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Abstract

Three Essays in Operations and Marketing
by
Te Ke
Doctor of Philosophy in Engineering — Industrial Engineering and Operations Research
University of California, Berkeley
Professor Zuo-Jun Max Shen, Co-chair

Professor Miguel Villas-Boas, Co-chair

My thesis consists of three essays in the field of operations management and marketing.

In the first essay, I study the problem of consumer search for information on multiple
products. When a consumer considers purchasing a product in a product category, the
consumer can gather information sequentially on several products. At each moment the
consumer can choose which product to gather more information on, and whether to stop
gathering information and purchase one of the products, or to exit market with no purchase.
Given costly information gathering, consumers end up not gathering complete information
on all the products, and need to make decisions under imperfect information. I solve for the
optimal search, switch, and purchase or exit behavior in such a setting, which is character-
ized by an optimal consideration set and a purchase threshold structure. It is shown that a
product is only considered for search or purchase if it has a sufficiently high expected util-
ity. Given multiple products in the consumer’s consideration set, the consumer only stops
searching for information and purchases a product if the difference between the expected
utilities of the top two products is greater than some threshold. Comparative statics show
that negative information correlation among products widens the purchase threshold, and so
does an increase in the number of the choices. Under my rational consumer model, I show
that choice overload can occur when consumers search or evaluate multiple alternatives be-
fore making a purchase decision. I also find that it is optimal for sellers of multiple products
to facilitate information search for low-valuation consumers, while obfuscate information for
those with high valuations.

In the second essay, I conduct an empirical study of peer effects of iPhone adoptions on
social networks. I use a unique data set from a provincial capital city in China, in a span
of over four years starting from iPhones first introduction to mainland China. I construct
a social network using six month’s call transactions between iPhone adopters and all other
users on a carrier’s network. Strength of social ties is measured by duration of calls. Based
on the network structure, I test whether an individual’s adoption decision is influenced by his
friends’ adoptions. A fixed-effect model shows that, on average, a friend’s adoption increases



one’s adoption probability in next month by 0.89%, and the marginal effect decreases in
the size of his current neighboring adopters. To further control for potential time-varying
correlated unobservables, I instrument adoptions of one’s friends by their birthdays, based on
the fact that consumers are more likely to adopt iPhones on birthdays. The IV estimation
shows a slightly smaller peer effect at 0.75%. I also investigate how network structures
modulate the magnitude of peer influence. My results show that peer effect is stronger when
the influencer has more friends or has a stronger relationship with the influence.

In the third essay, I study the problem of coordination of operations and marketing deci-
sions for new product introductions. In the industry with radical technology push or rapidly
changing customer preference, it is firms’ common wisdom to introduce high-end product
first, and follow by low-end product line extensions. A key decision in this “down-market
stretch” strategy is the introduction time. High inventory cost is pervasive in such industries,
but its impact has long been ignored during the presale planning stage. This essay takes a
first step towards filling this gap. I propose an integrated inventory (supply) and diffusion
(demand) framework, and analyze how inventory cost influences the introduction timing of
product line extensions, considering substitution effect among successive generations. I show
that under low inventory cost or frequent replenishment ordering policy, the optimal intro-
duction time indeed follows the well-known “Now ” or “Never” rule. However, sequential
introduction becomes optimal as the inventory holding gets more substantial or the product
life cycle gets shorter. The optimal introduction timing can increase or decrease with the
inventory cost depending on the marketplace setting, requiring a careful analysis.
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Chapter 1

Information Gathering on Multiple
Alternatives

1.1 Introduction

When a consumer considers purchasing a product in a product category, she can gather
information sequentially on several products.! Take the purchase of a car as an example.
A consumer has some initial expected utilities for the cars in the market. She decides to
start searching for information on one of the cars, and keeps gaining further information.
Without having complete information on that car, she might decide to switch, and search
for information on some other cars, and so on. At some point the consumer may decide
to stop searching and purchase one of the cars, or stop searching and leave the market
without making any purchase. This paper investigates what is a consumer’s optimal search,
switch and purchase or exit strategy. Two essential features of this problem are important to
highlight: First, a consumer would never gain full information on any of the products given
finite search, but will have to make a purchase or exit decision with imperfect information.
Second, searching for information is costly to the consumer, so she will want to limit the
extent of the search. These search costs could involve the physical cost of traveling to a
store, the opportunity cost of time spent searching for information, or the psychological cost
of processing information.

This general problem, in addition to applying to the case of a consumer searching for
information to choose one product, applies to any setting where a decision-maker searches
sequentially for information on multiple options. Search is costly and gradual, and any
potential benefit is realized at the end of the search process. Individuals have to make
this type of decision quite frequently: politicians seeking better public policies, managers
choosing promising research and development projects, individuals looking for jobs, employ-
ers recruiting suitable job candidates, and firms considering alternative suppliers. In the
consumer setting, the choice of almost any product or service can be seen through this per-

I'Throughout the paper the consumer is referred to as “she”.
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spective, from the choice of a car, to that of a house, a coat, a restaurant for dinner, telephone
service, etc. Proliferation of product information on the Internet and social media have made
more visible and quantifiable the importance of modeling gradual search for information and
purchase under imperfect information. While bearing in mind the generality of the problem,
we take consumer search in a product category as the leading example in the presentation
below.

Although the problem considered is central to choice in a market environment, it is
quite under-researched when all its dimensions are included. For the simpler case where all
information about an alternative could be learned in one search occasion, there is a large
literature on optimal search and some of its market implications (e.g., McCall 1970; Diamond
1971; Rothschild 1974; Weitzman 1979). This literature, however, does not consider the
possibility of gradual revelation of information throughout the search process. There is also
some literature on gradual learning when a single alternative is considered (e.g., Roberts
and Weitzman 1981, Moscarini and Smith 2001, Branco, Sun, and Villas-Boas 2012), and
the choice there is between adopting the alternative or not. When faced with more than one
alternative, as is the case considered in this paper, the problem becomes more complicated.
This is because opting for one alternative in a choice set means giving up potential high
payoffs from other alternatives about which the consumer has yet to learn more information.
This paper can then be seen as combining these two literatures, with gradual search for
information on multiple products.

Another related literature is the one on the multi-armed bandit problem (e.g., Git-
tins 1979; Whittle 1980; Bergemann and Véliméki 1996; Bolton and Harris 1999), where
a decision-maker learns about different options by trying them one for each period, while
earning some stochastic rewards along the way. This problem has an elegant result that
the optimal policy is to choose the arm with the highest Gittins index, which for each arm
only depends on what the decision-maker knows about that arm until then. However, the
problem considered here is different from the bandit problem in one major aspect. In the
case of gradual search for information considered here, a consumer optimally decides when to
stop searching and make a purchase. Therefore, the decision horizon is endogenous, and op-
timally determined by the decision maker. In contrast, multi-arm-bandit problems generally
presume an exogenously given decision horizon, which could be either finite or infinite. In
fact, it has been shown that when a decision maker is allowed to choose the optimal stopping
time, in general, the optimal policy does not include choosing the product with the highest
Gittins index (Glazebrook 1979; Bergman 1981).2

2In the appendix we summarize the intuition on the role of the Gittins index in multi-armed bandits, and
present a counter-example where the Gittins index policy is not the optimal policy in the gradual search for
information case considered here. There is also a literature in computer science trying to find algorithms close
to the optimal policy with multi-armed bandit problems with a limited budget (e.g., Guha and Munagala
2007, Hoffman, Shahriari, and Freitas 2013), which is close to gradual search for information if the shadow
price of the budget constraint is interpreted as the search cost of the consumer. The setting considered here
also enables us to solve the optimal search problem with information updates correlated across products,
which has not been possible in the multi-armed bandit problem (Gittins, Glazebrook, and Weber 1989).
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In this paper we present a framework where we compute the optimal policy for a consumer
searching for information across multiple products. We consider a continuous setting where
information about the product being searched changes according to a Brownian motion
(interpreted as gathering information on different attributes). In this setting we completely
characterize the optimal policy of a consumer in search for information in closed-form, by
an optimal consideration set and purchase threshold structure. Given a set of products, a
consumer will not consider them all for search or purchase under the optimal policy, because
search is costly. We show that a consumer will optimally construct her consideration set by
a simple rule: for a product to have a positive probability of being considered for purchase
and to remain in the consideration set, its expected utility has to exceed a threshold. Unlike
heuristics in previous studies (e.g., Hauser and Wernerfelt 1990; Feinberg and Huber 1996;
Hauser 2014), the consideration set in our model is based on the optimal decision rule to
a rational consumer model. Given a consumer’s consideration set, we further show that,
if the cost and informativeness of search are the same across products, a consumer always
searches for information on the product with the highest expected utility. Given that there
are multiple products in the consumer’s consideration set, she should keep searching for
information on the product until the difference in her expected utilities of the top two
products is sufficiently large. This reflects the idea of a consumer continuing to search for
information until one of the products clearly distinguishes itself as the best choice. This
purchase threshold structure, formalizes one’s intuition that consumers are looking at the
relative, instead of absolute value of a product, compared with the alternative options.

We also consider the case with different costs and informativeness of search across prod-
ucts, and find that the purchase threshold structure is now different. We show that a con-
sumer should first search on the product with the highest informativeness or lowest search
cost, when both products have the same expected utility; and she should search on that
product only, when her expected utility of the alternative product is sufficiently large. By
searching for information on the product with the highest informativeness of attributes, the
consumer learns more information per search cost incurred.

Based on the optimal search policy, we compute the purchase likelihood of a product given
a consumer’s initial expected utilities of all products, and the probability of no purchase at
all. We find that a higher expected utility of one product may lead, under some conditions,
to lower sales of all products combined. To understand this point, consider the case with
two products. A product with a high expected utility is definitely bought if the alternative
product has a low expected utility (such that the consumer does not search for information
on any product). Suppose now that the expected utility of the alternative is increased.
This encourages the consumer to continue searching on the two products. It is possible
that positive information realizes after search, in which case the consumer can still buy at
most one product; it is also possible that negative information realizes on both products,

Another related setting is considered in Callander (2011) where the search for the best alternative from a
structured continuum of alternatives is done by trial and error, and where the mapping from choices to
outcomes is represented as the realized path of a Brownian motion.
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in which case no product will be bought at all. Therefore, as the expected utility of the
alternative product gets higher, the total sales may decrease. Along the same logic, we find
that choice overload can occur: more choices available may render a consumer to search
more, which might lead to lower purchase likelihood. We also find that higher information
availability or a lower consumer search cost leads to lower sales of products with high expected
utilities. Therefore, a seller of multiple products should obfuscate information (e.g., increase
search costs) on products with high expected utilities, or for high-valuation consumers. This
finding parallels recent studies on obfuscation of price information from consumer search
(e.g., Gabaix and Laibson 2006; Ellison and Ellison 2009), though under a rather different
setting and rationale.

Information can be correlated across products: after a consumer obtains some information
on one product, she may get some partial inferences on the alternatives without searching
them. We consider the case of information correlation across products, and show that with
positive correlation, the consumer requires a smaller difference in expected utilities of the
products to choose one of the products, and a bigger difference for negative correlation. The
rationale behind this result is that, if information is positively correlated across products,
it is more difficult to get a big difference between expected utilities across products, and a
small difference can make a consumer choose to purchase one of them. Consumers get higher
expected utilities with negatively correlated products, due to a greater chance of one of the
products leading to a higher expected payoff. We focus mostly on the two-product case, but
also present results for the case with more than two products. We find that more choices of
products will widen a consumer’s purchase threshold.

The reminder of the paper is organized as follows. In the next section we present a basic
model of the two-product case, where products have the same informativeness of attributes
and search costs. Section 1.3 presents a consumer’s optimal search policy in that case, and
Section 1.4 presents results on the probabilities of purchase and no purchase. Section 1.5
considers the case of correlated information across products, and Section 1.6 presents what
happens when the informativeness of attributes or search costs are different across products.
Section 1.7 considers the case with more than two products. In Section 1.8 we present
numerical simulations of a multi-product monopoly’s pricing decisions given the consumer
search behavior. In section 1.9, we consider discounting, the possibility of a finite mass of
product attributes, and the possibility of decreasing informativeness of attributes for each
product. Section 1.10 concludes. All proofs are presented in the Appendix.

1.2 Basic Model

Consumer Problem

A consumer gathers information sequentially on n products before making a purchase de-
cision. Each product has many attributes that are uncertain to the consumer a priori.
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Consider cars for example. Consumers obtain information, such as brand, model, safety
design, fuel efficiency, warranty, and numerous other attributes, before deciding which car
to buy. Specifically, we model a product as a collection of T" attributes. A consumer’s utility
of product 7, U; is the sum of the utility derived from each attribute of the product.

T
Ui=v; + inh (1.1)
t=1

where v; is the consumer’s initial expected utility, which is known before search, and x;; is
the utility of attribute ¢, which is unknown before search. Without loss of generality, we
assume that Elz;] = 0.2 It is also assumed that z;; is independent identically distributed
across attribute ¢ for product 7.

The independence assumption is based on the fact that only unexpected information
changes one’s belief, along the same line of Samuelson (1965)’s celebrated proof that properly
anticipated stock prices fluctuate randomly. The identically distributed assumption implies
that information revealed per search action stays constant over time, which facilitates the
analysis and allows for the search problem to be stationary when 7" — oo. In the real world
consumers may start with the most important attributes, and the longer a consumer spends
searching for information, the less information per search she would expect to get. Simply
put, a consumer may become more and more certain, as she gets more and more information.
We abstract from this possibility in the main model. We discuss further this issue in Section
1.6, where we consider the case that different products can differ in information per search,
and in Section 1.9, where we consider numerically the case in which the informativeness
of each attribute decreases as more attributes are being checked. Allowing for constant
informativeness of attributes permits us to focus on the situation where purchase decisions
are done without full information. The search literature with one—step search (e.g., McCall
1970, Diamond 1971, Rothschild 1974) takes one extreme by assuming that a consumer
learns everything by one search action, in which case, the information per search is a step
function decreasing to zero after one search action. This model takes the other extreme by
assuming that the information gained per step of search stays constant over time, and that
after each step of search the variance of what is unknown remains unchanged. This model
identifies the critical effect of making purchase decisions without full information, and can
be seen as approximating situations where consumers have to make purchase decisions when
there is substantial information about the products that is still unknown given the search
costs, and the consumers make these decisions when checking product attributes that are of
similar importance (potentially after the consumer having already checked the most crucial
attributes).

Each time a consumer checks one attribute of product 7, the consumer pays a search cost
¢;, where we assume that the search costs for different products can be different, but are

3Suppose E[r;] # 0, then we can redefine z, = z;; — E[z] and v} = v; + E[x;]. Then we can rewrite
Ui=v,+ay, + -+, + -, where now E[z},] = 0.
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the same across attributes for the same product. Search costs are sunk once paid. After
checking t attributes on product 7, a consumer’s expected utility of the product u; is:*

t T t
ul(t) = Et [UZ] =v; + Z Tis + Et Z Iis] =v; + ins. (12)
s=1 s=t+1 s=1
Given initial expected utilities v;, search costs ¢;, and distribution of x;; for i =1,---,n and
t=1,---,T, a consumer’s optimal search problem is to dynamically decide which product

to search, and when to stop searching, and which product to buy or to buy none of them.
In order to make the search problem tractable we consider the case where each attribute is
increasingly subdivided into smaller attributes, and the search cost of each smaller attribute
converges to zero at the rate that attributes are subdivided, such that in the limit we have
a continuous-attribute analog of the discrete-attribute model, where the information in each
attribute has infinitesimal importance and the number of attributes go to infinity (see also
Bolton and Harris (1999) and Moscarini and Smith (2001) for a similar formulation). This
enable us to get a sharp characterization of consumers’ optimal search problem in closed form.
As in our previous example, safety design, as a broad category, can consist of many minute
attributes described in sellers’ descriptions, or in thousands of online customer reviews, etc.
Another way of thinking of an infinitesimal attribute of a product is as a quantum of valuable
information that can be discovered by a consumer by an infinitesimal search. Specifically,
under the continuous-attribute formulation, a consumer’s utility and conditional expected
utility of product ¢ are respectively,

where B;(t) is a Brownian motion with zero drift and volatility o2, where o; characterizes
the informativeness of the consumer’s search on product i.> The continuous fluctuation of a
consumer’s expected utility over search reflects the continuous flow of information amassed.
The last assumption that we make is that the mass of attributes is infinite, 7' — oo, which
allows the problem to be stationary. We consider the case with finite 7', numerically, in
Section 1.9.9

In this section, we develop a basic model of optimal search on multiple products, and
develop generalizations in Sections 1.5-1.9. Let us consider a consumer, who has two products
under consideration for purchase (i.e., n = 2), but is interested in buying at most one of

4The notation E;[-] is short for expectation conditioning on observed realized utilities x;1, - - -, 4.

5Given that the z;; are independently distributed, by the law of large numbers we have that the change
of expected utility follows a Brownian motion. For a detailed exposition of translating a discrete-attribute
model to a continuous-attribute model see Branco, Sun, and Villas-Boas (2012).

6 Alternatively, the solution that we present can be seen as the limit of the optimal solution for finite T
when T — oo.
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them. Before making a purchase decision, the consumer optimally chooses which product to
search for information on over time. Let us name the two products as product 1 and 2. The
two products are homogeneous in that they have the same informativeness of search o, as
well as the same unit search cost ¢. Heterogeneous products are discussed in Section 1.6.

We normalize the consumer’s reservation utility without any purchase to be zero. At
any point during the search process, the consumer has five choices: to search product 1;
to search product 2; to purchase product 1 and leave the market; to purchase product 2
and leave the market; and to exit the market without making any purchase. She makes
the decision based on her current expected utilities of the two products, u; and us.” It is
assumed that the information updates for the two products are uncorrelated. Specifically,
when a consumer searches information on product ¢, her expected utility of product ¢ gets
updated to u; + du;, with du; = dB;(t); whereas her expected utility of the alternative
remains unchanged. We relax the assumption to consider correlated information updates in
Section 1.5. It is straightforward to show that u; and wuy are sufficient statistics of the past
observations, therefore, we can define V'(uj,us) to be the consumer’s maximum expected
utility when she follows the optimal search policy in the future, given her current expected
utilities vy and us. In the language of dynamic programming, u; and us are state variables,
and V' (uq, ug) is known as the value function. Given that there is an infinite mass of attributes
to be checked, we have that V (uq,u2) does not depend on ¢ explicitly.

Note first that the maximum expected utility V (u;, u2) is non-decreasing in either of the
expected utilities u; or ug, as expected. We state this result in the following lemma (the
proof is provided in the appendix).

Lemma 1 A consumer’s mazximum expected utility V (ui,us) is non-decreasing in her cur-
rent expected utilities of the two products u; and us.

We now consider the dynamic problem of consumer search.

Dynamics

Let us define the search strategy of a consumer as the mapping from her current expected
utilities of the two products to her action. To determine a consumer’s optimal search strategy
we need to solve her maximum expected utility V' (uy,us) for all u; and uy. We characterize
V (u1,us) by considering the following two cases below.

In one case, if a consumer’s optimal decision is to leave the market immediately, with or
without a purchase, her maximum expected utility can be obtained directly as

V(uq,uz) = max{0, uy, us}. (1.5)

If her expected utilities of both products are negative, the consumer will exit without any
purchase; otherwise she will purchase the product with higher expected utility.

"We drop the argument ¢ of u;(t) below, when there is no confusion.
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Consider now the other case, in which it is optimal for the consumer to continue searching
for information. Given the continuation of search, a consumer determines which product to
search on by expected utility maximization, and pays some search cost. Let us consider an
infinitesimal search dt. A consumer’s current maximum expected utility V'(uy,us) should
satisfy the following equation,

V(uy,us) = —cdt + max {Ey, [V (u1 + duy,uz)], Es, [V (u1,ug + dusg)]}, (1.6)

where t; is the mass of attributes of product ¢ that has been already searched. The first term
on the right hand side is the search cost in time dt. The second term is the maximization
between the expected utility from searching for information on product 1 and that from
searching for information on product 2. Let us do a Taylor expansion of E;, [V (u; + duy, us)]
to get,

1
Ey [V(ur + duy,ug)] = Eyy [V(ug,ug) + Vi, dug + §Vululdu% + o (du})

2

= V(uy,uz)+ %Vululdt + o(dt), (1.7)

where V,, and V,,,, are the first- and second-order partial derivatives with respect to wuq,
respectively, and o(dt) represents the terms that converge to zero faster than dt. In writing
the second equality above, we have used the fact that E; [dui] = E; [dB(t;)] = 0, and
Ey, [du?] = Ey, [dB1(t1)?] = o%dt, which is due to the Ito’s Lemma. Similarly, we can do a
Taylor expansion of Ey, [V (uy, us + dug)], and substitute into equation (1.6) to obtain

2 2

V(ur, up) = —edt + max {V(ul, us) + %vumdt, V (ur, us) + %Vumdt} +o(dt), (1.8)

By canceling out the same terms and dividing by dt on both sides of the equation, we obtain

the following equality:
2
max{Vum, Vu2u2} _ =¢

This partial differential equation (1.9) completely characterizes a consumer’s search be-
havior when she is willing to continue searching for information. The consumer optimally
chooses to search product 1 if and only if

(1.9)

o2

2c
= > Viguss (1.10)

Vu1u1 -

and similarly for product 2. This optimality condition shows that a consumer optimally
chooses which product to search on based on the curvature instead of the slope of her value
function. This reflects the essence of information seeking: positive and negative information
can occur with equal odds, and, therefore, one should focus on the second-order derivative.

Equation (1.9) determines V' (uy, u2) when it is optimal for a consumer to continue search-
ing for information; equation (1.5) determines V' (u1,us) when it is optimal for a consumer
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to stop searching. Now we need to determine a boundary that separates the two regimes.
Within the boundary, it is optimal for a consumer to continue searching, with V (uy,us)
determined by equation (1.9). Beyond the boundary, it is optimal for the consumer to stop
searching for information and exit the market with or without a purchase, where V (uy, us)
is given by equation (1.5).

Boundary Conditions

Intuitively, when a consumer’s expected utility of product i is rather high, she will stop
searching for information and purchase product i immediately. This is the upper boundary
separating searching and purchasing. On the other hand, when a consumer’s expected util-
ities of both products are rather low, she will stop searching for information, and exit the
market without any purchase. This is the lower boundary condition separating searching
and exiting. Bearing these ideas in mind, we can construct the boundary conditions.

Let us define Ui(uj) as the purchase boundary for product i given the expected utility
u; for product j. Given u;, when u; is so high that it reaches Ui(uj), the consumer will be
indifferent between continuing searching for information and stopping to purchase product i.
Correspondingly, we have the following value matching condition at the purchase boundary:

V(Ul,UQ) |Ui:Ui(uj) = Ui(uj)a 1 7é] = 172 (111)

The left-hand side is the utility a consumer expects if she continues searching for informa-
tion; while the right-hand side is the expected utility a consumer can obtain right away by
purchasing product . The following lemma formalizes our intuition that as a consumer’s
expected utility of the alternative gets higher, the product under search must provide a
correspondingly higher expected utility to incentivize the consumer to stop searching and
purchase the product.

Lemma 2 The purchase boundary of product i, U,(u;) is non-decreasing in a consumer’s
expected utility of its alternative, u,;.

Equation (1.11) can be treated as the definition of the purchase boundary U;(-), but,
per se, does not suffice to determine the locus of the boundary. The missing element is
the smooth-pasting condition (e.g., Dixit 1993, p. 30). We make a technical assumption
that U,(+) is continuous and piecewise differentiable. The smooth-pasting condition at the
boundary of u; = U;(u;) is then

1 ifk=1 S,
Vuk (ul’uz) w=T s () — { 0 1f]{;7éz k= 1,2, 27&] = 1,2 (112)
The value matching condition can be thought of as a zero-order condition, and smooth-
pasting would be seen as the first-order condition across the boundary. The appendix
provides further intuition on the smooth-pasting conditions. Equations (1.11) and (1.12)

together constitute the complete set of conditions to determine the upper boundary U;(u;).
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Now let us turn our attention to the lower boundary conditions. Let us define U, (u) as
the ezit boundary for product i. Given wu;, when wu; is so low that it touches U,(u;), the
consumer will be indifferent between continuing searching and exiting the market with or
without a purchase. Correspondingly we have the following value matching condition at the
lower boundary of u; = U, (u;):

Vi(ur,u2) |y o) = max{0,u;}, i#j=12. (1.13)
Similarly we also need the following smooth-pasting conditions at the lower boundary:
Vi (U, ug) |ui:Q_(u]_) =0, k=1,2;i#£j=1,2. (1.14)

Equations (1.13) and (1.14) together constitute the complete set of conditions to deter-
mine the exit boundary U, (u).

Since the two products have the same search costs and informativeness of search, they
are symmetric in the search strategy space. Therefore, the purchase and exit boundaries
should be the same for the two products, which are denoted as U(-) and U(-) respectively in
the discussion that follows.®

This completes the mathematical formulation of a consumer’s optimal search problem. If
a consumer’s optimal decision is to stop searching and make a purchase decision, her maxi-
mum expected utility V'(uy, us) is given by equation (1.5). If a consumer’s optimal decision is
to continue searching for information, her maximum expected utility V' (u;, us) can be solved
by combining equation (1.9) with boundary conditions (1.11)-(1.14). Correspondingly, the
optimal search strategy can then be inferred from V(uy, us) by equations (1.5) and (1.10).

Technically, to solve equation (1.9) under boundary conditions (1.11)-(1.14) is not as
straightforward as to solve a boundary value problem of a partial differential equation (PDE),
due to the following two complexities: (1) Although equation (1.9) appears to be a common
parabolic PDE, there is a maximization operator in the equation; (2) The purchase and exit
boundaries are not given. A consumer needs to decide not only which product to search,
which is characterized by the PDE, but also when to stop searching and make a purchase
decision, which is characterized by the boundaries. We must solve the PDE and determine the
boundaries simultaneously. This is a so-called problem with ambiguous boundary conditions
(see, Peskir and Shiryaev 2006). We present an analytical solution to the problem in the
next section.

1.3 Optimal Search for Information

In this section we solve the problem of optimal search on two products analytically,

. . . 2 .
and characterize the comparative statics. Let us define a = -, which serves as a natural

8When the two products have different search costs and informativeness of search, purchase and exit
boundaries differ for different products. We analyze this case with heterogeneous products in Section 1.6.
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scale for a consumer’s expected utilities of the two products.” Let us also introduce the
product logarithm function (also known as the Lambert W function): W (z) defined as the
upper branch of the inverse function of z(W) = We"'. The following theorem presents the
solution, with proof in the appendix.

Theorem 1 There exists a unique solution V (uy,us) along with boundaries U(-) and U(-),
which satisfies equations (1.5), (1.9) and (1.11)-(1.14). The value function is obtained as:

( = [U(ug) — u1]2 +uy ifuy < uyp < Ulug) and uy > Ulug)
L W(ul) — u2]2 +uy ifur <uy < Ulwy) and ug > Uluy)

4a _Z

Vuy,u2) = ¢y if up > g(uz) (1.15)
Usg Zf Uy > U(Ul)
0 otherwise,

\

and the purchase and exit boundaries U(-) and U(-) are given as:

() = { u+ [1 +W (e_(%uﬂ)ﬂ a ifu>-—a (1.16)

a otherwise.
(u) = —a (relevant when u < —a). (1.17)

Note that the value function takes different forms in different regions. It actually belongs
to the class of the so-called viscosity solution, a generalization of the classical concept of a
solution to PDE, to allow for discontinuities and singularities (see Crandall, Ishii, and Lions
1992). The value function is quadratic in u; and U(u;) in each region for i # j € {1,2}.
Note also that the value function, as well as the boundary conditions, is highly nonlinear,
expressed in terms of product logarithm functions. Figure 1.1 presents the value function
V(u1,uz), as well as the payoff from search, which is defined by V' (uy, us) — max{uy, ug, 0},
i.e., the difference between the maximum expected utility when search is allowed and that
when search is not allowed.

We first note that the payoff from search is always non-negative. Although information
is er ante neutral, search indeed benefits consumers, because consumers have the option
to learn the products first before committing to buy a potentially poor fit. Like a stock
covered by its put option, search provides an upside possibility while protecting consumers
from a downside risk. We also find that the payoff from search peaks at u; = uy = 0, which
is the point where a consumer’s three options — purchase 1, purchase 2 and exit without
purchase — are most undistinguished. A consumer benefits most from search, when she is
most uncertain about which option to take without search. It is not hard to show that,

lim V(u,u) —u = 2. (1.18)

U—00 4:

9The term j‘l—z is the optimal purchase boundary in the single product case (Branco, Sun, and Villas-Boas
2012).
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Figure 1.1: Maximum expected utility (left panel) and payoff from search (right panel), given
a consumer’s current expected utilities.

It implies that a consumer can always benefit from search no matter how high her current
expected utilities are, as long as the two alternatives are not easily distinguished from each
other.

Given a consumer’s maximum expected utility V(uq,us), a consumer’s optimal search
strategy can be correspondingly determined, as presented in Figure 1.2. As delimited by
solid lines, a consumer’s expected utility space is segmented into five regions, corresponding
to her optimal choice of five actions given her expected utilities of the two products.

As shown by Figure 1.2, roughly speaking, when u; is significantly greater than u, a
consumer will purchase product 1 immediately and leave the market without any search;
when w is slightly greater than us, a consumer will search for more information on product
1 so as to distinguish between the two products; when u; and wuy are both very low, a
consumer will leave the market without any purchase. The following theorem completely
characterizes a consumer’s optimal search strategy rigorously.

Theorem 2 Suppose that both products have the same cost and informativeness of search.
Then, only products with expected utilities above —a constitute a consumer’s consideration
set for search and purchase. Given two products in her consideration set, the consumer
always searches for information on the one with higher expected utility. She stops searching
and purchases the product if the difference in her expected utilities of the two products is

above the purchase threshold of [1 +W (e_(%u“)ﬂ a, where u is her expected utility of the

alternative.'?

10Tf there is only one product in the consumer’s consideration set, one can obtain from Branco et al.
(2012) that the consumer stops searching for information and purchases the product when v hits a, and
stops searching for information and exits the market when w hits —a.
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Figure 1.2: Optimal search strategy on two products.

Throughout the whole paper, when talking about “purchase threshold”, we always mean
the threshold imposed on the difference between the expected utilities of the two products.
Note that a consumer’s purchase threshold narrows as her expected utility of the alternative
u increases, and converges to a relatively quickly. Therefore, a consumer with high expected
utilities stops searching and purchases the product if her expected utility of the product
exceeds that of the alternative by a. To summarize, we have the following corollary.

Corollary 1 The purchase threshold on the expected utility difference between the two prod-
ucts decreases as the expected utility of the alternative product increases, and converges to
a.

Given a consumer’s optimal search strategy, Figure 1.3 presents a simulation example of
a consumer’s dynamic search process. The consumer’s initial expected utilities are (.5a, .5a).
She starts by searching on product 1, then switches to search on product 2 shortly afterwards,
and then switches back and forth several times, before she finally decides to purchase product
2. The left panel in Figure 1.3 records the evolution of her expected utilities u(t) , us(t), as
well as her purchase boundaries U (uy(t)) and U (u;(t)) over time. It shows that when the
consumer searches on one product, her expected utility of this product follows a Brownian
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motion, and her expected utility of the alternative stays constant. The right panel shows
the trajectory of her expected utilities in the utility space.

Uz

End /

uy

Figure 1.3: An example of a consumer’s optimal search process.

The comparative statics are summarized in Proposition 1. We defer the proofs to Section
1.5, where we prove the proposition under a more general model setting.

Proposition 1 Given a consumer’s expected utility of the alternative product as w, her
purchase threshold of the product increases in a, i.e., increases in the informativeness of
search o, and decreases in the search costs c. Given a consumer’s expected utilities of the two
products as uy and ug, her mazimum expected utility V (uy,us) increases in a, i.e., increases
in the informativeness of search o, and decreases in the search costs c. As a goes to infinity,
V(uy,us) goes to infinity; as a goes to zero, V(uy,us) converges to max{uy, us,0}.

As search costs decrease, or informativeness of search increases, the purchase threshold
gets higher, and consequently a consumer searches more, and correspondingly gets more
benefit from information. Finally, note that the solution presented, and correspondingly
our basic model, is extremely parsimonious in parameterization, with essentially only one
parameter, a, given the complexity of the problem.

1.4 Purchase Likelihood

Given a consumer’s optimal search strategy, we can infer her purchase likelihood of each
product, starting from any initial state (uj,us). Let us define the purchase likelihood of
product i as P;(u,us). Then, according to symmetry, the purchase likelihood of product
2 starting from (uy,us) would be Py(ug,uy) = Py(uy,uz). The function Pj(uy,us) can be
calculated by invoking the Optional Stopping Theorem (see, Williams 1991, page 100) and
solving an ordinary differential equation (see details in the appendix).
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if u; < —a or uy > Uluy)

_ U(u;();m if ug <uy < U(u2) and u; > —a (1 19)
EZS:Z? U(u527UQ if —a< U < U < U(u1> :

if Uy Z U(UQ)

The left panel in Figure 1.4 presents an illustration of P;(u,us). From the figure, we
can see the intuitive result (proof is straightforward, thus omitted) that a consumer is more
likely to buy one product if her expected utility of the product is higher, or her expected
utility of the alternative is lower.

Figure 1.4: Purchase likelihood of product 1 (left), and of at least one product (right).

Let us define the purchase likelihood of at least one product to be P(uy,us) = Py (uq, us)+
Py(uy,uy). The right panel in Figure 1.4 presents an illustration of P(uy,us). It is interesting
to note that P(uj,us) does not always increase with u; or us. This means that a higher
expected utility of one product may lead to a lower purchase likelihood of the two products
combined. This will never happen in a classical setup without considering consumer search
behavior. To understand the intuition, let us consider a special case. Given a consumer’s
expected utilities of the two products as u; and us, if us is high enough such that the difference
between uy and u; is greater than the purchase threshold, the consumer will purchase product
2 immediately. In this case, the purchase likelihood is one. Now suppose that for some reason
(for example, promotions), the seller increases the consumer’s expected utility of product
1. As a result, the difference between u, and wu; is now below the purchase threshold. In
this case, the consumer will optimally search for more information before making a purchase
decision. After search, it is possible that the consumer likes the products more, in which
case, she will buy at most one of them; it is also possible that the consumer gets some
negative information on both products, and decides to buy nothing. In general, the purchase
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likelihood will be lower than one after the increase of u;. At an aggregated level, a higher
expected utility of one product might decrease the total sales. By the same argument, we can
show that more available alternatives may decrease the purchase likelihood.!! In this way,
we provide a rational explanation to consumer choice overload,'?> under the circumstance
that the consumer engages in gradual evaluations or information search before making a
choice. More options to choose from may lead a consumer to exert a greater effort level to
distinguish the best from the rest, and result in lower probability of choosing anything. It
is also noteworthy that more alternatives will never decrease a consumer’s ex ante welfare
in this case, because a consumer can simply ignore the added alternatives; however, it is
possible that more alternatives decrease a consumer’s ex post welfare.

It is also interesting to study the comparative statics of the consumers’ purchase like-
lihood. We describe the results in Figure 1.5, which characterizes how search costs and
informativeness of search influence a consumer’s purchase likelihoods (see proofs in the ap-
pendix). The left panel plots the sign of 0P (uy,uz)/0a as a function of u; and wug, and
the right panel plots the sign of 0P (uy,us)/0a. Grayness indicates the sign: if the sign is
positive, it is dark gray; if the sign is zero, it is light gray; if the sign is negative, it is white.
Thus, the purchase likelihood increases with informativeness and decreases with search costs
in the dark gray area; it decreases with informativeness and increases with search costs in the
white area; it stays constant in the light gray area. The dashed lines in both plots replicate
the boundaries of optimal search strategy shown in Figure 1.2.

Figure 1.5 can lead to the following observations.!® First, when a consumer’s expected
utilities of the two products are positive, her purchase likelihood of the product with high
(low) expected utility decreases (increases) when informativeness of search increases or search
costs decrease. Otherwise, her purchase likelihood of the product with positive (negative)
expected unity decreases (increases) when informativeness of search increases or search costs
decrease. Therefore, it is not always a wise decision for the seller to facilitate consumer
search by increasing informativeness of search or decreasing search costs. In particular,
higher informativeness of search or lower search costs may lead to lower purchase likelihood
of the high-valuation products.

Second, when a consumer’s expected utilities of at least one of the products is relatively
high, her purchase likelihood of the two products combined decreases when the informa-
tiveness of search increases or search costs decrease. To summarize, to increase information

HTntroduction of a new product can be equivalently viewed as increasing its expected utility from negative
infinity to some positive level.

12For lab and field experiments on choice overload, see, e.g., a meta-analytic review by Scheibehenne,
Greifeneder, and Todd (2010). See also Kuksov and Villas-Boas (2010) for an alternative explanation of
choice overload.

13The “protrusion” in the right panel of Figure 1.5 can be understood by considering the case with
only one product. It can be shown that given a consumer’s expected utility of u, her purchase likelihood
Plu)=35(1+%)if —a<u<a, Plu) =0if u < —a and P(u) = 1 if u > a. One can easily verify that
agiflu) is discontinuous at u = —a. Now in the case of two products, one can similarly show that W is

6P(u1 ,u]’)
da

discontinuous at u; = —a (i = 1,2), and thus is discontinuous at u; = —a (i = 1, 2).



CHAPTER 1. INFORMATION GATHERING ON MULTIPLE ALTERNATIVES 17

P

a 2a

Uy uy

Figure 1.5: Comparative statics of purchase likelihoods Pj(uy,us) and P(uy, uz).

availability and to facilitate consumer searching behavior will deteriorate sales for consumers
who have a high-valuation of at lead one product, while enhance sales for consumers who
have a low-valuation for both products. Therefore, a seller should carefully manage the in-
formation accessability of its products, even though information is ex ante neutral. If both
products are from the same seller, who cares about the total sales, then he should obfuscate
product information from consumer search if currently consumers already have a relatively
high valuation of either the two products.

1.5 Products with Correlated Information

Two houses in the same neighborhood share similar characteristics in transportation ac-
cessibility, quality of schools, crime statistics, climate, etc. Two car models under the same
brand share similar information in engine technology, driving performance, safety design,
warranty, etc. In general, two products under purchase consideration may share common
attributes. When a consumer searches for information on one product, she will get some
partial information on the other at the same time. Sometimes, however, positive information
from one product speaks negatively of the other. For example, when searching for informa-
tion on electric vehicles, consumers may get reviews of disadvantages of traditional gasoline
vehicles. That is, information can be correlated either positively or negatively between the
two products under consideration.
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Possible information correlation among products has so far not been considered in our
basic model in Section 1.2. In this section, we extend our basic model to study the problem
of optimal search on two products with correlated information. In particular, instead of
assuming uncorrelated utility updates, we consider the following utility updating dynamics
in a consumer’s search process. When a consumer searches for information on product 1, she
gets a utility update for product 1 as du; = dB;(t;); meanwhile she also gets some partial
information on product 2, with utility update as dus = pduy. Similarly, when a consumer
spends dt in searching for information on product 2, she gets utility update dusy for product
2, and du; = pdusy for product 1. The constant p characterizes the information correlation
between the two products. Intuitively, searching one product should not consistently reveal
more information about others, hence it is stipulated that |p| < 1. When p = 0, we go back to
our basic model without inter-product information correlation. As above, we can construct
the Bellman equation as well as the boundary conditions for the problem of optimal search
on two informationally correlated products.

By taking dt ahead, we have the following iterative relationship:

V(uy,ug) = —cdt+max {Ey, [V (uy + duy, ug + pduy)|, Ee, [V (uy + pdug, us + dug)]}. (1.20)

Similarly we can reduce the equation above as the following partial differential equation:

2c

max {Vum 4 Vs Vi + pQVum} + 2V = 5. (1.21)

Despite the slightly increased complexity, one can still obtain that a consumer optimally
chooses to search product 1, if and only if

Viaur = Vigugs (1.22)

and vice versa for product 2, as long as |p| < 1.

As for boundary conditions, it turns out that equations (1.11)-(1.14) still apply here
exactly. It may appear straightforward at first glance, but the smooth-pasting condition for
the general case here with p # 0 is not a trivial result. One should note that we now have
a constrained multi-dimensional Brownian motion: a consumer’s expected utility can only
move along the direction with a slope equal to either p or %. We provide the derivation of
the smooth-pasting conditions in the appendix. The following theorem presents the solution
for the value function.

Theorem 3 There exists a unique solution V (uy,uz) along with boundaries U(-) and U(-),
which satisfies equation (1.5) and (1.21) under boundary conditions (1.11)-(1.14). The value
function is

( 2

= [(/]\(ul,m) — ul] +ur if ug < up < Ulug) and uy > Ulug)
]2

L [ﬁ(u2,u1) —uy| +uy if uy <ug < Uluy) and ug > U(uy)

_ 4a
V(uy,ug) = " s > T(ug) (1.23)
Us if uy > U(uy)

0 otherwise,
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where ﬁ(ui,uj), with support on {(us, u;)|u; < u; < U(w;) and w; > —a}, is defined as

Uj—pU; 1tp — 2(u]-2—pui) 71—2p—2p2
~ -3 _Fr _ _ a — ) o .
U(ui,uj) = 1 + (1 ,0) |:1 + W (1—,06 (1=p)=(1+p) 1—p >:| a Uj > PU; (1 p)a
a otherwise.
B (1.24)
The purchase and exit boundaries U(-) and U(-) are given as
o) W (S ) | fus —(1—2
Tlu) — u+ (1 —p?) e (-r 2+ 1la ifu>—(1-2pa (1.25)
a otherwise.
U(u) = —a (relevant when u < —a). (1.26)

The value function above is similar to its counterpart in the uncorrelated case in Theorem
1, except that V(up, us) is no longer quadratic in the purchase boundary U (u;), rather it is
quadratic in U (wi,u;). In fact, U (wi,u;) is also related to the concept of purchase boundary.
Given a consumer’s current expected utilities of the two products u; > wuy, Theorem 3
states that she will search for information on product 1. During the search process, she
gets new information on product 1 as well as some partial new information on product
2. If she has accumulated enough positive information on product 1, she will purchase
product 1 at some point. The term U(uq,us) is her expected utility of product 1 at the
boundary when she is indifferent between continuing searching for information on product
1 and purchasing product 1, given that she starts from (uy,us). The model is still quite
parsimonious, parameterized by a and p only. Figure 1.6 presents an illustration of the value
function V' (uy, ug).

Figure 1.6: Maximum expected utility of two products with correlated information.
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With information spillovers between products, a consumer’s optimal search strategy is
similar to the case without information correlation. Inter-product information correlation
impacts both a consumer’s consideration set and the purchase threshold. The following
theorem characterizes a consumer’s optimal search strategy. The corresponding corollary
describes the optimal search strategy when the expected utilities of the two products are
relatively high.

Theorem 4 With information correlated between two products, a consumer considers a
product for search and purchase if and only if her expected utility of the product is above
—a + max{p(u + a),0}, where u is her expected utility of the alternative product, and p is
the information correlation coefficient. Given two products in her consideration set, the con-
sumer always searches for information on the product with higher expected utility. She stops
searching for information and purchases the product if the difference in her expected utilities

oy 1-dptp?
of the two products is above the purchase threshold of (1 — p*)W (e G amp? ) a+(1—
p)a.

Corollary 2 The purchase threshold on the expected utility difference between the two prod-
ucts decreases as the expected utility of the alternative product increases, and converges to

(1—p)a.

Figure 1.7 illustrates a consumer’s optimal search strategy given her current expected
utilities of the two products, under both positive and negative information correlation.
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Figure 1.7: Optimal search strategy on two products with correlated information.
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The comparative statics are summarized in Proposition 2.

Proposition 2 Given a consumer’s expected utility of the alternative product w, her pur-
chase threshold of the product increases in a and decreases in the information correlation p.
Given a consumer’s expected utilities of the two products uy and us, her mazimum expected
utility V (uy, ug) increases in a and decreases in the information correlation p.

As information correlation gets higher, a consumer will impose a narrower purchase
threshold on the difference between her expected utilities of the two products. Therefore,
two products with positive information correlation compete with each other more fiercely: a
small informational advantage can render a consumer to choose one product over the other.
Interestingly, a consumer expects higher expected utility when searching for information over
two products with negative information correlation. In fact, negative information correlation
benefits consumers by playing a role of insurance. During the search process, as a consumer
is downgrading one product, she favors the other product more at the same time. This
increases a consumer’s likelihood of purchase, and thus her expected utility.

For a firm selling two products, it would then be better to sell products with negative
correlation in attribute fit than positive correlation, as products with a negative correlation
lead to a greater probability of one of the products being bought by any given consumer.
Furthermore, in terms of obfuscation strategies, obfuscation would be even more beneficial
in the case of positive correlation if the expected valuations are high, as bad information on
one product also means a negative shock on the other product. On the other hand, the firm
would tend to reduce obfuscation and facilitate search in the case of negatively correlated
products, as in that case bad news about one product means good news about the other
product.

1.6 Heterogeneous Products

Another natural extension to our basic model is to consider heterogeneous products,
where searching cost ¢; and informativeness coefficient o; are different across products. We
restrict our discussion on two products with uncorrelated information only.

The problem formulation is similar to the homogeneous case. Given ¢; and o; for product
i (i =1,2), equation (1.9) now would be

max {—201 + 02V, —2C + USVMW} = 0. (1.27)
A consumer optimally chooses to search product 1, if and only if
2C1 202
Vu1u1 = O'_% and VUQUQ S 0'_57 (128)

and wice versa for product 2. The boundary conditions (1.11)-(1.14) apply directly here by
recognizing that the purchase boundary U;(u) and exit boundary U,(u) are specific for each
product i.
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By defining a; = Z—i (1 = 1,2), the optimal search problem is, in fact, completely charac-
terized by only two parameters: a; and ay. From a mathematical perspective, the optimal
search problem with heterogeneous products is a nontrivial extension of that in the homo-
geneous case. The new complexity comes from the difficulty of pinning down the boundary
between searching product 1 and searching product 2. Nevertheless, the problem can still be
solved analytically. The purchase boundary U;(u) now cannot be written down explicitly,
and instead is given implicitly. Theorem 9, provided in the appendix, presents the solution
of V'(uy,uy). The consumer’s optimal search strategy is described by the following theorem.
Theorem 5 Let a consumer’s expected utility of product © be u;. Product i will be consid-

ered for search and purchase if and only if u; > —a;. Suppose that two products are in
varas | ( Vai-va

2 Vaitaz
will keep searching for information on product 1 only, until either she purchases product 1

when uy exceeds us by ay, or she purchases product 2 when uy exceeds uy by a,. Otherwise,
a consumer will keep searching for information on product i if her expected utility of prod-
uct © plus the purchase threshold of product i exceeds that of the alternative product, i.e.,
w; + U;(u;) > wj + Uj(w;), until either she switches to search for information on the alter-
native when u; + U;(u;) < uj + U;(u;), or she purchases product i when her expected utility
of product i exceeds that of the alternative by some threshold.

a consumer’s consideration set with a; > ag. If ug > — ), the consumer

Figure 1.8 presents a consumer’s optimal search strategy for a; = 2 and as = 1. We
find that the optimal consideration set still applies for the case with heterogeneous products.
When a consumer’s expected utility of product i is lower than —a;, she will never consider this
product. However, the purchase threshold structure is new and different. Consumers who
have high expected utilities for both products only search for information on one product,
the one with highest a;. Denote +* = arg max; a;. During the search process, the consumer
imposes a constant purchase threshold of a;+ on the expected utility difference of the two
products. When her expected utility of product ¢* exceeds that of the alternative by a;«, she
purchases product ¢* right away; otherwise, when her expected utility of product i* is below
that of the alternative by a;«, she purchases the alternative product right away. Therefore,
the alternative product only serves as a reservation option, and the consumer will never
search for information on it. With sufficiently high expected utilities of the two products, a
consumer will not exit the market without a purchase, so her primary objective is to decide
which product is a better choice. To achieve this goal, it is optimal for her to search on
the product with the highest information per search cost, which is exactly the one with the
highest a;.

Note that in this case, the purchase threshold is greater for the product that has the
highest informativeness of search than for the other product. Therefore, it is easier to get
immediate purchase when the product with the lowest informativeness of search has a high
expected valuation and the alternative product has a sufficiently low expected valuation,
than when the product with the highest informativeness has a high expected valuation and
the alternative product has a sufficiently low expected valuation. That is, in order to get
immediate purchase it is easier to reduce the expected utility of the product with the highest
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informativeness of search, than to reduce the expected utility of the product with lowest
informativeness of search. This would then lead to a benefit for the firm to try to sell the
product with the lowest informativeness of search, if both expected valuations are relatively
high. On the other hand, if the expected valuations are relatively low, the product with
the highest informativeness of search has a greater advantage, because the exit threshold is
lower.

611:2, a2:1
U

Purhcase #2

Search #2 Search #1

a‘l > i
/ Purchase #1

—ay -

Exit without

Purchase

Figure 1.8: Optimal search strategy on two heterogeneous products.

The result that consumers with sufficiently high expected utilities only search for in-
formation on one of the products (the one that delivers more information per search cost)
should be interpreted with caution. As preluded, this result depends on the assumption of
identical distribution of utilities of attributes, which in our continuous-time model, is equiv-
alent to the assumption that the informativeness stays constant during the search process.
In a setting where informativeness decreases as a consumer accumulates more information,
the result above will no longer hold. Intuitively, a consumer would search first on the prod-
uct that provides more information per search cost initially, but then after some time the
informativeness of that product decreases, and then the consumer will optimally switch to
search for information on the alternative product, which now provides higher information
per search cost.

The following proposition also comes from Theorem 9 in the Appendix. It states that a
consumer prefers to search for information on the product with lower search costs or higher
informativeness of search, given her expected utilities of the two products being equal. Low
search costs and high informativeness of search can prioritize a product with low expected
utility for being searched.
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Proposition 3 Given her expected utilities of the two products being equal, it is optimal for
a consumer to search product ¢, if a; > a;, i.e., if the search cost for product i is smaller or
the informativeness of search for product i is greater than for the other product.

1.7 More than Two Products

In this section, we extend our basic model of optimal search on two products to the
case of more than two products. We first solve the problem of optimal search on three
products analytically, and find that in general, the consideration set and purchase threshold
structures extend robustly to the case with three products. This case allows us also to obtain
new insights regarding the purchase threshold.

Let us consider the optimal search problem with three products that have the same
informativeness of search and search costs, and without information correlation. At any time,
a consumer optimally chooses which product to search on, based on her current expected
utilities of the three products as (uq,us,u3). A consumer’s maximum expected utility is
defined as V'(uy,us,us). If a consumer’s optimal decision is to stop searching and make a
purchase decision right away, we have

V (w1, ug, uz) = max{uy, us, us, 0}. (1.29)

If the consumer chooses to continue searching for information, we have that for 7,7 = 1,2, 3,

max {Vulul, Visug > Vugus ¢ = ﬁ
Value Matching at Upper Boundary: 'V (uq,usg, us) ‘m:U(um,qu) = U(Uiy1, Uiyo)
Smooth-Pasting at Upper Boundary: Vi, (u1,uz,us3) |ui:U(ui+1’ui+2) = 04
Value Matching at Lower Boundary: V (uq,ug,us) |ui:Q(ui+17ui+2) = max{0, u; 11, U2}
Smooth-Pasting at Lower Boundary: Vi, (u1, 2, u3) |y, —puiyur0) =0

(1.30)
where we have used the cyclic indexing rule, with u; = 4; moa 3 for # > 3, and where d;; = 1
if : = 7, and 6;; = 0 if ¢ # 5. The function U (u;, u;) is the purchase boundary. Given wu; and
uj, when wuy hits U (u;, u;), the consumer will purchase product k right away. The function
Ul(u;, uj) is the exit boundary, defined accordingly. The following results present the solution
to the optimal search problem with three products.

Theorem 6 There ezists a unique solution V (uy,us,us), which satisfies equations (1.29)
and (1.30). Fori=1,2,3,

2 . .
4—1(1 W(WH, Uiro) — Uz] +u; if — A, Uit 1, Uiz S U < U(tis1, Uit2)
V(U1,U2,U3) = Uj if uy > U(ui+17ui+2) (1-31)
0 otherwise.
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The purchase and exit boundaries, U(-) and U(-) for product k, with uy > max{u;, u;}, are
given as

9“2/\]
4(1
_o_ LT TRV .
Upj + |1+W e a Y a if uj,u; > —a
4(1

Ulug,uj) = — :
/ Ul(u;) if up > —a > u;
U(u,) if uj > —a > u;
L @ otherwise.
Uui,uj) = —a (uu; < —a),

where w;y; = max{u;, u;} and u;n; = min{u;, u;}.

The solution structure for the three-product case looks similar to the one for the two-
product case. The maximum expected utility V' (uy, us, ug) is still quadratic in the purchase
boundary. In fact, this can be shown to be true for any number of products. However,
the purchase boundary U (u;, u;) now becomes more complicated. We provide intuition on

U(ui,u;) below. A consumer’s optimal search strategy is characterized by the following
theorem, also illustrated in Figure 1.9.

Theorem 7 Only products with expected utility above —a constitute a consumer’s considera-
tion set for search and purchase. Given three products in her consideration set, the consumer
always searches for information on the one with the highest expected utility. She stops search-
ing and makes a purchase if the difference in her expected utilities of the top two is above some
purchase threshold, which depends on the consumer’s expected utilities of the alternatives.

The following corollary presents the monotonicity and asymptotics of the purchase thresh-
old with respect to the expected utilities of the alternative products.

Corollary 3 Suppose ug > wiy;. The purchase threshold of product k with respect to the
other two alternatives, U(u;,u;) — u;y; decreases with w;,; and increases with w;s;, and
satisfies that,

Ului, uj) — iy —

2(“1’\/;““1’/\]’)

1
14+ W <§eé_a>] a, as u;, u; — +00. (1.32)

Recall that, in the two-product case, a consumer imposes a purchase threshold on the
difference between her expected utilities of the two products, and the purchase threshold
gets narrower as her expected utility of the alternative product gets higher, and converges to
a. Now with three products, we show that a consumer imposes a purchase threshold on the
difference between her expected utilities of the top two products, and the purchase threshold
still gets narrower as her expected utility of the second alternative product gets higher,
but gets wider as her expected utility of the third alternative product gets higher. As the
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Figure 1.9: Optimal search strategy with three products.

expected utility of the third alternative gets higher, a consumer has a higher “reservation”,
therefore she needs to see a bigger difference between the top two to convince her to buy one
product over the other. Moreover, the asymptotics show that as the expected utility of the

second alternative goes to infinity, the purchase threshold converges to [1 + W <%e%’2%u ﬂ a,

which is greater than a. Consequently, more alternatives widen a consumer’s purchase
threshold, as more alternatives provoke more search efforts, and a consumer needs to see a
bigger difference between the top two to convince her to buy one product over the other.

The problem of optimal search for information on four or more products can be stated
and obtained in a similar way, with increased computational complexity. Yet it is interesting
to revisit Bergman (1981)’s findings for the case of an infinite number of products with
equal initial expected utilities. For this case Bergman (1981) shows that the optimal search
strategy is to search information on the product with the highest Gittins index.

Consider a consumer’s expected utilities of infinite number of products being equal as ug
initially. If she has an outside option with value K, the maximum expected utility of search
for information when only one product is available can be obtained as follows

1
V(up; K) = 4—(a+K—u0)2+u0. (1.33)

a
The Gittins index for a product can then be obtained as the value of the outside option that
equates the maximum expected utility of choosing one arm (i.e., searching information on
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one product) with the value of the outside option, V(ugp; K) = K (Whittle 1980). Solving
for K, we obtain the Gittins index K = ug + a.

The consumer’s optimal search strategy is then to continue searching information on one
product, until her expected utility of the product either decreases below ug, or increases
above ug+ 2a. In the former case, the consumer picks another product to search information
on. In the latter case, she purchases the product and leaves the market. That is, given
an infinite number of products with equal initial expected utilities, a consumer imposes a
constant purchase threshold of 2a on the difference of her expected utilities between the
product under search and the remaining unsearched products. In contrast, a high-valuation
consumer imposes a purchase threshold of a for two products, and a purchase threshold
of %a for three products (if the two other products have the same expected utility). The
purchase threshold widens as a consumer takes more products under consideration, as she
has more options to acquire a higher payoff, but that purchase threshold on the difference
of her expected utilities is bounded from above by 2a.

1.8 Firm’s Pricing Decision

In this section, we present some numerical simulations on a multi-product monopoly’s
pricing decisions given that consumers search for product information before making a pur-
chase decision. Consider a seller of two products, based on our basic model. We assume
that consumers observe the seller’s prices before engaging in any search. Consumers are
homogeneous in their initial valuations of the two products, as ¢; and ¢;. Consumers’ initial
expected utility of product ¢ is thus, v; = ¢; — p;. Because all consumers’ preferences are
aligned, the two products can be considered as ex ante vertically differentiated.'* It is inter-
esting to notice that we are able to study the vertical differentiation problem under ex ante
homogeneous consumers, as consumers will become heterogenous in their valuations after
search.

Without loss of generality, we assume the marginal costs of both products to be zero.!
The seller chooses prices so as to maximize the expected total profit

5

g}%plﬂ(ql — P1,q2 — p2) + p2Pa(qi — p1, g2 — D2). (1.34)

where P;(u,us) has been defined in Section 1.4, as the purchase likelihood of product i given
a consumer’s current expected utilities of the two products as u; and us. Let us denote the
optimal prices as p} and p;. Without solving the profit optimization problem, we can show
the following lemma, with proof in the appendix.

Lemma 3 If ¢4 > q2 > —a, we have g1 — p} > q2 — p5.

“For consumer search on horizontally differentiated products, see, e.g., Wernerfelt (1994).
15Tn the case with marginal cost for product i, g; > 0, we can redefine ¢ = v; — g; and p; = p; — g;, and
then we get back to the profit optimization problem with zero marginal costs.
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Under the optimal pricing policy, consumers expect higher expected utility from the product
with higher valuation. From Theorem 2, we know that a consumer always searches on the
product with higher expected utility, therefore given the optimal pricing policy, homoge-
neous consumers alway search on the product with higher valuation. Figure 1.10 presents a
numerical simulation of a consumer’s optimal search strategy in her valuation space, under
the seller’ optimal pricing policy.!®

q2
A
Purchase #2
3a
Search #2 Purchase #1
-a 0 3a
1 > ql
' Search #1
I g
Exit without
Purchase

Figure 1.10: Homogeneous consumers’ optimal search strategy on two products, given a
monopolistic seller’s optimal pricing policy.

Compared with Figure 1.2, a clear feature is that consumers with high valuations will be
incentivized to purchase directly without any search. Consistent with our previous observa-
tions in Section 1.4, high-valuation consumers’ search behavior will harm the seller’s profit,
thus are deterred from search by the firm offering a sufficiently low price such that those
consumers choose to purchase immediately without search. Figure 1.11 shows the seller’s
optimal price for product 1 and the maximum profit.!” The optimal price for product 2 can
be obtained by symmetry, p3(q1,q2) = pi(g2,q1). We can see that when a consumer’s valu-
ations of the two products are relatively high and close to each other, the seller deters her
search behavior and incentivizes her to purchase immediately by imposing a price difference
between the two products.

16We cannot solve the optimization problem (1.34) analytically. This problem involves a constrained
non-convex global optimization problem that makes it hard to obtain analytical solutions. We explain our
approach in the Appendix.

I"When a product is neither searched nor purchased, its price is not uniquely determined. In this case,
we stipulate the price to be its infimum. See the Appendix for more details.
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Figure 1.11: A monopolistic seller’s optimal price for product 1, pj and maximum profit, 7*.

We can also check how the optimal prices and maximum profits vary with a. We find that
01*(q1, g2)/0a is similar to P (uy,us)/0a shown in Figure 1.5. The seller’s profit increases
with search costs while it decreases with informativeness of search if and only if ¢; and ¢, are
relatively high. Therefore, in the case that a seller’s objective is to maximize profit instead of
sales, we obtain again our previous managerial implications that a seller should deter search
for high-valuation consumers, while facilitate search for the low-valuation consumers.

1.9 Discounting, Finite Mass of Attributes, and
Decreasing Informativeness

Discounting

In this section, we consider three more extensions to the basic model: discounting, finite
mass of attributes, and decreasing informativeness of attributes. We have so far implicitly
assumed that a consumer searches fairly fast and there is no time discounting in the search
process. In some cases a consumer can search for information for longer time horizons, and
it may be interesting in those cases to consider discounting the consumer’s future search
efforts as well as the payoff from purchase. To incorporate discounting, we can reformulate
equation (1.6) as,

V(uy, up) = —cdt + e ™ max {Ey, [V (uy + duy, us)], By, [V (w1, ug + duy)]} , (1.35)
where 7 is the time discounting factor. Using the same technique as above, we can rewrite
the above equation as the following partial differential equation,

2 2
max {Vu1u17 Vuzuz} = _c + —ZV (136)
g

o2
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which looks almost the same as equation (1.9), except that now we have an extra term
%V on the right hand side of the equation. The boundary conditions are still exactly
given by equations (1.11)-(1.14), which, together with equation (1.36) and (1.5), constitute
the mathematical problem of optimal search with time discounting. Theorem 10 in the
appendix completely characterizes the optimal solution, where the value function V'(uy, us)
can be explicitly expressed as a function of the purchase boundary U (u), which is no longer
in quadratic form as in the basic model. However, U(u) cannot be expressed explicitly. It is
determined by an ordinary differential equation with a boundary condition. The following
theorem characterizes a consumer’s optimal search strategy (the proof is straightforward
given Theorem 10, thus omitted).

Theorem 8 Only products with expected utilities above j—; + g—i — &= \/LQ? In {\ / %—k

2 . . . .
\/ 5z + 1| constitute a consumer’s consideration set for search and purchase. Given two

products in her consideration set, the consumer always searches for information on the one
with higher expected utility. She stops searching and purchases the product if the difference
in her expected utilities of the two products is above some purchase threshold, which depends
on her current expected utility of the alternative.

From the theorem above, we find that the way for a consumer to optimally constitute her
consideration set is almost the same as in the basic model, except that the consumer now has

a higher bar for selection. In fact, we can show that 4/ % + g—i—f—ﬁ In [\ / % + % + 11

increases with . The more impatient a consumer is, the higher a bar she would impose on the
expected utilities when selecting products into her consideration set. The purchase threshold
structure is almost the same (consumers still search on the product with higher expected
utility), but the asymptotics are different, as shown by the following corollary (with proof
in the appendix).

Corollary 4 With time discounting r > 0, the purchase threshold on the expected utility
difference between the two products decreases as the expected utility of the alternative product
increases, and converges to zero.

As before, the purchase threshold decreases with the expected utility of the alternative, but
now converges to zero, instead of a positive constant as in the basic model. This is easy
to understand from equation (1.36): with time discounting, a consumer essentially bears
two kinds of costs: an explicit search cost modeled by ¢, and an implicit cost due to delays
of the purchase V. Therefore, impatient high-valuation consumers will search less before
making a purchase. Figure 1.12 illustrates a consumer’s optimal search strategy with time
discounting, which seems to suggest that discounting does not affect too much the optimal
search strategy.
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Figure 1.12: Optimal search strategy on two products with time discounting. The black and
dashed lines represent the case with » = .1 and r = .5 respectively. The original case of
r = 0 is presented by the gray lines.

Finite Mass of Attributes

Consider now the possibility of a finite mass of attributes, i.e., T" is finite. Given finite
T, the optimal search problem becomes intractable analytically, but we can use numerical
simulations to consider the consumers’ optimal search behavior. With finite 7', as a consumer
searches attributes of the different products the consumer becomes less demanding on the
difference of expected utilities to make a choice. At the beginning of the search process it
is also interesting to consider how the optimal search process for finite mass of T compares
with the case of infinite 7. Figure 1.13 presents a comparison of the optimal strategies
between the analytical solution with infinite 7" and a numerical solution with finite 7', for
T = 10,c = 1, and o0 = 10. We can see that even for a relatively big a (large o, small
¢) and relatively small T'; our analytical solution with infinite 7" seems to approximate the
numerical solution with finite T" relatively well.

Decreasing Informativeness

A natural framework to incorporate decreasing informativeness is to model a consumer search
process as sequential costly acquisitions of independent noisy signals of the unknown true
product utility. As above, a consumer’s utility of product i is denoted as U;, unknown to
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Figure 1.13: Optimal search strategy on two products with finite mass of attributes. The
grey lines represents the numerical solution with finite 7', and the black lines represents the
analytical solution with infinite 7.

the consumer. At any time ¢, a consumer’s current belief of U; follows N(u;,0?). Now,

o? is no longer a constant. In fact, if a consumer spends an infinitesimal time dt to

(2
search for information on product i, she pays a search cost c;dt, and gets a noisy signal
Ui)U; ~ N(U;,k2/dt), where k? is a measure of the noisiness of the signal. Upon receiv-

ing the signal, the consumer updates her belief of product ¢’s utility, by Bayes’ rule, as

1/02 dt/k? g . . .
N <1/U$f:;lt/ﬁ? u; + 1/01_2%;;/@ iy 1/U$—&dt/n?>' To simplify the notation, let us define s; = 1/0?

and k; = 1/k2. Let us consider a model of two products with zero information correlation. A
consumer’s maximum expected utility is denoted as V' (uq, ug, $1, $2), which now depends not
only on her current expected utility of each product, but also the variance, or the uncertainty
of her current belief. Similarly, a consumer’s optimal search problem can be formulated by
the following iterative relationship:

V(u17u2751582) - max{(),ul,ug,
S1 kldt ~
—cidt +E, |V U kidt
crat + by [ <S1 —|—]{21dtUI s kudl 1, U2, 81 + K1 732>] )
S92 ]{Jgdt ~
—eydt + E odlt }
coat + by [V <u1’32—|—k2dtu2+32+k2dtU2781’52+ 2 >]

k
= max {Ouul)u% Vi(ur,uz, s1,82) + [k1Vs, + — Vi, — 61] dt,

2 Yuiul
2s7
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k
V(Ul, U2, S1, 82) -+ kg s9 + 2—S22vu2u2 — 02:| dt} (137)
2

The conditional expectation E, in the first equality above is over U; ~ N (u;, 02 + 2 /dt) from
the consumer’s perspective. The second equality above is due to Taylor expansions, and o(dt)
terms have been omitted in the limit. As before, we can formulate the above problem as an
ambiguous-boundary PDE problem. However, now we have two more arguments s; and s
besides u; and wugy, which makes the problem difficult to solve analytically. The problem can
still be solved numerically.

Figure 1.14 shows a consumer’s optimal search strategy at some time point with ¢;/k; =
c2/ko = 1, and the consumer’s current variances of the two products’ utilities, o7 and o2,
are not equal, given by s; = 0.5, s = 1. We can see that in general, Figure 1.14 is similar to
Figure 1.8 in terms of the structure of the boundaries. We still have the optimal consideration
set and the purchase threshold structures. However, because the parametric frameworks are
different, we cannot compare the locus of the boundaries in the two figures directly. As
expected with decreasing informativeness, we can also get that when a product is searched,
the purchase threshold for that product falls, and that the boundary separating ”Search #1”
and ”Search #2” moves in the direction of being more likely for the other product to be
searched next.
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Figure 1.14: Optimal search strategy on two products with decreasing informativeness.
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1.10 Conclusion

Gradual search for information is important for understanding numerous economic activi-
ties with imperfect competition and market frictions. We consider this possibility, presenting
a parsimonious model on continuous search for information on a choice set of multiple op-
tions. Although the paper has taken consumer search in a product market as the leading
example, the model can be applied generally to other cases of gradual search for information
on multiple alternatives.

The paper solves for the optimal search, switch, and purchase or exit behavior in such a
setting, which is characterized by an optimal consideration set and purchase thresholds. A
consumer always searches for information on the product with the highest expected utility
if the informativeness of search per search cost is the same across products, and only stops
to make a purchase if her expected utility of a product is sufficiently greater than those of
the alternatives. Positive correlation across products narrows the purchase threshold, while
negative correlation widens it. More product alternatives also widen the purchase threshold.
With heterogeneous products, if the informativeness of search is constant through time, the
consumer only searches on the product with the highest informativeness of search or lowest
search costs if her expected utility of the alternative is sufficiently high, and she will always
first search for information on that product, when both products have the same expected
utility. The model also presents several implications that are empirically testable.

Understanding consumers’ search behavior for information also helps to explain some
seemingly puzzling results: more alternatives might lead to a lower purchase likelihood,
when consumers engage in search for information. Also, information availability decreases
sales of products for high-valuation consumers, while it increases sales for low-valuation
consumers. Therefore, sellers of multiple products may want to facilitate information search
for low-valuation consumers, while obfuscate information for high-valuation consumers.

The set-up considered may motivate further studies on the economics of search for infor-
mation. One interesting possibility to consider is to allow consumers to search on multiple
products at the same time, known as parallel search (Vishwanath 1988). It would also be
interesting to investigate what happens in terms of vertical differentiation under oligopolistic
competition when there is a correlation of information across products.
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Chapter 2

Peer Effects on Social Networks

2.1 Introduction

Peer effect occurs when the action of one agent directly affects others’ choices, usually those
that are socially close to him, as opposed to via the intermediation of market. Peer effects
are ubiquitous in life. Teenagers look to their peers when deciding what songs to listen and
what movies to watch, consumers consult their friends before shopping for cars or houses,
and even firms and organizations try to learn from others before deciding whether or not to
adopt new technologies.

These peer effects are of primary importance to corporate managers as well as policy-
makers since they allow a stimulus to one individual to be multiplied through the network.
Management has long been aware of the importance of peer effect in launching a successful
new product. Firms frequently give out free samples to selected customers, and consciously
design effective marketing campaigns to leverage peer effects on social medias (Aral and
Walker 2011). Policy interventions, such as school desegregation and busing, have used
social interactions as the major goal to alleviate stratification by income, education, race,
and to improve social equality (Moffitt et al. 2001). Quantifying the magnitude of peer
effect therefore is critical to constructing sound network interventions in both the public and
private sectors.

In this paper, I study the peer effect in adoption of a new consumer technology—
iPhones—using individual-level iPhone adoption data from a provincial capital city Xining
in northwestern China. My sample spans a period when the mobile phone carrier China
Unicom has the exclusive right to sell iPhones in mainland China, hence my data includes
almost all iPhone users adopted during the time period!. I construct a social network using
half a year’s call transactions between iPhone adopters and all other users on a carrier’s
network. Based on the network structure, I test whether or not an individual’s iPhone adop-
tion decision was affected by his/her friends’ decisions. I quantify the peer effect using both
fixed effect and instrumental variable approaches, and investigate how network structures

!Except a very few people who bought iPhones from overseas and brought it back to China to use.
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modulate the magnitude of peer influence.

On a fundamental level, iPhone adoption could be subject to peer effect due to infor-
mational, behavioral, social, or network externality reasons. Friends’ recommendations and
user reviews give a consumer much information about how good iPhone is and whether it
fits their need—this is the informational channel, so-called word-of-mouth. It is also possible
that a consumer observe other people’s purchase and usage decisions and infer iPhone is
a good product—this is the behavior channel, so-called behavior learning. Alternatively,
iPhone could also be viewed as a fashionable product. Using an iPhone speaks something
about one’s personality and taste; and observing other people using it changes directly the
utility one can get from using the same product, either positively or negatively—this is the
social channel, e.g., snob effect. Lastly, iPhone is a communication device with many add-on
applications. Having one more person in the network makes it more attractive for others to
join since they will have more people to communicate with?. In this paper, I do not attempt
to distinguish these channels. Rather, I focus on quantifying the peer effect, which could be
an aggregate of all the channels.

Identification of peer effect has long been a challenge to economists. Peer effect implies
that the behavior of connected agents on a network tends to be correlated. However, cor-
relation in the behavior per se does not necessarily imply that any agent’s action has a
causal effect on that of others. Other factors besides peer effect could also give rise to such
behavioral correlation. From a policy and strategy point of view, only causal peer effects are
of primary interest because it impacts the outcome of individual-level policy interventions.
Moffitt et al. (2001) summarized that the primary factors confounding the identification of
peer effects are: simultaneity, endogenous group formation and correlated unobservables. Si-
multaneity problem arises if one person’s action influences the others, and vice versa (Manski
1993). Fortunately, my setting does not suffer from this simultaneity problem, because of the
natural sequence of individual adoptions across-time in the panel data. Endogenous group
formation problem arises when the outcome variable also affects the likelihood of two agents
being connected, which in my case, means two strangers starting calling each other because
both of them use iPhone. Arguably, it is true that this might happen theoretically; yet, I
believe it would be too subtle an effect to intervene with the identification, especially since
using a smart phone or not is irrelevant to the quality and cost of phone call service in the
market where my data is collected.

Therefore, the only serious potential confounding factor remained in my setting is corre-
lated unobservables. Adoption decisions of one’s peers can be endogenous for his adoption
decision, because people who know each other tend to face similar unobserved environment
to adopt the technology. To address this issue, I come up with two approaches. To control for
time-invariant correlated unobservables, I apply an individual fixed-effect model. To further
control for time-varying correlated unobservables, I come up with an instrumental variable

2Strictly speaking, the network externality effect operates via add-on applications but not phone calls.
This is because, during the time when we collected our data, using a smart phone or not is irrelevant to the
quality and cost of phone call services. Hence, we do not expect using iPhone to change one’s preference of
phone calls.
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approach. I use an individual’s friends’ birthdays as an instrumental variable for his friends’
adoption decisions, and see how these birthday-induced adoptions by his friends affects his
own adoption decision.

Both my fixed effect (FE) and instrumental variable (IV) models show results similar
in magnitudes. A friend’s adoption decision indeed has a positive impact on one’s own.
According to the FE model, having one more friend adopting iPhone increases an individual’s
probability of adoption by 0.89% in the next month. In comparison, the IV regression gets
a slightly smaller estimate of 0.75%, after clearing away effects of potential time-varying
correlated unobservables. I also show that this peer effect decreases in the number of current
adopters. In other words, as more friends have already adopted, the marginal impact of an
additional friend becomes smaller. Using my estimates, a firm looking to promote iPhone
sales in a setting similar to mine would be able to compute the average external peer effect
of a new user®. And these numbers would be of great interests for managers when designing
optimal promotion schemes.

I also investigate how heterogeneity in network structure impacts the magnitude of peer
influence. It is one of the frontier questions to study the role that individual and relationship
attributes play in social influence processes (e.g. Aral and Walker 2014; Banerjee et al.
2013). My results show both a “popularity” and an “intimacy” effect. The more popular
an individual is, as measured by the number of his first-degree contacts, the greater his peer
effect would be on each of his peers. The peer effect is also stronger between “closer” friends.
My results show that the more time a pair of friends spent on talking to each other during
the six months, the greater the peer effect is between them.

The paper unfolds itself as the following. Section 2.2 summarizes relevant literature and
our connections to previous studies. Section 2.3 gives the background and basic patterns of
our data sample. Major empirical results are provided in section 2.4. Section 2.5 explores the
impact of network heterogeneity on peer effect and various robustness checks. And section
2.6 concludes.

2.2 Literature Review

Individuals make decisions in almost every social aspect under the influence of friends,
neighbors, or professional peers: from education (Sacerdote 2001; Epple and Romano 2011),
criminal activities (Glaeser, Sacerdote, and Scheinkman 1996; Bayer, Hjalmarsson, and Pozen
2009), welfare program participation (Bertrand, Luttmer, and Mullainathan 2000; Duflo and
Saez 2003), to physicians’ prescriptions (Manchanda, Xie, and Youn 2008; Nair, Manchanda,
and Bhatia 2010; Iyengar, Bulte, and Valente 2011), etc. In product market especially, there
is widely recorded phenomenon of peer influence on purchasing behaviors: from computers

3For example, at the initial stage of iPhone diffusion when an average individual have about one user
friend, the direct impact of a new iPhone user on his peers would be about 1.01%, compared to a much
smaller effect of 0.65% at a later stage when an average individual have about 100 adopted friends.
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(Goolsbee and Klenow 2002), online groceries (Bell and Song 2007), TV service (Nam,
Manchanda, and Chintagunta 2010), insurance plans (Cai, De Janvry, and Sadoulet 2013),
to solar panels (Bollinger and Gillingham 2012), etc.

It is worth mentioning that there is a subtle difference between peer effect and network
effect (for the latter, see a survey by Birke 2009). Network effect relies on network externality,
which captures the phenomena that having more people in a certain group makes the utility
of later joiners even higher. Typical examples include adoption of industry standards (e.g.
David 1985; Augereau, Greenstein, and Rysman 2006), choice of business platforms (Brown
and Morgan, 2009; Hendel, Nevo, and Ortalo-Magné, 2009; Cantillon and Yin, 2008), and
membership of social media websites such as Facebook and LinkedIn. Peer effect, on the
other hand, encompasses a much broader meaning. In addition to being triggered by network
externality, peer effect could also be due to informational, behaviorial or social reasons:
consumers could learn about a product from others’” comments and choices, or simply find
it fashionable to go for what is “hot”. Regardless of the underlying mechanism, peer effect
manifests itself as a causal influence of one’s action upon his peers.

The peer influence that we study in this paper can be seen as a special case of general
social interaction effects (Manski 1993; Moffitt et al. 2001). Social interaction effects usu-
ally include both contextual effects—the direct influence of others’ characteristics on one’s
choice—and peer effects—the influence by others’ actions*. Many attempts have been made
to demonstrate and quantify the peer effects. The early literature on aggregate diffusion
has been trying to quantify “peer effects” by treating the entire population of past adopters
as the reference group (Bass 1969, Mahajan, Muller, and Bass 1990). With access to more
micro-level data, recent studies have taken on a more subtle view of reference groups, empha-
sizing the role of social structures in channeling peer effects based on geographic locations
(e.g. Bollinger and Gillingham 2012), ethnic or culture proximity (e.g. Bandiera and Rasul
2006), friend or family relationships (e.g. Conley and Udry 2010), or some combination of
these factors.

However, a closer look at these heterogenous peer effects poses an identification chal-
lenge aforementioned. Some of the studies have tried controlling for detailed individual-level
information to alleviate the correlated unobservable problem®. Unsatisfied with these ap-

4A literature somewhat relates to ours are those that use identification strategies to study the influence
of an individual’s social activities or characteristics on his own behavior. For example, Shriver, Nair, and
Hofstetter (2013) studies whether online users’ (surfing-related) content-generation activity affects their
social ties and vice versa, by exploiting changes to wind speeds at various surfing locations. Our question
here is different from and conceptually harder than theirs, because peer effect captures the spread of the
same behavior among individuals and it is usually harder to find exogenous shocks only to some people but
not to their friends for the same behavior.

5Several case-specific identification strategies have also been used to study peer effect. Bollinger and
Gillingham (2012) identified the peer effects in adoption of solar photovoltaic panels, by leveraging the time
delay of installations after the initial request. However, their analysis is based on zip code level data without
network structures; also the validity of their empirical strategies hinges critically on the assumption that
there is no covariate that influences two adoption decisions that are separated by the installation delay or
longer. Nam, Manchanda, and Chintagunta (2010) studies the adoption of a video-on-demand service, where
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proaches, more recent studies have been utilizing randomized field experiments to get clean
identifications of peer effects (e.g., Sacerdote 2001; Duflo and Saez 2003; Cai, De Janvry, and
Sadoulet 2013, among others). But oftentimes the population under study is limited due to
feasibility constraints of experiments, and the social network structure is either unavailable,
or measured by subjective surveys. In contrast, our sample includes all people in a metropo-
lis, and we construct social network from objective measurements, using duration of phone
calls among consumers to approximate social tie strength. Such a communication network
would be able to preserve more detailed and nuanced information than location networks.
And we also use an instrumental variable approach to get a clean identification of peer effect.

The research that is closest to ours is Tucker (2008). In her paper, she identified the
network externality in adoption of a video-messaging technology, by utilizing a stand-alone
use of the technology (watching local TV programs) as an instrument. Methodologically,
her approach is close to ours. Nonetheless, her study is on a very specific setting: adoptions
of a technology occur in a corporation instead of the marketplace, and individuals do not
incur any pecuniary cost to adopt the technology®.

To summarize, our paper studies peer effect of a mainstream consumer product (iPhone)
on a social network, which is constructed from objective phone calls among consumers. In
contrast to the large literature on prediction of product diffusion using network structures
(e.g., Hill, Provost, Volinsky, et al. 2006; Katona, Zubcsek, and Sarvary 2011, among others),
the main goal of this paper is not to make predictions of individual adoptions. However,
based on a consistent estimate of peer effects, our findings could indeed help predict future
sales of similar products, and would be of great interest to business practitioners, who are
designing marketing strategies in regions that are similar to ours.

2.3 Background and Data Description

Data Background

[Phone was first introduced in China on October 30, 2009. For a rather long time, iPhone
was offered to subscribers of China Unicom exclusively, until January 17, 2014, when China
Mobile started to offer iPhone on its network. There are three players in the mobile phone
telecommunication market in China: China Unicom, China Mobile, and China Telecom; and
all of which are state-owned public companies. Currently, China Mobile owns roughly 70%
market share of mobile telecommunications in China, whereas China Unicom about 20% and
China Telecom the rest 10%.

random fluctuation in the signal quality adds exogenous shocks to the content of message communicated
from friends to friends, but not the initial adoption decisions.

6As a technical point, Tucker (2008) used a pooled probit regression model outlined by Allison (1982),
which is only valid if errors are not correlated over time. For a setting of individual technology adoption, we
feel that this might be too strong an assumption. Hence, in this paper we opt for a panel fixed effect model.
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Our data set includes monthly call transactions and iPhone adoption records of all iPhone
adopters in China Unicom network who adopted before the end of October 2013 in capital
city Xining of Qinghai province in northwestern China. The data on call transaction is
available from May 2013 to October 2013. Whereas the dataset of iPhone adoption is
complete: running from the first adoption in November 2009 to October 2013.

We also get complimentary data containing individual information of the adopters, such
as cell phone monthly usage charge, service plan subscription, and most importantly, indi-
vidual’s birthday, which we will use as an instrumental variable for adoption time. Data on
individual information is available for a subgroup (72.3% of the entire sample population)
of adopters that adopted between May 2012 and October 2013.

Adoption Pattern

There are in total 82,471 adoption instances from November 2009 to October 2013. Some
adopters later stopped using iPhone (by either dropping out of the carrier’s network or by
replacing it with a phone of other brands), and there are 47, 727 (57.9%) active iPhone users
by the end of October 2013.” The monthly adoption and usage trend is shown in Figure 2.1.
We can see that the adoption rate grows exponentially during the sample period.

Log Number of New iPhone Adopters in Each Month Cumulative Number of iPhone Adopters/ Users
o
8
B S —— adopters
87 ©
o
[Te] o
(=]
8
- (=]
87 ©
© 8
S |
o
- <
2 g
8
o
| [SY
o
(<] (3] o -
LI L L L O O B B O LI L L e O B B O B

2010 2011 2012 2013 2010 2011 2012 2013

Time Time

Figure 2.1: Adoption and usage trend of iPhone after introduction in Nov-20009.

In the data, we observe dives and surges of new adoptions in some months. This is
mainly due to three reasons: consumers’ strategic waiting before launching of new models,
occasional limited supply capacity in certain months, and seasonalities, such as the Spring

"The four-year cumulative attrition rate of over 40% seems relatively high, which we think is an idiosyn-
cratic feature of China’s market. As iPhone’s exclusive carrier in the sample period, China Unicom owns
only 20% share of the telecommunication market, compared with China Mobile’s 70% market share. We
expect a significant amount of people stops using iPhone because they switches from China Unicom to Chine
Mobile.
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Festival around the beginning of each year. We include monthly fixed effect in all our
regressions to control for these time trends.

Calling Pattern

Our call transaction data set includes all people who have adopted iPhone from November
2009 to October 2013 and remained active in May to November 2013, as well as all of their
friends, who have either made or answered a call with an iPhone adopter between May 2013
and October 2013. TPhone users must be China Unicom subscribers, while their friends are
not necessarily China Unicom subscribers. Out of 82,471 iPhone adopters, 74,967 (90.9%)
remained active in the carrier’s network in the period from May to October 2013, regardless
of what types of phones they used at the time.® There are in total, 4,030,156 friends of
all active iPhone adopters. Call transactions are aggregated by month. Each transaction
consists of the following information: phone number identifier of the caller, phone number
identifier of the receiver, and their monthly call duration. Between two users on the network,
if they did not make a single call during the sample period, their (null) transaction is not
included in the dataset.

There are 10,762,428 call transaction records in total between May 2013 and October
2013. We use these call transactions to construct social network for iPhone adopters and
their friends. Therefore our social network embeds 90.9% of the entire sample population
who have ever adopted an iPhone between Novermber 2009 and October 2013 in Xining.
The total number of people who made calls is 82,420, and the total number of people who
received calls is 4,328,013 during this period. Combining both callers and receivers (iPhone
adopters and their friends), there are 4,105,123 individuals on the phone-call network. The
huge difference between numbers of callers and receivers comes from calls from outside the
carrier’s network. We do not have information on incoming calls from outside network, and
can only observe outgoing calls to outside network. The average monthly call duration for
each pair of contacts, who at least made one call in that month, is roughly 11 minutes.

The following Table 2.1 provides the summary statistics for our sample. As we can see,
the phone call network proves to be quite stable over the sample period.

2.4 The Empirical Model

Our empirical model follows the linear-in-mean model of social interactions (Manski
1993), which we interpret as a reduced form of the behavioral process generating adoption
decision across the population network.

Strictly speaking, there are two variations of the linear-in-mean model, one of which
has the absolute number of adopters as the explanatory variable whereas the other has the

8By “being active”, we mean a consumer made or received at least one call in the period. In China, when
a consumer switches mobile phone carrier, he has to change his phone number. Our record of a consumer
discontinued when he left China Unicom.
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Table 2.1: Summary Statistics for the Data Sample

# Observations Mean Std Dev  p25 pb0 p75

Panel A: Adoption (November 2009 to October 2013)

adoption 82,471

individual birthday 54,171

Panel B: Call Transaction (May 2013 to October 2013)

duration-05 2,911,112 11.49 52.65 1.00 2.57 7.57
duration-06 2,943,157 11.29 51.29 1.00 2.60 7.60
duration-07 3,201,634 10.98 49.22 0.98 2,55 7.45
duration-08 3,290,485 10.97  50.03 1.00 2.57 7.50
duration-09 3,232,633 11.21 51.47 1.00 2.55 7.47
duration-10 3,238,310 11.25 52.50 0.98 252 740
total duration 10,762,428 19.57 130.05 .0.97 2.65 8.97

Note: The panel consists of all iPhone adopters in China Unicome network in
a provincial capital city Xining in northwestern China by the end of October
2013. Monthly (total) call duration includes aggregated call transactions of
all pairs with non-zero call duration in that month.

fraction of adopters out of all friends. Both specifications are theoretically justifiable, and re-
searchers usually make their own choices as which one to use. In this paper, we use absolute
number of adopters as the explanatory variable for both the main models and the extension
on network heterogeneity. Similar results using the fraction of adopters as explanatory vari-
able are discussed in the robustness check section 2.

The Network Structure

We index consumers (network nodes) by i. We first construct a social network by aggregating
all call transactions from May 2013 to October 2013. If there is a call from Alice to Bob in
the six months, we establish a directed link from Alice to Bob. In this way we get a directed
social network, which has 443 weakly connected maximal components in the network, among
which the largest one consists of 4,102,936 individuals (99.95% of the whole population).
Given the network, we define inward neighbors for consumer ¢ as all other consumers that
have a directed link to ¢; and similarly we define the outward neighbors for ¢ as all others
that have a directed link from i. Then, we construct the panel dataset with the following

variables
(i,t, ADOPTy, INSTALLBASE_IN;;, INSTALLBASE_OUT})

where ADOPT;; is the adoption indicator of individual i in month t: ADOPT; = 1 if
i first adopted iPhone in month ¢, and ADOPT;, = 0 otherwise.” INSTALLBASE_IN;

9 Aforementioned, we consider adoption instead of usage decisions, therefore, with ADOPT;; = 1, all
records of individual i after ¢ are dropped from our panel.



CHAPTER 2. PEER EFFECTS ON SOCIAL NETWORKS 43

is the cumulative number of i’s inward neighbors who have adopted iPhone by month ¢!;
and similarly INSTALLBASE_OUT}; is the cumulative number of i’s outward neighbors who
have adopted iPhone by month ¢. By combining our adoption dataset and the social network
constructed from transaction data set, we get a panel dataset of 3,100,442 individual-year
observations. The summary statistics for the panel is provided in appendix A.23.

In this section, we use absolute number of (inward /outward) neighbouring iPhone users as
a measure of peer effects on the network, by assuming homogeneous peer effect. In section 2,
we discuss various extension of the basic model and try incorporating more network structure
into the measures.

Fixed Effect Model

In this paper, we define a focal consumer’s peers as those who are directly linked to him on
the phone call network. In other words, we are estimating a local network effect. Arguably,
a consumer’s adoption decision could also be affected by macro-level network features, such
as iPhone diffusion on the overall network. We would not be able to test such macro-level
features in this paper since we only have data on one city (and hence, one network). But we
do control for these variables by including time trends in the regression.

The two-way fixed effect (FE) regression of peer effect on adoption is

ADOPTlt = BllNSTALLBASEZt,1 + oy + Yt + Eity (21)

where €;; is assumed i.i.d. across individuals ¢ and time ¢, and «;, 7y, are individual and time
fixed effect respectively'’. The variables INSTALLBASE_IN;, and INSTALLBASE_-OUT,
are highly correlated, with a correlation coefficient at 0.998, hence we include only one of
them in the regression equation as variable INSTALLBASE;; 1 to avoid collinearity.

In this paper, we choose a linear probability model over a logit for its simplicity in incor-
porating instrumental variable and a flexible fixed effect structure with a panel structure'?.
Another reason that makes it specifically difficult to implement a logit model in our setting
is quasi-separation issue of our data, which leads to a non-convergence and potential bias of

10The variable INSTALLBASE_IN;; does not account for the people who stopped using iPhone after
initial adoption. The idea behind the model is that anyone who have used iPhone before could share with a
new comer his experience and personal opinion about the product, thus influencing the new comer’s decision.

1 Slightly different from most other studies on the topic, our INSTALLBASE does not include previous
actions of one’s own. This does not derive from an assumption from the fact that we only include an
individual in the sample up till the point he adopted. Hence, our fixed effect model does not suffer the
inconsistency problem pointed out by Narayanan and Nair (2013), which is essentially an inconsistency
problem of a dynamic panel FE model.

12 As pointed out by Narayanan and Nair (2013), having a flexible fixed effect structure is vital to getting
a consistent estimate when individual characteristics correlate with install bases, while choosing a linear
probability model over a non-linear one does not compromise the uncovering of the true value even when
underlying process is a non-linear one.
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logit maximum likelihood estimator (Albert and Anderson, 1984)!3. Hence, in this paper,
we use a linear probability model to estimate the peer effect on iPhone adoption averaged
across the population.

By including only past values of INSTALLBASEFE in the regression, our model specifica-
tion features a one-direction influence (usually termed as passive social interaction in the
literature, see Hartmann et al., 2008) instead of a feedback loop. Theoretically, a setting
would best fit a one-direction framework if the action of one focal agent affects his neighbours
but not the other way around, or, more commonly, if the agent is concerned only about the
realized actions of his neighbors and is myopic enough to not foresee how his current decision
will impact his future self by influencing others around him. In this paper, we implicitly
make the latter assumption that an agent is concerned only about the past actions of his
neighbors and is myopic. Hence, we quantify peer effect via equation (2.1).

Table 2.2 summarizes the estimation results. As we can see that having one more friend
adopting iPhone, on average, increases an individual’s probability of adoption by 0.89% in
the next month. This holds true for either inward- or outward-phone-call definition of friend.
A quadratic model shows that this peer effect decreases in the number of current adopters.
In other words, as more friends have already adopted, the marginal impact of an additional
friend becomes smaller.

Figure 2.2 plots the coefficients of peer effect by month from January 2010 to October
2013. Due to very few adoptions in the earlier stage and small variation in the explanatory
variable, the estimates of peer effect coefficient appear insignificant with very wide confidence
intervals before 2012. However, iPhones underwent an acceleration of diffusion towards the
end of 2012. And a positive peer effect started to manifest itself. From then on, the estimate
of peer effect remained significant and stable throughout the sample period. Figure , plotting
the monthly fixed effects, shows a macro-trend for increased likelihood of adoption over our
sample period.

Instrumental Variable Model

As discussed earlier, the only potential confounding factor remained in our setting is corre-
lated unobservables. Our fixed effect model in the previous section controls for time-invariant
unobservables, but the concern for time-variant correlated unobservables remains. In other
words, if there exist omitted variables that both correlate with the network structure and
are time-varying in nature, our identification with a FE model could be compromised. As
an example, let us consider the following situation with only two types of people in the pop-
ulation, fashion-followers, who are more likely to purchase a product when the overall sales
are high (compare to peer effect that depends on adopters in the local friends network), and

13Heinze and Schemper (2002) proposed using a penalized maximum likelihood estimation originally
developed by Firth (1993) to solve the separation problem. However, such a method would pose much
complexity to a panel discrete choice model, which is already subject to the incidental parameters problem
due to adding fixed effect to a non-linear logistic or probit model. Hence, in this paper, we try to shield from
these technical difficulties by using a linear probability model.
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Table 2.2: Estimation of Peer Effect with FE Model

1) (2) (3) 4)
VARIABLES ADOPTy ADOPTy ADOPTy, ADOPTy,
INSTALLBASE_IN 0.00890%** 0.0114%%*
(0.000636) (0.000353)
INSTALLBASE_OUT 0.00886%** 0.0114%%*
(0.000629) (0.000354)
INSTALLBASE_IN? -4.30e-05%**
(6.79¢-06)
INSTALLBASE_OUT? -4.29e-05%**
(6.80e-06)
Constant -0.00232%%*%  _0.00232*%*F*  -0.00229%**  -0.00229***
(8.54e-05) (8.54e-05) (8.57e-05) (8.57e-05)
Individual FE Y Y Y Y
Monthly FE Y Y Y Y
Observations 3,100,442 3,100,442 3,100,442 3,100,442
R-squared 0.275 0.275 0.277 0.277
Number of i 74,967 74,967 74,967 74,967

Note: * denotes significance at 10% level, ** at 5% level, and *** at 1% level.
All estimations above use robust standard error to control for heteroscedasticity in
linear probability models.
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Figure 2.2: Peer Effect on IPhone Adoption by Month
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non-followers. Fashion-followers are naturally more likely to adopt in the later stage of prod-
uct diffusion, hence cannot be controlled by individual FE. Moreover, if fashion-followers are
also more likely to become friends, then it cannot be controlled by monthly FE either and
will induce a spurious peer effects among friends. In this section, we use an instrumental
variable (IV) approach to further control for such spurious behavioral correlations.

We use an individual’s birthday as an IV for his adoption decision, and test how this
affects his neighbors’ subsequent adoptions. The basic idea is that it is more likely for people
to adopt iPhones on their birthdays, because either they are more likely to reward themselves
with a long fancied product, such as an iPhone, or they are more likely to receive one as a gift
on their birthdays. So we expect to see a higher probability of iPhone adoption around an
individual’s birthday. Being totally random, birthdays would satisfy the exclusion restriction
automatically’®. All we need to check is the inclusion requirement to make it a legitimate
instrumental variable, which we test with weak instrument tests below.

For individual 7, we define BDAY}; as a dummy variable which equals to one if i’s birthday
is in month ¢ and zero otherwise. We assume that individuals’ monthly adoption decisions
depend on their birthday dummies in the following sense:

ADOPTN = 501' + 511BDAY;15 + Nits (22)

where we allow for heterogenous birthday impact on individuals’ adoption decisions. We
denote individual i’s adoption time as 7(¢). Individual ¢’s installed base can be constructed
by aggregating adoptions among his neighbours of N (i) up till time ¢ — 1:

min{7(j),t—1}
INSTALLBASE;, = Y Z ADOPT;,
JEN(4)
min{7(j),t—1}
= Y dymin{r(j),t—1}+ > b; Y. BDAYj
JEN(4) JEN (%) s=1
min{7(j),t—1}

D Z Nis+

JEN(9)

From the equation, we know for each 7, Z?;?{T(j =1 BDA Y;s can be used to instrument
INSTALLBASE;;_1. Therefore, INSTALLBASE;;_, is over-identified, and the most effec-
tive IV can be obtained by GMM estimation. Here, we take a first step by assuming
a homogeneous impact of birthdays on adoptions, i.e., d1; = 01,00; = do. In this case,
INSTALLBASE; 1 is exactly identified by the following IV:

min{7(j),t—1}
IV BDAY, , 4! > Y BDAY,. (2.3)
jEN ) s=1

14T further justify the usage of birthday as an IV, China Unicom did not have advertisements or pro-
motions based on customers’ birthdays in the sample period.
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By further defining

A ST minr (), - 1), (2.4)

JEN(9)

the first stage regression becomes the following;:
]NSTALLBASEZt_l = 51]V,BDAYZ',5_1 + 50Ait—l + w; + T+ €. (25)

Here, w; and 7; are the individual and time fixed effects. By estimating the above regression
equation, we have INS TﬁBASEit_l as the independent variable of interest in the second
stage regression:

ADOPT;, = B INSTALLBASE;_ + i + v + cit (2.6)

Here, again, € is assumed i.i.d. across ¢ and ¢, and «;, 7y, are individual and time fixed effect
respectively.

Table 2.3 gives the estimation results for the first stage IV regression. We get an estimate
of 9; at about 0.038 with a significant p-value as 0.000. Similar results hold for both inward-
and outward- definition of linked friends. This shows that friends’ adoption decisions are
indeed affected by their birthdays!®. In the birthday month, an average individual would be
3.8% more likely to adopt the iPhone.

Table 2.4 shows the IV regression of peer effect on iPhone adoptions. Here we get estimate
of peer effects similar in magnitude but slightly smaller than that of the basic fixed effect
model. According to the IV estimates, having one additional friend adopting iPhone increases
an individual’s probability of adoption by about 0.75% in the next month (compared to the
0.89% estimate by FE model). This smaller effect could be due to the fact that our IV
estimates eliminate the effect by some of the time-varying correlated unobservables. Similar
to the previous section, our IV estimates also find this marginal impact of newly adopted
friends decreasing when the size of already adopted user base gets bigger. Both two-stage
least square and GMM robust estimators yield very similar estimates.

2.5 Robustness Check

Network Structure and Heterogenous Peer Effect

Heterogeneous social interactions have important implications for policy design and for firms’
allocation of marketing efforts. Peer effect, as one of many influences that channeled through
social interactions, could be very sensitive to the social and structural conditions under

15 Arguably, there might be some heterogeneity in the effectiveness of the IV. For example, some people,
like teenagers, are more likely to get an iPhone as a gift on their birthdays than others. Since we have
strong reasons to believe in the monotonicity of such effect, i.e. no person will be less likely to adopt iPhone
on his birthday, this would not compromise our identification. It might, however, add some subtleties to
the interpretation of the results. As in the usual case of heterogeneous treatment effect, our IV regression
estimates the average causal effect for those that are affected by the instrument.
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Table 2.3: First Stage IV Regression

(1) (2) (3) (4)
VARIABLES INSTALLBASE_IN INSTALLBASE_-OUT INSTALLBASE_IN INSTALLBASE_OUT
IV_BDAY_IN 0.0227%%* 0.0227%*

(0.000513) (0.00904)
IV_BDAY_OUT 0.0229%** 0.0229**

(0.000514) (0.00904)

A 0.00511%** 0.00512%** 0.00511%** 0.00512%**

(3.33e-05) (3.34e-05) (0.000454) (0.000455)
Constant 0.0226%** 0.0226*** 0.0226*** 0.0226%**

(0.00465) (0.00466) (0.00334) (0.00335)
Individual FE Y Y Y Y
Monthly FE Y Y Y Y
Error OLS OLS Robust Robust
Observations 3,100,442 3,100,442 3,100,442 3,100,442
R-squared 0.412 0.412 0.412 0.412
Number of i 74,967 74,967 74,967 74,967

Note: * denotes significance at 10% level, ** at 5% level, and *** at 1% level. The above results are estimated
using standard OLS error.

Table 2.4: Estimation of Peer Effect with Birthday IV

(1) @) 3) (@) ) (6) ™)
VARIABLES ADOPT;, ADOPT;, ADOPT;; ADOPT;, ADOPT;; ADOPT;; ADOPT;,
INSTALLBASE_IN 0.00753%** 0.00753%** 0.00711%** 0.0110%**
(6.00e-05) (6.00e-05) (0.00181) (7.57e-05)
INSTALLBASE_OUT 0.00751%** 0.00710%*** 0.0110%**
(5.99¢-05) (0.00181) (7.58¢-05)
INSTALLBASE_IN? -6.62e-05***
(9.63¢-07)
INSTALLBASE_OUT? -6.63e-05%**
(9.62¢-07)
BDAY 0.000135
(0.000320)
Individual FE Y Y Y Y Y Y Y
Monthly FE Y Y Y Y Y Y Y
Error HAC/Clu(i,t) HAC/Clu(i,t)
Estimator IV-2SLS IV-2SLS IV-2SLS IV-GMM IV-GMM IV-2SLS IV-2SLS
Observations 3,100,442 3,100,442 3,100,442 3,100,442 3,100,442 3,100,442 3,100,442
R-squared 0.275 0.275 0.275 0.266 0.266 0.276 0.276
Number of i 74,967 74,967 74,967 74,967 74,967 74,967 74,967
Weak IV Test
CD Wald F-stat 1.20e+06 1.20e4-06 1.20e4-06 1.20e4-06 1.20e4-06 4.00e+-05 4.00e+05
KP Wald F-stat 37.80 37.63

Note: * denotes significance at 10% level, ** at 5% level, and *** at 1% level. Here, HAC stands for heteroskedasticity-autocorrelation
(HAC) robust, and Clu(i,t) stands for 2-way clustered standard error (Cameron et al. 2006, Thompson 2009) that are robust to
arbitrary heteroskedasticity and intra-group correlation with respect to both time and individual dimensions. For weak instrument
tests, CD Wald F-stat stands for Cragg-Donald Wald F-stat, and KP Wald F-stat for Kleibergen-Paap Wald F-stat (Stock and Yogo,
2010).
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which the interaction happens. Studies, especially in sociology, have long recognized that
early adopters with different “status” or level of “popularity” would have varied influence
over later new comers, and hence different impact on the speed and pattern of diffusion (e.g.
Nair, Manchanda, and Bhatia 2010; Banerjee et al. 2013). In this section, we investigate
whether these more “important” agents would have greater impacts on the adoption decisions
of their neighbours.

We use standard network indices, including inward and outward degrees and tie strength
to measure importance of a friend to the focal agent (Banerjee et al. 2013; Tucker 2008).
Degree index approximates the popularity of an individual; while tie strength, measured
by total duration of phone calls, evaluates the extent of the friendship between a pair of
contacts'®.  And for each individual, we aggregate his neighbors’ adoptions weighted by
these network indices.

Figure 2.3 gives a histogram of the logarithmic degree of iPhone adopters on our network.
It is worth noting that our data includes all iPhone users and their friends, but not their
friends’ friends. In other words, it enables us to calculate degree of iPhone adopters precisely
but not that of the non-users, the latter of which, luckily, is not among what we need for
the empirical purpose of this paper'”. Figure 2.4 shows the histogram of logarithmic total
call duration over the six months among all pairs of contacts in the network. Again, figure
2.4 leaves out calls among non-users, which we do not need.
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Figure 2.3: Histogram of degrees of iPhone adopters on the social network.

16]deally, we would like to explore more network-based indices, such as betweenness, closeness, and
centrality, among others (Banerjee et al. 2013; Tucker 2008). However, our data set includes only iPhone
users and their friends, but not their friends’ friends. In other words, our network is not complete in a way
that would make the other network indices precisely calculable. Hence, we can only include degree and tie
strength in the current paper.

I7This is because while weighting neighbourhood adoption dummies with degree values, the non-adopters
have ADOPTION equals to zero. Hence, leaving out the degree of non-adopters does not impact our
empirical analysis.
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Figure 2.4: Histogram of six months’ total call duration for pairs of contacts.

For individual 4, let m/ be the network index for his neighbor j € N(i). m} could be
either degree of j or tie strength between ¢ and j. Hence the fixed effect regression with

network indices would be

min{7(j),t—1}
ADOPTy = o+ B7" Y mi Y ADOPTj, + BoX; + i + 7 + €. (2.7)

JEN(3) s=1

Table 2.5 gives the estimation results for regression (2.7). The first four columns investi-
gate the peer effect of degree-weighted neighbourhood adoptions. As is generally recognized
in the network literature, a person with more friends (i.e. higher degree) is often consid-
ered to be more important, either because of his perceived “social status” and ”popularity”
or the fact that he might have better information inflows due to more contacts. In either
way, a friend with higher degree is often expected to be more of an “opinion leader” and
to have a bigger influence over the people around him. Our empirical results support this
hypothesis. On average, increasing the inward-degree of an adopted friend by one enhances
an individual’s subsequent probability of adoption by about 0.01%.

Column (5) to (8) investigate the peer effect of tie-strength-weighted neighbourhood
adoptions. Theories have not yet agreed on the relative magnitudes of peer effect from a
good friend compared to that of a casual acquaintance. Some believe that individuals are
more readily to be influenced by their close friends, while others argue that information
from a “weak tie” contact might prove to be more useful (Granovetter, 1973). In our setting
of iPhone diffusion, individual adoption decisions are more affected by strong-tie contacts
(friends that they communicated more with). As we can see, increasing the call duration
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between an individual and his adopter friend by 100 minutes a month would lead to an
increase in his probability of adoption by about 1.3% as estimated by an IV model.

Table 2.5: Heterogeneity of Peer Effect with Network Indices

(€]

(2)

(3)

(4)

(5)

(6)

(7

(8)

VARIABLES  ADOPT;; ADOPT;,  ADOPT;; = ADOPT:; ADOPT;; ADOPT;;  ADOPT;; ADOPTs
DEG_IN 0.0001%** 9.86e-05%**
(5.75e-06) (1.62e-06)
logDEG_IN 0.0024%%% 0.0024%%%
(0.000128) (2.69¢-05)
TIE_IN 4.53e-05%** 9.79e-05%**
(4.65¢-06) (1.57¢-06)
log TIE_IN 0.0060%%* 0.0067**%
(0.000156) (6.29e-05)
Constant -0.0024%%%  _0.0023%%* -0.0024%%%  -0.0023%**
(8.61e-05)  (8.57e-05) (8.62e-05)  (8.57¢-05)
Individual FE Y Y Y Y Y Y Y Y
Monthly FE Y Y Y Y Y Y Y Y
Estimator FE FE IV-2SLS IV-2SLS FE FE IV-2SLS IV-2SLS
Observations 3,100,442 3,097,225 3,100,442 3,097,225 3,100,442 3,100,442 3,100,442 3,100,442
R-squared 0.271 0.274 0.271 0.274 0.270 0.277 0.267 0.277
Number of i 74,967 74,886 74,967 74,886 74,967 74,967 74,967 74,967

Note: * denotes significance at 10% level, xx at 5% level, and * * * at 1% level. Here, DEG and logDEG are, respectively,
neighbourhood adoption dummies weighted by friends’ degrees or logarithmic degrees. TIE and logTIE are similar adoption
dummies weighted by tie strengths. Tie strength between any pair of contacts on the phone-call network is measured by the total
duration of their phone calls over the seven month period. The FE estimation above uses robust standard error.

Absolute Number of Adopters vs. Fraction of Adopters

In previous sections, we use absolute number of adopters as the explanatory variable. As
mentioned earlier, there are two variations of the linear-in-mean model, and in this section,
we present results as a robustness check using the ratio of adopters as the explanatory
variable.

Variable FRACTION_IN is defined as total number of adopters among one’s friends
INSTALLBASE_IN divided by his total number of friends DEGREFE_IN. The subfix IN
indicates that these variables are defined over the inward-phone-call network, and similar
definition holds for variables with subfix OUT. Using the adopter ratio FRACTION instead
of adopter number INSTALLBASE as the explanatory variable, column (1) and (2) in table
2.6 give the results for the FE model as in equation (2.1), while column (3) shows that for
IV model as in equation (2.6). As we can see, the IV model gives an estimate of peer effect
at about 52.8% (for inward friends), meaning that having an extra one tenth of one’s friends
adopt iPhone would increase his probability of adoption by about 5.3%.

Overall, however, the results using FRACTION are much less robust than that using
INSTALLBASE. This is mainly due to the small fraction of adopters compare to the large
number of contacts on the network. This is especially true for outward friends, since our
population of phone call receivers includes all land-lines and users of other mobile phone
carriers that China Unicom users ever called. Those users could never adopt iPhone (unless
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Table 2.6: Peer Effect with Fraction of Adopters

(1)

(2)

(3)

(4) ()

52

VARIABLES ADOPT:, ~ ADOPT,  ADOPTy ADOPT, ADOPT;
FRACTION.IN  0.0734%%%  (.0820%** 0.528%*%  (.250%%*

(0.000793)  (0.00155) (0.102)  (0.0212)
FRACTION.IN 0.121%%%

(0.00454)

Constant -0.00240%%*%  1.053%F%  _0.00243%**

(0.000540)  (0.00364)  (0.000486)
Individual FE Y Y Y Y Y
Monthly FE Y Y Y Y Y
Estimator FE FE FE IV-2SLS  IV-2SLS
Sample Start 2010 2012 2010 2010 2012
Observations 2,501,265 920,066 3,099,985 2,501,265 919,709
R-squared 0.270 0.279 0.268 0.172 59,931
Number of i 60,933 60,288 74,957 60,933 0.269

Note: * denotes significance at 10% level, *x at 5% level, and * * x at 1% level.
Variable FRACTION is the ratio of adopters among one’s friends, defined as the
total number of adopted friends (INSTALLBASE) divided by the number of friends
(DEGREE). The FE estimation above uses robust standard error.

change carrier to China Unicom first); and their existence in the network greatly decreases
the identifying variation in the explanatory variable FRACTION, a point that is shown
clearly in the table of panel data summary statistics A.1.

2.6 Conclusion

A Peer effect occurs when the action of one agent directly affects its peers choices outside
the market channel. Understanding peer influence is critical to estimating product demand
and diffusion, creating effective viral marketing, and designing “network interventions” to
promote positive social changes.

In this paper we study whether the adoption of a consumer technology, in our case an
iPhone, is affected causally by his network neighbours’ decisions and network characteristics
of the other adopters. The empirical setting is to measure the peer effect of iPhone adoption
in a provincial capital city in China, during a four-year period starting from the introduction
of the first iPhones to Mainland China. We use a unique panel dataset of phone call records
by person and by time, that allows us to construct each iPhone adopter’s social network,
by using half a years call transactions between iPhone adopters and all other users on a
carriers network. We measure strength of a social network pairwise tie by the duration of
calls. Based on the network structure, We quantify the peer effect of iPhone adoptions, and
investigate how the network structure modulates the magnitude of peer influence.

The main specification to identify peer effects is to see how the probability of an individual
adopting an iPhone is affected by the measures of networks we create. Of course network
size and strength is not randomly assigned. Identification of peer effects, therefore, is a
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challenge. Peer effect implies that the behavior of connected agents on a network tends to be
correlated. However, other factors besides peer effect could also give rise to such behavioral
correlation. For example, adoption decisions of ones neighbors can be endogenous for his
adoption decision, because people who know each other tend to face similar unobserved
environment to adopt the technology.

The identification in our paper has two approaches. To control for time-invariant cor-
related unobservables, we apply a fixed-effect model, and shows that a friend’s adoption
increases one’s adoption probability in next month by 0.89%. To further control for poten-
tially time-varying unobservables, we instrument adoptions of one’s friends by their birth-
days, based on the fact that consumers are more likely to adopt iPhones on birthdays. The
IV estimation shows a slightly smaller peer effect at 0.75%, after clearing away impacts of
potential correlated unobservables. Both models show that the marginal effect of peer influ-
ence decreases in the number of current peer adopters. In other words, as more friends have
already adopted, the marginal impact of an additional friend becomes smaller.

We also investigate how heterogeneity in network structure impacts the magnitude of peer
influence. Our results show both a “popularity” and an “intimacy” effect. It is shown that
the “popularity” of an individual, as measured by the number of his first-degree contacts,
will affect how much influence he can exert on his fellow peers. The higher an individual’s
degree is, the greater his peer effect would be on his neighbours. The peer effect is also
stronger between “closer” friends. The more time a pair of friends spent on talking to each
other during the six months, the greater the peer effect is between them.

Our results could provide useful insights for managers. We studied the diffusion of a
mainstream consumer product, the iPhone. The empirical setting is based in a provincial
capital city in China, Xining. The city, with a population of 2.3 million and GDP per capita
at $6999 in 2013, is a good representation of a typical city in China as well as that of a mid-
level developing country. Business practitioners launching promotions for similar products
might find our results useful in designing optimal marketing strategies in regions comparable
to mine.
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Chapter 3

Inventory Management for New
Products

3.1 Introduction

Many firms introduce new products that are variants of their existing products in a given cat-
egory to target different customer segments and satisfy customers’ different desires Krishnan
and Ulrich, 2001; Ramdas, 2003. Because the launch of a new product with successive (and
differentiated) generations always commands a large commitment of resources in production
and marketing, the introduction strategy requires careful planning Dobson and Kalish, 1988.
A key element in the introduction strategy is the introduction time. Depending upon the
product category, firms choose to time the introductions of product line extensions differ-
ently. We describe three examples below:

e In the publishing industry, hardcover books are introduced to the market first, while
paperback generations are released about one year later Mcdowell, 1989; Shapiro and
Varian, 1999.

e In the fashion industry, fashion houses such as Armani first introduce new top-of-the-
line designs at very high price points and only several months later do they introduce
their lower-priced lines Pesendorfer, 1995.

e In the automobile industry, “Volvo of North America released its 6-cylinder 760 model
in Oct 1983 and the 4-cylinder 740 model 17 months later even though both cars share
the same chassis and the 4-cylinder engine was available earlier.” Moorthy and Png,
1992.

In all of these examples, firms chose different times for launching line extensions even
though no technology constraints prevented them from making simultaneous releases. On
one hand, as the successive generations are substitutes, delaying the introduction of one
generation leads to less cannibalization of the existing generation. On the other hand, a
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large body of empirical marketing research Bass, 1969 suggests that demand diffusion begins
slowly, speeds up and slows down after maturity, so if the firm waits too long, sales may have
slowed considerably as the product has already diffused through the market Druehl, Schmidt,
and Souza, 2009, especially considering rapidly changing customer preference. According
to Wilson and Norton, 1989, “the timing of the introduction of the line extension affects
the subsequent sales pattern for both products and the total profit to be made within the
planning period”, so the decision of when to introduce a new variant of an existing product is
a critical tactical decision. In this paper, we use the terms “new variant”, “new generation”
and “line extension” interchangeably.

Several papers in the marketing literature have addressed the strategy for timing the
release of two successive (and somewhat differentiated) generations of the same product when
both generations could be offered, however inventory cost has been the missing factor, which
can actually help align some discrepancies between the conclusions derived from diffusion
theories and industry practice Wilson and Norton, 1989. Despite of relative ignorance in the
main stream of literature, inventory cost plays a crucial role in industrial practice. Firms tend
to manufacture or order products in large batches to achieve efficiency and minimize cost.
In the publishing industry example, new books are often produced in large quantities, partly
due to economies of scale in printing. In industries with relatively short product life cycles,
such as apparel and consumer electronics, where rapidly-changing consumer preferences and
frequent innovations have reduced product life cycles from years to months, a capacity-
constrained business that offers many product variants will produce each variant only once
in the planning horizon to avoid large setup costs associated with changeovers Kurawarwala
and Matsuo, 1996; Bitran, Haas, and Matsuo, 1986. Besides, in the global economy, many
firms have outsourced their supply chains to Asia with big orders. As a result, inventory cost
will be non-negligible in those industry practices. Firms thus have to weigh the instantaneous
profit from the new product line extensions against the inventory holding cost resulting from
a slowed demand rate of the older generation Bayus and Putsis Jr, 1999. Incorporating the
inventory aspect into an integrated model has been considered as an intractable problem to
date, given that most models only accounting for diffusion and substitution are already very
difficult to analyze Wilson and Norton, 1989. To the best of our knowledge, this paper takes
a first step toward filling this gap.

We propose an integrated model that considers the S-curve market penetration of new
products, substitution between generations, as well as inventory cost in order to decide the
launch-time of a new generation to maximize total profits. Our paper belongs to the research
stream that tries to coordinate the decisions of operations management and marketing science
Eliashberg and Steinberg, 1987; Ho, Savin, and Terwiesch, 2002; Malhotra and Sharma, 2002;
Hausman, Montgomery, and Roth, 2002; Chopra, Lovejoy, and Yano, 2004; Jerath, 2007. Our
contributions to the marketing and operations management research are three-fold. First, we
bring an operations management perspective into the introduction timing decision through a
focus on inventory holding cost that arises from a simple ordering policy. By assuming only
one replenishment occurs during the entire planning horizon, we incorporate inventory cost
into the revenue optimization and characterize the optimal introduction strategy. Second,
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we revisit the optimal introduction policies proposed in marketing literature. Our model
not only covers their guidelines, but also renders the implications of how inventory holding
cost impacts the introduction timing decision. Third, by developing an integrated model
accounting for both demand and supply sides, we suggest that the decisions of marketing
and operations management should be coordinated not only at the operational level, such
as match between demand and supply Ho and Tang, 2004, but at the tactical level as well,
for example the introduction timing decision.

The rest of the paper is organized as follows. We review relevant literature in Section 2.
In section 3, we characterize the optimal introduction strategy under the one-replenishment
ordering policy, and compare our findings with previous guidelines. We proceed to enrich the
model in Section 4, by considering extensions, such as finite planning horizon and multiple-
replenishment ordering policy. Finally in section 5, we conclude the paper with a summary
of key insights and suggestions for future research. All proofs and mathematical details are
relegated to the Appendix.

3.2 Literature Review

In this section, we first review the literature that center on the research of introduction
timing of product line extensions, and then review some related work that lies at the interface
between marketing and operations management.

There have been many studies about product line management Quelch and Kenny, 1994;
Dobson and Kalish, 1988; Krishnan and Ulrich, 2001, but not enough attention has been
given to considering time dynamics in this process Ramdas, 2003. We broadly classify the
existing literature on introduction timing into two categories: (1) continuous-time models in
the diffusion of innovation context, and (2) two-period models for comparing simultaneous
and sequential strategies.

Research in the continuous-time category often relates to the seminal Bass diffusion
model Bass, 1969, which initiates the stream of examining demand diffusion for a single new
product. Many studies have extended the Bass model into multi-product diffusion literature
Peterson and Mahajan, 1978; Bayus, Kim, and Shocker, 2000. A subset of this group of
work concentrates on modeling the diffusion paths of successive product generations, where
most entry timing research arises. Norton and Bass (1987) proposed a model of adoption
and substitution for successive generations. They assume independent demand dynamics for
different generations, and a uniform adoption rate for all customers who have (not) entered
the market, and who have (not) adopted the old generation product. In another seminal
work, Wilson and Norton (1989) address demand dynamics over the product life cycle in
the same context, and the optimal time to introduce the second generation is shown to be
“Now or Never” (i.e., it’s optimal to introduce the new generation either immediately or
never). However, this result is not consistent with the industry practices that were cited
above. Following the same line, but based on a little bit more complicated demand sub-
stitution assumptions, Mahajan and Muller (1996) reconsidered the optimal introduction
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timing problem for successive generations of products. By incorporating the discounting ef-
fect on seller’s revenue, they show in contrast, that the optimal policy is “Now or Maturity”,
where the new generation product is introduced immediately or when the present genera-
tion product has reached sufficient sales. However, the complexity of their demand model
forbids them to give a clear definition of when is “maturity”, and they focus on technolog-
ical innovations for successive generations. As technology improvement is a key ingredient
of this branch of research, many researchers have addressed dynamic technology improve-
ment in these kinds of problems. Krankel et al. (2006) incorporate technology improvement
into the multi-generation diffusion demand context and provide a state-dependent threshold
policy governing introduction timing decisions. Krishnan and Ramachandran (2008) study
the trade-offs in timing product launches when the core technology available is improving
rapidly. Druehl et al. (2009) analyze the impact of product development cost, the rate of
margin decline and the cannibalization across generations on a firm’s time-pacing decision.
However, the progression of product technology is not the demand driver in our model set-
ting, in fact we focus on the case of releasing two successive (and somewhat differentiated)
generations of the same product in the absence of development constraints.

Research of the two-period model category is mainly to address the comparison of se-
quential and simultaneous introduction strategies. Moorthy and Png (1992) analyze the
introduction strategy of a high-end product and its low-end variant. Their results suggest
that if the firm can commit in advance to the subsequent prices and product designs, the
introduction of low-end product should be delayed to alleviate cannibalization. In contrast,
Bhattacharya et al. (2003) show that the strategy of introducing a low-end product before
its high-end variant might be optimal if technological improvement is taken into account.
None of the papers we have reviewed consider the impact of inventory on the introduction
timing decisions.

Another relevant stream of literature studies the interface between marketing and op-
erations management. In the literature of operations management, the classic approach
often ignores the nonstationarity in demand inherent in the new product diffusion Shen and
Su, 2007. On the other hand, marketing researchers typically focus on developing accurate
characterizations of the demand process, and they seldom take supply side factors into con-
sideration. Only recently have we seen some attempts to bridge the two areas. For example,
Kurawarwala and Matsto (1998) present a model of procurement in which the demand pro-
cess follows a Bass-type diffusion. Their model corresponds to an extension of a conventional
newsvendor model and provides an example of how procurement policy can be influenced by
new product diffusion dynamics. Ho et al. (2002) provide a joint analysis of demand and
sales dynamics in a constrained new product diffusion context. Their analysis generalizes
the Bass model to include backordering and customer losses, and determines the diffusion
dynamics when the firm actively makes supply-related decisions to influence the diffusion
process. Savin and Terwiesch (2005) present a model describing the demand dynamics of two
new products competing for a limited target market, in which the demand trajectories of the
two products are driven by a market saturation effect and an imitation effect reflecting the
product experience of previous adopters. Schmidt and Druehl (2005) explore the influence
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of progressive improvements in product attributes and continual cost reduction on the new
product diffusion process. Hopp and Xu (2005) analyze the cost and revenue trade-off of
choosing optimal product line length and pricing decisions.

As inventory cost has been largely ignored in the introduction timing research, we are
more interested in finding out how the inventory cost influences introduction timing of prod-
uct line extensions. We start building an integrated model that considers joint decision on
production line introduction and inventory management below.

3.3 Integrated Framework of Inventory and
Introduction

Demand Model

Bass model Bass, 1969 formulates the aggregated adoption rate of a new product, which has
received support from many empirical studies Mahajan, Muller, and Wind, 2000. Let F(t)
be the proportion of customers in the target market who have adopted the new product.
Bass argues that the hazard rate h(t) = ; f Szt) ie. adoption rate for people who haven’t
adopted yet satisfies:

h(t) =p+qF(t) (3.1)

where p is the innovation parameter describing the self-driven adoption, and ¢ is the imita-
tion parameter describing the word-of-mouth effect. While Bass model deals with diffusion
dynamics for single product, Wilson and Norton (1989) extended Bass’ seminal work to
model demand dynamics for a set of product line extensions. They assumed that (1) adop-
tion of different product generations contribute to a single information flow; (2) sales of
different generations are proportional to the information flow; and (3) potential customers
make purchase decisions as soon as they become informed. Under these assumptions, Bass
model is used for characterizing the information flow

dF(t;T)

v o 1= F(s1)] [p+ eS| (3.2)

where T" denotes the release time of second generation. F(t;T) and S(¢;T) are respectively
the proportion of population who have been aware of and who have purchased the product,
regardless of the generation. S(¢;T') can be further expressed as the sum of S;(t; 7)) (i = 1,2)
representing the proportion who have purchased ith generation of products respectively.
Different with Wilson and Norton’s original setting, we're interested in the case where
it is the customer differentiation rather than technological improvement that drives the
firm to provide different generations of the product. The first generation usually targets
at high-valuation customers while the second generation is usually designed to further reap
revenue from low-valuation customers. By assuming two market segments, we propose a
new interpretation of Wilson/Norton model below. In fact, we assume that out of the entire
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population, my fraction are high-valuation customers and the remaining (1 — m;) fraction
are low-valuation customers. Before the release of second generation, it is assumed that all
customers with high valuation will purchase the first high-end generation after they become
informed. Only those high-valuation customers who have purchased the product will spread
the product information via the word-of-mouth recommendations. Before the release of
low-end products, all low-valuation customers will leave the market immediately without
purchasing the high-end products. After release of the second low-end generation, only oy
portion out of m; customers with high valuation retain for the first high-end generation; a»
portion out of m; customers with high valuation switch to the second low-end generation;
and the rest of ag portion of m; customers leave the market. a3 = 0 represents the perfect
high-valuation customer retention, in which case all high-valuation customers either stick to
the first generation, or migrate to the second generation after release of the second generation.
Otherwise when a3 > 0, customer churn occurs, perhaps due to the backslash effect from
the second low-end generation to the high-end products.

Coeflicient «; characterizes the stickiness of high-valuation customers to the first gen-
eration of high-end products; ay characterizes the compatibility of the second generation of
low-end products to the first generation of high-end products; while a3 quantify the customer
attrition due to the introduction of the second low-end generation. We have a1 +as+az = 1.
Additionally all customers with low valuation are assumed to purchase the second low-end
generation after they become informed. Consistent with Wilson and Norton’s parameter
setting, we have normalized the total market size for both segments to be unity. Thus the
market size is m; in the sole presence of the first high-end generation. With the coexis-
tence of both product generations, the market size for first high-end generation shrinks to
ms = aym, due to cannibalization from the low-end products; and the market size for second
low-end generation is m3 = agmy + (1 —myq), contributed from both high- and low-valuation
customers. To summarize, we have provided a new perspective of the classical Wilson and
Norton’s product line extension model. All parameters on market size in the original Wilson
and Norton’s setting can be one-to-one mapped into our parameter setting characterizing
customer segmentation, stickiness, compatibility and attrition.

With the definitions of market size for different product generations before and after the
release, we have the cumulative sales dynamics

m1F(t; T t<T
Si(T) = {mlFET;T))+m2[F(t;T)—F(T;T)] gt;T; (3.3)
| 0 (t<T
S(4T) = {mg[F(t;T)—F(T;T)] (t;T; (3-4)

Substituting sales (3.3) and (3.4) into diffusion dynamics (3.2) and noticing S(¢t;7) =
S1(t;T) + Sa(t;T), we can solve F(t;T) as
—e—(ptmiq)t
T (G <T)
F(t;T) = | Ce (B +a)) (=T

1+C%j€—<p’+q'><t—T>

(3.5)
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1—F(T3T)
14+ F(TT)
spondingly the cumulative sales for both generations S;(t;7") and Ss(¢;T") can be obtained
by substituting F'(¢;T) back into (3.3) and (3.4).

where p' = p+ q(my — mao — mg)F(T;T), ¢ = (ma + m3)q and C = Corre-

Now or Never

Seller’s revenue consist of sales of the first generation to high-valuation customers, and the
sales of the second generation to both high- and low-valuation customers:

wo(T) = rmF(T;T)+rimq[l — F(T;T)] + roms[l — F(T;T)]
= (rimy —rymg — romg) F(T;T) + (ryms + roms) (3.6)

where r; and ry are unit profit for the first and second product generations respectively. As
we generally consider books or products with short life cycles (i.e. apparel, toys, consumer
electronics, personal computers), r; (i = 1,2) are treated as fixed during product life cycle
Kurawarwala and Matsuo, 1996; Bitran, Haas, and Matsuo, 1986; Wilson and Norton, 1989;
Mahajan and Muller, 1996. Without consideration of inventory cost, we tradeoff the sales
revenue of the first and second generations by choosing an optimal introduction time.

Proposition 4 [Now or Never| To mazimize the total revenue, the optimal introduction
policy is “now-or-never”: we introduce the second generation right now when rymq — rymeo —

romg < 0, or equivalently when [(:—; +1as+ :_;042 + a1 [my < 1; while we never introduce the
second generation when rymy —rimsy — romg > 0, or equivalently when (:—; +1as+ :—;ag +

aq mlzl

Consistent with Wilson and Norton, 1989, the “now-or-never” rule is quite intuitive: the
second generation should be introduced as early as needed if the market potential for the
first generation is relatively small; or the unit profit from the first generation is relatively
low; or the stickiness of high-valuation customers to the first generation is relatively high;
or the compatibility of second generation to the first generation product is relatively high
(noticing a3 = 1 — a; — az). Moreover since 1o as the unit profit for low-end product is
usually smaller than r; as the unit profit for high-end product, :—; should be larger than
unity. This means when it comes to determine the optimal introduction time in the absence
of inventory cost, customer attrition is the most important factor, followed by the product

compatibility. Customer stickiness should be of least consideration.

Inventory Cost

Inventory cost is actually an important missing factor in the above formulation, as motivated
by various industrial practice in the introduction section. As a consequence, the “Now-or-
Never” policy may turn out to be suboptimal or even bad after incorporating inventory
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cost in the total revenue. Intuitively speaking, to delay the introduction of the second
generation will increase the inventory cost for the first generation of products, because we
keep the inventory not only for longer time but also at a larger quantity. Especially when
the sales rate for the first generation slows down in the late stage, the effective inventory
cost for the remaining products can be very expensive. Therefore, it seems a better idea
to produce less first generation product, and to introduce the second generation earlier, so
that we can save the inventory cost for holding the first generation products. However, to
expedite the introduction of the second generation will increase the inventory cost for the
second generation of products, because we not only keep a larger quantity of inventory, but
also face a less-developed market, a corresponding slower product diffusion speed and thus
a longer sales season. In a nutshell, inventory cost is an important but rather complicated
factor when considering the product line extension introduction. It’s hard to predict how
the increase or decrease of inventory holding cost accelerates or decelerates the introduction.
In fact, we feel the need to systematically study the integration of timing the product line
extension introduction and the inventory management. As a first step toward the integrated
framework, we introduce a simple inventory model in this section, and proceed to enrich it
in the following sections. The results from our simple model verifies our intuitions that the
inventory cost indeed plays a complicated and vital role.

Under the diffusion demand model described above, we consider a one-replenishment
ordering policy. At the beginning of the entire sale season (¢t = 0), we make an order (or
complete the production) of certain amount of the first-generation products, which satisfy
all future demand for the first-generation products; and then right before the introduction
(t = T), we make an order (or complete the production) of certain amount of the second-
generation products, which satisfy all future demand for the second-generation products.
Despite of its simple nature, this one-replenishment policy is also reasonable in practice,
especially when considering large setup cost, relatively short product life cycles, interna-
tional outsourcing, rapidly-changing consumer preferences and frequent innovations in the
industry of publishing, fashion and high-tech electronics, etc. We choose to build our model
under the infinite planning horizon, for two reasons: (1) Demand diffusion given by Bass
model decreases exponentially over time, so any relatively long planning horizons are actu-
ally equivalent to the infinite planning horizon. (2) It keeps the formulation in a relatively
simple form, thus computationally manageable. We’ll analyze finite planning horizons in
the next section. Under the one-replenishment ordering policy, seller’s inventory cost can be
expressed as the sum of the inventory holding costs for each generation

e}

() = —h/ooo Sy (00: T) —Sl(t;T)]dt—h/T Sy(00: T) — Sy(:TY]dt  (3.7)

— / CIR(TTY — P T dt— by / S0 R

o0

—h(my + ms) / [1— F(t;T)]dt (3.8)

T
where we have assumed that the annual unit holding cost / is the same for both generations.
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Seller’s total profit w(T") as a function of release time 7' is the sum of the sales revenue my(7")
and the inventory cost m;(7):
(1 + ?711]%) (r1m1 — rymg — rgms — h(my — m2)T> e~ (prma)T

1+ ml%e—(;wrmm)T

n(T) = —

h h
+ —In (1 + mlge_(p+m1q)T) ——1In (1 + (mg + mg)ge—(p+m1q)T)
q p q p

h q
+ myr, — g In (1 + m15> (3.9)

All terms with h as a multiplier in the above formulation come from the inventory holding
cost. We can see that the inventory holding cost is a highly nonlinear function of the
introduction time 7', originating from the complicated nature of the Bass diffusion process.
For a given set of marketplace parameters of market sizes m; (i = 1,2, 3), diffusion rates p
and ¢, unit profits r; (i = 1,2) and unit holding cost h, we can in principle solve the optimal
introduction time 7™ by maximizing the total profit subjected to T'" > 0. However we find
it in fact impossible to get a full analytical characterization of the optimal solution in the
eight-dimension parameter space. Instead we come up with some strong sufficient conditions
elaborated in next subsection, which in fact can cover a wide array of marketplace parameter
settings we're interested in.

Optimal Introduction Strategy

In this subsection, we introduce a series of propositions to characterize the optimal intro-
duction strategy (with all proofs in the appendix).

Proposition 5 It’s never optimal to never introduce the second generation.

To understand why theoretically this becomes the case after incorporating the inventory
holding cost, we consider the total profit with initially very late introduction time 7', in
which case the sales of second generation become negligible. If we further delay the intro-
duction, the additional revenue savings from the second generation are very slim, because
they come from the change of the sales of second generation. However, the inventory cost for
the first generation increases proportionally with the delay of the introduction time, which
dominates the total profit change. Thus it’s always better to at lease introduce the sec-
ond generation, because it saves our inventory holding cost for the first generation product.
However, one need to notice that Proposition 5 hinges on the infinite planning horizon as-
sumption. In the late stage when diffusion almost saturates, it makes tiny gains to introduce
a second generation, and in practice we’ll never introduce the second generation because
of other managerial considerations. In the following subsection, when we present results
on the optimal introduction strategy, we reasonably use a relatively long planning horizon
as a cutoff, so that all optimal introduction time beyond this cutoff is degenerated as “to
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never introduce”. Next, we discuss when sequential and simultaneous introduction become
optimal. For sake of simplicity, let’s first define

A= 1mgp + (m1 —mga)(ma +ma)q
o p+ (ma +m3)q

> 0, (3.10)

which is a function of diffusion parameters and market potentials.

Proposition 6 [Optimality of Sequential Introduction] If rym; —rymgo—roms > —hA,
it’s optimal to introduce the second generation sequentially. The optimal introduction time
T* can be obtained by solving the following equation

(1 + %m1> (1 + %(mg + mg)e_T*(erqml)) [rlml — rymg — ramg — (my — mo)RT™| +

h * *
— (1 + Ly ? (p+qm1)) (mg + g(ml —mgy)(my +mgz)e™ " (”+qm1)) =0. (3.11)
p p p

The proposition reveals the optimality conditions for sequential introduction policy in two
aspects: sale revenue and inventory cost. From the perspective of sales revenue, it’s optimal
to introduce the second generation sequentially, if the market potential or unit cost of the first
generation is relatively large. In this case, sequential introduction reduces the cannibalization
between successive generations. The implications from inventory cost is fully explored by
the following corollary.

Corollary 5 If it’s optimal to introduce two generations sequentially with the inventory
holding cost h, it’s optimal to introduce them sequentially in the case of any holding cost
h' > h, with other things the same.

By this corollary, we highlight the influence of inventory holding cost on the sequential
introduction strategy. High unit inventory cost will drive the seller to introduce product
line extension sequentially. This looks counter-intuitive at first glance, because delay of the
introduction seems to increase the inventory cost. But the fact is just the other way around.
Different from traditional research on inventory management, where demand can be time-
varying but must be fixed ahead. In our model setting, demand is not purely exogenous, but
can be influenced by the extension introduction decisions. Sequential introduction enables
the sales of the second generation to start at a relatively high rate, thus a lower holding cost.
Under sequential introduction policy, higher unit inventory cost results in higher savings
from total inventory holding cost, which can justify the potential loss in sales revenue.

A remaining problem for proposition 6 is the possible occurrence of multiple optima. As
numerically searched and studied below, there indeed exist cases when multiple local maxima
and minima coexist. It’s particularly difficult to find a full characterization for these cases in
the full parameter space. This difficulty happens, since we put very few constraints on our
parameter setting, so that our parameters vary in very broad ranges that can characterize
rather different markets and industries in a unified framework. However, when the total
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market size is stagnant or diminishing, or the market size for the second generation doesn’t
overweigh the primal market size of the first generation too much, we are able to introduce
a sufficient condition to guarantee the uniqueness of the solution as the global maximum.
Corollary 6 When rymy — riymo — romz > —hA and m; > mo + %, it’s optimal to
introduce the second generation sequentially, and the optimal introduction time T can be
uniquely determined by solving equation (3.11).

Now let’s turn to the simultaneous introduction policy by introducing the following propo-
sition. For sake of convenience, we introduce

) pgMS3 ms 1
0 < B =min , < -, 3.12
{p2 + pq(2msg + 3ms) + ¢®>mq(my + ms3)’ 3ms + 4mgs } 4 ( )

which is also a function of diffusion parameters and market potentials.

Proposition 7 [Optimality of Simultaneous Introduction] When m; < my+ B - mg,
it’s optimal to introduce both generations simultaneously if rymq—rims—roms < —%ﬁh/l;
otherwise when my > ms + B - mg, it’s optimal to introduce both generations simultaneously
if riymy — rymo — ramsz < —hA.

The intuition behind the proposition is as below. First, we always require the condition
rimy — rymeo — romg < —hA, which is just the complementary condition of the inequality
in proposition 6. As a necessary condition for the optimality of simultaneous introduction
policy, condition rym; — ryms — raomg < —hA, generally restricts the unit sales profit from
the second generation not to be too small, and the unit holding cost not to be too high.
Otherwise, the sequential introduction dominates, as elaborated in proposition 6. However
when m; < mo + B - mg, condition rymy; — rymo — romsz < —hA is not enough to guarantee
the optimality of the simultaneous introduction. We end up with a stronger condition by
multiplying ™22 on the right hand side of the inequality.

Proposition 6 together with proposition 7 almost characterize all scenarios except for the
case when m; < msy + B - mg plus —%1’”3 -hA < rym; — rime — roms < —hA. This is the
case when the total profit may look like a “tilted S” curve: first decreases then increases and
finally decreases as the introduction time 7" goes from 0 to +0c0. So the optimal introduction
time can be either now or some time later. In a different setting without incorporating the
inventory cost, Mahajan and Muller considered the introduction for successive generations
driven by technological innovations, instead of customer differentiation. They found the
total discounted profit as a function of introduction time is just a “tilted S”, and further
concluded the “now-or-maturity” rule Mahajan and Muller, 1996. In our numerical examples
with various marketplace parameter settings illustrated below, we found the optimal intro-
duction policy for all cases with “tilted S”-curved total profit turn out to be simultaneous
introduction.
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Numerical Studies

We conduct numerical studies under some typical parameter settings in this subsection.
Firstly, we analyze how inventory cost influences the optimal introduction strategy jointly
with other marketplace factors. Then we revisit “Now-or-Never” Wilson and Norton, 1989
as well as “Now-or-Maturity” rules Mahajan and Muller, 1996 in these settings. And lastly
we highlight the impact of the inventory holding cost on the optimal introduction strategy.

Figure 3.1 summarizes the optimal introduction strategies under various marketplace
settings. We normalize the unit sale profit of the first generation r; to be unity. Then for
each plot in the array, z-axis represents the unit sale profit of the second product generation
ro, and y-axis represents the annual unit inventory holding cost h. As motivated before,
ro < 11, so z-coordinate ranges from 0 to 1. We consider up-to-25% annual inventory
holding cost, so y-coordinate ranges from 0 to 0.25. Please notice that different from the
traditional definition, the unit annual inventory holding cost here is relative to the unit profit
of first-generation products. For each plot, we divide the whole plane into a 17 x 17 lattice,
and find the optimal introduction time 7™ by maximizing the total profit function for each
lattice point numerically. The optimal introduction time 7™ at each lattice point is then
represented by the darkness of the point: as T™ goes from 0 to 5 year, the color gradually
change from dark to light. All points with 7 > 5 are in light color. We adopt the innovation
coefficient p = 0.15 year~! and imitation coefficient ¢ = 2 year~! for all plots. A natural
diffusion timescale 7 = M ~ 1.2 year is the time when single-product sale peaks. When
T > 5 year ~ 41, the product diffusion is almost saturated, and it makes little impact on
the total profit to introduce a new generation. As motivated previously, we can effectively
adopt a relatively long effective planning horizon 7, = 5 year. Therefore in the plots, all
light-colored points actually corresponds to the cases that we “never” introduce the second
generation. As a comment to clarify, the timescale (in unit year) of the dynamics is entirely
determined by diffusion parameters p and ¢, which can be inferred from sale data.

Array of plots in Figure 3.1 are organized with respect to the high-valuation customer
characteristics (a’s) and the market size for the first-generation products (m;). Plots in
the same row have the same customer characteristics, including stickiness oy, compatibility
ap, and correspondingly customer attrition «sz. Plots in the first row represent the case
when after release of the low-end second generation, most high-valuation customers stick
to the high-end first-generation products with a; = 75%; only a few migrate to the low-
end second-generation products with as = 25%; and little customer attrition as = 0. This
can be a good representation of the high-tech consumer electronics industry. Plots in the
second row represent the case when most high-valuation customers stick to the high-end
first-generation products with «; = 75%; little migrate to the low-end second-generation
products with as = 0; and a small portion of customers leave the market after the release
of the low-end products az = 25%. This can be a good representation of the fashion or
luxury goods industry. Finally plots in the third row represent the case when only a few
high-valuation customers stick to the high-end first-generation products with a; = 25%;
most migrate to the low-end second-generation products with ap = 75%; and little customer
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Figure 3.1: Plots of Optimal Introduction Strategy under Various Marketplace Settings.
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attrition a3 = 0. This can be a good representation of the publishing industry. Plots in the
same column have the same market potential of the first-generation m;. From left to right,
my = 0.25, 0.5, 0.75, respectively represent the case when the first generation is a prelude
to the second-generation products, an equally important market to the second generation,
and the primal target market out of both generations.

For each plot corresponding to a specific marketplace setting, we apply the theoretical
results in the last subsection to analyze the optimal introduction strategy, as marked by
two white lines. The solid line corresponds to proposition 6, implying that it’s optimal to
introduce generations sequentially for all points above it; the dashed line corresponds to
proposition 7, implying that simultaneous introduction is optimal for all points below it.
The region between the two lines is undetermined by the analytical propositions. Out of
nine plots, there are seven plots where the solid line and dashed line are exactly overlapped,
in which cases the optimal introduction strategy can be entirely determined by the analytical
propositions. There are also two plots where the dashed line is lower than the solid line, in
which case the undetermined region is non-empty. However, our numerical result implies that
simultaneous introduction policy is optimal within this region for both plots. In conclusion,
it’s optimal to introduce both generations simultaneously for all points below the solid white
lines; it’s optimal to never introduce the second generation in the light-colored region; and
it’s optimal to introduce second generation sequentially in the dark-colored region above the
white solid line. The optimal introduction time is suggested by the degree of darkness, as
standardized in the palette below the plot array.

It’s not hard to notice several interesting trends in Figure 3.1. Firstly, for every industry,
when the market size of the first generation increases, regions for simultaneous introduction
strategy shrink, and sequential introduction strategy becomes more and more dominant.
This is because the cannibalization from the second low-end generation becomes more and
more costly. Secondly, for both high-tech and fashion industries, when the market size for
the first generation is small (m; = 0.25), the optimal introduction policy is indeed “now-or-
never”; however for publishing industry, “now-or-never” is never a good guideline, consistent
with the common wisdom. Finally, roughly speaking, high unit inventory holding cost drives
the seller to sequentially introduce the successive generations of products; while high prof-
itability of the second generation justify the simultaneous introduction. The guideline is
formalized in Table 3.1.

Table 3.1: Optimal Introduction Strategies with respect to Inventory Holding Cost and
Profitability of Low-End Products.

Profitability of Successive Low-End Products
Low Medium High
Inventory High Never Sequential | Simultaneous
Holding Cost | Low Never Simultaneous | Simultaneous
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Now we turn to reevaluate “now-or-maturity” policy in our model setting. Proposed by
Mahajan and Muller, 1996, this influential rule states that “The optimal decision rule for a
firm introducing a new generation of a technological durable product is either to introduce
the product as soon as possible or delay its introduction to the maturity stage in the life-
cycle of the first generation.” This proposition originates from their numerical finding that
the optimal introduction time usually makes a quantum leap to the ninth period, when
“now” is no longer optimal. However, back to our setting, Figure 3.1 has revealed that the
optimal introduction time can vary continuously from “now” to “never”. Moreover, they
have given a qualitative criterion on optimal introduction strategy: “If either the market
potential of the second generation is large, or the profits gained from the second generation
are large, the firm introduces the second generation now.” This is consistent with our result.
Actually in Figure 3.1, when my is small and r5 is high, simultaneous introduction is indeed
optimal.
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To get a direct understanding of the applicability of “now-or-maturity” rule in our arena,
we take a set of specific parameter settings as examples to show the impact of introduction
time on the total profit below. In fact, maturity of the first generation market can be
measured by the peak sale timing 7,,, = W, which stays relatively constant (ranges
within 1.4 and 1.8), as m; ranges from 0.25 to 0.75, given p = 0.15 and ¢ = 2. So “now-
or-maturity” can be translated as to introduce the second generation now or around time
T,, ~ 1.5 year (or with some constant factor), given the diffusion rates. As shown in Figure
3.2, our model generates all possible optimal introduction timings ranging from 0 to 7},, with
significant deviations from “now-or-maturity”. The discrepancy also casts questions to the
“now-or-maturity” rule: (1) When is the maturity exactly? (2) What’s the applicable range
for the rule? Our model tries to provide a recipe to explicitly answer these questions.

Finally, we discuss how the optimal introduction time depends on inventory holding
cost. In Figure 3.1, by fixing z-axis and looking at how the darkness changes along y-axis,
we observe that the optimal introduction timing can vary with inventory cost in different
ways. We start formalizing the ideas in Figure 3.3. As usual, we present a plot array
organized by different market potentials and high-valuation customer characteristics. For
each plot, omitting the dashed lines at this moment, three solid lines in different colors
correspond to three different unit sale profits of the second generation r,. From this figure,
we can summarize three general rules regarding the relationship of the optimal introduction
time and the unit inventory holding cost. (1) The optimal introduction time relies on the
unit inventory holding cost in a nonlinear complex way. Depending on different marketplace
settings, particularly unit sale profits, the optimal introduction time can increase or decrease
in the inventory holding cost. (2) When the unit inventory holding cost is relatively high, the
optimal introduction timing tends to converge to a constant value, which is irrelevant with
the inventory holding cost. (3) There exists a certain combination of marketplace setting, in
which case the optimal introduction time doesn’t depend on the inventory cost.

Now we will try to find out whether our analytical framework can confirm these obser-
vations. First we notice the following proposition:

Proposition 8 If rym; —rime —1remg = 0, the optimal introduction time doesn’t depend on
the unit inventory holding cost.

This is the case when the markets for two generations are perfectly balanced, so that the
inventory exerts the same impact on each market, and doesn’t affect the introduction strat-
egy. In general, to further characterize the relationship between unit inventory holding cost
and the optimal introduction time turns out to be rather complicated, without a closed-form
expression. However, by looking at a specific case when the total market potential stays
the same before and after the introduction of the second generation, we are able to grasp
the main idea behind. The following proposition formalizes the rules discovered above (with
proof in appendix):

Proposition 9 In the case of ms + mg = my, the optimal introduction time T* is a(n)
increasing (decreasing) function of unit inventory holding cost h iff rymy — rymy — roms < 0
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(> 0). Moreover, when h > h® = [r1 ™22 —ry|(p+ gma), the optimal introduction time T*
doesn’t depend on h.

Generally without my + m3 = mq, the optimal introduction time can be a non-monotonic
function of unit inventory holding cost, yet Proposition 9 can still apply most of the time.
As shown in Figure 3.3, none of the plots satisfy mqy 4+ ms = my, but actually proposition 9
apply to all cases there: all decreasing solid lines satisty rymy; — rimg — romgs > 0, and all
increasing solid lines satisfy rim; — rime — roms < 0. Also hY roughly serves as a scale to
measure the convergence of 7%(h).

3.4 Extensions

So far we have fully explored the optimal introduction strategies under the one-replenishment
ordering policy in an infinite planning horizon. We proceed to enrich the basic model in this
section. Particularly, we extend the model in the following two aspects to make it more
flexible. Suggested by previous research Wilson and Norton, 1989; Mahajan and Muller,
1996, we first consider a finite planning horizon. As shown below, this extension actually
doesn’t impair our analysis in the last section. Our main findings regarding the optimal
introduction strategy are rather robust. Especially under short planning horizons, “now-
or-never” rule is never optimal. We then generalize the simple ordering policy to include
multiple replenishment. We find that when the replenishment gets frequent, the “now-or-
never” rule dominates again.

Finite Planning Horizon

Under a finite planning horizon T),, the objective function of seller’s total profit m,(7") can
be reformulated as,

(T) = rim F(T;7T) +rme|F(T,;T) — F(T;T)] + roms[F(T,;T) — F(T;T)]

- hml/T[F(T;T)—F(t;T)]dt—hmg/T[F(Tp;T)—F(T;T)]dt

h(ms + m3) / K [F(T,:T) — F(t;T))dt (3.13)
[r1m1 — 1Mo — o3 + h(mg — ml)T] F(T, T)

+ [7“17712 —+ roms + hmgT — h(mz + mg)Tp] F(Tp; T)
1 1
+ h |:m1T ——1In (1 + gml) + - In (1 + gmle—(p+qm1)T):|
q p q p
1 ¢y, 1 ¢ ' +a)(T-T)
+ h(m2+m3) (Tp—T)—aln<1+05)+aln(1+056 P ) (314)
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where F(t;T), C, p’ and ¢ have been defined in (3.5). 7,(T") goes to ©(T) in (3.9) as the
planning horizon 7, goes to infinity. In principle we can come up with analytical characteri-
zations of the optimal introduction timing by maximizing the total profit m,(7), as T varies
between 0 and 7},. However, the expression of the objective function turns out to be rather
complicated to analyze, even to express. Thus we use numerical studies instead, to inspect
the impact of the finite planning horizon below.

We consider the case when the annual inventory holding cost h = 10% (of the unit profit
of the first-generation product 7;), and the unit profit of the second-generation product
ro = 0.57r;. Along the line with the previous sections, we consider nine different marketplace
parameter settings, differentiated by «; (i = 1,2,3) and my. To illustrate the impact of
planning horizon T, on the optimal timing 7™, we consider four different lengths of planning
horizon with T, = oo, 5 year, 2.5 year, 1 year. T, = oo corresponds to the case of
infinite planning horizon, as fully analyzed in the previous section. We denote the optimal
introduction timing under the infinite horizon as 7. To get an understanding from the
perspective of market penetration rate, let’s look at the market with m; = 0.5. There is
a natural diffusion timescale T;,, ~ 1.65 year under our parameter setting. In fact 7, =
5 year ~ 3T,, means that we choose the planning horizon as the time when the adoption
fraction of the first-generation products under its sole presence is around 98%. Similarly
T, = 2.5 year ~ 1.5T,, corresponds to a fraction of around 69%, and 7, = 1 year ~ 0.6},
corresponds to a fraction of around 22%, which is a rather short planning horizon.

Table 3.2: Optimal Introduction Timing As A Function of Planning Horizon.

T, =00 T, = 5 year T, = 2.5 year T, =1 year
@ ez T T AT %) | A% | T AT %) | &% | T° (AT*%) AT %
0.25 0 0 (0%) 0% 0 (0%) 0% 0 (0%) 0%
0.75 0.25 | 0.5 0 0 (0%) 0% 0 (0%) 0% 0 (0%) 0%
0.75 0.922 0.911 (1.2%) 0% 0 (>100%) -2.8% 0 (>100%) | -20.9%
0.25 0 0% (0%) 0% 0 (0%) 0% 0 (0%) 0%
0.75 0 0.5 0 0 (0%) 0% 0 (0%) 0% 0 (0%) 0%
0.75 4.15 3.99 (4.0%) 0% 2.5 (65.9%) -0.4% 1 (>100%) 1.6%
0.25 0 0 (0%) 0% 0 (0%) 0% 0 (0%) 0%
0.25 0.75 | 0.5 1.27 1.24 (2.2%) 0% 0.116 (9.94%) | -10.3% | 0 (>100%) | -43.3%
0.75 3.66 3.57 (2.6%) 0% 2.5 (46.6%) -1.2% 1 (>100%) 11.5%

As shown in Table 3.2, let’s first compare the optimal introduction timing 7™ under dif-
ferent planning horizons. We define AT*% = T*T* as the relative difference between the
optimal introduction timing under infinite planning horizon and the one under planing hori-
zon of length T),. When T, = 5 year, AT*% is mostly zero with the largest relative difference

as 4%. Moreover, if we take a look at the total profit, we’ll find that the approximation of
*(7 — 7TG(T )_WG(T*)

infinite planning horizon by T}, = 5 year is even better. We define Ax as
the relative difference from the maximum total profit, when under planning horlzon of) length
T, we adopt the optimal introduction timing 7f, which is the optimal solution obtained un-
der the infinite horizon. We find that A7*% is all zero for T, = 5 year. This implies that in
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the case with relatively long planning horizon T, = 5 year, we can capture 100% profit by
using the optimal introduction timing obtained under infinite horizon.

Then let’s turn to the case with 7, = 2.5 year. Firstly, we notice that AT*% can
be large. However, a scrutiny at 7™ reveals that for both cases with AT*% = 65.9% and
46.6%, the optimal introduction timing 7™ = 2.5 year. This indicates “never” as the optimal
introduction strategy, which is consistent with the relatively late introduction obtained under
the infinite horizon, with Tjj = 4.15 year and 3.66 year. Therefore the only discrepancy of the
optimal introduction strategies between infinite horizon and 7, = 2.5 year is the case with
a; = 0.75, aps = 0.25 and my = 0.75. It’s optimal to introduce the product line extension
“now” under 2.5 year planning horizon; while the sequential introduction is optimal for
infinite horizon. Nevertheless, by further taking a look at the difference in profit, we find
all Am*% is within 10%. Therefore T, = 2.5 year can still be well approximated by infinite
horizon, in that by using the optimal introduction strategy obtained under infinite planning
horizon, we are still able to capture 90% profit under a 2.5 year planning horizon.

By applying similar analysis to the case of T, = 1 year, we observe that there exist
significant differences between the infinite horizon and 7}, = 1 year, in terms of the optimal
introduction timing as well as the profit. We generate the plot array of optimal introduction
strategy under planning horizon 7}, = 1 year in Figure 3.4. Please first notice that “never”
refers to 7% = T}, = 1 year in the current scenario. We find that (1) Under a short planning
horizon, “Now-or-Never” is never an optimal introduction strategy under all marketplace
settings. (2) Low inventory holding cost together with high profitability of the product line
extension justify the optimality of simultaneous introduction. (3) It becomes optimal to
sequentially introduce the product line extension, when inventory holding cost is high and
the profitability of the second-generation products is medium. Therefore the idea formalized
in Table 3.1 is still applicable in the short planning horizon.

Many other factors come into play when determining the planning horizon. For many
slow-paced industries, it’s always reasonable to guarantee a moderate market penetration
fraction. Therefore we expect normally the planning horizon 7, 2 2.5 year in our setting,
so that the market penetration fraction is over 70%. This means our analysis under infinite
horizon is directly applicable to the practical finite-horizon situations: to apply the optimal
introduction strategies obtained under the infinite horizon guarantees around 90% of the
total profit. Moreover, with no surprise, we find that as the planning horizon gets shorter,
we tends to expedite the introduction of the product line extension.

Multiple Replenishments

To include multiple replenishments in our inventory model, we consider a simple scheduled
ordering policy: fixed interval ordering Graves, 1996; Cachon, 1999. In reality it is often
impossible to replenish inventory continuously, and thus the fixed interval ordering policy is
motivated and widely used in practice. Delivery of orders is assumed to be instantaneous.
We assume an exogenous ordering interval O; for ¢th generation products. Then our most
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generalized form of the total profit objective function 74 (7") can be expressed as:

mq(T) = rmF(T;T) +rime[F(T,;T) — F(T;T)] + roms[F(T),; T) — F(T;T)]
LT/01] T

701
— hmy Z / [F(jO1;T) — F(t;T)]dt — hmy / [F(T;T)— F(t;T)]dt
j=1 Y (=101 |T/01]-O1

T
- hm2/0 [F(T,;T)— F(T;T))dt

L(TP_T)/OIJ T+701
— by Y / [F(T + jOv:T) — F(t: T)dt

j=1 T+(j—1)01
Tp
— hmg/ [F(Tp;T) — F(t;T)]dt
[(Tp—T)/01])-O1+T

L(TP*T)/OQJ T+502
~ g Z / [F(T + jOs: T) — F(t: T)dt
T+(j—1)02

~ g / (F(T,:T) — F(t:T)]dt (3.15)
Ty—T)/Os]-O2+T

= [rimy — rimg —roma + h(mg — my)T| F(T;T)
-+ [Tlmg + romsg + hmgT — h(mg + mg)Tp] F(Tp; T)

\.T/Clj —+ I -1
) 1 P miqge ( 1q)('] ) !
himaT — h E O\F(jO;T) + hl( —(p+m1q);O )
—+ ma mi =~ 1 (.7 1 ) miq P + miqe (p lq)] 1

+ hmy ||T/O1|O\F(T;T) —

1 1 P + mlqef(IH’mIQ) [7'/01]0:
mig ( p + myge~ Ptmig)T )
[(Tp—T)/01]
+ hmg(Tp - T) — th Z
j=1

1 ! 4 COd e~ @' +Cd)([E-1)01
OLF(T +§0T) + o (* +oge )

P+ C’q’e*(p'*Fqu)jOl

+ hmg

' 1 p + Cg'e= @' +C)(Tp=1)/01]On
L(Tp =T)/ 01O\ F(T}; T') — q In ( p + C¢e=~W'+Ca)(Tp=T) )
[(Tp—T)/Oz]
+ hmg(Tp — T) — hmg Z
j=1

1 / C 1 ,—(p'+Cq')(j—1)O2
OF (T +jOxT) + In (p rtoge )

P+ quef(p’+0q’)j02

+ hmg | |[(T, —T)/O2]O2F(T); T') — (3.16)

1 1 p, + Cq,e ' +Cq )(Tp—T)/02]0x
? . ( P+ Cq/e*(p +Cq')(Tp—T) )

where again F(¢;T), C, p’ and ¢’ have been defined in (3.5). Despite of its complicated
form, the idea behind the total profit function is similar to the simple case discussed before.
The key extension is that we need to count for the inventory holding cost by replenishment
cycles. The first replenishment cycle starts from 0 for the first-generation products, while
it starts from T for the second-generation. Using numerical searching, we find the optimal



CHAPTER 3. INVENTORY MANAGEMENT FOR NEW PRODUCTS 76

introduction timing under multiple-replenishment policy with replenishment intervals O, =
0.5 year, Oy = 1 year, and planning horizon 7, = 3 year. Figure 3.5 summarizes the results
under various marketplace settings. We find that (1) “Now-or-Never” rule applies again. (2)
Simultaneous introduction becomes more dominant, especially for the case when the market
size for the first-generation is relatively small.

To have a close look at the impact of multiple replenishments, we take a specific example
with a; = 0.25, ag = 0.75, my; = 0.5, 7o = 0.5r;, h = 0.1r; and as usual p = 0.15, ¢ = 2.
As shown in Figure 3.6, as Os the replenishment interval for the second-generation products
gets shorter, we save inventory holding cost for the post-introduction period [T’,7},]. This
saving gets more substantial as the post-introduction period gets longer, or equivalently the
introduction time 7' gets earlier. On the other hand, as O; the replenishment interval for
the first-generation products gets shorter, we save inventory holding cost for both the pre-
and post-introduction periods, because we sell first-generation products in both periods.
However, since we target first-generation products at high-valuation customers, we expect
the sale during the pre-introduction period is the majority. Thus the saving from the first-
generation products usually gets more substantial as the pre-introduction period gets longer,
or equivalently the introduction time 71" gets larger. Moreover, we know from the inventory
theory, the savings from introducing multiple replenishment is quadratically proportional to
the length of the period. As a result, the saving for cases with rather early or rather late
introduction is more significant than that with median introduction timing. Consequentially,
“now” and “never” become more preferable as the replenishment gets more frequent, and
“now-or-never” rule dominates the optimal introduction strategy again.

3.5 Summary and Future Research

Among earlier studies of introduction timing for product line extensions, researchers ad-
dress this research question primarily in the marketing discipline Wilson and Norton, 19809;
Moorthy and Png, 1992, neglecting important factors from operations management, such as
inventory. This assumption is valid if the firm can continuously replenish inventory. How-
ever, inventory holding is often unavoidable in many industry practices, and this has led
to a clear call in academia to develop more comprehensive models addressing the timing
decisions from both operations management and marketing science perspectives, with the
hope to design methodologies to improve a firm’s profit or enhance the decision maker’s
performance. The purpose of this paper is to take a first step towards understanding the
implications of timing introductions of product lines by coordinating decisions of marketing
and operations management.

We study the problem that a firm plans to introduce a low-end product line extension
given a high-end product has been introduced, with a primary focus on the decision of when
to introduce the low-end generation. We propose an integrated model that considers im-
portant factors from areas of both operation management and marketing. On the demand
side, we provide a new perspective of the classical Wilson and Norton’s product line ex-
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Figure 3.5: Plots of Optimal Introduction Strategy under Multiple-Replenishment Ordering
Policy with Replenishment Intervals O; = 0.5 year, O = 1 year, and Planning Horizon
T, = 3 year.



CHAPTER 3. INVENTORY MANAGEMENT FOR NEW PRODUCTS 78

n6(T)*

0.50

0.45+

0.40

=
-
e
LI
.....

L L | L L | T
05 10 15 2.0 25 0

Figure 3.6: Impact of Replenishment Interval on Optimal Introduction Strategy. Each line
shows the total profit 7¢(T") as a function of the introduction timing 7". The solid black line
is the baseline case with only one replenishment for each product generation, i.e. O; = Oy =
T, = 3 year. When we decrease O; gradually to 2, 1, 0.5 year, the total profit are shown
respectively as dark gray, gray and light grey dotted lines. When we decrease Oy gradually
to 2, 1, 0.5 year, the total profit are shown respectively as dark gray, gray and light grey
dashed lines. The solid grey line shows the case with O; = Oy = 0.5 year.

tension model Wilson and Norton, 1989. In our setting, the market is segmented into two
groups of customers by their different valuations of the product. All low-valuation customers
can only afford the low-end products; high-valuation customers can choose to stick to the
original product generation, or to migrate to the low-end product line extension; or leave
the market immediately. On the supply side, we focus on the impact of inventory holding
cost under the one-replenishment ordering policy. Under our integrated framework, we de-
termine the optimal introduction strategy and present analytical characterizations for the
one-replenishment ordering schedule. We also conduct numerical studies by different indus-
tries and market potentials. Our results show that sequential introduction can be optimal
under substantial inventory cost, medium profitability of the product line extension, or rela-
tively short planning horizon. The optimal introduction timing can increase or decrease with
the inventory cost depending on the marketplace setting. Moreover, we extend our model to
allow for multiple replenishments, and find the “now-or-never” rule applies under frequent
replenishments.

Our work shows that an interdisciplinary decision-making approach of both operations
management and marketing science will help firms achieve an improved profit. These two
aspects of a firm should be synchronized not only at the operational level, but at the tactical
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level as well, so managers should understand both sides and then make a recipe that is right
for their company’s particular situation. We also suggest that operational variables, such as
order policy and inventory cost, can impact the introduction timing decision, thus might be
considered in future empirical efforts.

Our analysis opens up several opportunities for future research. In our model, the de-
mand is partially endogenous but deterministic. We expect demand uncertainty to be an
interesting factor to explore, as it will combine the inventory management and the intro-
duction timing decision more tightly. Firms tend to determine the introduction timing for
the second generation based on the inventory level of the first-generation product. Thus a
careful systematic analysis on the inventory decision beforehand becomes even more vital.
Moreover, we haven’t considered strategic customer behaviors in our model. We assumed
all low-valuation customers are myopic and impatient in waiting. In reality, customers can
be forward-looking. Their estimation of the introduction time can have an impact on the
firm’s timing decision Prasad, Bronnenberg, and Mahajan, 2004. With her own expectation
of the introduction time, a rational customer compares the net present values between the
two products to make the purchase. Finally, to explore other marketing mix decisions is also
of interest, especially to include the pricing strategies for the successive generations.
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Appendix A

Appendix

A.1 Multi-armed Bandits, Gittins Index, and Search
for Information:

In the standard multi-armed bandit, a decision-maker chooses which arm to pull in each
period, where the reward obtained in the pulled arm is stochastic with unknown distribution
for each arm (with independent distributions across arms). Gittins (1979) show that the
optimal policy in this problem is to pull the arm that has the highest dynamic allocation
index, as defined by Gittins, also known as the Gittins index, which is obtained for each arm
and only depends on the information on the distribution of rewards that the decision-maker
has at that time for that arm. One interpretation of the Gittins index (provided by Whittle
1980) is that it is the value at which the decision-maker would be indifferent between getting
that value for sure, or playing the arm with the option of taking that retirement value at
any time. That is, if we define V([;, K;) as the value of playing arm i, with information
I; about arm ¢, with the possibility of retiring and getting K;, then the Gittins index can
be seen as the K; such that K; = V(/;, K;). Bergman (1981) showed that, in general, the
optimal policy in the problem of gradual search for information does not involve playing the
arm with the highest index (i.e., highest Gittins index).

In order to see this we present a counter-example (adapted from Bergman for rational
expectations in search for information). Suppose that there are two possible products that
a consumer can purchase, A and B. Prior to any search the expected value of product A
is 10, and the expected value of product B is 4. The first time a consumer searches on
any of the products she does not learn anything about the value of any product. The
second time the consumer searches for information on product A the consumer learns that
the value of product A is either 20 or zero with equal probability. The second time that
the consumer searches for information on product B the consumer learns that the value of
product B is either 18 or —10 with equal probability. The search cost of each time the
consumer searches for information is 1. The Gittins index for product A is obtained by

making K4 = —2 + % + %, which yields K4 = 16. The Gittins index for product B is
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obtained by making Kz = —2 + % + %, which yields K = 14. That is, the Gittins index
policy would suggest to check information on product A first, which yields an expected
payoff of —2+ % - %( -2+ %) = 11.5. However, by checking information on product B first,
the consumer is able to get the higher expected payoff of —2 + % + % = 12. By checking
product B first the consumer keeps product A in reserve which she can choose to buy without
checking further.

As discussed in Section 1.7, Bergman (1981) shows that the Gittins index policy is optimal
when there are an infinite number of products that are ex ante equal in distribution. In this
case, the Gittins index is a direct extension to the “reservation price” in classical sequential
search (McCall 1970), to allow for multiple search actions on one alternative.

A.2 Proof of Lemma 1:

According to the symmetry between u; and wug, it suffices to show for Yus, V(uf,us) >
V(u),uz) for Vu| > w). In fact, let z(uy,uz) be the consumer’s optimal action given her
current expected utilities of the two products as u; and us. Any other strategy, including
x'(uy,ug) = x(uy+uj—uf, us) must be suboptimal to x. By the definition of ', we know that,
to follow strategy ' starting from (u}, us) will always generate the same action sequence as
to follow strategy x starting from (u}, us). Any search process will end up with purchasing
product 1, purchasing product 2, or exiting market without any purchase. Because the
same action sequence is followed for both random searching processes starting from (u}, us)
and (uf,us), they will end up with the same choice of actions. In any case, the consumer
will be no worse off by following 2’ in the search process starting from (uf,us), because
u] > u}. As aresult, V(u},uz), as the expected utility by following x for the search process
starting from (uf,us), will be no larger than the expected utility by following z’ for the
search process starting from (uf, us), which in turn is no larger than V' (uf, us) according to
the suboptimality of /. =

A.3 Proof of Lemma 2:

To simplify notation, we drop the subscript 7 in U;(u). For Vu” > u', we know V(U (u'), u") >
V(U(u'),u') = U(u'), according to the monotonicity of V(u;,us) by Lemma 1. So given a
consumer’s expected utility of product 2 as u”, when her expected utility of product 1
reaches U(u'), she has the maximum expected utility of continuing searching for information
as V(U(u'),u"), which is greater than the expected utility of purchasing product 1 right
away as U(u'). Her optimal decision is then to continue searching, until she hits a higher

expected utility of product 1 as U(u"). Therefore, we have U(u”) > U(v/). =
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A.4 Derivation of the Smooth-Pasting Condition in
Equation (1.12):

We prove the smooth-pasting condition at the purchase boundary of product 1. The proof
for product 2 can be constructed similarly according to symmetry. Let us consider an extra
search in dt on product 1 at the boundary (U('UQ),UQ). The corresponding utility update
duy can be positive or negative, with equal odds. If du; > 0, the consumer will purchase
product 1 immediately, and leave the market; otherwise if du; < 0, the consumer’s expected
utility of product 1 decreases, and she will stay in the market searching for more information.
Therefore, her value function upon the extra search on product 1 would be:

Vi (U(wa),us) = —cdt + % (U(us) + E[duy|duy > 0]) + %E [V(U(u2) + duy, us|duy < 0)]
=V (U(s),w) + Ty o [ Vi (Taw), 02)] + 0V, (A1)

where we have used the fact that Eldu,|du; > 0] = —Eldu,|du; < 0] = a\/g.

On the other hand, let us consider a consumer who spends dt in searching for information
on product 2 at the boundary (U(UQ),UQ). If dus = dBs(t3) > 0, according to Lemma 2,
the consumer’s purchase threshold for product 1 increases, so she will stay in the market
continuing the search for information; otherwise, if dus < 0, the consumer will purchase
product 1 immediately. Therefore, her value function upon the extra search on product 2

would be:

Vy (Ulug)ius) = —edt+ %E V(T (uz), g + dualdus < 0)] + %U(UQ)
=V (Tlus),us) — 24/ v, (U (un), ) + oV, (A2)

2V 27

A consumer chooses which product to search for information on based on expected utility
maximization. Therefore, her value function upon the extra search should satisfy:

V (U(uz),uz) = max{V; (U(us),uz), Vo (U(uz), us)}. (A.3)

By substituting the expression of V; (U(ug), uz) and V5 (U(uz), uz) into the above equation,
we have

max{1 — V,, (U(uz),u2) , Vi, (U(uz),uz)} = 0. (A.4)
Meanwhile, by taking derivative of both sides of equation (1.11) with respect to uy, we have

!/

U (UQ) [1 - Vu1 (ﬁ(UQ), UQ)] = VUQ (U(Ug), UQ) . (A5)

Combining the above two equations, we obtain V,, (U(uz),us) = 1 and V,, (U(uz), us) = 0.
u
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A.5 Proof of Theorem 1:

The solution is not easy to obtain, but it is fairly straightforward to verify that it satisfies
equation (1.9) along with all boundary conditions (1.11)-(1.14). Actually, as a viscosity
solution, V' (u1,us) takes different forms in different regions in our solution. We also need
a set of conditions at the boundaries separating different regions. Say V' (uy,us) takes the
form of V1(uy,us) in region 1 and V?(uy,uy) in region 2. At each “internal” boundary C
separating region 1 and 2, we need to impose

(1) Value Matching Condition: V!(uy, ua)|uy usrec = V2 (w1, u2)|fuy ustecs

(2) Smooth-Pasting Condition: V! (u1, us)|{ususyec = Vie (U1, u2) | ur usyec (0 = 1,2).

One can verify that V' (uy, ug) in equation (A.64) satisfies the two conditions above at all
internal boundaries: C; = {(uy, us)|u; = ug > —a}, Co = {(uy,us)juy = —a, —a < uy < a}
and C3 = {(uq, u2)|ug = —a, —a < u; < a}.

The uniqueness of the solution is guaranteed by the generic uniqueness of viscosity so-
lution to Hamilton-Jacobi-Bellman equation (1.9) (Bardi and Capuzzo-Dolcetta 2008, page

6). m

A.6 Derivation of Purchase Likelihood in Equation
(1.19):

If u; > U(usy), the consumer will purchase product 1 right away, therefore P (u;,us) = 1. If
u; < —aor uy > U(uy), the consumer will never purchase product 1, therefore Py (uy, uy) = 0.
Otherwise if —a < u; < U(ug) and uy < U(uy), there are two cases, depending on the value
of us.

In the first case with us < —a, the consumer will search on product 1 only. Given
her current expected utility u;, she will either hit —a first or hit a first. According to the
Optional Stopping Theorem, we have uy = Py (u1, ug)a + [1 — Py(u1,us)] (—a), i.e.,

1 (75}
Pi(uj,us) = -4+ —, —a<u <auy < —a. (A.6)
2 2a

In the second case, us > —a. When u; > us, the consumer searches on product 1, and
either hits U(uy) first or hits u, first. Let us define the probability of hitting U(uy) first as
¢1(u1,uz). Then by invoking the Optional Stopping Theorem, we similarly get

U — U
Ch(uhuz): = ! 2

= (A.7)
U (UQ) — U9

According to symmetry, the probability of hitting U(u,) first, staring from (u;,u,) with
u; < ug would be ¢q(ug,uy). Let us further define Py(u) as the probability of exiting the
market without any purchase, given current expected utilities as (u,u). Let us consider an
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infinitesimal search on product 1 at (u, ), with utility update as du. By conditioning on du,
we have the following equality

Py(u) = %Pr[exiﬂdu > 0] + %Pr[exiﬂdu < 0] (A.8)
= =t du,w)] Po(u) + 5 [1— qa(u,u— du)] Pofu—du)  (A9)
= Py(u) - %u [PS(U) - <8QI8(52’ u) _ 3%@(31, U)> Po(u)] : (A.10)

where the last equality is obtained by doing a Taylor expansion o ¢; (u+ du, u), ¢;(u, u—du),
and Py(u — du). Then we have,

Py(u) _ Oqi(u,u)  Oqu(u,u) 2 (A.11)

B(u) ~ ou, O af[iew (e )]

Combining the differential equation above with the initial condition Py(—a) = 1, we can
solve Py(u) as

Py(u) =W <e—<%“+1>) . (A.12)

Starting from (ug, us) with uy > us, the consumer searches for information on product 1.
With probability ¢, (u1,us), she hits the boundary U (us) first, and purchases product 1 right
away. With probability 1 — ¢ (uy,us), she hits uy first. And then starting from (us, us), she
eventually purchases product 1 with probability 1[1 — Py(u2)]. Therefore, we have,

1 _
Pl(ul, Ug) = ql(ul,u2) + [1 — ql(ul,UQ)] 5[1 — PO(UQ)], —a<Uy <u < U(UQ> (A].?))
Similarly starting from (uq, ug) with u; < ug, the consumer searches on product 2. With

probability 1 — ¢;(ug,uq), she hits u; first. And then starting from (uy,uq), she eventually
purchases product 1 with probability 3[1 — Py(u1)].

Pu(u, us) = [1— g1 (uz, u)] %[1 _Pyw)], —a<u < us < Tlu). (A.14)

By combining all the scenarios above, we have equation (1.19). =

A.7 Comparative Statics of Purchase Likelihoods in
Figure 1.5:
We prove the comparative statics of Pi(u1,uz) first and then those of P(ui,us). We only

focus on the region where —a < u; < U(ug) and —a < uy < U(uy). For other regions, the
proof is straightforward, thus omitted.
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To prove the comparative statics of Pj(ui,us), we consider two cases. In the first case
with uy > uq, we have

)—UQ U(Ul)—UQ'

U(Ul
Pi(uy,us) = = — A.15
) = S S (A15
Given u; and us,
P 2ur (s — wr) (T(uy) — ug —
OPy(u1,us) _ w —|—2u2 N uy (ug _ul)( (ul)3 u — a) L  (A16)
da 2a (U(ur) —w)" a (U(w) —w1) a
If uy > 0, it is easy to verify that
OP; (uy,us) S0y _ Uy (U(uzl) _31)3 + 4au%3(U(u1) —ﬁl — a) ‘
da 2a (U(ul) — ul) — (U(ul) — ul) + dau, (U(ul) — U — a)
(A.17)
Otherwise if u; < 0, one can show that W > 0. In fact, %;’“2) is a linear function
of usy. It suffices to verify that
O (u1, up) _ ol 2t (Uw) — i I (A.18)
da u2=0 2a (U(w) —wi)’a
8P1(U1, UQ) — _Ul + (]2(’&1) n 2uy (_U(ul) - Ulz_ a) _ U(Ul) S 0(A19)
da u2=U(u1) 2a (U(w) —uwi) a (U(w) —u)a
In the second case with uy < u;, we have
Ul(us) — u
Pr(uy,up) =1 — %- (A.20)
Given u; and us,
P, 2
OPy(u1,uz) _ w +2u2+ _u S0 <yt (A.21)
da 2a (U(us) — uz) a Ul(uz) — ug

Now let us turn to the comparative statics of P(u,us). Because of symmetry, we only
need to consider the case with u; > us. We have

P(ui,ug) =1— U(UQEL_ L ggzz; :Z; (A.22)

Given u; and uo,

8P(u1, UQ)

9 o¢ 2aus(uy — ug) — (uy + ug)a® — (uy + ug) (U(UQ) — Uy — a) (U(uz) — Uy + a)

(A.23)
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If u; > 0, it is easy to verify that

uga(2us —i—_a) -+ U (U(ug) —_u2 — a) (U(uz) — ug + a)
a? + (U(UQ) — Uy — a) (U(UQ) — Uy + a) — 2auy

(A.24)

Otherwise, if u; < 0, one can show that W > 0. In fact, % is a linear function

of uy. It suffices to verify that for —a < us < 0 we have

8P(g;, ) B o —3aus — g (U(UQ) — U — a) (U(UQ) — Uy + a) > 0, (A.25)
% o a® — 3a’uy — 2au3 — (uz — a) (T(uz) — uz — a) (T(uz) —us +a) > 0.
(A.26)

]

A.8 Smooth-Pasting Conditions for Correlated
Products:

We derive the smooth pasting condition (1.12) for product 1, with the two products in-
formationally correlated. We focus on the case with 0 < p < 1 below (the case of p < 0
can be obtained similarly). Similarly to the proof of the case with p = 0, let us consider
an extra infinitesimal search at the boundary (U(uz),us). By searching for information on
product 1 for extra time dt, the consumer earns an extra utility update du for product 1
and pdu for product 2. The utility update du can be either greater or less than zero with
the same probability % Let us first consider the scenario with du > 0. Now the consumer
has a higher expected utility of product 1 with du; = du, which may drive the consumer
to purchase product 1 and leave the market right away. However, at the same time, the
consumer’s expected utility of product 2 also increases by duy = p du, which rises the U (us)
by pU/(uQ)du. As a result, it is also possible for her to continue staying in the market. The
choice between immediate purchase and continuation of search depends on the comparison
between the utility update du; = du and the update pU/(UQ)du.

Consequently, if U/(uz) < %, the consumer will purchase the product 1 and leave the

market with utility U (us) + E[du|du > 0]; otherwise, if U (uy) > %, the consumer continues
searching for information with expected utility E [V (U (us) + du, us + pdu|du > 0)].

Similarly, we have the following assertions for the case with du < 0. If U/<'LL2) < %, the
consumer will continue searching with expected utility E [V(U(uz) + du, us + p duldu < 0)];
otherwise, if U,(UQ) > %, the consumer purchases the product 1 and leaves the market with
expected utility U(usy) + E[duldu < 0].
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To summarize, if U/(UQ) < %, the consumer’s expected utility of searching extra dt on
product 1 is

‘/1 (U(Ug), Ug)

1 — 1 —
—cdt + 5 (U(us) + Elduldu > 0]) + §E [V(U(u2) + du,us + pduldu < 0)]

dt

= V (U(ua),us) + =1/ 5= [1 = Vi, (U(ua),u2) — pVa, (U(ua),uz)] + o(Vdt)(A.27)

o] Q
)

If U/(uQ) > %, the consumer’s expected utility of searching extra dt on product 1 is

‘/1 (U(UQ), U,Q)

1 — 1 —
—cdt + 5 (Ul(uz) + E[duldu < 0]) + §E [V(U(u2) + du,us + pdu|du > 0)]

= V (Ulua),uz) — %\/g (1= Vi, (U(ua), u2) — pViy (U(ua), uz)] + o(Vdt).(A.28)

Finally, if U,(ug) = %, the consumer’s expected utility of searching extra dt on product 1 is

Vi (U(U2)7U2)
= —cdt+ %E [V(U(uz2) + du, us + pduldu < 0)] + %E [V(U(us) + du,us + pduldu > 0)]
= V (U(uz),us) + o(Vdt), (A.29)

which is the same as equation (1.9).

On the other hand, when the consumer searches product 2 for extra dt at the boundary
(U(ug), u2), we apply the same analysis above, and conclude that the consumer’s expected
utility of searching extra dt on product 2 is

‘/2 (U(Ug),’dg) =
V (Ul(us),uz) + %\/E [0 = pVay (U(ua),u2) — Vi (U(u2), us)] + o(Vdt) if U (us) < p
V (U(u2),uz) — 31/ 2L [p— pViuy, (U(ua),uz) — Vi, (U(uz), u)] +o(Vdt) if U'(up) > p
Vv (U(UQ), us) + o(v/dt) otherwise.

So far, we have the expected utility of searching extra dt on product 1 and 2. The con-
sumer will choose to search for information on the product with greater expected utility, so
her expected utility at the boundary (U(UQ), u2) is max {V1 (U(UQ), u2) ,Va (U(UQ), u2) } At
the same time, the consumer’s expected utility at (U (us), u2) is given exactly by V (U (uz), us).
To make the above two expressions identical, the v/dt-order term must vanish. We obtain
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the following set of equations.

(

max{l —V,, — pVi,p— pVi, — Vi, } =0 if p>T(up) >0
max {1 —V,, —pV,,,0} =0 if U'(up) = p
max {1 = Vi, = pVay, =p + pViy + Vi } =0 if L > T (up) > p (A.30)
max {0, —p + pV,, + V4, } =0 if U (ug) = %
| max{—1+ Vi, + pViy, —p + pVa, + Vir} =0 i T (uz) > 2

In order to simplify notation, we have dropped (U(UQ), uQ) in writing the value function
V. Let us first have a look at the case with p > U/(UQ) > 0. The first equation in (A.30)
implies either p—pV,,, =V, =0>1-V,, —pVi,,or 1 =V, —pVi), =0 > p—pV,,, = V4,. In
the latter case with p — pV,, — Vi, =0, we have V,,, =1 — %Vm. Then 0 > 1 -V, —pV,, =
<% - p) Vi, = 0. So we must have 1 —V,,, — pV,, = 0 in either case. Therefore, the first

equation in (A.30) is equivalent to 1 — V,, — pV,, = 0. With a similar argument, we can
show that the above set of equations can be equivalently rewritten as

(

Vg +pVu, =1 if p>TU (us) >0
Vi, + pV, > 1 if U'(up) = p
Vi, =1and V,, =0 if 2 > T (up) > p (A.31)
PV + Vi < p if U () = 2
| Vi + Vi = it U'(ug) > 2

Now, by taking derivative of both sides of equation (1.11) with respect to ug, we have
/

(1=Vo)U (ug) = V. If p > U'(ug) > 0 and V,, # 1, we have U (up) = 11/}2 = % > p
by equation (A.31), which is a contradiction. Therefore, if p > U (uz) > 0 there must be
V,, = 1and V,, = 0. Similarly, we can show that if U (us) > /lﬂ or U (u) = por U (ug) = %,
there must be V,,, = 1 and V,,, = 0 too. In summary, we have obtained equation (1.12) for
the general case with0 < p<1. =

A.9 Proof of Proposition 2:

We prove the comparative statics for the purchase threshold first. From equation (1.25),
we know that we only need to show that when u > —(1 — 2p)a, U(u) increases in a and

decreases in p.
2u _ 1—4p+p2

In fact, when v > —(1 —2p)a, we have 0 < W (e_<192)a 1-p2 ) < 1. Let us define the
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2u _ 1—4p+p2

notation w =1+ W (e_<1p2)a 1-p? ) Then, we have 1 < w < 2, and In(w — 1) < 0.

7T _ 2u _1—4P+172
a(g(u) = (1-p*+(1-p )W <e (=pa 10 > 2 1u ipip?
@ ¢ 1+ W <6_<1P2)“_ =2 )
= @2 - - 1)
> _Q_Tw+1—(1—P2)w_lln(w—1)
- QwT_l - w1 >0, (A.32)
Similarly, one can show that
ou 2 — —1
(1) = —2(1 - pa Y 2paw In(w—1) <0. (A.33)

dp

Now, we start proving the comparative statics for the maximum expected utility V' (uq, usg).
The function V' (uy,us) is continuous and symmetric with respect to u; = us. It suffices to

show that when pu; — (1 — p)a < uy < uy < U(ug), V(uy,usz) increases in a and decreases in
p.

2(ug—puy) _1-2p—p

2
Let us define the notation w = 1+ W (%Ze_(l—f))Q(HP)a 1-p? ) When pu; — (1 —p)a <

uy < uy < U(ug), we have u; < ﬁ(ul,ug) and 1 < w < 1%,)'

P = Pt [ o —ppan 2 (1)

x (ul—u2)+(1—p)2aﬂ5+4(ui+gul)<l—i>

= (u; —up) +2(1 - p)la+ w —2(1 - p)?a(l — %)ln E;p(zﬁ— 1)}

B [(1 ~ )i + 4P(11+—p;0)a%} ' (A.34)

In the last equality, each term in the first line is non-negative, while the term in the second

line is negative. Let us define an auxiliary function h(w) = (1 — p)?aw + W%. It is

easy to show that h(w) is uni-modal with a minimum at w* = 2, /5 fpz < 1%,)- Thus, for

w e [1 2 }, h(w) must reach a maximum at either w = 1 or w = 1%0. At the same time,

"1-p
h (%p) — k(1) = (1 — p)%a > 0. Then for w € (1, l%p], h(w) must reach a maximum at



APPENDIX A. APPENDIX 90

w= 1% Consequently, h(w) < h ( ) for Vw € ( —} Therefore, we have
P P

OV (u1, us) B e A —pla ] l—p,

5. 2 (up —ug) +2(1 — p)°a + T+ 2(1 = p)a(l ﬁ?)ln 1 +p(w 1)
- i)

L=p

= (up —ug) — 2(1 — p)? (1—l)ln 1_/)(@—1) >0 (A.35)
= (u; —us p)a = T > 0. :

Similarly, we can show that

8V(u1,u2) . U 'LL1,U2 — Ul 2 o~

9p P { 2) + 21— p)al2 )}(1—p w)

— 2p(1 - pla(i@ — 1)1 { — Py }}

fjul,l@ —U1 {
20+ p)(1—p

- mu—m<w—wﬁ;§@—w—@}

- w52 (-] ()
N (A.36)

)+ 201 - pratz- @) (12 - )

—p

IN

A.10 Optimal Search with Heterogeneous Products:

Theorem 9 There erists a unique solution V (uy,uy) along with boundaries U;(-) and U,(-)
(i =1,2), which satisfies equations (1.5), (1.28), (1.11)-(1.14). The value function is

4a1 rl ’LL2 — Ul] —+ uq Zf U9 +U2(U1) — Ul(UQ) < < U('UQ) and u; > Q(UQ)
Viur,u2) = ¢ & [Ua(u1) — ug)® + g if uy + Ui (ug) — Us(ur) < ug < U(ur) and ug > Uuy)
max{0, uy, uz} otherwise.
B (A.37)
Without loss of generality, assume a; > ay. The purchase boundary Uq(-) is given as
U+ a; if u>u*
Ui(u) = u+ 2220 if —ay <u < (A.38)

a1 otherwise,
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where u* = —\/‘1217“2 In <*/a7‘/@

\/EJM/E) > 0. The purchase boundary Us(-) is supported in (—oo, u*—

ai] and is given as

- a1Z2(u) a2 o <t
Ua(u) = { Ut =T z'f a; <u<u*—ay (A.39)
as ifu < —ay.

The functions Z1(u) < 1 and Zs(u) > 1 are defined implicitly by the following two equations,
respectively:

\/Z? VZi(u) 4 1 —+/Z1(u) u ag 1 Vair —/az
1_21” —1n<—1+\/m> = ﬁ+\/;1+§1n<—@+@) (A.40)
VA (m—1> L (Y

= +—l
Z2( )—1 \ Za(u) + 1 \/a1a2 2 Var +y/az

The exit boundaries U,(-) (i =1,2) are given as

) (A41)

Uy(u) = { —h U —a (A.42)

u—ay; ifu>u*
Uy(u) = —ay (relevant when u < —ay) (A.43)

Proof. It is straightforward to verify that the solution satisfies equations (1.5), (1.28),
(1.11)—(1.14). The more difficult part comes from the verification of the value matching
and smooth-pasting conditions at internal boundaries.! There are four internal boundaries:
Ci = {(ur,u2)|Ur(ug) + up = ug + Us(uy) and — as < ug < u*}, Co = {(ug,us)|uy =
—a1,—ay < ug < ast, C3 = {(ug,u)|us = —az,—a; < uy < a1} and Cy = {(ug, uz)|ug =
u*,u* —ay; < uy < u*+ ap}. Verifications of the boundary conditions at Cs, C3 and C4 are
straightforward, thus omitted here. We focus on the value matching and smooth-pasting
conditions at boundary C; below, which is the boundary separating “search product 1” from
“search product 2”.
Given —ay < ug < u* implied from Cy, the purchase boundaries can be written as

— _ ap — ang(u)

Us(u) = u+ % (A.45)

where Z;(u) (i = 1,2) are given in equations (A.40) and (A.41). It is straightforward to
show that the left-hand side of the two equations (A.40) and (A.41) as a function of Z;(u)
and Zi(u), respectively, is monotonic. Therefore, Z;(u) and Z;(u) are well defined. One can

1See the proof of Theorem 1 for explanation of internal boundaries.
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verify that U, (u) and Us,(u) satisfy the following two ordinary differential equations (ODEs)
subject to the boundary conditions:?

_ Vmas (o +u— T (w) (a2+u— U1 (w)) — araz
as (u—TUr(u)) ’
\/alaz (a1 4+ u—Us(u)) (a2 +u—Us(u)) — aras
ar (u—Us(w)) ’

Given (u1,uz) € Cy, our objective is to Verlfy that u; and us satisfy the following value
matching and smooth-pasting conditions:

U1<—a2) = a1 <A46)

Usy(u) = Us(—a1) =as (AAT)

_ ) 1 ,
1o Tilw) —w) 4w = e (o) = )"+ (A.13)
_2%“ (Ui(uz) —w) +1 = QLGQ (Ua(u1) — us) Ué(ul) (A.49)
_2%2 (Ua(w) —up) +1 = 2; (U1 (us) — 1) Uy (us) (A.50)

By substituting the expressions of U (u) and Us(u) in equations (A.46) and (A.47) into the
three equations above, one can show that they are not independent—only two of the three
equations are independent. By substituting the expressions of U;(u) and Us(u) in equations
(A.44) and (A.45), we can rewrite the three equations equivalently as follows:

A Vaias — +/(ur — ug)(ar — az + uy — ug) (A51)

Ao — U + Us

Zolar) = Varas + /(w1 — ug)(a; — as + up — ug) (A52)
a; + Ui — U2

To reiterate, our equivalent objective now is to verify that given (uj,us) € Ci, u; and ugy
satisfy the two equations above. In fact, because (u1,us) € C;, we know that U (ug) +u; =
uy + Us(uy), which implies

Zl(UQ)ZQ(Ul) == ]_7 <A53)

. . . 1=~/ Z1(u2) . Zo(u1)—1 . . .
which implies In (H—Zl(uz)) = In (—\/MH) Based on this fact, we take u = wuy in

equation (A.40) and u = w; in equation (A.41), and subtract these two equations to get:

\V Z_? B \/Zl (UQ) \/ZQ U1 2 Uz — Ul [ Q2 lal (A 54)
1-— Zl<U2) ZQ(Ul) —1 \/A1Q9 aq ’
By combining and solving equations (A.53) and (A.54), we actually prove that Z;(us2) and
Zo(uy) satisfy equations (A.51) and (A.52). =

2In fact, we obtain U;(u) and Us(u) in equations (A.44) and (A.45) by solving these two ODEs.
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A.11 Proof of Corollary 3:

The monotonicity of U(ui, u;) — usy; with respect to w;y; and w;,; is straightforward to show
by taking derivatives, thus omitted here. Suppose u; > uy — 400, then

_ ey 1AW (3
R e L el 1K
Uy >ug—>+00 6 x 21/3W <%€—£—4—a2)
sau e [1 AW (56—2—9:—@2 ]
= w+ [1+W e ? o lim I a
uz2—+00 6 % 21/31) ( 77794%2
[ 3 1 -7 9
s 2 [1+aw (56 fat)]
= w+ [1+W [e? e lim 1] e
[ 3 3
= w14+ W e 25" lim x7 +o(z”) a
| z—0 3€_§I3 + 0(1’3)
[ 1 (uq—u9)
= wu+ |[1+W (geé_w)} a. (A.55)

A.12 Proof of Lemma 3:

Proof. We prove by contradiction. Suppose ¢; > g2 > —a, but ¢ — pj < g2 — p5. From the
expression of P;(uy,us), we can easily get Pi(q1 — pi, g2 — p3) < Pao(q1 — 0}, q2 — p5). Let us
define,

P = G- @+ (A.56)

py = max{g —q +p;,0}. (A.57)
By definition 10’1,10’2 > 0. Let’s first consider the case g2 — ¢1 + p; > 0. Then, we have
Pi(q — P12 — py) = Pi(ge — ps, 1 — i) = Pa(q1 — p1s 2 — pZ) where the second equality is
due to the symmetry of Pi(uy,us). Slmllarly, we have Po(q1—p}, ¢2—1h) = Pi(q1 —D7, 2 —Dp3).
Let’s denote the profit under the pricing policy p; = p; as 7", and that under the pricing
policy p; = p; as . We have,

™ =7 = [piPi(qr — Pl g2 — py) + Py Pa(qr — Py g2 — pb)]
— [PiPi(q1 — pT a2 — p5) + 05 Pa(qr — pT, g2 — p3)] (A.58)
= (@1 — @2 +03)Po(qr — D1, 42 — p3) + (@2 — 1 + 1) Poi(qr — pi, @2 — P3)]

>

— PP — pT, @2 — p3) + 5 Pa(qr — pi, @2 — p3)] (A.59)
= (1 — @) [Po(qn — P}, 2 — p3) — Pi(qn — pi,q2 — p3)] > 0. (A.60)
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In the second case with ¢o — g1 + p} > 0 and pf, = 0, it is easy to show that the first equality
(A.59) above will instead take >, because P;(u1,us) decreases with uy. Therefore we still
have 7’ > 7*. This contradicts the optimality of p;. m

A.13 Numerical Profit Optimization in Equation
(1.34):

If ¢; < —a, u; = ¢; — p; < —a, product ¢ will never be considered. In this case, for optimal
pricing of a single product, the profit optimization problem is straightforward and is given
by Branco, Sun, and Villas-Boas (2012). By symmetry the only case we need to consider
is that ¢ > ¢o > —a. In this case, Lemma 3 implies that u; = ¢ — p] > ¢ — p5 = us.
There are two cases. In the first case when ¢; is much greater than ¢s, and corresponding
u1 > U(uy), the consumer will purchase product 1 immediately without any search. In this
case, the seller’s objective is to maximize p;. We know that

=g —-—u <qa-U)=q¢—-Ulgg—p) <q —a. (A.61)

The equal sign in the above equality holds when py > ¢ + a. Therefore, the optimal price
Py =q —a and p} € {ps tP2 2 G2+ a}. In the second case, ¢; is greater than uy but not by
a lot, and correspondingly U (us) > u; > us. By equation (1.19), we have

Pi(uy,up) = 1—%6;“1, (A.62)
R s

By substituting these purchase likelihood functions into the optimization problem (1.34), we
can numerically obtain the optimal prices by solving the first-order necessary conditions.

A.14 Comparative Statics of A Monopoly’s Optimal
Price and Profit:

Comparative statics of the optimal prices and maximum profit with respect to a are shown
in Figure A.1. The left panel plots the sign of 9pi(q1,¢2)/0a as a function of ¢; and ¢o, and
the right panel plots the sign of 07*(q1, g2)/0a. Grayness indicates the sign: if it is positive,
it is dark gray; if it is negative, it is white. The dashed lines in both plots replicate the
boundaries of the optimal search strategy shown in Figure 1.10.
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Figure A.1: Comparative statics of the optimal price for product 1, pj and maximum profit,

*
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A.15 Optimal Search with Time Discounting:

Theorem 10 There ezists a unique solution V (uy,us) along with boundaries U(-) and U(-),
which satisfies equations (1.5), (1.36) and (1.11)-(1.14). The value function is obtained as:

V(ul, ’LLQ) =

ﬁ
ﬁ

(U(U2) + f) cosh 3T (U(ug) —uy)| — \/"27 sinh fr (U(uz) —uy)| — ¢ up<up < Ulug),uy > Ulus)
(U(uy) + €) cosh ‘{?(U(ul) —up)| — %= sinh *{?’”(U(ul) —ug)| — ¢ u < up <Ul(uy),ug > Q((Klgzl)
U uy > U(UQ)
Us Uy > U(ul)
0 otherwise,
and the purchase and exit boundaries U(-) and U(-) are given as:
S [ X fuzU
Ulw) = { U otherwise. (4.65)
U(u) = U (relevant when u < U), (A.66)

where U and U are the purchase and exit boundaries respectively for the optimal search
problem with only one product.

U= \5+5 (A.67)

— o ro? ro?
U = U—-—=In\/5 — 41
- o n[ 2c2+ 202+

(A.68)
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X (u) is given by the following ordinary differential equation with a boundary condition,

\/ga coth [@ (X (u) —u)

XU = U. (A.70)

= (14+X'(w)(c+7rX(u)) (A.69)

The solution is by construction, and the proof is omitted here.

A.16 Proof of Corollary 4:

Proof. We first show that, B
lim U(u) —u=0. (A.71)

Uu—-+00

In fact, we only need to show that lim, ;. X (u) —u = 0, where X (u) is defined in Theorem
10. By definition, we know X (u) > u. By Lemma 2, we know X'(u) > 0. Therefore, as

u — 400, (1+ X'(u)) (c+rX(u)) — +oo, which implies coth [‘/{? (X(u) —u)| — 0 by
equation (A.69). This implies that X (u) —u — 0.
Next, to show U(u) — u decreases with u, we need to prove that,

—/

U(u) <1. (A.72)
We only need to show that X’(u) < 1 for u > U, where v > U is defined in Theorem 10.

In fact, by contradiction, suppose there exists ug > U such as X'(uy) > 1. By equation
equation (A.69), we have

~ coth [@ (X (u) — u)]

X'(u) = 20 X () -1 (A.73)

Taking derivatives on both sides of the equation above, we have,
r(X'(u) —1)
(¢ + X (u)) sinh? [ﬁ (X (u) — u)}
r32q V2or
— coth
V2(c+rX(u))?

X//(u) - _

= (X (u) — u)] X' (u) (A.74)
As X'(ug) > 1, we have X" (ug) < 0 by the equation above. This implies that for any small
positive number €, X'(ug —¢) ~ X'(ug) — X" (up)e > X'(up) > 1, which in turn implies that
X" (ug —¢€) < 0 by using the expression of X”(u) above. By mathematical induction, we can
show that for all ug > u > U, we should have X'(u) > 1 and X" (u) < 0. However, we know
that X'(U) = 0, which is a contradiction. =
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A.17 Proof of Proposition 5

To show it’s never optimal to never introduce the second generation, it’s enough to show
T = +o0 cannot be a maximizing point. In fact,

/ q (ma + ma)h mah
(T) = (1 + mlp) <e(p+m1q)T + (my + m3) ~ elptmigT L mlg

q
P

+ (A.75)

e(p+qm1)T(p + myq)[(myry — mary — mary) — hT(my — mg)])
(el+rmia)T ml%)Q

As T goes to infinity, 7'(7T") approximates as — <1 + m1%> (my — mo)hTe~PtmaT  which

goes to 07. Then there must exist a large number T, > 0 such that 7/(T) < 0 for all
T > Ty So w(T) decreases at [Ty, +00], m(4+00) < w(Thy). O

A.18 Proof of Proposition 6

Notice equation (3.11) is equivalent to the F.O.N.C. 7#/(T*) = 0. What we are trying to
prove is the global maximum can and must be reached at a point satisfying F.O.N.C. In
fact, rymy — riyms — romg > —hA is equivalent to #'(0) > 0, so 7" = 0 cannot be the
optimum. Since we've already shown there exists Tj; > 0 such that 7/(Th) < 0, there must
exist T* € (0,Ty) such that #'(T*) = 0 and #'(T"*) < 0, according to mean value theorem.
O

A.19 Proof of Corollary 6

Let’s first introduce a useful lemma, which consider the S.O.N.C. to guarantee all points
satisfying F.O.N.C. to be local maxima.

Lemma 4 When mq > mo + M 7"(T*) < 0 for any T* satisfying ©'(T*) = 0.

3ma+4ms’

Proof. Given 7'(T) = 0,

~ hp(p + gma)(my —mg) e TEHMDhgmy (—p — gmy)my
(p + e—T(P+qm1)qm1)2 (p + e—T(P+qm1)qm1>2

e~ Twram) pg(—p — qmy)(mg + ms)?
(p + efT(p+qm1)q(m2 + mg))Q

2e Tt pamy (p + gma ) (p + gma ) (—hT (my — ma) + myry — mary — mars) }

~ hp(p + gma)(my —mg) e TP hgmy (—p — gy )my
(p + @*T(P+qm1)qml)2 (p -+ @*T(PJrqml)qml)Q

7T”(T) _ efT(p+qm1)(p+qm1){

_l_

= e Tlram)(p 4 qm1){
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e Twtam)hg(—p — gmy)(my + m3)°
(p + e Tramlg(my + my))?

+267T(p+qm1)qm1(p + qmy) < hme _ h(my + m3) ) }
(p+ e Twramlgmy)  \p+ e Tetamigm,  p+ e Tetamg(my + my)
_ —T(p+gm1) 2 prm o
= e p+qm h{ — +
( 2 (p+zgmi)?  (p+ zgmy)
xq(my + ms)? o xgm 2(mg + mg) }
(p+ xq(ma+m3))?  (p+ xgmy) p+ xq(ma + ms)

(p + gmq)?*hx

- (p + zgm1)2(p + xq(ma + m3))? 9()

where x = e~ PT™dT ¢ (0, 1] for T € [0, +00) and

9(95) = qgml(mz + m3)2(m1 - m2)$3 +pq2(2m1 + mgy + mg)(mg + mg)(my — mz)l‘g

—Hﬂq@nﬂ&n2+4mm)—(nm—%n@ﬂ&n2+7mﬁyr+p%nh—4nﬁ (A.76)

7" (T*) < 0 is equivalent to g(z*) > 0, which holds for any z* (corresponding any 7*) as long
2

(ma2+m3)(3matms) m3
(3ma+4m3) = m2 + 3mo+4ms ”

as m; >

The existence of points satisfying F.O.N.C. has been shown in the proof of proposition 6.
Under the lemma, the second condition in the corollary guarantees the the point satisfying
F.O.N.C. to be unique and thus the global maximum. Otherwise, if multiple local optima
exist, there must exist at least one local minimum, resulting in a contradiction. [

A.20 Proof of Proposition 7

pgm3
p2+pq(2m2+3m3)fq2m1(m2+m3
romg > —hA, T = 0 is the global maximum of the total profit function =(T"). In fact,

We first prove under the conditions m; > mo+

) and rymq —rime —

(TTLQ —+ mg)h _ mgh
p+ (m2 4+ m3>qe_(P+7nIQ)T p+ mlqe—(p‘i‘ml(Z)T
p(p + miq) [(mlrl — mar; —mgry) — hT(mq — mg)]
(p -+ mlqe_(P+m1Q)T)2

R(I) = (o mage o

3)h mah

< —(p+m1g)T (m2 +ms3) B 9
< (p+mige {p+(m2+m3)qe(p+m1q)T p+ mige— @rmia)T
(T TR E el

(p +myge=(PrmiaT)2 | p P+ (ma +m3)q L mag

(mg + mg)h moh

= —|— —

v mIQ)x{PwL (m2 +m3z)gr  p+migqx

h + 3p + — + m-

_ _ [(P m1q) (map + (my — ma)(ma + m3)q) t (s — ma)p(1 - x)] }

(p +migz) (p+ (m2 +ms3)q)
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where in the last equation we define z = e~ ®*™9T ¢ (0,1] as T € [0, +00). In order to
prove 7'(T") < 0 for all T" € [0, 400), it’s sufficient (but unnecessary) to show that

(mg + m3)h _ mgh
p+ (me+m3)ger  p+myqe
h [(p+m1Q)(m3p+ (m1 — ma)(ma + m3)q)
(p +migx)? (p+ (mg +m3)q)

+ (mq — ma)p(1 — x)] <0

for all z € (0,1], or equivalently

f@)= " qlp+qmi)(my —my)(my +ms)(p+ q(my + ms))z*

- {qgm%(ﬂh +m3)? +p(m2 (p2 + gma(p — qmg)) + 2gma(p — qgma)ms + q(p — qmz)mg)

—my (p3 + q(g*m3 + ma(p — gm3)® + pm3(2p — gm3) + gm3(—p + 2qm3)))} x

—p((ml —ma)(p* + q(2p + gm1)ma) + q(3p + gm1)(my — ma)msz — pqm%) <0 (A.77)

for all x € (0,1]. In fact f(1) =0, f(0) = —p<(m1 —ma)(p* + q(2p + gmi)ma) + q(3p +

gmy)(my —mg)mg — pqm%) < 0 by assumption. Because the coefficient for the second-order

term ¢(p+qmq)(my —ma)(me+ms)(p+q(me+mg)) is positive, the parabola f(z) is convex.
Thus f(x) <0 for all x € (0,1]. We have proved that 7/(T") < 0 for all T' € [0, +00), so w(T)
is decreasing over [0, +00) with the maximum at 7* = 0.

Then we’re to prove under the condition mq, > mo + % and rym; — r1mg — roms >
—hA, #'(T) <0 for all T > 0 so that "= 0 is also guaranteed to be the global maximum of
the total profit function = (7). In fact, condition rym; — rymg — r9mg > —hA is equivalent
to 7'(0) < 0. When 7/(0) < 0, we have 7/(T) < 0 for all 7" > 0. Otherwise, suppose
there exists 77 > 0 such that #/(7}) > 0. Then there must exist T¢ € (0,77) such that
7' (T¢) = 0 and 7" (T¢) > 0, according to the mean value theorem. However, under condition
my > may+ ?m;nT?ng,v lemma 4 dictates 7”(T") < 0 for any T satisfying «’(T") = 0, which ends
up with a contradiction. When #/(0) = 0, we have 7'(¢) < 0 for arbitrarily small ¢ > 0,
as a result from condition my; > msy + 3
contradiction.

Thus we have shown that when m; > mo + B - m3 and rym; — rimg — roms > —hA,
T = 0 is the global maximizer of function 7(7) over [0, +00). Finally we show that under
the conditions m; < ms + mg and rymy — rimy — roms > —%lmi”hfl, 7(0) > #(T) for all
T > 0 so that 7' = 0 maximizes the total profit function 7(7"). In fact,

m3 .
Smatamss We can repeat the above logic to show a

—T(p+qm1)
n(T) —n(0) = — i |ETam)Ptac (s +my))
q (p + e~ Tramigmy ) (p + g(ms + my))

p(1— e—T(p+qm1))

+(m1T1 — mary — m3r2)p + efT(p+qm1)qm1
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h(mq — ma)(p + gmy)Te~T®ram)
+ =T
p+e (P+qm1)qm1

< _E In (p+ qma)(p + ge"T@™) (my + my))
S q (p + e~ Ttam)gmy)(p + q(my + ms3))
ms + mg ﬁ map + (my — mg)(my +ms)q p(1 — e~ Tetram))

my p p+ (m2 + mg)q P+ e—T(P+qm1)qm1
h(my — my)(1 — e~ Tlpram))

p+ @—T(P+qm1)qm1

(A.78)

(A.79)

where in the last expression, we used the conditions rym; — rymg — roms > —%f”i*hfl and
the generic inequality x < e® — 1. By further applying 1 < %ﬁ”‘q’, we have

—T(p+gm1)
o(T) = 7(0) < _ﬁln[(erqul)(anqe (mﬁmg))]
q (p + e~ Ttam)gmy)(p + q(ma + ms3))

_matmg b msp+ (my = ma)(ma £ ms)g p(1— e THM)

m p p+ (m2+ms3)q p + e~ Twtam) gm,
my +ms  h(my —my)(1 — e TPram))
my p + e~ Tp+ami) gm,
h
_ ——(ln(l Ly M2 tms y) (A.80)
q my

where y takes the form below, by defining z = e~7+7™) ¢ (0, 1] as usual,

pg(ma +my —mi)(1 — )

= A.81
= o+ aam)(p+ alma + ma) A8
_ (mg +m3 —my)(1 — )
£+ Imq(ma + mz)z + miz + (ma + ms)
< (mg +mz —mq)(1 —x)
= 2y/mu(ma + m3)x + max + (Mg + m3)
_ (mg +mz —mq)(1 —x)
(vVmiz + /ma + m3)?
< 1- (A.82)
mo + M3

From inequalities (A.80) and (A.82), we know that in order to show 7 (7") —7(0) < 0 for any
T > 0, it suffices to show J(y) = —ln(l—y)—%lmf’-y <Oforall0 <y <1—-—"1— In fact,

mo+m3’
J (y) = ﬁ — mims < () is equivalent to y < 1 — 22—, Thus y* = 1 — 24— is the only
minimum, J(y) is decreasing over [0,y"], and J(y) < J(0) = 0 for any y € [0,1 — 2],

Therefore, we have shown 7(7) — m(0) < 0 for any 7" > 0, so that 7" = 0 is the global
maximizer of the total profit.
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In conclusion, we have proved that when m; > mq+ms and rym; —rims —roms > —hA,
or when m; < mo+ms and rymq —rims—roms > — miim?’ hA, the simultaneous introduction
policy is optimal in that 7" = 0 maximizes the total proﬁt U

A.21 Proof of Proposition 8

As shown in equation (A.75), when rymy — rymy — r9ms = 0, h becomes a common factor
in the expression of 7/(7"), which does not determine the optimal introduction time. So the
optimal introduction time should not depend on A. [J

A.22 Proof of Proposition 9

In the case of mo + m3 = my,

e~ T(p+qma) (p + qml)
(o T g,

o (T) =

{(Tlml — r1may — r9ms)p(p + gma)
+himgp + e~ TP g (my — my) (ma + my) — p(ma — ma) (p + qml)T]}

By defining (T) = e~ TP+ g(my — my)(my +mz) — p(my —my)(p + gmi)T, the F.O.N.C.
of local optimality 7'(7") = 0 can be translated as
(rimy — rimg — ramg)p(p + qma)

o(T) = — . — mgp. (A.83)

Meanwhile ¢(T') is a strictly decreasing function, and as T varies from —oo to +o00, ¢(T)
ranges from +oo to —oo. So there must exist a unique solution to equation (A.83), named
after T°. When T° > 0, optimal introduction time 7% = T°, which maximizes the total
profit function 7(7T'); otherwise when T° < 0, optimal introduction time T* = 0. Therefore
the optimal introduction time 7™ can be treated as a increasing function on 7°. Equation
(A.83) regulates the dependent relationship of 7° on h. In fact, according to the rule of
derivative of implicit functions,

dTO . (m1 - mZ)[p + e_T(p+qm1)q(m2 -+ mg)]hz
dh (rymq — rimg — r9ma)p

(A.84)

When rym; —rims—romsz < 0, dg}; > 0, TV is strictly increasing in h, as a result, the optimal
introduction time T is also increasing in h. Similarly we get when rymy — ryms —roms > 0,

the optimal introduction time 7™ is decreasing in h. Lastly, if h > [ri™=2 — ro|(p 4 gmy),

then |{rmi=rima= szd)p(p+qm1)| < mgap, the equation (A.83) approx1mates o(T) = —mgap,
which has nothing to do with h. Consequently, 7° and thus T* doesn’t depend on h. [J
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A.23 Summary Statistics for the Panel

The following table A.1 provides summary statistics for the panel used in section 2.4, com-
bining both phone-call network and adoption data set.

Table A.1: Summary Statistics for the Panel

Observation Mean Std Dev  p25  pb0 P75
¢ (individual) 74,967
t (month) 2009/11 - 2013/10
Panel A: Basic Panel
ADOPT 3,100,442 0.02 0.15 0 0 0
INSTALLBASE_IN 3,100,442 0.35 1.80 0 0 0
INSTALLBASE_OUT 3,100,442 0.35 1.81 0 0 0
INSTALLBASE_IN? 3,100,442 3.37 168.39 0 0 0
INSTALLBASE_OUT? 3,100,442 3.39 168.84 0 0 0
Panel B: IV Panel for Section 2
IV_BDAY_IN 3,100,442 7.91 16.24 0 3 9
IV_BDAY_OUT 3,100,442 7.91 16.25 0 3 9
IV_BDAY_IN? 3,100,442 326.17  3,932.44 0 9 81
IV_BDAY_OUT® 3,100,442 326.68  3,939.51 0 9 81
Panel C: Adoptor Fraction Panel for Section 2
FRACTION_IN 2,501,265 0.06 0.18 0 0 0
FRACTION.OUT 3,099,985 0.00 0.02 0 0 0
Panel D: Network Heterogeneity Panel for Section 2
USER_DEG_IN 3,100,442 10.63 96.20 0 0 0
USER_DEG_-OUT 3,100,442 114.95 656.98 0 0 0
IV_BDAY_DEG_IN 3,100,442 223.06 971.13 0 32 159
IV_BDAY_DEG_OUT 3,100,442 2,360.78  5,876.02 0 573 2,357
USER_TIE_IN 3,100,442 13.33 162.40 0 0 0
USER_-TIE_OUT 3,100,442 14.72 168.86 0 0 0
IV_BDAY_TIE_IN 3,100,442 358.29  1,323.26 0 17.34 195.61
IV_BDAY_TIE_.OUT 3,100,442 358.29  1,323.14 0 17.34  195.72
USER_logDEG_IN 3,097,225 1.03 6.03 0 0 0
USER_logDEG_OUT 3,098,960 1.97 10.22 0 0 0
IV_BDAY _logDEG_IN 3,097,225 22.01 55.82 0 6.09 22.32
1V_BDAY _logDEG_OUT 3,098,960 42.73 91.30 0 14.45  47.72
USER_logTIE_IN 3,100,442 0.55 2.86 0 0 0
USER_logTIE_IN 3,100,442 0.56 2.90 0 0 0
IV_BDAY logTIE_IN 3,100,442 13.02 26.56 0 3.37 15.30
IV_BDAY logTIE_.OUT 3,100,442 13.02 26.55 0 3.37 15.31

Note: The panel consists of (almost) all iPhone adoptions in the city of Xining from Nov-2009
to Oct-2013. The social network is constructed from call transactions between May-2013 and
Nov-2013.
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