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THE EFFECT OF WAVE-PARTICLE INTERACTIONS 
ON THE STABILITY OF A CURRENT-CARRYING PLASMA 

Gary Arthur Pearson 

Lawrence Radiation Laboratory 
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March 4, 1965 

ABSTRACT 

The stability of a current-carrying electron-proton plasma is 

studied by calculating the velocity distributions of the particles with the 

Lenard-Balescu form of the Fokker-Planck equations rather than with 

the familiar Landau form. It is known that the Landau equations yield 

velocity distributions that become unstable to longitudinal ion waves 

when the temperature ratio e I e. is large and the electric field Eo 
e 1 -

that drives the current exceeds a critical magnitude E .t. The 
cr1 

Landau equations are then not adequate because they do not include the 

effect of the fluctuating electric fields associated with these ion waves 

upon the velocity distributions. 

As E 0 is increased to E .t and beyond, the Lenard-Balescu cr1 
equations show that the fluctuations associated with certain ion waves 

increase rapidly, drive the electron velocity distribution towards 

isotropy in the ion frame, and thus prevent the plasma from becoming 

unstable to any ion wave. For E 0 greater than E .t, these fluctua­
cr1 

tions are just sufficient to maintain the stability. By distorting the 

velocity distributions of the particles, these wave-particle interactions 

also alter the transport properties of the plasma in much the same way 

as an increased collision frequency would do. 

amples. 

I 

The computer solutions obtained with e je. ::: 70 serve as ex­
e 1 

With E
0 

== E .t, the ion waves whose damping rate would 
cr1 

vanish according to the Landau equations actually have a damping rate 

smaller by only a factor of 12 than with E
0

::: 0. This damping rate 

decreases by another factor of 10 as E
0 

is increased to 1.25 E .t. 
cr1 
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The energy of the corresponding fluctuations increases by these same 

factors as E 0 is increased from zero, but the total energy in fluctua­

tions associated with all ion waves only doubles as Eo increases from 

zero to 1. 2 5 E ·t· The electrical conductivity is lower than the value cr1 
from the Landau equations by 4._6o/o at E 0 = 0, by 8.1 o/o at E 0 = Ecrit' 

and by 12.1o/o at E 0 = 1.25 Ecrit; this correctiort becomes significant as 

Eo is increased further. 

The plasmas to which the results of this problem would directly 

apply are restricted by the conditions for validity of the Ler1ard-Balescu 

equations. When thes·e conditio-ns· ar·e not met, othe.r physic.al pr.oc ... 

esses may also be of importance. For example, even in a high-tem­

perature low-density plasma, as Eo is increased the fluctuations 

associated with ion waves will be affected by collisions and by mode 

coupling. 

• 
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I. INTRODUCTION 

The growth or damping of longitudinal ion waves in an unmag­

netized current-carrying classical Coulomb plasma is considered. 

The discussion is restricted to a spatially uniforn low-density high­

temperature plasma and often to an electron-proton plasma. 

The velocity-distribution functions ~ound by Spitzer and Harm 1 

1n calculating the linear electrical conductivity will support growing ion 

waves when the electric field exceeds a critical value. The Landau 

form of the Fokker-Planck equation, which Spitzer and Harm used, 

does not include the effect of waves upon the velocity distributions of 

the particles, and is therefore inadequate when the electric field ex­

ceeds this critical value. When the electron temperature is large 

compared to the ion temperature, this critical field is small enough 

that, if the Landau equation remained valid, its linearization would 

easily be justified. 

In this case the velocity distributions of the particles are still 

determined primarily by the electric field and by the "ordinary" col­

lisions contained in the Landau equation. Thus the quasi-linear theories, 

which are often usedin the study of effects of wave-particle interactions, 

are not useful because they do not include the effects of "ordinary" 

collisions. Instead, the Lenard-Balescu kinetic equations are used 

because they include the effects of "ordinary" collisions and of the 

fluctuating electric fields as so cia ted with waves, although they are 

applicable only when the plasma can support only damped waves and so 

1s stable. 

In the Lenard -Balescu kinetic equations, the spectrum of electric­

field .fluctuations associated with waves arises as a balance of the con­

tinuous excitation and (Landau) damping of waves. This balance can 

occur only if all waves are damped. The continuous excitation can be 

described as spontaneous emission of longitudinal waves by the plasma 

particles, and the Landau damping is then interpreted as the net effect 

of induced emis sian and absorption by the particles. 

These wave -particle interactions also affect the velocity dis­

tributions of the particles. Iri various examples that have been 
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considered, the wave-::partitle interactions have qualitatively the same 

effect as "ordinary''. collisions or particle-particle interactions. In 

' fact .it is often useful to consider the wave -particle interactions as the 

interactions of individual particles by the emission and absorption of 

waves. 

In particular, the fluctuations associated with ion waves drive 

the velocity distributions towards isotropy, as do "ordinary" collisions, 

and this tends .to stabilize the plasma. However, unlike "ordinary" 

. collisions, the wave -particle interactions are altered as the plasma 

approaches instability. As the damping rate of certain waves decreases 

the fluctuations associated with them increase rapidly, so the effect of 

wave -particle interactions on the particle velocity distribution, which 

effect should include a stabilizing tendency, increases nonlinearly. 

The purpose of this thesis is to investigate this nonlinear stabilization. 

The Lmard-Balescu kinetic equations are· valid near and above 

the critical field only because of this nonlinear stabilization. These 

equations have other. restrictions- such as the neglect of the effects 

that wave -wave interactions (mode coupling) and collisions have on 

waves -which limit their usefulness. 

These concepts are presumably applicable to other problems 

involving micro -instabilities or velocity- space instabilities. In such 

cases, even though the plasma may be stable, the high level of flue­

tuations necessary to maintain this stability may be very important in 

altering certain transport rates such as diffusion across a magnetic 

field. Qualitatively the wave -particle interactions usually have the 

same effect as a higher collision rate. 

In Sees. II through V, the concepts and equations used and the 

related work by others are reviewed. In Sec. VI we start with the 

. Lenard-Balescu equations for an electron-proton plasma, discuss sim­

plifying <3.ssumptions, and develop the equations for two model problems 

that are solved numerically. Section VII is a brief description of the 

numerical procedure used, and the results are discussed in Sec. VIII. 

Sections II through V are a review and discus sian of the physical 

basis for the Lenard-Balescu equation. The reader who is familiar 
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with this material may prefer to ignore the appropriate sections, al­

though Sec. III. E does contain one new and interesting result. Also, 

most readers are probably not familiar with the material in Sec. V. A, 

which may be read in conjunction with Sec. VI. B. The most useful 

general references for these review sections are the recent book by 

Montgome:r;y and Tidman
2 

and the review article on plasma waves by 

Bernstein, Tr~han, and Weenink, 3 both of which contain extensive lists 

of appropriate references . 

Appendix L contains a brief discussion of the notation that is 

used. All equations are valid in both electrostatic units and in Gaussian 

units. A plain letter like v denotes a scalar variable, a letter under­

lined like C denotes a second-rank tensor quantity, and a letter under­

lined like k represents a vector quantity with magnitude k and direction 
A A 

k so k = kk. 
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II. SIMPLE COLLISIONAL MODE.LS OF 
A CURRENT-CARRYING PLASMA 

A. The Spatially Uniform Classical Coulomb Plasma 

We be gin by making certain assumptions to obtain a set of e­

quations that will approximately describe the behavior of a real plasma . 

... , All quantum effects are ignored, so our plasma is "classical" 

and is treated as a collection of point particles with masses mi, charges • 

q., spatial positions r;(t), and velocities v.(t). This is a useful approxi-
1 --L -1 

mation only if the real plasma has high temperature and low density so 

that, for example, it remains nearly fully ionized. 

We also t.reat the plasma as a "Coulomb" plasma in which the 

Maxwell equations are approximated as 

\1 · E (r, t) = 4n Z qi o[:- ~)t)] + 4np 0 (~> t), 
1 

and the equation of motion of a particle is approximated as 

dv. (t) 
m. 

1 

-1 - I 
dt -q.E (r.,t) 

1- -1 

Equations (II-1) and (II-2) imply that 

'\' 

E:Cr. t) = ~ 0 (~, t) + ~ qi 

r -r.(t) 
- -1 

'lr-r.(t)i 3 
- -1 

(II -1) 

(II- 2) 

(II- 3) 

(II-4) 

and the prime in Eq. (II -3) reminds us that the particle being con­

sidered is to be left out of the sum. These approximations are not 

appropriate unless all speeds of interest are small compared to the 

speed of light, and the magnetic -field effects are negligible. With these 

approximations we can treat only longitudinal waves and so we cannot 

treat radiation. 

.. 

.. 

The field ~ 0 (~, t) and the charge density p 0 (~, t) are considered '1,·,. 

known and are related by 

(II- 5) 
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(II -6) 

We represent the real plasma by an ensemble in which the en­

semble averages of all quantities except potentials are independent of 

the spatial position :. We further suppose that each particle belongs 

to a species a with mass M and charge q , and we choose our en-
a a 

semble so that all averages are unchanged by the interchange of any 

two particles of the same species. (Boltzmann statistics are appro­

priate because we treat a "ela~si>cal" plasma.) Becaus~ !,b and Po 

are supposed known, we know immediately that their ensemble averages 

are 

(II- 7) 

(II- 8) 

Because the particle flux of each species a 

(II- 9) 

must be independent of : and because particles are conserved, the 

number density of species a 

(\ n - '· 
a - /_-' (II-10) 

i in a 

must be independent of both r ·and t. The distribution function 

f (v, t), which is proportional- to< . I;; o[r- r.(t)] '0 [v- v.(t)J) • must 
a - 1 1n a - -1 - - 1 

be independent of r, so we normalize as 

Jd 
3 

vf ( v, t) = 1 . 
a -

(II.:.11) 

Because <E (:, t)) tnust be independent of r we must have charge neu­

trality 

\ n q = 0 . L aa 
a 

Similar statements can be made about other quantities. This choice of 

ensemble is appropriate only if the real plasma is "spatially uniform' 

on a distance scale la.rge compared to distances that appear naturally 
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1n the problem, such as the collision mean free path. We thus use this 

ensemble to treat a limited region of a real plasma. The only influence 

of the region external.to the region being considered is production of 

E
0 

(t). Notice that in this "spatially uniform" plasma 

<~ (:, t)) = ~O (t) . (II-12) 

In Sees. III, IV. A, and IV. B we consider perturbations of our 

"spatially uniforrrl' plasma that are not represented by an ensemble 

chosen as above. 

A current-carrying plasma requires special consideration be­

cause the uniform current density 

j_(t) = L qa Ya (t) (II -13) 
a 

produces a magnetic field that cannot be neglected if one considers a 

sufficiently large cross-sectional area. Therefore, the cross sec­

tional area of the volume of our real plasma must be small enough that 

this self -magnetic field can be neglected throughout. This requires 

(a) that the magnetic pressure be small compared to the kinetic pres­

sure so the plasma remains uniform and (b) that the cyclotron frequency 

of the particles be low compared with other frequencies of interest, 

such as the collision frequency. 

Throughout this work, the term "plasma" will usually imply a 

spatially uniform classical Coulomb plasma as discussed above. Al­

though the real plasmas to which our results would apply directly are 

quite restricted, many of the qualitative features discussed are prob­

ably present in many real plasmas. 

B. Collisional Models 

In the collisional models only the electrons (mass m, charge -e) 

are treated in detail. The motion of the ions is neglected because of 

their relatively large masses. The electron-distribution function is 

affected only by the externally applied field ~O (t) and by collisions in 
4 5 6 

the Boltzmann sense. ' ' Because the Rutherford cross section does 

not yield finite results, one ignores the interaction of two particles 
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when their impact parameter is larger than a certain "cutoff" distance 

b This procedure is an attempt to ;account for the shielding pro-
max 

duced by particles other than the two being considered. We show in 

Appendix A that the eros s section for momentum transfer from an elec­

tron of speed v striking an ion of charge Z e at rest is then 
a. 

2 4 ( 2 ) 4TTZ e mv b 
a. max 

am ( v) = 2 4 ln 2 
m v Ze 

(II-14) 

This and other results depend only ~eakly upori:the cutoff b:rmx,if the loga­

rithm is large compared to unity. By comparison with Debye shielding, 

one usually chooses b . of order D ~ J f) /n e2 , where f) is a 
max 

7 8 
e e e e 

characteristic electron energy. ' The uncertainty in a (v) is then 
m 

of order unity compared with 

order ~ e /m . 

ln (n D 3) if we consider v to be of 
e e 

e 
The condition that n D 3 be very large can be considered the 

e e 
definition of a low-density high-temperature plasma. This condition 

ensures that, for impact parameters larger than De, there are many 

shielding particles between the particles being considered. However, 

even for impact parameters much smaller than De, the two particles 

interact simultaneously with many other particles. The reason this 

Boltzmann-like description yields useful results is that even for such 

impact parameters the deflections are very small and the simultaneous 

effects of many particles upon one being considered can be added line­

arly. 9 

The circumstance that most of the deflections are small sug­

gests use of a Fokker-Planck equation. In fact, within the uncertainty 

. mentioned above, identical results are found by means of the kinetic 

equation 

of (v,t) 
e -
at 

e a fe·(.~, t) --(a fe ) 
- - E (t) · 

m -0 ov at 11 - co 

with either of the following as the right-hand side: 6 

(II-15) 

(a) The Boltzmann collision term, made finite by the above 

cutoff procedure, 



-8-

(b) The Fokker-Planck terms used by Spitzer and Harm, 1 by 

Rosenbluth, MacDonald, and Judd,s and others. 

The Fokker-Planck terms have been derived by several methods:o 

The method developed by Landau in 1936 is expansion of the Boltzmann 

collision term in powers of the momentum transfer and retention of 

only the terms that diverge logarithmically, the so-called dominant 

terms . 11 The divergence is removed by the cutoff procedure discus sed 

above and by also ignoring interactions with impact parameters less 

than e2 jee, where the expansion is not valid. We obtain the )same re­

sult by another method in Sec. V. 

For simplicity, we call this kinetic equation the Landau equation. 

Because it is Markovian, 4 it can be used only to treat variations on a 

time scale long compared to the duration of a collision, which in this 
-1 

case is of the order w ·, where the electron plasma frequency is 
Pe 

w 
pe 

= ·;4~nee 2 . 
"' ttl 

1. Displaced -Maxwellian Model 

(II -16) 

In this model the electron velocity distribution has the for~' 

1 · f (v, t) --,.-~-..,,-
e - 3/2 3 

1T a 
e 

2 2 
exp [-(v- U) /a ] 

- - e 
(II -17) 

where only_!! (t) depends upon time. Here the electron thermal speed 

a and the electron temperature in energy units e are related by 
e e 

2 a = 2e /m e e 

We now define the electron Debye length 

D = J e I 4 Tin e 
2 

e e e 

the minimum impact parameter 

2 
b . = e je , 

m1n e 

and the plasma parameter 

3 
A = D /b . = 4nn D e . m1n e e 

(II-18) 

(II-19) 

(II-20) 

(II-21) 
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which is three times the number of electrons in a sphere of radius 

D (a·Debye sphere) .. We also define a collision frequency 
. e 

v = _! fi wpe lnA· 
. c 3 ~rr A ' (II-22) 

which carries with it the uncertainty of order [lnA] - 1 as discussed 

before. 

If we substitute Eq. (II-17) into the Landau equation, multiply 

_by v, and then integrate over v, we find 

dU . L' - e 1 - + - E (t) = - v U (t) [-dt m -0 c- n · 
· e a 

(II-23) 

where the prime signifies that the electrons are not included in the sum, 

and where 

3 
rl(x) =-

3 
X 

3rJ'TI 

2 -u2 
u e du 

when x >> 1 . (II-24) 

In Appendix A we give an alternative derivation of Eq. (II-23) based 

simply upon the drag force exerted on the electrons by the ions through 

a (v). 
m 

If U(t) remains small compared to a so that x < < 1, 
e 

Eq. (Il-23) becomes linear. If we assume ~ 0(t) and j_(t) = -nee_!:!(t) are 

proportional to e -iwt, we find the linear electrical conductivity on our 

displaced-Maxwellian model 

. a DM(w) = 
2 

n e 
e 

[~I' 
e a 

1 
(II-25) 

21 . n Z v - 1w 
a a c 

When the frequency w is small and the ion~ are singly charged, this 

reduces to 
2 

n e 
e 
mv 

c 
(II-26) . 
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high speeds. The electrical conductivity is not then well defined be­

cause this runaway current continues to increase in time unless it is 

limited by plasma boundaries. 

4. Limitations of the Landau Equation 

'The cutoff procedure used to account crudely for the dielectric 

properties of the plasma does not recognize the possibility of long-range 

interactions taking place by means of propagating waves. In the case 

of an electron-proton plasma near thermal equilibrium, the results ob­

tained from the Landau equation are actually correct within the uncer­

tainties mentioned above, as we show in Sec. V. The reason is that 

there are no slightly damped waves, and therefore no corresponding 

large -amplitude fluctuations that interact strongly with an appreciable 

number of particles. In other words, very few particles are able to 

have long-range interactions by the emission and absorption of waves. 

One cannot expect the Landau equation to be so accurate in other cases. 

.) .. 



-13-

ilL 'LONGITUDINAL WAVES AND STABILITY 

A. The Vlasov Equations 

The Vlasov equations for a classical Coulomb plasma 

<H (r, v, t) 
__ a_-__ -_ + v 

8t 

8 f ( r, v·, t) 
a - ------+ 

'\1 • _E ( ~, t) ::: 41T I n q 
a a 

a. 

8f (r,v,t) 
__ a_-_._-__ ::: 0 

8v 

'\1 X~(~, t) ::: 0 

. (III -1) 

(III- 2) 

(III- 3) _ 

are useful for treating certain problems in a low-density high-tempera-
16 

ture plasma. Here~(~, t) also is .an ensemble average. The ensemble 

is chosen so that each function is a smooth function of the arguments 

but not necessarily independent of :· Here we also have 

fa(>:,;:. t) " ;n ( L. Slo - :;(t)]O [;: - ;:;(t)~ , (III-4) 

1 1n a . 

where n is simply a normalization constant, which is often taken as 
a 

unity. 

The meaning and validity of all qut Eq. (tli-1) is clear. Equation 

(III-1) has the form of the Boltzmann equation except that the collision 

term is absent; it is sometimes called the collisionless Boltzmann 

equation. It is also called the correlationles s kinetic equation because 

of a derivation we outline in Sec. IV. C. 

B'ecause f (r, v, t) and E{r, t) are treated as smooth functions, a - - - - . 
the "ordinary" collisions or short-range interactions as discussed in 

Sec. II are not included so that particles can interact only through the 

self-consistent field~(~> t). This model is appropriate only for treat­

ing variations on time scales that are short in comparison with colli­

sional time scales. The Vlasov equations cannot be expected to treat 

correctly variations over distances of order or smaller than the dis­

tance between particles (actually in phase space) because the functions 

are treated as smooth. 
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Rostoker and Rosenbluth17 have shown that the Vlasov equations 

become exact in the limit as q , M , and the particle density of each 
a a 

species approaches zero at the same rate, so the charge and mass 

densities of each species remains constant. Each species then is rep­

resented as a continuous fluid and all individual-particle aspects dis­

appear. Since v -
1 

and A become infinite, the collisional time scale 
c 

is never reached and the distance between particles vanishes. 

B. Plasma Response to a Perturbing Charge; 

The Dielectric Function 

We consider a spatially uniform unperturbed plasma with particle 

densities n and with velocity distributions f (v) (normalized to unity) 
a a -

that do not vary on the time scales we consider, which are short com­
-1 

pared to v . With E 0 smaller than E , the effects of E
0

(t) can 
c run -

be ignored because they are important only on collisional time scales. 

In response to a perturbation p 0 (~, t)' applied after t = 0, the plasma 

will develop a small change of (r, v, t) in the distribution functions, and 
a - -

the small field .§( ~· t) will not be simply the field of p 0( ~· t) itself. 

The linearized Vlasov equations for this case are 

(_!_ + v . '\?) at -
qa 

of (r,v,t)= -- E(r, t) 
a - .... Ma- -

a f (v) 
a -
a.v (III- 5) 

(III- 6) 

(III- 7) 

Because f (v) does not depend upon r or t (on the time scales we 
a - -

consider), it is convenient to Fourier transform in space and Laplace 

transform in time so, for example, 
00 

r f dt eiwtE(r, t) 
0 - -J 3 -ik. 

E(~. w) = d r e - (III-8) 

and 

E(r, t) =fd3k ei~. r lC ~~ e -iwt .§(~. w). 
- - (2rr) 3 

(III- 9) 

{~ . 
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Here k is real and E(~, w) is defined for all complex w for which the 

defining integral converges. This requires that Imw be larger than 

some number -y, and~(~, w) is analytic for Imw > -y. The contour C 

runs from Re w=· -,oo to Re w = oo along a line parallel to the real w 

axis and with Im w > -y. 

Because of Eq. (III-6), we have ~(~, w) = E(~, w)€. With the 

initial condition of (r, v, t = 0) = 0, the transfOrmation of Eqs. (III-5) 
a. - -

and (III-7) yields 

i(k · v- w)of (k, v, w) 
- - a. - -

• qa. . A 

= -- E(k, w)k· 
M - -

a f (v) 
a. - . (III -1 0) 

a. 

and 

ikE()<, w) = 4rr ~ na qa J d 
3 

v Of a()<·, "' w) + 4;ip 0 ()<, w) . (Ill-11) 

By solving Eq. (III-10) for of and substituting it into·Eq. (III-11), we 
a. 

find 

~(~, w) = E(~, w)~ = 

where 

2 
k E(~, w) = 

-4rri~p 0 (~, w) 

2 
k E(~,w) 

(III-12) 

(III -13) 

Here we have defined the plasma frequency for each species as 

2 
w = pa. 

2 
4rrn q 

a. a. 
m 

a. 
(III -14) 

If the plasma were not present, Eq. (III -12) would be modified only by 

the Vlasov dielectric function E(~, w) being replaced by unity. The 

second term in Eq. (III-13) represents the polarization of the plasma. 

Notice that the substitution of Eq. (III-12) into Eq. (III-10) yields the 

expression for of (k,v,w). 
a. - -

The dielectric function depends only upon the unperturbed plasma. 

We can consider E(~, w) to be defined by Eq. (III-13) when Imw > 0, and 

we will be particularly interested in the case of Im w approaching zero. 

Introducing the real variable V, we use the Plemelj formulas 



to find 

lim 
t:-+0 

1 
-----=P 
X- (x

1 
± iE) 

-16-

1 
I 

X- X 

± i1T6(x- x
1

) 

lim k
2 

€(k, kV + iE 
1

) = k 2 
- R(~, V) - il(~, V) 

E I -+0 -

where the real functions R(~, V) and I(~, V) are 

R(~, V) = L 
a. 

2 J 3 w p d v 
pa. 

and 

k · [of (v)/o (v)] 
-.a.- .-

k• v- v 

of (v) 
v - V)~ · a. -

0 ( '::') 

(III-15) 

·. (III-16) 

(III -17) 

(III -18) 

and P denotes a principal-value integration. Because E(~, w) is ana­

lytic for Imw > 0, R(~, V) and I(~, V) contain all the information that 

E(~, w) contains. They appear very frequently throughout our work. 

Notice that the symmetry relations 

R( -~, - V) = R(~, V) and I(-~, - V) = - I(~, V) 

follow directly from the defining equations. 

It is convenient to introduce the function 

F(V; k) = \ w 
2
fd

3
v o(V-k·v)f (v) - 41 pa. - - a. -

in terms of which 

R(k, V) = pf dVI 
- v' -v 

and 
A 

I(~, V) = 1r 

o F(V; ~) 

ov 

(III-19) 

(III-20) 

(III- 21) 

(III- 22) 

Notice that F(V; k) is a weighted sum of the projections of the velocity 
A 

distributions onto the k direction. 

C. Longitudinal Plasma Waves 

Landau first suggested that, for each k, the inverse Laplace 

transform. o.f expressions like Eq. (III-12) be evaluated as follows. 18 

The functions of w, including E(~, w), are defined by analytic continuation 

& -
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even for negative values of Imw. The contour C in Eq. (III-9) is moved 

downward (Im w decreasing) and .defOrmed so that each singularity that 

is encountered yields an explicit contribution. This leads directly to 

the interpretation of each solution of E (~, w) = 0 as a mode of the plasma 

that depends only upon the unperturbed plasma. 

These modes are not necessarily normal modes of the plasma 

in the serise' of Van Kampen. 19 The normal modes are defined so that 

both E(r, t) and 6£ (r, v, t) behave as exp i(k · r- wt). The modes found 
-- a-- --

by the Landau procedure correspond 'to normal modes when they are 

exponentially growing in time (Imw > 0), but otherwise they do not. The 

reason is that 6f also has a term with time behavior- -exp( -ik · vt). 
a - -

We will use the term "mode" to describe those found by the Landau 

procedure. 

The highly damped modes (with Im w ~- IRe w I) are very sensitive 

to the distribution functions fa('y). · This, plus the circumstance that 

they cannot be understood on any simply physical picture, limits their 

usefulness. 

The weakly damped or slowly growing modes (with very small 

lim w j} can be discus sed and understood in more detaiL In Appendix B 

we write w = kV+ i-y where V and 'Y are real, and we obtain an expres­

sion for k
2 

E(k,w) by Taylor expanding in powers of -y/k. Separation 

of the real an; imaginary parts of k
2 E(~, w) = 0 then yields 

k
2 

- R(~, V) +0(-y/k) = 0 (III -23) 

arid 

-I(~, V) - t a ... 2 2 a V R(~, V) + 6(-y /k ) = 0, (III-24) 

where 0 (x) represents terms that approach zero as fast or faster than 

x. Wh~n 1-y/k I is very small, Re w = kV is determined by the dispersion 

relation 
k

2 = R(~. V) (III-25) 

and Im w = -y is determined from 

A 

'Y = .... _k_I...!-:0=--s.,V.....:) __ 

a R(%, V)/a V 
(III- 26) 

Any mode for which these expressions are approximately correct we 

call a plasma wave. 
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1. Electron Plasma Waves 

In Appendix B we obtain the asymptotic expansion for the con-
A 

tribution of species a to R(~, V) 

2 

R (k, V) 
a -

wpa [ ( ) -1 ( 2) -2 .] = 7 1+2 vii a V +3 vii a V + .' .. (III- 27) 

where 

(III-28) 

This series ordinarily does not converge and so is usef1,1l only when V 

is large. In terminating the series, one must use care to pre~erve 

Galilean invariance. 

We use a reference frame in which (vii) e vanishes, and we 

consider waves with phase speeds V very much larger than the speeds 

of near,ly all ions and large enough that Eq. ,(III-27) can be used for the 

electrons. For the ions we use only the first term.of Eq. (III-27); so 

the dispersion relation Eq. (III-25) becomes 

(kV)
2 = L wpa 

2 
+ 3 (vii 

2 >e wpe
2 v- 2 

+ ... I (III-29) 
a 

This expression is valid only when v 2 >> (v
11 

2 
)e so that the second 

term on the right side is only a small correction to the lowest order 

result 
2 2 

(III -3 0) 
a 

w = w 
pa pe 

By using Eq. (III-30) in rewriting Eq. (III-29), we obtain the well-known 

result 

(kV)
2 

= \ w 
2 

+ 3 (v 
2 

) k
2 

+ · · · L pa II . e 
a 

(III- 31) 

This result can be interpreted o'n the basis of moment equations 
. 20 21 and flu1d concepts. ' These electron plasma waves are primarily 

oscillations of the electrons, and the primary restoring force is the 

electric field produced by the perturbation in electron density. The 

ions also oscillate in response to the electric field, but the frequency 

is so high that the amplitudes of their oscillations are relatively small 

and they have little effect. Negative ions oscillate in phase with the 
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electrons, and positive ions oscillate 180 deg out of phase with the 

electrons. The gradient in the electron pressure arising from one­

dimensional adiabatic compression supplies a small additional restor­

ing force that contributes the last term in Eq. (III-31). The justification 

for using one -dimensional adiabatic compression is provided by the 

kinetic-:theory results given above. 

We postpone our discussion of Eq. (III-26) for electron waves. 

Usually the approximation that i y/kl is small fails as v 2 
decreases 

and becomes comparable to ( v 11
2" )e' so Eq. (III-31) is ordinarily an 

adequate approximation of Eq. (III-25). 

2. Ion Waves 

We here restrict ourselves to a plasma with a single ion species 

of mass M and charge Ze, and we consider f (v) to be Maxwellian with 
e -

temperature ee in the reference frame in which <VII )i vanishes for 

all k. We find almost immediately from Eq. (III-21) that 

Re(~, V) = 2~ 2 X (a: ) (JII-32) 

e 

where D and a are defined as in Sec. ll.B and. 
e e 

00 

X(x) = - ~p 1 du 
u -u2 

(III-33) e 
1T -00 u - X 

Here X(x) is an even function of x and is equivalent to the func­

tion Fried and Conte denote by Re z' (x, y= 0). 22 The series expansion 

2 8 4 X(x)=-2+4x - 3 x + (III-34) 

and the asymptotic expansion for large values of x 

1 3 
X(x) = - + -- + · · · 

2 2 4 X X 

(III-35) 

can be obtained from Eq. (III-33) or from Fried and Conte's book. 

Equation (III-35) is a special case of Eq. (III-27). The numerical re­

sults of Fried and Conte are shown in Fig. 1. 

To consider ion waves, we suppose IV I to be. large compared 

to the speed of nearly all ions and very small compared to a . Then e 
using the asymptotic expansion for the ion contribution and the series 

expansion for the electron contribution, we find 

\ 
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Fig. 1. The function X(x) defined by Eq. (III-33). 
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1 

~ 
e 

2 
__ wpi 1 
-;z-?, 

2 v -
ze 

M 

e 

e 1 

... ] . (III- 36) 

(III -3 7) 

(III-38) 

and is a well-known result. 
20

•
21 

The condition that v 2 
be small com­

pared with a 
2 

is very well satisfied. However, the condition that v 2 
e 

be large compared with ( v
11

2
) i i_s not satisfied unless ( v

11
2 )i 'is 

unusually small (or else Z is very large). For example, if the ion­

velocity distribution is also Maxwellian, we must have ze very large 
e 

compared to 2e. and even then kD must not be too large. 
1 e 

Consideration of the damping or growth from Eq. (III-26) usually 

shows that the condition that I y/kl be small is not satisfied unless v 2 

is somewhat larger than ( v
11

2) i. Still, one should probably treat the 

ion contribution to Eq. (III-36) somewhat more carefully, because it 

tends to be cancelled by the electron contribution. 

These results can also be discussed with moment equations and 

fluid concepts. 
21 

When the wavelength is short compared to D so that 
e 

the frequency is near its maximum (kV) 2 = w .2, the waves are oscilla-pl . 
tions of the ions that correspond almost exactly to the electron plasma 

waves; this is particularly apparent from a comparison of Eqs. (III -29) '­

and (III-36). The electrons have little effect beyond providing a neutral­

izing uniform background. As the wavelength becomes longer and the 

frequency becomes smaller, the electrons tend to neutralize the charge­

density perturbation of the ions and to provide an additional restoring 

force through the resulting electron pres sure gradient. In fact for 

k
2

D 
2 < < 1 we have v 2 = ze /M. This result follows immediately if 

e e 
one assumes that the electron and ion density perturbations are main-

tained nearly equal by the coupling electric field, the inertia is pro~ 

vided .by the ions, and the restoring force is the electron-pressure 
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gradient arising from isothermal compression. ·The justification of 

assuming isothermal compres sian is provided by our above results. 

As k and w become very small, the above description be­

comes incorrect because collisions become important. In fact, the 

ion waves will eventually become acoustic waves in a collision-dominated 

plasma. For this reason they are often called ion acoustic waves. 

When several species of ions are present, there can be a variety 

of low-frequency ion waves. We will not discuss this case. 

3. Stability and Landau Damping 

The stability of the uniform Coulomb plasma according to the 

linearized Vlasov equations has been studied in some detail by Penrose, 
23 

who expresses his results in terms of F(V; ~)defined in Eq. (III-20). 

He proves that-when F(V; ~) is a sufficiently smooth function of V, the 

plasma is unstable and E(~, w) = 0 has roots with Im w > 0 if, and only 

if, there is a minimum of F(V; ~) as a function of V :where R(~, V) > 0. 

The exception he cannot treat in detail occurs whe_n E (~, w) = 0 has roots 

with Im w = 0+ but none with Im w > 0, which we call the marginally 

stable case. Penrose's criterion allows us to determine stability or 

instability directly from R(f, V) and I(~, V), but it gives no direct in­

formation about the modes and waves involved. 

One result that follows directly is that no plasma with isotropic 

velocity distributions can be unstable because in this case F(V; k) has 

no minimum. 

To supplement these results, we consider the growth ·or damping 

of waves satisfying k 2 = R(.g_, V) as given by 

k I(~, V) 
(III -26) y = 

oR(~, V)/o V 
. ' 

when ly /k I is sufficiently small. When the plasma is unstable, the 

Penrose criterion guarantees that the plasma can support a wave with 

y = 0 and neighboring waves with y very small and positive. When 

y is negative, the wave is said to be Landau damped. 

Dawson has provided a physical interpretation of wave growth 
. . 24 

or Landau damping as given by Eq. (III-26). He shows that the extra 
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energy per unit volume in the plasma due to a wave of amplitude E
1 

is given by 

w 
w 

E 
2 l -V 

t : 
= ---srr t 2k2 

" l oR(!:, V) ! 

av i 
_! 

(III -39) 

He also shows that the rate of energy change of the particles that have 

k · v about equal to V, and so move nearly in resonance with the waves, 

1S 

dW 
res 

dt 

E12 r -v 
- --s:rfll( 

-, 
l 
I 

I(~, V)j 
. I 
_I 

(III -40) 

per unit volume. If the wave amplitude varies as· ·e -yt, energy conserva­

tion yields 
dW dW 

w 

dt 

· res 
= 2-yW =- ---. w 

(III-41) 
dt 

and substitution of Eqs. (III-39) and (III-40) yields Eq. (III-26) for -y. 

Notice that if we consider the same wave from a reference frame 

moving with a different velocity, the magnitude and the sign of V (and 

therefore of W and dW / dt) may be different but -y is unchanged. w res · 
We see that the growth or Landau damping of a wave arises 

from its interaction with resonant particles, which may gain or lose 

energy. This wave-particle interaction can be described as the ab­

sorption or induced emission of waves by particles. Depending upon 

the unperturbed plasma, the absorption may exceed the induced emis­

sian, giving Landau damping, or the induced emission may dominate, 

making the wave grow (in analogy with a LASER). Other descriptions 

based upon "phase mixing" or particle "bunching" are also used and 

are probably more appropriate in treating rapidly growing or highly 

damped modes. 25 • 1 9 

In the remainder of this section we consider our results 1n 

various special cases. 

. -

D. The Two-:-Cornpo:nent Displaced--Maxwellian: Plasma 

We include ions ofmass M, charge Ze, and with a Maxwellian 

velocity distribution with temperature 

length and the ion thermal speed by 

e .. 
1 

We define the iori. De bye 
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D.2 
(). 

A2 
2(). 

1 .1 
- = .. 

1 
4nn. Z 2 e 2 M 

(III -42) 

1 

and we refer to the coordinate system moving with the mean velocity of 

the ions as the ion frame. 

We make similar definitions and assumptions for the eleCtrons, 

and we assume that the electron frame moves with velocity U relative 

to the ion frame. We denote the electron thermal speed by a = a . 
e 

Fried and Gould have reported and discussed numerical solu-

tions of E(k, w) = 0 for this case, including some of the highly damped 
26 -

modes. However, we simply illustrate some of our previous dis-

cus sion and obtain certain results that are useful in Sec. III. 3 and 

throughout the rest of the report by considering the plasma waves. 

\ 
In the ion frame, we have from Eqs. (III-21), (III-22), and 

(III-32) that 

and 

... 
I(~, V) = -

... 1 
R(~. V) = -__,.-

2D~2 
1 

,fTf v r -v2l 
-2-. -exp --~-
D. A L A2 _J 

1 

.,frr 

D 2 
e 

1 

2D 
2 

e 

V-Ujj 

a 

X (v ~ U I~ (III-431 

exp [- (V ~ ~ II ) 
2 

] 

(III-44) 

These are the basis of our entire discussion. Notice that the dependence 
... 

on k and U . is only through 

... 
u

11 
= k· u. (III -45) 

1. With No R;elative Drift 

With ,S! = 0, all results are independent of k if we work in the 

common ion and electron frame. 

We need only consider the dispersion relation k
2 = R(V) for 

nonnegative V. From the behavior of X(x) shown in Fig. 1, we see 

that R(V) is positiv~ f.or V larger than a value of order a , which is 
. . . .e 

the region that could contain electron plasma waves. In this region 
. . 2 ' 2 

I(V) is small only when V is much larger than a , so only under 
e 

Iii 
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this condition are electron waves possible. The dispersion relation 

k
2 = R(V) then yields the result we found before. 

If ze > 3. 5 e., then R(V) is also positive for v 2 
somewhat e 1 -

greater than A 2 but less than a value of ord_er zeeiM. This is clearly 

the region that could contain ion waves. However, I(V) is small only 
2 2 

when V is large compared to A , so only under this ·condition are 

ion waves possible. Again, the dispersion relation is as we obtained 

before. 

For both of these types of waves oR(V)IoV and I(V) are both 

negative so, from Eq. (III-26), y is negative for all waves. This, of 

course, agrees with the Penrose criterion since the plasma is isotropic. 

As V becomes much greater than a , I(V) decreases exponentially, 
e 

so the Landau damping rate of the electron plasma wave decreases 

exponentially. However, when the damping time becomes comparable 

to the collision time, collisions will have an effect upon the actual 

damping rate. 

2. With Equal Temperatures and Z = 1 

In this case there are no ion waves when U = 0. The effect of 

z >>1 would be similar to the effect of e >> e., (which we consider in · e 1 

Sec. III. D. 3) because both allow ion waves when _!! = 0. 
"' To apply the Penrose criterion we consider ~ parallel to U. 

"' From Eq. (III-44) we find that F(V; k) has a minimum if, and only if, --
U is large enough that 

V 1 u - V
1 

1 
= > (III-46) 

A a ,J2 
. I I 

has a solutwn V , and the minimum is then at V = V . At this minimum 

"' I 1 (V
1

) 

R(~, V) =-;-z X\-;: , (III -4 7) 

e 

and so R(k, V
1

) is positive when V
1 I A is larger than 0. 925, the zero 

I -

of X(V I A). Thus we find that the plasma is unstable if, and only if, 

I U I > U crit = 0. 925(a+A) = 0. 925a (1 + ffi) . (III -48) 
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The first waves to begin to grow in this case cannot be·. classified. 

as electron or ion waves because they have speeds of order A relative 

to the ion frame and of order a relative to the electron frame. Since 
A . e 

oR(~, V)/oV is positive in this region, the growing waves are those for 

which R(~, V) is positive and I(~, V) is negative. From Eq. (III-44) we 

see that the ion contribution to I(~, V) is n.egative whereas the electron 

contribution is positive. Therefore we may say that the waves grow 

when the growth caused by the ions overcomes the damping by the elec­

trans. 

This is best classified as an example of a two-stream instability. 

Until I U I becomes comparable to U .t, the electron plasma waves 
cr1 

are not greatly affected in the electron frame. 

Notice that if the temperatures were slightly unequal or if Z f 1, 

the quantitative analysis would be much more difficult. 

3. Ion Waves in an Electron-Proton Plasma 

Here we discuss the case e >>e. in some detail because the 
e 1 

results apply also in Sec. III. E. As I U 1 is incre.ased from zero, 

certain ion waves will begin to grow when U II is still small compared 

to ae, so th'e electron waves are hardly affected in the electron frame. 
. 2 2 . 

We work in the ion frame. As long as V and U are very 

small compared to a 
2

, the contribution of the e,lectrons to R(~, V) 

remains very nearly e-D -
2

, so the dispersion relation k 2 = R(k, V) is 
e 

nearly in~ependent of . U II . In particular the region V min< V < V max• 

where R(~, V) is positive, is very insensitive to U and is determined 

by X(V/A) > -2e.je . In the same approximation we have 
1 e 

e. 
I(k, V) = 1 (III -49) 

a 

/\ 

When U II = 0, I(~, V) is negative for positive V and all ion 

waves are damped~ If u
11 

exceeds· a critical value· U .t, I(k, V) cr1 -
will be positive somewhere within the region V . < V < V and the 

m1n max 
plasma will be unstable. 

In an electron-proton plasma, two distinct cases occur in the 

application of the Penrose criterion. As U is increased with e >20e., 
- e 1 
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A I 
a minimum first appears in F(V;l_:) for 1_: parallel to _!:! and at V = V 

with V . < V
1 < V In this case the plasma is unstable as soon 

m1n max 
as a minimum appears, so U .t can be determined entirely from · cr1 
Eq. (III -49). Since R(~, V) is positive where the minimum appears, 

the first waves to grow have finite wavelength (k f. 0). 

With e < zoe., the minimum at V = V 1 first appears with 
e 1 

V
1 > v ' and as u II increases further V

1 
decreases. The plasma 

m~ A 1 

fin~lly becomes unstable when, for 1_: parallel to U, V decreases 

below V . In this case U .t can be found from V and Eq. 
max cr1 max 

(III-49), and U .tis quite sensitive to V . The first waves to begin 
cr1 max A 

growing have infinite wavelength (k = 0) because R(k, V •) vanishes. 
- max 

Examples of the calculation of U 't in both cases are given in 
cr1 

Appendix C. The results are shown in Fig. 2, including the point at 

e = e. as determined in Sec.IIJ. D. 2. The complete results for ar-
e 1 6 

bitrary e I e. are given by Fried and Gould. 2 Notice that for 
e 1 

e e > 20ei' U crit is between three and four times the ion thermal speed A. 

In both cases, when u II exceeds u crit' the growing waves 

have V in the region where F(V; k) slopes upward and V . < V < V a . - m1n m x 
These ion waves grow because the Landau damping by the ions is over-

come by the effects of the electrons. 

E. Waves in the Spitzer-Harm Problem 

In the notation of the last section, the electron velocity distri­

bution in the Spitzer ~Harm problem is 

2/ 2 
e-V a+f(1)(v) 

e 
cos a, (III- 50) 

where a is the angle between ~ and E
0

, and fe(i)(v) was calculated 

by Spitzer and Harm. 1 We here take the ions to be protons with a 

Maxwellian velocity distribution of temperature e .. 
1 

'We show in Appendix G that in this case 

A 

I(l_:, V) = I 0 (V) + I 1 (V) cose (III-51) 

where e is the angle between 1_: and ~. Here I 0 (V) is given by 

Eq. (III -44) with U II = 0 and 
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Fig. 2. The relative drift U crit above which a displaced 
Maxwellian electron-proton plasma becomes unstable 
(solid line). The lower, nearly straight line shows the 
value of U at which F(V; k) develops a minimum. The 
up_JJer, curved line showsthe value of U at which 
I(k, V) first vanishes with V = V max· 
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I
1

(V) = 2rr 2
w 

2 [ (

00

f ( 1)(v)dv-Vf (
1

)(V)J 
pe Jv e e 

(III- 52) 

As long as E 0 is small compared with.E , the dispersion 
run 

relation for electron plasma waves, Eq. (III-31), remains essentially 

unchanged in the reference frame where (vii )e vanishes for all ~· 
However, because f ( 

1
) (v) decreases more slowly than the Maxwellian 

e 
as v becomes large, there will always be a value V beyond which 

I I 1 (V) I exceeds I I 0 (V) I and certain electron plasma waves would grow. 

However, the linearization of the Landau kinetic equation is not justified 

where f (1 )(v) is larger than the Maxwellian part, so this result cannot e . 
·be taken seriously. Still, it indicates the· difficulty caused by runaway 

electrons. 

The presence of runaway electrons constitutes a two-stream 

situation in which certain h,igh-speed electron plasma waves will grow. 

These waves are likely to have very small growth rates, and they can 

interact only with very fast electrons, so their effects are .probably not 

important. This is fortunate because they would be very difficult to 

treat in detail. 

In discussing the ion waves, we compare the results with those 

of the displaced-Maxwellian problem in an electron-proton plasma as 

discus sed in Sec. Ill. D. In that case we can write 

f (v) = 
e -

1 -v2ja2 (2) 
3/ 2 3 e + fe (v) cosa 

1T a 
(III-53) 

to a good approximation, where f (Z)(v) is known from Taylor expan­
e 

sion of the displaced Maxwellian. Because the ion waves have such low 

speeds V, we have to a good approximation in both problems 

(III-54) 

where R 0 (V) is give'n by Eq. (III -43) with U II = 0, and 

A 

T(~, V) = I 0 (V) + I 1 ( 0) cos a . · (III- 55) 

To this approximation, all of the properties of the ion waves are the same 
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in the two problems if the single number I
1 

(0) is the same. This would 

require that 

1
00 

f (i)(v)dv = Joo f (2 )(v)dv. 
0 e 0 e 

(III- 56) 

In both problems Eq. (A -7) of Appendix A must be satisfied, and by 

substituting into it Eqs. (III-50) and (III-53) we find that Eq. (III-56) 

actually is satisfied if the same ~O applies to both problems, and in 

fact 

JTieE 0 

D 2 v ma 
e c 

(III-57) 

If we relate ~O to !:::! by the displaced-Maxwellian conductivity, we 

recover Eq. (III-49). 

We thus conclude that if the drift !:::! in the displaced-Maxwellian 

problem iE; related to E
0 

by. the displaced-Maxwellian linear conduc­

tivity, the ion waves have. very nearly the same properties as in the 

Spitzer-Harm problem. This has not been pointed out before, although 

it is evident in the results of Bernstein and Kulsrud. 
27 

The results found in Sec. III. D. 3, including Fig. 2, now apply 
I 

directly to the Spitzer-Harm problem if we replace !:!/a by -0.5064~0/~un· 
In particular we define 

E . 
cr1t 

E run 

= 
1. 

0. 5064 

u . 
cr1t 

a 
(III-58) 

We see from Fig. 2 that when 8 much exceeds e., ion waves would 
e 1 

grow according to the Spitzer-Harm model even when the linearization 

of the Landeau equation would still be justified because E 0 < < E . run 
Because the ion waves can interact with nearly all eiectrons,. the wave-

particle interactions would be important and the Landau equation would 

be inadequate. 

The brief discussion of Ohmic heating in Appendix D indicates 

that 8 e is actually not likely to much exceed 8i unless E 0 is 

~ 0. 1E , the ions are cooled by some process, or the electrons are 
run . 

heated by some process in addition to Ohmic heating. 

~( 

t. .. 
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IV. THE LENARD-BALESCU KINETIC EQUATION 

We use the terms 11 collisons 11 and "ordinary collisions" to de­

scribe the effects included in the Landau equation as discussed in Sec. 

II. In order to study the case E 't < .E 0 < E , we use the Lenard-
crl run 

Balescu kinetic equation (the L-B equation), which includes the effects 

of collisions and of wave -particle interactions. 
28

• 29 In this chapter 

we discuss the L-B equation and i.ts limitations. 

A. Physical Processes of Possible Importance 

In the spatially uniform classical Coulomb plasma we study, 

the particle motion and the velocity-distribution functions can be altered 

only by electric fields. These fields consist of the uniform ~O and of 

a fluctuating electric field with vanishing ensemble average. Part of 

this fluctuating field arises from the particle individuality and is re­

sponsible for direct particle -particle interactions or collisions. A no the r 

part involves the dielectric properties of the plasma and so is associated 

with the possibility of wave propagation.; this part is responsible for the 

effects of wave -particle interactions. 

The fluctuating electric fields associated with waves may be 

altered in various ways. Even if the actua.l plasma were a continuum 

as represented by the Vlasov equation, a wave could be altered by: 

(a) Growth or Landau damping as described before. This we 

have chosen to interpret c.s induced emission or absorption by individual 

particles, although it appears in the Vlasov equation; 

(b) Direct interactions with other waves through the nonlinearity 

of the plasma, which we call wave -wave interactions or mode coupling; 

(c) Time variations in the dielectric properties of the Jiasma. 

In addition, because the actual plasma consists of discrete particles, 

the fluctuating electric fields a.ssociated with waves are altered by: 

(d) Changes in the propagation and particularly the damping of 

waves, which we· call collisional effects upon the waves; 

(e) Spontaneous emission of waves by individual particles. If 

spontaneous emission were not present in a stable plasma, the fluctua­

tions associated with waves would decay to zero. 
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This classification scheme may not be complete, but it forms 

a useful basis for discussion. 

1. Quasi:-Linear Theories 

These theories are usually derived from the Vlasov equations, 

so they include neither the effects of collisions upon the waves and the 

velocity-distribution functions nor the effects of spontaneous emission 

by the particles. These approximations are not valid in our problem, 

so we discuss and interpret only briefly the simplest of these theories 
. 30 31 

and the results found with ~O = 0. ' 

The slowly varying, spatially uniform part f (v, t) of each ve-
a -

locity distribution is separated, and the remainder is represented as 

modes that propagate, according to the linearized Vla:sov equations, 

through this s.patially uniform medium. The plasma is assumed to 

have no rapidly growing modes, and all highly damped modes are as­

summed to have small amplitudes and to be of no importance. The 

modes considered, then, are the waves, which have phase speeds 

V(~, t) and growth (or damping) rates y(~, t) that vary slowly in time as 

the spatially uniform parts of the velocity distributions,. and therefore 

the Vlasov dielectric funtion, vary slowly in time. These changes are 

assumed to be slow enough that the amplitude: of a wave can be found 

by an adiabatic or WBK approximation. The energy &k in a wave is 

thus assumed to vary as 

dt 
(IV -1) 

which can be integrated from some initial time if y(~, t) is known. We 

see that mode coupling in the sense discussed before is not included, 

and that the effects of time variations in the dielectric properties of 

the plasma are treated in a simplified manner. 

The effects of these waves upon the spatially uniform parts of 

the velocity distributions are treated with the nonlinear Vlasov equa­

tions and yield 

8 t 8 v [ 
D (~, t) 
-a 

(IV -2) 
8fa(~,t) 8 

------= -- .. 

~I 
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where the coefficients D 
...a. 

for diffusion in velocity space involve inte.., 

grals (or sums) over ~· The integrands involve a known factor that 

multiplies £k (t) o[~ · ~ - kV(~j t)]where tk(t) and V(~,t) must be deter-

mined as discussed above. 

A quantum-mechanical derivation leads directly to the inter~ 

pretation that waves are emitted and absorbed by. individual particles, 
31 

as we have suggested. . The o function above indicates that only reso-

nant particles interact strongly with a wave. 

This quasi-line~n theory is useful only when fk is large com­

pared to the level of thermal fluctuations (so that spontaneous emission 

is not important), but small enough that f (v, t) changes slowly and 
a -

mode coupling can be ignored. This theory can be used only to treat 

variations on time scales short compared with the collision time v 
c 

-1 

The theory has usually been applied to one-dimensional,problems,; 

in fact, there is some controversy concerning its applicability to three­

dimensional pr?blems. The result found in certain ex-amples is that the 

system evolvesJ towards a steady state in which [k(t) either vanishes or 

is constant in time. 
30 

Some waves grow or decay until they reach a 

constant amplitude and others decay entirely, but none continues to 

grow indefinitely. Thus in these one-dimensional examples that are 

initially unstable according to linearized theory, the nonlinear effect 

of wave -particle interactions eventually makes the plasma at least 

marginally stable, according to quasi-linear theory. 

Recently these theories have been extended to include some of 
. 32 33 

the effects of mode couphng. ' 

2. The Equations of Field and Fried 

Although they were not based upon the Vlasov equations, the 

equations developed by Field and Fried have the same structure, 

physical content, and limitations as those of the quasi-linear theory 

discussed above. 
34 

With a uniform field ~O' the time derivative on 

the left of Eq. (IV ..-2) is replaced by 
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as one might expect and, when E 0 << AE , no other modifications 
run · 

are necessary. 

Field and Fried apply their equations to the problem of an 

electron-proton plasma with E
0 

>> E so the effects of collisions 
run 

can be ignored. Initially the velocity distributions are Maxwellian with 

e.<< (J , and the wave amplitudes correspond to the level of thermal 
1 . e 

fluctuations. Only the ion waves are included in their equations, and 

the behavior of the plasma in:time is evaluated numerically. As the 

particles accelerate nearly freely in ~O' the plasma becomes .unstable 

almost immediately and some of the ion waves begin to grow. After a 

time of 10
3 

to 10
4

w . -
1 

in their examples, the ion-wave amplitudes be-
pl 

come so large that wave -particle interactions have important effects 

upon the velocity distribution of the electrons. The electrical current 

ceases to increase linearly in time and drops to a relatively low value. 

Some of the ion waves that originally grew become damped although 

"other ion waves begin to grow. Field and Fried make certain simpli­

fications that prevent them from accurately calculating the behavior at 

longer times. They believe that the assumptions of quasi-linear theory) 

which include the neglect of mode coupling, are justified throughout 

their problem. 

In three-dimensional problems like this, the effects of wave­

particle interactions are often similar to, and act in addition to, those 

of ordinary collisions. In this problem, these interactions yield a 

finite electrical conductivity in the absence of collisions; this possi­

bility was first suggested by Buneman. 
3 5 

These interactions can 

greatly increase the diffusion of a plasma across a confining magnetic 

field. 
36

• 
37 

Several other examples are given in Sec. V. 

3. The Lenard-Balescu Equation 

The L-B equation differs i:n several respects from the equations 
} 

of quasi-linear theories: (a) rt iAcludes the effects o£ collisions upon 

the velocity distributions but not upon the waves; (b) it includes span- to-. 

taneous emission but does not include mode coupling; (c). the velocity­

distribution functions are assumed to vary slowly compared with rates 
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of emission and absorption of waves, so the amplitudes of fluctuations 

associated with waves are determined as a balance of spontaneous 

emission and absorption. The ensemble average of these amplitudes 

then varies only slowly as the particle -velocity distributions vary. 

A basic limitation of the L-B equation is that it is meaningful 

only for a stabLe plasma, because in a marginally stable or unstable 

plasma the spontaneous emission cannot be balanced by absorption, for 

certain waves. Here stability is as determined from the linearized 

V.lasov equations. 

The L-B equation is valid on a time scale of order or longer 
-1 

than the collision time v , which can be an advantage or a disadvan-
c 

tage in comparison with quasi-linear theories. 

In Sees. IV. Band IV. C we outline two derivations of the L-B 

equation that will help to clarify its physical content and limitations 

as outlined above. 

B. Derivation by Superposition of Test Particles 

. 38 39 40 
Th1s method was suggested by Hubbard and Thompson. ' ' 

It has 41 42 
been utilized and rigorously justified by Rostoker, ' but we 

·do not give the full justification here. We consider ~O = 0 because, 

as we y-erify in Sec. IV. C, the effect of ~O can be inserted just as it 

was in the equations of Field and Fried. 

The word description we give will usually apply to the fluctua­

tions associated with waves. The L-B equation contains the effects of 

ordinary collisions as well, but the discussion of these is much like 

that in Sec. II. 

1. The Test-Particle Problem 

As a special case of the plasma response to a perturbing charge 

as given by Eq. (III-12), we consider p
0
(:, t) to be a particle of charge 

q moving on the trajectory r'(t) = v't + :
0 

with constant velocity':'. 

Then 

4rrq~, 
-ik. :o e 

!_:(~, w) = 2 
(IV-3) 

k E(~, w) w-k. v' 
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where, because the uniform unperturbed plasma is assumed to be stable, 

the only pole with Im w ~ 0 is the one at w = ~ . y'. Evaluation of the 

inverse Laplace transform for very large t therefore yields 

~(~, t-+ oo) = -1 
4lTqk -ik 

e :' ( t) (IV -4) 

For sufficiently large t, the ensemble average or Vlasov field produced 

by the test particle is thus 

" A ik[r-r' (t)] 
-i~o(V -~ · ':' )e - - -

·~(~I q, :'(t), _y') 
k

2 
- R(~, V) ~. il(k, V) 

(IV- 5) 

This result depends upon :; :', and t only through the combination 

:- :'(t), and so represents a pattern that moves with the test particle 

and depends upon ':'. The test particle is. often said to be "dressed" 

by the 11 shielding cloud" the plasma forms around it. 

When. I r - r' I is small compared to D , only large k con-
- - e 

tribute significantly, so the plasma has little effect and the electric 

field is nearly that of the bare test particle. For I : - :'I comparable 

to or larger than D , the shielding by the plasma is important. Where 
e 

I r - r' I is large compared to D , the only large contributions come l 
- - e . 

from k and V under conditions that V = k· v' is satisfiedand_thafR(k, V) - . - '. -
is positive and I I(~, V) I is small. Under this condition the test par-

ticle can move in resonance with a slightly damped plasma wave. 

We thus interpret the long-range parts of Eq. (IV -5) as arising 

from plasma waves that are excited by, or spontaneously emitted by, 
.v 

the test particle. This emission is similar to Cerenkov radiation in 

that the particle moves in resonance with the wave being excited. 

During the transient period when t is small, this spontaneous 

emission is not entirely balanced by absorption (Landau damping) by 

the plasma, but when Eq. (IV -5) is correct, this balance occurs. This 

suggests that Eq. (IV-:- 5) is valid if t is large compared to the damping 

time of the least-damped wave with which the test particle moves in 

resonance. 
-1 

Of course this time must be short in comparison with v 
'C 

or else the Vlasov equation is not adequate. 

to· • 
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Because the linearized Vlasov equation was used, the possibility 

of mode coupling has not been included. There appears to be no simple 

criterion for judging the validity of this approximation. 

As the test particle emits waves, its energy must change. The 

average force exerted on the test particle by the plasma is given by 

~(~~I q, ~~, ~~) with the field of the test particle removed. To evaluate 

this we may average~(~'+~ I q, (, ~~) and~(!' - ~ I q, ~~, ~'). By using 

the symmetry of R(~, V) to combine these and then setting~= 0, we 

find 

o(V- k · v') ki(k, V) 
!_:drag (q, ~') dV - - - -

[k2 - R(~, V)] 2 + I 2 (~," V) 

(IV -6) 

The rate of energy loss qv_' · E is proportional to the square of the 
-drag 

srarge but independent of the mass of the test particle. 

'~( The integral over k diverges logarithmically af large k so we 

have provided a cutoff at k This divergence arises from a failure 
m 

in the linearization of the Vlasov equations at large k or small dis-

tances. It actually is connected with the large deflection suffered by 

particles that pass sufficiently close to the test particle, and so is 

similar to the divergence at small impact parameters 

form of the Fokker-Planck equation. 39 This suggests 

of order e we should choose k of order b . 
-1 

m m1n 

in the Landau 

that if I q I is 

As before, this 

will introduce an uncertainty of order unity compared with ln.L\. 

2. Autocorrelation Function of the Electric Field 

The fluctuations in the microscopic electric field in our spatially 

uniform plasma can be described by the autocorrelation function 
41 

~(~,T;t) =(~(r,t) ~(~+R, t + T)). (IV- 7) 

From Eq. (II-4) for~(~, t) we see that this will involve the correlation 

of two particles, which in general is very difficult to evaluate. How­

ever, Rostoker has provided a connection between the two-particle 

correlation function and the results of testparticle problems that is 

quite general when A is sufficiently large. 
42 

In the picture he 
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develops, two particles are correlated only because the first is part 

of the shielding cloud of the second, the second is part of the shielding 

cloud of the first, and both are parts of the shielding cloud of every 

other particle. Thus each plasma particle is considered a "dressed" 

test particle. 

Rostoker also derives expressions for quantities like .S:(B-, T, t) 

directly in terms of the test-particle results. This simplification is 

very important because the task of actually evaluating the two-particle 

correlation functions from the equations he gives turns out to be for­

midable. In our case his prescription is 

_s:(R,T; t) = L naf d \:· r d \· E( :': I qu' o: ~·)~( o+" I qu' N~'T' ~· )fu (~'' t) 
a ; 

- (IV-8) 

This result is interpreted as treating each particle as a "dressed" test 

particle that is otherwise uncorrelated with the other particles and 
. h 1 . I 42 moves w1t constant ve oc1ty v . 

We can evaluate Eq. (IV -8) directly by substitution of Eq. (IV -5). 

By evaluating the integral over r' and using the resulting 8 f1,1nction 

and the symmetry of R(~, V) and~(~, V), we find 

_s:(R, T ;t) 

where 

=-1-fd2~f. oo k4dk 
21T3 

0 

dV - - - e f oo k k H(k, V) i(k_· _R-kVT} 

00 
[k

2 -R(~, V)] 2 + I2 (~; V) 

(IV- 9) 

= \ 1Tm w 
2
Jd

3
v o(V- k · v)f (v, t) . L a pa - - a -a . 

H(~, V) (IV-10) 

The fun.ction H(~, V) appears throughout our work, albng with 

R(~, V) and I(~, V). As the plas~a slowly changes in time, these three 

functions will change. We will not explicitly show the dependence of 

s_(R, T) upon t. These variations must be slow compared to the time 

required for a shielding cloud to form, which is the decay time of the 

least-damped wave of importance. The shielding cloud must also form 

in a time short compared with the time in which the velocity of a par­

ticle changes, since each particle is treated as a test particle. 

v.. 

f"!: • 

~· .,. 
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The physical interpretation of the part of Eq. (IV -9) that corre­

sponds to wa~es is clear. The spontaneous emission by all the particles 

is balanced by the (Landau) damping, which we interpret as induced 

emission and absorption by the particles. The function H(~, V) sums 

the spontaneous emission by various particles; it is positive definite 

and gives the number of particles moving in resonance with a wave 

weighted by the squares of their charges but independent of their masses. 

It is now even less clear how one can judge the validity of ne.­

glecting mode coupling. 

3. The Fokker-Planck Equation 

We may now evaluate the effects of these fluctuating electric 

fields and of Ed (q, v') upon the velocity distributions of.the particles. 
- rag -

Because we have been forced to assume that the particle velocities 

deviate only slightly from constancy during the time required for a 

shielding cloud to form, we seek a Fokker-Planck equation for each 

species. We write 

of (v,t) 
a. -

at 8v 
· J (v,t), 

-a. -

where the current of species a. in velocity space is 

J · (v, t) = 'S (v, t)f (v, t) 
-a. - -a. - a. -

8 [tJ(v, t)f (v, t)] 
...a.- a.-

8v 

The dynamic friction 

'S (v, t) 
-a. - .6t 

and the velocity diffusivity 

b. (v, t) 
.NO. -

= <~~> 
2.6t 

(IV-11) 

(IV-12) 

(IV-13) 

(IV -14) 

are defined in terms of the velocity c?ange .6v in a small time .6t. 

This formula for J (v, t) represents the first two terms in an 
-a. -

expansion in .6v; we here drop the higher terms without providing the 

necessary justification. We must choose .6t short compared to the 

collisional time scales so that .6v is small. However, .6t must also 

be long compared to the correlation times for the electric-field 
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fluctuations, which are. comparable to the damping times of the waves, 

because the Fokker -:Planck equation is derived with the assumption 

of Markovian behavior. 4 

We clearly have 

b.v t'] dt' (IV-15) 

where ~ (t') is the trajectory of the particle being considered. 

In Appendix E, we derive directly from Eq. (IV -14) and (IV -15) 

that 

p(v,t) = 
-a. -

2 
qa: 

2m 2 
a 

(IV-16) 

In deriving this, we assume that during b..t the particle velocity is con­

stant and .we assume that b..t is long compared with the correlation 

time as discussed above. We also assume that the fluctuating field at 

:(t') is not significantly influenced by the presence of the particle under 

consideration. 

In evaluating the dynamic friction in Appendix E, we evaluate 

the effect of §drag·· which is prese.nt at !:(~') only because the particle 

is there, by treating the particle velocity a1s constant during b..t. How­

ever, we must also take into account the first correction in the particle 

velocity during b..t, which of course is produced by the fluctuating elec­

tric field. The result is 

Pl' ( ) .o-..J v,t. 
-a. -

(IV-17) 

By substituting this into Eq. (IV -12) and using the fact that fY (v, t) is 
-a -

a symmetric tensor, we find 

qa . . 
J (v,t) =--E:I (q ,v)f (v,t) -ll(v,t) · 
-a. - m a · rag a - a - -a. -

8f.(v,t) 
a -
8v 

(IV-18) 

The first term includes the effect of spontaneous emission by the par­

ticle being considered and does not involve H(~, V). The second term 

represents the effects of fluctuating fields that are present everywhere 
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in the plasma; it includes the absorption and induced emission by the 

particle under consideration, of fluctuations associated with waves. 

These fluctuations arise from spontaneous emission~and damping by all 

the particles, so J:f(v, t) involves H(k, V) .. - - -
We may note that Eq. (IV -2) of quasi-linear theory has the same 

form as Eq. (IV -18) except that no term like the one involving E 
-drag 

appears. This is as we expect because spontaneous emission is not in-

cluded in the quasi-linear theory. The fluctuating fields that yield 

!2J{v, t) are determined in a different way in quasi-linear theory. - -
By substituting Eq. (IV -9) into Eq. (IV -16) and evaluating the 

integral overT, we find 

qa 2 J 2""'1km 3 f.oo ~~ o(V- ~· ~)H(~, V) 
cf1 (v, t) = --=--- d k k dk dV-~-----=----
-a - 2TT2ma 2 - 0 ... · -oo [k2- R(~, V)] 2 + I2(~, V) 

(IV-19) 

where again we have supplied a cutoff km to remove a logarithmic 

divergence at large k. This divergence appears for the same reason 

as before. 38 Substituting this result and Eq. (IV-6) for Ed into - rag 
Eq. (IV-18), we find 

(IV-20) 

This result combined with Eq. (IV -11) is the Lenard -Balescu kinetic 

equation for species a. As we verify in Sec. IV. C, we can include the 

effect of a sufficiently weak ~0 (t) by using 

8f(v,t) q 8f(v,t) 
_ __,a=-·.,...--- + ma ~ 0 ( t). a~ ~ 

8t a v 

a = - 8v . I.u (~, t) . (IV-21) 
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This result follows directly if we suppose that ~0(t) has no effect upon 

the fluctuating fields as repres~nted by s;_ (~., T) and so simply adds to 

Ed. (q,v) inEq. (IV-18). -. rag -

4. Discussion 

A'lthough we have not provided the necessa'ry justification for 

our steps, the procedure does yield the correct result and so can be 

used in interpreting the L-B equation. 

The result Eq. (IV -20) was first derived rigorously by BalescJ9 

and Lenard, 
28 

who worked independently and used quite different methods. 

It is usually written somewhat differently, but Eq. (IV -20) is a con­

venient form for our purposes. 

Lenard showed that this result has the properties expected of a 

kinetic equation: 28 

(a) 

(b) 

The distribution functions f (v, t) remain nonnegative for all t, 
a -

The particle densities, the total momentum, and the total 

kinetic energy remain constant, 

(c) As t becomes large, the velocity distributions become 

Maxwellian with equal temperatures and drift velociti.es. 

The L-B equations are valid only in a spatially uniform classical 

Coulomb plasma that is stable according to the Penrose criterion and 

varies sufficiently slowly in time. The correlation time for electric­

field fluctuations must be short compared to the collision time, so that 

the collisional effects on the waves are not important and so that the 

behavior is Markovian and can be represented by a Fokker-Planck 

equation. 

The effects of mode coupling must also be unimportant, but we 

have no simple way of judging this. One sometimes uses the criterion 

that the energy in the fluctuating electric fields associated with waves 

must be small compared to the kinetic energy of the particles. 
42 

This 

is clearly necessary because, as Lenard showed, the total kinetic 

energy is rigorous1ly conserved by the equations. However, whether 

this condition is sufficient and what is meant by "small" are open to 

question. 
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We also have some difficulty in· testing carefully whether the 

effects of collisions on waves can be ignored. The difficulty is that 

these collisional effects on longitudinal plasma waves are a current 

topic of research and are not yet well understood. 

C. Derivations from the BBGKY Hierarchy 

Now that we have obtained the desired result, we will very 

briefly discuss another method of derivation of the L-B equation and of 

other equations. As is usually done with this method, we consider the 

special case of a classical Coulomb electron plasma in a uniform pos­

itive background. 

1. The BBGKY Hierarchy 

This set of equations is derived directly from the equations of 

motion or from the Liouville equation and so is essentially exact. 
43 

The only assumption made is that the system contains a very large 

number of particles and can be represented by an appropriate ensemble. 

The first equation of the set (the f equation) gives the distribu­

tion function f(~::O ~· t) in terms of the two-particle correlation function 

g(: 1 • ~ 1 , : 2 , ~2 , t). The second equation (the g equation) gives the two­

particle correlation function in terms of the three -particle correlation 

function h(:_- 1 , ~ 1 , :_- 2 , ~2 , :_-3' ~3 , t), and it also involves, the distribution 

function f. The third equation (the h equation) involves four-particle 

correlations, and so forth. 

Such a hierarchy of equations is useful only when it can be ter­

minated in some manner. We discussexamples of this. 

2. The Vlasov Equations 
. -1 

Rostoker and Rosenbluth have shown that if e, m, and n are e 
considered to be of order E, theri the term involving g in the f equa-

tion is of order E ln comparison with the other terms. 
17

' Thus in the 

limitcifsmall E, in which the electrons are represented as a continuous 

charged fluid, the term involving g is unimportant and can be ignored. 

None of the other equations of the hierarchy is then needed, and the f 

equation becomes simply the Vlasov equations. 



-44-

They. show that their· expansion is equivalent to using w as a 
pe 

characteristic frequency and De . as a characteristic length, and order-

ing each term. in E.::::: 1/A with .£1..::::: n D 3 . Here D is defined with 
e e e 

f) as of order of the average electron energy. This means that in the 
e 

expansion in e, m, and n -
1

, f) is also considered of order E and the 
e e · 

electron thermal speed is considered of order E 0 . 

3. Kinetic Equations 

We here consider a method of ordering the terms in powers of 
. 44 

E ::::: 1/A; this method is best summarized by Frieman and Book. The 

root-mean-square electron speed is used as a characteristic speed, 

and f, g, and h are assumed to be of the same orders as they are in 

thermal equilibrium. The plasma is assumed to be spatially uniform 

with ~O = (~) = 0, so according to the first equation of the hierarchy, 

f(::, t) changes only becau·se of the term involving g(: 1 -:2 , :: 1 .::2 , t), 

which therefore must represent the effects of fluctuating electric fields. 

Various characteristic distances including D , n -
1

/
3

, and 
e e 

b . = e 2 je and various characteristic times are considered. In all 
m1n e 

cases, the term involving h in the g equation is of higher order in 
44 

E than other terms and so is neglected. This turns out to correspond 

to the neglect of mode coupling, collisional effects on waves, and three­

body collisions in the Boltzmann sense, among other higher order 

effects. The first two equations of the hierarchy then form a complete 

set for determination of f and g. It is also shown that, when E is 

sufficiently small, the equation for g can be solved asymptotically for 

large t with f considered constant in time. This is known as the 

Bogoliubov hypothesis and yields g as a functional of f. 
44 

When this 

result is substituted into the f equation, a kinetic equation results. 

With the characteristic distance of order b . or n -
1
/

3
, and 

·· m1n e 
thus small .compared with D , a certain set of terms involving f 

e 
in the g equation are of higher order in ~ . and can be ignored. This 

corresponds to neglect of the dielectric properties of the plasma and 

yields the Boltzmann kinetic equation. 

When the characteristic distance is of order n -
1

/
3 

or D , and · e e 
. thus 'large compared to b . , another set of terms in the g equation, 

m1n 

'"' .. 
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involving g itself, can be ignored. This corresponds to ignoring 

large deflections of the particles and yields the Lenard-Balescu kinetic 

equation. 

When the characteristic distance is of order n -
1/ 3 , and thus 

e. 
both large compared with b . and small compared with D , both sets 

m1n e 
of terms can be ignored. The result 1s the Landau form of the Fokker-

Planck equations, which we thus find is an approximation to the L-B 

equations as well as to the Boltzmann equation. We make use of this 

in Sec. V. 

In de:rivi!lg the L-B equation by this method, one uses a charac­

teristic distance D and finds that the lowest order terms have char­
e 

acteristic frequencies v in the f equation and w in the g equa-. 
c · pe· 

tion. 
44 

This is used as justification for solving the g equation for 

long times with the assumption that f varies slowly. If we do notre­

quire that ~0(t) = ( ~ ) .vanish, the additional terms that appear have 

characteristic frequencies (E
0
/E ) v in both equations. Therefore, 

. run c 
as long as E

0 
is sufficiently less than AE , we can ignore the effect 

run 
of ~O in the g equation. The f equation then becomes Eq. (IV -21). 

We must be sure, however, that ~0(t) does not introduce rapid changes 

in f which upset our solution of the g equation. 

Dupree has presented a direct but tedious method of actually 

1 . h . d b . . h L . 45 •46 Th h d so v1ng t e g equation an o ta1n1ng t e -B equation. e met o 

is presented more clearly by Rutherford and Frieman. 
47 

This derivation from the BBGKY hierarchy makes clear that the 

Lenard-Balescu kine_tic equation correctly describes a stable spatially 

uniform classical Coulomb plasma if A is sufficiently large. However, 

in practical plasmas that are not near thermal equilibrium, it is diffi­

cult to determine how large A must be for mode coupling and colli...: 
~ 

sional effects upon the waves to be unimportant. 
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V. APPLICATIONS OF THE LENARD-BALESCU EQUATION 

The L-B equation is useful in two types of problems: (a) When 

the effects of wave-particle interactions are unimportant, the natural 

appearance of dielectric shielding eliminates the hecessity for supply­

ing a cutoff at large distances (small k), so the L-B equation can be 

used to test the' validity of, and possibly improve the accuracy of, re­

sults obtained from the Landau equation. (b) The L-B equation can 

also be useful·when the effects of w·ave -particle interactions are lm­

portant and the Landau equation is inadequate. 

A. Relative Importance o'f Wave-Particle lntera.ctions; 

the Landau Equation 

(V -1) 

a:rpears inEqs. (IV-6), (IV-19),and (IV-20) for ~drag(q,~'),.tz::(~,t), 

and J (v, t), respectively. 
. .,.-(], - . . 

This expression may be evaluated approximately, as follows. 

If we ignore R(~, V). and I(~, V) in comparison with k
2

, the integral 

diverges logarithmically at small k, but since for a plasma near thermal 

equilibrium I R(~, V) I and I I(~, V) I are of order or less than De -
2

, 

this approximation is not justified for k of order or smaller than 

D - 1 . If we supply a second cutoff at k::::: D -
1 

and we choose 
e e 

k = [b . ] - 1 , we find 
m m1n 

K(~, V) ::::: ln (:e .. ) = ln A . 
\ m1n 

(V -2) 

When the approximate result is used in Eqs. (IV -20) and (IV -21), the 

result is one form of the Landau equation, as we should expect from 

the discussion in Sec. IV. C. 

We see that when R(~, V) 1s positive and I(~, V) is small, corre­

sponding to the possibility of a slightly damped wave, the integrand of 

Eq. (V -1) contains a resonance that could also contribute substantially 

to K(~, V). Rather than evaluating the contribution of this resonance 

,. .. 



.... 

. ,.., 

approximately, we may consider the exact evaluation of Eq. (V -1). 

Because we choose km 
2 

very large compared to I R(~, V) I and I I(~, V) I, 
actually larger by a factor of order A 2, we find to a very good approxi-

::~.
0

:) ~ {ln Jk (R 2ti2)- 1/ 4J _.!_} + [·~(TT + tan- 1 _B:_) + .!_]. (V-3) 
- Lm 2 2III2 III 2 

The second term here depends only upon x = R(~, V)/ I I(~, V) I and be.haves 

as shown in Fig. 3; it is independent of the cutoff k . The first term 
m· 

is ordinarily about equal to ln A by the argument given above when we 

choose k ~ [b . J- 1
. We thus may approximate Eq. (V-3) by m m1n 

A 

[ 
TTR(~, V) 

K(k, V) = ln A+ ·21I{:~; V) 1 

0 

when R(~, V) > 0 

(V -4) 

when R(~, V) ~ 0 

where the error is ordinarily of order unity, which is the uncertainty 

introduced by the cutoff procedure itself. The error is larger only 

when R(~, V) and I(f, V) are both very small compared to D -
2 

Since 
e "' 

this relationship is not expected to occur over wide ranges of ~· and 

V where a significant number of particles can satisfy the resonance 
A 

condition V = k · v, the overall error in the use of Eq. (V -4) will ordi-

narily be within the uncertainty introduced by the cutoff k 
m 

The second term in Eq. (V -4) is exactly what one would obtain 

from an approximate evaluation of the integral over the resonance in 

Eq. (V -1), and so is interpreted as the contribution of wave -particle 

interactions. The first term is clearly to be interpreted as the con­

tribution of ''ordinary" collisions. ·we see that wave-particle inter-

. actions will be important if, and only if, we have R(~, V) >> II(~, V) I 
over reasonably large and important regions of ~ and V. The Landau 

equation will be inadequate when a large fraction of the particles under 

consideration can move in phase with slightly damped longitudinal . 
plasma waves. 

One problem that was considered long before the appearance of 

the L-B equation, and yet illustrates the above argument, is the drag 
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Fig. 3. Behavior of the secon~ term in Eq. (V -3) as a 
function of x = R(g_, V)/ I I(k, V) I. 
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on a test particle. Using Eq. (V -4) for E..] in Eq. (IV -6), we see that 
. -urag 

the collisional contribution depends upon I(~, V), whereas the contribu-

. tion of" wave -particle interactions (in this case, spontaneous emission) 

depends upon R(~, V) but is independent of I(~, V). That is, the result 

involves tre dispersion relation of the waves but not their damping. In 

an electron-proton plasma near thermal equilibrium, the contribution 

of wave -particle interactions is relatively. small unless I": 1 I exceeds 

the electron thermal speed, because only then will R(~, V) much exceed 

I I(~, V) I for B and V satisfying V = ~ · ":'. When I":' I greatly exceeds 

the electron thermal speed, the contribution of wave -particle inter-

actions to Ed is comparable to the collisional contribution. 
48 

-: rag 

B: .Results When Wave ,..Particle·'Interactioris Are.Not. Hnnortant 

In an electron-proton plasma near thermal equilibrium, only a 

relatively few fast electrons can interact with slightly damped waves 

so the Landau equation should be adequate for most problems. This has 

been verified by solving the L-B equation in a few cases. The relaxa­

tion of an isotropic plasma toward thermal equilibrium was studied by 

Rosenberg and Wu. 49 The thermal conductivity was calculated by 

Sundaresan and Wu. 
50 

The relaxation of the velocity distribution m an 

isotropic electron plasma, not necessarily near equilibrium, to the 

equilibrium Maxwellian distribution was followed numerically by 

Dolinsky. 
51 

In these examples (Refs. 49-51), the deviations from the 

results found from the Landau equation were well within the uncertainty 

of order [ln A] -i, and sometimes fortuitously were within a few percent. 

Similar verification of the results from the Landau equation appears in 

the results of Kihara and his collaborators as(discussed below. 

Various methods have provided kinetic equations that converge 

without the insertion of cutoffs and so do not involve an uncertainty of 

d [ln /\] -1. 44, 52-55 Th l d. ·1 · 1 b" t. or er .a e resu ts or 1nar1 y 1nvo ve com 1na 1ons 

of the Boltzmann equation for close encounters and the L-B equation 

for distant encounters,. For example, Frieman and Book
44 

show that 

adding the Boltzmann and L-B equations and subtracting the Landau 

form of the Fokker-Planck equation yields a convergent result; the 
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divergences of the Landau equation cancel the divergence of the Boltzmann 

equation at large impact parameters and the divergence of the L-B 

equation at large k, as was suggested by our discussion in Sec. IV. C. 

The convergent kinetic equation derived by Kihara and his. col­

laborators involves a proper matching of the Boltzmann and L-B equa-

t . . th . h b h l"d 54• 56 • 57 Th. h 1ons 1n e reg1on w ere ot are va 1 . 1s equation as 

been used to ·reduce the uncertainty of results obtained from the Landau 

equation. In the simpler problems that can be evaluated analytically, 

the results are just those found by using the Landau equation with ln A 

replaced by the logarithm of another quantity that is precisely deter­

mined. 
58 

This quantity depends upon the problem's being done, but it 

is of the same order of magnitude as A and the results can usually be 

given a physical interpretation in terms of results obtained from the 

Boltzmann equation by using an appropriately shielded Coulomb poten­

tial. For the more difficult problems that must be done numerically-­

such as calculations of the electrical conductivity, the thermal con­

ductivity, and the viscosity--the results again are found to be well with­

in the uncertainty of order [ln A] - 1 in the results from the Landau 
59 equation. 

C. Results When Wave-Particle Interactions Are Important 

A relatively few problems have been considered in which wave­

particle interactions are important and the Landau equation is J:he'refore 

inadequate. One such problem is the drag on a test particle, as men­

tioned before. Rand has recently considered a test particle with speed 
60 

slow compared to the electron thermal speed. He finds that the con-

tribution of wave -particle interactions (the spontaneous emission of ion 

waves in this case) is important only if e >>e., and the speed of the 
e 1 

test particle is fast compared to the thermal speed of the ion, as we 

would expect. 

As recently shown by Akhiezer and Bolotin, the contribution of 

wave-particle interactions to the drag on a fast ion can also become 

large as the plasma approaches conditions where ion waves would be-
. 61 

come unstable. 

• 

. . 
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The var1ous ·relaxation rates at which an electron-proton plasma 

approaches thermal equilibrium have been reconsidered by Ramazashvili, 

- t. · 62 w · ·h e > e h equa 1on. 1t -; . , t ey 
e 1 

Rukhadze, and Silin by-using the L-B 

find that the modifications are small uriles s e je. ~ 100. Even then 
e 1 

the only rate that is significantly affected by the wave-particle inter-

actions is 

isotropic; 

the rate at which the electron velocity distribution becomes 

this rate is increased by perhaps 30 per cent for e ;e. = 100 
. . e 1 

and by even more as this temperature ratio is increased further. 

Gorbunov and Silin have calculated the electrical and thermal 

conductivities and the electron viscosity under similar conditions. 
63 

The wave-particle interactions tend to decrease these quantities below 

the results from the Landau equation by amounts that increase as 

e I e. increases. e 1 

percent, and for 

actually dominate. 

For e je. ::::: 100, the corrections amount to tens of 
e 1 

e ;e. > 1000, the effects of wave-particle interactions 
e 1 

Silin has also calculated the linear thermal conductivity by the 

electrons across a magnetic field. 
64 

With e >>e., the effect of the 
e 1 

fluctua'tions associated with ion waves is to increase considerably this 

heat transport. Of course there are restrictions on the applicability of 

the Lenard-Balescu kinetic equations in a magnetized plasma. 

D. General Conclusions 

Beyond verifying and improving the results found from the Landau 

equation, the L-B equation has been used only for a few rather artificial 

problems. The form of Eq. (V -4) suggests that the effects of wave­

particle interactions should add to the effects of "ordinary" collisions, 

and this is verified in the results obtained. 

In an electron-proton plasma near thermal equilibrium the elec-

tron waves have little effect. However, if e I e. is large, the fluctua­
e 1 

tions associated with ion waves can interact with nearly all electrons. 

The primary effect of these wave-particle interactions is to drive the 

electron veloCity distribution toward isotropy; this by itself could ac­

count for the modifications of the transport coefficients found by Gorbunov 

and Silin. 
63 

Notice also that because an isotropic plasma is stable;: 
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these wave-particle interactions appear to ,have a stabilizing tendency, 

although this has not been directly investigated. 

In all of the problems mentioned in Sees. IV. B and IV. C (except 

thatof Dolinsky
51

), the dielectric function was evaluated from known 

zero-order or unperturbed distribution functions. Only Dolinsky followed 

the evolution of the distribution function and continually re-evaluated the 

dielectric function. He was able to do this because his problem was 

greatly simplified by the assumption of an isotropic plapma. 
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VI. APPLICATION TO A CURRENT-CARRYING PLASMA 

We consider only an electron-proton plasma. The electrons are 

described by a velocity distribution f('::, t) and the ions by F('::, t). 

These are normalized as 

Jf(>:, t)d
3

v j F(>:, t)d
3

v = 1 , (VJ-·1) 

The number densities of each species is n, and the masses are m and 

M. The plasma frequencies are 

2 
w = pe 

2 
4rrne 

m 
and 

2 
w . = pl 

2 
4rrne 

M 
(VI- 2) 

The Lenard-Balescu kinetic equations (L-B equations) can be 

written in terms of the three functions 

A 

R(~, V) k · _a_ [w 2
f(v, t) + w 0 

2 F(v, t)] a v pe - pl -
(VI-3) 

A 

I(~, V) = rrfd
3

v o(V- k · v)k · ~ [w 2
f(v, t) + w 0 

2
F(v, t)] - - - u':: pe - p1 -

(VI -4) 

H(~, V) = nf d 3
v O(V- ~ · >:) [m"'pe 

2
£(>:, t) + Mwpi 

2
F(>:, t)]. (VJ-5) 

The first two include the dielectric 'properties of the plasma and there­

fore determine the properties of longitudinal plasma waves. In partic­

ular, if we consider a weakly damped wave traveling in the k direction 

with real wave number k, the real part V of its phase velocity is given 

by k
2 = R(~, V) and the damping rate is proportional to I(~, V). (See 

Sec. III for further details.) The combination 

A ikm 
K(k,V) = ~~------=-~~---

- . 0 [k
2

- R(~, V)] 
2 + I 2 (~, V) 

(VI- 6) 

appears in the L-:B equation. The cutoff km is .necessary to remove 

a logarithmic divergence. Although the L-B equation includes the 

effects of "ordinary" collisions and wave-particle interactions, it is 
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a Fokker-Planck equation and cannot treat larg,e-angle scattering; this 

accounts for the divergence. The cutoff k is to be chosen of order 
2 . m 

e .je where e is a characteristic electron energy. (See Sees. IV 
e e 

and V for details.) The L-B equation is valid only for a plasma that is 

stable according to the linearized Vlasov equations; this insures that 
A A ~ 

I(~, V) never vanishes unless R(~, V) is negative, so the denominator of 

Eq. (VI-6) never vanishes. 
~ 

The function H(~, V) is proportional to the number of particles 

moving in phase (with V = ~ · ~) or in resonance with a wave. It deter­

mines the rate at which waves are spontaneously emitted by the particles. 

(See Sec. IV for further details.) 
~ ~ 

With the S¥rnmetry conditions R(-~, -V) = R(~, V), I(-~, -V) = 
~ 

-I(~, V), and H( -~, - V) = H(~, V), the L-B equation for the electrons is 

with 

0 f(~, t) 

at 

[ 

H(~, V) 
X I(f, V)f(~, t) -

m 

af(~,t) 

OV 

0 
--· J (v,t) a v -e -

af(~,t)] 

aY: 

(VI- 7) 

(VI -8) 

The ion equation is obtained by replacing f(~, t), m, and e with F(~, t), 

M, and -e, respectively. These equations are derived for a spatially 

uniform classical Coulomb plasma, and ordinarily with ~0 (t) = 0, but 

if E
0

(t) is not too large or rapidly varying it can be included. (See 

Sec. IV for details. ) 

We first discuss the general problem, but we soon see that it is 

impractical, even.for numerical solution. We then discuss various 

model problems and select two for i:mmerical study. The equations for 

these models are developed and simplified. 
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A. The General Problem 

We consider only the case with. ~O constant in time, so we 

naturally restrict our attention to solutions that are symmetric about 

the direction of !_:
0

. We d~scribe ~ in spherical polar coordinates 

with -~~I = v an~ ~ · !b = vE 0cosa with 0 ~a ~ rr. Then ~e(~, t) 

~a:::v~no5:o:p::::t ,:e::::i:~:l::1;o,::th a~ 
scalars !_: 0 · ~e(~, t) and~·~(~, t). We show "~ > !_: 0 
in Appendix F that Eq. (VI-7) then becomes 

_a_f_(--:v~, ,-a_,_t_) = e E 0 ~c 
0 

sa ~ _ s ina 

at fTI L av v 

1 

v sina 

_a jcosa ~· 
aa L v 

~ ] - ~ _a [v~. ~J 
a a v av 

~-~·£,]. 
A A 

(VI-9) 

We similarly describe k in spherical polar coordinates with k · E =cos·e - -0 ... 
and 0 ~ e ~ rr. Then R(k, V) = R(8, V), 

... -
I(~, V) = I(e, V), H(l_s, V) = H(e, V), and 

... 
K(l_:, V) = K(e, V). With these results 

... 
We can obtain explicit expressions for v · ~ and !_: 0 · ~ in terms of 

scalar variables only. 

We may use ~·J o(V-~· ~) = Vo(V-~· ~)and _!© 0 · ~=case in 

evaluating ~ · ~e and !_: 0 · ~e' respectively, from Eq. (VI-8). We also 

show in Appendix F that 

... ~ a f ... a (V- k · v)K · - = o(V- k · 
- -- av -

and that 

v) [y_ 
- v 

af 
av 

fz~ O(V -~· TI {TI 
,)= zL sine de 

0

. d~ 

.!_ (V cosa -
v v 

o(V -v cosa case -v sina sine coscj>). 

(VI -11) 

By using these results in Eq. (VI-8), we find, for example, that 
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r·oo 

J 
0 

dV VK(e, V) 

('IT 
X [jO d<j> O(V- v case casn- v sinn sine cas<j>)] 

· x {~(e, V)f(v, a.) - H(e, V) [v ~ 
m v8v 

1 (Y. coso. - cose) 8 rf J }· V V . COSU)i 
.i 

(VI-12) 
A 

To obtain ~O · ~e' we need only to multiply this integrand by (cose)/V. 

To complete the elimination of all vector quantities, we must 

consider H(e, V}, I(e, V}, and R(B, V). We first separate the contribu­

tions of the electrons and the ions as, for example, H(e, V) = 
H (e, V) + H.(e, V). We show in Appendix F that 

e 1 

He(e, V) = 2rrmwpe 
21·oo v 2

dv r rr s.inu do. f(v, a.) 

o Jo 

x[JoTI d<j> O(V-v casB caSn -v sine sinn cas<j>)l 

I ({1, V) 

roo ,-- rr ( rr 

= 2rrwpe 
2J v dv I sino. do. [j d<j> o(v - v cos e cos a 

e 
o Jo o 

- v sine sino. cos<j>)l [v ~fv + (cose -~coso.) &(c~~u) ] 

r-oo 

R (e, V) = 
e 

2w 
2

/' v dv 
pe [ sinn dn 

coso. 8£ ~ 
8(cosu)) 

---v 
Jo 

+ [ V ~fv - ( ~ .. casn - case) a (~~sn)] 
r'IT 
i } 

X p JO v case casn +~<I> sine sinn cas<j> -V · 

(VI-13) 

(VI-14) 

(VI -15) 
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The integrals over <j> are also evaluated in Appendix F. With 

a = v case cosa - V and· b = v sina sine, the results are. 

0 if b 2 < a 2 

{ (VI -16) 

and 

'IT ~ -:: r/2 if b
2 < 2 

f 
a 

p d<j> a 
::: (VI-17) 

a+ b cos<j> 
0 . 

ifb
2

>a
2 

0 

One can easily verify that b 2 exceeds a 2 if, and only if, Vis less 

than v and cos a satisfies r < co sa < r + Here 

v . p;2 
r ::: -case ± Slne 1 - -2-± v . . 

v 
(VI-18) 

are the roots of b
2 

::: a 
2 

as a function of co sa and, with V < v; are real 

with I r± I < 1. For convenie~ce in Eq. (V-12), this condition can be 

:restated with a and e interchanged. 

The symmetry of the problem has enabled us to explicitly carry 

out all vector manipulations and to obtain equations that involve only 

scalar variables. In doing this we used all of the available 6 functions, 

and no further general simplifications are possible. The expressions 

we have given apply to the electrons, but the corresponding ion equa­

tions can be obtained by simply replacing f(~, t), m, e, and the sub­

script e by F(~, t), M, -e, and the subscript i, respectively. 

1. Reasons for Not Attacking the General Problem 

The above equations are even more nonlinear and complicated 

than the corresponding Landau form of the Fokker-Planck equation. In 

the Landau equation, K(e, V) is simply replaced by a constant, ln A. 

(See Sees. II and V for details. ) The problem could only be attacked 

as an initial-value problem and by numerical methods. One would 

specify the distribution functions at time t 0 and then calculate them 

at a short time interval later, using 
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f(v, a., to + b..t) = f(v, a., to) + b..t [ of(~,ta., t) l 
. t=t 

0 

(VI-19) 

and similarly for the ions; this would be repeated for as many time 

steps as desired. 

The basic calculation would thus be the evaluation of of(v, a., t)/ot 

and a F(v, a., t)/ot from known values of f(v, a.) and F(v, a.) by use of the 

equations we have given. Since K(e, V) can be evaluated analytically 

.from R(e, V) and I(e, V), as discussed in Sec. V. A, this basic calcula­

tion involves two major steps. The first is the calculation of R(e, V), 

H(e, V), and I(e, V) from f(v, a.) aJ:ld F(v, a) by the evaluation of double 

integrals over v and a. for each set of V and e. The second is the 

evaluation of of(v, a., t)/ot and 8F(v, a., t)/ot. by calculating double 

integrals over V and e. We represent this schematically as 

f(v, a.)_. I(e, V) _. -af(v, a., t)/ot (VI-20) 

where the arrows represent integrals over the variables to their left 

.evaluated. at each value of the variables to their right, and, of course, 

f(v, a.) and I( e, V) are only representative so .each arrow actual,ly involves 

several such integrals. 

It is not. feasible to carry out the proc~ss represented by (VI-20) 

even once, let alone for the hundreds or thousands of time steps that 

would presumably be needed. Even if this were possible, the re.sults 

would depend upon the initial conditions, ~O' and the time and so would 

·be difficult to understand in any systematic manner. Our purpose is to 

demonstrate the nonlinear stabilizing effect of the wave-particle inter­

actions associated with ion waves, ancj. it might be difficult to separate 

this from other effects associated with the relaxation 'towards thermal 

equilibrium, Ohmic heating, or electron runaway. 

We thus find it both necessary and desirable to consider only 

simplified model problems in order to demonstrate clearly the non­

linear stabilization. '-.. 
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2. Expansion in Legendre Polynomials 

In preparation for discussing model problems, we may expand 

the distribution functions in Legendre polynomials of cosa as 
00 

f(v, a, t) = L f.£ (v, t)P .£ (cos a) 
i=O 

(VI-21) 

and the functions H(8, V), I(e, V), and R(8, V) in Legendre polynomials 

of cose as 
00 

H (V)P (cos8) . 
ep p 

(VI-22) 

To obtain equations for the f.£ (v, t), one may multiply Eq. (VI-9) 

by(.£+ 1/2)P
1 

(cosa) sina and then integrate over a; because of the ortho­

gonality and normalization of the Legendre polynomials, this yields an 

expression for cH1 (v, t)/ot. This procedure is still completely general, 

but the set of equations obtained is not useful unless the expansions can 

be terminated .after a f:l.nite, and preferably small, number of terms. 

In Appendix G we prove the rather surprising result that the only 

term of Eq. (VI-21) that contributes to H (V), I (V), orR (V) is the 
_ ep ep ep 

one wlth .£ = p. We Hst below the results for.£ = 0 and.£= 1 for future 

reference. 
(·- 00 

2 2 1 

2rr mwpe j vf0(v)dv 

-V 

(VF23a). 

2 2 
= -2rr w Vf

0
(V) 

pe 
(VI-23b) 

----00 ,, 
lv - vI l 2! Of

0
(v) 

I 
v 

R 
0

(V) -- 2rrw v dv 12 1-- ln ! 
e pe av v V+v i r· 

•J -' 

(VI-23c) 

C>') 

? 2 i 

2rr~mw V / . .£
1 

(v)dv 
pe ' 

)y 

(VI-24a) 
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= 2TI 2w 2 /"j,..-
00 

f
1
(v)dv- Vf

1
(V) l 

pe I 1 

LV J 

r-oo 
2 I 

= 21Twpe .J v dv 
. - 0 

H£1 ( v) r v v2. 
j2 + ln 
I V 2 v 3v 

1 

!v- v ll 
v + v J 

lv- vi]! 
v + v ] . 

(VI-24b) 

(VI-24c) 

Notice that H 0 , I 0 .. H 1 , and I 1 are very simple to evaluate numeri-e e · e e · 
cally since only two simple integrals ·are involved. 

·The exp~essions for Re.£(V) do not involve principaLvalue inte­

grals, and although the integr-ands are singular at v = V, the.si.ngularity 

is very weak and so is usually integrable. This singularity could cause 

difficulty in numerical evaluation of these integrals, however. These 

expressions are also of value in deriving approximate analytic expres­

sions.. For example 

-41Tw 
pe 

(VI-25) 

and by considering V larger than v and expanding the logarithm in 

powers of v/V, we find the asymptotic expansion 

2 
w = p,e 

7 
(VI-26) 

(VI-27) 

which is useful for large V. These results are in agreement with the 

expressions in Sec. Ill. C. Notice that Eq.· (VI-26) gives a positive 

result although Eq. (VI-25) gives a negative result; thus there must be 

a region at small V where neither expression is useful. (For the Max­

welliamcase, see Sec. III. C.) 
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B. Various Models Considered 

We must make many simplifying assumptions in order to obtain 

equations that can be solved numerically. Because the general equations 

are so highly nonlinear, we cannot check these assumptions by any 

direct expansion and ordering procedure. We are guided by the results 

discussed in the previous sections and by physical intuition, but certain 

assumptions are made out of sheer necessity. 

1. Basic Simplifications 

Here we discuss certain restrictions and approximations that 

are convenient and seem quite reasonable and so are used in all models 

we consider. 

We suppose the velocity distributions are "basically" Maxwellian 

with the electron temperature e much larger than the ion temperature 
e 

e.. This statement is not precise, but if these "basic" distributions are 
1 2 2 2·2 

assumed proportional to exp(-v /a ) and exp(.,-v /A ) for the electrons 

and the ions respectively, we have well-defined thermal speeds and 

temperatures related by 

1/2 
a = a = (2e /m) e e 

We may then define the electron Debye length 

De = J e e/ 4 :rm.e 
2 

, 

the plasma parameter 

A = 41TnD 
3 

. e ' 

a collision frequency 

v = ..!_ lz wpe lnA, 
c 3 .J-; A 

and the runaway field 
' . 

mv a 
E = 0. 5064 __ c_ 

run e 

(VI-28) 

(VI-29) 

(VI-30) 

(VI-31) 

(VI-32) 

as in Sec. II. B. These parameters prove useful in classifying the 

solutions obtained. As we discussed in Sec. III, with e >>e. the 
e 1 

critical field E .t at which ion waves would become unstable in the 
cr1 
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absence of the nonlinear stabilization we seek is small compared to 

Erun Since we consider E 0 of order or srna.ller than Ecrit' we can 

expect that if our present assumption is satisfied initially it will con-. ' 

tinue to be satisfied, although. on a relatively long time scale the tem­

peratures would change,_ as discussed in Appendix D. 

We next use the approximation 

( nR(B,V) 
ifR(B,V)>O I 

2ji(e,v)l 

t 
K(B, V) = ln A+ (VI-33) 

0 ifR(.B,V) ~ 0 

as discussed in Sec. V. A. The error is ordinarily within the uncertainty 

introduced by the cutoff k but can be larger if both R( e, V) and . . m 
!I(B, V) I are extremely small. As we discussed in Sec. III. D, this 

tends to occur as E 0 approaches Ecrit if. e e <. 20Bi. The first term 

is interpreted as the contribution of "ordinary" collisions and the sec-
.· . . 

ond as the effect of wave -particle interactions. 

The function R(B, V) is calculated with only the "basic" Max­

wellian velocity distributions. This is justified because R(B, V) is not 

sensitive to details of the distribution functions but instead depends 

upon quantities like certain moments of the distribution functions, as 

indicated by Eqs. (VI-25) and (VI-26). This removes the necessity for 

evaluating the rather complicated integrals that would yield R(B, V). 

With this assumption, R(V) is positive for V >a and for a.<v<..J m/Mae, 
e 1 

which are the electron and ion wave regions, respectively, as discussed 

in Sec. III. 

We ignore the effect of electronplasma waves by neglecting the 

second term of Eq. (VI-33) except in the ion wave region. This neglect 

corresponds to using 

R(V)= _;_~e X(~) -1~. 
· n2 2e. · A 

e 1 

(VI-34) 

~ - . - . -

in·Eq. (VI-33). Here the functior1 J:C(x) is defined by Eq. (III-33) and 

discussed in Sec. III. C. As is illustrated by the examples in Sec. V, 



-63-

the electron waves ordinarily have little effect because they interact 

only with the fast electrons. As we discussed in Sec. III. E;, the pres­

ence of runaway electrons implies unstable electron waves with high 

phase speeds, but with E
0 

< < E these waves will affect only the rel-
run 

atively few very fast electrons. We would be unable to use the L-B 

equation for this problem because the plasma is actually unstable to 

these waves. The collisional effects upon these very slowly growing or 

weakly damped waves are probably important also. 

Unfortunately, the assumptions we have discussed do not greatly 

simplify our problem. They are necessary, however, to make possible 

certain other simplifications. 

2. Specific Models 

Most of the assumptions we consider here cannot be justified in 

detail but are simply necessary to cut our problem to a manageable 

size. The resulting problems can be considered only as models. 

We first assume that the ion velocity distribution is Maxwellian. 

This cuts the size of the problem considerably, and in certain models 

permits us to make use· of the slowness of the ion waves compared to 

the electrons; no comparable assumption can be made in treating the 

ions. We may make rather convincing arguments that the "ordinary" 

collisions and the field E
0 

do not make the ion distribution deviate 

greatly from being Maxwellian; the reason is that the collisional drag 

and the diffusion in velocity space caused by collisions with the electrons 

are very nearly independent of the ion velocity. The collisional drag is 

almost exactly balanced by the force of the field ~O' and the diffusion 

tends merely to change e.. The ion-ion collisions, of course, tend to 
1 

maintain the Maxwellian distribution. However, this argument is not 

enough to justify our assumption because in calculating the damping or 

growth of ion waves details of the "tail" of the ion distribution are im­

portant, and this is just the region most strongly affected by wave­

particle interactions. With this assumption, we naturally work in the 

ion frame. 

In treating the case E
0 

>> E , Field and Fried made as sump"' 
run 

tions comparable to those we have considered, plus two additional 

ones. 
34 

The first is based upon the slowness of the ion-wave speeds 
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and reduces the problem schematically to 

f(v, ~) _,. 1(8) _,. of~~' a) (VI-35) 

The second has little justification but was considered necessary; they fac­

tored. f(v, a) as f
1 

(v 
1 

)fjj(vH) where v 
1 

= v sina, v
11 

= v co sa, and 

f 
1 

(v 
1

) is ¥axwellian. The problem is then represented as 

(VI- 36) 

and was solved numerically in some detail. 

If f(v, a, t) is represented by a small number of terms of a 

Legendre polynomial expansion, the problem is represented by 

1(8, V) _,. 
of P. (v) 

at (VI-37) 

where now each arrow represents several integrals. Because the e 
dependence of I(B, V) is known, the integral over 8 can be evaluated 

. analyticc:tlly if the number of terms in the expansion is small enough, 

and we then have 

(VI-38) 

An ext~emely crude model that we consider numerically involves 

only P. =0 and 1 =1 and will be called Model A. We assume f
0

(v) is 

Maxwellian with known temperature 8 , so this model strongly resem-
. e 

bles that in the Spitzer-Harm problem, except that we use the L-B 

equation and we do not linearize in E
0 

and f 1 (v, t). Schematically, we 

have 

(VI-39) 

so the complexity of our Model A is roughly the same as that of the 

problems solved by Dolinsky
51 

and by Field and Fried. 
34 

The second model we consider numerically is based upon 

f(v, a, t) = f
0

(v) + f
1 

(v) co sa + Of(v, a, t) (VI-40) 

where f
0

(v) and f
1 

(v) are known from the linearized version of Model 

A, and. of(v, a, t) is expected to be small. Without further assumptions 

·•· 
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we still have the fairly general problem 

of(v, a) ~ oi(8, V) I(e, V) ~ 
8 of(v, a, t) 

8t 
(VI-41) 

Because of(v, a) is considered small, we neglect oH(e, V) and oi(e, V) 

wherever possible, which means everywhere except in the denominator 

of Eq. (VI-33) for K(8, V), where oi(8, V) is important because the other 

contributions to I( e, V) tend to cancel. This approximation amounts to 

a somewhat unsystematic linearization in of. In the contribution of ion 

waves, we make approximations based upon the slowness of the ion 

waves; then oi(8, V) is evaluated at V=O, for example, so we have 

of(v, a) __. oi(8) I( 8, V) -+ 
8of(v, a) 

8t 
(VI -42) 

We call this problem our Model B. Forma'lly, it is much more com­

plicated than our Model A and the problems done by Dolinsky and by 

Field and Fried. Numerical solution is possible only because detailed 

·knowledge of of(v, a) and oi(8) are not needed; this is a consequence of 

the simplifications based upon the slowness of the ion waves in com­

parison with the electrons. 

C. Reduction to Equations for the Model Problems 

We can develop the equations for Models A and B together by 

using 
f(v, a, t) = f

0
(v) + f

1 
(v, t) cosa + of(v, a, t) . (VI-43) 

In Model A, of vanishes; whereas in Model B, f
1 

(v) is known and is 

independent of time. In both models f
0

(v) and the ion velocity distri­

bution are Maxwellian. 

1. Introduction of Dimensionless Variables 

The remaining development is quite formal and we can introduce 

the dimensionless variables 

v 
x =a' 

v 
u =a, 

and the parameters 

y = cosa, 

8 

T = V t c 

o=./m<<1 r-J "M , 
e 

'I = e.>> 1' 
1 

A o 
E- a =:tlZ << 1, 

'I 

(VI-44) 

E = E 0/E . run 

(VI-45) 
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For the electron velocity distribution we define 

with 

3 ·. -3/2 -x2 
a f(v, a, t) = h(x, y) - rr e + yf(x) + 'g(x, y) 

f(x) = a 3 f
1
(v, t) 

3 
and g(x, y) = a of(v, a, t) 

We introduce the dimensionless function 

R(u) = 
TID 

2 
e 

2 lnA 

if R(V) > 0 

if R(V) ~ 0 

(VI-46) 

(VI-'47) 

where R(V) is, according to our assumptions, given by Eq. (VI -34). 

We therefore have explicitly 

(VI-48) 

when u . < u < u and R(u) = 0 otherwise. 
m1n max' 

Here u . and u 
m1n max 

are the values of u for which the quantity in brackets vanishes. 

Similarly we define 
D 2 

H(El, u) = - .. -e- H(El, V) (VI-49) 
rna 

where, by ou.r assumptions, the contribution of Of is to be ignored. 

From Eqs. (VI-23a) and (VI-24a), we find explicitly that 

H(u, 8) = H 0(u) + H 1 (u) cos 8 (VI-50) 

·with 

(VI- 51) 

2 . .loo 
rr u u f(x)dx (VI-52) 

Because I(El, V) is negative in the ion-wave region, we define 

I(El, u) = -D 
2

I(8, V), 
e 

(VI-53) 

which is positive for u . < u < u (when the plasma is stable to ion 
m1n max 

waves). By our assumptions, the contribution of of is not to be in-. 

eluded except when II(El, V) I appears in a denominator and then is to 
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be evaluated with u = 0, so we find 

I(B, u) = I 0(u)+ I 1{u) cos()+ I (8) 
·.· g 

where from Eqs. (VI~23b) and (VI-24b) 

and, as is shown in Appendix H, 

I (B) 
g 

. r rr/2 

= - rr cosej
0 

dcp [p(sin8 coscp) + p(-sin8 coscp)] 

with ..--oo 

p(y) = : YJ g(x, y)dx . 

. 0 

(VI-54) 

(VI-55) 

(VI-56) 

(VI-57) 

The ions appear in our equations only through the terms involv­

ing E and 'I in Eqs. (VI-48),. (VI-51), and (VI-55). 

In terms of these dimensionless variables and functions, Eq. 

(VI-9) can be written as 

8 h(x, y) 
a'T = 0. 5064E [y ~~ + 1 - y2 ahl 1 a I. ( a v. J )~l x FYj-7 ax lx ~ -eJ 

+ ..!. _a [z (~ v . J ) -( a 

2 
:E . J )jl 

X ay X V C - -e V C -0 -e 
(VI- 58) 

Similarly, by using Eqs. (VI-16)and (VI-33), we find that Eq. (VI-12) 

yields 

l
x 

-3 
3/ 2 du u 

Tr 0 

(r+ d(cosB) 1 + R(u)/I(B, u) 

Jr x0(r+-cos8)(cos8 -r 

X { I(e,u)h(x,y) + H(e,u) ~ ~~+ H(e,u) ~(case- ui) 
88~}· 

(VI-59) 
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To find [(a 
2 /v ) E · J ] we must simply multiply the integrand by 

c -0 -e 
(costl)/u. 

We have already made considerable use of the assumptions dis- -• 

cussed in Sec. VI. B. Further use of these assumptions will apply 

specifically for either Model A or Model B. 

2. Contributions of "Ordinary" Collisions 

Our purpose in this section is to write the terms in 

1 8 
- -2-

x 8x 

that do not involve R(u) in the form 

8 
2

h 8
2

h 8
2

h 8h 
A(x, y) --

2 
+ B(x, y) + C(x, y) --2 + D(x, y) -

8x 8x8y 8y 8x 

+ E(x, y) ~h + F(x, y)h(x, y) uy . 

We define the integrals 

Q u 1 cos e , lr+ n 
cJ. y - ::: - d(costl) nl ·x) rr r_ .J(r+-cose)(cose-r_l 

2 
- J:. ~(~ .E . J ) -0 -e 

X 8 y V 
c 

(VI-60) 

(VI-61) 

(VI-62) 

which· can easily be evaluated with the substitution of variables used in 

Appendix I. The results are 

80 32 
2 2 1 (1-y2)(1- )

2
) ::: 1, ::: 

u y +-2 
X 2 

ce1 
a_ 3 3 

+ 3uy 
( 1 y2)(1- :~l ::: 

uy 
::: 

u y (VI-63) 
3 3 X X 2x 

....... 
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In terms of these, the collisional contributions are 

( 
a ) -v·J :: 
v - -e coll 

c 

E>h [H Q + H .;_} l 
. 0 0 1 1 8x J 

1 8h [ c9 a ] uy 8h [ fj n ] } +-- HO 1 + H1 2 - 2- HO 0 + H1CY1 ' 
. X 8y X ()y 

(VI-64) 

and 

+ ~ :~ [ H082 + H/;)3] -2 aa: [H081 + H1,\lzl} (VI-65) 

where we have used Eqs. (VI-50) and (VI-54), ignoring I (8) by assump-
. g . 

tion as discussed before. 

The procedure is now to substitute these expressions into 

Eq. (VI-60), carry out the differentiations, and collect terms., which is 

quite straightforward but tedious. We simply give the results, which 

are expressed in terms of the five rather simple functions: 

q; (x) 1 :: X 

-u2 >JTI 
e du :: -

2
- erf x 

I
X 

2 2 -u 
Q(x) :: 2 u e du :: <l? (x) 

G o(x) =Iw f(u)du 

G3(x) {x u3f(u)du 

5 
u f(u)du . 

- xe 
2 

-x 

(VI-66a) 

(VI-66b) 

(VI-67a) 

(VI-67b) 

(VI-67c) 
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In the form of Eq. (VI-61), the results are 

A(x, y) = A 0 (x)+ A
1 

(x)y 

A 0 (x) =, ~ lo(x) + c 20 ( ~ J] 
4x l E 

~(x, y) = C 0(x) ( 1 -y2 ) + c 1 (x) (y- y
3

) 

c o(x) = ___;.._ [ g? (x) + g? ( ~ ) l 
4x E 

D(x, y) = D 
0

(x) + D 
1 

(x)y 

E(x, y) = E
0

(x)y + E 1 (x) 

E 0 (x) = -2C 0 (x) 

E 1 (x) =' -2C 1 (x), 

F(x, y) = F 
0

(x) + F 1 (x)y 

2 2 2 
F (x) = 3e -x + 3 Y e-x / E 

0 € 

3/2 F 1 (x) = 3rr f(x) . 

(VI-68) 

.... , 

.. 

(VI-69) 

(VI-7 0) 

(VI- 71) 

(VI-72) 

(VI-73) 
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The y ·dependence of these quantities is simple. The functions with 

subscript 1 depend only upon f(x), whereas both the ions and the Max­

wellian part of the electron-velocity distribution contribute to the func­

tions with subscript 0. 

Two problems that have been considered by means of the Landau 

equation serve as checks on our above results. WithE= f(x) = g{x, y)=O 

and the wave contributions neglected,. Eq. (VI-58) reduces. to 

r o(x) . 

By direct substitution from above we find 

[ 
1 -x

2 
/ E

2 
E

2 
( x')] -3/2 -x

2 
r 0(x) =3(y-1) € e - 7 o € 1T e , 

SO when y = 1 (() =e.) We find 0 h/oT = 0 as we expect. 
e 1 

(VI-74) 

(VI-75) 

Otherwise the 

rate at which the kinetic energy of the electrons, per electron, is chang­

ing reduces t<;> 

The integral over r 0(x) can be evaluated exactly ~nd yields 

at d vfe(~) 2 mv =-""'1Vlvc(ee-ei)(1+E) (VI-76) o J 3 ( 1 2) 3m 2 -3/2 

which is exactly the result given by Spitzer. 
5 

With the approximation 

E
2 << 1, this is the result we used in Appendix D. 

In the second special case we assume e =e. so r 0(x) = 0 and e 1 

we linearize in f(x) and E, neglecting g{x, y) entirely. This is exactly 

the problem solved by Spitzer and Harm in evaluating the linear elec­

trical conductivity. 
1 

We find from Eq. (VI-58) 

of(x,T) = 
OT 

2 
-X 

0.1819Exe +r 1 (x) (VI- 77) 
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(VI-77 cont. ) 

2 of -3/2 -x + D 0(x) ax+ D 1 (x) ( -2x)rr e 

+ ~0(x) + F 
0

(x)] f(x) + F i (x)~ - 3/
2 

e -xz 

Substitution of A
1

(x), D
1

(x), and F
1

(x) into Eq. (VI-77) yields 

a
2
f of [ -x

2
] r 1 (x) = A 0 (x) ax2 + D 0 (x) Tx + E 0 (x) + F 0 (x) t 3e f(x) 

(VI-7 8) 

If we consider M to be infinite so E = 0 [and r
0

(x) vanishes for any 

finite y] , Eq. (VI-77) reduces exactly to the equation solved by Spit~er 

and Harm. In this approximation the ion contributions vanish except in 

Only the functions B 1(x), c
0

(x), c
1

(x), and E 1 (x) are not checked 

by these special cases. We have some confidence in these results be­

cause C
0

(x) is simply related to E
0

(x), whereas B
1 

(x), c
1 

(x), and E
1 

(x) 

are simply related to each other. 

3. Model A 

In this model f(x) depends upon T and we ignore g(x, y) entirely. 

To obtain an equation for f(x, T), we multiply Eq. (VI-58) by 3y/2 and 

integrate over y from -1 to 1 to find 

8f(x, T) 
OT 

2 
-- 0.1819E x e-x 

1 

__ 
1 ~·[xj ~y(~v· J) dyl 2 · 2 v - -e 

X OX -1 C 

I 1 { 2 3 a y a a ... 
-ydy- - (- v · J ) - (- E0 · 2 0 y x vc, - -e v -

1 c . c 

(VI-7 9) 

. . 
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By referring to the previous section, we find that the "ordinary!' col­

lisions [the terms not involving R(u)] contribute simply r
1 

(x). Thus 

if the effects of wave -particle interactions were ignored, our Model A 

would be simply the Spitzer-H~rm problem and MTould be subject to the 

same limitation of small E. We notice that the above procedure does 

not include the energy exchange between electrons and ions as repre­

sented by r 0 (x), but this would only be important on time scales of 

-order (:M/m) v6 -t, which are long compared with the time scales we con­

sider.' 

To determine the wave contribution we represent the expression 

in braces by a(y) and use 

(1 11 · 8a 

J 
y dy By= a(1) + a(-1) - a(y)dy. 

-1 -1 

But from Eq. (VI-58) and the corresponding equation for [(a
2 

/vc)k; 0 · ~e], 
we see that a(y) can be written as an integral where the integrand con­

tains a factor (uy/x- cose), which implies that a(1) = a(-1) = 0. To see 

this, we note that as y approaches ±1, r± both approach uy/x, so the 

only value of cose that contributes is cose = r± = uy/x, and the factor 

(uy/x - cos8) then vanishes. The same conclusion follows from the 

o function in Eq. (VI-12) as sina approaches zero. We therefore have 

(VI -80) 

where 
(1 

3 ' 
J 1 (x) = ZJ't. 

-1 
y (~ v. J l dy v -e 

c wave 

I 1 ( 2 3 a "' 
J z(x) = 2 1 vc ~0 . JL' -e 

ave 
dy. (VI-81) 
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In Appendix I we show that 

J 1(x) = 

(VI-82) 

2 . 
e-x [HoV1+H1v2] +~[HoV2+H1v3] 

where 

with 

Vn(u) =1
1 

d(cose) 
-1 

1+(cose)/b(u) 

If w_e substitute 

cos(:) _ b [ 1 · · 1 ] 
1 + (cosEI)/b(u)- (u) - 1 + (cosEI)/b(u) 

into Eq. (VI-84), we find the identities 

v 1 (u) = b(u)[2 - v o(u)] 

V 
2

(u) = -b(u)V 1 (u) 

v 3 (u) = b(u) [;- v 2 (u)J 

(VI-83) 

(VI-84) 

(VI -85) 

(VI-86) 
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When lb(u) I is large, we may expand [1 + (cose)/b(u)] - 1 in powers 

of [(cose)/b(u)] to find 

2 V
3

(u) =--~ 
Sb(u) 

2 2 
(VI-87) 

and V 2 (u), V 1 (u), and V 
0

(u) from the above identities. For arbitrary 

I b(u) I (larger than unity) we find directly 

b(u) + 1 
V 0 (u) = b(u) ln b(u) _ 1 (VI-88) 

and v 1 (u), v 2(u), and v 3(u) from the identities. 

With a stable plasma, I b(u) I is, and must be, larger than unity 

for u . < u < u , so that r
0

(u) + r
1

(u) case does not vanish for any 
m1n max 

e. As E is increased toward the critical value, lb(u) I will approach 

unity for certain u, and V 0(u) will become large. This is expected to 

give the nonlinear stabilization we seek, but in this model the effect 

becomes stronger only logarithmically. 

Again we must face the straightforward but tedious step of sub­

stituting these expressions into Eq. (VI-80) and collecting terms. We 

express the result as 

af(x,T)= A'(x) 
02

£ + B'(x) ~xf + C'(x)f+ [D'(x)-' 0.1819 Ex]e-x
2 

OT ax2 u 
(VI-89) 

where 
A l(x) = A 0(x) + A' (x) (VI-90) 

wave 

B'(x) = D
0

(x) + B' (x) (VI-91) 
wave 

2 
C' (x) = E

0
(x) + F

0
(x) + 3e -x +C' (x) (VI-92) 

wave 

., (VI-93) 

For the wave contributions we give only the results, which may be ex­

pressed in terms of 
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9 
X 0(u) = 4t-[TI R(u) [H0(u)V 

0
(u) + H

1 
(u)V 

1 
(u)] . 

9 
X 2 (u) = R(u) [H0 (u)V 2 (u) + H

1 
(u)V 

3
(u)], 

4,J"; 

The results are 

rx 

T(x) = / 
Jo 

U(x) =Lx du x2 (u) 

A 1 (x) = S(x) + T,(x) 
wave 3 -5-· 

X X 

2 X2(x) 3 lx S(x) 3T(x) 
B'wave(x) = . X: + 2 du u R(u) - -4-- 6 

,JTrx X X 
0 

C' (x) = 3R(x) + 3T(x) + S(x) 
wave . r= 7 -5-

'\/1TX X X 

D' (x) = - X (x)· + W(x) wave 1 --2 
X 

2U(x) 
3 

X 

(VI- 94a) 

(VI-94b) 

(VI-95) 

(VI-96) 

(VT-97) 

"" . 
(VI-98) 
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We must also supply appropriate initial and boundary conditions. 

on f(x, T). We are particularly interested in the asymptotic solution as 

T becomes large; this solution represents a steady state ori the time 

scale of interest. This steady state is very convenient because for 

specified mass ratio o2 
and specified ln A the solution will depend 

only upon y= f) /8. and E = E
0
/E in our dimensionless units; this 

e L run 
is a large simplification over the general problem. For this purpose 

the initial condition is not crucial; we could use f(x, 0) = 0 for example, 

although some other choice may provide more rapid convergence to 

f(x, T ._co). We use the boundary condition f(O, T) = 0 so that the electron 

velocity distribution is continuous, as we expect from the diffusion 

nature of our equations. For numerical purposes we also must supply 

a boundary condition at some large value of x. We simply set 

f(x , T) = 0 and choose x large compared with the values of x 
max max 

that contribute significantly. Our model is not correct for very large 

x anyway. 

4. Model B 

In this model f(x) is considered to be known from solving Model 

A with a very small value of E. In this case f(x) is proportional to E 

so we make a convenient change in notation. We write 

I 2 -3 2 -X 
h(x, y, T) = 1T e +Ef(x)y + g(x, y, T) (VI-99) 

so that f(x) itself does not depend upon E. We continue to define 
\ 

I
1

(u), H
1

(u), G
0

(x), G
3

(x), G
5

(x), A
1

(x), B
1

(x), C
1

(x), D
1

(x), E 1 (x), 

F 
1 

(x), and r 
1 

(x), which depend linearly upon f(x) and are now con­

sidered known, by the expressions given previously; these then are 

also independent of E. With our simplifying assumptions concerning 

the "ordinary" collisions, Eq. (VI-58) becomes 

·ag(x, y) = 0. 5064E [y Sg + 1 - Y
2 

Sgl + [A (x) + EyA
1 

(x)l 8 
2~ 

8T 8x x 8y 0 j ax 
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t [n 0(x) + EyD 1(x)] !! + [yE 0 (x) + EE1 (x)] ~; 

+ [ F 0(x) + EyF 1 (x)] g(x, y) + r 0(x) + Eyt' 1 ' (x) . 

- 2 2 2 [agl + E r 2 (x) + E y r 3 (x) + -
o·r_waves 

(VI-1 00) 

Here everything but g(x,y) and [og/oT]waves is presumed known. We 

have defined 
2 

r 1 1 (x) = r_1 (x) ';' 0.1819xe -x (VI-101) 

r 2(x) = 0.5064f(x)/x + B
1

(x)of/ox + E
1

(x)f(x) (VI-102) 

. . . 2 2 
r 3(x) = 0.5064[8£/ox- £/x] +A 1(x)8 £/ox + F 1(x)f(x). (VI-103) 

The full expression for [og/oT] includes all of the terms in 
waves 

Eq. (VI- 58) that involve R(u). To simplify this we use the circumstance 

that most of the electrons have x >> u By assumption, we neglect 
max 

all terms that -involve positive powers of u/x. Then, according to 

Eq. (VI-59), the contribution of the wave part of v_ · J is neglected, 
-e ... 

and in ~O · ·~e the expression in braces reduces to 

{r(e, u)h(x, y) t co~e H(B. u) ah~~· y)} 
Therefore, we have 

[~;] = 
waves 

3 l u · {r+ a max ( ) . case d(cose) 
- . R u du 
oy . ·- r .J(r+-cose)(cose-r_) 3/2 2 

'IT X 

m1n 

X r h(x, y) + case H(e, u) oh} (VI-104) l ·X -I(e, u) oy _ 

where now r± = ±(1-y
2

)1/
2

. The term not involving H(e,u), which 

corresponds to the direct effect of-spontaneous emission upon the 

particle being considered, vanishes because the integrand is odd in 

case. We therefore find 

,, .. 



.. 

.... ,~· 

where, if we define 

f.
~ 

Wn(u,y)= 

~ 
d( cos 8) 

we have. 

~u 
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0 

ay 
[ S(y) Oh~; y) l 

1 

I( 8, u) 

(VI-105) 

(VI-106) 

S(y) = 
3 r max 

3/2 I rr Ju 0 

du R(u) [~0 (1-1)\V 2(u; y) + EH1_(1-1)W 3 (u, y)] . 

m1n • (VI-107) 

Notice that since H(8, U) is always positive and R(u) and I(8, u) are 

positive for u 0 < u < u , S(y) will be positive everywhere except 
m1n max 

at y = ±1, where it is proportional to 1 - y 2 and so va.nishes. The 

evaluation of W (u, y) from Eq. (VI-106) is discussed in Appendix J. 
n 

According to Eq. (VI-1 05), ··the primary effect of the ion waves 

upon the electron velocity distribution is to produce a diffusion in the 

angular direction in velocity space. By considering an "H-theorem" 

in Appendix K, we show that in our approximation the ion waves always 

tend to make the electron velocity distribution isotropic (even if the 

ion velocity distribution is not Maxwellian or even isotropic). This 

certainly agrees with the conclusion reached by Ramazashvili, Rukhadze, 

and Silin. 62 The effect of the ion waves vanishes only when oh(x, y)/ay 

vanishes everywhere, so the electron velocity distribution is isotropic. 

With an isotropic ion velocity distribution as we have assumed, 

this is a stabilizing effect. When I(8, u) becomes small in the ion-wave 

region, S(y) becomes large, at least for a certain range of y. This 

should provi,de the nonlinear stabilization we seek . 

In the present notation, the problem of Field and Fried
34 

with 

all of their assumptions except the factorization in v 
1 

and v 11 re­

duces to 

oh(x,y,T) 
OT 

= oo so64E [ ah + 1- Y2 ah] +-1-
Y ax X oy 3 

X 

~ lj_( ) ah -1 
ay l Y ay J 

(VI-1 08) 
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and I(8, u) is approximated by the result of Eq. (VI-57) with g(x, y) re­

placed by h,(x, y). Of course A._(y) is determined in the spirit of quasi­

linear theory, but this still requires knowledge of R(u) and I(8) only. 

It is quite clear from the forms of Eq. (VI-57) and Eq. (VI-108) that the 

factorization in v 
1 

and v11 is very unnatural. It also seems that this 

factorization is not necessary. 

To complete the definition of our problem we must consider the 

initial condition and boundary conditions. It would be very convenient 

to remove the effect of slow energy changes due to Ohmic heating and 

collisional transfer to the ions so that we could solve for an asymptotic 

solution in time, as in Model A. We may do this by considering g(x, y) 

to be expanded in Legendre polynomials of y and then requiring that 

the coefficient of P 
0

(y) vanish. The isotropic part of the electron 

velocity distribution is then simply the Maxwellian. This simplification 

will also be useful when we consider the boundary condition at x = 0. 

Notice that the isotropic part of g(x, y) would not directly affect the 

electrical current, the heat flow, or the ion waves [according to Eq. 

(VI-57)]. 

The initial condition is of no real importance as we calculate 

g(x, y, T -> oo), but it should be chosen so that the plasma is stable. 

The boundary condition at x will be g(x , y, T) = 0 just 
max max 

as in Model A. The boundary condition at x = 0 is somewhat more dif-

ficulL We expect from the diffusion nature of our equations and from 

physical intuition that the electron velocity distribution will be con­

tinuous, finite, and reasonably smooth. We suppose that a Taylor­

series expansion 

00 

h(x, y) =L n 
A (y)x 

n 
(VI-109) 

n=O 

is valid for small x. If the velocity distribution is to be continuous, 

we must have A
0

(y) = h(O, y) be a constant. But then as x approaches 

zero, Eq. (VI-.100) takes the form 

ag 1 
OT = --z 

X 

(VI-110) 



-81-

so we must have S(y)o A1/oy · equal to a constant. Since S(y) behaves 

as 1 - y
2 

as y approaches ±1, this condition can only be satisfied, 

with A
1 

(y) finite for all y, 

h(x, y) 

if A 1 (y) is constant. Thus 

2 
:::: A 0 + A

1
x + A 2 (y)x + 

where. A
0 

and A
1 

are constant. This implies 

2 
g(x, y) :::: C + A 1 x -f(x)y + e-(x ) 

(VI-111) 

(VI-112) 

where C is another constant. We have no way of determining C and 

A 1 , but fortunately, we have decided to remove the isotropic part of 

g(x, y), so we have 

2 
g(x, y) :::: -f(x)y + t1 (x ) (VI-113) 

Actually, we realize that Eq. (VI-195) is only an approximation and is 

not valid for small x. This approximation i.s useful only if the region 

of small x is relatively unimportant, but in this case the boundary con­

dition at x:::: 0 should not be important. 

We also must consider the boundary condition at y:::: ±1. To be 

specific we consider y near +1, or a. near 0. We consider the region 

of velocity space with 0 ~a. < a.
0

.. The surface area of this region is 

proportional to a.
0

, when a.
0 

is small, while its volume is proportional 

to a.
0 

2
. The rate at which electrons enter this volume per unit v is 

given by the area 2rr sina.
0 

times the normal flux 

and must vanish as fast at the volume as a.
0 

approaches zero if 

J (v, t), f(v, t) and' of(v, t)/ot are to be finite. ·This requires that the 
-e - -
above expression vanish as fast,as 

a. J (v, t) vanishes as fast as sin~. 
- -e -

a.
0 

or sina.
0

, which implies that 

By writing out a· J (v, t) from 
- -e -

Sec. VI. A, one finds that this implies of(::, t)/o (coso.) either vanishes 

or approaches a finite constant as a. approaches zero. Thus we find 

that o g(x, y)/oy is finite at y :::: ±1. This would be satisfied automatically 

if g(x, y) were represented by any finite number of terms in an expan­

sion in Legendre polynomials of y. 

With these boundary and initial conditions, the definition of 

Model B is complete. 
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VII. NUMERICAL PROCEDURE 

Because we have no need for high numerical accuracy, all 

integrals are evaluated by the simple trapezoidal method. Also, since 

we seek the steady-state solution that is approached asymptotically as 

t (or T) becomes large, we are not partic.ularly concerned with follow­

ing the time development in detail. 

Special procedures are useful in preventing the computational 

instabilities that tend to arise in solving diffusion-like equations such 

as 01,1rs. 

A. Model A 

The functions of x and of u are determined at the discrete 

values x. = u .. Since both the slow ion waves and the fast electrons 
J J 

must be well represented, we ordinarily use 271 values of x. with 
J 

o.~x . .:S0.02 
J 

for 1 _,.:; j _,.:; 140; 0. 02 <x. < 1 for 141-:Sj.,.:; 211; and 1 
J 

!S X. _,.:; 7 for 2 12 _,.:; j _,.:; 2 71. 
J 

The numerical solution of 

a 2f 
= A·--2 

ax 
(VII-1) 

by the explicit method suggested in Sec. VI. A develops computational 

instabilities unless the time step !:::. T is chosen somewhat smaller 

than (f:::.x)
2 /A. 65 

This suggests that the solution of Eq. (VI-89) by ex­

plicit methods may develop computational instabilities unless !:::.T were 

sufficiently small. Because !:::.x and A vary widely in our problem, 

it is not clear how small !:::.T would have to be, but !:::.T would probably 

be so small that an impractically large number of time steps would be 

needed to reach the steady- state solution. 

Equation (VII-1) can also be solved by an implicit procedure. 

Denoting f(xj, T = T 
0

) by fj and f(xj, T = T 
0 

+ ,6.T) by f/, we write 
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zri + ~i _1]+ (1,-p) (t.~) 2 [r;+ 1 -2fi'+ r;_ 1 J , 
(VII-2) 

where b..x = x. - x. 
1 

is chosen independent of j, and p is chosen in 
J J-

the range 0 ~ p ~ 1. Here <H/ 8 T is not simply evaluated at the "old" 

time T 
0 

at which f is known, but instead is a weighted average of the 

values at the "old" time TO and the "new" time TO+ b..T at which f 

is unknown. The Eqs. (VII-2) form a set of linear, algebraic, simul-

taneous equations for the f'. that can be' solved as follows. 
J 

One writes 

f~ 1 = e · 1 £' + d · 1· J- J- J J-
(VII-3) 

where, of course, ej and dj are unknown. 

tween Eq. (VII-2) and Eq. (VII-.3), solving 

By eliminating f'. 1 be­
J-

result to Eq. (VII-3) with 

relations that give e. and 
J 

quantities in Eq. (VII-2). 

for f 1., and comparing the 
J 

j replaced by j + 1, one finds recursion 

d. in terms of e. 
1

, d. 
1

, and the known 
J J- J-

With j . ~ j ~ j , e. and d. 
· m1n max· J . J . 

are determined, by the boundary condition at jmin' s~\rese recu¥1\~n 
relations yield e. and d. for j from j . + 1 through j - 1. By 

J J m1n ·· max 
using the boundary condition at j along with Eq. (VII-3), one 

max 
finds f.' for j from j down through j . . 

J m~ rmn 
This implicit procedure is computationally stable for any b..T 

if p ~ 0.5. 
65 

The "new"" time is weighted more heavily than the "old" 

time; in fact with p = 0, t~e "old" time appears only on the left 1n 

Eq. (VII-2). We use the s_ame implicit procedure to solve our Eq. 

(VI-89), which contains additional terms that can be treated in the same 

way. A minor difference is that we have chosen an uneven spacing for 

x. , which makes the difference equations appear more complicated. 
J : . .. 

A more important difference is that the coefficients A' (x), B' (x), C' (x), 

and D' (x) depend upon f(x, T) and so are not known at the "new" time. 

Therefore one must choose trial values of these coefficients at the "new" 

time, calculate f'., and use f.' 
J J 

to compute improved values for these 
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coefficients. This iteration procedure can be repeated as many times 

as desired before one continues to the next tim~ step. We determine 

the trial values of the coefficients py linear extrapolation from earlier 

times. 

Another difficulty is that, although our equations are valid only 

for a stable plasma, the computer may suddenly find I 11 (u) I ~ I
0

(u) 

for u . < u < u , which corresponds to an unstable plasma. In m1n max · . 
this case we attempt to force the plasma toward stability by simply 

prescribing that the fluctuations associated with the unstable waves 

hav·e very large amplitudes. Thus we replace r
1
jr

0 
by 1- 2 exp( -C) 

if r1jr0 ~ 1, and by -1 + 2 exp(- C) if I/Io ~ -1. [ A~tually, the 

term 2 exp(-C) is neglected except in the logarithm in Eq. (VI-86), 

. which becomes V 
0

(u) = C. ] Ordinarily we choose C equal to 40. The 

number of times this prescription is used on each time step is mon­

itored, and, of course, our solution is incorrect unless as the steady 

state is approached closely the plasma is stable, so this prescription 

is not needed. 

This numerical procedure w~rks quite well for E
0 

smaller 

that E .t .. Computational instabilities do not appear for b.T as cr1 
large as 8; although in this case the solution oscillates about the final 

steady state and the oscillations decay rather slowly. (We are not 

surprised that the physical time development is not followed when the 
. -1 

time step is 8 v c . ) Ordinarily we use b.T = 2 because this yields 

convergence to the steady-state solution in the smallest number of 

time steps. The convergence and stability are equally good for p = 0, 

0.1, 0.2, 0.3, and 0.4, but with p = 0.5 the convergence at small x 

is relatively slow; ordinarily we use p = 0. 4. We use two iterations 

on each time step (that is, the f.' are calculated three times), but 
J ' 

this is not necessarily the optimum. We ordinarily use the initial 

condition f(x,' 0) = 0, and the convergence is complete (within the eight­

figure computer accuracy) within less than 40 time steps. For most 

purposes 10 time steps would be sufficient. 



.,.85-

When E
0 

approaches or exceeds E 't' we modify our proce-
crl 

dure. From a previous run with a value of E 0 we denote by E A' we 

have a solution fA(x). From this we find that even if the problem 

were linear with f(x) = E 0fA (x)/E A' the p1asma would remain stable 

until E exceeds E A' with EA._ > Ecrit' We then run with E 0 = EB' 

choosing E A < EB < E A and using as our initial condition 

f(x) = EBfA(x)/EA. Even with these precautions to ensure that a stable 

steady-state solution exists, we often must choose 6.7 rather· small 

to avoid computational instabilities. This procedure soon becomes 

impractical because of the small amounts that E
0 

is increased and be­

cause of the small time steps. On runs for which a steady-state solu­

tion is found, the prescription for handling unstable waves is ordi­

narily needed only on the first few time steps. 

On an IBM-7044 computer, each time step requires about 6 

seconds, and most runs last between 3 and 8 minutes.· We refer to the 

computer program for Model A as Program 1. 

B. Model B 

This two-dimensional problem is feasible numerically only be­

cause of the various simplifying assumptions, especially the ones 

based upon the slowness of the ion waves. Detailed knowledge of g(x, y) 

is not needed; for example, the properties of the ion waves are deter­

mined entirely by J; g(x, y) dx, as shown in Appendix H. We calcu­

late functions of x at only the 28 values x. with 0.1 ~ x. ~ 3.1 for 
1 1 

1 ~ i ~ 15, and 3.4 ~ x. ~ 7 for 16 ~ i ~ 28. The range u . ~ u ~ u 
1 m1n max 

of ion-wave speeds is divided into 50 equal intervals with endpoints ur 

The purpose of Program 2 is to use the results from Program 
-4 

1 obtained with very small E (usually 10 ) to calculate the "known" 

coefficients in Eq. (VI-100) and other functions needed in Model B. 

The results are given at the values of xi and u_g indicated above. 

Each run of Program 2 requires about 40 seconds on an IBM-7044 

computer. 
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1.' Procedure 1n Program 3 

This is the main program for Model B. The range -1 ~ y ~ 1 

is divided symmetrically about y = 0 into as many as 70 intervals 

with endpoints yf For convenience in evaluating Eq. (VI-57) and 

Eq. (VI-106}, the functions of 8 are determined at the values of 8 

within 0 ~ e ~ TT that satisfy sin8 = y. for some value of j. 
J 

Since substitution of Eq. (VI-105} into Eq. (VI-100} yields a 

diffusion-like equation, we again attempt to avoid computational diffi­

culties by using a known implicit method. 66 This is similar to the 

method in Model A with p = 0 and without corrective iterations on 

each time step. On the. odd-numbered time steps, we used the pre­

viously described implicit procedure to determine the x dependence 

of g(x, y) at each y.; the terms in Eq. (VI~100) involving 8g/8x and 
2 2 J . 

8 g/8x are evaluated at the "new" time and all other terms are eval-

uated at the "old" time. On the even-numbered time steps, the y 

dependence of g(x, y) for each x. is found similarly; only the terms 
2 2 1 . 

involving 8 g/ 8 y and 8 g/ 8 y are evaluated at the "new" time. The 

coefficients needed at the "new" time are simply evaluated at the "old'' 

time and no corrective iterations are performed. The amplitudes of 

fluctuations associated with unstable ion waves are again specified 

artificially, here by setting 1(8, u) equal to 2' . whenever the com-
min 

puter finds 1(8, u) ~ 0 within u . < u < u ; ordinarily we choose 
m1n max 

= 0.001. Because of the discussion in Sec. VI. C, we remove ';::;' 
o-c min 
the isotropic part of g(x, y) after each time step so that 

fi dy g(x, y) = 0. 

-1 

(VII-4) 

Our procedure is based upon an implicit method that is known 

to give computationally stable solutions of 

8g 
aT (VII- 5) 
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for arbitrarily large 6.T if 6.x and 6.y are constant and equal. 66 

However, our scheme does not work well with Eq. (VI-100). Ordi­

narily we must still use 6.T ~ 0.01, which would seem to be imprac­

tically small. Fortunately, each time step requires only 0. 5 second 

on an IBM-7094 computer, and the solution converges to the steady 

state quite well within a physical time v -
1 

and extremely well within 
c 

5 v -
1 

The latter is riot expected physically and is apparently the c 
result of our numerical procedure. 

The method -of choosing the ini.tial value of g(x, y) and the value 

of E is the same as in Model A for the two cases EO< E 't cr1 
and 

E 0 :? Ecrit' Again, as E 0 becomes large, 6.1r must be reduced to 

ensure convergence of the solution, but 6.T smaller than 0.001 is im­

practical. The longest runs involve 1000 time steps and require 8. 5 

minutes on an IBM-7094 computer. 

2. Boundary Conditions and the Choice of y. 
J 

The boundary conditions at x = 0 and x = 7, which are 

g(O, y) = g(7, y) = 0, cause no difficulty. The boundary condition at 

X :::: 0 Can be changed to a g(x, y)/ a X = 0 with an almost undetectable 

change in the results. This is desirable because of the simplifying 

assumptions that are not valid at small x and because of the rather 

widely spaced values of x. at small x. 
J 

The boundary condition at y = ± 1 was shown at the end of 

Sec. VI to be that a g/ a y be finite, which implies a gj a a = 0. If we 

were using a as a variable, we would equate the values of g at a = 0 

and at the point closest to 0 but positive (and similarly at a = 'TT). 

This would be adequate if the spacing of the points in a were suffi­

ciently small. We see that this is equivalent to using the boundary 

condition a g/ a y = 0 at y = ±1 with an appropriate choice of y .. 
J 

This we do because the actual condition, that a gj a y be finite at y = ± 1, 

is too indefinite for use . 

To test this procedure, the choice of y. has been varied. With 
J 

the range -1 ~ y ~ 1 divided into either 40 or 70 equal intervals, all 
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results are nearly the same except in the immediate neighborhoods 

of y = ± 1. The important waves have 8 near 1T and are affected 

only by g(x, y) with y near zero; as we expected, these are very 

insensitive to the choice of y.. The quantities that are most sensitive 
J 

to the choice of yj are the small corrections to the electrical current 

and the heat flow, both of which are sensitive to g(x, y) near y = ± 1. 

Any large error resulting from the boundary condition at y = ± 1 or 

from the choice of y. should have appeared with this change of D.y 
J 

by nearly a factor of two. We also defined y. by dividing 0 ~a. ~ 1T 
J 

into 70 equal intervals; this division gives very closely spaced values 

near y = ± 1. However, the numerical error in evaluating a I a y and 

a 21 a y 2 
by difference equations is apparently excessive. in this case; 

still, the ion waves are hardly affected by the choice of yj' 

Ordinarily we have chosen y. by dividing the range -1 ~ y ~ 1 
J 

into 40 equal intervals rather than 70 simply because the computa-

tion is faster and the volume of output is smaller. Notice that with 

the equal intervals of sin8, the values of 8 are most closely spaced 

near e = 1T (the region of most interest to us) and near e = 0. 

3. Calculation of the Fluctuation Spectrum 

From Eq. (IV- 9) we find 

with W(~, V) 
1 = 
~ 

4 ... 

f dk k H(k, V) . 

0 [k
2

- R~, V)] 
2 

+ I 2 (~, V) 

(VII-6) 

(VII-7) 

Notice that W(~ V) is defined somewhat differently than Rostoker' s 
41 

"energy per mode." The integral over k diverges at large k be-

cause of the self energy of each particle, which could be subtracted 
... ... 

out. When R~, V) greatly exceeds I I (k, V) 1. the resonance yields 
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= [Rck, V)]
3

/
2 

16TI
3 

H(l5-,.V) 

II(k, V) I 
(VII-8) 

which represents the distribution of electric-field energy of the fluc­

tuations associated with waves. It is now convenient to define, by 

means of the dimensionless quantities of Sec. VI. C, 

i\a 1 [2 lni\ 
W(8, u) - ne;e Wres(~, V) - 2TI2 iT 

We next define 

3/2 
R(u)] H{8, u) 

I ( 8, u) 
(VII -9) 

i\ 
--ne-

/Ez\ 
\siT/ = 2TI 11 

d(cos8) 
-1 

du W{8, u), 
e e 10n waves 

(VII-10) 

even though the condition R(~, V) » /I~, V) I is not satisfied every-

where within -1 ~ case~ 1 and u . ~ u ~ u We do have R(u) 
m1n max 

and I( 8, u) positive throughout these ranges so W( 8, u) is a positive 

quantity, and when I( 8, u) is not sufficiently small, W( 8, u) will hope­

fully not be large. There is no way to define the energy in the ion 

waves without some such arbitrary choice. 

The purpose of Program 4 is to evaluate Eq. (VII-9) and Eq. 

(VII-10) for Model B with results from Programs 2 and 3. A typical 

run requires 1 minute on an IBM-7044 computer. 
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VIII. NUMERICAL RESULTS 

After the results are presented, they will be used in evaluating 

the validity of the models considered. The plasma parameter A ap­

pears in our dimensionless equations only through ln A inthe defini­

tion of R(u) by Eq. (VI-47), so we choose ln A = 10 throughout the 

numerical work. We also choose the Ip.ass ratio 6
2 

as appropriate for 

an electron-proton plasma. 

A. Results Obtained with Model A 

This model correctly gives the linear solution valid for E 0 <<E 't" 
cr1 

The<:tw6 cases "''..;E
0
-<< E .. : .. :.:and E ::> E -. _.:;;are considered separately. 

; . cr1t '-0- crit 

1. With E 0 << E .t cr1 

Her.e Model A reduces to the Spitzer -Harm 
1 

problem except 

that in Model A the effects of the fluctuations associated with ion waves 

are included. ·Although the cutoff procedure and the convenient separa­

tion of "collisions'' and "wave-particle interactions" introduces an 

uncertainty of order 1/ ln A = 10o/o in the results, there is no serious 

objection to the model in this case. 

The electrical conductivity Ci is defined by 

(VIII -1) 

and with our definition of E , the Spitzer -H::trm result is 
run 

o'SH = 
n ea 

e e 
E run 

. (VIII- 2) 

Figure 4 shows the effect of the ion waves upon Ci. With 8 = 8. the 
e 1 

ion waves have no effect with our approximations, and we find 

Ci/ CiSH = 0. 99939 when an appropriate point spacing is used. As 8 e/ ei 

is increased, the ion waves become important and reduce Ci, as ex­

pected from the discussion in Sec. VI. C. 4. The values cannot be taken 
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MU -3.5218 

Fig. 4. Effect of ion waves on the linear electrical conductivity 
CJ in an electron-proton plasma with ln A = 10. Here CJSH 
is the Spitzer-Harm 1 value. At (}e = ei, (J I (J SH is 0. 99939 . 
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literally because of the inherent 101o uncertainty, but the trend is sig­

nificant. Actually, the decreases in u by 1.2o/o at e je. = 10 and by 
e 1 

6.1o/o ate ;e.= 100agreewellwiththevalues 1.1o/o and 5.3o/o found by 
e 1 63 

Gorbunov and Silin. 

The thermoelectric coefficient f3 is defined by 

(VIII- 3) 

' and with our definition of E , the result obtained by Shkarofsky, 

B . d R b' . fZ}n ernste1n, an o 1nson 1s 

f3sBR = 
0.5064 5 n a e 

e e e 
0.3951 2 E run 

(VIII-4) 

Figure 5, v.hicih is: strikingly similar to Fig. 4, shows the effect of ion 

waves upon the linear f3. With e e = ei' we find f3/f3SBR = 0;99771. As 

Gorbunov and Silin define the heat flow relative to the. electron frame 

rather than to the ion frame, to compare our results with theirs we 

must use the connection formula 

f3cs 
= + 

f3sBR 

0.3951 

0.5064 

(]' 

(VIII-5) 

Then the decreases in f3 by 1. 6P/o at e je. = 10 and by 6.4o/o ate je.= 100 
e 1 e 1 

agree fairly well with the values 2.35o/o and 7.8o/o found by use of there-

sults of Gorbunov and Silin in Eq. (VIII-5). 

Because t~is model is linear in E
0 

when E
0 

is small compared 

to E 't' we may calculate E 't by defining E 0/E 't as the largest cr1 cr1 cr1 
value of r

1
(u)/I

0
(u) within u . < u < u . The results shown in Fig. 

m1n max 
6 agree very well with those of Fig. 2 when the relationship 

u .t/a = 0.5064 E .t/E is used, as was suggested in Sec. III. E~ cr1 e cr1 run 
For e je. less than about 20, the agreement is within about 2o/o, and 

e 1 

even at larger values of e je., for which the ion waves increase: E . 
e 1 cr1t 

• 
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Fig. 5. Effect of ion waves on the linear thermoelectric coefficient 13· 
Here 13SBI) is the value given by Shkarofsky, Bernstein, and 
Robinson. 2 At Oe = Oi, 13/13sBR is 0.99771. 
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Fig. 6. The critical field above which (according to the linearized 
kinetic equation including the effect of ion waves) an electron­
proton plasma would be unstable. 
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slightly, the values of E 't from Fig. 6 do not exceed those from · ·cr1 
Fig. 2 by more than So/o. 

The results of this linear problem are also used as input data for 

Model B. 

2. WithE0 z:E .t cr1 

In this case Model A is not satisfactory. 

very weak nonlinear stabilization was found. 

Withe je. = 50, only a 
e 1 

To maintain stability 

with E 0 = 0.02519 = 1.005 E 't' for example, some of the ion waves en _
3 have damping rates smaller than with· E

0 
= 0 by a factor 10 ; the 

corresponding fluctuations have energies 1000 times as large as with 

No stable solutions were found with E
0 

exceeding E .t by 
cr1 

more than 1 o/o. 
As verified with Model B (Sec. VIII. C), Model A is inad~_q_u~t~ ___ _ 

_ primarily t>eea-us-e th-e angular -diperrlences of the electron velocity dis­

tribution and of I
0

(u) + I
1 

(u) case are too inflexible. We noted in 

Sec. VI. C. 3 that as ~ 1 (u) I approaches r
0

(u), the effect of the fluctu­

ations associated with ion waves grows only logarithmically. 

B. Survey of Results from Model B 

This model demonstrates the nonlinear stabilization very well. 

The solution 

h(x, y) = *2 e -x2 + ( EEO ) f(x)y + g(x, y) 
TI \ run . 

(VIII-6) 

implies 

I(u, e)= I 0 (u) + (E EO) I
1

(u) case+ I (e). 
run g 

(VIII-7) 

We will refer to these with g(x, y) and I (e) neglected as the linear 
g 

solution, which is the solution of Model A with E
0 

<< E 't' The cor-. cr1 
rections g(x, y) and I (e) that are found in the full nonlinear solutions 

g 
of Model B primarily result from the nonlinear effect of fluctuations 

associated with ion waves. 
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Figure 7 shows the damping rate --y of the ion wave that would 

first become unstable as E
0 

increases, according to the linear solu­

tion. Here --y
0 

designates this damping rate when E
0 

vanishes. 

From the linear solution, -y/-y
0 

would decrease linearly along the 

dashed line until, at E
0 

= E 't' '( would change sign and the plasma 
cr1 

would become unstable. The solid curves show the nonlinear solution; 

as '( approaches zero the nonlinear effect becomes large and pre­

vents '( from approaching zero too closely. This is a very clear dem­

onstration of the nonlinear stabilization. The value of E
0 

was not 

increased beyond the values shown in Fig. 7 simply because of the 

cost of computer time. Extrapolation suggests that the plasma would 

remain stable at much larger values o'f E
0

. 

This stabilization is most effective with large e je.. The 
e 1 

reason is indicated in Fig. 8, which shows the energy in fluctuations 

associated with ion waves. Although in Fig. 7 -y/-y
0 

is larger with 

large e je., Fig. 8 shows that the amount by which the energy in the 
e 1 

fluctuations increases is much greater when e je. is large. This is 
e 1 

partly because I 'Yo I decreases and the fluctuation energy with E
0 

= 0 

I -4 ~ increases as e e. increases. In fact -y
0

=-0.928X10 w ate e. = 40, 
_

4
e 1 _

4 
pe 1 

"'o =-0.559X10 w ate je. = 70 and -y
0

=-0.349X10 w ate je. = 100. 
pe e 1 ,pe e 1 

Notice that with ln A = 10 we find that v = 2.4 X10- w is of the 
c pe 

same order; this difficulty is discussed in Sec. VIII. D. 

The energy in fluctuations associated with ion waves as shown 

1n Fig. 8 was calculated from the somewhat arbitrary definition given 

in Sec. VII. B. However, discussion in Sec. VIII. C shows that this 

amounts to choosing the position of the baseline for the curves in Fig. 

8; the increments are unaffected by,, this definition. 

Because the rate of spontaneous emission remains nearly un­

changed, the decrease in I'( I in Fig. 7 by a factor of order 10-
2 

as 

E
0 

increases from zero to its largest value indicates that the energy 

in fluctuations associated with the particular ion wave considered in­

creases by a factor of 100. However, according to Fig. 8, the energy 

in the fluctuations associated with all ion waves increases by a factor 
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Fig. 7. The damping rate -y of the ion wave that would first 
become unstable according to a linearized kinetic equation. 
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Fig. 8. The energy in fluctuations associated with ion waves. The 
vertical dashed lines denote Ecrit in the various cases. 
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of less than two, and remains smaller than the kinetic energy of the 
-1 

particles by a factor of about A . 

Similar calculations were attempted with () /B.= 10, but no 
e 1 

nonlinear stabilization was found. In this case.the plasma approaches 

instability by I(u, B) approaching zero where R(u) vanishes (see Sec. 

III. D), so according to Eq. (VII -9} the increase :ln the energy of the 

fluctuations is very small. Actually, nonlinear stabilization is still 

expected in this case, but one probably-should use Eq. (V -3) rather 

than the approximation (V -4), which is poor when both I R(u) I and 

I I(u, B) I are very small. Even then, the nonlinear stabilization 

would probably be weak and thus difficult to study numerically. 

Figures 9 and 10 show the nonlinear electrical conductivity a­

and the thermoelectric coefficient f3 as found from Eqs. (VIII -1} and 

(VIII- 3 ). By comparing Figs. 9 and 10 with Fig. 8, we see that the 

effect of the fluctuations associated with ion waves is roughly propor-

tional to their energy. With E
0 

larger than E .t, the effect upon a­
cr1 

and f3 is significant, and as E
0 

increases further, the corrections 

may become important. With the displaced-Maxwellian model of Sec. 

II, the fi'rst nonlinear effect on a- is an increase when E
0 

approaches 

E ; this effect is quite different from the results shown in Fig. 9. 
run 

Figures 8, 9, and 10 contain no results for E
0
/E . < 0.01 

, run 
because of a systematic error that becomes larger as E

0 
decreases. 

The origin of this error is not ·known. The error is not seriously 

large until E
0 

becomes very small. It is nonphysical because, for 

example, a- tends to decrease as. E
0 

decreases, which does not 

agree with Model A or with our expectations. 

C. Samples of Detailed Results from Model B 

To present further details, we consider only () je. = 70, so e 1 

E .t/E = 0. 0217. Often only E
0
jE ' equal to 0. 01, 0. 0228, or 

cr1 run run 
0.02715 are considered, ·since these represent the r-egions of E

0 
below, near, and above E ·t. cr1 
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Fig. 9. The nonlinear electrical conductivity u. The vertical dashed 
lines denote Ecrit in the various cases. 
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Fig. 10. The nonlinear thermoelectric coefficient j3. The vertical 
dashed lines denote Ecrit in the various cases. 
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1. Damping Rate of Ion Waves 

We consider waves with phase speed equal to that of the wave 

that would first become unstable according to the linear solution, but 

we consider all directions of propagation. Figure 11 shows the damp­

ing rate -y of such waves for all directions () and various 'values of 

E
0

. With E
0 

= 0 the plasma is isotropic, and y = y
0 

by definition. 

According to the linear solution (shown by the dashed lines), as E
0 

is 

increased the a·nisotropic correction is proportional to c~s() and to E 0 . 

When E
0 

exceeds E . , the waves with () near lT (so k is near the 
cr1t '-

direction th~ electrons are accelerated by ~0 ) would grow and the 

plasma would be unstable. 

The nonlinear solution, as shown by the solid lines of Fig. 11, 

behaves similarly until E
0 

becomes comparable to or exceeds Ecrit" 

Then the nonlinear correction adjusts itself to be just sufficient to 

maintain the plasma stability, as shown by the curve with E 0/E = run 
0. 02 715 in Fig. 11. With the simplifying assumptions of Model B, the 

nonlinear correction is an odd function of ()- TI/2 as indicated, The 

intercept of such curves at e = lT as E
0 

is varied provides the data for 

Fig. 7. 

Notice in Fig. 11 that with E
0
-/E = 0.02715 the nonlinear run · 

correction deviates considerably from being proportional to cos(:), the 

form to which it was restricted in Model A. In fact Jy I remains small 

over a considerable region of (:)near lT. This is significant because 

solid-angle considerations weight the importance of the various regions 

of (:) by a factor sine. Thus, in Model A, even when the intercept at 

e = lT is very near 'I= 0, the shape of the curve is so restricted that 

the effect of the fluctuations associated with ion waves does not become 

really large. This is apparently the major reason for the failure of 

Model A. 

If one considers a phase speed different from that of Fig. 11, 

the primary effect is to lower all curves in Fig. 11 so that all waves 

are more highly damped. This follows from Eq. (III-26) for y and 

from Eq. (VIII-7) for I(u, 8) since it turns out that I
1 

(u) is very nearly 

v!,l 

.. 
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Fig. 11. The damping rate -y of ion waves propagating in any direction 
e with phase speed u= V/ae = 0.01031. Here 8e/8i = 70 so 
Ecrit/Erun= 0.0217. The dashed curves show the results from a 
linearized kinetic equation, and the solid lines show the nonlinear 
results . 
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independent of u and a R(u)/ au is a slowly varying function of u. 

The amount the curves are lowered is determined by the variation of 

We conclude that the nonlinear effect of wave -particle inter­

actions does not greatly affect the damping rate -y of ion waves that 

would be stable even from the linear solution, but it changes the damp­

ing rate of the waves that would be unstable just enough to stabilize the 

plasma. 

2. Energy in Fluctuations Associated with Ion Waves 

_As mentioned before, the energy of fluctuations that correspond 

to very weakly damped ion waves is large, because in the Lenard­

Balescu kinetic equation the fluctuations arise from a balance of spon­

taneous emission and Landau damping. 

The energy density (E
2 
/8rr) of fluctuations as:ociated with ion 

waves per unit u = V /a and per unit solid angle of k is defined by 
e -

Eq. (VII-9) and denoted by W( e, u), in units of n e I A. The data for 
e e 

Fig. 8 are obtained by integrating 2rr sine W(e, u) over 0 ~ e ~ rr and 

u . ~ u ~ u The factor 2rr sine is the solid-angle factor men-
mln max 

tioned in Sec. VIII. C. 1. 

Figures 12, 13, and 14 show examples of the behavior of 

W(e, u). Notice that the results are given at values of e that are not 

quite evenly spaced. 

With E
0 

much smaller than Ecrit' W( e, u) is nearly inde­

pendent of e as was suggested by Fig. 11 and is shown in Fig. 12. In 

Fig. 12 the peak at small phase speed actually does not correspond to 

weakly damped ion waves, so the definition of W(e, u) is somewhat 

arbitrary in this case. This peak could have been omitted in the inte­

gral that yields the data for Fig. 8, but since it does not change as E
0 

is varied, its contribution to the quantity shown in Fig. 8 is simply an 

additive constant for each value of e 1 e . . 
e 1 ... 
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Fig. 12. Distribution of energy in fluctuations associated with ion 
waves over direction of propagation e and phase speed u with 
Eo/Erun = 0.01. Here 8e/8i = 70, so Ecrit/Erun = 0.0217, 
Umin = 0. 002617, and Umax = 0. 01684 . 
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u = V/ae 

Fig. 13. Distribution of energy in fluctuations· associated 
with ion waves with Eo/Erun = 0. 0228 and ee/ ei = 7 0. 
The dashed line encloses the region shown in Fig. 14. 
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·Fig. 14. Distribution of energy in fluctuations as so cia ted 
with ion waves with Eo/Erun = 0. 02 715 .and Be/Bi = 70 .. 

' - The region shown is outlined by a dashed line in Fig. 13._ 
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With E
0 

slightly larger than E 't' the ion-wave peak becomes 
cr1 

m~ch larger for e near Tr. This is shown in Fig. 13, where the verti-

cal scale has been changed by a factor of 8 so the peak at small phase 

speed does not appear so large, although it actually is unchanged. The 

ion-wave peak is somewhat smaller for e near 0 than in Fig. 12, but 

it is much higher and narrower for e near 'IT. 

As E
0 

is increased even further, the ion-wave peak becomes 

even higher and narrower for e. near Tr. With another change in the 

vertical scale, Fig. 14 shows this for the region enclosed by the dashed 

line in Fig. 13. In this case the peak is nearly 100 times higher than 

when E
0 

vanishes, in agr·eement with the damping rates of Figs. 7 and 

11. 

Because of the solid-angle factor Z1r sine, the large ion-wave 

peak in Figs .. 13 andt4 does not contribute as much to the quantity in 

Fig. 8 as one might expect otherwise. 

The large peak in the fluctuations associated with ion waves 

could have important effects that we· have not mentioned. The scatter-­

ing of light by the plasma would be modified; in principle· this -could be 

used to measure the fluctuation spectrum quite directly. All transport 

coefficients would be modified, including spatial diffusion if the plasma 

were slightly nonuniform. 

3. Modification of the Electron Velocity Distribution 

As discussed in Sec. VI. C. 4, the fluctuation spectrum shown 

1n Figs. 12, 13, and 14 produces a diffusion of the electron -velocity 

distribution in the angular direction. In Eq. (VI-105) the diffusion co­

efficient is S(y)/?C
3 

where y = cosa and x = v/ae. In Fig. 15 we see 

that as E 0 increases, the ion-wave peak of Figs. 13 and 14 becomes 

large and the even function S(y) increases, mainly in the region of y 

near zero. ·This is as expected because the re'sonant particles for an 

ion wave with e near Tr are in the region, of velocity space with a 

near Tr/ 2 or y near zero. This diffusion always tends to make the 

electron velocity distribution more nearly isotropic, and from Fig. 15, 

the effect should be strongest for y near zero. 

... 
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Fig. 15. The function S(y) that determines the effect of 
fluctuations associated with ton waves upon the 
electron-velocity distribution. Here Be/Bi = 70. 
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Figure 16 shows the anisotropic part of h(x, y) from Eq. 

(VIII-6) with E
0
/E = 0.02715, which corresponds to Fig. 14 and 

run 
the upper curves of Figs. 11 and 15. For each constant value of x 

the solid curve shows the linear solution (E
0
/E ) f(x) y and the 

run 
dashed curve gives the nonlinear solution which includes g(x, y). The 

nonlinear correction g(x, y) is small, although with small x it very 

nearly cancels the anisotropy of the linear solution, as expected from 

the discussion in Sec. VI. C. 4. 

Close inspection of Fig. 16 reveals that the correction that 

g(x, y) makes on the slope of the curves is largest foT y near zero, 

as expected. This change most strongly affects the Landau damping 

of ion waves with e near 0 or near Tr, the latter being the region of 

e where the stabilization is necessary. 

At larger values of x than those shown in Fig. 16, g(x,y) is 

unimportant in determining the Landau damping of the ion waves and 

the various transport coefficients, and the model actually fails because 

the anisotropic parts of h(x, y) become comparable with the isotropic 

Maxwellian part. However, the behavior of g(x, y) is still interesting, 

as is illustrated by Fig. 17. Clearly g(x, y) does not rema:in an odd 

fu.nction of y, but in Fig. 17(a) actually resembles the parabolic Leg­

endre polynomial P
2

(y). Presumably the ion waves have little effect 

at this large value of x, so g(x, y) simply represents the small next 

term in a Legendre polynomial expansion. At even larger x, a def­

inite peak forms at y = -1, as shown in Fig. 17(b). This represents a 

distortion of the velocity distribution that eventually blends into the 

region of runaway electrons. The effect of our incorrect boundarycon­

ditions at y = ± 1 is apparent in Fig. 17. The important region of y 

near zero is unaffected by this. 

D. Validity of the Models 

The assumptions and approximations fall into two groups: those 

that are necessary for the Lenard-Balescu kinetic equations to be ap­

plicable and the ones that are convenient in finding approximate solutions 

,· 
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Fig. 16. Anisotropic part of the electron-velocity distri­
bution with Eo/Erun = 0.02715 and ee/ei = 70. Here 
x = V / ae and y = cos a. The solid lines show the 
result from a linearized kinetic equation, and the 
dashed lines give the nonlinear result. 
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Fig. 17. Nonlinear correction to the electron velocity distri­
bution at high electron speed. Here Eo/Erun = 0. 02715 
and ee/ei = 70. 
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of the Lenard..:Balescu kinetic equations. These are discussed sep­

arately and evaluated in terms of the results obtained. 

1. Applicability of the Lenard-Balescu Kinetic Equation 

tv The restriction to a spatially uniform classical Coulomb plasma 

defines the problem being studied. If these simplifications are not 

justified for the real plasma being studied, the problem must be mod­

ified. For example, the effect of transverse waves may be important? 7 

The problem might also be quite different in a magnetized plasma. 37 

The conditions that the plasma must be stable according to the 

linearized Vlasov equation and must vary "slowly" are certainly sat­

isfied in the numerical solutions obtained. These conditions might be 

violated during the transient as the plasma approaches the quasi­

stationary state calculated, but this transient presumably lasts no 

longer than a few collision times. 

The derivation in Sec. IV. C indicated that if A were suffi­

ciently large, the neglect of mode coupling and collisional effects on 

the waves would be justified. Here we present further verification of 

this in our particular problem. Notice again that in the dimensionless 

variables of Sec. VI. C, A appears in our equations only through a 

weighting of the relative importance of wave -particle interactions as 

inversely proportional to ln A. Therefore the solutions obtained 

would also depend very weakly upon A, in the variables used. In fact 

the numerical solutions were· o ?tained only for ln A = 10 because no 

qualitative changes are expected when A is varied. 

As A becomes larger, I v c/y I in our solutions will vary roughly 

as A -
1

, so for sufficiently large A the collisional effects on waves 

can certainly be ignored. As we noted in Sec. VIII. B, with ln A = 10 
4 2 3 . 

so A;:::; 2 X 10 , I v c/y I is as large as 10 or 10 in some of our solu-

tions, so presumably collisional effects would not be negligible. But 

with ln A = 20, for example, the solutions' would differ little .from 

those we obtained, and the neglect of collisional effects on the waves 

would certainly be justified. 
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According to Fig. 8, the ratio of the energy in waves to the 

kinetic energy of the particles is of order A -i The simple criterion 

that mode coupling can be ignored when this ratio is "sufficiently 

small" indicates that when A is "sufficiently large" the neglect of 

mode coupling is justified. We have no good way of estimating how 

large A must act:uaUy be. However, we notice that from Fig. 8 the 

energy of the waves is not much greater than when EO vanishes. 

Even if A is not large enough to justify the neglect of colli­

sional -effects on the waves, the qualitative features of the Lenard­

Balescu kinetic equations and of our solutions should remain valid. 

The dispersion relation and the expression for the damping rate -y 

would be different, but the fluctuation spectrum should still arise as a 

balance of spontaneous emission and damping. The plasma Would prob­

ably continue to stabilize itself, but the stability would not be deter­

mined with the linearized Vlasov equations. The effect of collisions 

upon ion waves is a current topic of research; recently it has been 

shown that a slow collision rate can either increase or decrease y, 

under :diffe,rent conditions. 68 

The situation when mode coupling cannot be ignored is not so 

clear. It again seems very unlikely that the fluctuations. associated 

with any particular ion wave can continue to grow in time, except slowly 

as the plasma slowly changes. 

2. The Models Solved Numerically 

Certain approximations were made to further_ restrict the gen­

erality ofthe problem and to simplify the interpretation ofthe results. 

These include 

(a) Considering an eledron·-proton plasma; 

(b) Assuming that the velocity distributions are almost Max-

wellian; 

(c) Approximately separating collisions and wave -particle inter-

actions; · 0 • 
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(d) Calculating R((F, V) using only the Maxwellian parts of the 

velocity distributions; 

(e) Ignoring the effects of electron waves; 

(f) Restricting the isotropic part of the electron velocity dis­

tri bution to be Maxwellian with constant temperature e . 
e 

These were adequateiy discussed in Sec. VI. Our numerical results 

show that these approximations served their purpose well. We expect 

that these simplifications are quite reasonable, except possibly. for (c) 

when e ;e. is less than about 20. 
e 1 

Unfortunately, the equations remain very complicated even with 

the symmetry of our problem and with the above approximations. 

Therefore only certain model problems were studied numerically. 

Model A was useful only when, E 0 is small compared to E 't' and 
. cr1 

it requires no further justification in that case. To obtain the more 

useful Model B, three further approximations were made.· 

(g) The terms in the Lenar<;l-Balescu equations arising from 

wave -particle interactions were simplified on the basis that the phase 

speed of the ion waves is small compared to the electron speeds. This 

approximation fails for the small fraction of electrons with small 

speeds, but, as is verified in our numerical solution, the region of 

V << ae makes no significant contribution to any quantity of in~erest. 

Thus, this approximation seems to be well justified. 

(h) Because no similar approximation can be made in eval­

uating the ion velocity distribution, this distribution was chosen to be 

Maxwellian with constant temperature e.. This has not been fully 
. 1 

justified because the wave -particle interactions might introduce signi-

ficant distortions. However, we notice that even if the ion velocity 

distribution is distorted, the fluctuations associated with ion waves will 

tend to make the electron velocity distribution isotropic. Unless the 

ion velocity. distribution is so distorted that ion waves would be un­

stable due to it alone, this will be a stabilizing effect and it will become 

large nonlinearly as instability is approached. Thus a Maxwellian ve­

locity distribution for the ions can be considered a typical example. 
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(i) The terms that remain too compiieated for numerical 

evaluation are those corresponding to "collisions" as represented by 

the Landau form of the Fokker -Planck equation. With anisotropic ve-

locity distributions, these terms have been evaluated only in very spe­

cial cases, arid it is certainly not our purpose here to pU:rsue this 

problem. We have thus been forced to make simplifications that a­

mount to evaluating the Fokker -'Planck coefficients by using the "known'' 

parts of the velocity distribution and neglecting the contributions of the 

"unknown" and small g(x, y). This resembles the approximation made 

in test~particle problems and Brownian motion problems, but in this 

case g(x, y) does not represent the distribution of a different species 

of particle. No attempt has been made to evaluate the effect of this as­

sumption .on the results found. 

We conclude that our model problems can be considered fairly 

realistic examples, except that assumption (i) .has not been·justified. 
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IX. CONCLUSIONS 

According to the Lenard~Balescu kinetic equations, the primary 

effect of fluctuations associated with longitudinal ion waves upon the 

electron velocity distribution is to tend to make it isotropic, which is 

a stabilizing tendency unless the velocity distribution of the ions is very 

distorted. As the plasma is forced toward conditions where it would 

become unstable to certain ion waves, this nonlinear stabilization be­

comes stronger and prevents instability. 

In our example of a current-carrying plasma with electron tem­

perature high compared to ion temperature, we have demonstrated with 

a model problem that the plasma remains stable to ion waves for elec­

tric fields considerably above the critical field of the Spitzer -H:trm 

problem. The fluctuations necessary to provide this stabilization have 

the same qualitative effects as 11 ordinary" collisions and substantially 

reduce the electrical conductivity and the thermoelectriC coefficient. 

Kinetic equations such as the Lenard-Bale scu equations are 

useful in such problems because they include the effects of "ordinary" 

collisions and of wave-particle interactions and because the time scale 

involved is the relatively long collisional time scale. However, the 

Lenard-Balescu equations can be used only when the plasma parameter 

A, which is proportional to the number of particles in a De bye sphere, 

is large enough that the effects of mode coupling and collisions upon 

the waves can be ignored. In our examples, this requires a very hot 

low -density plasma. ' 
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·APPENDICES 

A. The Momentum-Transfer Cross Section 

The differential cross section for an electron of speed v being 

deflected through an angle e by stationary heavy ions of charge Ze 

is 

Z2e4 
(A-1) 

2 4 2 
m v (1- cosB) 

On this deflection, the component of momentum parallel to the initial 

electron velocity that is transferred to the ion is m~ (1- cos B), .so one 

ordinarily defines the momentum-transfer cross section by 

erm(v) = 2rr r er8 sine (1- cosB) dB, (A-2) 

but when ere is given by Eq. (A-1), this integral diverges. Inserting 

a cutoff impact parameter b as discussed in Sec .. II. B is equiv­
max 

alent to replacing the lower limit by e . = 2Ze
2
/(mv

2
b ). We 

then obtain 

2 4 
( ) _ 2rrZ e ln 

erm v - 2 4 
m v 

m1n max 

2 
1 - case . 

mln 

When e . is very small, this reduces to Eq. (II -14). 
mln 

(A-3) 

The drag force exerted on an ion by an electron velocity dis-

tribution f (v) (normalized to unity) is now given by 
e-

(A-4) 

One usually ignores the logarithmic dependence of er upon v in 
m 

such integrals and evaluates the loga,rithmic term at some character-

istic electron speed. The total drag force on the electrons per unit 
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volume is then 

2 2 I' 2 r 3 v F = - w e ln A n Z d v 3 f ( v) . 
- pe a a .) v e-

(A- 5) 

a 

The mean velocity of the electrons U then satisfies the equation of 

motion 

e 
m ~ 0 (t) = 

1 
n m 

e 
F (A-6) 

In the special case of steady state in an electron-proton plasma, this 

becomes 

E = - w 
2 

e ln A J d 
3 

v _.!__3 v f ( v) . -0 pe - e-
v 

(A-7) 

We evaluate the integral in Eqs. (A-5) and (A-7) for the special 

case where f (v) is a displaced-Maxwellian distribution. To do this e- . 
we first notice that the integral has the same form as the integral that 

gives the electric field at E._= 0 due to a charge distribution p (E._). In 

this case the "charge density" f (v) is symmetric about v = U so we e- - -
know that the "electriC field" at v = 0 is the same as if all of the 

"charge" within 1_::: - _!:!I < I ~I were at v = U and the remaining 

"charge" were absent, Thus we have 

J 3 v 
d v -=- f (v) 

3 e­
v loU/ae 2 1 -y2JJ.L 

y dy::Jli e 3 = 
' TT U 

4 

3.[IT 

(A-8) 

where !J(x) is given in Eq. (II-24). When we combine Eqs. (A-5), 

(A-6), and (A-8) and use Eq. (ll-22), we find Eq. (II-23). 

,., 

. . 
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B. Expansions of the Dielectric Function 

For any particular k and positive k, we write 

(B-1) 

where we have defined w/k = V + ii', and . V and· l' are real. When l' 

is positive, G(V + il') is defined by Eq. (Ill-13), but otherwise it is 

defined by analytic continuation. When l' is sufficiently small 

· G(V + ill = G(V) + l' [:~~J + 
. I'=O 

1~ la 2G] +··· 
2 Lar,z 

I'=O 

(B-2) 

Because G is analytic, it satisfies the Cauchy-Riemann conditibns 

and we have 

(B-3) 

where in our case 

I' 
G(V) = R(~, V) + il (~, V) . (B-4) 

Therefore .Eq. (B-1) can be written for sufficiently small l' = -y/k as 

k 2 
E(5 kV + iy). = [ k

2 -·R(~, V) +r Bl(~V V) + Cf(~) J 

[ 
.. · · · · · a ~(v!s v) + ;ev. ( , 2 )] · 

+ i -I(~ V) - l' u U 1. (B- 5) 

which is the basis for discussing plasma waves. 

We next consider the contribution of species a to· R(~, V), 

which from Eqs. (III-20) and (Ill-21) is 

a F, (V'; k) 
a -
av• (B-6) 



-122-

with 

.... 2 II 3 ... 
F (V'; k) = w d v o(V'- k ·v) f (v). 

a. - pa. - - a. -
(B-7) 

We now assume that Fa.(~, V') vanishes for IV' I> lvl for the 

V being considered. Then Eq. (B-6) can be integrated by parts to 

yield 

By substituting Eqs. (B -7) and (B- 9) into Eq. ( B- 8) and evaluating the 

integral over V' by using the 6 function, we find Eqs. (III-28). 

Even when our above assumption is not .... satisfied, these results rep­

resent an asymptotic expansion of R (k, V) that does not converge but 
a.-

is useful when V is sirfficiently large. We will not prove this state-

ment. 

c. Calculation of U . 
cr1t 

In the following, V . and V are the roots of X(V /A) 
m1n max 

= 28./8 and can be determined from the values of X(x) given by 
1 e ... 

Fried and Conte. We consider k parallel to U so 

2 
D. .... 

-
1

- I(k, V) 
,;-;- -

e. 
1 

=e 
e 

U-V 
a 

(C -1) 

In the curves we discuss, the electron contribution and the negative of 

the ion contribution to Eq. (C-1) are plotted separately. Where the 

curves intersect, I(~, V) vanishes. 

··\ 
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With 8 = 108., we find V . = 1.03A and V = 2.63A so e 1 m1n max 
the curves appear as in Fig. 18(a), where we use a greatly expanded 

vertical scale. Notice that the ion curve passes nearly vertically up­

ward through the origin. With U = 4.5A as shown, the curves inter­

sect at three places; the minimum of F(V; !:_) is the intersection near 

V = 3A and thus occurs outside the range V . < V < V where R 
m1n max 

is positive, so the plasma is stable. As U is increased, the curve of 

the electron contribution slides to the right. ·Finally when Eq. (C -1) 

vanishes for V = V max' we have reached U = U crit" In our example 

we find U "t = 6.13A. Notice that this result is quite sensitive to the cr1 · -
exact value of V . 

max 
With 8 = 408., we find V . = 0.95A and V = 4.65A so e 1 · m1n max 

the curves appear as in Fig. 18(b), where we have used an even more 

expanded vertical scale. With U = 2.5A as shown, F(V; !:_) has no 

minimum. The minimum will form when U is increased until the 

curves beco·me tangent, and since R(!:_, V) is positive there, the cor­

responding U will be U "t' The point v
0 

where the curves will be cr1 
tangent is where they have the same slope and so is given by 

a8 
e 

A8. 
1 

v 2 
(2 _o_ - 1), 

A2 
(C- 2) 

which can be solved by iteration. In our example we find V 
0 

= 3. 53A. 

When Eq. (C-1) vanishes for V = V 0 , we have reached U = Ucrit' 

In our example, we have U .t = 3.68A. 
cr1 

The curves of Fig. 2 were constructed by the above procedure, 
"' 

The function F(V; !:) ~evelops a minimu ... m when I(!:_, V 
0

) = 0, and the 

waves with k = 0 begin to grow when I(k, V ) = 0. 
- max 



4 

.. 
0 

> 
, <.xl 

4 

.. 
0 

> 

....... I 

6-l~ 

-124-

· Electron 
contribution 

I 
I Uu 
I 

QL_ __ R_ __ ~~~~-7.~~~~ 
0 A 

v 

MU-35226 

Fig. 18. Illustrations for the calculation of Ucrit in an 
electron-proton plasma. The temperature ratio 
eel ei is 10 in (a) and 40 in (b). 



-125-

D. . Ohmic Heati:qg 

Unless E
0 

is smaller than E , the electrical power 
run 

supplied will primarily go into accelerating the runaway electrons. 

With E
0 

<< · E , the power is effective in heating the plasma, al­
run 

though as .e increases, E decreases; so, in practice, the tem-
e run 

peratures attainable are limited to a few hundred electron volts. 

We consider an electron-proton plasma and assume the velocity 

distributions remain nearlyMaxwellian. The power transfer from elec­

trons to ions ·by collisions is then 3v. (B - B.) m/M per electron so we 
c e 1 

find·when E
0

. << E 
run 

and 

(D-1) 

(D- 2) 

We consider only f) >B. so the ions are always heated. Whether the 
e 1 

electrons cool or heat depends upon the sign of 

(D-3) 

Whether f) /B. increases or decreases depends upon the sign of 
e 1 

e. 
1 

VT c e 
(' )2 ( ) 4 EO 2m 8 e 8i = - (0.5064) .-- -- -- ~ (D-4) 3 . E M B. o 

run 1 e 

The various cases for an electron-proton plasma are shown in Fig. 19. 

We see that although any point on this diagram could be reached 

by a suitable choice of the time dependence of E
0

(t), large temperature 

ratios are not likely to be produced or maintained by Ohmic heating 

alone unless E
0 

> 0. 1E . With E
0 

constant in time, a plasma would 
run 
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1.0 

d ( Be/ei) 
dt 

c 
::I .... 

IJ.I 
'-... 

0 
0.1 w 

d( 8e/8i) < 0 
dt 

(2) 

d 8e 
0 c:rr- < 

0.01 
I 2 5 10 20 50 100 

8e/8i 

MU-35232 

Fig. 19. Diagram describing the time variation of the temperatures 
ee and ei in an electron-proton plasma if only Ohmic heating 
and collisional transfer from electrons_ to ions are important. 
The dashed lines suggest the time evolution if Eo is constant 
in time. 

"' 
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evolve along a trajectory like the ones sketched in Fig. 19. 

E: Derivation of Fokker- Planck Coefficients 

Using. Eqs. (IV -14) and (IV -15), we have 

2 
qa 

c{!a (~. t) = 2 
. ' 2m .6. t 

.a 
(E-1) 

We introduce T = t 11 - t 1 and we use the approximation E. (t") = E_ (t') 

+ V'T SO 

off (v, t) = 
-a- 2 

2m .. .61: 
a 

I +.6t ;:-t' +.61: 
dt' dr (~[E_(t! ), t']E[E_(t') + ~T, t' +rJ). 

t-t' 
(E-2) 

We assume the quantity in brackets is C (v'T, r), although the ensemble 
r- -

here cannot be the same as in our ·derivation of C (R, r) because here -- . 
we know that a particle exists on the trajectory E_(t' ). Because .6-t is 

chosen long compared with the correlation time, w~ make little error 

by extending the limits on ·'T to -oo and oo, Also, since .6-t is chosen 

short compared with the time scale over which ~(~'T, r) varies, the 

integral over t' yields .61:. Thus we find 

2 

A- .2mqa 2 Joo
00 

% (~, t) = dr ~~T, r). (E-3) 

a 

From Eqs. (IV-13) and (IV-15), we find 

J (v, t) -a-
(E-4) 

u 
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We now use the approximation 

and by integrating the particle equation of motion twice, we find 

_:_(t+T)- _:_(t) - VT = (E-6) 

where v is evaluated at t. In Eq. (E-6) we interchange the order of 

integra~ion and use E_(t + T') = _:_(t) + ~T' so that substitution into Eq. 

(E-5) yields 

"' [ .':_ (t t T), t t .,.] = ];";_ [ .':_ (tl,+ VT,t+ T] + m'\, 17 

dT'(T- T 0 I 
a. 0 , 

x {a a:><: [ ];";_(.>:_( t 1 + _'CT •. t tT • )];";_ (:":! t: T 1]t= .>:_(, I+.'C: 
(E-7) 

In evaluating the ensemble average of this, the first term would vanish 

except that we know the particle is present 11 at11 .r.(t) + ~T, so we find 

Ed (q , v). As in calculating cfJ. (v •. t), we assume the second 
- rag a - . . -a-
term again yields C (R, T) so --

<E [r(t+-r), t+-r]) =Ed. (q ,v)+ qa - - - rag a- m 
a 

la cl- () , ···Jj"' ox - - - -X l-·- . x - r t. ·- vr , T -T. 

- ~=E_(t)+~.T 

(E-8) 
·~ ... 
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The expression in braces is simply 

1 a 
'T - T' a v 

C[v(T -T1
), 'T -T'], --

so, introducing T = 'T - r, we have 

<E lrr(t+T), t+TD= E...J (q ,v) + qa ____£_ ·I7

dT_C(_vT, T). (E-9) 
- - ---ur ag a - m a v a 0 

On substituting this into Eq. (E-4), we see that, because ~t is chosen 

long compared to the correlation time, we introduce little error by 

extending 'Tin Eq. (E-9) to infinity. Then since ~t is short compared 

with the time scales on which the quantities in Eq. (E-9) vary, we find 

1: 
qa 

(v,t)= 
a- m 

a 

a 
E (q v)+­
-drag a'- a~ 

loo dT ~(yT, T). (E-10) 

Using the symmetry ~{-g, -T) = ~(g, T) and Eq. (E-3), we find Eq., 

(IV -1 7). 

F, Reduction to Scalar Variables 

Here certain results needed in Sec. VI. A are derived. 

1. Expressions for af(v, a, t)/at and~·L<~. t) 

With our symmetry, the gradient in spherical coordinates yields 

a f(~, t) 

av = v-
af(v, a, t) a 

av +-y 
a f(v, a, t) 

a a 
( F-1) 

and the divergence in spherical polar coordinates yields 

a 
av . ~(y, t) = _1._ ____£_ [vv ·J J +· 1

.' ____£_ [(sino.) a. J ] . . 2 a V - .-e V Slna a a - -e 
v . . (F-2) 
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Since E = v cosa - a sina, we have 

a. = 1 
sina 

Substitution of these results into Eq. (VI -7) yields Eq. (VI-9). 

From Eqs. (F-1) and (F-3) we find 

..... a f 
k.- = 
- av 

1 .... a f 
- k·v -·­v-- av 

1 (cosa k·v _ \ af 
v v - - case) a (cosa) 

so, using the 6 function to replace k. v with V, we have 

(F- 3) 

(F-4) 

... ' ..... af "" 1 [ af (:v ) af 1 o(V-:ck·v)k ·- =o(V- k·v)- V-- ~cosa -case · j (F-5) - -- a~ -- v av v . a (cosa) 

which is Eq. (VI-10). 

If the spherical coordinates are completed with the azimuthal 

angles f3 fo;r v and ljJ for Js:, then we have 

121T ..... 
sin() df) d ljJ 6(V-~. ~) 

0 
(F-6) 

where 

k. v = v cos e cosa + v sine sina cos( ljJ- [3). (F-7) 

The integrand is an even function of <j> = ljJ - f3, so we find 

J d 
2

]:,_ 6(V- ]:,_ • y_) " zl n sinB dBl n d<j> 6 (V -vee s8 cosn - v sinB sina cos~) 
(F-8) 

which is Eq. (VI-11). 

2. Expressions for H (8, V), I (8, V), and R (8, V) e e e 

With these same spherical coordinates, we have from Eq. (IV -5) 

2100 

2 l'TT H (8, V) = 1Tmw v dv sina da 
e pe 0 121T ... 

df3 o(V- ~ ·~) f(v, a, t). 
0 

(F-9) 

.• 

... 
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With Eq. (F-5), Eq. (VI-4) yields 

Ie( e. V) = 1'Wp; r v d{ sina dn £" d~ O(V- t. y)H ~ -(~ cosn- cos~8(c~~n)]. 
(F-10) 

With Eq. (F-4) and with 

k.v = 1 + v (F-11) 
k ·v- V 

Equation (VI-3) becomes 

2100 l'IT R (B, V) = w v dv 
e . pe 0 0 [

af cosa of] 
ov- -.-v- o(cosa) 

2
Tr d . a f v a f ( ) '1 + p L .~ . ./- v [ v av - v cosn - cos$ a (cosn)] . (F -12) 

If we again use Eq. (F"-7) and substitute cj> = ljJ - ~. the above integrals 

over ~ become 

dcj> 6(V- v case cosa "-vsinBsina:c:oscp) (F-13) 

1T 

dcj> .. d@ = 2P 10 .. 
k •V- V 

(F-14) 
v case cosa + v sine sina cosq> - v. 

When these are used inEqs. (F-9), (F-10), and (F-12), the results are 

Eqs. (VI-13), (VI-14), and (VI-15). 

With the change of variables x = coscj>, we have 

l
'IT ' 11 - { 0 · 5(a+bx) 

dcj> 5 (a+ b co scj>) = dx > -
2 

= 2 2 _ 1/2 
0 -1 J1-x _ (b -a) 

if 

if 

/b/</a/ 

/b/>/al 
(F-15) 
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which is Eq. (VI -16 ). 

We also must consider 

= d<j> 
a+ b cos<j> 

(F-16) i<j> -i<j> . • 
2a + b(e - e ) 

Introducing the complex variable z = ei<j>, we find 

11T d<j> 
p a+ b cos<j> 

= 1. b1 p.f 2 d._z __ _ 
z +2~z+1 

b ' 

1 
= ib 

dz (F-17) 
(z- z+)(z -z _) 

whe~e z± =- E ±~·and the integration is counterclockwise 

about the unit circle~ · 
'' . 

With lbl>lal, we define.~os<j> 0 =- ~and find z±= exp(±icp 0 ) so 

that the poles are on the unit circle, The integral over a circle slightly 

smaller or slightly larger than the unit circle vanishes; averaging the 

two cqses, we find 

a+ b cos<j> = 0 when (F-18) 

With I b I <I a I, the principal value is not n~eded so the integral 

can be evaluated as above. If a/b is positive, the root z + is inside 

the unit circle and z is outside, so 

11T d<j> 
p O at b COScp 

21Ti 
= ib 

if a/b > 1. (F-19) 

Similarly 

a+bcos<j> 
21Ti = ib 

1 
if a/b< ~1. (F-20) 

These results combine to give Eq. (VI -17). 

01;1 

~ . 
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G. Expansion in Legendre Polynomials 

If v is described in spherical polar 
.... 

coordinates s and 11 about the direction k 

as indicated in the spherical triangle, the 

superposition theorem for Legendre polyno­

mials is 

p_ 

k 

v 

a 

\ (f-m)! m m 
P

2
(cosn) = P 2(coss)P_g(cos8)+ 2 m~1 (f+m)! P 2 (coss) P_g (cos8)cosm11. 

(G -1) 

Expression for H ( 8, V) 
e 

From Eqs. (VI-5) and (VI-21), we have in the above coordinates 

00 

. 2100 2 11T J21T \ H (8, V) = 1TmW v dv sins ds d,., 6(V-v coss) L fJv)Pn(cosn). 
e pe 0 0 0 f =0 Z' XI 

(G-2) 

With P _g(cosn) replaced with Eq. (G-1), only the term P 
2

(coss)P_g(cos8) 

will contribute to the integral over 11· Therefore 

H (B,V) = 
e 

00 

L Hef(V) P 2(cosB) 
£=0 

where, with x = coss, 

2 2100 2 J1 H n(V) = 21T mw v dv f n(v) dx 6(V -vx)Pn(x) 
e XI pe O XI _ 1 XI 

or 

2 2100 
Hef(V) = 21T mwpe V v dv f_g(v) P f 

(G-3) 

(G-4) 

(G- 5) 
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By the methods of Appendix F, we find 

k 8 f = cos S ~ + s in2 S -·av av v 
a f(v, a, t) 
a{cos~) 

(G-6) 

When this is used in Eq. (VI-4), we proceed just as in Sec. G.1 and 

find immediately that 

I (B,V)= 
e 

(G-7) 

with 

r,p> ~ z~2wpe 2 r dv [ v a: ~(v) p£ ( ~) + (1- ::) fi(v) d:t~;:~)] . 
(G-8) 

This can be written as 

l
0
pi ~ 2~2wpe zr dv {v aav h(v)P£ (~)] +fi(v) d;~;~;)}(G-9) 

and the first term can be evaluated, so we have 

We notice from Eqs. (G-5) and (G-10) that 

1 a He_e(V) 
I (V) = - ----e£ m a v 

(G-10) 

(G-11) 

More generally, it follows f!'om the definitions of H ( 8, V) and of 
e 

I (8, V) in the form of Eq. (III-22} that 
e 

I (k, V) 
a-

1 
m 

a 

a H (k, V) 
a-
av (G-12) 

;.: 
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3. Expression for R ( 8, V) 
e 

If we ihsert Eq. (G-6) in Eq. (VI-3) and reuse the same proce­

dure, we find directly 

R (8, V) 
e 

(G-13) 

with 

2100 . !1 dx [ a:f_g(v) 1-x2 dl£(x)] 
Re_e(V) = 21Twpe 

0 
v dv P _

1 
x -V/v x 8V P_e(x) + -v- fjv) dx 

(G -14) 

For any given £, the principal-value integral over x can be evaluated 

by substitution of the_ polynomial P _e(x) and use of the expressions 

and 

n 
X 

x- ·a = 
n 

a 
x-a + 

n 

I: 
p = 1 

dx 
--.- In x- a 

. n-p p-1 a x 

'
~, 
1 + a · 

However; no general expression valid for all £ is apparent. 

H. Eval~ation of I ( 8) 
g 

(G-15) 

(G-16) 

With V /v set equal to zero, Eqs. (VI-16) and (VI-18) yield 

l~ dq;&(a+ b c9s~) = (sin2B - cos 2n) -i/Z/v (H-1) 

h 
. 2-r, 2 

w en s1n o >cos a and zero otherwise. With the same approximation 

in Eq. (VI-14), we have 

I ((), V) = 21Tw 2 dv . d(cosa) l oo JsirlJ 
e pe 0 -sin8"Vsin2 e- cos2 a 

cose af(v, a) 
a (cosa) 

(H-2) 
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Introducing the dimensionless variables and functions of Sec.VI. C and 

including only_the contribution of g(x, y) •. we have 

J
sin8 

I (8) = -1T cos8 
g · -sin8 

(H-3) 

where 

p (y) = a~ 100 g(x, y) dx . (H-4) 

We may rewrite Eq. (H-3) by changing variables to 4> where 

y = sine cos¢ 

y =-sine cos¢ 

when 

when 

y > 0 

y < 0 • 

(H-5) 

This yields 

Ig( B) = -~ cos B l ~fz dq> [ p (sin B cos<\>) + p (- sinB cos.p) J. (H-6) 

I. Evaluation of J 
1 

(x) and J 
2

{x) 

From Eqs. {VI-8'1) and {VI-59) we find 

-1 2 -3 2 -x J1 [+ 1 f 1 2 du u R{u) _
1 

y dy r _ d{cose) D 1T e + f{x)y 

+ H(8, u) u [ -2x -x
2 + a f l·+ H{e, u) 1 ~ e - ~ e y a- I(e ) - cos I(e,u) x 'TT3;2 ux_~ , u x · 

'I 

-';)f(x)J 
{I -1) 

where 

{I- 2) 

and 

2 2 2 2 
D = {:t+- cos8){cose- r _r = 1- '\1 lx -cos e- y + 2ux{cose)jy • 

{I- 3) 

,t. 
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Notice that D is unchanged by the interchange of u/x; cosB, and y. 

The integral over y and cos B is actu~lly over the region where D 

is positive, which is th~ interior of an ellipse. Therefore, we may 

trivially interchange the order of integration as 

j.r + ,r + 
I 

!1 l 11 
dy [ 

l I•' 

J = -1 
. e I dy i d(cosB) d(cos )j I (I -4) I 

'-1 
) J r r I 

where 

u(cosB)/x ± sine \.)1-
2 2 

r I = u /x - c ± d (I- 5) 
± 

and 

D = (r+ 1 
- y)(y- r_ 1

). (I- 6) 

The integrals over y are now easily evaluated with the sub­

stitution y = c + d cos<j>, so 

r 

n -1/2 J1T n y D dy = d<j>(c + d cos<j>) 
.. 0 

1T 

rru(cose)/x 
2 2 2 2 2 2. 

rru (cos e) /x + rr(1-cos 8)(1-u /x )/2 

(I-7) 

with n = 0 

with n = 1 

with n= 2. 

Using these, we find 

9 IX 11 J 
1 

(x} = - du u R(u) 
2~ X 0 -1 

l r 2 ~ I' H( e, u) case 2 1 2 2 
I +'u cos e + 2 ( 1 -cos e) 1 - : 2 ) _I + I(B, u) f(x} 1 

,_ 
X I l 2 -· - X 

f(x) (1 - H( e, u)\ . af1 
X 

u 
+ 

H(e, u) u 
ax l?' (I- 8) 2 I(e, u)} I (8, u) X 

X j t 
I 

/ 
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arid similarly 

-9 lx J (x) = -- .. 2 -
b.}rr x 0 

. f . { -3/2 -x
2 [1 - 2u H( e, u)] 

duR(u) _
1 

d(cosB) ~osB rr e · I(B, u) 

+ H(8, u) cos8 f(x) +";cos& [f(x) ~- ~- H(B, u~+ H(B, u) ~ ~J] 
I(e, u) X X .. ·2 I(e, ti) I(e,u) X ax . 

. X 

(I- 9) 
The integrals over e are simply the V (u) defined by Eq. (VI-84) 

n 
along with the simple results 

2 

0 

2/3 

with 

with 

. with 

n = 0 

n = 1 

n = 2 • 

(I- 10) 

When these results are used in Eqs. (I-8) and (I-9), we find Eqs. (VI-82) 

and (VI- 83 ). 

J. Evaluation of W (u, y) 
n 

We define 

~I (u, cos B) = I 1(u) cos() + Ig(B) 

so that 

I(u, B) = I
0

(u) + ~ I(u, cos B) 

where ~ is an odd function of case. Then from Eq. (VI-106) 

1117 
W (u, y) = 

n 12 
. , -"-11-:Y-

We now change variables to <j>, where 

case = v/1 - y
2 cos<~> 

cose = _\,/ 1 - y2 cos<j> 

-when 

when 

case > 0 

cose < 0. 

(J- 2) 

(J -4) 

,,. 

,_-... 

.. 
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and find 

l rr/2 [ J·-2 n 
W (u y) = ckp ( 1-y coscj>) . 

n ' 0 r
0

(u)+ .6.I(u,01-yltoscj>) 

·, ;-' ' J 2 n + . (-~1-y coscj>) .. 

I
0

(u) -.6.I(u, J 1-yZCoscj>) . 

(J- 5) 

K. Effect of Ion Waves 

We neglect the effects of ~O and of 11 ordinary11 collisions for 

the moment. Then Eqs. (VI-100) and (VI-105) yield 

a h(x, y, r) = ___! ~ ll S( ) a h(x, y, r) l 
a r 3 ay Y ay 

X 

According to this equation, we have 

J1 
dyh(x, y, r) = C(x)· 

-1 . ' 

(K-1) 

(K-2) 

where C(x) is independent of r. That is, the ion waves do not alter 

the number of electrons with speed v (in our approximation) • We 

now define 

Je (x, r) = fi dy [h(x, y, r) r . (K-3) 

If we write 

h(x, y, r) = ~ C(x) + oh(x, y, 1') . . (K-4) 

we find that 

(K-5) 

since 

[
1 

dy oh(x,y, r) = o. (K-6) 
--'-1 
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2 . 
We thus see that the minimum value JC(x, r) could have is C (x}/2 will 

occur if, and only if, oh(x, y, r) vanishes,. so h(x, y, r) is isotropic. 

We next consider 

a JC (x' T) = 2 fl 
a r _

1 

ah _ 2 j 1 
h aT dy- 3 

X -1 
a [ ah] h ay S(y) ay dy. (K-7) 

Since S(y) vanishes at y = ± 1, partial integration yields 

8Je(x, r) = ~ f 1 
S( ) [oh(x,y, r)]2 

d . ar 3 Y ay Y 
X -1 

(K-8) 

But since S(y) is positive except at y = ± 1, this implies 

and the equality holds if, and only if, a h(x, y, r)/ a y vanishes for all 

y. 

We have thus proven that (a) within our approximations the ion 

waves always tend to make the electron velocity distribution more 

isotropic and that (b) their effect vanishes only when the electron ve­

locity distribution is isotropic. 

A similar "H-theorem" is well known for one -dimensional 

bl . . 1" h 30 pro ems 1n quas1- 1near t eory. 

One may verify that the above discussion depends only upon the 

assumption u << x, which of course will fail at small x, Although we 

have derived this theorem only for the restricted anisotropy of our 

problem, it can probably be easily derived for arbitrary anisotropy. 

It is probably true in unstable plasmas as well as in stable plasmas, 

·• 
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L. Partial List of Functions and Symbols 

A plain letter like v denotes a scalar variable, a letter under­

lined like S:., denotes a second-rank tensor quantity, and a letter 

underlined like ~ represents a vector quantity with magnitude k and 

direction k so k = · kk. 

The symbol ( ) indicates an average, often an ensemble av­

erage, of the enclosed quantity. 

The meaning of subscripts is usually self-explanatory. The 

subscripts e and i in most cases label electron and ion quantities 

respectively. Numerical subscripts 0, 1, 2, etc. in many cases label 

coefficients in an expansion in Legendre polynomials. 

Below we list primarily the variables and functions that appear 

in more than one section. 

a = a 
e 

A = a. 
1 

e
2 je b ::::: 

min e 
b ::::: D 
. max e 

~(~. T) 

D 
e 

h. (v, 
-a-

t) 

e 

~ (E_, 

~o(E., 

E 
crit 

E 
run 

t) 

t) 

n ea 
e e 

aSH 

E = E
0
jE 

run 

~ drag(q, ~·) 

electron thermal speed 

ion thermal speed 

minimum impact parameter 1n Landau equation 

maximum impact parameter in Landau equation 

autocorrelation function for electric -field 
fluctuations 

·electron J?e bye length 

Lenard-Balescu form of Fokker -Planck co-
efficient for species a 

magnitude of el~ctron charge 

electric field 

electric field not produced by the volume of 
plasma under consideration 

critical value of Eo. at which the plasma in the 
Spitzer .,Harm pro 131em becomes unstable to 
ion waves 

value of E
0 

above which the electrons would 
. quickly run away, according to the Landau 

equation 

dimensionless E
0 

drag on a test particle with velocity v• and 
charge q 



f (r, v, t) 
a- -

f (v, t) = f (v, t) 
- e-

F(v, t) = £. (v, t) 
... 1 -

F(V; :!:_) 

f (x) 

g (x, y) 

h (x; y) 
... 

H (k, V) 

I(:!:_, V) 

j__ (t) 

J (v, t) 
-a-
k 

k 
m 

... 
K (k, V) 

m = M 
a a 

m= m 
e 

M = m. 
1 

n 
a 

n = n 
e 

p 

p £ (y) 

q = Z e 
a a 

r 
A 

_R_l~c_Y) 

S(y.) 

. t 
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distribution function for species a 

velocity distribution of .electrons 

velocity. distribution of ions 

a function from which R(k, V) and I(k; V) 
can be calculated [see Eq. (III-20)] 

Lenard-Balescu form of dynamic friction for 
species a 

dimensionless f
1 

(v) 

dimensionless nonlinear correction in f(v, a) 

dimensionless f(v, a) 

a function involve'd in C (R, T) and in the 
Lenard-Balescu equations [see Eq. (IY -·10)] 

imaginary part of k
2

- k
2 EQ:, kV) with V real 

electrical-current density 

current of species a in velocity space 

variable of Fourier transform in space; wave 
number 

the cutoff in the Lenard-Balescu equations 
[see Eq. (V -1)] 

a function in the Lenard- Balepcu equations 
[see Eq. (V-1)] 

mass of a particle of species a 

mass of an electron 

mass of an ion 

number density of species a 

number density of electrons 

a principal-value integration 

Legendre polynomials 

charge of a particle of species a 

position variable 

real part of k
2

- k
2 E(!:_, kV) with V real 

function that determines the effect of ion waves 
upon the electron velocity distribution 
[see Eq. (VI-105] 

time 



1:1 .-. 

• 

u = V/a e 
u 

u 't cr1 

v 

v 

V min' V max 

W (8, u) 

x = v/a 
e 

y = cosa 

Z = q /e a a 
a 

a 

~ 

" = e ;e. e 1 

" o = ~ m/M 

0 ( ) 

E =A/a 
E {k, w) 

e 
e 

a 
p 0 (.:._, t) 

3 
A = 4Tr n D 

v 
c 

T = V t 
c 

e e 
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dimensionless phase speed 

relative velocity in displaced Maxwellian 
electron-proton plasma 

value of U beyond which certain ion waves 
grow 

velocity variable for particles 

real part of phase speed w/k 

in a Maxwellian electron-proton plasma, ion 
-waves can exist only within V . < V < V 

m1n max 

distribution of energy in fluctuations asso­
ciated with ion waves [see Eq. (VII-9)] 

dimensionless particle speed 

angular variable in electron velocity distri bu­
tion 

charge of particle of species a in units e 

index for labeling species 

angle between :::_ and .§
0 

thermoelectric coefficient 

ratio ofte:rnperatur_es (in Sec. VI. C only) 

imaginary part of frequency w; growth rate 

square root of mass ratio 

Dirac 6 function of variable in parentheses 

ratio of thermal speeds (ion to electron) 

Vlasov dielectric function 

angle between ~ and .§
0 

temperature of species a 1n energy units 

a charge density not part of the plasma under 
consideration 

the plasma parameter 

a collision frequency [see Eq. (Vl-31)] 

electrical conductivity {appears with various 
subscripts) 

dimensionless time 



w = kV + iy 

w 
pa 
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variable of Laplace ·transforms in time; 
angular frequency 

plasma frequency of species a ~· ,, 
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