produces similar, if not more efficient, results. Alternative methods are also
discussed in Blei and Lafferty (2009).

The use of Gibbs sampling to infer the posterior distributions also allows
for easy extensions, for example, by including meta-information of documents.
Meta-information such as the author of an article will influence the topic
distribution, and this can be captured by including a hyper-parameter (Rosen-Zvi,
Griffiths, Steyvers, & Smyth, 2004). Similarly, models exist to include the
timestamp of documents (Wang & McCallum, 2006), as well as more general
models to include any kind of meta-information (structural topic model; Roberts,
Stewart, Tingley, and Airoldi, 2013).
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Table 2.4: Documents generated with LDA from a rudimentary vocabulary.

di Document Text

d1 loan bank loan money money loan bank loan loan bank.
d2 money loan money money money loan money money loan bank money.
...

...
d10 river river bank stream bank bank bank bank stream bank.
d11 stream bank stream stream stream bank stream bank.
...

...
d16 money bank money loan loan bank loan bank money bank money bank.

2.2.3 Gibbs toy implementation

A toy implementation can be illustrated using an artifical example, where the
topic and term distributions are known. Running the algorithm should result
in similar distributions. Taking an example from Steyvers and Griffiths (2007),
suppose that we only have two topics in our model, and our vocabulary only
consists of five words, V = money, loan, bank, river, stream. Topic 1 gives equal
probability to the first three words, i.e. φ1

money = 1/3, φ1
loan = 1/3, φ1

bank = 1/3,
while topic 2 gives equal probability to the last three words, φ2

bank = 1/3,
φ2

stream = 1/3, φ2
river = 1/3. Using these distributions, we can generate documents

using the generative structure outlined above. For our example, we generated 16

documents, where each document has only been assigned one topic (rather than
a mixture of topics) (Table 2.4). The first step is to randomly assign each word
token wi in the documents a topic assignment zi. We can then calculate the count
matrices CDT and CWT, shown below.

CDT
start =



8 2
6 5
...

...
6 2
2 9
...

...
6 6



d1

d2
...
d10

d11
...
d16

CWT
start =


11 14
20 7
29 28
11 17
18 17


money
loan
bank
river
stream
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For the Gibbs sampling algorithm to work, we need a couple of pointers:

• i = index pointing to an individual word token.
• wi = index pointing to the raw word in the vocabulary.
• di = index that tells you which document i belongs to.
• zi = index that tells you what the topic assignment is for i.

After setting up these initial variables, we can start the Gibbs sampling
process using the steps decribed in the above section. The Python code for the
procedure is listed in Listing 1. Figure 2.5 shows how the probability of a word
being assigned to a topic changes over 20 iterations. Even after a few iterations,
the probabilities change according to the expected values. Figure 2.6 shows the
original φ distribution on the left, the randomly initialized φ distribution at the
beginning of the Gibbs sampling (center), and at the end (right). The Gibbs
sampling procedure produces highly accurate estiamtes of φ in this example.
Similar results are obtained for θ. For comparison to the original count matrices,
the count matrices at the end of the sampling procedure show a much clearer
picture:

CDT
end =



10 0
11 0
...

...
0 8
1 10
...

...
12 0



d1

d2
...
d10

d11
...
d16

CWT
end =


25 0
27 0
27 30
0 28
0 35


money
loan
bank
river
stream

2.3 Applying LDA in R

LDA using the Gibbs algorithm by Griffiths and Steyvers (2004) can easily be run
using the topicmodels package in R (Grün & Hornik, 2011; Ponweiser, 2012) and
the general text processing package tm (Feinerer, Hornik, & Meyer, 2008). The tm
library also efficient text pre-processing tools such as stemming and removal of
digits, stopwords and punctuation. Listing 2 shows a simple procedure in R for
running LDA on documents. While the topicmodels package uses different labels
for some of the variables, their purpose is the same. In the listing it is assumed that
documents is a vector of pre-processed strings, where each element is a document.
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Figure 2.5: Changes in φ
(j)
w over iterations. Each line represents a word. Even after

a few iterations, the probabilities change accordingly with the expected values.

Figure 2.6: Visualizations of φ: The left matrix shows the original φ which was
used to generate the documents. The center shows the randomly initialized φ at
the start of the Gibbs sampling algorithm. The right matrix shows φ after 100

iterations of the Gibbs sampling procedure.

For further manipulation of parameters, please see the package documentation.
After the model has successfully been fitted, the posterior distributions φ and θ

can be examined using the commands model@beta and model@gamma, respectively
(note again the diverging nomenclature).
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import numpy as np

iters = 100
beta = 1.
alpha = 1.

for step in range(iters):
# sample through each word
for current in i:

# get document index di
doc_idx = d_i[current]
# and word index wi
w_idx = w_i[current]

# decrease count matrices CDT and CWT

DT[doc_idx, z_i[current]] -= 1
WT[w_idx, z_i[current]] -= 1

# calculate new topic assignment zi
prob_word = (WT[w_idx,:] + beta) /

(WT.sum(axis=0) + len(vocab)* beta)
prob_document = (DT[doc_idx,:] + alpha) /

(DT.sum(axis=0) + D*alpha)
prob = prob_word * prob_document

# update zi by sampling from the probabilities
z_i[current] = np.random.choice([0,1], 1,

p=prob/prob.sum())[0]

# update count matrices CDT and CWT

DT[doc_idx,z_i[current]] += 1
WT[w_idx,z_i[current]] += 1

.

Listing 1: Gibbs sampling impsplemented in Python, using numpy. A
complete working example can be found on Github, https://github.com/
tillbe/lda-gibbs-toy.

https://github.com/tillbe/lda-gibbs-toy
https://github.com/tillbe/lda-gibbs-toy


21

library(tm)
library(topicmodels)

# data
documents = c("words in document 1",

"words in document 2",
...)

corpus = tm::Corpus(VectorSource(documents))
dtm = tm::DocumentTermMatrix(corpus)

# model parameters
T = 10 # number of topics
alpha = 50/T # dirichlet prior alpha
beta = 0.1 # dirichlet prior beta

model = topicsmodels::LDA(dtm,
k = k,
method = "Gibbs",
control = list(alpha=alpha,

delta=beta)
)

# posteriors

# phi
model@beta

# theta
model@gamma

Listing 2: Running LDA in R with Gibbs Sampling using the topicmodels and tm
packages.



CHAPTER 3
Structure within a scientific community

This chapter is an updated version of the following paper:
Bergmann, T. & Dale, R. (2016). A Scientometric Analysis Of Evolang: Intersections And
Authorships. In Roberts, S., Cuskley, C., McCrohon, L., Barceló-Coblijn, L., Feher, O. &
Verhoef, T. (Eds.), The Evolution of Language: Proceedings of the 11th International Conference
(EVOLANGX11). Online at http://evolang.org/neworleans/papers/182.html.

Abstract: Research on the evolution of language has grown rapidly and is now
a large and diverse field. Because of this growing complexity as a scientific
domain, seeking new methods for exploring the field itself may help synthesize
knowledge, compare theories, and identify conceptual intersections. In addition,
it may help find gaps in the disciplinary composition of the area, in that some
fields centrally related to human evolution may be surprisingly missing from
conference presentations. Using computational methods, we analyze the scientific
content presented at EvoLang conferences. Drawing on 565 abstracts, publication
patterns are quantified using Latent Dirichlet Allocation (LDA), which extracts
a semantic summary from individual abstracts. We then cluster these semantic
summaries to reveal the frameworks and different domains present at EvoLang.
Our results show that EvoLang is an interdisciplinary field, attracting research
from various fields such as linguistics and animal studies. Furthermore, we show
that the framework of iterated learning and cultural evolution is a hub topic at
EvoLang.
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3.1 Introduction

In this paper, we explore the conceptual structure of research on language
evolution itself by analyzing the submissions to the EvoLang conference (Evolution
of Language International Conferences, held bi-annually) over the past 10 years. Our
goal is to provide insight into the network of theories, concepts, and methods
that populate this growing field. Since its inception in 1996, EvoLang has become
a prominent and well-attended conference. It is now the premiere conference on
language evolution, with more than 100 presentations at the last EvoLang and over
300 delegates in attendance. This is a five-fold increase from the first EvoLang in
1996. How might we quantify this rapidly growing scientific content?

There are numerous reviews of language evolution which attempt to
unpack and relate its various theories and debates (e.g. Christiansen & Kirby,
2003; Bickerton, 2007; Fitch, 2010). These provide impressive coverage, especially
considering the diversity and complexity of language evolution research. Research
at EvoLang tackles a wide range of these topics, spanning the many levels of
language from the evolution of flexible signalling strategies to the social cognitive
processes that may undergird human linguistic skills. Recently, the foundation of
the Journal of Language Evolution aims to bring the wide range of research interests
together, and provide an umbrella journal for language evolution research.
Previously, researchers interested in language evolution published in a variety of
journals, making it hard to keep track of all relevant publications. In an editorial
article, the editors specifically address the interdisciplinarity of the research area
(Dediu & de Boer, 2015). How much of this interdisciplinarity is already present
at EvoLang, and what core areas relevant to language evolution do not yet have
representation at the conference? Are there any approaches that are under- or
over-represented? Using a quantitative approach, we can answer these questions.

In what follows, we use topic modeling (Chapter 2, Griffiths and
Steyvers, 2004) to extract the set of latent conceptual topics that make up EvoLang.
We find that there are three distinct conceptual clusters that can be inferred from
the abstracts, including the iterated learning framework and comparative studies.
Second, we combine these topic clusters with a co-authorship network analysis to
assess the relative influence of these typical topic clusters, finding that the iterated
learning cluster in particular serves as a central hub in the broader EvoLang
community. By analyzing the knowledge bases of EvoLang, it may be possible
to attain a firmer grip on the state of the art in the field, and the relationships
among its various theories. Lastly, we will also briefly look at the evolution of
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the conference over time, and show how these clusters change depending on the
conference.

3.2 Modeling the content of EvoLang

3.2.1 Data and method

We selected all abstracts from submissions between 2006 and 2016 (conferences are
bi-annual), and applied basic pre-processing to the abstract text. Abstracts before
2006 were published in a different format and were thus omitted to keep the data
consistent. Pre-processing included tokenizing the text, removing punctuation
and common words (stopwords) such as “the” and “or”, and finally stemming
the tokens using the Snowball stemmer (Porter, 2001). Abstracts with fewer than
twenty stemmed tokens were removed from the analysis, as they did not provide
enough information about the content of the paper, and manual inspection of
these abstracts showed that they only contained the first sentences of the abstract
and were cut off after.

We then applied Latent Dirichlet Allocation (see Chapter 2, Blei et al.,
2003) on the resulting 565 abstracts, a method that is commonly used in scientific
content analysis (Griffiths & Steyvers, 2004). In LDA, each document (here,
abstract) is represented by a distribution over topics, and the topics themselves
are represented by a distribution over words. That is, each topic consists of
a distribution of semantically related words, and each abstract can then be
represented as a combination of these topics, which make up the gist of the
document. For example, one abstract at EvoLang may combine the topics of
non-human communication and learning, while another may combine syntax
and computation. Importantly, the algorithm only extracts numerically identified
topics, and these hypothetical labels are assigned by the researchers. When
the model fits the underlying data well, domain knowledge of the researchers
combined with the associated words for each topic result in clear, intuitive labels.
As we show below, this can result in a compelling set of topics.

3.2.2 Topics of EvoLang

After running the LDA algorithm with a various number of topics, we selected the
model of best fit (based on log-likelihood), which contained 20 topics. Example
topics are shown in Table 3.1 with associated terms. Note in the table that we have
used a stemmer algorithm to obtain roots (e.g., “compar”, “abil”), to decrease the
type-token ratio, and facilitate topic extraction.
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To further analyze the content and to investigate the relationships
between these topics, a correlation matrix of the probability distributions for the
topics was calculated and a network of positively related topics was generated.
Then, a community detection algorithm (Pons & Latapy, 2005) was used to cluster
these topics. We found that the algorithm clustered the content of EvoLang
submissions broadly into three communities or clusters. The resulting network
is shown in Figure 3.1, with the different clusters marked by color. Each node
represents a topic, and each edge represents a positive correlation between two
topics. Nodes are sized according to their overall popularity in the corpus, that is,
larger nodes occur more often than smaller nodes.

But what do these clusters consist of? To get more insight into the topics
associated with each cluster, we extracted the most probable terms associated with
the topics in each cluster. The first cluster covers experimental research, including
several topics on iterated learning and cultural evolution, as well as the emergence
of structures in communication experiments (Table 3.1). The second cluster can be
described as comparative studies involving primates and birds (Table 3.2). Lastly,
papers in the third cluster approach language evolution through more traditional
linguistic research, such as (universal) grammar (Table 3.3). Inspecting these terms
and communities gives a good overview of different fields within EvoLang, and
indeed, both the clustering and most probable terms make intuitive sense for
researchers involved in the community.

In general, these clusters show that EvoLang hosts a variety of sub-fields,
which approach the study of language evolution from varying angles. Not only
does it include more theoretical linguistic work, but also comparative studies are
well represented. Certainly this is well known intuitively by researchers within
the community, but the analysis here suggests that there are crisp clusters that can
be automatically extracted using the topic model. This suggests that the sub-fields
of EvoLang either use a different set of words to talk about their research, or do
not interact and collaborate to a great extend (or a combination thereof). In a
recent editorial for the new journal The Journal for Language Evolution, Dediu and
de Boer (2015) call for an interdisciplinary approach to language evolution based
on sound empirical data. In the extracted topics, topic 2, 6, and 10 explicitly
mention empirical methods, while topic 19 consists of computational modeling,
another area mentioned by Dediu and de Boer (2015). However, other areas that
make contributions to the study of language evolution are absent in the extracted
topics. For example, genetics, which has made contributions in the field of genes
involved in language such as FOXP2, is not represented at EvoLang, and neither
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Figure 3.1: Network of positively correlated topics. The thicker an edge, the
stronger the correlation. Node size represents topic popularity. The bigger a
node, the more it is represented in the abstracts. Topics belonging to the same
cluster share a color.
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are anthropology and archeology. Despite the variety of sub-fields present in the
topics, there are still gaps that can be addressed.

In the next section, we look at the author collaboration networks of
EvoLang, and how they relate to these topic clusters. This serves both as an
illustration of the range of authorship patterns, as well as being the measure
through which we further analyze the interconnectedness of these three topic
clusters.

Table 3.1: Topics in cluster 1 and their associated terms.

Topic 1 Topic 2 Topic 4 Topic 6

communic word mean experi
inform order emerg particip
speaker product languag categori

relev event featur studi
system interpret form result

question semant composit set
utter data space condit
simpl present semant task
encod studi combin test

cue lexicon combinatori present

Topic 10 Topic 11 Topic 18 Topic 19

signal learn gestur model
game cultur languag agent

system bias sign popul
communic structur symbol network

strategi generat system interact
agent languag point simul

interact linguist icon communiti
high regular action dynam

player learner speech comput
refer transmiss form effect

3.3 Modeling the authors of EvoLang

3.3.1 The topography of collaborations

By constructing an authorship network from co-authored abstracts, we can
examine the nature of collaborations at EvoLang. Who collaborates with whom?
What type of submission elicits large collaborations? Are there large components
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Table 3.2: Topics in cluster 2 and their associated terms.

Topic 3 Topic 7 Topic 8 Topic 14 Topic 16 Topic 17

human communic brain complex vocal social
develop gestur human song human call

learn human involv note sound individu
languag ape languag finch speech group
mechan primat emot speci nonhuman anim

abil compar studi neural primat chimpanze
studi intent activ increas produc time
cognit signal area factor acoust behaviour

acquisit research origin examin vowel level
stage abil relat bird speci speci

Table 3.3: Topics in cluster 3 and their associated terms.

Topic 5 Topic 9 Topic 12 Topic 13 Topic 15 Topic 20

languag evid structur cognit evolut languag
evolut modern syntact process languag linguist
evolv problem grammar system process argu
chang protolanguag rule human evolutionari properti

behavior hypothesi syntax role natur paper
explain genet recurs evolut biolog univers
extend homo construct capac theori origin
present select element specif faculti question
work make acquir framework principl term

spatial potenti determin music chomski suggest
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of connected collaborations? We can answer these questions by building a
collaboration network from all EvoLang papers and their authors.

In this collaboration network, each node is an author and each edge
between two nodes represents collaboration between these two nodes/authors.
Edge weight (connection strength) is determined by the number of collaborations
between these two authors. Using the topic clusters from the above analysis,
we calculated the most prevalent cluster for each author. By aggregating the
topic distributions across all papers by one author, the most common cluster
was calculated for each author. By plotting the author network (Figure 3.2),
we can see that there is one large hub in the middle of the network, as well as
several smaller hubs of multiple nodes. Outside these hubs, a large quantity of
small-scale collaborations exist, not connected to the rest of the network. These
smaller collaborations often consist of advisor-advisee relationships within the
same lab or department. The color of the nodes represents the respective cluster
an author has mainly published in.

When we examine the local hubs more in detail, we notice that in the
smaller components all nodes usually belong to one cluster. This intuitively makes
sense, as such collaborations are usually just based on one or two papers, where
all nodes are authors on the same papers and thus have the same distributions
over topics and clusters. The larger hub, however, show more diversity – in the
largest hub, all three clusters are present, although there is a dominance by cluster
1 (red). Figure 3.3 shows a close-up of the four components that have more than
30 nodes within them. Interestingly, while the largest component (top left), is
dominated by cluster 1 (red), all other large components are almost exclusively
about comparative and animal studies (blue). This shows that on the level of
collaborations, this sub-field has its own sub-network of authors who frequently
collaborate together, but is not connected to the central large component. At least
on the author level, one can thus argue that there is a disconnect between these
two groups, and authors from these two clusters (experimental work on cultural
evolution, and comparative/animal studies) hardly collaborate together.

3.3.2 Centrality of authors and clusters

A network structure also allows a quantitative assessment which authors play a
central role in the EvoLang community. Authors who publish and collaborate
often are referred to as “central”, and by virtue of their centrality, we can also
assess the contribution of their associated topics in their collaborations. After
constructing the network, centrality measures were used to detect the most
influential authors within this network. In network theory, there are multiple



30

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Cluster 1
Cluster 2
Cluster 3

Figure 3.2: A network showing collaborations between authors. Nodes represent
authors and are colored with respect to their dominant cluster. The thicker an
edge, the more collaborations between the nodes.
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Figure 3.3: Four components/hubs with more than 30 nodes/authors. The
largest component is dominated by Cluster 1 (green), with the other two clusters
interspersed throughout, while the other three components are almost exclusively
assigned Cluster 2, showing a strong sense of collaborations in animal studies.
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ways to measure the centrality of nodes (Freeman, 1978; Koschützki et al.,
2005; Kolaczyk, 2009). Here, we look at two values: eigenvector centrality and
betweenness centrality. Eigenvector centrality measures the influence of a node by
assigning a score based on connections to high scoring nodes (here, nodes with a
lot of collaborations and thus submitted papers). The score is bound between
0 and 1, with 1 representing highest centrality. The equation for calculating
eigenvector centraliy is:

cEi(v) = α ∑
u,v

cEi(u) (3.1)

where the vector cEi is the solution to AcEi = α−1cEi, with A being the
adjacency matrix for the graph.

Betweenness centrality assigns a score based on how often the node is
part of the shortest path between two other nodes, and thus measures how well a
node connects different parts of a network. Betweenness centrality is defined as:

g(v) = ∑
s 6=v 6=t

σst(v)
σst

(3.2)

where σst are all paths from node s to node t, and σst(v) all are paths from
node s to node t that go through node v. Nodes with a high value are considered
to be important in communication between other nodes and keeping the network
connected.

Fig. 3.4 shows the centrality measures of authors on a log-scale
(purely for illustrating purposes): Authors with high eigenvector values but low
betweenness have close contact to important people, while authors with low
eigenvector values but high betweenness values serve as valuable connections
between nodes. In the plot, there is a division between authors with a high
and low eigenvector centrality. Authors with a high eigenvector centrality tend
to be in cluster 1, while authors in cluster 3 are more likely to have low
eigenvector centrality. Cluster 2 authors seem to be more interspersed. Authors
to the right of the plot, with high eigenvector centrality, are part of the largest
component (“Comp. 1”), and authors to the left are not. This results in their low
eigenvector score, as they are not connected to the most central nodes as defined
by eigenvector centrality.

By using the centrality measures calculated for each author, we were able
to deduce the influence of each topic cluster. That is, to which cluster do the most
widely collaborating individuals belong? Table 3.4 shows summary statistics for
the author centrality measures in each cluster. Not surprisingly, cluster 3 has
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Figure 3.4: Betweenness and eigenvector centrality, on a log-scale. Each point
represents an author, with the color representing their cluster. A few noteworthy
authors are labeled.

Table 3.4: Summary statistics for each cluster of topics.

Cluster M(Eigenvector) SD(Eigenvector) M(Betweenness) SD(Betweenness)
1 0.0231 0.1017 304.12 0.1017

2 0.0009 0.0058 46.79 0.0058

3 0.0045 0.0232 76.09 0.0232

both the highest average eigenvector and betweenness centrality, however, it also
has the highest deviations. While the deviations suggest that there is a lot of
variation within clusters, it looks like cluster 3 is the most central set of topics
within EvoLang.

To test whether this difference in centrality measures is significant, a
multinomial logistic regression was run with the clusters as a dependent variable,
and the two centrality measures as the independent measures. Cluster 1 was
chosen as the baseline community, as we hypothesized that it had higher centrality
than the other two clusters. The model output is summarized in Table 3.5 and
was significant compared to a null model (χ2(4) = 50.23, p < 0.0001). Significance
values were calculated using Wald tests. Coefficients for betweenness centrality
were significant for cluster 2 (p = 0.039), but not for cluster 3 (p = 0.1). However,
eigenvector centrality was a significant predictor for both clusters (p < 0.0001 for
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Table 3.5: Summary of multinomial logistic regression showing log-odds and
standard errors.

Dependent variable:
Cluster 2 Cluster 3

Betweenness −0.001
∗∗ −0.0004

(0.0003) (0.0003)

Eigenvector −43.651
∗∗∗ −11.063

∗∗∗

(0.0001) (0.001)

Constant 0.300
∗∗∗ −0.225

∗∗

(0.101) (0.112)

both clusters). As the log odds are very high, any increase in eigenvector centrality
increases the probability of a paper being associated with cluster 1.

From this analysis, we conclude that cluster 1, which is strongly related
to iterated learning and cultural evolution, serves as a “hub cluster” within
EvoLang. The betweenness centrality showed a significant decrease for cluster
2 when compared to cluster 1. This means that authors in cluster 2 (comparative
and animal studies) are more separated from the rest of the network, or in other
words, they form their own sub-network to some degree. Authors in cluster 3,
on the other hand, serve as an import connector between nodes in the network.
Our hypothesis of a disconnect between authors in clusters 1 and 2 was thus
confirmed.

3.4 Evolution over time

As data was present for all conferences from 2006 to 2016, it was also possible
to analyze changes over time: Did clusters become more popular over time or
decrease in their popularity? Did the same collaborations persist throughout the
conferences, or do new combinations appear?

Figure 3.5 shows the percentage of papers in each respective cluster over
each of the conference. In 2006, most of the papers belong to the third cluster,
the linguistics cluster. Its popularity, however, slowly dwindles over time. It
is replaced by cluster 1, the experimental cluster, which is steadily at the top,
except in 2012, when the conference was held in Japan and attracted a different
audience. The second cluster, about animal and comparative studies, has steadily
increased in popularity. In 2016, all three clusters are very close to each other,
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Figure 3.5: Proportions of papers in each cluster over time.

while before 2012, they were further apart. This is a sign that the conference has
settled equally into these three clusters and that the extracted topic clusters are a
good representation of the current state of EvoLang.

With regard to the author network, we plotted the collaboration network
for each conference separately (Figure 3.6). The network in 2006 can hardly be
described as such, it mainly consists of components of only two or three nodes. A
similar picture is present for 2008. Beginning in 2010, the conference not only
grows in size, but also in the scale of collaborations, and bigger components
emerge. Starting in 2010, we have a large component in the center of the
network, almost exclusively belonging to cluster 1. This hub persists in subsequent
conferences, and grows even larger. In 2012, we also see a strong hub of cluster
2 nodes – as the conference was in Japan and the local university has a focus on
animal studies, this makes intuitive sense.

The analysis over time has shown that the conference has grown in its
collaborative nature, and seems to have settled into three clusters of research areas
that are all equally represented. In the later years, the author networks looks very
similar to each other, suggesting that the hubs and components persist over time
in their nature.
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3.5 Summary

We analyzed the content of abstracts presented at EvoLang. Our analysis of
latent topics shows that EvoLang is an interdisciplinary conference, and draws
attention from three major research topics. Despite the interdisciplinarity, we
also identified areas that were under-represented at the conference, including
work on genetics, archeology and anthropology. Using a network analysis of
author collaborations, we investigated these clusters with regard to their influence.
Our results suggest that the cluster containing the iterated learning and cultural
evolution framework is associated with a high centrality property within EvoLang.
Comparative studies with primates are rather disconnected from the rest of the
network, and form their own sub-networks. Lastly, the cluster covering linguistic
approaches is interspersed and well represented throughout the conference. The
topic network shows that there seems to be a separation between certain research
areas, and collaborations hardly include both animal studies and experimental
design. However, this does not necessarily mean that ideas are not exchanged
between these two groups, but raises concern how well the different research
areas interact with each other. As will be elaborated in more detail in the General
Discussion (Chapter 6), the structure of the social network of collaborators is very
likely to directly influence the topics researchers work on. Filling in missing
collaborations could thus lead to a more complete, holistic approach to language
evolution.

Though these patterns may be intuitive to highly initiated attendees of
the conference, the purpose of this paper is to demonstrate that scientometric
techniques can be used to reveal these patterns quantitatively. With just under
600 abstracts, a number of natural authorship and conceptual patterns emerge. It
may be useful and interesting to carry out similar analyses in subsequent years to
discern how this field is changing, and how topic clusters may be converging or
co-fertilizing.



CHAPTER 4
Structure across scientific communities

This chapter is an updated version of the following manuscript:
Bergmann, T., Dale, R. & Matlock, T. (manuscript). How Cognitive is Cognitive Linguistics?
A Quantitative Analysis. Available online at http://tillbergmann.com/diss/cogling_
submitted.pdf.

Abstract: Cognitive linguistics emphasizes its inherently interdisciplinary nature
and its close link to the cognitive sciences. In this paper, we carry out quantitative
analyses motivated by scientometrics to better understand the nature and extent
of this interdisciplinarity, In the first section, the content of papers in Cognitive
Linguistics (CL) is compared to the content of other journals using topic modeling.
Our analysis shows that CL shares more content similarity with other linguistics
journals than it does with cognitive journals, and more importantly, is not closer
to cognitive journals than other linguistics journals are. A second analysis looks at
the citation patterns of CL, investigating which journals are cited in CL and which
cite CL in turn. We find that CL shows higher preponderance to cite cognitive
literature than other linguistic journals do, but that it is rarely being cited outside
CL. Both analyses suggest that there are important opportunities to strengthen
the links between research in CL and the rest of cognitive science. We end on
a discussion of the theoretical importance of maintaining strong links across the
cognitive sciences, and offer some initial ideas how cognitive linguists can close
this gap and increase their role in the cognitive science community.
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4.1 Introduction

Since its early beginnings the 1970s, cognitive linguists have stressed that language
cannot be adequately studied in isolation from the cognitive processes that drive it.
Their own work on language is inspired by and resonates with work that is done
in other fields, especially cognitive psychology and to a lesser extent, cognitive
neuroscience. Though cognitive linguistics could be regarded as its own branch
of cognitive science and linguistics, some researchers in cognitive linguistics have
emphasized that it is not a clearly defined field, but rather a body of scholarly
work based on a set of core tenets (Geeraerts, 2006). One of these tenets, first
formulated by Lakoff (1990) in the inaugural issue of Cognitive Linguistics, is the
cognitive commitment:

The cognitive commitment is a commitment to make one’s account of human
language accord with what is generally known about the mind and the brain,
from other disciplines as well as our own. [. . . ] The cognitive commitment
forces one to be responsive to a wide variety of empirical results from a
number of disciplines. (Lakoff, 1990, p. 40)

Thus, the study of language should reflect the state of knowledge
about other cognitive processes and how they relate to language. To achieve
that, the commitment calls for the integration of theories in other brain and
cognitive sciences, such as neuroscience and psychology, making it arguably
more interdisciplinary than general linguistics (see also Gibbs, 1996; Croft &
Cruse, 2004; Evans, Bergen, & Zinken, 2007). It has also been argued that
cognitive linguistics is unique from other areas of linguistics in that it is very
much concerned with the general cognitive mechanisms that motivate linguistic
form (Geeraerts, 2006). It also “seeks to discover the actual contents of human
cognition” (Gibbs, 1996, p. 49). Cognitive linguistics has been stated to be “one of
the principal branches” of cognitive science (Sinha, 2007).

In short, within cognitive linguistics itself, the following claims serve to
set it apart from other areas of linguistics:

1. Cognitive linguistics studies general cognitive processes behind language
use, while other forms of linguistics tend to neglect or deemphasize these
cognitive factors.

2. Cognitive linguistics is an interdisciplinary field that integrates current
findings from other cognitive and brain sciences, and links them to language.

In this paper, we examine these claims from a data-driven perspective,
using the methods of scientometrics, the quantitative study of science
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communication (Leydesdorff & Milojević, 2015). Beyond the theoretical notions on
which these general claims are based, we ask whether they can be detected in the
work of cognitive linguistics through quantitative study of publication patterns.
To do this, we make a few assumptions. We assume that the journal Cognitive
Linguistics (CL), as a flagship journal, is representative of the field of cognitive
linguistics. We thus analyze papers published in this journal beginning with its
inception in 1990. More specifically, we look at the following hypotheses arising
from the two theoretical claims above:

1. The contents of Cognitive Linguistics are more similar to that of journals in
cognitive science than those in general linguistics, as CL should span topics
closely allied to other fields in cognitive science.

2. The articles in Cognitive Linguistics should cite work from cognitive science,
and be more similar in citation behavior to articles in cognitive science
journals than those in general linguistics, reflecting its closer link to the
cognitive and brain sciences.

For the purpose of the current study, we have collected data from
Cognitive Linguistics as well as the following journals: Linguistic Inquiry (generative
linguistics), Language and Lingua (general linguistics), Psychological Science
(psychology), Cognitive Psychology (psychology), Cognitive Science (cognitive
science), Cognition (cognitive science), and Metaphor & Symbol (figurative
language). To ground our analysis, we selected two journals from a more distant
field, biology (Ecology and Plant Physiology). For each journal, we collected the
abstract text and cited works (where available) beginning with 1990 (the first issue
of Cognitive Linguistics).

In what follows, we take two analytic approaches to test these
hypotheses: Using abstract content, we compare the similarities of journals with
each other. Naturally, journals within the same field are expected to overlap in
content more than journals in different fields. For example, neither Ecology nor
Plant Physiology is expected to overlap in topics with any of the other journals.
Second, we analyze the cited works in these journals. CL is expected to cite the
cognitive science and psychology journals to a considerable degree, while also
relying on some linguistics journals. In addition, we wanted to explore whether
work in CL is taken up by psychologists and cognitive scientists, measured by the
extent to which these journals cite CL.

In the General Discussion, we identify general “meta-theoretical”
implications of our findings. The role of cognitive linguistics in cognitive science
should be a central one, given both the importance of language as an aspect
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of the human cognitive system, and the importance of cognitive linguistics as
an interdisciplinary approach to language. Our results suggest that fruitful
integration of CL with wider cognitive science has not yet been achieved, but there
has been some progress. We will render two recommendations for CL to widen its
impact. The first is to further integrate literature from other journals into articles
in CL. The second is to widen the terminological and conceptual bridges between
CL and recent cognitive research.

4.2 Content analysis

4.2.1 Data and methodology

In this section, we analyze the content of CL papers in comparison to other
journals. We assumed that abstracts of papers offer an easily accessible
approximation of the overall content of the paper, a strategy that has shown
success in previous research (see Griffiths & Steyvers, 2004). We applied Latent
Dirichlet Allocation (LDA) to the abstract text (see Chapter 2, Blei et al., 2003).
LDA is a probabilistic Bayesian model that assigns topics (a collection of words)
to documents (here, the abstracts). From these documents, the method infers a
set of topics, each of them of a collection of words that are likely to occur within
that topic. In this way, any original document can be represented as a distribution
over topics that represent the gist of what the document is about. For example, a
paper in CL could consists of the topic of motion and the topic of verbs, whereas
a paper in Plant Physiology might talk about the topic of DNA and the topic of
growth. After these topics have been extracted, they can be analyzed in more
detail by looking at the most probable terms occurring within that topic. LDA has
been successfully used previously to study scientific topics (Griffiths & Steyvers,
2004; Blei & Lafferty, 2007; Hall et al., 2008; Yau, Porter, Newman, & Suominen,
2014; De Battisti et al., 2015), and in this paper, we closely follow the procedure as
described by Griffiths and Steyvers (2004), implemented in R (see Grün & Hornik,
2011; Ponweiser, 2012).

We followed standard procedure for pre-processing the text data. All
words occurring in fewer than 5 abstracts were removed, as were words with fewer
than 3 letters, and highly frequent words (stopwords). Removing these words
removes the bias by low-frequency words, as well as removes distributionally
pervasive short words, which are less likely to provide structure to the inferred
set of topics. Each word was stemmed using the Snowball stemmer to account
for basic morphological differences in word forms, such as number and tense
(Porter, 2001). For example, the both the words “cognitive” and “cognition”
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Table 4.1: Number of abstracts per journal.

Journal Number of abstracts

Cognitive Linguistics 465

Lingua 1310

Language 340

Linguistic Inquiry 524

Metaphor & Symbol 364

Cognition 2319

Cognitive Science 977

Cognitive Psychology 439

Psychological Science 2283

Plant Physiology 3734

Ecology 727

become “cogni” after the stemming algorithm has been applied. This allows
researchers to better compare words based on their stem and meaning, rather
than their morphological features. Table 4.1 shows the number of abstracts per
journal. While the numbers differ across journals, each journal is represented by
several hundred abstracts, providing a basis for LDA to extract topics.

In LDA, the best number of topics k is not known a-priori. To
find the best number of topics, and thus the model that best fits our
data, the LDA algorithm was run with a different number of topics,
k = {50, 100, 200, 300, 400, 500, 600, 1000}. Model fit was determined by the
log-likelihood, and the model with the highest log-likelihood fit was chosen (see
Figure 4.1). The best number of topics was determined to be 300 (logLik =

−6298439). The following analyses are based on this topic model.

4.2.2 Topics in Cognitive Linguistics

As mentioned above, each document is assigned a topic distribution. For example,
a document might mainly talk about two topics such as semantics and historical
change, while another document covers mainly syntax and historical change.
Topics in turn are represented by word distribution, that is, we can access the
most probably terms/words for each topic. It is important to note that topics as
such are not given titles – they are simply represented by a number (e.g. topic 1,
topic 5, . . . , topic k). These numbers are not in any particular order. By inspecting
the terms, researchers can assign their own titles to the topics. While most topics
can be intuitively interpreted by looking at their associated terms, some are less
coherent than others.
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Figure 4.1: Model fit by number of topics. Highest log-likelihood represents best
fit, and was reached at 300 topics.

After selecting the model of best fit, we looked at the 10 most common
topics associated with papers in CL. This allowed us to do a manual inspection of
how well the model fits the data, and to compare the topic distribution to other
journals. We expected an overlap of these topics with the other linguistics journals,
as well as with the cognitive science and psychology journals. Table 4.2 shows
the five most probable terms for each of the 10 most probable topics. The most
probable topic for CL, topic 164, relates to construction grammar (Goldberg, 1995;
Goldberg, 2006). The second topic covers more general linguistic terms, relating

to verbs, while the third topic identifies figurative language and metaphors (see
Lakoff & Johnson, 1980). Topic 292 covers typology and language acquisition,
and topic 20, grammar and syntax. Topic 74 covers word meaning, and topic 53

conceptual and abstract approaches. The remaining topics cover linguistic topics
such as crosslinguistic studies (36), motion language (151) and discourse analysis
(253). From this quick inspection of the most probable topics, we conclude that
the LDA model offers an intuitive extraction of the scientific topics in CL.

How often do these CL topics occur in the other journals? We should
expect some overlap with the general linguistics journals, as well as the cognitive
science and psychology journals. In Figure 4.2, we plotted the probability each
topic occurs in each of the journals, where a darker color represents a higher
probability. Rows represent journals, and columns represent extracted LDA
topics. We normalized the probabilities so that columns sum 1, such that the
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Table 4.2: The ten most common topics in CL and their five most probable terms.

Topic 164 Topic 162 Topic 167 Topic 292 Topic 20

construct verb metaphor languag syntact
german argument conceptu linguist semant
analysi semant articl acquisit structur
english lexic text typolog grammat
paper predic convent univ grammar

Topic 74 Topic 53 Topic 36 Topic 157 Topic 253

sen concept language event speaker
metonymi conceptu english encod utter
cognit abstract speaker path communic
polysemi cogni bilingu motion convert
term embodi differ manner refer

probability of each tile is proportional to how often a certain topic is covered in
that journal with respect to the other journals. This provides a visualization of the
extent to which a topic tends to occur in one or more journals. dThe probability
matrix shows that CL has greater overlap with linguistics journals than it does
with cognitive science journals. Even the generative journal Linguistic Inquiry
shows a higher similarity to CL than Cognitive Science. As expected, the biology
journals show very little overlap. The analysis of the most probable topics shows
that CL tends to cover linguistic topics rather than topics in cognitive science
journals. One of the main interests of cognitive linguistics, figurative language,
is monopolized by another journal, Metaphor & Symbol.

4.2.3 Correlation of topics

In the previous section, only the ten most common topics in CL were
analyzed. Here, we look at all 300 topics and calculate the correlation across
journals, allowing us to to compare journals based on their overall content: A
high correlation expresses high similarity between journals, a low correlation
dissimilarity. The correlation matrix is plotted below in Fig. 4.3 (red = high
correlation, blue = low correlation). The matrix is ordered using hierarchical
clustering (Ward algorithm), and the clusters are illustrated by black rectangles
around them. Again, we see that CL exhibits a stronger similarity to linguistics
journals than to cognitive and brain sciences journals. The clustering algorithm
places CL firmly in the linguistics cluster.
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Figure 4.2: Comparison of the most popular topics in CL to other journals. The
darker a tile, the higher the probability of that topic for the respective journal.

The linguistics journals are all highly correlated to each other, although
Linguistic Inquiry is not as correlated to CL as the other journals, it is a small
but significant relationship. When compared to the cognitive journals, we see
that CL and Language correlate with the content of the cognitive journals to the
same degree (none of their correlation values differ by more than 0.04). However,
Psychological Science is negatively correlated to all linguistic journals, meaning
the content is significantly different. Both Lingua and Linguistic Inquiry are not
as highly correlated to the cognitive science journals, which shows us that that
variation exists within linguistics journals.

4.2.4 Diagnostic topics

An alternative way to look at the topic distribution is to find the most diagnostic
topic. The most diagnostic topic is the topic that can be considered unique to
one journal, that is, the probability of it occurring in other journals is relatively
low. This allows us to exclude general topics such as about scientific methods
from our analysis, as well as more general linguistic topic that might wash out the
relationship between journals covering topics. Following Griffiths and Steyvers
(2004), we calculated the most diagnostic topic for each journal by dividing the
probability of a given topic in one journal by the probability of the same topic in
all other journals. The highest ratio thus denotes the most representative topic.
Table 4.3 shows the most probable terms for these diagnostic topics.
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Figure 4.3: Correlation matrix showing similarity between journals.

We then plotted a similarity matrix to see how often these diagnostic
topics occur in the other journals (Figure 4.4). Akin to the findings in Griffiths
and Steyvers (2004), we should see clusters of similar journals. Cognitive science
journals are expected to cluster together, as are the general linguistic ones. Based
on the results of the previous section, we hypothesize that Cognitive Linguistics
is more likely to fall into the cluster of general linguistics rather than cognitive
science. We see a strong cluster around cognitive science and psychology journals,
and a second cluster around linguistics, including CL. The diagnostic topics for
the linguistic journals show a low probability of occurrence in other journals,
including cognitive science, while cognitive science topics seem to be slightly
more represented in the linguistics journals. However, CL does not stand apart
from the other linguistics journals. Interestingly, the most representative topic
for CL is the topic covering construction grammar, which is also represented in
the other linguistic journals to some degree. Again, Metaphor & Symbol, as a
highly specialized journal, has a very diagnostic topic which hardly occurs in
other journals, not even CL.
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Table 4.3: Most diagnostic, representative topic for each journal and their five
most probable terms.

CL Lingua Language Ling. Inq. Met. & Sym.
Topic 164 Topic 259 Topic 292 Topic 80 Topic 167

construct claus languag deriv metaphor
german complement linguist movement conceptu
analysi head acquisit argu articl
english emb typolog articl text
paper predic univ analysi convent

Cognition Cog. Sci. Cog. Psych. Psych. Science Plant Phys. Ecology
Topic 299 Topic 260 Topic 98 Topic 113 Topic 201 Topic 72

infant learn memori risk mutant speci
monthold statist retriev depress arabidopsi communiti
experi learner recal health phenotyp diver
month acquisit test symptom gene trait
test acquir encod childhod plant rich

4.2.5 Discussion

In both analyses, CL behaved more similarly to general linguistics journals than
to journals in cognitive science. In addition, one of its most common topics, Topic
167, which is about figurative language, is dominated by Metaphor & Symbol. In
our correlation analysis, we see some variation within the linguistics journals:
Both CL and Language are correlated to cognitive journals, while the other two
linguistics journals are not as much. So at least in view of the quantitative analysis
of abstracts, hypothesis 1 – that CL is as or more related to cognitive science than
to other linguistic journals – is not supported from these findings. Neither is CL
more similar to these cognitive journals than are other linguistics journals: The
correlation values of Language are very similar to those of CL, suggesting that
Language is “as cognitive” as CL. More importantly, these correlation values to the
cognitive journals are not nearly as high as those within the linguistics journals,
meaning all linguistics journals, including CL, cannot be considered cognitive
with respect to the technical terminology that is used. As a result, the clustering
algorithm, based on the correlation values, places CL in the linguistics cluster,
underlining that CL is not statistically unique among other linguistic journals.

One important caveat of this analysis is that our LDA analysis cannot
extract deep conceptual relationships among the individual goals, methods and
conclusions of each journal article. While the same topics are covered in linguistics
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Figure 4.4: Most diagnostic topic for each journal, and their probability in the
other journals. The redder a tile, the higher the probability.

journals and CL, this does not mean that they approach these topics under the
same framework or treat the topics in the same way, meaning the conclusions can
vary to a large degree. However, the data clearly show that topics in cognitive
journals do not strongly characterize the content of CL, lending support to the
alternative hypothesis that CL may have drifted from its cognitive roots. In fact,
out of the 10 most probable topics, only one specifically involves cognition (topic
53), which concerns abstract and conceptual grounding. This result is underlined
that when removing the word cognitive from the input text, the correlation values
decreased across the board, suggesting that the correlation is partly driven by
simply using the word ‘cognitive’ (as in Cognitive Linguistics) rather than actual
content.

One additional caveat for this result is that, since CL is aiming to explain
the same concepts as the other linguistics journals (albeit in a different way), the
prominence of linguistics terms in CL might wash out its relationship to the other
disciplines. However, as our analysis takes all content into account and is not
restrained to linguistic topics, this is unlikely. If cognitive terms were present
in Cognitive Linguistics, they would have been picked up by the LDA algorithm.
In the next section, we evaluate the citations in CL and the other journals. It is
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possible that, while CL does not highlight cognition terms in its abstracts, it still
draws inspiration from work covering cognition.

4.3 Citation analysis

4.3.1 Data and methodology

Citations have been used previously to measure interdisciplinarity (Kreuzman,
2001; Porter, Cohen, David Roessner, & Perreault, 2007; Leydesdorff
& Goldstone, 2014), and they are seen as an important contributor to the
interconnected basis of scientific knowledge (Hyland, 1999). Within cognitive
science, Goldstone and Leydesdorff (2006) looked at the import and export of
the journal Cognitive Science: Which journals are cited by Cognitive Science, and
in turn, which ones cite Cognitive Science? Their analysis revealed that Cognitive
Science mainly imports from neuroscience and psychology, while in turn, it is
mostly cited by cognitive psychology journals and computer science journals.
Furthermore, Cognitive Science plays an import role in connecting scientific fields
that otherwise are poorly connected, for example, by linking education and
developmental psychology.

What might the import and export network look like for CL? Here, we
mainly look at the import of CL – what journals CL cites – and only briefly consider
its export. According to the tenets underlying cognitive linguists, we expect a high
number of citations to journals in cognitive science and psychology. In particular,
CL should exhibit a citation pattern that is as or more similar to these cognitive
journals than to linguistics journals. We collected a list of cited works for the
papers in our database. Unfortunately, citation data was not available for some of
these papers, and not at all for the journal Metaphor & Symbol. In addition, citation
data was only available starting from 2005. The following analyses are thus based
on fewer individual papers per journal (see Table 4.4).

4.3.2 Import: Cited works

In this section, we evaluate the claim that cognitive linguistics integrates work
from cognitive science, which should be reflected in the work CL cites – its import.
To analyze this pattern, we constructed a journal-journal matrix per journal,
counting the number of times a journal cites other journals (or more generally,
other works, including books). Based on this document-term matrix we calculated
a similarity matrix using cosine similarity. In this matrix, similarity between two
journals is expressed by a value between -1 and 1, where 1 denotes high similarity
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Table 4.4: Number of abstracts per journal with citation information.

Journal Number of papers Number of references

Cognitive Linguistics 208 10302

Cognition 2543 121090

Cognitive Psychology 784 41420

Cognitive Science 1162 60560

Ecology 701 35981

Linguistic Inquiry 203 11988

Language 203 16309

Lingua 1649 80740

Plant Physiology 3820 232818

Psychological Science 2266 67308

and -1 highest dissimilarity. Figure 4.5 shows this matrix. Cognitive Linguistics
is more similar to the general linguistic journals in its citation behavior than it
is to cognitive science journals. Again, we see a similar pattern to the clusters
found in the content analysis: linguistics journals cluster together, including CL,
and cognitive science and psychology journals form another cluster. This analysis
is based on all cited works within a journal, no matter if it is a journal, book, or
any other kind. In other words, the journals and books cited by articles in CL are,
in general, more similar to the patterns of citation in other linguistics journals.

Whereas CL shows a high similarity to all linguistics journals, including
Linguistic Inquiry, of all linguistics journals, it also has the highest similarity to the
cognitive and brain sciences journals. What is more, all other linguistic journals
show a negative correlation to these journals. Although the correlation values
are very small (and much lower than the correlation to other linguistics journals),
this shows that out of these linguistic journals, CL relies the most on works from
cognitive sciences, and seems to import at least some theoretical or empirical work
from the sources that undergird the cognitive and brain sciences. And although CL
shows a similarity in citation patter to the cognitive journals, the content analysis
showed that this does not translate into similarity on a content level. One possible
explanation is that, while cognitive work is cited and applied to the study of
language, very little is then mentioned when it comes to the consequences for
general cognitive mechanisms and processes.

In a more detailed analysis, we constrained the cited works purely to the
eight journals in our database, neglecting other citations. This selection does not
include all works from linguistics and cognitive science, but it can be considered
a reasonable representative sample, especially within the cognitive sciences. If
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Figure 4.5: Similarity of cited works between journals.

CL is strongly interdisciplinary, it would be likely to cite the four cognitive
science journals more than the other linguistics journals do. For each journal, we
calculated the percentage of citations to the cognitive journals (Cognition, Cognitive
Science, Cognitive Psychology, Psychological Science) and the linguistics journals
(Lingua, Language, Linguistic Inquiry). The percentages are displayed in Table 4.5.
Note that CL does not cite the four cognitive science and psychology journals any
more than Lingua or Language does, but both journals rely on the other linguistics
journals more than CL does. It does appear that CL is the more balanced among
the language-specific journals; it relies less on the other three linguistics journals,
even though it still shows a preponderance of citations to the linguistics journals
over the cognitive journals. This suggests that a large number of cited works in
CL are not part of the chosen eight journals, an important caveat of this follow-up
analysis.

Based on the pure number of citations, we plotted a matrix visualizing
the number of times a journal is cited by another journal (Figure 4.6). The
dark diagonal represents self-citations of one journal citing itself. Clusters are
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Table 4.5: Percentage of citations coming from cognitive and linguistics journals,
ranked by percentage of cognitive journals citations.

Journal % CogSci % Linguistics

Cognition 16.2 5.45

Cognitive Science 9.78 2.81

Cognitive Psychology 6.64 1.25

Psychological Science 6.48 0.1
Lingua 0.94 35.13

Language 0.43 7.22

Cognitive Linguistics 0.43 2.17

Linguistic Inquiry 0.1 10.8
Ecology 0 0

Plant Physiology 0 0

present for cognitive sciences, and to a slightly lesser degree, the linguistics
journals. This confirms that the results from the previous analyses that CL does
not cite cognitive journals predominantly; however, it does seem to rely less on
the linguistic journals, suggesting that other sources not present in our analyses
are cited frequently.

4.3.3 Export

The goal of an interdisciplinary journal is not only to import work from other
fields, but also to influence them in turn by exporting ideas and theories. Many
measures exist to assess the impact of a journal, but we restrict ourselves to
analyzing how often CL is cited by the journals in our database to detect whether
works from cognitive linguistics are in turn taken up by psychologists and
cognitive scientists. Advances made in the study of linguistics and theories
developed by cognitive linguistics should, of course, contribute to the knowledge
base of other cognitive scientists.

Table 4.6 shows the number of times a journal cites CL (since 2005). The
data reveal that CL accounts for nearly 60% of all CL citations within these eight
journals. Within the other journals, CL accounts for less than 1% of citations within
the respective journal. However, the degree to which CL itself is not unusual, with
citations to CL only accounting to 3%. As a comparison, self-citations account
for 3.39% in Cognitive Science and 5.56% in Cognition. Neither of the linguistics
nor cognitive science and psychology journals cite cognitive linguistics to a large
degree, suggesting that CL does not export to a large degree and is at risk of
becoming, at least by this analysis, somewhat isolated in its impact. On a positive
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Figure 4.6: Citation count matrix. Each tile represents the number of times a
journal cites another journal. The darker the tile, the higher the citation count.

note, we see that Cognitive Science and Cognition cite CL more than some of the
linguistic journals, suggesting that at least some work from CL is taken up in the
broader cognitive science community.

4.3.4 Discussion

Both the import and export of CL reveal a journal that is not importing or
exporting as widely as one would hope, given its bold tenets. On balance, its
journal articles still rely more on linguistics work than on work in cognitive
science, while rarely exporting to either cognitive or linguistic journals. On
balance though, CL cites more outside the journals in our database than the other
linguistics journals do, implying that its citation base is wider than the citations
in the selected linguistics journals. However, in all our cluster analyses, CL falls
squarely in the domain of linguistics, both in content and citation.

We chose the journals carefully as representative of their respective fields.
However, they do not cover the full spectrum of cognitive science, neuroscience
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Table 4.6: Export of CL: Number of CL papers cited by other journals. The third
column denotes the percentage of refernences in a journal that are to CL, the fourth
column the percentage of all CL citations in the analyzed journals.

CL cited by Count Within-Journal (%) Of-CL (%)

Cognitive Linguistics 312 3.03 59.32

Lingua 61 0.09 11.60

Cognitive Science 53 0.10 10.08

Cognition 44 0.04 8.37

Language 39 0.24 7.41

Cognitive Psychology 12 0.04 2.28

Psychological Science 3 0.00 0.57

Linguistic Inquiry 2 0.02 0.38

and psychology. It is therefore possible that other journals cited CL belong to
these fields, however, the fact that two of the biggest journals of cognitive science
are not represented more strongly gives cause for concern. The citation analysis
suggests that CL shows a higher similarity in citation patters to cognitive journals
than the other linguistic journals, however, as our content analysis showed, this
does not reflect in content similarity.

4.4 General discussion

CL, on balance, is more similar to other linguistics journals than cognitive journals.
Given the topics that CL covers, this may come as no surprise. After all, it is a
framework within linguistics, and it would be even more surprising to find few
links to other linguistics journals. Furthermore, Cognitive Science and Cognition
are not the only journals in which research in this more general domain can be
found. Recently, there have been both arguments for and against the claim that
Cognitive Science is an interdisciplinary journal (Goldstone & Leydesdorff, 2006;

Bergmann et al., 2016). Some have argued that it has become dominated by
psychology (Gentner, 2010), and some fields, such as anthropology, have become
largely separated and independent from cognitive science (see Beller, Bender, &
Medin, 2012; Keen, 2014). That different topics are represented in Cognitive
Science and Cognitive Linguistics could just as easily be attributed to researchers
in Cognitive Science, as well as the low number of citations of CL.

Even though our data analysis does not support hypothesis 1 (that the
content of CL is as or more related to cognitive science than to other linguistic
journals), hypothesis 2 (that CL relies on more inspiration from cognitive sciences)
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gained some support: CL showed a slightly higher percentage of citations to
cognitive science journals than other linguistic journals, except for Language.
The fact that this does not relate in higher overlap in content overlap could
mean that, while works from cognitive science serve as an inspiration and are
applied to language, it does not translate into detectable discussion about general
cognitive theories and processes. This notion is supported by the export pattern
of CL, which suggests papers in CL are mostly cited by other papers in CL. In
general, in both our analyses CL behaves very similarly to Language, a journal
covering general linguistics. This suggests that CL does not have a special
place among linguistics journals in terms of how cognitive it is, but rather,
fits in with the broader field of linguistics that has taken up interdisciplinary
work. Taken together, the content and citation analysis indicate a separation
of CL from wider, more general cognitive science journals. Regardless of the
causal basis of this apparent separation – if it is worrisome at all – it would
seem helpful both to cognitive linguistics and cognitive science more broadly
to encourage deeper interconnections and overlap in concepts and topics. This
requires both participation and engagement and, importantly, to have the broader
cognitive science community listen. What might help is investment in citing and
discussing work in other journals more extensively, reaching back to the root
of Cognitive Linguistics. This investment could bring great returns, as cognitive
linguistics has much to contribute to our understanding of both language and
wider cognition. Psycholinguists, communication scientists, and other researchers
interested in language could be helped by cognitive linguists, who might support
wider cognitive science research by putting it on a sounder linguistic foundation.

We perceive two ways in which CL may widen its impact and draw
new bridges to other fields. The first obvious recommendation is to integrate
more recent cognitive literature in the theories and empirical work developing
in CL. As we show above, the preponderance of CL citation is to linguistics
journals, although it also cites some cognitive literature. Wider citation patterns
may be achieved by seeking inspiration from cognitive science research beyond
CL. It may also derive from identifying emerging issues in cognitive science
journals for which CL ideas would have much to say. Such patterns of citation
and conceptual inspiration would modulate the scientometric measures we have
shared here. A second, more important recommendation is to renew a shared
terminological or conceptual foundation with the cognitive sciences. One way of
achieving this is to develop empirical and computational intersections. Notice
that the topic space for CL is still squarely in the traditional methodological
realms of linguistics itself: the terms and topics of a strictly qualitative linguistic
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enterprise. Obvious terminological bridges can be achieved by taking up
new methodologies in these other cognitive fields, including empirical and
computational techniques. Of course there are clear examples of both in the
CL literature (e.g. Gonzales-Marquez, Mittelberg, Coulson, & Spivey, 2007;
Regier, 1996). But the analysis here suggests that the dividends paid from
this methodological integration may still be great. Furthermore, both of these
approaches would likely help to increase the interest of cognitive scientists in the
work of cognitive linguistics; at the moment, the low export of CL shows that
cognitive linguistics is a rather isolated enterprise.

We wish to briefly consider an obvious criticism of what we have
presented: Does our quantitative analysis even recommend worrying about
these issues? Can topic analyses and citation patterns even tap deeply enough
into CL to warrant the attention of readers and authors of CL? An obvious
cosmetic riposte to such a criticism is that it is in the best interest of CL to
appear integrative according to these text-based statistical analyses. The future
of document search and retrieval, disciplinary intersections and quantification
(e.g. Rinia, van Leeuwen, Bruins, van Vuren, & van Raan, 2002) – strongly
recognized by funding agencies – recommend such a cosmetic strategy: Putting
the interdisciplinarity front and center by sharing terms and literatures. Another
theoretical concern derives from cognitive linguistics itself. The power of words to
weave particular conceptual intersections, particular conceptual framing, and so
on, is well known from cognitive linguistics research itself (Lakoff, 2004). Seeking
a robust shared space of terminology may best frame the future of CL to offer new
advances in understanding language and cognition that can be understood and
integrated by other fields, as well.

In conclusion, it is worth sharing the final thoughts of another
scientometric analysis, of Higgins and Dyschkant (2014), who made similar
arguments about interdisciplinarity in philosophy. In the following
quote, “philosophers” is to be exchanged with “cognitive linguists”, and
“nonphilosophers” with “non-cognitive linguists”:

Philosophers should communicate and collaborate with nonphilosophers,
attend nonphilosophy conferences, exchange ideas with other academics, and
coauthor works with experts in these fields. We believe that such actions
will lead to significant practical and intellectual benefits for philosophy and
academics more generally.



CHAPTER 5
Scientific structure across time

This chapter is an updated version of the following manuscript:
Bergmann, T., Dale, R. & Bhat, H. S. (manuscript). Comparing patterns of change in science and the
humanities.

5.1 Introduction

Philosophy of science has long debated how to define scientific progress and
how this progress happens (for an introduction, see Losee, 2004). While different
views of progress exist, all imply that a later step is better than a previous step,
not just simply change (Niiniluoto, 1980). What is seen as “better”, however,
differs among philosophers and is one of the most controversial topic within
philosophy of science. Not only are there different theories on what constitutes
progress (Bird, 2007), there is also debate about how this progress — regardless
of definition — comes about. For a long time, scientific progress was seen as
continuous and steady, rather than “revolutionary” (Wray, 2006). Under this
view, knowledge or truth (depending on definition of progress) is cumulatively
added to the existing body of knowledge. This view has been criticized as “naive
and oversimplified” (Niiniluoto, 1980, p. 429), as progress is not always linear.
Kuhn’s influential work (1962) also rejected this view. Instead, scientific change is
attributed to shifts in paradigms, which completely replace previous views and
methods. These paradigm shifts do not happen gradually, but suddenly and
abrupt. The introduction of an irrational factor into science was met with criticism
by various philosophers of science (see Lakatos & Musgrave, 1970), yet Kuhn’s
work proved to be seminal.

In this chapter, we approach this debate with a quantitative angle. Can
we measure scientific progress by relying on computational methods and the
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output of scientists themselves? Because progress inherently includes a qualitative
element – a later step is seen as better than an earlier step – we focus on analyzing
change, rather than progress. Can we use scientometric methods to measure the
type of change in scientific literature? In order to answer this question, we study
how automatically extracted topics and themes of published articles in the fields of
philosophy and biology change in popularity over time. Philosophy and biology
were chosen because they differ in many ways, and thus serve as a good base for
comparison. For example, while biology relies on quantitative analyses based
on a variety of data, philosophy is more qualitative and subjective of nature.
Papers in biology also tend to be co-authored by multiple authors, relying on
large-scale, cross-departmental collaboration. Philosophy, on the other hands,
produces longer papers authored usually by one sole author. Such structural
differences are likely to lead to differences in how the field behaves in their
scientific output, and thus how this output changes over time.

Furthermore, both within and outside of philosophy, there has been
some debate whether philosophy as a field makes progress. Within philosophy,
these positive changes have often been defined as conclusively answering “big
questions” – questions that define the field and that the majority of the researchers
in a field are interested in. This is congruent with the Kuhnian view of science as
problem solving. After answering such a big question, usually a new big question
appears – thus the set of big questions changes over time. However, in the view
of some philosophers, these big questions do not get answered and stay the same
(Nielsen, 1987). Dietrich (2011, p. 322) argues that philosophy “is the exactly
the same today as it was 3000 years ago”, and if Aristotle were to sit in on a
philosophy lecture today, he would fully understand the subject matter, and even
be able to participate. In contrast, such advances have been made in biology (and
other natural sciences) that he would not even understand concepts that are now
basic. Dietrich’s view is corroborated by a survey of leading philosophers on a
set of thirty big questions such as “Is there a god?” and “Do we have free will?”.
Answers on these questions were heavily divided with very few having an answer
that was not controversial (Bourget & Chalmers, 2014).

On the other hand, there is little doubt or debate whether biology has
made progress, or changed over time. Impactful discoveries such as the structure
of DNA (Watson & Crick, 1953) have opened new avenues of research, and
similarly, old theories such as Lamarckism have initially abated in their popularity,
only to be revived again later in modified fashion (Jablonka & Lamb, 2005; Moore,
2015). Other advances have led to the emergence of new fields, such as synthetic
biology, the combination of biology and engineering (Oldham, Hall, & Burton,
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2012). Large scale, international collaborations such as the Human Genome Project
and advances in technology have made it possible to study biological systems in a
novel way. In fact, there is little discussion within the field of biology and society
at large whether biology progresses.

Because problems in biology are more “answerable” than in philosophy,
the fields might also change in different ways. If questions in philosophy are
hardly ever conclusively answered, we might expect their popularity to fluctuate
over time. On the other hand, in biology, problems can be solved and new
problems emerge. Thus, change should happen more linearly and not fluctuate
over time as much. The pattern of change might differ between the two fields.

Using abstracts of scientific articles as our data set, we will attempt to
quantitatively answer the following questions:

1. Can we model scientific change using abstracts from scientific papers?
2. Does biology undergo more change than philosophy?
3. Does the pattern of change in biology differ from the pattern in philosophy?

In the next section, we will describe our data set in more detail, and then
move onto the methodological explanation.

5.2 Dataset

The dataset consists of a sample of papers from biological and philosophical
journals, provided by JSTOR. In total, 8314 philosophical papers and 15596

biological papers were collected, including their abstracts and year of publication.
The papers span the time range from 1980–2013, as unfortunately, earlier years
were not represented well enough to warrant inclusion in this analysis. Each year
has at least 30 papers published during that year in each of the two fields. Fig.
5.1 shows the sample size of papers per year and per field. The distribution of
papers over time is not uniform, but increases linearly over time, with a small
drop in 2013. However, the sample size per year was large enough to not bias any
analysis.

The samples generated for each field included a variety of representative
journals. The philosophy sample was generated from 66 different journals, and
the biology sample from 174 journals. The five most frequent journals in each
sample are shown in Table 5.1. While some journals occur more often than others,
the linear pattern observed in Fig. 5.1 holds for the individual items, meaning
that there is not a sudden increase in one journal at a particular time. This makes
it possible to compare different years to each other, irrespective of journal.
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Figure 5.1: The number of papers per field over time.

The text of abstracts, the key variable in our analysis using topic
modeling, was present for all the papers we selected. Following common
procedure in natural language processing, each abstract was tokenized and
stemmed. Common words (stopwords) such as this and it were also removed, as
were short words below three characters. Fig. 5.2 shows an example of an abstract
in its original and processed form.

Original

Looking at Thomas Kuhn’s work from a cognitive

science perspective helps to articulate and to

legitimize, to some degree, his rejection of

traditional views of concepts, categorization,

theory structure, and rule−based problem solving.

Whereas my colleagues focus on the later Kuhn

of the MIT years, I study the early Kuhn as an

anticipation of case−based reasoning and schema

theory. These recent developments in cognitive

psychology and artificial intelligence may point

toward a more computational version of Kuhn’s

ideas, but they also expose ambiguities in his

work, notably in his understanding of exemplars.

Stemmed

thoma kuhn work cognit scienc perspect help

articul legitim degre reject tradit view concept

categor theori structur rulebas problem solv

colleagu focus kuhn mit year studi earli kuhn

anticip casebas reason schema theori recent

develop cognit psycholog artifici intellig point

comput version kuhn idea expos ambigu work notabl

understand exemplar

Figure 5.2: Original (left) and processed (right) article. The processed article strips
the abstract of all unnecessary text that does not contribute to the overall meaning
of the abstract.
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Table 5.1: Five most frequent journals in each sample.

Journal Number of papers

1 Journal of Business Ethics 1529

2 Synthese 696

3 Philosophy of Science 584

4 The Journal of Symbolic Logic 541

5 Studia Logica 410

Journal Number of papers

1 Plant Physiology 934

2 The Journal of Cell Biology 750

3 Oecologia 515

4 Ecology 446

5 New Phytologist 380

5.3 Topic modeling as a scientometric tool

A swath of variables have been used in scientometric analyses, including
author-provided keywords, co-author collaborations and both the import and
export of citations. Each measurement has its advantages and disadvantages, and
captures a different angle of a publication. Capturing the semantic and scientific
content of an article is no easy task, as one single variable does not accurately
reflect the whole content of an article. Currently, most research in scientometrics
uses abstracts as the key data when analyzing content, as they provides more
detail than simple keywords and are available for most publications. Unlike
keywords, abstracts are also entirely written by the authors, while journals
occasionally force the authors to select keywords from a provided list. Although
abstracts provide the best approximation of content, they are hard to analyze.
They cannot be summed up in one single word or number, and contain various
information. For instance, abstracts often describe both the method and the results
of a study. Hand-coding such information is not feasible, especially with large
corpora. Instead, advances in natural language processing have made it possible
to extract latent variables from textual data.

The most recent suite of algorithms are topic models, which discovers
latent themes and topics within texts (for overviews, see Griffiths, Steyvers, &
Tenenbaum, 2007; Blei, 2012). The most basic and original form of topic
modeling is Latent Dirichlet Allocation (LDA) (Chapter 2, Blei et al., 2003). The basic
underlying idea is that each document comprises multiple topics, and each word
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in a document is assigned a topic. Each topic is thus a distribution over terms,
that is, words that are likely to occur in that topic. An example would be articles
in a newspaper. Articles in newspaper cover a range of different topics, such
as economics and sports. LDA assumes that each article is biased to talk about
certain topics, rather than the whole range of topics. For example, an article in
the sports section might talk about championships and winning, while an article
in the economy section will rarely talk about these topics. In turn, such topics
are also biased to include different terms. A topic about championships will be
biased to include terms such as ring or cup, compared to words such as income or
budget, which are more likely to occur in an economics topic. The same principle
holds for scientific articles. For example, a topic about DNA might include terms
such as gene or cell. Each document in turn is modeled as a distribution over
topics: Some topics are more probable to occur in the document, and others are
very unlikely, and thus have low occurrence. While a paper in biology has a high
probability of including a DNA topic, a paper in philosophy does not.

LDA uses probabilistic algorithms to infer these posterior distributions
of topics and terms, and to allocate each document a topic distribution, and each
topic a term distribution. When applying topic modeling to documents, each
document will be represented by a distribution over topics. More information
about the topics can be learned by looking at its associated term distribution, and
topics can such be summed up in a coherent manner. After the distributions have
been inferred, each document is now represented as a distribution over topics θd,
and each topic can be inspected in more detail by looking at its associated term
distribution φz. This matrix representation allows us to perform computations on
documents, such as comparing similarities between documents and calculating
popularity of topics over all documents.

Topic modeling has found wide applications in the field of digital
humanities, for instance, in analyzing historical newspapers (Yang, Torget, &
Mihalcea, 2011) and classical scholarship (Mimno, 2012). It is also used widely
in the field of political science (Lucas et al., 2015). Within scientometrics, topic
modeling has been applied to variety of problems. For example, it has been used
to detect similarities between different fields (Griffiths & Steyvers, 2004; Yau et
al., 2014) and measure interdisciplinarity (Nichols, 2014). Several case studies
investigate the change of topics over time in specific fields, such as computer
science (Hall et al., 2008; Anderson, McFarland, & Jurafsky, 2012), cognitive
science (Cohen Priva & Austerweil, 2015) and statistics (De Battisti et al., 2015).
Here, we will use a similar approach and model the change of topics over time in
different fields, instead of looking at isolated topics.
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Table 5.2: Five most frequent topics and their terms in biology sample.

Topic 49 Topic 2 Topic 71 Topic 72 Topic 64

process gene soil effect model
system express concentr increas data

function mutant nutrient respons estim
studi regul product result method

ecolog arabidopsi organ affect predict
import plant nitrogen reduc base
interact signal carbon level sampl
structur respons rate experi measur

role transcript biomass control test
understand protein increas competit analysi

5.4 Applying LDA

For each of our two sample, we fit a LDA model with T = 75 topics. The
number of topics has to be chosen a-priori, and previous studies in the field
of scientometrics suggest 50-100 as a good number of topics to produce topics
that are neither too broad or narrow (see Hall et al., 2008). Fitting two separate
models instead of one combined models makes it possible to study both samples
independently. In a combined model, the higher number of abstracts in biology
would exert too much influence on the topic model compared to the philosophy
sample.

After running the topic models, we assessed the most frequent topics in
each field to make sure the algorithm produced an adequate represenation of the
abstracts. Table 5.2 and Table 5.3 show the five most frequent terms and their
associated topics for biology and philosophy respectively.

As each document is now represented as a probability distribution over
75 topics and the year of publication is known for each document, we can trace
the popularity of a topic over time by looking at its probability for each document
at a given year. However, as the magnitude of popularly cannot be assumed to
be linearly dependent on the year of publication, non-linear methods need to be
used. The next section will introduce natural cubic splines and explain how they
can be used to model the change in probability values over time.
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Table 5.3: Five most frequent topics and their terms in philosophy sample.

Topic 28 Topic 2 Topic 25 Topic 22 Topic 72

ethic studi corpor set logic
busi result respons show modal
issu behavior social texmath semant

practic signific firm degre complet
manag find csr prove proof
develop influenc stakehold theorem predic

articl attitud perform exist oper
decisionmak research compani infinit formula

execut perceiv manag cardin rule
field effect invest result system

5.5 Fitting natural cubic splines

5.5.1 Natural splines

Clearly, the relationship between time and the popularity of a topic is not linear
and can not be modeled simply by using a linear regression. Such a model
might wash out local minima and maxima and not represent the change in time
accurately. One way to combat this is to add polynomials predictors to the linear
regression, however, as this is applied globally, this sometimes has unintended
consequences in the border regions of the predictor space. Instead, one can divide
the predictor space X into several regions and fit separate low-degree polynomials
over these regions. Such regions are bound by knots. Regression splines improve
these models even further by constraining the coefficients in such a way that the
fitted curve is continuous, i.e. there is no jump at knots. Each separately fitted
polynomial connects to the curve in the region before and after. This is done by
ensuring that both the first and second derivative of the piecewise polynomials
at knot points are continuous. To produce more stable estimates at the boundary
regions of X, a further constraint can be introduced: The function has to be linear
at the boundary. Such splines are called natural splines, and will be used here (for
introductions on these models, see Hastie, Tibshirani, & Friedman, 2009; James,
Witten, Hastie, & Tibshirani, 2013).

More formally, a polynomial spline of degree D with K knots at locations
ξ1, . . . , ξK is defined by the following function:
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y = β0 +
D

∑
d=1

βdxd +
K

∑
k=1

bk(x− ξk)
D
+ (5.1)

where

• (x− ξk)
D
+ = 0 when x < ξk (to the left of the knot)

• (x− ξk)
D
+ = (x− ξk)

D when x ≥ ξk (to the right of the knot)

This means that the predictor matrix Xmat for a spline of degree D with
K knots is as follows (assuming that X is one-dimensional):

Xmat =
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+

1 x2 x2
2 . . . xD

2 (xn − ξ1)
D
+ . . . (xn − ξK)

D
+

1
...

...
...

...
...

. . .
...

1 xn x2
n . . . xD

n (xn − ξ1)
D
+ . . . (xn − ξK)

D
+


The second column is simply the original value of the predictor x. We

then add columns of polynomials of x up to the specified degree D. Lastly,
predictors are added according to the indication function (x − ξk)

D
+, again up

to the specified degree D. An estimate of y can then be simply calculated using
linear regression, ŷ = βXmat.

For a natural cubic spline, we perform a similar transformation, but
instead, the basis function N(x) for a natural spline with degree D is defined
as:

N1(x) = 1

N2(x) = x

Nk+2(x) = dk(x)− dK−1(x)

(5.2)

where

dk(x) =
(x− ξk)

D
+ − (x− ξK)

D
+

ξK − ξk
(5.3)

and (x − ξk)
D
+ is the same indicator function as above. The predictor

matrix can then be represented as follows:
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Xns =



1 x1 d1(x1)− dK−1(x1) . . . dK(x1)− dK−1(x1)

1 x2 d1(x2)− dK−1(x2) . . . dK(x2)− dK−1(x2)

1
...

...
. . .

...

1 xn d1(xn)− dK−1(xn) . . . dK(xn)− dK−1(xn)


After obtaining Xns, we can again fit a linear regression with the matrix

as the predictor, ŷ = βXns.
To illustrate the different fits of a cubic spline and a natural cubic spline

and to justify our choice of natural cubic splines, models with D = 3 and
K = 2 were fitted to the same artificially generated data. The knot locations are
equispaced between the minimum and maximum of the predictor values. The fits
are plotted in Figure 5.3, along with a linear regression fit. The knot locations are
denoted by the dashed vertical lines. While the linear regression fit does not take
into account the local peak in the center of the predictor values, the cubic spline
predicts higher values in that regions. However, it behaves quite extremely at the
boundary regions, with the predicted values sharply decreasing at the lower end
of the predictors and sharply increasing at the higher end. This is especially a
problem for out-of-sample predictions in the boundary regions. The natural cubic
splines fits its curve more smoothly at the boundaries and yet takes into account
the rise in values in the center.

While the natural spline in the example above gives the best and most
natural fit, the real element of interest in this study is whether there is a change
in predicted values at any given point in time. That is, at a given value for x, is
our value predicted to change or stay the same? In simple linear regression, we
can assess this change by examining the slope. If the slope is sufficiently different
from zero, it indicates either positive or negative change over time. However, with
splines, there is not one single coefficient that can be examined. Instead, we can
look at the gradients of the fitted line at a given point in time - if there is no change,
the line will be straight and the gradient zero.

To find the derivate of a natural spline, the derivative of N(x), N′(x)
needs to be calculated. We can then use the derivative to calculate gradients given
an x-value. As both N1(x) and N2(x) are constants, they are zero when derived,
which leaves the derivate of Nk+2(x) (see Equation 5.2). For this, the derivative of
dk(x) (Equation 5.3) needs to be calculated as follows:
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Figure 5.3: Linear regression, cubic spline, and natural cubic spline fitted to the
same data. The linear regression washes out the local peak in the middle of the
predictor. The cubic spline behaves erratically in the boundary region, but takes
into account the local peak. The natural cubic spline combines the local peak
with smoother fits in the boundary regions. The dashed vertical lines show the
locations of the knots.

d′k(x) =
D(x− ξk)

(D−1)
+ − D(x− ξK)

(D−1)
+

ξK − ξk
(5.4)

Figure 5.4 shows the gradient of the natural spline (Panel B) next to the
natural spline fit (Panel A). The dotted grey line is drawn at y = 0, denoting a
zero gradient. When the gradient is above said line, the change is positive. When
the gradient is below zero, the change is negative. When the gradient intersects
the line, the direction of change flips: In this example, it goes from positive to
negative.

5.5.2 Applying to topic distributions

For our data, we chose to set the degree D to 3, a common choice that allows
flexibility while not overfitting to the sample data. In the model, we only had one
predictor, the year of the publication, and one outcome variable, the probability
of the topic in that document. A separate model was fit for each topic. As our
outcome variable is a probability, we applied the logit function to its values:
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Figure 5.4: Panel A shows the natural spline fit. Panel B shows the gradient for
the natural spline.

logit(p) = log
(

p
1− p

)
Subsequently, the predicted values from the natural spline are

transformed using the inverse logit (sigmoid) function:

S(p) =
1

1 + e−p

This ensure that the predicted values are in the interval [0, 1], and thus
only return possible probabilities.

To select the number of knots, we ran 10-fold randomized
cross-validation on a number of knots for each topics. The number of knots
varied from 1 to 6, and for each number, it was assumed the knots would be
equispaced from each other. The reasoning behind this is that it is impossible to
know a-priori which periods in time would be particularly susceptible to change,
and indeed, there is no reason to assume that one particular period should be.
Furthermore, the maximum of six knots was chosen as we assumed that significant
change in science cannot be accurately represented from year to year, and thus we
assume a minimum period of five years for change to be represented in journal
articles. As our years range from 1980–2013 and cover 34 years, this results in a
maximum number of six knots that are at least five years apart. After running
the cross-validation, the minimum number of knots that resulted in the best mean
squared error (MSE) was chosen for each topic.

To obtain confidence intervals for both the spline and the gradients, 2000

bootstrap iteration were run. A 95% confidence interval was then calculated
from the 2000 samples of predicted values and gradients respectively using the
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2.5% and 97.5% quantiles. Figure 5.5 shows the obtained confidence intervals
for both the natural spline fit (left) and the gradients (right) of one sample topic.
If the confidence intervals of the gradient do not contain zero, we can say that
the gradient is positively or negatively significantly different from zero. In the
example, the gradient is significantly different from zero most of the time, with
a few stable points in time when changing direction. The gradients can thus
be converted into a binary variable that denotes whether a topic is changing
(positively or negatively) at a given time. In the example, the topic probability is
decreasing 60.7% of the time, increasing 17.5% and stable at the remaining 12.8%.

1980 1985 1990 1995 2000 2005 2010

0.010

0.015

0.020

0.025

1980 1985 1990 1995 2000 2005 2010
0.08

0.04

0.00

0.04

0.08

Figure 5.5: Left panel shows the natural cubic spline fit (blue line) for a sample
topic (topic 72 in philosophy data set) after transformation. The dashed lines
represent the confidence interval. The right panel shows the gradient in blue, with
the confidence interval in the dashed lines. The horizontal dashed line denotes a
zero gradient. Gradient is significantly different from zero if confidence intervals
do not overlap with this line.

By applying this method to all topics across the two data sets, we can
extract the following information:

1. The proportion of overall changes per topic and per field.
2. The proportion of negative and positive changes per topic and per field.
3. The years during which each field exhibits change, and the years during

which they are more stable.

This allows us to quantify the patterns of change in both philosophy and
biology. Do both fields exhibit the same proportion of overall change? Is this
change positive or negative? Do the topics behave linearly in their popularity, or
do they wildly fluctuate in popularity? Using the methodology explained above,
the next section attempts to answers these questions.
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5.6 Analysis and results

5.6.1 Can we model scientific change through splines?

A simple, yet effective test to check whether the models with only year as a
predictor capture at least a degree of variability is to shuffle the years that are
associated with each publication. After re-running the spline models on the
shuffled year data, no trends should be detected. To test this hypothesis, both
the number of knots selected in the cross-validation and the final gradients were
examined.

A simpler structure in the shuffled year data should result in fewer
selected knots: The less change there is, the fewer knots are necessary to obtain
a good fit to the data. Indeed, a paired one-sided t-test showed significant
differences both for philosophy (t(74) = 3.59, p = 0.0003) and biology (t(74) =

2.47, p = 0.0079). This indicates that the topic changes over shuffled years are
indeed less complex than in the original data.

A similar intuition is true for the gradients: If the topic changes
are less complex, the gradients in the shuffled years spline model should be
clustered around zero, whereas in the original models, potential trends should be
represented by non-zero gradients (see also below). Figure 5.6 shows histograms
of the absolute values of the gradients for both models in both fields. Absolute
values are shown because the direction of change is irrelevant in this case.
Gradients in the shuffled years model are more biased towards zero, while the
gradients in the original model have a higher magnitude. To test these difference
for statistical significance, paired one-sided t-tests were run on the absolute
values of the gradients. Significant differences were found both for philosophy
(t(74999) = 115.13, p = 0.00) and biology (t(74999) = 271.47, p = 0.00).

This simple analysis shows that topics indeed vary significantly over
years, and the model of choice, natural cubic splines, effectively capture the trends
and changes of topics over time.

5.6.2 Does biology change more than philosophy?

Using the methodology explained above, we can look at several different features
of scientific change. Our first hypothesis was that biology, as a field, changes more
on average than philosophy. As we have identified the degree of change at any
given point in our time range, we can analyze the proportion of non-zero changes.
Table 5.4 shows these proportions. Within biology, nearly 80% of the gradients
are significantly different from zero, while only 58% of philosophy gradients are
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Figure 5.6: Comparison of absolute values of gradients in the original model and
the shuffled years model. When years are shuffled, gradients are more clustered
around zero, indicating that no trends are detected. This difference is more
noticeable in biology.

Table 5.4: Percentage of gradients in each field that are non-zero (95% CI).

Field Increasing Decreasing Total SD(Total)

Biology 8.85% 70.49% 79.34% 33.52%
Philosophy 12.12% 45.80% 57.92% 23.81%

non-zero. In both fields, these changes are largely driven by a downward change,
indicating that new topics hardly ever increase at a rapid pace, instead, they are
more likely to meander upwards. The higher proportion of change in biology
is significantly different from philosophy (t(148) = 4.48, p < 0.0001). The first
hypothesis is thus confirmed: Scientific topics in biology change more often than
topics in philosophy.

However, one drawback of this analysis is that it does not take the
magnitude of the change into effect. A non-zero change can be significant,
but small. While the above analysis reveals that biology changes more often, it
does not tell us by how much. By summing the absolute values of all non-zero
values, the total magnitude of changes per topic can be calculated. There was a
significant difference in the total magnitude for biology topics (M=9.56, SD=3.51)
and philosophy topics (M=5.4, SD=5.06); t(148) = 5.8, p < 0.0001). Figure 5.7
shows the distribution of magnitude values for both fields, and clearly, biology
shows higher values, although some fields in philosophy also undergo large
changes.
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Figure 5.7: Distribution of absolute values (magnitude) of non-zero gradients.
Biology gradients have a higher value than philosophy, on average.

Table 5.5: Number of topics in each field that exhibit certain patterns of change.

Field Only Increasing Only Decreasing Both No change

Biology 6 59 10 0

Philosophy 6 36 27 8

5.6.3 Are the patterns of change different?

Another hypothesis is that changes in biology might be more linear than in
philosophy, where topic popularity fluctuates over time. In biology, it is more
likely that problems get “solved”, that is, an answer if found. Scientists can then
move onto the next problem, or topic. In philosophy, this is not as easy, as definite
proof for a lot of problems is not obtainable. To investigate these questions, we
looked at the direction of change more closely.

A topic that fluctuates exhibits both increasing and decreasing changes.
Out of the 75 topics in each field, 27 in philosophy both increase and decrease
at different times. Only 10 topics in biology behave in such a way. Conversely,
eight topics in philosophy do not change at all, while all topics in biology undergo
change (Table 5.5).

In a similar vein, if a topic goes from increasing change to decreasing
change, the gradient changes its sign from positive to negative. If a topic fluctuates
in popularity, we can expect a lot of sign changes. If a topic stays stable, or only
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Figure 5.8: The five topics per field that undergo the most change. Topics in
biology undergo a more linear change, while topics in philosophy have more
local peaks and troughs.

changes in one direction, the number of sign changes should be close to zero. The
previous results indicate that we should expect more sign changes in philosophy,
and indeed, this is the case. There was a significant difference in the number of
sign changes for biology topics (M=0.89, SD=1.37) and philosophy topics (M=1.48,
SD=1.55); t(148) = −2.44, p = 0.016.

Using results from the analysis above, we can select topic that undergo
the most change in each field. For scientists and scholars within this field, such an
analysis can reveal latent structures and changes within their field. For example,
in our data-set, such a selection reveals that out of the five most changing topics
in biology, three continuously decrease, and two exhibit a surge in popularity
after 1990 (see Figure 5.8 and Table 5.6). Both of these, topic 74 and 49, can be
tied to a recent interest in understanding impact on ecology and preserving and
conversing nature.

On the other hand, the five topics in philosophy that change the most
exhibit more fluctuation, and cannot be easily summarized as increasing or
decreasing. Each topic has local bumps in popularity, after each the values decrease
again. Two of the topics, topic 72 and 22, seem to generally decrease in popularity,
and are tied to more formal analysis of philosophy (see Table 5.7). These difference
in changes within these five topics are congruent with the overall analysis above,
which suggests that philosophy is subject to more “random” fluctuations in topic
popularity.
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Table 5.6: Associated terms with the topics in biology that undergo the most
change.

Topic 39 Topic 56 Topic 74 Topic 9 Topic 49

membran activ manag cultur process
cell acid conserv medium system

transport text land line function
plasma enzym research embryo studi
vesicl concentr develop develop ecolog
surfac inhibit protect transfer import

calcium extract human produc interact
protein metabol assess growth structur

cytoplasm accumul area media role
fraction level natur vitro understand

Table 5.7: Associated terms with the topics in philosophy that undergo the most
change.

Topic 3 Topic 72 Topic 28 Topic 2 Topic 22

scienc logic ethic studi set
scientif modal busi result show

philosophi semant issu behavior texmath
philosoph complet practic signific degre

epistemolog proof manag find prove
empir predic develop influenc theorem

scientist oper articl attitud exist
methodolog formula decisionmak research infinit

histor rule execut perceiv cardin
histori system field effect result

5.7 Discussion

The quantitative analysis has brought up several points. First, topic modeling
has proved itself to be a good technique to extract the themes of philosophy
and biology in our sample. The manual inspection of topics found clear and
cohesive topics which are easily interpretable. Second, we can track the popularity
of changes using natural cubic splines, and analyze these changes. Both fields
showed a high proportion of change within these topics, suggesting that neither
field can be considered stagnant based on scientific publications. More in-depth
analysis of these changes found the following results:
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1. Topics in biology exhibit change at more points in time than topics in
philosophy.

2. Non-zero gradients in biology have a bigger magnitude than in philosophy.
3. Topics in philosophy fluctuate more than in biology, while topic change in

biology is more linear.
4. The methodology makes it possible to identify topics undergo a lot of

change.

There are several possible why these results were obtained. There is
a small chance that the decisions (such as selection of knots) made during the
analysis produced the results. However, as several different avenues, in particular
with respect to the number of knots, were explored, this is unlikely. Additionally,
the large size of the data-set makes it improbable that these results are artifacts of
only a few journals or papers. It is more likely that these differences in changes
reflect a deeper, latent structure within the fields.

The first two results were in line with our prediction that biology
undergoes more change than philosophy, and confirms theoretical discussions
from philosophers themselves (see Chalmers, 2015). Philosophy makes fewer and
less drastic changes than biology. As noted earlier in the paper, this is partly
because biology is more driven by problems for which answers can be found,
while many questions in philosophy cannot be conclusively answered. This gives
more room for a potential re-emergence of a topic, whereas in biology, bringing
up an already solved topic is usually pointless – unless there is new evidence
or a re-analysis of some sorts. The results can also be explained with theories
in philosophy of science. According to Kuhn (1962) and Laudan (1977), science
is mainly concerned with solving specific problems and puzzles , which in our
case seems to be an accurate representation of change in biology – as a puzzle is
solved, it will no longer be actively worked on and new puzzles slowly emerge.
Using our method, a puzzle thus roughly equates to a topic in our topic model.
On the other hand, it might not be a good description of philosophy. Instead,
other models of scientific progress such as the epistemic view (Bird, 2007), where
progress is seen as accumulation of information and new methods, describe the
changes in philosophy better.

Previous research in computer science has shown that topic changes can
sometimes be tied directly to external events. Hall et al. (2008) showed that
funding led to a sudden influx of topics that were funded by government grants,
and their disappearance after the grants ran out. Similar external events can
influence topic popularity in biology and philosophy. While it is less likely that
grants have a huge impact on research topics in philosophy, other events such as
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current social climate and social issues can affect what the “hot topics” are, and
which topics are unpopular. Additionally, changes in topics could be driven by
changes in technology. For example, the rise of Bayesian statistics can largely be
attributed to the improvement in computational power, despite the underlying
principles going back many centuries. While philosophy so far has not been
transformed by this rise in computational methods, neighboring disciplines such
as cognitive science and artificial intelligence have (Cronin, Shaw, & La Barre,
2003). Advances in those areas could provide new insight into the core areas
of philosophy, or philosophy could take up those methods itself (although that
seems unlikely). Changes in technology have also led to changes how science
is published, for example, an increase in open access publication (Swan, 2007).
Interaction with such computational systems can change over time, and thus, can
prompt topical changes as well (see Gersh, Mckneely, & Remington, 2005; Preece
et al., 1994; Carroll, 2006).

While we analyzed patterns of change more generally in this paper,
researchers in specific fields can use such computational methods to understand
their own field better. For example, the most changing topics (see Figure 5.8)
can be further examined by experts in the field, and qualitative judgments be
made about the developments. For example, not all change might be seen as
progress, but rather as unwanted. A more local, detailed perspective on such
patterns is thus possible and worthwhile to examine whether a field is moving
into the “right” direction. It can also identify which topics are under-represented,
and whether additional attention should be paid to encourage studies in such
topics, e.g. increased funding and exposure.

Another key difference between philosophy and biology is the structure
of research teams. There has also been continuing research and interest into the
composition of teams and their performance (Goldstone, Roberts, & Gureckis,
2008; Woolley, Chabris, Pentland, Hashmi, & Malone, 2010). Group performance
studies have emphasized importance of building appropriate combinations of
skills and experiences on teams (Huber & Lewis, 2010), which poses interesting
challenges to philosophy, due to the lack of of teamwork and interdisciplinarity
on an author level. Content analyses such as presented here could provide
an alternative measure to analyze relationships between academics, and how
they group together. As Kreuzman (2001) has shown, acknowledgments are a
common way in philosophy to attribute credit to other scholars, indicating some
kind of group behavior. Combining both these measures could reveal clusters
of academics working on similar topics and problems, and how these are tied
to topical changes over time. Another possible extension to the current study
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is to rely on citations. In the cited reference analysis of philosophy of science
journals by Wray and Bornmann (2015), they found distinctive peak years of cited
references, indicating that specific works in certain years are more impactful than
others. A comparative analysis to biology would reveal whether philosophy relies
more on older work. Natural science is more unlikely than philosophy to cite
works from over hundred years ago, while philosophy relies more on classic
works.

5.8 Conclusion

Our paper shows that scientific change can be modeled using computational
tools. Using topic modeling and spline regression, extracted topics from scientific
abstracts can be tracked over time. We have found that biology as a field
changes more often, at a higher rate, and in a different pattern than philosophy.
Nevertheless, philosophy is not a stagnant field, but topic popularity fluctuates
over time, thus rejecting the view that philosophy does not change at all.
Our findings has consequences for how we assess scientific progress, especially
with regard to differences between the natural sciences and humanities. It can
be combined with theories in philosophy of science to improve our current
understanding of progress, and the debate between different views of scientific
progress. Additionally, computational analysis like ours can serve as a tool for
researchers to assess the state of their own field, as well as a way to quantify
internal progress.



CHAPTER 6
General discussion

The three previous chapters have shown how topic modeling can be extended
in fruitful ways to study different aspects of scientific systems and academic
behavior. Chapter 3 combined topic model with social networks, studying the
internal structure of a scientific conference. It identified strong clusters of topics,
which equate to different sub-fields of the study of language evolution, and helped
to identify areas where the multidisciplinarity of the main conference is lacking.
With the creation of a new journal in the research area that aims to unify language
evolution research, this showcases an important impact of such computational
analyses: Based on the results, it is now possible for researchers in the field to
emphasize areas that are part of the field of language evolution but currently
under-represented.

Chapter 4 used topic modeling to analyze the structure and relationships
between different scientific fields, evaluating claims from one community with
quantitative data. The results indicate that – despite claims from researchers – the
field of cognitive linguistics is not well integrated with the bigger field of cognitive
science. Instead, it is nearly indistinguishable from other approaches in linguistics.
Again, such a quantitative study can be used to re-evaluate the current state of a
field – and whether that state is desirable. While some linguists do not find our
results troubling, others have worked towards a bigger integration of cognitive
and quantitative methods in cognitive linguistics (e.g. Gonzales-Marquez et al.,
2007). Our analysis can help cognitive linguistics to restructure and reorient
themselves, as well as foster relationships across discipline boundaries (if, at all,
desired).

Lastly, Chapter 5 used topic modeling to track changes in scientific topics
and discourse over time, combing LDA with cubic spline regression. Analyzing
biology and philosophy as proxies for natural sciences and humanities, we

78
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discovered different patterns of change over time within these fields. Changes
in biology are more linear and either increase or decrease, while changes in
philosophy have local maxima and minima, indicating that popularity of topics in
philosophy is tied more to subjective phenomena such as current societal issues.
In general, the case studies showed that topic modeling is not only a suitable tool
for scientometrics, but that it can also be extended in a variety of ways to study
different aspects of scientific organization. Additionally, it improves on earlier
studies which often relied on keywords (e.g. Bentley, 2008) by using abstracts
which are less constrained than variables such as keywords and subject codes.

These case studies show scientometric studies can gain insight into
scientific communities, internally, externally, and temporally. While the
conclusions of such case studies often still involve subjective, quantitative analysis
by researchers with sufficient domain knowledge, quantitative data helps them to
reach the right conclusions. For example, while Chapter 3 shows that the EvoLang
community is dominated by one theoretical and methodological framework,
whereas other areas such as archeology and genetics are not present at all. It is up
to researchers within the community to change the status quo. However, armed
with such results, other researchers in the community might be more susceptible
to accepting attempts to change the field and include other areas of research. A
similar case exists for the analysis of cognitive linguistics in Chapter 4.

The research presented in this dissertation also ties in to the question
of how success in academia is defined and evaluated. Different approaches to
quantify academic success have been proposed and are currently used. Often,
measures such as citations for individuals (e.g. the h-index, Hirsch, 2005) and
impact factor for journals are used to quantify the impact of publications. An
even simpler approach is to simply look at the number of publications, which has
led to the publish or perish paradigm. More nuanced views are taken up by other
researchers, who identify which publications push the cognitive boundaries of fields
– that is, use novel ideas and methods. Using the lexical diversity of publication
titles, Milojević (2015) showed that while the number of scientific publications
has risen exponentially, the number of cognitive domains only expanded linearly.
Novel research does not always lead to higher citations, because not enough
people might publish (yet) on that topic. On the other hand, if a large number of
productive researchers publish a lot on the same, or a set of related topics, this will
lead to more citations by design. For example, in Chapter 3, one cluster of research
topic was shown to be dominant – by working on questions relevant to that
cluster, you have a higher chance of being cited than working in a smaller area of
comparative studies. However, this does not mean that the work is less relevant, or
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less important, and as noted, researchers within the field have identified the lack
of such studies as a weakness. Similarly, in cognitive linguistics (see Chapter 4),
work emphasizing the link between cognitive science and linguistics might not be
as highly cited within the cognitive linguistics community or the cognitive science
community as work that is seen as more central to either community. However,
such research might lead to novel results that can tell us more about the link
between language and cognition. This tension between the goals of an individual
and the goals of a community are further elaborated below. As the evaluation
of researchers has a large impact on their subsequent career, finding the right
measure is paramount, especially when citations are not an adequate measure.

While computational, quantitative analyses of science and academia are
not necessarily new (e.g. Newman, 2001), a lot of studies are purely descriptive
and neglect explanations behind their findings (e.g. Petersen, 2015). As evident
from the previous chapters, scientific structures are complex: They involve many
different agents in a hierarchical system, spanning different social and cultural
environments and involve a temporal aspect. Each publication – our measure
of interest in this dissertation – is the result of many decisions taken by the
authors on the paper. These decisions are reflected in the quantitative analyses
in the previous three chapters. Scientific publications do not emerge in a vacuum,
they are actively pursued by academics. The authors decide what to work on,
who to work with, and where to publish. But what factors influence their
decisions, and how so? For example, while graduate students are commonly
first authors, often the research topics and co-authors are heavily influenced by
their advisor. A non-tenured professor is under different pressure than a tenured
professor. Such environmental and social factors can heavily influence decision
making. Researchers have studied these factors from different angles, including
management studies, graph theory, cognitive science and others.

One interest of note has been group formation and composition. Here,
group or team describe the list of collaborators who publish a paper together. The
average team size of collaborators has steadily increased since World War II, along
with a general increase in scientific output (Bornmann & Mutz, 2015). Most
researchers believe that teams form to solve more complex problems because it
requires interdisciplinarity, thus drawing researchers from different universities
and fields, resulting in an increased team size across the board (Börner et al.,
2010). But how are these teams formed, and how do they affect research topics and
output? Chapter 3 has shown how group formation changes from conference to
conference, and that the resulting social network of collaborators is tied to research
topics. Research in graph theory has modeled how ideas spread through social
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networks (Kempe, Kleinberg, & Tardos, 2003), and how groups in these networks
are formed (Backstrom, Huttenlocher, Kleinberg, & Lan, 2006). Backstrom et al.
(2006) find that the probability of an individual joining a community depends on
how many friends (or, co-authors in the scientific realm) the individual has in
that community. This relationship holds for online communities as well as for
scientific conferences: A scientist is more likely to present at a conference if she
has collaborated with many authors at the conference, and members in an online
community are more likely to join a sub-community if they know many members
in it. Additionally, if those friends are also friends with each other, they are even
more likely to join. They also find that authors can be attracted to join a conference
due to a “hot topic” of high popularity.

Other studies have investigated how cumulative team formation affects
the topology of the resulting collaboration network (Guimera, Uzzi, Spiro, &
Amaral, 2005). Over time, scientific collaboration networks transition from a
collection of small disconnected clusters to one large cluster where the majority
of nodes (around 70%) within the network make up one large component of
connected nodes. This change from “disconnected school of thoughts” to an
“invisible college” happens through iterative team formation, both through the
addition of new team members and repeated collaborations with already existing
team members. Similar results were obtained in the study of EvoLang authors in
Chapter 3. In both studies, each node in the network has the same influence
on other nodes, however, this is usually not the case in academia, where the
lead author of a paper (usually) has higher control over both the paper content
and team composition. This is taken into account in a newer study, which
models team as both core and extended teams. Extended teams are core teams
plus additional members, where those members can form their own core teams
(e.g. if two principal investigators join forces along with their respective graduate
students). Modeling teams in this manner, Milojević (2014) shows that the size of
core teams rises only slowly, while extended teams expand more and more. The
increase in the average size of teams is thus mainly driven by the emergence of
“super-collaborations” of tens to hundreds of co-authors.

The rise of teams in science has also been analyzed with respect to their
output. Do large-scale teams perform better than smaller teams or individuals?
In general, most studies show that teams with more co-authors produce work
that is cited more often than studies with smaller teams (Guimera et al., 2005;

Milojević, 2014). More in-depth studies show more citations are associated
with collaborations with distinct prior publication history (Bhat et al., 2015),
long physical distance collaborations (Larivière, Haustein, & Börner, 2015) and
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collaborations between different universities (Uzzi, Mukherjee, Stringer, & Jones,
2013). Guimera et al. (2005) also show that journals with a high impact factor
consist of collaboration networks where the giant component includes the majority
of authors. Even though large teams are now more frequent than before, small
team collaborations still dominate the production of scientific articles in raw
numbers, thus leading cumulatively to more impact (Milojević, 2014).

These studies show that team formation has substantially changed over
time, and as they are tied directly to their citation count, we can also assume
that team formation affects the content of papers. However, so far, no study has
directly investigated this link. The three case studies in this dissertation have
shown that scientific content depends on internal and external structure of a
community and changes over time. Team composition could be one of the driving
factors between all these results. As teams change over time, communication
becomes more difficult and can lead to a decrease in performance (Huber &
Lewis, 2010; Mao, Mason, Suri, & Watts, 2016). A change in communication
can also lead to a change in research topics, especially when individuals in teams
pursue different goals. Ideas and concepts live in an environment, or habitat,
which influences how popular this concept is (Berger & Heath, 2005). Teams on
a smaller scale and the social network they live in thus have an effect on which
topics are selected to be worked on. For example, there might be pressure on
graduate students to conform to expected behavior and culture, and not stray
outside these bounds, limiting the range of topics they can work on. Additionally,
every team member is part of a larger network of all researchers/authors, which
can be seen as collectively storing available knowledge. The position of members
in the network affects how they access information contained within the network
and whether they have access to a diverse or limited set of resources (Guimera
et al., 2005). Such factors could influence how cognitive linguistics has mainly
stayed inside its conceptual boundaries (Chapter 4), or how fields differ in their
change over time (Chapter 5).

The studies above show how the interaction with other team members,
and a network of collaborators in general influences which topics are worked on.
However, these studies lack a coherent theory on why these behaviors emerge
in such settings. One overarching theory or framework to model these kinds of
influences and behaviors is the notion of collective behavior and group cognition
(Goldstone & Gureckis, 2009). The core tenet of collective behavior is that
individuals rarely, if ever, act in total isolation from other individuals, and thus it
is not sufficient to simply study individuals’ cognition. It is not possible to predict
the behavior of a group by simply studying the individuals on their own. The
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behavior of one individual influences the behavior of others, and often, this can
be indirect. For example, individuals often change the environment they interact
with, which in turn influences other individuals interacting with this environment
(stigmergy). A foot path over grass is often created by individuals repeatedly
using it, where each individual slightly adds to the emerging path, which in turns
make it more likely for other individuals to also use that path (Moussaid, Garnier,
Theraulaz, & Helbing, 2009). Groups are thus often more successful at coming to
a solution or creating a tangible output than single individuals (Theiner, Allen, &
Goldstone, 2010). A common example of this is the wisdom of the crowd, where the
mean estimate of a numeric quantity improves as more individuals give estimates.
Social information – for example, information of the estimates of the other group
members – can improve the overall accuracy of estimates, showing that collective
behavior can be better than the sum of all individual guesses (Granovskiy, Gold,
Sumpter, & Goldstone, 2015).

Collective behavior also informs us about how groups choose problems,
and how they choose strategies to solve these problems. Studies from cognitive
science have found that there is a systematic relationship between the difficulty of
a problem and the optimal organization of a group trying to solve it (Goldstone,
Wisdom, Robert, & Frey, 2013). Agent-based models have shown that agents
quickly adopt the traits of their neighbors and aggregate into like-minded clusters
of agents (Schelling, 1971; Axelrod, 1997). Another commonly observed pattern
is that individuals converge to the solution of the group in estimating tasks
(Granovskiy et al., 2015). In a study of music downloads, Salganik, Dodds, and
Watts (2006) showed that individuals are more likely to download music that their
peers have also downloaded, thus creating a snowball effect where few songs
dominate the market. These examples show how group cognition can restrict
the overall set of information and problems to a smaller subset available to the
community. Depending on the task and problem, this can be either positive or
negative, but for complex problems, this kind of exploitation of a previously found
solution is usually negative (Mason & Watts, 2012; Goldstone et al., 2013).

Instead, a trade-off between exploitation and exploration is needed to find
the best possible solution. Only exploration would result in underutilization of the
current solution and to “re-inventing the wheel”. Agent-based models show that
densely clustered and locally connected agents in a network facilitate exploration,
while the more exploitation is more suited to more globally connected agents.
Well isolated groups can be helpful if different regions of a problem space need
to be explored. Such groups cannot communicate with each other efficiently, and
thus, cannot converge to one common (sub-optimal) solution. The more complex
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a problem space is – for example, a problem that has multiple local maxima
solution and one global maximum solution – the more exploration is needed.
In some ways, these studies suggest that it is more beneficial if members in a
network are weakly or not at all connected as they will not converge to a local
maxima. However, it has been argued that agent based models do not model
actual collective behavior well, as they are subject to constraints and assumptions
that might not reflect the actual world accurately. In a large-scale experiment
on Amazon Mechanical Turk, Mason and Watts (2012) connect different network
topologies to problems with varying complexity. The experiment is essentially
a foraging game where connected groups of individuals have to find resources.
The resources are distributed according to the fitness function, and points are
awarded for finding resources. This means that depending on the complexity
of the fitness function and therefore the distribution of resources, exploitation or
exploration is necessary to collect the maximum number of points. Participants in
the experiment were aware of the location of their networked neighbors, and could
take this information into account when choosing where to position themselves.
In general, individuals connected through any kind of network perform better
than independent individuals of the same size. Furthermore, centrally connected
individuals in the network performed better (received a higher score) than more
peripheral members. Depending on the complexity of the network, exploration
can be harmful for individual members of the network, but helpful for the
collective (increasing average group score). Exploration is often a high risk, high
reward scenario where the individual member who is exploring will not always be
rewarded. Exploration can however also lead to finding the global maximum, and
subsequent exploitation by the collective. Members in local clusters tended to copy
whatever their neighbors did, which decreased mean performance of the network,
but led to an increase in scores for some of these individuals. Thus, there can be
competition between an overall group goal and individuals goals. In contrast to
other agent based models (see also Goldstone & Janssen, 2005), Mason and Watts
(2012) found that participants in the experiment always performed better when
in a well-connected network. If the global maximum (the best possible solution)
was found, this information was spread more efficiently to the rest of the network,
which in turn increased overall scores. Additionally, participants did not get stuck
in local maxima, and still explored to a similar degree than in the low-connected
networks. They conclude that the simple presence of a well-connected network
that can communicate efficiently is not enough for a premature convergence on
local maximum.
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Many of the aforementioned results have direct bearing on academia and
science. Collaborators form a connected social network, as seen in Chapter 3. The
structure of this network has a direct influence on research topics, which can be
explained by collective behavior: Research areas can be seen as complex problems
with a complex fitness or solution landscape, and the way communication is
transferred through the network can affect which solution is targeted by members
in the network. While no consensus has been reached on which exact network
topology is the most suited for scientific problems, it is clear that the relationship
is rather complex. In the scientific world, it is made even more complex by
the fact that communication does not simply happen through collaborations, but
also through citations, reading papers, and verbal communication at conferences.
Agent based models are not a suitable tool to accurately portray the complexities
of scientific communication, and even large scale experiments are unlikely to
portray the full complexity. Results from such studies are thus taken with a
grain of salt, nevertheless, they can help shed light on certain aspects of academic
organization and structure, and how they relate to dissemination of information.

The notion of exploration and exploration can also be applied directly to
the selection of research areas and the number of citations publications receive.
Scientists can either extend a current trend or an established theory in a field,
or explore new problems and solutions. Exploration here is clearly tied to more
risk: Exploring a new problem might not result in a publishable result and years
of no scientific output. However, if a solution is successfully found, the impact
of the resulting work is generally high. Academics who exploit established work
productively, can expect a modest but steady return, while scientists can achieve
high status by pursuing risky research (Foster, Rzhetsky, & Evans, 2015). While
these achievements are on an individual level, based on the collective search
studies we would expect risky research to be necessary for science to progress.
In a large scale analysis of scientific papers in biochemistry, Foster et al. (2015)
show that successful innovative papers receive a much higher citation count than
conservative strategy of extending current work. A similar result is obtained in a
citation study by Uzzi et al. (2013), in which papers with novel combinations of
citations – e.g. drawing from different fields – have a higher impact than papers
with conventional citations. However, even papers with novel combinations need
a high base of conventional papers to receive citations, meaning that papers still
need to be “anchored” in some way to established research.

Research areas are not the only resources available to researchers, as
funding describes resources in a more traditional way. Researchers need to
forage for these resources, just as they forage for research areas and topics.
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Grants provided by various agencies are one of the main funding sources for
scientists, and applying for grants requires a lot of time and usually does not
end in successful funding (Bollen, Crandall, & Junk, 2014). Viewing funding as a
foraging problem can help scientists to better allocate their resources, as well as
help funding agencies decide who to fund. For example, features such as team
composition and variety of cited references are related to the impact of scientific
work, and can thus be used to predict future impact of grant proposals. Similarly,
the research presented in Chapter 5 can be taken into account by both researchers
and funding agencies to better predict which topics will be popular in the future.

Collective behavior and group cognition thus seems to be a fitting
framework to study scientific behavior (see also Cronin, 2004). Academia is a
complex adaptive system, in which agents both pursue individual and collective
goals. Using theories grounded in cognitive science can reveal more about the
behavior at the individual and group level, and combined with the computational
tools used in this dissertations can shed light on both local (e.g. within a scientific
field) and global (e.g. across all fields) issues in academia. Globally, it can
help funding agencies to distribute funding, and predict successful collaborations.
Locally, researchers within scientific fields can use quantitative studies to examine
the current state of their community, and re-position themselves. Within the field
of scientometrics, researchers can benefit from adapting a more theory-driven line
of investigation, which combines quantitative findings with cognitive theories and
explanation.
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