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THE EFFECT OF WAVE-PARTICLE INTERACTIONS
ON THE STABILITY OF A CURRENT-CARRYING PLASMA

Gary Arthur Pearson

Lawrence Radiation Laboratory
University of California
Berkeley, California .

March 4, 1965
ABSTRACT

- The stability of a current—carrying electron-proton plasma is
studied by calculating the velocity distributions of the particles with the
Lenard-Balescu form of the Fokker-Planck equations rather than with

the familiar Landau form. It is known that the Landau equations yield

velocity distributions that become unstable to longitudinal ion waves

when the temperature ratio 6 /6. is large and the electric field E
that drives the current exceeds a critical magnitude E crit’ The
Landau equations are then not adequate because they do not include the ’
effect of the fluctuating electric fields associated with these ion waves
upon the velocity distributions. _

As EO is increased to Ecrit and beyond, the Lenard-Balescu
equations show that the fluctuations associated with certain ion waves
increase rapidly, drive the electron velocity distribution towards
isotropy in the ion frame, and thus prevent the plasma from becoming
unstable to any ion wave. For EO greater than Ecrit’ these fluctua-
tions are just sufficient to maintain the stability. By distorting the
velocity distributions of the particles, these wave‘—partic.:le' interactions
also alter the transporf properties of the plasma in much the same way
as an increased collision frequency would do.

/
The computer solutions obtained with Ge/ei = 70 serve as ex-

‘amples. With E. =E . , the ion waves whose damping rate would

0 crit’
vanish according to the L.andau equations actually have a damping rate

smaller by only a factor of 12 than with . EO = 0. This damping rate

decreases by another factor of 10 as EO' is increased to 1.25 Ecrit'



-viii-

The energy of the corresponding fluctuations increases by these same
factors as E'O is increased from zero, but the total energy' in fluctua-
tions associated with all ion waves only doubles as E; increases from

zero to 1.25 E

4

crit’ The electrical conductivity is lower than the value

from the Landau equations by 4.6% at Eqj =0, by 8.1% at Ej=E
and by 12.1% at Ey=1.25 E

crit’
this correction becomes significant as

L 3]

crit’
Eg is increased further. R
The plasmas to which the results of this problem would directly .
apply are restricted by the conditions for validity of the Lenard-Balescu
eqﬁations. When thesé éonditi'o"ris',ar'e not met; other: physical proc-
 esses may.al‘so be of importénce; For ekémple, even in a high—tem—
peratﬁre 4low—density plésrﬁa-, as Eqg is increased the fluctuations
associated with ion waves will be affécted by collisions and bif mode

coupling.
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I. INTRODUCTION

The growth or damping of longitudinal ion waves in an unmag-
netized current-carrying classical Coulomb plasma is considered.

The discussion is restricted to a spatially uniforn low-density high-
temperature plasma and often to an electron-proton plasma. »

The velocity-distribution functions found by Spitzer and Hirrn1
in calculating the linear electrical conduc;civity will support growing ion
waves when the electric field exceeds a critical value. The Landau
form of the Fokker-Planck equation, which Spitzer and Hirm used,
does not include the effect of waves upon the velocity distributions of
the particles, -and is therefore inadequate when the electric field ex-
ceeds this critical value. When the electron temperature is large
compared to the ion temperature, this critical field is small enough .
that, if the Landau equation remained valid, its linearization would
easily be justifie.d.

In this case the velocity distributions of the particles are still
determined primarily by the electric field and by the "ordinary'" col-
lisions contained in the Liandau equation. Thus fche quasi-linear theories,
which are often used in the study of effects of wave-particle interactions,
are not useful because they do not include the effects of '"ordinary"
collisions. Instead, the Lenard-Balescu kinetic equations are used
because they include the effects of "ordinary' collisions and of the
fluctuating electric fields associated with waves, although they are
applica‘ble only when the plasma can support only damped waves and so
is stable. | _

In the Lenard-Balescu kinetic equations, the spectrum of electric-
field fluctuations associated with waves arises as a balance of the con-
tinuous excitation and (Landau) damping of waves. This balance can
occur only if all waves are damped. The continuous excitation can be
described as spontaneous emission of longitudinal waves by the plasma
particles, and the Landau damping is then interpreted as the net effect
of induced emission and absorption by the particles. - |

These wave-particle interactions also affect the velocity dis-

tributions of the particles. In various examples that have been



considered, the wave-particle interactions have qualitatively the same
effect as "ordlnary collisions or part1cle -particle 1nteract10ns In
fact it is often useful to con51der the wave- partlcle interactions as the
interactions of 1nd1v1dual particles by the emission and absorptlon of
waves. _ _ ,
| In particular, the fluctuations.as sociated with ion waves .drive
the velocif;y distributions towards isotropy, as do "ordinary' collisions,
and this tends to stabilize the plasma. However, unlike "ordinafy"
_collisions, the wave-particle interégtions are altered as the plasma
approaches instability. As the damping rate of éertain waves decreases
the fluctuations associated with them increase rapidly, ‘ so the effect of

" wave-particle interactions on the particle velocity distribution, which
effect should include a stabilizing tendency, increases nonlinearly.

The purpose of this thesis is to investigate this nonlinear stabilization.

The Lenard-Balescu kinetic equations are valid near and above
the critical field only because of this nonlinear stabilization. These
equations have other restrictions—such as the neglect of the effects
that wave-wave interactions (mode coupling) and collisiorns ha\}e on
- waves —which limit their usefulness.

These concepts are presumably applicable to o’cher problems
1nvolv1ng mlCI‘O 1nstab111t1es or veloc:Lty space 1nstab111t1es In such
cases, even though the plasma may be stable, the high level of fluc-
_tuations necessary to maintain this stability may be Very important in
“altering certain transport rates such as diffusion across a magnetic
4field. Qualitatively the wave-particle interactions usually have the

same effect as a higher collision rate.

In Secs. II through V, the concépts and éqﬁations used and the

related work by others are reviewed. In Sec. VI we start with the
, Lené,rd—Balescu equations for é.n electron—proton plasma, discuss sim-
plifying assumptions, and develop the equatlons for two model problems
that are solved numerlcally Sectlon VII is a brief descrlptlon of the
numerical procedure used, and the results are discussed in Sec. VIII.

- Sections II through V are a review and discussion of the physical

basis for the Lenard-Balescu equation. The reader who is familiar



with this material may prefer to ignore the appropriate sections, al-
though Sec. III. E ddes contain one new and interesting result. Also,
most readers are probably not familiar with the material in Sec. V. A,
which may be read in conjunction with Sec. VI. B. " The mbst useful
general references for these review sections are the recent book by
Montgomery and Tidrna,n2 and the review article on plasma waves by
Bernstein, Tre!han, and Weenink, 3 both of which contain extensive lists
of appropriate references. |

Appendix L contains a brief discussion of the notation that is
used. All equations are valid in both electrostatic units and in Gaussian
units. A plain letter like v denotes a scalar variable, a letter under-
lined like 9 denotes a second-rank tensor quantity, and a letter under-
lined like k- represents a vector quantity with magnitude k ahd direction

K so k= Kk



II. SIMPLE COLLISIONAL MODELS OF
'A CURRENT-CARRYING PLASMA

A. The Spratially- Uniform Classical Coulémb Plasma

We begin by making certain assumptions to obtain a set of e-
quations that will approximately describe the behavior of a real plasma.

All quantum effects are ignored, so our plasma is "classical"
and is treated as a collection of point particles with masses m;, charges .
;5 spatial positions 1r;(t), and velocities Yi(t)' This is a useful approxi-
mation only if the real plasma has high temperature and low density so =
that, for example, it remains nearly fully ionized.

We also treat the plasma as a '"Coulomb'" plasma‘ in which the

- Maxwell equations are approximated as

VXE(r,t) = 0 (11-1)

v E(_r,t) = 4m Zqi olr - r.(t)] +4mpy(r,t), (I1-2)

and the equation of motion of a particle is approximated as
dv. (t)

i . dt

Equations (II-1) and (II-2) imply that

= q;E' (r; vt) : o (11-3)

m T

-r.(t) _
=T (11-4)

-
E(_I'_»t) =E (r,t) + L q.
i

0 llil_‘_fi(t)l3
and the prime in Eq. (II-3) reminds us that the particle being con-
sidered is to be left out of the sum. These approximations are not
appropriate unless all speeds of interest are small compared to the
speed of light, and the magnetic-field effects are negligible. With these
approximations we can treat only longitudinal waves and so we cannot \
treat radiation.

The field b?o(g, t) and the charge density po(g, t) are considered Y ¢

known and are related by

VXEqy(z, t) = 0 : (I1-5)



v Eo(]:: t) = 4Tl'p0(;f, t) . (II-6)

We represent the real plasma by an ensemble in which the en-

- semble averages of all quantitiés--except potentials are independent of

the spatial position r. We further suppose that each particle belongs

to a species a with mass Mo. and charge Ay and we choose our en-
semble so that all averages are unchanged by the interchange of any

two particles of the same species. (Boltzmann étatistics are appro-
priate because we treat a "éla?ssiacdl" plasma. )‘ Becausé EO and pd

are supposed known, we know immediately that their ensemble averages

are

<E r, t> E () O -7)

<p0(g,t)>:o. , o (11-8)

Because the particle flux of each species a

<> v, (t) [r-r (t)]> | | | (.11-9)

111’].0.

must be independent of r and because partlcles are conserved, the

number den51ty of species a

</w4 r—r(t]> | (11-1_0)

iina
must be independent of both r and t. The distribution function
f (v, t), which is proportional to < i%a 6[r - I_'i(t)] 6 [v - Yi(t)]> , must

be independent of r, so we normalize as
fd?)vfa(x_/,t) =1. , (I1=11)

Because <_E_) (r, t)> must be independent of r we must have charge neu-

Z. naq<1 =0.

a

trality

Similar statements can be made about other quantities. This choice of
ensemble is appropriate only if the real plasma’is "spatially uniform'

on a distance scale large compared to distances that appear naturally



in the problem, such as the collision mean free path. We thus use this
ensemble to treat a limited region of a real plasma. The only influence
-of the region external to the region being considered is produ'ction of
EO (t). Notice that in this "spatially uniform" plasrna‘ : »

<§ (g,t)> = Ey(t) . | o (1I-12)

" In Secs. III, IV. A, and IV. B we consider perturbations of our
"spatially uniforrd' plasma that are not represented by an ensemble
chosen as above. v ‘

A current—carrying plasma requires special consideration be--

cause the uniform current density
e . Yq (¥ (11-13)
a

produces a magnetic field that cannot be neglected if one considers a
sufficiently large cross-sectional area. Therefore, the cross. sec-
tional area of the volume of our real plasma must be small enough that
this self-magnetic field can be neglected throughout. This requires
(a) that the magnetic pressure be small compared to the kinetic pres-
sure so the plasma remains uniform and (b) that the cyclotron frequency
of the particles be low éompared with other frequencies of interest,
such as the collision frequency. ' |
Throughout this work, the term '"plasma' will usu'ally imply a
spatially uniform classical Coulomb plasma as discussed above. Al-
though the real plasmas to which our results would apply directly are
quite restricted, many of the qualitative features discussed are prob-

ably present in many real plasmas.

B. Collisional Models

In the collisional models only the electrons (mass m, charge -e)
are treated in detail. The motion of the ions is neglected because of
their relatively large rnass.es. The electron-distribution function is
affected only by the externally applied field EO (t) and by collisions in
the Boltzmann sense.?"S’6 Because the Rutherford cross section does

not yield finite results, one ignores the interaction of two particles

p

©



when their impact parameter is larger: than a certain "cutoff" distance
brnax' This procedure is an attempt to account for the shielding pro-
duced by particles other than the two being considered. We show in

Appendix A that the cross section for momentum transfer from an elec-

tron of speed v striking an ion of charge Zae at rest is then

41TZ(fe4 mvzb
m(v) = >4 In > . (I1-14)
v m v Ze

This and other results depend only weakly upon the cutoff b. : ..if the loga-

rithm is large compared to unity. By comparison with Debye shielding,

one usually chooses b of order Dez Ge/ne e, where Be is a

7,8

characteristic electron energy. The uncertainty in 'O'm(V) is then

of order unity compared with ln(neDe3) if we consider v ‘to be of

ordeI" NO /m .

e .
The condition that neDe3 be very large can be considered the

definition of a low-density high-temperature plasma. This condition

ensures that, for impact parameters larger than D,, there are many

‘shielding particles between the particles being considered. However,

even for impact parameters much smaller than D, the two particles

.interact simultaneously with many other particles. The reason this

Boltzmann-like description yields useful results is that even for such
impact parameters the deflections are very small and the simultaneous
effects of many particles upon one being considered can be added line-
arly. 9 v
The circumstance that most of the deflections are small sug-

gests use of a Fokker-Planck equation. In fact, within the uncertainty

‘mentioned above, identical results are found by means of the kinetic

equation

9f_(v,t) e Blfe.(\_/, t) <a'fe ) _
- - —E(t) - : = (I1-15)
t 0 ov ot coll

with either of the folloWing as the right-hand side:
(a) The Boltzmann collision term, made finite by the above

cutoff procedure,
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(b) The Fokker-Planck terms used by Spitzer and Hirm, 1 by
Rosenbluth, MacDonald, and Judd,-8 and others.

‘The Fokker-Planck terms have been derived by several rnethods:10
The method developed by Landau in 1936.is expansion of the Boltzmann
collision term in powers of the momentum transfer and retention of
only the terms that diverge logarithmically, the so-called dominant
terrns.11 The divergence is removed by the cutoff procedure discussed
‘abcv>ve and by also ignoring interactions with impact parameters less
‘than eZ/Qe, where the expansion is not valid. We obtain the same re-
sult by another method in Sec. V. .

For sirh»plicity, we call this kinetic equation the Liandau equation.
Because it is Markovian,4 it can be used only to treat variations on a
time scale long compared to the duration of a collision, which in this

case is of the order wp:’ where the electron- plasma frequency is
Q)pe = '\/ -—m——‘ . ) ) (11—16)

1. Displaced-Maxwellian Model

In this model the electron-velocity distribution has the form

o exp [-(v - 1¥/a %] (m-17)
. ae .

. fe(Y" t) =

‘where only U (t) depends upon time. Here the electron thermal speed

a and the electron temperature in energy units Ge are related by

2 _
a " = ZQe/m . | (I1-18)

We now define the electron Debye length
/ 2 : . ,
D, = ee/4 ™ e” , (11-19) .

the minimum impact parameter

b . = eZ/Ge, (II-20)

min

and the plasma parameter

A=D /b . =4t D> | (II-21)
e’ . min e € . ‘
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which is three times the number of electrons in a sphere of radius

De (a-Debye sphere). . We also define a collision freq.ueﬁcy.

w

1 [2 Ype . .. o .
_VC.— -3' ?T_ - lnA 3 (II—ZZ)

which carries with it the uncertainty of order {lnA] s discussed

before.

. If we substitute Eq. (II-17) into the Landau equation, multiply

by & and then integrate over ' v, we find

du o
’—d:t'*'%_@o(t);—?cy(t—)[% ; | naZaz}Q <g> (I1-23)

e a e
where the prime signifies that the electrons are not included in the sum,
and where o

. N 5
Q(x_) :% / uze—u du
0

X

1 when x << 1

Q

o 3“/? when x >>1 , (11-24)
ey
In Appendix A we give an alternative derivation of Eq. (II-23) based
simply upon the drag force exerted on the electrons by‘ the ions through
Om(v).

If U(t) remains small compared to a, so that x << 1,
Eq. (II-23) becomes linear. If we assume Eo(t) and j(t) = —neey(t) are
proportional to e_mt, we find the linear electrical conductivity on our

displaced-Maxwellian model

© L 1-25)

»GDM(w) : m 1 ~ 1 2
. [—- E n 7Z i\v -iw
- in o a c

When the frequency w is small and the ions are singly charged, this

reduces to 5

n e

aDM(w)___; ‘invc. . (11-26) -
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high speeds. The electrical conductivity is not then well defined be-
. cause this runaway current continues to increase in time unless it is

limited by plasma boundaries.

4., Limitations of the Landau Equation

"The cutoff procedure used to account crudely for the dielectric

properties of the plasma does not recognize the possibility of long-range -

interactions taking place by means of propagating waves. In the case
of an electron-proton plasma near thermal equilibrium, the results ob-
tained from the Landau equation are actually correct within the uncer-
tainties mentioned above, as we show in.Sec. V.. The reason is that
there are no slightly damped waves, and therefore no corresponding
large-amplitude fluctuations that interact strongly with an appreciable
number of particles. In other words, very few particles are able to
have long-range interactions by the emission and absorption of waves.

One cannot expect the Landau equation to be so accurate in other cases.

-
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III. T:ONGITUDINAL WAVES AND STABILITY

A. The Vlasov. Equations

The Vliasov equations for a classical Coulomb plasma

of (r,v,t) 9f (r,vit) q

a'=’ - a'-’ - a 8fa'(§, ‘Y"t)
' tv - + E(rt) ——"— =0 (IlI-1)
ot or My ' ov
VXE(r,t)=0 - (I11-2)
. ’ 3. . :
V. E(r,t) =47 Z: n.q, ffo.(z’\—,"t)d v + 41Tp0(§,t) » (I1I1-3)

are useful for treating certain problems in a low-density high-tempera-
1 . L

ture plasma. 6 Here E(r, t) also is.an ensemble average. The ensemble

is chosen so that each function is a smooth function of the arguments

but not necessarily independent of r. Here we also have

fa(f’ v, t) :nLa < E 6[{»_ El(t)] 5[Y - Yl(t)b , (II11-4)

iina
where na is simply_a.' normalization constant, which is often taken as
unity. _ :
‘ The meaning and validity of all but Eq. (III-1) is clear. Equation
(III-1) has the form of the Boltzmann equation éxcept that the collision

term is absent; it is sometimes called the collisionless Boltzmann

. equation. It is also called the correlationless kinetic equation because

of a derivation we outline in Sec. IV. C.

Because fa(g, v, t) and E(r,t) are treated as smooth functions,
the "ordinary'' collisions or short-range interactions as discussed in
Sec. 1I are not included so that particles can interact only through the

self-consistent field E(r,t). This model is appropriate only for treat-

 ing variations on time scales that are short in comparison with colli-

sional time scales. The Vlasov equations cannot be expected to treat
correctly variations over distances of order or smaller than the dis-
tance between particles (actually in phase space) because the functions

are treated as smooth.
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Rostoker and Rosenbluth! 7 have shown that the Vlasov equations
become exact in the limit as 9y’ Ma’ and the particle density of each
species approaches zero at the same rate, so the charge and mass
densities of each species remains constant. KEach species then is rep-
resented as a continuous fluid ahd all individual-particle aspects dis-
appear. Since vc_1 and A become infinite, the collisional time scale

is never reached and the distance between particles vanishes.

B. Plasma Response to a Perturbing Charge;

The Dielectric Function

We consider a spatially uniform unperturbed plasma with particle
| densities n, and with velocity distributions fa(\_f) (normalized to unity)
that do not vary on the time scales we consider, which are short com-
pared to vc,_1. With EO smaller than Erun’ the effects of Eo(t) can
-be ignored because they are important only on collisional time scales.

In response to a perturbation po(g, t) applied after t=0, the plasma
will develop a srn’all change 6fa(g, v, t) in the distribution functions, and
the small field E(r,t) will not be simply the field of po(g, t) itself.

The linearized Vlasov equations for this case are

0 . 9q 9 f0.(\—/)
VXE(r,t) =0 (I11-6)
3
v E(r,t) = 4w g n.q, fd v 6fa(I_‘,Y, t) + 41Tp0(1_‘,t) . (I11-7)

- Because fa(\_r) does not depend upon r or t (on the time scales we

consider), it is convenient to Fourier transform in space and Laplace

transform in time so, for example,
o0

E(k, w) =j 3r e_il-(. L ‘[0 dt eith_E(J_r,t) (I11-8)
and
3 . .
E(r, t) :fd k3 ik T f 22 I B(k, w). (111-9)
B (2m)~ c
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Here k is real and E(k, w) is defined for all corh?lex w for which the
defining integral converges. This requires that Imw be larger than
some number vy, and _]::J(lf,'w) is analytic for Irhw >+vy. The contour C
runs from Re w=-» to Re w = = along a line parallel to the real w
axis and with Im>w >y. |

Because of Eq. (III-6), we have E(k, w) = E(k, w)l_z. With the
initial condition 6fa(§,_ v, t = 0) =0, the transformation of Eqs. (III-5) -.
and (I11-7) yields . v
q, 81 _(v)

1(1_;- v -)6f (k,v,0) = -5 E(k, o)k —— (II1-10)

M
a v
and

. 3 .
ikE(k, w) = 4ng nq_ fd v 6f_(k, v, ) + 47p, (k, @) . (II-11)

By solving Eq. (III-10) for 6fo, and substituting it into ‘Eq. (III-11), we
find ' o

E(k, ©) = E(k, o)k = — (I11-12)
) k7 e(k,w)
where ~ /
k-[0f (v) ov]
kze(k,w) - k% - Z w 2 lady 4 - T (II-13)
B a P° kv -w/k

Here we have defined the plasma frequenéy for each species as

2
2 4ﬂnaqa
W T e—— . (II1-14)
pa . omy
If the plasma were not present, Eq. (III-12) would be modified only by
the Vlasov dielectric function e€(k, w) being replaced by unity. The
second term in Eq. (III-13) represents the polarization of the plasma.
Notice that the substitution of Eq. (III-12) into Eq. (III-10) yields the
expression for 6fq(l_<, v, w).
The dielectric function depends only upon the unperturbed plasma.

We can consider é(l_(, w) tb be defined by Eq. (.III—13) when Imw >0, and

~ we will be particularly interested in the case of Im w approaching zero.

: Introdﬁcirig the real variable V, we use the Plemelj formulas
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1 1

lim ' - P +iT8(x - x') (II1-15)
€e~0 x-(x +i€) Cox -x' ' o o
to find © |
lim KPe(k, kV+ie') = K2 -R(K, V) - i1(k, V) O (111-16)
e -0 -
where the real functions R(l%, V) and I(l:;, V) are
A 5 ;3 kofpf(w/awml
R(k, V) = w “P|a’v Tt o (III-17)
o P¢ <1y -V
and
. 5 . - (v)
I(k, V) = w 2w |d’v sk v - V)ke —m—t (II1-18)
: — “pa SR %) -

andAP denotes a principai—value integration. Because €(l_<, w) is ana-
lytic for Imw >0, R(k, V) and I(k, V) contain all the information that
€(k, w) contains. They appear very frequently throughout our work.

Notice that the symmetry relations
R(-k, -V)'= R(k, V) ‘and I(-k, -V) = - 1(k, V) (I11-19)

follow directly from the defining equations.

It is convenient to introduce the functi_on

F(V; k) :z © Zjd3v 8(V - & v (v) (I11-20)
- a pa ‘ - - a -
in terms of which
1
R } ay'  OF(V K)
R(k,v) = P - (I11-21)
- v -V AY
- and ~
. 9 F(V;k)
ik, V) = 7 ———— . (I11-22)

- oV
- Notice that F(V; 1:<) is a weighted sum of the projections of the velocity

distributions onto the 13 direction.

C. Longitﬁdinal Plasma Waves

Landau first suggésted that, for each k, the inverse Laplace

transform of .expressions like Eq. (III-12) be evaluated as follows. 18

The functions of w, including €(k, w), are defined by analytic continuation

®©
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even for negative values of Imw. The contour C in Eq. (III-9) is moved
downward (Imw decreasing) and deformed so that e_avch singularity that
is encountered yields an explicit contribution. This leads directly to
the interpretation of each solution of 6(15,‘ w)=0as a mode of the plasma
that depends only upon the unperturbed plasma. 7

These modes are not necessarily normal modes of the plasma

19

in the sense of Van Kampen. The normal modes are defined so that
both E(r,t) and 8 (r,v, t) behave as expi(k- r -wt). The modes found
by the Landau procedure correspond to normal modes when they are
exponentially growing in time (Imw > 0), but otherwise they do not. The
reason is that 6fCL also has a term with time behavior--exp(-ik - vt).
We will use the term ''mode'' to describe those found by the Landau
procedure.

The highly damped modes (with Imw g - |Rew l) are very sensitive
to the distribution functions f alv). " This, plus the c1rcumstance that
they cannot be understood on any s1mply physical picture, limits their
usefulness.

The weakly damped or slowly growing modes (with very small
lIm col) can be discussed-and understood in- more detail. In Appendix B
we write w=kV +iy where V and y are real, :ind we obtain an expres-
sion for kze(lf,oa,) by Taylor expanding in powers of v/k. Separation
of the real and imaginary parts of k2 €(k, w) = 0 then yields

K* - R(k,V) +O(y/K) = 0 (I11-23)
and
-1k, V) -% aav R(k,V) +@(y*/k%) = 0,  (I1-24)

where @(x) represents terms that approach zero as fast or faster than
x. Wheén .|y/k| is very small, Re® = kV is determined by the dispersion

K2 = R(K, V) | (111-25)

and Im w = y is determined from

- kI(k V) o - (I11-26)
dR(k, v)/8V

Any modeé for which these expressions are approximately correct we

call a plasma wave.
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1. Electron Plasma Waves

In Appendix B we obtain the asymptotic expansion for the con-

tribution of species a to R(l}, V)

2 v ,
N w -1 2 -2, ..
Ra(1_<, V) = VI:);' -[1+2_<v“ >QV +3 <vH >QV + ] (111-27)
where .
<v n> =fd3vf (v)(k- »)? (IT1-28)
Il /a a‘-"t= o1

This series ordinafily does not converge and so is useful only when V
is large. In terminating the series, one must use care to preserve
Galilean invariance. _

We use a reference frame in which <v” >e vanish_és, and we
consider waves with phase speeds V very much larger than the speeds
of neariy all ions and large enough that Eq. (III-27) can be used for the
electrc_)ns. For the ions we use only the first term of Eq. (III-27), so
the dispersion relation Eq. (III-25) becomés )

(kV)© = g copa2+3 <Vl|2>e .wpezv‘_2+ e (II1-29)
This expression is valid only when V2>> <VH 2 >e 'so that the second
term on the right side is only a small correction to the lowest order

result ‘
2~ }: 2 = 2 :
(kV)“ = g T Cpe (I11-30)
a
By using Eq. (III-30) in rewriting Eq. (III-29), we obtain the well-known
result
2 z 2 2 2. ... _
()% = ) w43 <VH >ek " . (mI-31)
This result can be interpreted on the basis of moment equations

20,21 These electron plasma waves are primarily

and fluid concepts.
oscillations of the electrons, and the primary restoring force is the
electric field produced by the perturbation in electron density. The
ions also oscillate in response to the electric field, but the frequency
is so high that the amplitudes of their oscillations are relatively small

and they have little effect. Negative ions oscillate in phase with the .

Ve
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electrons, and positive ions oscillate 180 deg ouf of phase with the
electrons. The gradient in the electron pressure arising from one-
dimensional adiabatic compression supplies a small additional restor-
ing force that contributes the last term in Eq. (III-31). The justiﬁcation‘
for using one-dimensional adiabatic compression is provided by the
kinetic-theory results given above.

We postpone our discussion of Eq. (III-26) for electron waves.
Usually the approximation that {y/k| is -small fails as V2 decreases
and becomes comparable to <vH22 >é’ so Eq. (III-31) is ordinarily an
adequate approximation of Eq. (III-25).

2. Ion Waves

We here restrict ourselves to a plasma with a single ion species
of mass M and charge Ze, and we consider f‘e(y) to be Maxwellian with
temperature Ge in the reference frame in which <v|| > vanishes for

i
all k. We find almost immediately from Eq. (III-21) that

R (k,v)=—1 5 X( v > (ITI-32)
€ - a
| o

- where De and a, are defined as in Sec. II. B and .

o0

2
X(x) = - %Pf du ——— e~ % . (111-33)

o0 u - X

Here X(x) is an even functiph of x and is equivalent to the func-
tion Fried and Conte denote by Re Z (x, y= 0). 22 The series expansion

X(x) = -2+4x2 - S xt | (I11-34)

and the asymptotic expansion for large values of x

1 3

X(x) = —— + $ooe (I11-35)

x2 Zx4
can be obtained from Eq. (III-33) or from Fried and Conte's book.
Equation (III-35) is a special case of Eq. (III-27). The numerical re-
sults of Fried and Conte are shown in Fig. 1.
To consider ion waves, we suppose |V| to be large compared
to the speed of nearly all ions and very small compared to a,- Then
using the asymptotic expansion for the ion contribution and the series

expansion for the electron contribution, we find
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Fig. 1. The function X(x) defined by Eq. (II1-33),
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k2: .p1 [1+3 <|| >1f---}‘__1_.[1'-2—Y—+'-'].(III—36)

V2 ve D 2 a
. e _ e
The lowest approximation is 2
2 “pi 1
K= 2 - —, (I11-37)
oy D
e
which can be rewritten as
Z 6
vé= ¢ — (I1I-38)
M 1+k De
20,21

and is a well-known result. The condition that V2 be small com-
pared with -a,e2 is very well sa_,’cisfied. However, the condition that V
be large compared with <VHZ>i is not satisfied unless <VH2 >i is
unusually small (or else Z is very large). For example, if the ion-
velocity distribution is also Maxwellian, we must have vZGG very large
compared to ZGi and even then kDe must not be too large.

Consideration of the damping or growth from Eq. (III-26) usually

‘shows that the condition that [y/k| be small is not satisfied unless V'2

is somewhat larger than < VHZ >1 Still, one should probably treat the
ion contribution to Eq. (III-36) somewhat more carefully, because it
tends to be canCelléd by fhe electron contribution.

These results cén also be discussed with moment equations and
fluid concepts.21 When the wavelength is short compared to De so that
the frequency is near its maximgm (kV)Z = wpiz’ the waves are oscilla‘-
tions of the ions that correspond almost exactly to the electron plasma
waves; this is paft'icul_arly apparent from a comparison of Eqs. (III-29) «
and (III-36). The electrons have little effect beyond providing a neutral-
izing uniform background. As the wavelength becomes longer and the
frequency becomes smaller, the electrons tend to neutralize the charge-
densit‘.‘y perturbation of the ions and to pi'ovide an additional restoring
force through the resulting electron pressure gradient. In fact for
kZDeZ << 1 we have V%= 2o /M. Tbhis_ result follows immediately if
one assumes that the electron and ion density perturbations are main-

tained nearly equal by the coupling electric field, the inertia is pro-

vided by the ions, and the restoring force is the electron-pressure
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gradient arising from isothermal compression. -The justification of
assuming isothermal compression is p‘rovided by our above results.

As k and © become very small, the above description be-
comes incorrect because collisions become important. In fact, the
ion waves will eventually become acoustic waves in a collision-dominated
plasma. For this reason they are often called ion acoustic waves.

When several species of ions are present, there can be a variety

‘of low-frequency ion waves. We will not discuss this case.

3. Stability and Landau Damping

‘The stability of the uniform Coulomb plasma according to the

- linearized Vlasov equations has been studied in some detail by Penrose,
who expresses his results in terrﬁs of F(V; l}) defined in Eq. (1II-20).

" He proves that when F(V; 1}) is a sufficiently smooth function of V, the
plasma is unstable and e(k, w) = 0 has roots with Imw > 0 if, and only
if, there is a minimum of F(V; ]Z<) as a function of V where R(l}, V) > 0.
The exception he cannot treat in detail occurs when é(l_(, w) = 0 has roots
with Imw = 0+ but none with Imw >0, which we call the marginally
stable case. Penrose's criterion allows us to determine stability or
instability directly from R(l}, V) and I(E, V), but it gives no direct in-
formation about the modes and waves involved.

One result that follows directly is that no plasma with isotropic
velocity distributions can be unstable because in this case F(V; lg) has
no minimum.

To supplement these results, we consider the growth or damping

of waves satisfying K& = R(R, V) as given by

ki)
Y= - — ' (I11-26)
dR(k, V)/oV : '

when |vy/k| is sufficier_ltly'small.b When the plasma is unstable, the
Penrose critei‘ion guarantées that the plasma éaﬁ support a wave with
Y = O and nelghbonng waves w1th Y very small and positive. When
Yy is negatlve, the wave is said to be Landau damped v
Dawson has prov1ded a phys1cal 1nterpretat10n of wave growth

or Landau damplng as given by Eq. (III 26) He shows that the extra

P&,
L4

(2
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energy per unit volume in the plasma due to a wave of amplitude E1
is given by

2 r ~
Evj ¢ -V 9R(k, V)
W = i ' -

W 8m oV

|

i
- (II1-39)
L2x? ]
He also shows that the rate of energy change of the particles that have
k- v about equal to V, and so move nearly in resonance with the waves,
is
2 T

res _ |

dt

Ey
8T

t
i
i
o

-V
k -

i
I(k, V)§ (I11-40)
S ,

per unit volume. If the wave amplitude varies as- ’eYt, enérgy conserva-
tion yields . ' . . '
dWW o : dWres _
—=Psoyw = - 222 (I11-41)
ac v dt
and substitution of Eqs. (III-39) and (I11-40) yields Eq. (III-26) for vy.
Notice that if we consider the same wave from a reference frame
m'oving \l;vith a different velocity, the magnitude and the sign of V (and
therefore of WW and dWres/dt) may be different but y is unchanged.
We see that the growth or Landau damping of a wave arises
from its interaction with resonant particles, which may gain or lose
energy. This wave-particle interaction can be described as the ab-
sorption or induced emission of waves by particles. Depending upon
the unperturbed plasma', the absorption may exceed the induced emis-
sion, giving Landau damping, or the induced emission may dominate,
‘making the wave grow (in analogy with a LASER). Other descriptions
based upon '"phase mixing' or pérticle "bunching' are also used and
are probably more appropriate in treating rapidly g-.rowing or highly
damped modes.25’ 19 ' '

In the remainder of this section we considér our results in

various special cases.

We include ions of_fnass M, charge Ze, and with a Maxwellian
velocity distribution with temperatﬁre Oi. We define the ion Debye

iength and the ion thermal speed by
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e, | 26,
Di2 = ——_iZ—T Al - L (111-42)
4TrniZ e : M

- and we refer to the coordinate system moving with the mean velocity of
the ions as:the ion frame. ’

' We make similar definitions and assumptions for the electrons,
" and we"assume that the electron frame moves with velocity u relative
to the ion frame. We denote the electron thermal speéd by a = a,-

Fried and Gould have reported and discussed numerical solu-

tions of e(k, w) = 0 for this case, including some of the highly damped
modes.26 However, we simply illustrate some of our previous dis-
cussion and obtain certain results that are useful in Sec. IIL. 3 and
throughout the rest of the report by considering the plasma waves.

In the ion frame, we have from Eqs. (III-21), (III-22), and

(111\-32) that : , | ; .
L s vy o1 V-u
R(k, V) =—— X| — |+ 2—-2—— X | ———1) (111-43)

A

2D; D S a-
1 e
and . : ‘ : .
. NT v 21 ~/~ V-U v ®
Ik, V) = - —— —exp 5 ‘ — i»l exp | - _Z_H____
< DS A L A® ] D_ a o
| | | (I1I-44)

These are the basis of our entire discussion. Notice that the dependence

on 1:< and U .is only through

UH'-":IE-(_J. ' (1I1-45)

1. Wlth No Relative Drift
W1th U= 0, all results are 1ndependent of k if we work in the

common ion and electron frame. A

We need only consider the dispersion relation kZ = R(V) for
nonnegative V. From the behavior of X(x) shown in Fig. 1, we see
that R(V) is pos1t1ve for vV larger than a value of order g which is
the region that could contaln electron plasma waves. In this region

I(V) is small only When V2 is much larger than aez, so only under

&
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this condition are electron waves possible. The dispersion relation
k2 = R(V) then yields the result we found before.

If ZGe >3.5 6.1, then R(V) is also positive for VZ_ somewhat
greater than A2 but less than a value of order ZGe/M. This is clearly
the region that could contain ion waves. However, I(V) is smgll only
when V2 is large compared to AZ, so only under this condition are
ion waves possible. Again, the dispersion re_latio:n is as we. obtained
before. . : : ) » . _ A

For both of these types of waves .BR(V)Y/BV and I(V) are both
negative so, from Eq. (III-26), vy is negative for all waves. This, of
course, agrees with the Penrose criterion since the plasma is isotropic.
As V becomes much greater than a..e, I(V) decreases exponentially,
so the Landau damping rate of the electron plasma wave decreases

exponentially. However, when the damping time becomes comparable

to the collision time, collisions will have an effect upon the actual

~damping rate.

2. With Equal Temperatures and Z = 1

In this case there are no ion waves when U= 0. The effect of
Z >>1 would be similar to the effect of Ge >> 6., (which we consider in
Sec. III. D. 3) because both allow ion waves when U= 0.

To apply the Penrose criterion we consider 1:< parallel to LJ

From Eq. (III-44) we find that F(V; 1}) has a minimum if, and only if,

vl u-v' 1

_ = > (111—46)
A a \/7
has a solution V', and the minimum is then at V = V‘. At this minimum
R(1_<, V) =— Xi\— ) - (111-47)
De A

and so R(lt(,_ V') is positive when V'/A is larger than 0.925, the zero
1
of X(V /A). Thus we find that the plasma is unstable if, and only if,

- — ‘ [m
[HI > Ucrit = 0.925(a+A) = 0.925a <1+ —M—> . (1II-48)
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The first waves to begin to grow in this case cannot be‘classified.
as electron or ion waves because they have speeds of order A relative
to the ion frame and of order a, relative to the elecfrori frame. Since
'BR(IE, V)/8V is positive in this region, the growing waves are those for
which R(l}, V) is positive and I(I_E, V) is negative. From Eq. (III-44) we
see that the ion contribution to I(lg, V) is negative whereas the electron
contribution is pésitive. Therefore we may say that the waves grow
when the growth caused by the ions overcomes the damping by"the elec-
trons. "

This is best cla‘ssified as an example of a two-stream instability.

Until |U| becomes comparable to U'C the electron plasma waves

rit’
are not greatly affected in the electron frame.
Notice that if the temperatures were slightly unequal or if Z # 1,

the quantitative analysis would be much more difficult.

3. Ion Waves in an Electron-Proton Plasma

Here we discuss the case Ge >> Gi in some detail bécéuse the
results apply also in Sec. III. E.  As ‘_|I_’II is increased from zero,
certain ion waves will begin to grow when UI'l is still small corhpa.r.ed
to aé, so the electron waves are hardly: affectedzin the elezectro‘n frame.

We work in the ion frame. As longas V  and U~ are very
small compared to ae.z, tl';e contr1but10n of the electrons to R(k V)
remains very nearly —De_‘ , SO the dispersion relation k R(k V)i
nearly incilependent of UH . In particular the region Vmin <v< Vimax?
where R(l_{, V) is positive, is very insensitive to U and is determined

by X(V/A) > —ZGi/Ge. In the same approximation we have

DS o UyV Vo oo |
Ik, vy= 2 — - —exp (-V7/A%) . (111-49)
N B 6, 2 A
When UH = 0, I(k V) is negative for positive V and all ion

waves are damped. If UH exceeds a critical value’ U rit’ I(k V)
will be positive somewhere within the region V min <V < V_ax and the
plasma w111 be unstable .

In an electron-proton plasma two d1st1nct cases occur in the

application of the Penrose criterion. As U is increased with Ge>2061,
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a minimum first appears in F(V;li() for k parallel to U and at V= v
with V. . <V'<vVy . In this case the plasma is unstable as soon
min max

as a minimum appears, so UC can be determined entirely from

Eq. (III-49). Since R(1:<, V) is I}.)lc‘)csi‘cive where the minimum appears,
the first waves to grow have finite wavelength (k # 0).

v With Qe < 206.1, the minimum at V =-V' first.appears with
V1>Vmax’ and as UIl increases further V' decreases. The plasma
finally becomes unstable when, for 1} parallel to U, V' decreases
bel‘ow Vmax' In this case Uc

(III -49) , and UC

., can be found from V and Eq.
rit max

.. 1s quite sensitive to V . The first waves to begin
rit max R i
growing have infinite wavelength (k = 0) because R(k, Vma;c) vanishes.

Examples of the calculation of Uc in both cases are given in

rit
Appendix C. The results are shown in Fig. 2, including the point at

Ge = Gi as determined in Sec.III.D.2. The complete results for ar-

bitrary Ge/ei are given by Fried and Gould.26 Notice that for
Ge > ZOGi, U.,it is between three and four times the ion thermal speed A.

In both cases, when U” exceeds U the growing waves

crit’
have V in the region where F(V; k) slopes upward and Vmin <v< Viax:
These ion waves grow because the Landau damping by the ions is over-

come by the effects of the electrons.

E. Waves in the Spitzer-Hirm Problem

In the notation of the last section, the electron velocity distri-

bution in the Spitzer-H&rm problem is

1 _VZ/aZ

f (v) = e +fe(1)(v) cosa, (III-50)

)

where a is the angle between v ‘and- EO’ and fe“ (v) was calculated
by Spitzer and Hiirrn.1 We here take the ions to be protons with a
Maxwellian velocity distribution of temperature Gi.

- We show in Appendix G that in this case
1(1; V) = IO(V) + 11(V) cosh (II1-51)

where 6 is the angle between k and E,. Here IO(V) is given by
Eq. (III-44) with UH = 0 and
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Fig. 2. The relative drift U_,.;; above which a displaced
Maxwellian electron-proton plasma becomes unstable
(solid line). The lower, nearly straight line shows the
value of U at which F(V;k) develops a minimum. The
upper, curved line shows the value of U at which

I(k, V) first vanishes with V = Vmax-
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o0
1,(V) = 2”2“pe2 [fv fe(“(v)dv—er“)(V)} . - ms2)

As long as EO is small compared With'Erun’ the dispersion
relation for electron plasma waves, Eq. (III-31), remains essentially
unchanged in the reference f;i'ame where <vIl >e vanishes for all l:<
However, because fe(i)('v) decreases more slowly than the Maxwellian
as v becomes large, there will always be a value V ‘beyond which
111‘(V)| exceeds IIO(V)I and certain electron plasma waves would grow.
However, the linearization of the Landau kinetic equation is not justified
where fe(i)(y) is larggr than the Maxwellian part, so this result cannot

"be taken seriously. Still, it indicates the difficulty caused by runaway
electrons. .

The presence of runaway electrons constitutes a two-stream
situation in which certain high-speed electron plasma waves will grow.
These waves are likely to have very small growth rates, and they can

-~ interact only with very fast electrons, so their effects are probably not
important. This is fortunate because ‘they would be very difficult to -
treat in detail.
' In discussing the ion waves, we compare the results with those
of the displaced-Maxwellian problem in an electron-proton plasma as
discussed in Sec.III. D. In that case we can write |
1 _VZ/aZ

£ (v) = e
'™ T 372 3

to a good approximation, where fe

+ fe(z)(v) cosa (II1-53)

(2)

sion of the displaced Maxwellian. Because the ion waves have such low

(v) is known from Taylér expan-.

speeds V, we have to a good approximation in both probiems
(V), - (III-54)

where Rg(V) is given by Eq. (III-43) with Uy =0, and

(V) + 11(0) cosa . ' (II1-55)

To this approximation, all of the properties of the ion waves are the same
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in the two problems if the single number 11(0) is the same. This would

require that

E! )
f f ( )(V)dV = f f ( )(v)dv. (I11-56)
0 0 -
In both problems Eq. (A-7) of Appendix A must be satisfied, and by
substituting into it Eqs. (III-50) and (III-53) we find. that Eq. (II11-56)

actually is satisfied if the same E_  applies to both problems, and in -

0

' Tell v
0) = - _[___9 R , (I11-57)

Dzvma
e c

fact

If we relate I_EO to U by the displaced-Maxwellian conductivity, we

recover Eq. (II1-49).
We thus conclude that if the drift U in the displaced-Maxwellian

problem is related to E, by the displaced-Maxwellian linear conduc-

0
tivity, the ion waves have very nearly the same properties as in the
Spitzer-H&rm problem. This has not been pointed out before, although

it is evident in the results of Bernstein and Kulsrud. 21

The results found in Sec. III.D. 3, including Fig/. 2, now apply
directly to the Spitzer-Hirm problem if we replace _[_J/a by "0'5064E0/Erun'
In particular we define

. 1. u . .
crit _ crit ] (I~ 58)
E j 0.5064 a
run

We see from Fig. 2 that when Oe much exceeds Qi’ ion waves would
grow according to the Spitzer-Harm model even when the linearization
of the Landéau équétion would still be justified because EO<< Erun'
Because the ion waves can interact with nearly all electrons, the wave-
particle interactions would be important and the L.andau equation would
be inadequate. '

The brief discussion of Ohmic heéting in Appendix D indicates
that Ge is actually not likely to much exceed Gi unless EO is

20.1Erun, the ions are cooled by some process, or the electrons are

heated by some process in addition to Ohmic heating.\
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IV. THE LENARD-BALESCU KINETIC EQUATION

We use the terms ''collisons' and "ordinary collisions' to de-
scribe the effects included in the Landau equation as discussed in Sec.

II. In order to study the case E . <E.<E , we use the Lenard-
_ crit 0 run
Balescu kinetic equation (the L-B equation), which includes the effects

28,29

of collisions and of wave-particle interactions. In this chapter

we discuss the L.-B equation and its limitations.

A. Physical Processes of Possible Importance \

In the spatially uniform classical Coulomb plasma we study,

the particle motion and the velocity-distribution functions can be altered

- only by electric fields. These fields consist of the uniform EO and of

a fluctuating electric field with vanishing ensemble average. Part of
this fluctuating field arises from the particle individuality and is re-

sponsible for direct particle-particle interactions or collisions. Another

‘part involves the dielectric properties of the plasma and so is associated

with the poqsﬂnllty of wave propagation; this part is responsible for the
effects of wave-particle interactions.

The fluctuating electric fields associated with waves may be
altered in various ways. Even if the actual plasma were a continuum
as represented by the Vlasov equation, a wave could be altered by:

(2) Growth or Liandau damping as described before. This we
have chosen to interpret as induced emission or absorption by individual
particles, although it appears in the Vlasov equation;

(b) Direct interactions with other waves through the nonlinearity
of the plasma, which we call wave-wave interactions or mode coupling;

(c) Time variations in the dielectric properties of the plasma.

In addition, because the actual plasma consists of discrete particles,

the fluctuating electric fields associated with waves are altered by:

{d) Changes in the propagatlon and particularly the dampmg of
waves, which weé’ call collisional effects upon the waves;
~{e) Spontaneous emission of waves by individual particles. If
spontaneous emission were not present in a stable plasma, the fluctua-

tions associated with waves would decay to zero.
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This classification scheme may not be complete, but it forms

a useful basis for discussion.

1. Quasi-Linear Theories

These theories are usually derived from the Vlasov equations,
so they include neither the effects of collisions upon the waves and the
velocity-distribution functions nor the effects of spontaneous emission
by the particles. These approximations are not valid in our problem,
so we discuss and interpret only briefly the simplest of these theories
and the results found with~_E_:o = 0. 30, 31

The slowly varying, spatially uniform part fa(Y’ t) of each ve-
locity distribution is separated, and the remainder is represented as
modes that propagate, according to the .linearized Vlasov equations,
through this spatially uniform medium. The plasma is assumed to
have no rapidly growing modes, and all highly damped modes are as-
summed to have small amplitudes and to be of no importance. The
modes considered, then, are the waves, which have phase speeds
V(k, t) and gro(vth (or damping) rates y(k, t) that vary slowly in time as
the spatially uniform parts of the velocity distributions, .and therefore
the Vlasov dielectric funtion, vary slowly in time. These changes are
assumed to be slow enough that the amplitude: of a wave can be found

by an adiabatic or WBK approximation. The energy Ek in a wave is

thus assumed to vary as

dt

which can be integrated from some initial time if vy(k,t) is known. We

= 2y(k, t) £k(t), (IV-1)

see that mode ‘coupling in the sense discussed before is not included,
and that the effects of time variations in the dielectric properties of
the plasma are treated in a simplified manner.

The effécts of these waves upon the spatially uniform parts of
the velocity distributions are treated with the nonlinear Vlasov equa-
tions and yield

9f (v, t) 9f (v, 1)
e -2 . D (vt —2—
ot ov ~a v

(IV-2)

S .
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where the coefficients I”)‘(1 for diffusion in velocity space involve inte-
grals (or sums) over k. The integrands involve a known factor that
multiplies g‘k(t) 6[1_( ‘v - kV(k,t)where Ek(t) and V(k, t) must be deter-
‘mined. as discussed above. :

A quantum-mechanical derivation leads directly to the inter-
pretation that waves are emitted and absorbec'i by.individual particles,
as we have suggested.34 The 6 function above indicates that only reso-
nant particles interact strongly with a wave.

This quasi—line;ar theory is useful only when gk is large com-
pared to the level of thermal fluctuations (so that spontaneous emission
is not important), but small enough that fq(\_/, t) changes slowly and
mode coupling can be ignored. This theory can be used only to treat
variations on time scales short compared with the collision time vc_i.

The theory has usually been applied to one-dimensional problems;
in fact, there is some controversy concerning its applicability to three-
dimensional problems. The result found in certain examples is that the
system evolves?tow;;rds a steady state in which gk(t) either vanishes or
is constant in time. 0 Some waves grow or decay until they reach a
constant amplitude and others decay entirely, but none continues to
grow indefinitely. Thus in these one-dimensional examples that are
initially unstable according to linearized theory, the nonlinear effect
of wave-particle interactions eventually makes the plasma at least
marginally stable, according to quasi-linear theory.

Recently these theories have been extended to include some of

the effects of mode coupling.32’ 33

2. The Equatibnsof Field and Fried

Although they were not based upon the Vlasov equations, the
equations developed by Field and Fried have the same structure,
physical content, and limitations as those of the quasi-linear theory
discussed above.34 With a uniform field EO’ the time derivative on
the left of Eq. (IV~-2) is replaced by

* e e O
ot

+ E
m —
0- -
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as one might expect and, when EO<< AErun’ ‘no other modifications
are necessary. ‘

Field and Fried apply their equations to the problem of an
electron-proton plasma with EO >> Erun $0 fhe effects of collisions
can be ignored. Initially the velocity distributions are Maxwellian with
91 §< Ge’ and the wave amplitudes correspond to the level of thermal
fluctuations. Only the ion waves are included in their equations, and
the behavior of the plasma in:time is evaluated numerically. As the
particles accelerate nearly freely in 120, the plasma becomes unstable
almost immediately and some of the ion waves begin to grow. After a
time of '103 to 104 wpi—i in their examples, the ion-wave amplitudes be-
come so large that wave-particle interactions have important effects
upon the velocity distrile:tion of the electrons. The electrical current
ceases to increase linearly in time and drops to a relatively low value.
Some of the ion waves that originally grew become damped although

‘other ion waves begin to grow. Field and Fried make certain simpli-
fications that prevent them from accurately calculating the behavior at
longer times. They believe that the assumptions of quasi-linear theory;
which include the neglect of mode coupling, are justified throughout
their problem.

In three-dimensional problems like this, the effects of wave-
partii:le interactions are often similar to, and act in addition to, those
of ordinary collisions. In this problem, these interactions yield a
finite electrical conductivity in the absence of collisions; this possi-
bility was first suggested by Bunernan.35 These interactions can
greatly increase the diffusion of a plasma across a confining magnetic

field. 36, 37 Several other examples are given in Sec. V.

3. The Lenard-Balescu Equation

The L-B equation differs in several respects from the equations
of quasi-linear theories: (a) It ir’écludes the effects of collisions upon
the velocity distributions but not upon the waves; (b) it includes spon-
taneous emission but does not include mode coupling; (c).the velocity-

distribution functions are assumed to vary slowly compared with rates
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of emission and absorption of waves, so the amplitudes of fluctuations
associated with waves are determined as a balance of spontaneous
emission and absorption. The ensemble average of these amplitudes
then varies only slowly as the particle-velocity distributions vary.

A basic limitation of the L-B equation is that it is meaningful
only for a stable plasma, because in a marginally stable or unstable
plasma the spontaneous emission cannot be balanced by absorptidn, for
certain waves. Here stability is as determined from the linearized
Vlasov equations. v

The L-B equation is valid on a time scale of order or longer
than the collision time vc_1, which can be an advantage or a disadvan-
tage in comparison with quasi-linear theories.

- In Secs. IV. B and IV. C we outline two derivations of the L.-B
equation that will help to clarify its physical content and limitations

as outlined above.

B. Derivation by Superposition of Test Particles

This method was suggested by Hubbard and Thompson.38' 39,40

41, 42 but we

It has been utilized and rigorously justified by Rostoker,
"do not give the full justification here.  We consider E, = 0 beca_us_e,
as we verify in Sec. IV.C, the effect of EO can be inserted just as it
was in the equations of Field and Fried.

The word description we give will usually apply to the fluctua-
tions associated with waves. The L.-B equation contains the effects of
ordinary collisio‘ns- as well, but the discussion of these is much like

that in Sec. II.

1. The Test-Particle Problem

As a special case of the plasma response to a perturbing charge
as given by Eq. (III-12), we consider po(g, t) to be a particle of charge
q moving on the trajectory r'(t) = v't + o with constant velocity v'.

Then

4mqk.. e_ﬂf "o

(1V -3)

E(lfiw) = >
ke(k,w) "w-k- v



-36-

where, because the uniform unperturbed plasma is assumed to be stable,
the only pole with Imw >0 is the one at w = k - v!. Evaluation of the

inverse Laplace transform for very large t therefore yields

4 mgk Loik o Ti(t) L (1V-4)
Ke(k, k- v')

E(k, t—> o) = -i

For sufficiently large t, the ensemble average or Vlasov field produced

by the test particle is thus

. (IV-5)
This result depends upon r, r', and t only through the combination
{ —"E'(t), and so represents a pa..ttern that moves with the test particle
and depends upon v'. The test particle is often said to be "dressed"
by the "shielding cloud'" the plasma forms around it.

When. |1: - r'| is small compared to De’ only large k con-
‘tribute significantly, so the plasma has little effect and the electric
field is nearly that of the baré test particle. For |r-r'| comparable
to.or larger than De, the shielding by the plasma is important. Where
lr-r'l is large compared to De’ the only large contributions come !
from k and V under conditions that V = l:i v! is satisfiedvand,tha;.t"i-.R(l}, V)
is positive and [I(f_i, V)| is small. Under this condition the test par-
ticle can move in resonance with a slightly damped’pla.sma wave.

We thus interpret the 1ong—vrange parts of Eq (IV-5) as arising
from plasma waves that are excited by, or spontaneously emitted by,
the test particle. This emission is similar fo 'éerenkov radiation in
that the particle moves in resonance with the wave being excited.

During the transient period when t is small, this spontaneous
emission is not entirely balanced by absorption (Landau damping) by
the plasma, but when Eq. (IV-5) is correct, this balance occurs. This
suggests that Eq. (IV-5) is valid if t is large compared to the damping
time of the least-damped wave with which the test particle moves in
resonance. Of course this time must be short in comparison with vc-1

or else the Vlasov equation is not adequate.

i m
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Because the linearized Vlasov equation was used, the possibility
of mode coupling has not been included. There appears to be no simple
criterion for judging the validity of this approximation.

As the test particle emits waves, its energy must change. The
average force exerted on the test particle by the plasma is given by
E(g'lq, r', v') with the field of the test particle removed. To evaluate
this we may average E(r'+Alq, r',v') and E(r' - A lq, r',v'). By using
the symmetry of R(li(, V) to combine these and then setting A= 0, we
find

-}

» krn | ’ ~ AL A .
q 2. 5 5(V - k- v') kI(k, V)
| 47k k~dk AV ——— >

2m 0 Jiw K% -R(K V) 2HIHE, V)

(IV -6)

1 —
Edrag(q’ M )‘ B

The rate of energy loss qv' - E is proportional to the square of the

(?Sarge but independent of the —;nirsasgof the test particle.

The integral over k diverges logarithmically at large k so we
have provided a cutoff at km' This divergence arises ‘from a failure
in the linearization of the Vlasov equations at large k or small dis-
tances. It actually is connected with the large deflection suffered by
particles that pass sufficiently close to the test particle, and so is
similar to the divergence at small impact parameters in the Landau
form of the Fokker-Planck equation.39 This suggests that if |q| is

of order e we should choose km of order bmin_i' As before, this

will introduce an uncertainty of order unity compared with InA.

- 2. Autocorrelation Function of the Electric Field

The fluctuations in the microscopic electric field in our spatially

. . . .4
uniform plasma can be described by the autocorrelation function

C(R,7;t) =(E(r,t) E(r+R, t7)) . (IV-7)
From Eq. (II-4) for E(r,t) we see that this will involve the correlation
of fwb particles, which in general is very difficult to evaluate. How-
éver, Rostoker has provided a connection between the two -particle
correlation function and the results of testparticle problems that is

quite general when A is sufficiently large. 42 'In the picture he
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develops, -two particles are correlated only because the first is part
of the shielding cloud of the second, the second is part of the shielding
cloud of the first, and both are parts of the shielding cloud of every
other particle. Thus each plasma particle is considered a "dressed"
~test particle. _

Rostoker also derives expressions. for quantities like S(B, T, t)
directly in terms of the test-particle results. This simplification is
very important because the task of actually evaluating the two-particle
correlétion functions from the equations he gives turns out to be for-

midable. In our case his prescription is

C(R,7;3t) = ; naf & /f CyE(r la » o VIE(r+RIq , fHv'7, v (V' t) .
’ (1V-8)
This result is interpreted as treating each particle as a ''"dressed' test
particle that is o'therV\}ise uncorrelated with the other particles and
moves with constant velocity v'. 42
| We can evaluate Eq. (IV-8) diréctly by substitution of Eq. (IV-5).

By evaluating the 1ntegral over r' and us1ng the resultlng é function

and the symmetry of R(R V) and I(k V), we find

o0 ~ A ~ -
1 k k H(k, V) .
2~ - .- k. R-kV
C(R,75t) =— [ d°k 4dk- AV ———————— JMEER 7),
o=y o KRR VT 1R V)

(IV-9)

where

H(k, V) = Z “mawpqz a>v 8(V -k (v, 1) . (IV-10)
= |

The function H(l:i, V) appears throughout our work, along with
R(k, V) and I(Ii(, V). As the plaSrha slowly changes in time, these three
functions will change. We will not explicitly show the dependence of
Q(R, 7) upon t. These variations must be slow compared to the time

required for a shielding cloud to form, which is the decay time of the

o

least-damped wave of importance. The shielding cloud must also form
in a time short compared_with the time in which the velocity of a par-

ticle changes, since each particle is treated as a test particle.
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The physical interpretation of the part of Eq. (IV-9) that corre-
sponds to waves is clear. The épontaneous emission by all the particles
is balanced by the (Landau) damping, which we interpret as induced
emission and absorption by the particles. The function H(1:<, V) sums
the spontaneous emission by various particles; it is positive definite
and gives the number ‘of pafticle's moving in resonance with a wave
weighted by the squares of their charges but independent of their masses.

 It'is now even less clear how one can judge the validity of ne-

glecting mode coupling.

3. The Fokker-Planck Equation

We may now evaluate the effects of these fluctuating electric

fields and of E rag(q’ v') ui)on the velocity distributions of the particles.

d
Because we have been forced to assume that the particle velocities
deviate only slightly from constancy during the time required for a

shielding cloud to. form, we seek a Fokker-Planck equat_ion for eé.ch

species. We write

N . ia(Y.’t)’ (IV-11)

where the current of species a in velocity space is

)

I,(v 0 =3 (v 0 (v, 1) - o [&(v.0f (v.0)] . (IV-12)
The dynamic friction ,
3, (v, t) = <£f> (IV-13)
—a'- At
and the velocity diffusivity
Av Av)
o@d(!r t) == SAT (IV-14)

are defined in terms of the velocity change Ay in a small time At.

This formula for Ja(Y’ t) represents the first two terms in an

_ expansion in Av; we here drop the higher terms without providing the

necessary justification.vt We must choose At short compared to the
collisional time scales so that Av is small. However, At rmust also

be long compared to the correlation times for the electric-field
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fluctuations, which are comparable to the damping times of the waves,
because th}e Fokker-Planck equation is derived with the assumption
of Markovian behavior.
We clearly have
t+At

Av = —— ‘ E‘[]_:‘(t'), t']dt' (IV-15)
where r (t') is the trajectory of the particle being considered.

In Appendix E, we derive directly from Eq. (IV-14) and (IV-15)
that
..OO.

.2
(v, t) = Yo { dr C (vt 'T). | (IV-16)
9 ’ - ZJ . ’T‘M VT, ’-

In deriving this, we assnme that during At the particle velocity is con-
| stant and we assume that At is long compared with the correlat1on
time as dlscussed above We also assume that the fluctuat1ng f1e1d at
r(t') is not significantly influenced by the presence of the particle under
consideration. _ ’
In evaluating the dynamic friction in Appendix E, we evaluate

.the effect of Ed ag’ which is present at r(t ) only because the particle
is there, by treating the particle velocity as constant during At. How-
ever, we maust also take into account the first correction in the particle
velocity during At, which of course is produced by the fluctuating elec-
tric field. The result is

~ 9 ' 9 P '

ﬁa(‘_’: t) = E‘;Edrag(qa»‘_")‘F v ”l{a(Y’ t) . (IV-17)
By substituting this into Eq. (IV-412) and using the fact that fTQ (v, t) is
a sy_rnmetrio tensor, we f1nd ‘ ’

q S . 8f.(v,t)

(v, t) ;_m“ Eiraglly V(v t) -G (v, t) - —57— (IV-18)

J
_0‘

The flrst term 1ncludes the effect of spontaneous emission by the par—
,thle being con51dered a.nd does not 1nvolve I—I(k V). The second term

represents the effects of fluctuatlng fields that are present everywhere
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in the plasma; it includes the absorption and induced emission by the
_particle under consideration, of fluctuations associated with waves.
These fluctuations arise from spontaneous emission,and dampmg by all
the particles, so o©/V t) involves H(k V)..

- We may note that Eq. (IV-2) of quasi-linear theory has the same
form as Eq. (IV- '18) except that no term like the one involving Ed rag
appears. This is as we expect because spontaneous emission is not in-
cluded in the quasi-linear theory. The fluctuating fields that yield
mv t) are determlned in a dlfferent way in quasi-linear theory.

By subst1tut1ng Eq (IV--9V) into Eq. (IV-16) and evaluating the

- integral over 7, we find

k 8(V -k-vH(k, V)
[

1R

GOt = o

“R(K, V)] 2+ 13(k, V)

(IV-19)

where again we have supplied a cutoff km to remove a logarithmic
divergence at large k. This divergence appears for the same reason
as before. >0 Substituting this result and Eq. (IV-6) for ' Edrag into

(IV-18), we find

2
J (v, t) = e
e ZTTZm 2
U . . 9f(v,0)
KS(V -k v) |myIlk, V)L (v, 0 - Hk V- —5—
K* - Rk V)12 + 1%k, V)

(IV-20)
This result combined with-Eq. (IV-11) is the Lenard-Balescu kinetic
equation for species a. As we verify in Sec. IV. C, we can include the

effect of a sufficiently weak Eo(t) by using -

8f (v,t) g 81 (v, t)

a B 9 . _
5t t o oty 7 T 5y Llvt (Iv-21)

a - -

AT
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This result follows directly if we suppose that EO( ) has no effect upon
the fluctuatlng f1elds as represented by C (R 'r) and so sunply adds to
rag(q’ v) in Eq. (IV 18).

4. Discussion

Although we have not provided the necessary justification for
our steps, the procedure does yield the correct result and $o:can be
‘used in interpreting the L-B equation.

The result Eq. (IV-20) was first derived rigorously by Balescu29

and Len»ard,z'8 who worked independently and used quite different methods.

It is usually written somewhat differently, but Eq. (IV-20) is a con-
venient form for our purposes.

Lenard showed that this result has. the properties expected of a
28

kinetic equation:
t

(b) The particle densities, the total momentum, and the total
kinetic energy remain constant,

{c) As 't becomes 1arge, the velocity distributions become
Maxwellian with equal temperatures and drift velocities’

‘The L-B equations are valid only in a spatially uniform classical
Coulomb plasma that is stable according to the Penrose criterion and
varies sufficiently slowly in time. The correlation time for electric-
field fluctuations must be short compared to the collision time, so that
the collisional effects on the waves are not important and so that the
behavior is Markovian and can be represented by a Fokker-Planck
equétidﬁ. ‘
| - The effects of mode coupling must also be unimportant, but we
have no simple way of judging this. One sometimes uses the criterion
~that the energy in the fluctuating electric fields associated with waves
must be small compared to the kinetic energy of the particles. 42 This
. 1s clearly necessary because, as Lenard showed, the total kinetic
energy is rigorously conserved by the equations. ‘However, whether

this condition is sufficient and what is meant by '"'small' are open to

question.

(a) The distribution functions fa(Y, t) remain nonnegative for allt,
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We also have some difficulty in testing carefully whether the
effects of collisions on waves can be ignored. The difficulty is that
these collisional effects on longitudinal plasma waves are a current

topic of research and are not yet well understood.

C. Derivations from the BBGKY Hierarchy '

- Now that we have obtained the desired result, we will very
briefly discuss another method of derivation of the L.-B equation and of
other equations. As is usually done with this method, we consider the
special case of a classical Coulomb electron plasma in a uniform pos-

itive backg rOund

1. The BBGKY Hierarchy

This set of equations is derived directly from the equations of

- motion or from the Liouville equation and so is essentially exact. 43

The only assumptioﬁ made is that the system contains a very large
number of particles and can be represented by an appropriate ensemble.
- . The first equation of the set (the f equation) gives the distribu-
tion function £(r,v,t) in terms of the two-particle éorrelation function
g(fi, MEETE \_/2,.1:). The second equation (the g equation) gives the two-
particle correlation function in terms of the three-particle correlation

function h(r1, v ,» t), and it also involves the distribution

Y0 I Y20 I3 Y3
function f. The third equation (the h equation) involves four-particle
correlations, and so forth. _

Sucha hierarchy of equations is useful only when it can be ter-

minated in some manner. We discuss examples of this.

2. The Vlasov Equations

Rostoker and Rosenbluth have shown that if e, m, and ne—1 are
con51dered to be of order €, then the term involving g in the f equa-
tion is of order € in comparison with the other terms.17' Thus in the .
limitof small €, in which the electrons are represented as a continuous
charged fluid, the term involving g is unimportant and can be ignored.
None of the other equations of the hierarchy is then nee‘ded, and the f

equation becomes simply the Vlasov equations.
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They.show that their expansion is equivalent to using wpe as-a
characteristic frequency and De -as a characteristic length, and order-
ing each term. in € = 1/A with A= neDe3. Here Dev is defined with
Oe as of order of the average electron energy.. This means that in the
expansion in e, m, and ne'-i,’ 9e is also considered of order € and the
electron thermal speed is considered of order ¢°

3. Kinetic Equations

We here consider a method of ordermg the terms in powers of

'1/A this method is best summarlzed by Frieman and Book. 44 The
root- -mean-square electron speed is used as a characterlstm speed,
and f, g, and h are assumed to be of the same orders as they are in
thermal equilibrium. The plasma is assumed to be spatially uniform
with E = <E> = 0, so according to the first equation of the hierarchy,
f(v, t) changes only because of the term involving g(x 47I2 YV Voo t),
which therefore must represent the effects of fluctuating e_lijgmc fields.

Varlous characteristic distances including D » n , and

bmin = e /9 and various characteristic times are con51dered In all
cases, the term involving h 1in the g equation is of higher order in
€ than other terms and so is neglected.44 This turns out to correspond
to the neglecf of mode coupling, collisional effects on waves, and three-
bbdy collisions in the Boltzmann sense, among other higher order
effects. The first two equations of the hierarchy then form a cofnplete
set for determination of f and g. It is also shown that, when € is
sufficiently small, the equation for g can be solved asymptotically for
large t with f considered constant in time. This is known as the
Bogoliubov hypothesis and yields g as a functionalof f. 44 When this
result is substituted into the f equation, a k1net1c equation results.
With the characteristic distance of order b min °F ne_i/3 and
. thus small compared with De,. a certain set of terms involving f{
in the g equation are of higher order in €. and can be ignored. This
corresponds.to neglect of the dielectric properties of the plasma and
yvields the Boltzmann kinetic equation.

. . . -1/3
When the characteristic distance is of order n, / or De, and

.thus.large compared to bmin’ another set of terms in the g equation,
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involving g itself, can be ignored. This cc‘)rresponds'to ignoring
large deflections of the particles and yields the Lenard-Balescu kinetic
equation. ‘

When the characteristic distance is of order ne._i/?), and thus
both large compared with bmin and small compared with De’ both sets
of terms can be ignored. The result is the Landau form of the Fokker-
Planck equations, which we thus find is aﬁ approximation to the L.-B
equations as well as to the Boltzmann equation.  We make use of this
in Sec. V.

In deriving the 1-B equation by this method, one uses a charac-
teristic distance De and finds that the lowest order terms have char-
acteristic frequencies v_ in the f equation and w__ in the g equa-. .
tion. 44 This is used as 3ustification for solving thefeg equation for
long timés with the assumption that { varies slowly. If we do not re-
quire that Eo(t) = <_E_Z > ~wvanish, the additional terms that appear have
characteristic frequencies (E_O/Erun) v, in both equations. Therefore,

as long as E_ 1is sufficiently less than AErun’ we can ignore the effect

of EO in the0 g equation. The f equation then becomes Eq. (IV-21).
We must be sure, however, that IEO(t) does not introdgce rapid changes‘
in f which upset our solution of the g equation.

Dupree has presented a direct but tedious method of actually

45,46 The method

solving the g equation and obtaining the L.-B equation.
o 47

is presented moré clearly by Rutherford and Frieman.

This derivation from the BBGKY hierarchy makes clear that the
Lenard-Balescu kinetic equation correctly describes a stable spatially
uniform classical Coulomb plasma if A is sufficiently large. However,
in practical plasmas that are not near thermal equilibrium, it is diffi-
cult to determine how lai‘ge A must b? for mode coupling and colli~

sional effects upon the waves to be unimportant.



V. APPLICATIONS OF THE LENARD-BALESCU EQUATION

' The L-B equation is useful in two types of problems: (a) When
the effects of wave-particle interactions are unimportant, the natural
‘ appearanoe of dielectric shielding eliminatés the necessity for supply-
ing a cutoff at large distances (smmall k), so the Li-B equation can be
“used to test the' validity of, and possibly improve the accuracy of, re-
sults obtained from the Landau equation. (b) The L-B equation can
also be useful when the effects of wave-particle interactions are im-

portant and the Landau equation is inadequate.

A. Relative Importance of Wave-Particle Interactions;

the Landau Equation

The integral o .

- , *m | K2 dk ,

K(k, V) = —— (V-1)
Jo [k —'R(k,V)]e + 17(k, V) :

appears in Eqs. (IV-6), (IV-19), and (1v - 20) for Egragle v).E5(v 0,
. and J (v, t), respectlvely

, Thls expression may be evaluated approx1mately, as follows
If we ignore R(k V) and I(k V).in compar1son with k2 the 1ntegral
diverges logarithmically at small k, but since for a plasma near thermal
equilibrium lR(R V)| and ‘I k, V)I are of order or less than D _2,

this approxlmatlon is not _]U.Stlfled for k of order or smaller than

De_i. If we supply a second cutoff at k = D -1 and we choose
- -1 ’
: 4km = [bmin] , we find
’ A~ De . : . .
g min :

‘When the approximate result is used in Eqgs. (IV-20) and (IV-21), the
result is one form of the Landau equation, as we should expect from .
fhe discussion in Sec. IV.C.

We see that when R(l_%, V) is positive and I(l}, V)‘is small, corre-
sponding to the possibility of a slightly damped wave, the integrand of
- Eq. (V-1) contains a resonance that could also contribute substantially

to K(l}, V). Rather than evaluating the contribution of this resonance
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approximately, we may consider the exact evaluation of Eq. (V-1).

H

Because we choose kmz very large compared to IR(I}, V)| and |I(1§, V)
actually larger by a factor of order A~, we find to a very good approxi-
-mation : . ‘

s} 4 - . -
K(k, V) :'{m [km(RZHZ) V‘*J -1} + [—R—. Titan l By 1} (V-3)

2] L2fi\2 VA

The second term here depends only upon x = R(1:<', v)/ |I(li<, V) | and behaves
as shown in Fig. 3; it is independent of the cutoff km, .The_ first term

is ordinarily about equal to ln A by the argument given above when we

: ~ 1 .
choose km~ [bmin] . We thus may approximate Eq. (V-3) by
Rk, V) -
— when R(k, V) >0
KK V)=InA+ 21k, V) | (V-4)
0 "~ when R(k, V) <0

where the error is ordiné.rily of order unity, which is the uncertainty

introduced by the cutoff procedur'e’itself., The error is larger only

when R(l:i, Vj and I(}:;, V) are both very small compared to De—Z. Since
this relationship is not expected to occur over wide ranges of ki and

V where a significant ﬁumber of particles can satisfy the resonance

condition V = 1} v, the overall error in the use of Eq. (V-4) will ordi-

narily be within the ﬁnéertainty introduced by the cutoff km.

The second term in Eq. (V-4) is exactly what one would obtain
from an approximate evaluation of the integral over the resonance in
Eq. (V-1), and so is interpreted as the contribution of wave-particle
interactions. The first term is clearly té be interpreted as the con-

tribution of "ordinary' collisions. ‘We see that wave-particle inter-

vv actions will be important if, and only if, we have R(l:<, V)>> ll(l}, V) l
over reasonably large and important regions of 1'_% and V. The Landau
equation will be inadequate when a large fraction of the particles under
consideration can move in phase with slightly damped longitudina‘l
plasma waves.

One problem that was considered long before the appearance of

the L-B equation, and yet illustrates the above argument, is the drag
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M)
|

A -1 N
E(§+fc|n x)+2
|

MU.35223

Fig. 3. Behavior of the second term in Eq. (V-3) as a
function of x = R(k, V)/I1(k, V) |.
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on a test particle. Using Eq. (V-4) for Edrag in Eq. (IV-6), we see that

the collisional contribution depends upon I(l'_%, V), whereas the contribu-

"tion of*wave-particle interactions (in this case, spontaneous emission)

depends upon R(li(, V) but is independent of I(l'_%, V). That is, the result
involves the dispersion relation of the waves but not their damping. In
an electron-proton plasma near thermal equilibrium, the contribution
of wave-particle interactions is relatively small unless !\_f’ l exceeds
the electron thermal speed, because only then will R(l:;, V) much exceed

‘1(13, V) ’ for /l_% and V satisfying V:I_i"_/'. When 'l\_/'| greatly exceeds .

~ the electron thermal speed, the contribution of wave-particle inter-

actions to E is comparable to the collisional contribution.

—dr

B. ' “Res.ults When Wave -Particle Interactions Are:.Noi Iinportant

In an electron-proton plasma near thermal equilibrium, only a
relatively few fast electrons can interact with slightly damped waves
so the Landau equation should be adequate for most problems. This has

been verified by solving the L-B equation in a few cases. The relaxa-

tion of an isotropic plasma toward thermal equilibrium was studied by

49

Sundaresan and Wu. >0 The relaxation of the velocity distribution in an

Rosenberg and Wu. The thermai conductivity was calculated by
isotropic electron plasma, not necessarily near equilibrium, to the
equilibrium Maxwellian distribution was followed numerically by
Dolinsky. >1 In these examples (Refs. 49-51), the deviations from the
results found from the Landau equation were well within the uncertainty
of order [In A] _1, and sometimes fortultously were within a few percent.
Slmllar verification of the results from the Landau equatloﬁ appears in
the results of Kihara and his collaborators as(d1scus sed below.

Various methods have provided kinetic equations that converge
without the insertion of cutoffs and so do not involve an uncertainty of
order [ln A] -1 44,52-55

of the Boltzmann equation for close encounters and the L-B equation

The results ordinarily involve combinations

for distant encounters. For example, Frieman and Book44 show that
adding the Boltzmann and L-B equations and subtracting the Landau .

form of the Fokker-Planck equation yields a convergent result; the
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divergences of the L.andau equation cancel the divergence of the Boltzmann
equation at large impact parameters and the divergence of the L-B
equation at large k, as was suggested by our discussion in Sec. IV.C.
The convergent kinetic equation derived by Kihara and his col-
laborators involves a proper matching of the Boltzmann and L-B equa-

54, 56, 57 This equation has

tions in the region where both are valid.
been used to reduce the uncertainty of results obtained from the Landau
equation. In the simpler problems that can be evaluated analytically,
the results are just those found by using the Landau equation with In A
replaced by the logarithm of another quantity that is precisely deter-
mined.58 This quantity depends upon the problem's being done, but it

is of the same order of magnitude as A and the results can usually be
given a physical interpretation in terms of results obtained from the
Boltzmann equation by using an appropriately shielded Coulomb poten-
tial. For the more difficult problems that must be done numerically--
s"uch as calculations of the electrical conductivity, the thermal con-
ductivity, and the viscosity--the results again are found to be well with-
in the uncertainty of order [ln A] "1 in the results from the Landau

59

equation.

C. Results When Wave-Particle Interactions Are Important

A relatively few problems have been considered in which wave-
particle interactions are important and the L.andau equation is.therefore
inadequate. One such problem is the drag on a test particle, as men-
tioned before. Rand has recently considered a test particle with speed
slo.w compared to the electron thermal speed. 60 He finds that the con-
tribution of wave-particle interactions (the spontaneous emission of ion
waves 1n this case) is important only if 6e>> Gi, and the speed of the
test particle is fast compared to the thermal speed of the ion, as we
would expect.

As recently shown by Akhiezer and Bolotin, the contribution of
Waye -particle intefactions to the drag on a fast ion can also become
large as the plasma approaches conditions where ion wa‘ves would be-

come unstable.

»
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The various relaxation rates at which an electron-proton plasma
approaches thermal equilibrium have been r_ecohsidered by Ramazashvili,
Rukhadze, and Silin by using the L-B equation. 62 With 6e>~; 6,, they
find that the modifications are small qnless Ge/éiz 100. Even then
the only rate that is significantly affected by the wave-particle inter-
actions is the rate at which the electron velocity distribution becomes
isotrop-ic; this rate is increased by‘p'erhaps 30 per cent for'Ge/Gi = 100
and by even more as this temperature ratio is increased further.

Gorbunov and Silin have calculated the electrical and thermal
conductivities and the electron viscosity under similar conditions.

The wave-particle interactions tend to decrease these quantities below
the results from the Landau equation by amounts that increase as

Ge/Oi increases. For Ge/ei = 100, the corrections amount to tens of
percent, and for Ge/Qi > 1000, the effects of wave-particle interactiqns
actually dominate.

‘Silin has also calculated the linear thermal conductivity by the
electrons across a magnetic field. o4 With Qe >>6i, the effect of the
fluctuations associated with ion waves is to increase considerably this
heat transport. Of course there are restrictions on the applicability of

the Lenard-Balescu kinetic equations in a magnetized plasma.

D. General Conclusions

Beyond verifying and improving the results found from the Landau
equation, the L-B equation has been used only for a few rather artificial
problems. The form of Eq. (V-4) suggests that the effects of wave- |
particle interactions should add to the effects of "ordinary' collisions,
and this is verified in the results obtained.

’ In an electron-proton plasma near thermal equilibrium the elec-
tron waves have little effect. However, if Qe/f)i is large, the fluctua-
tions associated with ion waves can interact with nearly all electrons.
The primary effect of these wave-particle interactions is to drive the
electron velocity distribution toward isotropy; this by itself could ac-
count for the modifications of the transport coefficients found by Gorbunov

and Silin. 63 Notice also that because an isotropic plasma is stable;:
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. these wave-particle interactions appear to have a stabilizing tendency,
although this has not been directly investigated.

‘In all of the problems mentioned in Secs. IV. B and IV. C (except
.thatlof Dolinsky51), ‘the dielectric funétion was evaluated from known
zero-order or unperturbed distribution functions. Only Dblinsky followed
the evolution of the distribution function and continually re-evaluated the
diélectric function. He was able to do this because his problem was

gfeatly simplified by the assumption of an isotropic plasma.
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VIi. APPLICATION TO A CURRENT-CARRYING PLASMA
We consider only an electron-proton plasma. The eléctrons are
described by a velocity distribution f'(\_/', t) and the ions by F(v, t).

These are normalized as

£(v, a3y = F(v, )d>v = 1 . - (VI-1)

The number densities of each species is n, and the masses are m and

M. The plasma frequencieé are

2. 41Tnez ; 2 4:T1’ne2
w_ . — and w_. =
pe ) m p1 M

(VI-2)

The Lenard-Balescu kingtic equations (L-B equations) can be

written in terms of the three functions

_R(l}, V) = P|- k- o ezf(\_f, t) + “piz F(v, t)] (VI-3)

k-v-v ov p

1k, v) = 7| avev -k vk -2 [ v, 1) + e CF(y, 1) (VI-4)

H(k, V) = d3’y 5(V-k- v) [mwpezf(\_f, £) + waiZF(Y, 6]. (VI-5)

The first two include the dielectfic’properfies of the plasma and there-
fore determine the properties of longitudinal plasma waves. In partic-
ular, if we consider a weakly damped wave traveling in the 1} direction
with real wave number k, the real part V of its phase velocity is given
by k2 = R(l}, V) and the damping rate is proportional to I(lg, V). (S‘ee

Sec. III for further details.) The combination

Wk |
K(k, V) = ———— ——s— | (VI-6)
o [k -R(k, V] +1I7(k, V)

m

appears in the L-B eqtiation. The cutoff krn is necessary to remove
a logarithmic divergence. Although the LL.-B equation includes the

effects of "ordinary" collisions and wave-particle interactions, it is
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a Fokker-Planck equation and cannot treat large-angle scattering; this
accounts for fche divergence. The cutoff km is to be chosen of order
e,z/@e, where - Ge is a characteristic electron energy. (See Secs. IV
and V for details.) The L-B equation is valid only for a plasma that is
stable according to the linearized Vlasov equations; thié insures that
I(IE, V) never vanishes unless R(l:<, V) is negative, so the denominator of
Eq. (VI-6) never vanishes.

. The function H(‘l}, V) is proportional to the number ‘of particles
moving in phase (with V :13- v) or iﬁ resonance with a wave. It deter-
mines the rate at which waves are spontaneously emitted by the particles.
(See Sec. IV for further details.)

With the symmetry conditions R(—l}, -V) = R(l}, V), I(-l}, -V) =
—I(l}, V), and H(—lg, -V) = H(l:i, V), the L-B equatior'i' for the eléctrons is -

of(v,t) e ' 9 f(v,t) 0 ,
S _rEEO(t) . 5y S J (v, ) (VI-T)
with
’ 700
2 - 2" r! ~ ~ ~
J (v,t) = ez a“k | av K(k, V)k§(V-k.v)
“e 2 - . -

(VI-8)

. H(k, V) . 9f(v,t)
X[I(l_c,V)f(Y,t)~ — & 5 ]
V.'

The ion equation is ‘obtained by replacing f(v, t), m, and e with F(v,t),
M, and -e, respectively.  These equations are derived for a-spatially
uniform classical Coulomb plasma, and ordinarily with Eo(t) = 0, but
if -E—:O(t) is not too large or rapidly varying it can be included. (See
Sec. IV for details.)

We first discuss the general problem, but we soon see that it is
impractical, even for numerical solution. We then discuss various
model probiems and select two for numerical study. The equations for

these models are developed and simplified.
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A. The General Problem

We consider only.the case with E, constant in time, so we

naturally restrict our attention to solutions that are symmetric about

the direction of EO' We describe v in spherical polar coordinates
with ‘Y‘ =v anc'l v EO = vEOcos'o. with 0 €a < ™, Then ie(Y’ t)
can have no component perpendicular to both v =
v and EO so we need to consider only the - _
scalars _E:)O- J (v, t) and v- ie(\_/; t). We show T —>E
in Appendix F that Eq. (VI-7) then becomes
9f(v, a, t) ek, of sina Of 1 0
— .: COSa—f— _— ‘———2— —_— VY'ie
ot “m v v da v, 9V

1 o cosa _

- Y-_{e—éo'iJ . | (VI-9)

v sina 0Oa v

We similarly describe 1} in spherical polar coordinates with 13 EAO:COS‘B
and 0 <0 <7. Then R(k, V) = R(6, V), k
I(k, V) = 1(6, V), H(k, V) = H(6, V), and

K(k, V) = K(6, V). With these results

D>

[l

We can obtain explicit expressions for v-J and E.-J  interms of
- - —e =0 —e

scalar variables only.

We may use v l:< 6(V—f_i' v) = V6(V'—1§- v) and _F;) . 13: cosf in
evaluating v ‘Ie and -ﬁ—;O' .Ie, respectively, from Eq.. (VI-8). We also
show in Appendix F that

. 9f o dvoef [V of
8(V—1_< Y)F_{"a—_‘_é(v_lf Y){V _;—;<;cosa—cose>8(cosa)}

(VI-10)

E S

and that . T _
dzbl‘_; o(V -_13' v)= Zf sinf dej' d¢ 6(V-vcosa cosf -v sina sinf cosd).
0 0
' (VI-11)

By using these results in Eq. (VI-8), we find, for example, that
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2 [ (7
v =28 sing do | dV VK(6, V)
e . - m 0 0 .

™

X[J do &(V v cosf cosa - v sina sinf c'os¢).|
0 -

: , 1 ’ C9f ]
X {1(9, VYi(v, a) '%ﬁ“y‘) {%g_fv - = <¥cosa - cos@) —8(8?5'&)2 }
. )
‘ | (VI-12)

To obtain éO' ‘Ie’ we need only to multiply this integrand by (cos8)/V.

To complete the elimination of all vector quantities, we must
consider H(6, V), 1(6, V), and R(6, V). We first separate the contribu-
tions of the electrons and the ions as, for example, H(6, V) =

He(e, V) + Hi(6, V). We show in Appendix F that

-0 I T
!
H (6,V) = 2tmuw 2 vzdv ; sina da f(v, a)
e ‘ pe ,
' 0 Z0
T
X{' - dé 8(V-vcosf cosa -v sinf sina coscp)} (VI-13)
0
70 ~ T ‘ iy
1.(6,V) = Zm,opezj v dv ]' sina da {J d¢ 8(V -v cosf cosa
' 0 Jo 0

o 1., of v of
- v sinf sina cos¢)} {Va—v + (cosfH - " cosa) 5(cosd) } (VI-14)

%

i

7o it

_ 2 . df cosa af
Re(G, V)= pre / vdv sina da {'rr <ﬁ - 8(cosa7>
~0 0

+ V?—f—— - Xcosa—cose of
, ov v : 9 (cosa)

/
AT

f
dé
X PJ v cosf cosa + v sinf sina cos¢ -V } : (VI-15)
0 o
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The integrals over ¢ are also evaluated in Appendix F. With

a = v cosf cosa - V-and b = v sina sinf, the results are.

T 0 if b2 < az
d¢ 6(a + b cosg)= - ' : (VI-16)
0 (bz ) a2)-1/2 if B2 > 42
and
5 -1/2
- il <1 ; _]32_> if b° < a2’
déo _ a a _ ‘ _
Pl 275 coss | . (VI-17)
0 0 if b2 >a2

One can easily verify that b2 exceeds a.‘2 if, and only if, V is less

than v and cosa satisfies r < cosa < r Here

+°

/ 2
_ Vv . \%
LTS cosf £ sinf [ 1 - —;2— (VI-18)

are the roots of b2 = az as a function of cosa and, with V < v, are real
with 'ri I <1. For convenirer}ce in Eq. (V-12), this condition can be
restated with a and 6 interchanged.

The symmetry of the problem has enabled us to explicitly carry
out all vector manipulations and to obtain equations that involve only
scalar variables. In doing this we used all of the available 6 functions,
and no further general simplifications are possible. The expressions -
we have given apply to the electrons, but the corresponding ion equa-
tions can be obtained by simply replacing f(v,t), m, e, and the sub-

script e by F(v,t), M, -e, and the subscript i, respectively.

1. Reasons for Not Attacking the General Problem

The above equations are even more nonlinear and complicated
than the corresponding Landau form of the Fokker-Planck equationv. In
the Landau equation, K(G, V) is simply replaced by a constant, ln A.
(See Secs. 1I and V for details.) The problerﬁ could oﬁly be attacked
as an initial-value problem and by numerical methods. One would
specify the distribution functions at time to and then calculate them

at a short time interval later, using
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(v, a, tg t Aty = {{v, a, to) + At {i(‘git&’—t—)—] _ (VI-19)
' t:to

and similarly for the ions; this would be repeated for as many time

steps as desired.

The basic calculation would thus be the evaluation of 9f(v, a, ’c)/8t
and 8 F(v,a,t)/dt from known values of f(v,a) and F(v,a) by use of the
equations we have given. Since K(9, V) \can be evaluated analytically
from R{6, V) and I(6, V), as discussed in Sec. V. A, this basic calcula-
tion involves two major steps. The first is the calculatien of R(6, V),
H(0, V), and I{0, V) from f(v,a) and F(v, e;) by the evaluation of double
‘in'tegrals over vand a for each set of V- and 6. The second is the
evaluation of 8f(v,a, t)/dt and 8F(v,a,t)/8t by calculating double

integrals over V and 6. We represent this schematically as
f(v, a)~ 1(0, V) = -8f(v, a, t)/8t (VI-20)

. where the arrows represent integrals over the variables to their left
.evaluated.at each value of the variables to their right, and_, of course,
f(v,a) and I(6, V) are only representative so each arrow acv;c_ually involves
several such integrals. ‘ ,

It is not feasible to carry out the process represented by {(VI-20)
even one’e; let alone for the hundreds or thousands of time steps that
would presumably be needed. Even if this were possible, the results
would depend upon the initial conditions, EO’ and the time and so would
"be difficult to understand in any systematic manner. . Our purpose is to
demonstrate the nonlinear stabilizing effect of the wave-particle inter-
actions associated with ion waves, and it might be difficult to separate
this from other effects associated with the relaxation towards thermal
equlllbrlum, Ohmlc heatlng, or electron runaway.

We thus f1nd it both necessary and desirable to consider only
81mp11f1ed model problems in order to demonstrate clearly the non-

11near stab111zat10n
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2. Expansion in Legendre Polynomials

In preparation for discussing model probiems, we rﬁay éxpaﬁd .

the distribution functions in Legendre polynomials of cosa as
-]
f(v,a,t) = Z fz(v, t)P ) (cosa) _ (V1i-21)
' £=0 :

and the functions H(6, V), 1(6, V), and R(6, V) in Legendre polyhomials

of cosf as
[+ e}

He(e, V) = IZSO Hep(V)Pp(cose) . | ' (V1i-22)

- To obtain equations for the f,(v,t), one may multiply Eq. (VI-9)
by (£ + 1/2)P£(cosa) sina and then integrate over a; because of the ortho-
gonality and normalization of the Legendre polynomials, this yields an
expression for 'asz(v,' t.)/at. This procedure is still completely general;
but the set of equations obtained is not useful unless the expansions can
be terminated after a finite, and preferably small, number of terms.

" In Appendix G we prové the rather surprising result that the only
term of Eq. (VI-21) that contributes to Hep(V), Iep(V), or Rep(V) is the

one with. £ =p. We list below the results for £ =0 and £ =1 for future

reference.
(" ®
H (V) = 21%me._ 2] v (v)dv (V1-234).
el pe j 0 4 YL
. v v
1 a(V)= R Y: (V) V. (VI-23b)
e0 _ pe 0
...w l N -’
5 | afg(v) [ v |V -] “
R (V) =270~ vdv——|2%—In ——| (VI-23c)
e0 pe -"" ov : v V + v l
o)
H V) = ZTT2 w ZVi f,(v)dv (VI-24a)
e1tV) = MPe "1

WAY
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L[ . T ,
2! !
161(V) = 2m “oe i] £,(v)dv - VE (V) ! (VI-24Db)
v 4
| 2
| 2f°° ot (v [ v VS v - v]]
R (V) = 27w v dv i2 —+ — 1n i
el o9V v VZ V+v ‘
0 i . )
, ~ 3
SENC% I A AV v - vl \
+ -2 — 4+ {1t - —ln —. (VI-24c)
v l- v v / V+v

" Notice that H ., I ., H ,, and1 are very simple to evaluate numeri-
e0’ “e0 el el

cally since only two simple integrals are involved.

' ‘ .- The expressions for ReJZ(V) do not involve ‘principal value inte-

grals, and.althéugh the integrands are sihgular at v=7V, the singularity

is very weak and so is usually integrable.. This singularity could cause

.difficulty in numerical evaluation of these integrals, however. These

expressions are also of value in deriving approximate analytic expres-

sions. For example

_ 2| ~ g
Reol0) = 4T !0 £ (v)dv (VI-25)

and by considering V larger than v and expahding the logarithm in

powers of v/V, we find the asymptotic expansion

w [, &, D,
R (V)= B 1+ 2L+ ZERERN (VI-26)
e0 w2 L ) " |
/00
1
[ - .
<vn> -4m| vPav fo(v) v (VI-27)
Jo

which is useful for large V. These results are in agreement with the
expressions in Sec. III. C. Notice that Eq. (VI-26) gives a positive
result élthough Eq. (VI-25) gives a negative result; thus there must be
a region at small V where neither expression is useful. (For the Max-

wellian. case, see Sec. III.C.)
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B. Various Models Considered

We must make many simplifying assumptions in order to obtain
equations that can be solved numerically. Because the general equations
are so highly nonlinear, we cannot check these assumpt1ons by any
direct expansion and ordermg procedure. We are guided by the results
discussed in the previous sections and by physical intuition, but certain

assumptions are made out of sheer necessity.

1. Basic Simplifications

Here we discuss certain restrictions and approximations that
are convenient and seem quite reasonable and so are used in all models
‘we consider. '

We suppose the velocity distributions are '"'basically'" Maxwellian
with the electron temperature 9 much larger than the ion temperature
91. This statement is not prec1se, but if these "basm" distributions are
vassumed proportional to exp(-v /a ) and exp(-v /A ) for the electrons
and the ions respectively, we have well-defined thermal speeds and

temperatures related by
a=a_-= (zee/m)i/2 Aza, = 2o t/?. (vi-28)

We may then define the electron DebYe length

D, = o /4me’, | - (VI-29)

the plasma pé;rameter
A = 45mD_°, | (VI-30)

a collision frequency v

1 2 “pe
vV == — —/—1InA, (VI-31)
C 3 T A
and the runaway field ’
' myv _a
E = 0.5064 : (VI-32)
run e _

as in Sec. II. B. These parameters prove useful in classifying the
solutions obtained. As we discussed in Sec. III, with 0, >>Gi the

critical field Ecrit at which ion waves would become unstable in the
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absence of the nonl1near stablhzatlon we seek is small compared to
Erun,'. S1nce we con51der EO of order or smaller than E ripr We can
expect that 1f our present assumptlon is satlsf1ed 1n1t1ally 1t will con-
tinue to be sat1sf1ed, although.on a relatively long time scale the tem-
peratures would change, as dis cus.‘s ed in A_ppendix. D.

- We next use the approxirnation

( ‘_—__-———”R (0, V) - if R(6, V) >0
2{1 )| S .
K(6,V) =1InA + J . R ; (VI-33)

Cif R(O, V) <0 -

as discussed in Sec. V. A. The error is ordinarily within the uncertainty
introduced by the cutoff k but can be larger if both R(6, V) and

II(G V ’ are extremely srnall As we d1scussed in Sec 111. D, this
Vtends to occur as EOv approaches E crit if 6 < 209 The first term

is 1nterpreted as the contr1but1on of "ordlnary coll1S1ons and the sec-
ond as the_effect of wave -particle interactions. ‘

The function R(6, V) is calculated 'with only the "basic! Max-
wellian velocity distributions. This is justified because R(6, V) is not
sensitive to details of the distribution functions but instead.depends
upon quantities like certain moments of the distribution functions, as
indicated by Eqs. (VI-25) and (VI-26). This removes the necessity for
evaluating the rather complicated integrals that would yield R(6, V).
With this assumption, R(V) is positive for V > a, and for'ai<V<'\/Tnﬁ_/Lae,
which are the electron and ion wave regions, respectively, as discussed
in Sec. III. -

We ignore the effect of electronjfplasma waves by neglecting the
second term of Eq. (VI-33) except in the ion wave region. This neglect

corresponds to using

(VI-34)

in-Eq. (VI-33). Here the function X(x) is defined by Eq. (III-33) and
discussed in Sec. III.C. As is illustrated by the examples in Sec. V,
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the electron waves ordinarily have little effect because they interact
only with the fast electrons. 'As we discussed in Sec. III. E, the pres-
ence of runaway electrons implies unstable electron waves with high
phase speeds, but with EO << Er.un these waves.will affect only the rel-
atively few very fast electrons. We would be unable to use the L-B
equation f&)r this problem because the plasma is actually unstable to
these waves. The collisional effects .upon these very slowly growing or
weakly damped waves are probably important also.

Unfortunately, the assumptions we have discussed do not greatly
simplify our problem. They are necessary, however, to make'possiBle

certain other simplifications.

2. Specific Models

Most of the assumptions we consider here cannot be justified in
detail but are simply necessary to cut our problem to a manageable
size. The resulting problems can be considered only -as models.

We first assume that the ion vevlocity distribution is Maxwellian.
This cuts the size of the problem considerably, and in certain models
permits us to make use of the slowness of the ion waves compared to -
the electrons; no comparable assumption can be made in treating the
.ions. We may make rather convincing arguments that fhe "ordinary"

collisions and the field E, do not make the ion distribution deviate

greatly from being Maxwe(ilian; the reason is that the collisional drag
and the diffusion in velocity space caused by collisions with the electrons
are very nearly independent of the ion velocity. The collisional drag is
almost exactly balanced by the force of the field _]EJO, and the diffusion
tends merely to change Gi. The ion-ion collisions, of course, tend to
maintain the Maxwellian distribution. However, this argument is not
enough to jus,tify‘our assumption because in calculating the damping or
growth of ion waves details of the ''tail" of the ion distribution are im-
portant, and this is just the region most strongly affected by wave-
particle interactions. With this assumption, we naturally work in the
ion frame. -

In treating the case E >> E_ .,y Field and Fried made assump=

tions comparable to those we have considered, plus two additional

ones. 34 The first is based upon the slowness of the ion-wave speeds
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and reduces the problem schematically to . .

9f(v, a)

(v, a) > 1(6) ~ 2%

(VI-35)

The second has little justification but was considered necessary; they fac-

~ tored. ..va(v, a) as 'fl(v_L)f“(v“) where v =V sina, vy v éosa; and
_ f_L(VJ.) is Maxwellian. The problefh is then represented as o
Of (v ) .
f“(v“.)—> U(0) > —57— - (VI-36)

and was solved numerically in some detail.
If f(v,a,t) is represented by a small number of terms of a
Legéndre pblynomial expansion, the problem is represented by

ot (V)

f[ (v) - I‘e‘(.v) ' (6, V) - 3t ’ (VI-37)

where now each arrow represents several integrals. Because the 6
dependence of I(8, V) is known, the integral over 6 can be evaluated
~analytically if the number of terms in the expansion is small enough,

and we then have
' ' 8sz (v}

— (VI-38)

£,(v) > 1, (V) >
An extfemely crude model that we consider numerically involves
only £=0 and £=1 and will be called Model A. We assume fd(v) is
Maxwellivan with known temperature Ge, so this model strongly resem-
bleg that in the Spitzer-H4rm problem, except that we use the L-B
equation‘vand we do not linearize in EO and fi(v, t). Schematically, we

have
' 8f1(v) .

ot 7’
so the complexity of our Model A is roughly the sarhe as that of the

f1(V) —)’I,]_(V) - (VI-39)

problems solved by Dolins-ky51 and by Field and Fried. 34

The second model we consider numerically is based upon
f(v,a,t) = fo(v) + £,(v) cosa + 8£(v, a, t) (VI-40)

where fO‘(V') and fi(v) are known from the linearized version of Model

A, and. 6f(v,a,t) is expected to be small. Without further assumptions
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we still have the fairly general problem

5£(v, a) - 81(0, V) 10, V) - —"’éf—(th“—t)

Because 0f(v,a) is considered small, we neglect 6H(6, V) and 8I1(8, V)

(VI-41)

wherever possible, which means everywhere except in the denominator

of Eq. (VI-33) for K(6, V), where ©6I{(0, V) is important because the other

con_tributions to I(6, V) tend to cancel. This approximation amounts to

a somewhat unsystematic linearization in &f. In the contribution of ion

waves, we make approximations based upon the slowness of the ion

waves; then 6I(0, V) is evaluated at V=0, for example, so we have

-36f(v, a)
ot

We call this problem our Model B. Formally, it is much more com-

&f(v, a) = 8I(8) (6, V) —

(VI-42)

-plicated than our Model A and the problems done by Dolinsky and by
Field and Fried. Numerical solution is possible only because detailed
knowledge of 6f(v,a) and 6I(f) are not needed; this is a consequence of
the simplifications based upon the slowness of the ion waves in com-

parison with the electrons.

C. Reduction to Equations for the Model Problems

We can develop the equations for Models A and B together by

using

f(vya,t) = £ (v} + {,(v,t) cosa + b6f(v,a,t). (VI-43)

0 1
In Model A, ©6f vanishes; whereas in Model B, fi(v) is known and is
independent of time. In both models fo(v) and the ion velocity distri-

bution are Maxwellian.

1. Introduction of Dimensionless Variables

The remaining development is quite formal and we can introduce

the dimensionless variables
_ Vv _ _ o . )
X =, u=—, y = cosa, T = yct (Vi-44)

and the parameters

(VI-45)
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For the electron velocity distribution we define

-. - -x2
238(v,a, 1) = hix, y) = 77/ 2 X 4 yi) + glx y) (VI-46)
. ' 3 ] . . . 3 :
with f(x) =a fi(v, t) and g(x,y) = a~ 6f(v, a, t)
We introduce the dimensionless function
D 2 R(V) -~ if  R(V) >0
R(u) = —=— ¢ (VI-47)
2 1nA 0

if R(V)<O

where R(V) is, according to our assumptions,given by Eq. (VI-34).
~We therefore have explicitly

i

o . _m Y (u ) _ } . T
R(u) = X |= 1 VI-48)
o . . ) (u) S 21InA [2 € , (
when u ..
mi

<u<u , and :R(u) .= 0 otherwise. Here u
n ax

. and u
, min max
are the values of u for which the quantity in brackets vanishes.
Similarly we define

DZ

H(6, u) = % H(9, V)

(VI-49)
where, by our assumptions,the contribution of &f is to be ignored.

From Eqs. (VI-23a) and (VI-24a), we find explicitly that

H(u,6) = Hy(u) + H,(u) cosf (VI-50)
~with o
' 2 2,21
Hy(u) = __2“_ [ev_u +1€ e ™ /€ } | (VI-51)
H1(¢)‘ - rPu | f(x)dx . | (VI-52)

Because I(g, V) is negative in the ion-wave region, we define
(0, u) = -De‘ZI(G, V),

(VI-53)
which is positive for u

<u<u
min
waves).

(when the plasma is stable to ion
By our assumptions, the contribution of &f is not to be in-

cluded except when II‘(B, V) | appears in a denominator and then is to
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I(6,u) = Io(u) +:1
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»1.7(u)I ck{)ﬁS 6 + Ig(@)

where from Eqs.

(VI-23b) and (VI-24b)

: ‘2 2/ 2
Io(u)=\f;u [e'u + X0 /€ }
i €
.
11(u) = {uf(u) - f(x)dx ],
: u

and, as is shown in Appendix H,

/2
Ig-(G) = - cosef do [p(5in6 cosd) + p(-sind cosd)]
. 0 v

with

-~ o0

ply) = %j g, y)dx
: 0

(VI-54)

(VI-55)

(VI-56)

(VI-57)

The ions appear in our equations only through the terms involv-

ing € and vy in Egs. (VI-48), (VI-51), and (VI-55).

In terms of these dimensionless variables and functions, Eq.

(VI-9) can be written as

(VI-58)

I-18and (VI-33), we find that Eq. (VI-12)

1 + R(u)/1(6, u)

oh(x,y) _ 4 8h 1 -y 8h 1 9
2 . 1
n 18_ Y12 v.3) & E,-7J .
x 9y | x V. -e V. =0 *e
Similarly, by using Eqs. (V
yields
a -3 (u) ( s
v-J | = d{(cosf)
Ve - e) TT3; Zj f r\f(r+ - cosf)(cosf -r_)
X {I(G,u) h(x, y) + H(6, u) 5 g—h+ H(6, u) cosf -
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where

r, = u_}Zi \/i—yz \/1—u2/x2

To find [(az/vc)ﬁo - ie] we must simply multiply the integrand by
(cos)/u.

We have already made considerable use of the assumptions dis-
cussed in Sec. VI. B. Further use of these aséumptions will apply

specifically for either Model A or Model B.

2. Contributions of "Ordinary' Collisions

Our purpose in this section is to write the terms in

2
_Q_L[X 2 v.og |l L2 y(_a_y.ge AL I
x 9 x v x 0y v X Oyiv
c c . c
(VI-60)
that do not involve R(u) in the form
2 2 2
9h 0 h 9"h oh
A(x,y) — + B(x,y) — + C(x,y) — + D{x,y) —
0x Ix0y oy 0x
+ Bl y) gt Flx )b y) - (VI-61)
We define the integrals .
a1 T "6
2yl %|= 5| dlcose) cos , (V1-62)
x T '\/(r+—cose)(c056 -r) ‘

which can easily be evaluated with the substitution of variables used in

Appendix I. The results are

2. 2 2
o _uy 2 u
o e S i
X 2 x
3.3 2
Q:ﬂ,ﬁqu F39 sy 2 (VI-63)
1 x 3 3 <&
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In terms of these, the collisional contributions are °

X
Ve coll NT x . X 0x J
+13_h.{H<Q +Ha] uéah[H&+HQ}} (VI-64)

- x 9y x~ 9y . '

and ' .
2% -  oh

—E, J du hxy)\ Q+I&}+E—{H& +H1‘2]
vc— e coll '\/— x 0x )

; Loh [HO&’Z + H1<93} -9 9h {Hoéa " Higz] (VI-65)
x 8y X 9y '
where we have used Eqs. (VI-50) and (VI¥54), ignori.ng Ig(@) by assump -
tion as discussed before.
The procedure is now to substitute these expressions into
Eq. (VI-60), carry out the differentiations, and collect t,e:i'.ms,, which is
‘quite straightforward but tedious. We simply give the results, which

are expressed in terms of the five rather simple functions:

x
» 2
®(x) = e ™™ du = %—1 erf x (VI-66a)
0
2 2
Q(x) = 2 u’e™ du = ®(x) - xe x (VI-66Db)
Go(x) =f f(u)du | (VI-67a)

Ix -

o - |
G3(X)i/’ u;fhndu ‘ (VI-67b)
GS(X) =‘[ u5.f(u)du . (VI-67c)

Jo
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In the form of Eq. (VI-61), the results are

Alx,y) =

B(x,y) =

C(x,y) =

D(x, y)

E(x,y) =

F(x,y) =

Ag(x)+ A, (x)y (VI-68)

3 2. x\
A (x) = Q()+€Q—}
0% .4X3 {X (6)

3 3/21 1
A1(x) :g m / [;IGS(X) + XGO(X)j| ,

B,(x) (1 - y°) (VI-69)

B, (%) = n3/2 [é 'G3(x) - éc%(x) + %Go(x_)},

Colx) (1 -¥2) + C (%) (y - v°) (V1-70)
3 bid 1 A
Cnh(x) = {@( Y+ @ = } - A (x)
o\ 3 % (6) 2 0 x
.
Cylx) = = By (),
= Dy(x) + D (x)y | . ) (VI-71)

2 2,2 .
D4 (x) :-23; {e_x + '—i-e_x /€ ]‘f" 32 {Q(x)+y€2Q (_-’eiﬂ-l Ag(x)

- X
D, (x) = B, (x),

Ey(x)y + E4(x) . (VI-72)
x) = -2C4(x)

E,(x) = -2C, (),

x) + Fy (x)y (V1-73)
Py _xz/‘ez

Fo(x):3e +3L1e
€

F1(x) = 3ﬂ3/2f(x) .
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The y 'dependence of these quantities is simple. The functions with
subscript 1 depend only upon f(x), whereas both the ions and the Max-
wellian part of the elecfrori—velocity distribution cdntribute to the func-
tions with subscript O. |

Two problems that have been considered by means of the Landau

~equation serve as checks on our above results. With E = {(x) = g(x, y)=0

and the wave contributions neglected, Eq. (VI-58) reduces to

2[(4x

Oh(x) _ Tr—3/Ze—x
oT

- Z)AO(X) - ZXDO(X) + FO(X)]

= PO(X) . ‘ ' (VI-74)

By direct substitution from above we find

- 2,2 2 | 2
T (x) = 3(y-1) [1 e A Qli)} w3/ 2% (VI-75)
. , € X €

so when y=1 ('Ge = Gi) we find 8.h/87= 0 as we expect. Otherwise the
rate at which the kinetic energy of the electrons, per electron, is chang-
ing reduces to
- 0O o0
_ 9 4 ~ 4
= ee 5t 4m| x h(x)dx= Qevcé_hr X l_‘o(x)dx .
‘ 0 0

5 3 . (1 2
5T d er(Y) (? mv

The integral over l"o(x) can be evaluated exactly and yields

) 3 1 2_ _3m 2,-3/2
which is exactly the result given by Spitzer.~ With the approximation

€2<< 1, this is the result we used in Appendix D.

In the second special case we assume Ge: Gi so I‘O(X) = 0 and
we linearize in f(x) and E, neglecting g(x, y) entirely. This is exactly
the problem solved by Spitzer and Hirm in evaluating the linear elec-

trical conductivity. 1 We find from Eq. (VI-58)

2

CBeT) L 04819 Exe™ + T, (x) (VI-77)

oT
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(VI-77 cont.)

2 : 2
D0 = Agld TL 4 A (e’ -2y P
o |
of —3/2e-x2

+ DO(X) % + Di(x) (-2x)m
. —3/2 —xz‘
+ EO(X) + FO(X) f(x) + Fi(x)‘ﬂ’ e .

Substitution of Ai(x), Di(X)’ and Fi(x) into Eq. (VI-77) yields

%1 of x?
T, (x) = Ay(x) oz +Dy(x) 55 + [Eo(x) + Folx) + 3e * }f(x)
12 o 2 & 12 3 . _x° .78

If we consider M to be infinite so € = 0 [and I'y(x) vanishes for any
finite y], Eq. (VI-77) reduces exactly to the equation solved by Spitzer
and Harm. In this approximation the ion contributions vanish except in
EO(X). v . |

Only the functions Bi(x), Co(x), Ci(x), and E1(x) are not checked
by these special cases. We have some confidence in these results be-
cause CO(X) is 'simply related to Eo(x), whereas Bi(x), C1(x), and Ei(x)

are simply related to each other.
3. Model A

In this model f(x) depends upon 7 and we ignore g(x,y) entirely.
To obtain an equation for f(x, 7), we multiply Eq. (VI-58) by 3y/2 and

integrate over y from -1 to 1 to find

.. 1
9f(x, 7) —xz 1 5} 3 a
ST - 04819E x e - T ix| ZY(TY'%) dy
T x ox 1 c
! 2
1 3 9 y ,a _ . a A
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"ordinary'' col-

By referring to the previous section, we find that the
li.§ions [the terms not involving R(u)] contribute simply I’1(x). Thus
if the effects of wave-particle interactions were ignored, our Model A
would be simply the Spitzer-Hirm problem and would be subject to the
same limitation of small E. We notice that the above procedure does
not include the energy exchange between electrons and ions as repre-
sented by fO,(X)’ but this would only be important on time scales of
-order (M/m) jV'}C. __.1, which are long compared with the_ time scales we con-
sider.-

To determine the wave contribution we represent the expression

in braces by a(y) and use

1
[ da
J ydy go=a(t) +a(-1) - | a(y)dy.
-1 -1
But from Eq. (VI-58) and the corresponding equation for [(az/vc)_ﬁ_;o. 1,
we see that a(y) can be written as an integral where the integrand con-

tains a factor (uy/x - cos@), which implies that a(1) = a(-1) = 0. To see

this, we note that as y approaches 1, r, both approach uy/x, so the

*

only value of cosf that contributes is cosf =r, = uy/x, and the factor

=
(uy/x - cos@) then vanishes. The same conclusion follows from the

& function in Eq. (VI-12) as sina approaches zero. We therefore have

9f(x, T) 2 L s \ .
—57— = -0.1819Exe © + ' (x) -— — [x3,(x)] - Ty (=) + T 5(x)
_ x~ 90X x
(VI-80)
where _ 9
3 a
T x)=="1 v |5V {e) dy
-1 c wave
3 ' a.2 ~ : '
Jz(x) =5 > ]20 . “Ie' dy. (VI-81)
-1 C ave

]"
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where

with
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In Appendix I we show that

9 ijﬁx R{u) Zuz x2 f |
- _ - -x' u .
N x I.(u) {72/ %x x
0 <0 .
2 1 2\ :
2 u |[0f f u 1 u

) |
2 .
-9 R(u) | -2u -X ] f[ ]
[ du {—7——W3 - e [HOV-1+H1V2 += [HgV, +H Vy
0

N x Io(u)
u u2 of f '
3 (X)L = - ;) [H0V2»+ H1V_3}}, (VI-83) .
1 .
cos™@ .
= -84
Vn(u) [1 dlcosg) 1+(cos8)/b(u) o (VI-84)
IO(u) VI-85
b(u) —1—1(—1'17 . ( -85)

If we substitute

cos@

- o1
T (cos0)/Blw -~ >(W {1 T T (cosG)/b(u)}

~into Eq. (VI-84), we find the identities

V() = bu)[2 - Vy(w)]
V,(u) = -b(w)V,(u)

V,(u) = b(u) [% - vz(u)] . (VI-86)
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When Ib(u)l is large, we may expand [1 + (cos8)/b(u)] -1 in powers
of [(cos6)/b(u)] to find

V3(U.) = - 2 — - 2 - 2 e (VI"87)

5b(u)  7b(w)  9b>(u)

and Vz(u), V1(u), and Vo(u) from the above identities. For arbitrary
|b(u)| (larger than unity) we find directly

b(u) + 1 : : '
o— (VI-88)

VO'(u) = b(u) In »
and V1(u), Vz(u), and V3(u) from the identities.

With a stable plasma, Ib(u) l is, and must be, larger than unity
for won <u< u_ .. SO that Io(u) + 11(u) cosf does not vanish for any
6. As E is increased toward the critical value, v |b(u)’ will ‘approach
unity for certain u, and Vo(u) will become large. This is expected to
give the nonlinear stabilization we seek, but in this model the effect
becomes stronger only logarithmically.

Again we must face the straightforward but tedious step of sub-
stituting these expressions into Eq. (VI-80) and collecting terms. We

express the result as

2. ' :
-@%?-‘T-’J—): A'(x) a—fz + B'(x) %fﬁ C'(x)f+ [D'(x) - 0.1819 Ex]e *
9x (VI-89)
where v
Al = Agle) + A () (V1-90)
B'(x) = Dy(x) + B! __ (x) (VI-91)
| o )
C'(x) = Eylx) + Folx) + 3¢ +C'___(x) (VI-92)
D'(x) = —1'2_2 G5(X)" B _2—2 G3(x) i [}?2 > _ZX] GO(X) * Dlwave(x)'
5x » x
(VI-93)

For the wave contributions we give only the results, which may be ex-

pressed in terms of
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X lw) = 43_ R(w) [Ho(w)V o(w) + H, ())V, ()]

i

X () = ?92— R(u) [Hy(w)Vy () + H, (0)V,(u)]

R(u) [Hy(w)Vy(u) + Hy(w)V4(w)], - (VI-94a)

X
S(x) =f du u” [x o(u) - x,(w)]
0 .
T(x) =j du u* [3x,(w) - xglu)]
[ du x
[ du (Zu + u) 1(u). (V1I-94Db)

The results are

' __S(x) T(x) ]
Hwave T3 T T | (VI-95)
2% 5 (x) x
B o X2® s Zf duw R - 62 3T
wave' X NE ~ .
0
(VI-96)
ana‘v'e(x)“: 3R(x) . 3T(7x) +-s(;<) ) vZI_;(x) : : (VI-97)
’\[?X X < x
D' el = - Xy + S . (VI-98)

X
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We must also supply appropriate initial and boundary conditions .

on f(x,7). We are particularly interested in the asymptotic solution as

7 becomes large; this solution represents a steady state on the time
scale of interest. This steady state is very convenient because for
specified mass ra‘tio 62 and specified In A the solution will depend
only upon y= Ge/»Gi‘ _and E = EO/Erun in our dimensionless units; this
is a large simplification over the general problem. For this purpose
the initial condition is not crucial; we could use f(x, 0) = 0 for example,
although some other choice may provide more rapid convergence to '
f(x, 7> ). We use the boundary condition f(0,7) = 0 so that the electron
velocity distribution is continuous, as we ex‘pecf fr.om the diffusion
nature of our equations. For numerical purposes we also must supply
a boundary condition at some la.rge value of x. We simply set

f(xmax’ 7) = 0 and choose X ax large compared wi‘gh the values of x
that contribute significantly. Our model is not correct for very large

X anyway.
4, Model B

In this model f(x) is considered to be known from solving Model
A with a véry small value of E. In this case f(x) is proportional to E

so we make a convenient change in notation. We write

2
h(x,y,T) = 1T—3/2e_x +E{(x)y + g(x, vy, T) (VI-99)

so that f(x) itself does not depend upon E. We continue to define
LW, Hy(w), Golx), Gy, Gglx), Aglx), By(x), Cqlx), Dy, By,
F1(x), and I‘i(x), which depend linearly upon {(x) and are now con-
sidered known, by the expressions given previously; these then are
also independent of E. With our simplifying assumptions concerning

the ""ordinary" collisions, Eq. (VI-58) becomes

2 2
og(x,vy) _ : og 1-vy 0g . 0 g
2 2
2 2°g 2 0 g
+ (1-y )EBi(X)W +(1-y7) {CO(X) + EyCi(x)} —8y2
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+_{D0(x) + EyDi(x)} 5—}%&— LYEO(X) + EEi(X)J %

+ LFO(X) + EyFi(x).\ glx,y) + Tolx) + Eyi*i'(x)‘

4 ET,(x) + E%YPT(x) + F-S (VI-100)

8T]wave S

Here everything but g(x,y) and . [8g/87] is presumed known. We

waves
"have defined

2 _ ‘
r,'(x) = T (x) - 0.1819xe x (VI-101)
I5(x) = 0.5064f(x)/x + Bi(x)af/ax + E (x)(x) (VI-102)
T ,(x) = 0.5064[08/0x - £/x] +A,(x)0%4/0x" + F (x)i(x). (VI-103)
The full expression for [8g/97] includes all of the terms in

Eq. (VI-58) that involve R{(u). To simgl?fffsthis we use the circumstance
that most of the electrons have x >> Uk By assumptioﬁ, we neglect
all terms that-involve positive powers of u/x. Then, according to

Eq. (VI-59), the contribution of the wave partof v ‘Ie is neglected,

and in EO --,Je the expression in braces reduces to

100, whe, y) + <228 H(6, u) bl )
L * Y
Therefore, we have '

Lo . r H
_ [BgJ ~ 3 p [ maax R(u)du T ¢os d(cosh)
o7 waves. TTS; 2x2 dy ‘ - N (r,-cosf)(cosf - r )
o “min T o
cosf H(H,u) 0oh _
X {h(x: y) + % 10w 5—}7} (VI-104)
where now r, = i(i—yz)i/z. The term not involving H(8, u), which

corrésponds to. the direct effect of spontaneous emission upon the
particle being considered, vanishes because the integrand is odd in

cosf. We therefore find |

i
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) o
[55—} = 13 9 {s(y) M} (VI-105)
waves X oy oy ,
where, if we define ,
'l—yz
W _ cos™p 1
n(U., y) = d(cos9) > : ) (VI-106)
Jiy2 N1-y2 - cos26  1(6,u)
we have |
3 [’umax
W =377 du R(w) [Hy(u)Wy(u, ) + EHy ()W 3(w, )]
- _
Ymin *(VI-107)

Notice that since H(68, U) is always positive and R(u) and I(0, u) are

. . < < ) - . . ’ .
positive for U ip SuSuw S(y) will be positive everywhere except
at y = #1, where it is proportional to 1 - yz

and so vanishes. The

evaluation Q"f Wn(u, y) from Eq. (VI-106) is discussed in Appendix J.
According to Eq. (VI-105),:the primary effect of the ion waves

upon the electron velocity distribution is to produce a diffusion in the

angular direction in velocity space. By considering an "H-theorem"

in Appendix K, we show that in our approximation the ion wavés always

tend to make the electron velocity distribution isotropic (even if the

ion velocity distribution is not Maxwellian or even isotropic). This

certainly agrees with the conclusion reached by Ramazashvili, Rukhadze‘,

62 The effect of the ion waves vanishes only when 8h(x, y)/dy

and Silin,

vanishes everywhere, so the electron velocity distribution is isotropic.
With an isotropic ion velocity distribution as we have assumed,

this is a stabilizing effect. When I(0, u) becomes small in the ion-wave

region, S(y) becomes large, at least for a certain range of y. This

. should provide the nonlinear stabilization we seek.

In the present notation, the problem of Field and Fried:‘}4 with

all of their assumptions except the factorization in v, and vy re-

L
duces to

' 2
dh(x, v, T) oh , 1 -y~ 0h 1 9 oh |
AR T) 2 0,5064E 2= ohf 1 8 | fiy) OB
o7 [y ox  x  9y| ) oy |

(VI-108)
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and I(6, u) is approximated by the result of Eq. (VI-57) with g(x, y) re-
placed by h(x,y). Of course /?S{(y) is determined in the spirit of quasi-
linear theory, but this still requires knowledge of R(u) and I(6) only.

It is quite clear from the formsof Eq. (VI-57)and Eq. (VI-108) that the
factorization in v, and v, is very unnatural. It also seems that this
factorization is not necessary.

To complete the definition of our problem we must consider the
initial condition and boundary conditions. It would be very convenient
to remove the effect of slow energy changes dué to Ohmic heating and
collisional transfer to the ions so that we could solve for an asymptotic
solution in time, as in Model A. We may do this by considerihg gl{x,y)
to be expanded in Legendre polynomials of y and then requiring that
the coe.fficienvt of Po(y) vanish. The isotropic part of the electrqn
velocity distribution is then simply the Maxwellian. This simplification
will also be useful when we consider jche boilndary condition at x=0.
Notice that the isotropic part of g(x, y) would not directly affect the
electr’icé.‘l current, the heat flow, or the ion waves [according to Eq.
(VI-57)]. .

The initial condition is of no real importance as we calculate
g(x,y,7 = «), but it should be chosen so that the plasma is stable.

The boundary condition at anax will be g(xmax,-y, 7) = 0 just
as in Model A. The boundary condition at x=0 is somewhat more dif-
ficult. We expect from the diffusion nature of our equations and from
physical intuition that the electron velocity distribution will be con-
tinuous, finite, and reasonably smooth. We suppose that a Taylor-
series expansion

: 0
hix, y) = Z An(y)xn (VI-109)
n=0 :
is valid for small x. If the velocity distribution is to be continuous,
we must have Ao(y) = h(0,y) be a constaht. "But then as x approaches

zero, Eq. (VI-100) takes the form

og _ 1 9 08 o1y )
w7 {:S(y). ayJJFC‘?( ) | (VI-110)
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so we must have S(y)d A;/dy- equal to a constant. Since S(y) behaves
as 1 - y2 as y approaches *1, this condition can only be satisfied,

with Ai(y) finite for all y, if Ai(Y) is constant. Thus

h(x,y) = A +A1x+A2(y)x2+ O (VI-111)

0

where". A'O and A, are constant. This implies
gx,y) = C + Ax -f(x)y +S(x") O (VI-112)

where C 1is another constant. We have no way of determining C and
Ai’. but fortunately, we have decided to remove the isotropic part of

g(x,y), so we have
g{x,y) = -{(x)y +9(x2) . (VI-113)

Actpally, we realize that Eq. (VI-105) is only an approximation and is
not valid for small x. This approximation is useful only if the region

of small 'x is relatively unimportant, but in this case the boundary con-
dition at x =0 should not be important.

We also must consider the boundary condition at y = £1. To be
specific we consider y near +1, or a near 0. We consider the region
of velocity space with 0 <a < ag.- The surface area of this region is ’
propo;tional to agy when ag is small, while its volume is proportional
to ay - The rate at which. electrons enter this volume per unit v is

given by the area 27 sina, times the normal flux

0
~ . (] .
-G '[L_fer(y,t) - ?Z—Ef(y, t)] = -@0' J (v, t) - —E sinag (v, t)

and must vanish as fast at the volume as ag approaches zero if
.Ie(v; t), f(v,t) and "8f(v, t)/8t are to be finite. This requires that the
above expression vanish as faspaﬁs_ ay or sinao, which implies that
’(i.- qe(x_/, t) vanishes as fast as sina. By writing out 6:,- ‘Ie(Y’ t) from
Sec. VI. A, one finds that this implies 9f(v, t)/ 8 (cosa) either vanishes
or approaches a finite constant as a approaches zero. Thus we find
that 9 g(x, y)/0y ‘is finite at y = #1. This would be satisfied automatically
if g(x, y) were represented by any finite number of terms in an expan-
sion in Legendre polynomials of y. |

With these boundary and initial conditions, the definition of

Model B is complete.



VII. NUMERICAL PROCEDURE

Because we have no need for high numerical accuracy, all
integrals are evaluated by the simple trapezoidal method. Also, since
we seek the steady-state solution that is approached asymptotically as
t (or 7) becomes large, we are not particularly concerned with follow-
ing the time development in detail.

’ Special procedures are useful in preventing the computational
instabilities that tend to arise in solving diffusion-like equationslsuch

as ours.

A. Model A
The functions of x  and of u are determined at the discrete
values x, = uj.. Since both the slow ionlwaves' and the fast electrons
must be w¢ll‘ represented, we ordinarily use 271 values of ‘XJ. with
| 0 < X, <0.02 for 1 <j<140;0.02 < X <1 for 141<j < Ziiv; and 1
€ x. 57 for 212 = j s 271, ' ' '

The numerical solution of

ot - A% % | (VII-1)

by the explicit method suggested in Sec. VI. A develops computational
instabilities unless the time step AT is chosen somewhat smaller
than (AX)Z/A. 65 This suggests that the solution of Eq. (VI-89) by ex-
plicit methods may develop computational instabilities unless AT were
sufficiently small. Because Ax and A vary widely in our problem,
it is not élear how small A7 would have to be, but AT would probably
be so small that an impractically large number of time steps would be
needed to reach the steady-state solution.

' Equafi_on (VII-1) can also be solved by an’implicit procedure,

Denoting f(xj, T = ’ro) by fj and f(xj, T = ’fo + AT) by fj" we write
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I R S -2f+f 1- A g Zf'+f' |
AT P (A x) {ju S I ( .F’) ax)? LIt 1|
| (VII-2)

where Ax = x, - X, is chosen independent of j, and p 1is chosen in

_] -1 J v . ,
the range 0 < p < < 1. Here 9f/87 is not simply evaluated at the 'old"

time ’TO at which f is known but instead is a weighted average of the

‘values at the 'old" time ™o and the "new” time Ty + AT at which f
is unknown, The Eqs. (VII-2) form a set of linear, algebraic, simul-

taneous equations for the f3 that can be solved as follows. One writes

_f‘. :e1£'+d

-1 ; 4 (VII-3)
where, of course, ej and dj are unknown. By eliminating -fj—i be -

tween Eq. (VII-2) and Eq. (V_II—.35, solving for f;., and comparing the
result to Eq. (VII-3) with j replaced by j + 1, one finds recursion

" relations that give ej‘ and dj in terms of ej-1’ dj—i’ and the known
quantities in Eq. (VII-2). With Iin 3 S & and d.nrlin

. s . ol
are determined, by the boundary condltlon at Jnin’ so these recursion

max
using the boundary condltlon at _] max ,along with Eq. (VII-3),

relations yield eJ and d for j from_] +.1__ through j - 1. By

finds f' for j from j nax down through _]

ThlS implicit procedure is computatlonally stable for any AT
if p < O 5. 65 The ""new'" time is weighted more heav1ly than the ''old"
time; in fact with p = 0, the '"old" time appears only on the left in
Eq. v(VII—Z). We use the same implicif procedure to solve our Eq.
(VI-89), which contains additional terms that can be treated in the same
way. A minor difference is that we have chosen an uneven spacing for
xj , Wthh makes the difference equa.tlons appear more complicated,
A more 1mportant d1fference is that the coefficients A'(x), B'(x), C'(x),
and D'(x) depend upon f(x, T) andiso are not known at the ''new' time.
Therefore one must choose trial values of these coefficients at the "new"

time, calculate f3, and use fj‘ to compute improved values for these
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coefficients. This iteration procedure can be repeated as many times
as desired before one continues to the next time step. We determine
the trial values of the coefficients by linear extrapolation from earlier
times. _ |
Another difficulty is that, although our equations are valid only
for a stable plasma, the computer may suddenly find |I‘1('u)| = Io(u)
for U_in <uc< U which corresponds to an unstable plasma. In
this case we'a;t_tempt to force the plasma toward stability by simply
p'fesc'ribing that the fluctuations associated with the unstav.ble"tw‘a;ves

- have very iargé amplitudes. Thus we feplace I'l/IO‘ b}r 1-2exp(-C)
if 11/10 21, and by -1 +2exp(-C) if 11/10,s -1. [ Actually, the
term 2exp(-C) is neglected except in the logarithm in Eq. (VI-86),
O(u)‘= C.] Ordinarily we choose C equal to 40. The
number of times this prescription is used on each time step is mon-
itored, and, of course, our solution is incorrect unless as thé steady
state is api)roached closely the plas'.ma is stabie, soAthis prescription
is not needed. . ' . o .

o This numerical procedure works quite well fgr EO smaller -
rit Computational instabilities do not appear for AT as
large as 8, although in this case the solution oscillates about the final
steady state and the oscillations decay rather slowly. (We a.re:not
éuszrised that the physical time development is not followed when the
time step is 8 vc'-i.) Ordinarily we use ArT= 2 because this yields
convergence to the steady-state solution in the smallest number of
time steps. The convergence and stability are equally good for ‘p =0,
0.4, 0.2, 0.3, and 0.4, but with p‘= 0.5 the convergence at small‘ X
is relatively slow; ordinarily we use p = 0,4. We use fcwb iterations
on each time sfep (that is, th¢ fj' are calculated three'tirnes), but

this is not necessarily the optimum. We ordinarily use the initial
condition f(x, 0) = 0, and the convergehc'e is complete (within the eight-
figure computer accufacy) within less than 40 time steps. For most

pufpc')ses 10 time ét_eps would be sufficient,
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When 'E | approaches or exceeds E we modify our proce-

0 crit’
dure. From a previous run with a value of EO we denote by EA, we

have a solution fA(X). From this we find that even if the problem

were linear with f{(x) = EofA(xﬂ)/EA, the plasma would remain stable
: . 1 . - » . . -

until E exceeds ‘EA’ with EA >Ecrit‘ We then run with EO EB,
choosing E , <EgR< EA' and using as our initial condition ‘

f(x) = EBfA(X)/EA' Even with these precautions to ensure that a stable
steady-state solution exists, we often must choose AT rather small
to avoid computational instabilities. This proce.dure soon becomes
impractical because of the small amounts that EO is increased and be-
cause of the small time steps. On runs for which a steady-state solu-
tion is found, the prescription for handling unstable waves is ordi-
naril&r needed only on the first few time steps.

On an IBM-7044 computer, each time step requires about 6

seconds, and most runs last between 3 and 8 minutes. We refer to the

computer program for Model A as Program 1.

B. Model B
This two-dimensional problem is feasible numerically only be-

cause of the various simplifying assumptions, especially the ones
based upon the slowness of the ion waves. Detailed knowledge of g(x,y)
is not needed; for example, the properties of the ion waves are deter-
mined entirely by f(c;o g(x, y)dx, as shown in Appendix H. We calcu-
late functions of x at only the 28 values X, with 0.1< X, < 3.1 for
1<si=<15, and 3.4 < x. <1 for 16 <i <28, The range U Ssusu oo
of ion-wavg' speeds is divided into 50 equal intervals with endpoints Uy

- The purpose of Program 2 is to use the results from Program
1 obtained with very small E (usually '10_4) to calculate the '"known'
coefficients in Eq. (VI-100) and other functions needed in Model B.
The results are given at the values of X, and u, indicated above.

Each run of Program 2 requires about 40 seconds on an IBM-7044

computer,
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1. Procedure in Program 3

This is the main program fof Model B. The range -1<y <1
is divided symmetrically abouf y = 0 into as many as 70 intervals
with endpoints yj. For convenience in evaluating Eq. (VI-57) and
Eq. (VI-106), the functions of 6 are determined at the values of 0
within - 0<0 <7 that satiéfy sinf = yj for .some value of j.

Since substitution of Eq. (VI-105) into Eq. (VI-100) yields a
diffusion-like _e.quation, we again attempt _‘ch avoid comptitational diffi-
culties by using a known implicit method. 66 ‘This is similar to the
method in Model A with p = 0 and without corrective iterations on
each time step. On the odd-numbered time steps, we used the pre-
viously described implicit procedure to determine the x dependence
of g(x, y) at each vy.; the terms in Eq. (VI-100) involving 8g/8x and
ng/a XZ are evalu:ited at the "new'" time and all other térms are eval-
uated at the '""old'" time. On the even-numbered time steps, -the y
dependence of g(x, y) for ea;h x, is found similarly; only the terms
involving 8g/8y and 9 2'g/a yz are evaluated at the '"new" ‘time. The
coefficients needed at the ''mew' time are simply evaluated at the "old"
time and no corrective iterations are performed. The amplitudes of
fluctuations associated with unstable ion waves are again specified
artificially, here by setting I(0, u) equal to Emin whenever the com-
puter finds I(6, u) < 0 within umin< u < U ordinarily we choose

':min = 0,001. Because of the discussion in Sec. VI, C, we remove

the isotropic part of g(x, y) after each time step so that

1

f dy g(x, y) = 0, o (VII-4)
24 :

. Our procedure is based ﬁpon an implicit method that is known

to give éomputationally stable solutions of

2 2
0g . 28, 3¢ (VII-5)
oT 2 2
0 oy
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1 66

for arbitrériiy‘large AT if Ax and Ay are constant and equal.
However, our scheme ‘dées not work well with Eq." (VI-100). Ordi-
narily we must still use AT < 0,01, which would seem to be imprac-
tically small. -Fortunately, each time step requires only 0,5 second
on an IBM-7094 computer, and the solution converges to the steady
state quite well within a physical time vc_1 and extremely well within
5 Ve _1. The latter is not expected physically and is apparently the
resul’c of our numerical procedure.

The method of choosing the initial value of g(x,y) and the value
of E is the same as in Model A for the two cases E.< E . and

0 crit
03 Ecrit' Again, as EO becomes large, Ar must be reduced to
ensure convergence of the solution, but AT smaller than 0.001 is im-
practical. The longest runs involve 1000 time steps and require 8.5

minutes on an IBM-7094 computer,

2. Boundary Conditions and the Choice of Y;

The boundary conditions at x = 0. and x = 7, which are
g(0, y) = g(7, y) = 0, cause no difficulty, The boundafy condition at
x = 0 can be changed to 9g(x, y)/8x = 0 with an.almost undetectable
change in the results. This is desirable because of the simplifying
assumptions that are not valid at small x an’d because of the rather
widely spaced values of xj at small x,

The boundary condition at y = £+1 was shown at the end of
Sec. VI to be that 8g/8y be finite, which implies 8g/8a = 0. If we
were using a as a variable, we would equate the values of g at a = 0
and at the point closest to 0 but positive (and similarly at a =m).
This would be adequate if the spacing of the points in a were suffi-
ciently sr_nall.' We see that this is equivalent to using the _boundar.y
éondition 8g/dy =0 at y = +1 with an appropriate choice of yJ
This we do because the actual condltlon that Bg/ay be finite at y==%1,
is too indefinite for use.

. To test this procedure, the choice _of yj has been varied. With |

the range -1 <y <1 divided into either 40 or 70 equal intervals, all



. .88-

results are nearly the same except in the immediate neighborhoddbs
of y =+1. The important waves have 6 near m and are affected
only by g(x, vy) with y near zero; as we expected, these are very
. insensitive to the choice of yj. The quantities that are most sensitive
to the choice of Yj are the small corrections to the electrical current
and the heat flow, both of which are sensitive to g(x,y) near y = =1,
Any large error resulting from the boundary condition at y = +1 or
from the choice of Yj should have appeared with this change of Ay
by nearly a factor of two. We also defined Yj by dividing O0<a <
into 70 equal intervals; this division gives very closely spaced values
" near y = +1. However, the numerical error in evaluating 8/8y and
0 2/8 yZ by difference equations is apparently excessive in this case;
still, the ion waves are hardly affected by the choice of yj.
Ordinarily we have chosen Yj‘ by dividing the range -1<y< 1
into 40 equal intervals rather than 70 simply because the computa-
tion is faster and the volume of output is smaller. Notice that with
the equal intervals of sinf, the values of 6 are most closely spaced

near O = 7 (the region of most interest to us) and near 6 =

3. Calculatlon of the Fluctuatlon Spectrum

From Eq (IV 9) we find

2 - 00 -
<__§ > = fdzk f dv wW(k, V) (VII-6)
™ —_ 0 puat

. 4=
with Wk, V)= —— fv e — kHkV) (VII-7)

Rk, V)] 4 12k, V)

Notice that Wik, V) is defined somewhat differently than Rostoker's
"enérgy per mode. " 41 The integral over k diverges at large k be-
cause of the self energy of each particle, which could be subtracted

out, When R(k V) greatly exceeds |I(k V)l, the resonance yields
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~

N o 3)2
W (V) = [R(k, V)] / Hk, V) (VII-8)

res=" 1T 46 Bk VY|

which represents the distribution of electric-field energy of the fluc-
‘tuations associated with waves, [t is now convenient to define, by

means of the dimensionless quantities of Sec., VI, C,

Aa - | 3/2
W8, u) = 5—93— Wres(li’ V) = —1_2 {Z 1rnA R(u)} i{((ee,uu)t) ) (VII-9)
€ € 21 ’

We next define

2 1 H
A E _ ] max
= = 2w d(cos8) du W(6, u),
n 6 8w /.
ion waves -1 u v

e e .
min
‘ ‘ (VII-10)
even though the condition R(E, V) > lI(i{, V)I is not satisfied evefy—
where within -1 < cosf.<1 and u . €u<u . We do have R(u)
min max

and I(6, u) positive throughout these ranges so W(6, u) is a positive
quantity, and when I(6, u) is not sufficiently small, W(68, u) will hope-
fully not be large. There is no way to define the energy in the ion
waves without some such arbitrary choice, '

The purpose of Program 4 is to evaluate Eq. (VII-9) and Egq.
(VII—iO) for Model B with results from Programs 2 and 3. A typical

-run requires 1 minute on an IBM-7044 computer,



-90-

VIII. NUMERICAL RESULTS

After the results are presenﬁed, they will be used in evaluating
the validity of the models considered. The plasma parameter A ap-
pears in our dimensionless equations only through ln A in the defini-
tion of .R(u) by Eq. (VI-47), so we choose In A = 10 throughout the
numerical work. We also choose thé mass ratio 62 as appropriate for

an electron-proton plasma.

A, Results Obtained with Model A

This model correctly gives the linear solution valid for E0<<Ecrit'
2 E_ . --‘are considered separately.

The“two ,cases'é'-‘EOl<<L E..otand E
. Pl cr > crit

it 0

1. With E << E
0 c

Here Model A reduces to the Spitzer-Hia‘.rrn1 problem except

rit

that in Model A the effects of the fluctuations associated with ion waves
are included. Although the cutoff procedure and the convenient separa-
tion of "collisions'" and ''wave-particle interactions' introduces an
uncertainty of order 1/In A = 10% in the results, thére is no serious
objection to the model in this case,.

The electrical conductivity o is defined by

00 1 '
- j=-2m(n_ea )f x3dx j y dy h(x,y) = cE_, (VIII-1)
e e 0 -1 . 0

and with our definition of Erun’ the Spitzer-H4rm result is

n ea

. _ € e . _
oy = = . (VIII-2)

run

Figure 4 shows the effect 6f the ion waves upon o. With Ge = Gi the
ion waves have no effect with our approximations, and we find

O'/O'SH = 0.99939 when an appropriate point spacing is used. As Ge/Gi
is increased, the ion waves become important and reduce 0, as ex-

pected from the discussion in Sec. VI.C. 4. The values cannot be taken
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Fig. 4. Effect of ion waves on the linear electrical conductivity
0 in an electron-proton plasma with In A = 10. Here s
is the Spitzer-Hairm! value. At Oe =0, G/QSH is 0.99939.




-92-

literally because of the inherent 10% uncertainty, but the trend is sig-

nificant. Actually, the decreases in ¢ by 1.2% at ee/ei = 10 and by

6.1% at Oe/Oi = 100 agree well with the values 1.1% and 5.3% found by
63

Gorbunov and Silin,

The thermoelectric coefficient B is defined by
5 ! |
Q, = Zﬂ(neae.e..e) f X dx f y dy h(x(y) = - BEO, (VIII-3)
0
and with our definition of E o’ the result obtained by Shkarofsky,

Bernstein, and Robinson is

0.5064 5 n a @6
e“e’e

PsBrR © 03951 z E

(VIII-4)
run

Figuré 5, which is'strikingly similar to Fig. 4, shows the effect of ion
waves upon the linear $. With 9 = Gi, we find B/BSBR 0.99771. As
Gorbunov and Silin define the heat flow relative to the electron frame
rather _than to the ion.frame, to compare our results - with theirs we

must use the connection formula

0.3951 o
0.5064 o

P Pos |

(VIII-5)
fsBr  Pser

SH

Then the decreases in 8 by 1.65% at 6 /9 10 and by 6.4% at 6 /6 =100
agree fairly well with the values 2. 35% and 7. 8% found by use of the re-
sults of Gorbunov and Silin in Eq. (VIII-5). ' '

Because this model is linear in E_ when E_ is small compared

0 0

to Ecrit’ we may calculate- Ecrit by defining EO/ECrit

value of I,l(u)/IO(u) within Ui SU < U ax The results shown in Fig,

as the largest

6 agree very well with those of Fig. 2 when the relationship

/a = 0.5064 E__. /E is used, as was suggested in Sec, III. E.
cr1t crit run
For Be/Gi less than about 20, the agreement is within about 2%, and

even at larger values of 66/91, for which the ion waves increase: E__..
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Fig. 5. Effect of ion waves on the linear thermoelectric coefficient B.
, Here 5SBR1 is the value given by Shkarofsky, Bernstein, and
‘ Robinson. 12 At 0, = 6;, B/BspR is 0.99771.
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Fig. 6. The critical field above which (according to the linearized
kinetic equation including the effect of ion waves) an electron-
proton plasma would be unstable,
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slightly, the values of Ec ., from Fig. 6 do not exceed those from

rit
Fig. 2 by more than 5%,

The results of this linear problem are also used as input data for

Model B.

2. With EO ZEcrit

In this case Model A is not satisfactory. With Ge/Gi = 50, only a
very weak nonlinear stabilization was found. To maintain stability

with EO = 0,02519 = 1,005 Ecrit’ for example, some of the ion waves
have damping rates smaller than with" EO =0 by a factor 10_3; the

corresponding fluctuations have energies 1000 times as large as with

E.= 0. No stable solutions were found with EO exceeding EC by

0
more than 1%,

As verified with Model B (Sec. VIII. C), Model A is inadequate _ _

rit

_primarily because the 'aﬁgﬁlér'dépéxﬂéhk;—és_ of the electron velocity dis-
tribution and of IO(u) + Ii(u) cosf are too inflexible, We noted in
Sec. VI.C, 3 that as [Ii(u)l approaches Io(u), the effect of the fluctu-

ations associated with ion waves grows only logarithmically.

B. Survey of Results from Model B

This model demonstrates the nonlinear stabilization very well.

The solution

h(x,y) = ! e'XZ + <EO f(x)y + g(x,vy) (VIII-6)
y ;§72 Erun ,’
implies
EO
I(u, 8) = Io(u) + o 11(11) cosf + 1 (0). (VIII-7)
run g

We will refer to these with g(x, y) and Ig(@) neglected as the linear

solution, which is the solution of Model A W_ith E << EC ... The cor-

_ 0 rit
rections g(x, y) and I (6) that are found in the full nonlinear solutions
of Model B primarily result from the nonlinear effect of fluctuations

associated with ion waves.
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Figure 7 shows the damping rate -y of the ion wave that would

first become unstable as E_ increases, according to the linear solu-

tion.  Here Yo designat}esothis damping rate when EO vanishes,
From the linear solution, Y/YO would decrease linearly along the
dashed line until, at EO = Ecrit’ y would change sign and the plasma
would become unstable. The solid curves show the nonlinear solution;
as y approaches zero the nonlinear effect becomes large aﬁd pre-
vents y from approaching zero too closely. This is a very clear dem-
onstration of the nonlinear stabilization, The value of EOV was not
increased beyond the values shown in Fig. 7 simply because of the
cost of computer time., Extrapolation suggests that the plasma would
remain stable at much larger values of EO.

This stabilization is most effective with large Oe/Gi. The
reason is indicated in Fig., 8, which shows the energy in fluctuations
associated with ion waves., Although in Fig. 7 y/yo is larger with
large 66/91, Fig. 8 shows that the amount by which the energy in the
fluctuations increases is much greater when 66/9i is large. This is
partly because |y0, decreases and the fluctuation energy with EO =0
increases as 96/6i increases., In fact yO:-O.928 ><10_4wpe at Ge/Gi = 40,
YO:-0.559><10’4wpe at 6 /0, =70 and YO:-0.349><10‘4w o at ee/ei = 100,
Notice that with 1In A = 10 we find that v = 2,.4X10° wpe is of the
same order; this difficulty is discussed in Sec. VIIL D.

The energy in fluctuations associated with ion waves as shown
in Fig. 8 was calculated fromthe somewhat arbitrary definition given
in Sec. VII. B. However, discussion in Sec. VIII. C shows that this
amounts to choosing the position of the baseline for the curves in Fig,
8; the increments are unaffectedby this definition.

Because the rate of spontaneous emission remains nearly un-
changed, the decrease in |y| in Fig, 7 by a factor of order 10—2 as
EO increases from zero to its largest value indicates that the energy
in fluctuations associated with the particular ion wave considered in-

creases by a factor of 100, However, according to Fig. 8, the energy

in the fluctuations associated with all ion waves increases by a factor
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Fig. 7. The damping rate -y of the ion wave that would first
become unstable according to a linearized kinetic equation.
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Fig. 8. The energy in fluctuations associated with ion waves. The
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of less than two, and remains smaller than the kinetic energy of the
particles by a factor of about A_i.

Similar calculations were attempted with. Ge/Gi = 10, but no

-nonlinear stabilization was found. In this case the plasma approaches

instability by I(u, 6) approaching zero where R(u) vanishes (see Sec.
1II. D), so according to Eq. (VII-9) the increase in the energy of the
fluctuations is very small, - Actually, nonlinear stabilization is still
expected in this case, but one probably-should use Eq. (V-3) rather
than the approximation (V-4), which is poor when both l R(u)’ and
’I(u, 9), are very small, Even then, the nonlinear stabilization
would probably be weak and thus difficult to study 'numerically‘r;
Figures 9 and 10 show the nonlinear electrica;l conductivity o
and the thermoelectric coefficient p as found from Eqs. (VIII-1) and
(VIII-3). By comparing Figs. 9 and 10 with Fig. 8, we see that the
effect of the fluctuations associated with ion waves is roughly propor-

larger than E the effect upon ¢

crit’
increases further, the corrections

0
and B is significant, and as Eo

may become important. With the displaced—Maxwellian model of Sec.

tional to their energy. With E

II, the first nonlinear effect on ¢ is an increase -when 'EO approaches
Erun; this effect is quite different from the results shown in Fig. 9.
Figures 8, 9, and 10 contain no results for: EO/Erun < 0.04

because of a systematic error that becomes larger as EO decreases.

The origin of this error is not known. The error is not seriously

large until E_, becomes very small. It is nonphysical because, for

0

example, o tends to decrease as E_, decreases, which does not

0
agree with Model A or with our expectations.

C. Samples of Detailed Results from Model B

To present further details, we consider only Ge/Gi =70, so
JE =0.0217. Often only E /E _ equal to 0.01, 0.0228, or
crit’ T run 0/ Trun
0.02715 are considered, 'since these represent the regions of EO

below, near, and above E . .
crit
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Fig. 9. The nonlinear electrical conductivity ¢. The vertical dashed

lines denote Ecrit in the various cases.
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Fig. 10. The nonlinear thermoelectric coefficient B. The vertical
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1. Damping Rate of lon Waves

We consider waves with phase speed equal to tha:t" of the wave
that would first become unstable according to the linear solution, but
we consider all directions of propagation. Figure 11 sh:ows the damp- J
ing rate -y of such waves for all directions 6 and various values of
EO. With EO = 0 the plasma is isotropic, and y= Yo by definition.
According to the linear sol.ution’ (shown by the dashed lines), as EO is
increased the anisotropic correction is proportional to C?SQ and to EO.
When EO exceeds Ecrit’ the waves with 6 near m (so k is near the
direction thfa_ electrons are accelerated by EZO) would grow-and the
plasma would be unstable.
’ The nonlinear solution, as shown by the solid lines of Fig. 11,

behaves similarly until E. becomes comparable to or exceeds E

0 crit’
Then the nonlinear correction adjusts itself to be just sufficient to

run
0.02715 in Fig. 14. With the simplifying assumptions of Model B, the

maintain the plasma stability, as shown by the curve with EO/E

nonlinear correction is an odd function of 6 - /2 as indicated. The

intercept of such curves at 0 = 7w as EO is varied provides the data for

Fig. 7. .

Notice in Fig. 11 thatmdﬂ1‘Ed/Erun_:(102715the nonlinear

correction deviates considerably from being proportional to cosf, the

form to which it was restricted in Model A. In fact |y| remains small

over a considerable region of 6 near w. This is significant because

solid-angle considerations weight the importance of the various regions

of 6 by a factor sinf. Thus, in Model A, even when the intercept at

B =m is very nearv v = 0, the shape of the curve is so restricted that

the effect of the fluctuations associated with ion waves does not become

really large. This is apparently the major reason for the failure of

Model A, -
If one considers a phase speed different from that of Fig. 11,

the primary effect is to lower all curves in Fig. 11 so that all waves

are more highly damped. This follows from Eq. (III-26) for vy and

from Eq. (VIII-7) for I(u,70) since it turns out that Ii(u) is very nearly
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5 Damped waves

Eo/Erun=0.02715
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Y of ion waves propagating in any direction
0 with phase speed u=V/a_=0.01031. Here 0e/0;=70 so

The dashed curves show the results from a
linearized kinetic equation, and the solid lines show the nonlinear
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independent of u and 8 R(u)/8u is a slowly varying function of u.
The amount the curves are léwered is determined by the variation of
Io(u). ,

We conclude that the nonlinear effect of wave-particle inter- g
actions does not greatly affect the damping rate -y of ion waves that
would 'be stable even from the linear solution, but it changes the damp- :
ing rate of the waves that would be unstable just enbugh to stabilize the

plasma.

2. Energy in Fluctuations Associated with Ion Waves .

“As mentioned before, the energy of fluctuations that correspond
to very weakly damped ion waves is large, because in the L.enard-
‘Balescu kinetic equation the fluctuations arise from a balance of spon-
taneous emission and Landau damping.

The energy density <EZ/8'rr> of fluctuations associated with ion
waves per unit u = V/a.e and per unit solid angle of E is defined by
Eq. (VII-9) and denoted by W( 6, u), in units of neQG/A. The data for
Fig. 8 are obtained by integrating 2w sinf W(6, u) over 0 <6 <m and
U ipSusu . The factor 2w sinf is the solid-angle factor men-
tioned in Sec. VIII. C. 1,

Figures 12, 13, and 14 show examples of the behavior of
W(60, u). Notice that the results are given at values of 6 that are not
quite eveﬁly spaced.

' With EO much smaller than Ecrit’ W(8, u) is nearly inde-
pendent of 6 as was suggested by Fig. 11 and is shown in Fig. 12. In
Fig, 12 the peak at small phase speed actually does not correspond to
weakly damped ion waves, so the definition of W(8, u) is somewhat
arbitrary in this case., This peak could have been omitted in the inte-
gral that yields the data for Fig. 8, but since it does not change as EO
is varied, its contribution to the quantity shown in Fig. 8 is simply an

‘additive constant for each value of ee/ei .
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Fig. 12. Distribution of energy in fluctuations associated with ion
waves over direction of propagation 8 and phase speed u with
Eg/Erun=0.01. Here 6¢/0; = 70, so Ecpit/Epun = 0.0217,
Umin = 0.002617, and upmax = 0.01684,
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Fig. 13. Distribution of energy in fluctuations associated
with ion waves with Eg/Epyn =0.0228 and 6¢/6; = 70.
The dashed line encloses the region shown in Fig. 14.
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Fig. 14. Distribution of energy in fluctuations associated
with ion waves with Eg/Epyn=0.02715.and 0,/0; = 70.
 The region shown is outlined by a dashed line in Fig. 13.
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With E_ slightly larger than E the ion-wave peak becomes

much larger fo(i' 6 near w. This is shof;rttin Fig. 13, where the verti-
ca'l scale has been changed by a factor of 8 so the peak atbsmall phase
speed does not appear so large, although it actually is unchanged. The
ion-wave peak is somewhat smaller for 6 near 0 than in Fig. 12, but
it is much higher and narrower for 6 near m.

As EO

even higher and narrower for 6 near w. With another change in the

is increased even further, the ion-wave peak becomes

vertical scale, Fig. 14 shows this for the r_eg_ion eﬁclosed by the dashed

line in Fig. 13. In this case the peak is nearly 100 times higher than
when EO vanishes, in agreement with the damping rates of Figs. 7 and
11.

Because of the solid-angle factor 2w sinf, the large ion-wave
peak in Figs,.13 ahd/i/—l does not contribute as much to the quantity in
Fig. 8 as one might expect otherwise, o |

The large peak in the fluctuations associated with ion waves

- could have important effects that we have not mentioned. The scatter-- '

ing of light by the plasma would be modified; in principle this -could be -
used to measure the fluctuation spectrum quite directly., All transport
coefficients would be modified, including spatial diffusion if the plasma

were slightly nonuniform,

3. Modification of the Electron Velocity Distribution

As discussed in Sec. VI, C. 4, the fluctuation spectrum shown

in Figs. 12, 13, and 14 produces a diffusion of the electron-velocity '

distribution in the angular direction. In Eq. (VI-105) the diffusion co-
efficient is S(y)/_x3 where yl = cosa and x = v/ae. In Fig. 15 we see’
that as EO ipcreasés,’ the ion-wave peak of Figs. 13 and 14 becomes
large and the even function S(y) increases, mainly in the region of y
near zero. ‘This is as expected because the resonant particles for an
ion wave with 6 near m are in the region, of velocity space with a
near m/2 or y near zero. This diffusion always tends to make the
electron velocity distribution more nearly isotropic, and from Fig. 15,

the effect should be strongest for y near zero,
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Fig. 15. The function S(y) that determines the effect of

fluctuations associated with ion waves upon the
electron-velocity distribution. Here 6./6; = 70.
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Figure 16 shows the anisotropic part of h(x, y) from Eq.
(VIII-6) with EO/Erun =0.02745, which corresponds to Fig. 14 and
the upper curves of Figs. 11 and 15. For each constant value of x

the solid curve shows the linear solution (EO/E ) {(x)y and the

dashed curve gives the nonlinear solution Whichrlilr?cludes g{x, v). The
nonlinear correction g(x, y)is small, although with small x it very
nearly cancels the anisotropy of the linear solution, as expeéted from
the discussion in Sec. VI, C, 4.

Close inspection of Fig. 16 reve.als that thé correction that
g(x, y) makes on the slope of the curves is largest for y near zero,
as expected. This change most strongly affects the Landau damping
of ion waves with 6 near 0 or near m, the latter being the region of
8 where the stabilization is necessary. _

At larger values of x than those shown in Fig, 16, g(x,y) is
unimp‘brtant in determining the Landau damping of the ion waves and
the various transport coefficients, and the model actually fails because
the anisotropic parts of h(x, y) become comparable with the isotropic
Maxwellian part. However, the behavior of g(x, y) is still interesting,
as is illustrated by Fig. 17. Clearly g(x, y) does not remain an odd
function of y, but in Fig. 17(a) actually resembles the parabolic Leg-
endre polynomial Pz(y), Presumably the ion waves have little effect
at this large value of x, so g(x, y) simply represents the small next
termy in a Legendre polynomial expansion. At even larger x, a def-
inite peak forms at y=-1, as shown in Fig, 17(b). This represents a
distortion of the velocity distribution that eventually blends into the
region of runaway electrons., The effect of our incorrect boundarycon-
ditions at y = 1 1is apparent in Fig, 17. The important region of y

near zero is unaffected by this,

D. Validity of the Models

The assumptions and approximations fall into two groups: those

that are necessary for the Lenard-Balescu kinetic equations to be ap-

plicable and the ones that are convenient in finding approximate solutions
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Fig. 16. Anisotropic part of the electron-velocity distri-
bution with Eg/Epup = 0.02715 and 6./0; = 70. Here
x = V/ae and y = cosa. The solid lines show the
result from a linearized kinetic equation, and the
dashed lines give the nonlinear result.
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F1g 17. Nonlinear correction to the electron velocity distri-
bution at high electron speed. Here Eg/Epyp=0.02715 -,
and 6,/6; = 70.
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of the Lenard-Balescu kinetic equations. These are discussed sep-

arately and evaluated in terms of the results obtained.

1. Applicability of the Lenard-Balescu Kinetic Equation

The restriction to a spatially uniform classical Coulomb plasma
defines the problem being studied. If these simplifications are not
justified for the real plasma being studied, the problem must be mod-
ified. For example, the effect of transverse waves may be important.
The problem might also be quite different in a magnetized plasma. 37

The conditions that the plasma must be stable according to the
linearized Vlasov equation and must vary ''slowly'" are éertainly sat-
isfied in the numerical solutions obtained. ' These conditions might: be
violated during the transient as the plasma approaches the quasi-
stationary state calculated, but this transient presumably lasts no
longer than a few collision times,

The derivation in Sec, IV, C indicated that if A were suffi-
ciently large, the neglect of mode. coupling and collisional effects on
the waves would be justified. Here we present further verification of
this in our particular problem. Notice again that in the dimensionless
variables of Sec. VI.C, A é,ppears in our equations only through a
weighting of the relative importance of wave-particle interactions as
inversely proportional to In A. Therefore the solutionls obtained
would also depend very weakly upon A, in the variables used. In fact
the numerical solutions were obtained only for In A = 10 because no
qualitative changes are expected when A is varied,

As A becomes larger, [vc/yl in our solutions will vary roughly
as A_1, so for sufficiently large A the collisional effects on waves
can certainly be ignored. As we noted in Sec, VIII. B, with In A = 10
so A= 2><1O4, ’yc/y, is as large as 102 or 103 in some of our solu-
tions, so presumably collisional effects would not be negligible, But
with In A = 20, for example, the solutions would differ little from
those we obtained, and the neglect of collisional effects on the waves

would certainly be justified,
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» According to Fig. 8, the ratio of the energy in waves to the
kinetic energy of the particles is of order A—i° The simple criterion
that mode coupling can be ignéred when this ratio is "sufficiently
small" indicates that when A is "sufficiently large'" the neglect of
mode couplivn.g' is jus‘.ciﬁed,’ We have no good way of estimating how
large A must actually be., However, we notice that from Fig, 8 the
energy of the waves is not much greater than when E, vanishes.

Even if A is not large enough to justify the neglect of colli-
sional -effec;ts on the waves, the qualitative features of the Lenard-
: BalésCu'k‘iv_n‘é'tic equations and of our solutions should remain valid.
The dispérsion relation and the expression for the damping rate -y
would be d_iffere-nt, but the fluctuation spectrum should still arise as a
balance of spontaneous emission and damping, The plasma would prob-
ably continue to stabilize itself, but the stability would not be deter-
mined with the linearized Vlasov equations. The effect of collisions
upon'ion waves is a current topic of research; recentlylit has been
. shown fhatla slow collision rate can eithef increase or decrease v,
under :different conditions, 68

The situation when mode coupling cannot be ignored is not so
clear. It again seems very unlikely that the fluctuations associated

with any particular ion wave can continue to grow in time, except slowly

as the plasma slowly changes.

2, The Models Solved Nﬁmerically

"Certain approximations were made to further, restrict the gen-
erality of the probleni and to simplify the interprefation of-the re‘:sult:s'°
These incluae v | »

" (a) Considering an'eléc"tron‘.-protOﬁ plaéma;
(b) Assuming that the velocity distributions are almost Max-
wellian; | ' R '

(c) Approximately separdting collisions and wave-particle inter-

" actions;
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(d) Calculating R(®, V) using only the Maxwellian parts of the
velocity distributions; ' »
| (e) Ignoring the effects of electron waves; ‘
; (f) Restricting.the isotropic part of the electron velocity dis-

tribution to be Maxwellian with constant temperature Gev.

These were Iadequately discussed in Sec. VI. Our numerical results
show that these approximations served their purpose well. . We expect
that these simplifications are quite reasonable, except poséibly, for (c)
when Ge/Gi is less than about 20, . '

Unfortunately, the equations remain very complicated even with
the symmetry of our problem and with the above approximations.
Therefore only certain model problems were studied numerically,
Model A was useful only when ; EO is small compared to Ec .., and

: rit’
it requires no further justification in that case. To obtain the more

‘useful Model B, three further approximations were made."

(g) The terms in the Lenard-Balescu equations arising from
wave-particle interactions were simplified on the basis that the phase
speed of the ion waves is small compafed to the electron speeds. This
approximation fails for the small fraction of electrons with small
speeds, but,. as is verified in our numefical solution, the region of
V << a, makes no significant contribution to any quantity of interest.
Thus, this approximation seems to be well justified.

{(h) Because-no similar approximation can be made in eval-

uating the ion velocity distribution, this dist.ribution‘-wa,s_ chosen to be

‘Maxwellian with constant temperature Gi. This has not been fully

justified because the wave-particle interactions might introduce signi-

ficant distortions. However, we notice that even if the ion vélocity

distribution is distorted, the fluctuations associated with ion waves will

tend to make the electron velocity distribution isotropic. Unless the
ion velocity distribution is so distorted that ion waves would be un-
stable due to it alone, this will be a stabilizing effect and it will become -
large ﬁonlinearly as instability is approached. Thus a Maxwellian ve-

locity distribution for the ions can be considered a typical example.
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(i) The térms that remain too éomplﬂié'é,ted for numerical
evaluation -are those corresponding to '"collisions'" as re'f)rese‘nted by
the Landau form of the Fokker-Planck equation. With anisotropic ve-
locity distributions, these terms have been evaluated only in very spe-

cial cases, and it is"c'er'ta.i”nl'y not our purpose here to pursue this

" problem. We have thus been forced to make simplifications that a-

mount to: evaluating the Fokker-Planck coefficients by using the "known"
parts of the velocity distribution-and neglecting the contributions of the
"unknown' and small g(x, y). This resembles-the approximation made
in test-particle problems and Brownian motion problems, but in this
case g(x, y) does not représent the distribution -of a different species '
of particle, No attempt has been made to evaluate the effect of-this as-
sumption on the results found.

We conclude that our model problems can be considered fairly

realistic examples, except that assumption (i) has not been-justified.
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IX. CONCLUSIONS

According to the Lienard-Balescu kinetic equations, the primary
effect of fluctuations associated with longitudinal ion waves upon the
electron-vélocity distribution is to tend to make it isotropic, which is
a stabiiizing tendency unless the velocity distribution of the ions is very
distorted. As the plasma is forced toward conditions where it would
become unstable to certain ion waves, this nonlinear stabilization be-
comes stronger and prevents instability.

In our example of acurreht—carrying plasma with electron tem-
perature high compared to ion temperature, we have demonstrated With
a model problem that the plasma remains stable to ion waves for elec-
tric fields considerably above the critical field of the Spitzer-Hirm
problem. The fluctuations necessary to provide this stabilization have
the same qualitative effects as "ordinary" collisions and substantially
reduce the electrical conductivity and the thermoelectric coefficient.

- Kinetic equations such as the Lenard-Balescu equations are /‘
useful in such problems because they include the effects of '"ordinary"
collisions and of wave-particle interactions and because the time scale
involved is the relatively long collisional time scale. However, the
Lenard-Balescu equations can be used only when the plasma parameter
A, which is proportional to the number of particles in-a Debye sphere,
is large enough that the effects of mode coupling and collisions upon
the waves can be ignored. In our examples, this requires a very hot

low -density plasma.
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"APPENDICES

A. The:Momentum-Transfer Cross Section

The differential cross section for an electron of speed v being
deflected through an angle 6 by stationary heavy ions of charge Ze

“is

4 ' Z2e4 ,
o, = . (A-1)
6 mZV‘4(1 - cosG)2

On this deflection, the component of momentum parallel to the initial
electron velocity that is transferred to the ion is mv (1 - cosf), so one

ordinarily defines the momentum-transfer cross section by

Gm(v‘) = 2m E % sinf (1 - cos®) 46, .‘(A—Z)

but when T is given by Eq. (A-1), this integral diverges. Inserting

a cutoff impact parameter b-rnax as discussed in Sec, II. B is equiv-

alent to replacing the lower limit by 6 . = ZZeZ/(rhvzb_ ). We
min max

then obtain

2 4 ,
2Tl e 2
In 1 - cosh . ) (A-3)
: min

o-m(v) - 2_4 .
m- v
When emin is very small, this reduces to-Eq, (II-14).

The drag force exerted on an ion by an electron: velocity dis-

tribution fe(_Y) (normalized to unity) is now given by

F, = f a>v n_ vo_(v) f (v)my . (A-4)

One usually ignores the logarithmic dependence of o, upon v in
such integrals and evaluates the logarithmic term at some character-

istic electron speed. The total drag force on the electrons per unit
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volume is then
2 2 ' 2 f 3 v
F=-w elnAg n Z dv = f (v). (A-5)
- pe a a V3 e'—
a

The mean velocity of the electrons U then satisfies the equation of

motion

dU e _ 1
dt + m E:O(t)_ n_m

F . (A-6)

In the special case of steady state in an electron-proton plasma, this

becomes

3

v

_ 2 3.4
EO——wpeelnAjdv—Zfe(K). (A-7)

We evaluate the integral in Egs. (A-5) and (A-7) for the special
case where fe(l) is a displaced-Maxwellian distribution, To do this
we first notice that the integral has the same form as the integral that
gives the electric field at r = 0 due to a charge distribution p(r). In
this case the ''charge density" fe(z) is symmetric about v = U so we
know that the ''electric field" at v = 0 .is the same as if all of the
""charge' within |'X - El < l [_I| were at v = U and the remaining

"charge'" were absent, Thus we have

U/ae >
3 v 2 1 -y | O 4 U
dv =S f(v) = | 4m y &y =z e’ |5 = —5 2(U/a,),
vo € 0 ‘ T U 3NT a

e

(A-8)
where £(x) is given in Eq. (II-24). When we combine Eqgs. (A-5),
(A-6), and (A-8) and use Eq. (II-22), we find Eq. (II-23).

,//
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B. Expansions of the Dielectric Function

-

For any particular k and.positive k, we write

K% ek, 0) = k% - G(V+4I) . (B-1)

where we have defined w/k =V +il, and -V and I are real. When T
is positive, G(V + iI') is defined by Eq..(III-13), but otherwise it is
defined by analytic continuation. When 1" is sufficiently small
4 2 -
G(V+iD) = G(v) + T |28 PRI RS (B-2)

or 2 81“2 _

- =0 I=0
Because G is analyfi-c, it satisfies the Cauchy-Riemann conditibns

and we have

n n .
, o V)
8 51 = 28N (B-3)
o |, -avh
where in our case
G(V) = R(k, V) +il(k, V). (B-4)

Therefore Eq. (B-1) can be written for sufficiently small I'=y/k as

1 e, 1V +iy) = | K SR, V) +'l“ ———al(k ) Ot

Fil-1(k V) -PM) +F(rH|  (B-5)

which is the basis for discussing plasma waves.
- -

- We next consider the contribution of species a to- R(_k_, V),

which from Eqs. (OI-20) and (III-21) is

. - | v ’ ~ ‘ - 8F. (V'; ];)
_ av a — b
R (k, V) =P fv'-v 5V (B-6)
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with

-~

{ ) |
F (Viik) = o fd3" V- kv) £ (V). (B-7)

We now assume. that Fa(li’ V') vanishes for |V' | > |V| for the

V being considered. Then Eq. (B-6) can be integrated by parts to

yield
”~ l o~
Ro.(—lf’ V) = - f__dv_z F.(V'; k). (B-8)
(v -v)- © '
But
’ 2 3
1 ) i 1 :
——Z=—1—2 1+2'—\-\;—+317+4Y—3—+---. (B-9)
(V-v") \2 ( Vv Vv

By substituting Eqgs. (B-7) and (B-9) into Eq. (B-8) and evaluating the
integral over V' by using the & function, we find Eqgs. (III-28).
Even when our above assumption is not satisfied, these results rep-
resent an asympfotic expansion of Ra(i;_, V) that does not converge but
is useful when V is sufficiently large. We will not prove this state-
ment.

C. Calculationof U .
crit

In the following, V__. and V are the roots of X(V/A)
min max

= 26.1/E)e ‘and can be determined from the values of X(x) given by

-~

Fried and Conte. We consider k parallelto U so

]

u-v Vv e—VZ/AZ

Lo, v) = (C-1)

i
N % 2 4

In the curves we discuss, the electron contribution and the negative of

the ion contribution to Eq. (C-1) are plotted separately. Where the

curves intersect, I(k, V) vanishes,
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With 6 = 106. we find V min = 1.03A and V max - 2.63A so
the curves appear as in Fig. 18(a), where we use a greatly expanded
vertical scale. Notice that the ion curve passes nearly vertically up-
ward through the origin. With U = 4,5A as shown, the curves.inter-
sect at.three places; the minimum of F(V; 1;) is the intersection near
V = 3A and thus occurs outside the range Vmin< vV < Vma.x where R
is positive,so the plasma is stable., As U 1is increased, the curve of
the electron contribution slides to .the right. Finally when Eq. (C-1)
vanishes for V =V , we have reached U = U__. .. In our example

max crit

we find Ucrit = 6.13A. Notice that this result is quite sensitive to the

exact value of V .
- max _
With- 6 = 400., we find V_ . = 0.95A and V .= 4,65A so
e i . - min max

the curves appear as in Fig. 18(b), where we have used an even more
expanded vertical scale. With U = 2,5A as shown, F(V; k) has no
minimum, The minimum will form when U is increased until the
curves become tangent, and since R(k, V) is positive there, the cor-
rit’ The point Vb where the curves will.be
tangent is where they have the same slope and so is-given by

responding U will be UC

v/t ae_ v °
e —_— (2 — - 1), - (C-2)
AG.l AZ
which can be solved by iteration, In our example we find VO = 3.53A.

When Egq. (C-1) vamshes for V = V we have reached U = Ucrit'
In our example, we have U crit = 3 68A

The curves of Fig. 2 were constructed by the above procedure,

~

The function F(V; k) develops a minimum when I(l_(_, VO) = 0, and the

waves with k = 0~ begi.n to grow when I(k, V ) = 0.
= max
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Fig. 18. Illustrations for the calculation of Ucrit in an

electrgn-proton plasma. The temperature ratio
0e/0; is 10 in (a) and 40 in (b).
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D. .Ohmic Heating

Unless -'EO is smaller than Erun’ the electrical power
supplied will primarily go-into accelerating the runaway.electrons.
With 'EO << AErur’i’ ‘the power is effective.in heatingﬁthe plasma, al-
though as “.Ge‘ increases, '*Erun -decreases;. so, in practice, the tem-
peratures attainable are limited to a few hundred electron volts. .

- We consider an electron-proton plasma and assume ;the'velocify
distributions remain nearly Maxwellian. The pow.er transfer from elec-
trons to ions by collisions is then -3v¢(9e-— Oi)m/M ‘per electron so we

find- when E. << E
0 T

un

o - :
d [3 . S-H 2 3m
dt <7 6(; - n_ Eo - ™M velfe - 8) (D-1)
and ‘
a [3 _ 3m | '
dt <—Z. 9i> Y v-c(ee B Gi)f (D-2)

We consider only 9é> Gi so the ions are always heated. Whether the

electrons cool or heat depends upon the sign of ‘_

d6 : E 6.

1 e _ 4 0 Zm i
vo @ - 3 (0.5064) <E—‘ v <1'e—> » (D-3)

c e - ru (]

Whether Be/Gi increases or decreases depends upon the sign of

: ~ 2 o
] 6 E 6 6.
i - d e _ 4 0 2m e i
v & (@‘) = 5 (0.5064) <E > e <9._ - 'e—> (D-4)
CcC e 1 - run, : 1 c

- The various cases for an e.lectro'n-proton plasma are shown in Fig. 19.

We see that although any point on this diagram could be reached
by a-suitable choice of th"e’tirné ‘dependence of EO(t),. large temperature
‘ratios are not likely to be produced or maintained by Ohmic heating

alone ‘unless \E0.> 0. 1Erur'1' With EO constant in time, a plasma would
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Fig. 19. Diagram describing the time variation of the temperatures
B and 0; in an electron-proton plasma if only Ohmic heating
and collisional transfer from electrons to ions are important.
The dashed lines suggest the time evolution if Eg is constant
in time. ‘

P
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evolve along a trajectory like the ones sketched in Fig. 19.

E. Derlvatlon of Fokker Planck Coeff1c1ents

Using. Egs. (IV-'14) and (IV-15), we have

| +4 +4t ' |
A (v, t f dﬂf dt“<E[r(ﬂ t E[r (t'), t”]> .

- a \ Zm ‘At Jt
(E-1)

We introduce 7 =t'" -t' and we use the approximation r (t'') = r (t')

+ vT 'so.

| +At -t AL
00” (v, t) = f f dr <E [x(t), t']E[x(t')+ v, t' +7-]>.
(E-2)

We assume the quantity in brackets is S (vr, 7), although the ensemble
here cannot be the same as in our'deri\}ation of g(g, T) because here
we know that a particle exists on the trajectory r(t'). Because At is
chosen long compared with the correlation time, we make little error
by extending the limits on T to —'oo and «, Also, since At is chosen
short compared with the time scale over which E(KT’ T) varies, the

integral over t' yields At, Thus we find

2
q o0
UQQ(X' t) = ‘12 [ dr C(v7, 7). (E-3)

2m o0
a

From Egs. (IV-13) and (IV-15), we find

qa At . _
2(1 (z, t) = m J:) <E[£(t+'r), t+’r]> dr. (E—4)
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We now use the approximation

E|x(t+7), t+7}=_1~§|[r(t)+y, 't+~rJi ' .
+[£“+T)-£ﬁ)ng}-[§%§Q5t+iJ , (E-5) .
‘ - L ox=Er(t)tvr

and by integrating the particle equation of motion twice, we find '

- ) \ .q- T 'T”.v . . )
r(t+r) S r(t) -vr= = _[ d’r"f dr' E[z(t+71'), t+7'], (E-6)
" 0

T mu 0

where v 1is evaluated at t. In Eq. (E-6) we interchange the order of
integration and use r(t +7) = r(t) + vr' so that substitution into Egq.
(E-5) yields ' '

A q v
: 'E'[r(t+7'); tirl = E r(t)+vr, t+7 | + — [ dri(r-T7")
. T‘v - : S J L R ma D - :

- vt e e et et 2 dan e o PNE e T wp .

il

8x

X . [-E{(g(t)Jrrr', t{r"r')E'(zc_,'HT)}

x=x(t)tvr

(E-7)
In evaluating the ensemble average of this, -the first term would vanish

except that we know the particle is present 'at'" z(t) + v7, so we find

E
—drag
term again yields C (R, T) so

<E_ [£(t+'r), t+7}> = E'drag'(qa’l’)+ r?lg f dr'(t -1')

(qa, v). As in calculating aé’a(l, t), we assume the second

a 0 : ' -
r 8 ’ i v 1 et B
X 5% ° C X - E(t)'—\_rr , T=T -.
l X - x=r(t+vT

(E-8)
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The expression in braces is simply

18
T-T' 9V

Clv(r-7), 7-1'],
so, introducing T =71 - 7, we have

r a 8 fT -
<I_:3_ L_l;(t+'7'), t+7| )= Edrag(qa’ v) + E—a?_ . | dT g(y_T, T). (E-9)
On substituting this into Eq. {E-4), we see that, because At is chosen
long compared to the correlation time, we introduce little error by
extending 7 in Eq. (E-9) to infinity. Then since At is short compared

with the time scales on which the quantities in Eq, (E-9) vary, we find

7 hc o % [T ar o E-10
T (v, 1) & Earaglw Utay - T C(vT, T). (E-10)
a

Using the symmetry C(-R, -7) = C(R, 7} and Eq. (E-3), we find Eq,
(IV-17). ‘

F. Reduction to Scalé.r Variables

Here certain results needed in Sec, . VI, A are derived.

1. Expressions for 8f(v, a, t)/8t and !'__;_Te(z, t)

With our symmetry, the gradient in spherical coordinates yields

91f(v, t)

—81__

o f(v, a, t)

9 1i(v, a, t)
v + —_—

da (F-1)

(<>
4
<:|ip>

and the divergence in spherical polar coordinates yields

N - . S S - PPN
ov le(y’ t) = 7 v [VY ﬁie} + v sina da [(mna)g ge]"
o v . (F-2)
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Since E = v cosa - a sina, we have
o~ 1 -~ -~
a = — v cosa - E |. (F-3)
= sina | — -

Substitution of these results into Eq. (VI-7) yields Eq. (VI-9).
From Egs. (F-1) and (F-3) we find

v Vv

-2 o 8f dfcosay o e 2L (Fog)
= v =2 v = = 9 (cosa)

so, using the & function to replace k.v with V, we have

. \
NN T ~ ot foaf (v af |
6(V-E..l)l_i . —E)—_\L = 6(V— l_i.l) ; [Vm - (; cosa -CC)S~ > m)—l (F"S)
which is Eq, (VI-10).

If the spherieal coordinates are completed with the azimuthal

angles B for. v .and ¢ for k, then we have

o - ™ 2T - :
fd .li o(V —k -Z) =j sinf dGJ dy 5(V-_l§-l) (F-6)
0 0 '

where

[ & »

‘v = v cos 6 cosa + v sin @ sina cos(y-B). (F-7)
The integrand is an even function of ¢ = Y - B, so we find

[dzgé(v- k- v)= ZJ 'sin6 d6 do 6(V-vcosf cosa - v sinf sina cosd)

(F-8)
which is Eq. (VI-11),

2. Expressions for He(e,V), Ie(O,V), and Re(G,V)

With these same spherical coordinates, we have from Eq. (IV-5)

H (6,V) =mmow vodv sina da’ dp 6(V- k«v)f(v,a,t).
e pe 0 0 - -

(F-9)
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With Eq. (F-5), Eq. (VI-4) yields

I.(6,V) f v dvj sina daf dp 5(V- k. V)[ - (;,Y'Césa Cose>8(c?)ia)]

o (F-10)
With Eq. (F-4) and with |
K-V 44 R (F-11)
kv-V . k:v-V '
Equation (VI-3) becomes
. w Tr ' ) : ' . . . : .
R (,V)=w Zf v dvj sina da 9§ 2m 9f | cosa of
e : pe Jy 0 ' ov. v a(cosq)
. 2T d 1. af v ; > 1N
+ P . k;—-p——'v Y Vv 3v - \v cosa - cvosev m] (F- 12)

If we again use Eq. (F-=7) and substitute ¢ = ¢ - B, the above integrals

over B become

N N T . : v .
f -dg &(V-k.v) = Zj*r_ dd 6(V- v cosB cosa ~v.sinf sina:cdss) (F-13)
0 -0 - |

2T T

p] 98 =zpf do | (F-14)
0

v cosf cosa+ v sinf sina cos¢ - V
0 -V

| =

When these are used inEgs. (F-9), (F-10), and (F-;'lZ), the results are
gs. (VI-13), (VI-14), and (VI-15).

- With the change of variables x = éos¢, we have

fﬂ (a+bcoss): f 4 Slatbx) ° if [b|<|a]
c = X - = = : . .
. dé S(at+bcosd » x7=.1 = (bZ- az)_i/z it [b|>]|a]

(F-15)
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which is. Eq. (VI-16).

We also must consider

m ™ ' " -
- J—— = f d¢) i _1 =<
Pfo at+bcosd P I'T"“' Za+b(ei¢ } e‘1¢)' . (F-16) .

i

"Introducing the complex variable z = e ", we find

b

~ /.2
where 'z, = - %‘i 9—2— -1 and the integration is counterclockwise

about the unit circle;

With |b[>|al, we define cosg = -

s
1 ' dz 1 dz
P ——L = — P - = P — F-17
l; a+b coso ib ﬁ zZ+Z a .y  1b é (z—z+)(z —z_)( )

a2
‘ _ b
that the poles are on the unit circle,  The integral over-'a circle slightly

and find z, = exp(x i¢0) so

smaller or slightly larger than the unit circle vanishes; averaging the

two cases, we find

B

- 0
“With |bl < Ia [, the principal value is not needed so the integral
can be evaluated as above. If a/b is positive, the root z, is inside

the unit circle and z is outside, so

iy
. dd - 2mi i :
Pf atbcos¢ =~ ib 2 if a/b>1. (F-19) .
0 ' a
; T |
| ‘ be |
Similarly
pf" __d _zm 1 if a/b<-1.  (F-20) a
Jo atbcos¢ ~ ib 4 > :
ar’
| (-2) /25 -1 .
b

These results combine to give Eq, (VI-17).
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G. Expansion in Legendre Polynomiels

If v is described in spherical polar : \_7'_
coordinates £ and m about the.direction Ali
as indicated in the spherical triangie, the £ . a
superposition theorem for Legendre polyno-
mials is
k \J A E
]

7
Pz(cosa) = Pg(cosg)Pﬂ(cose)Jr Zmzi gﬁ——i——z—;—% sz(cosg) sz(cos 6')cosrn’q.
| (G-1)

1. Expression for He( 8, V)

From Egs. (VI-5) and (VI-21), we have in the above coordinates

00

2

_ ) ™
H (6, V) =1mmw Zj vzdvf sinf d dn 6(V-vcost) Z fﬂ(v (cosa).
© Pe Jo 0 Jo - £=0

(G-2)
With P’e(cosa) replaced with Eq. (G- 1), only the term Pﬁ(cosg)P (cosB)

will contribute to the integral over m. Therefore

0

H_(6, V) Z H_ ,(V) P (cosf) (G-3)

where, with x = cos§,

=) 1 )
Heﬂ(v) = ZWmepeZJ; vzdv fﬁ(v)j—1 dx 6(V—vx)P£(x) (G-4)

or

® \
H, ,(V) = Z-n'zmwpezf v v {)(v) P, <¥) . (G-5)



2. Expression for I'e'( 6, V)

By the methods of Appendix F, we find

2 '
_ 9f | sin“t 8f(v,a,t) . ,
- C?Sg v TV 8 (cosg) (G-6)

E
[eblNab)
l<|

When this is used in Eq. (VI-4), we proceed just as in Sec. G.1 and
find immediately that

Z E(V )P (cos@) (G7—7)
v £2=0 v
with
(50 r af, {v) 2 dP ,(V/v)
_ 5.2 2 Y \ \ . 2
Ieﬂ(v) =27 wpe ‘(; dv [V 57 P£ (;) + 1<1— :Z) fz(v) V7 J
' (G-8)

This can be written as

_: 2 2 [ 5 (v dp(v/")l
Ieﬁ(V)—ZTr e [{ dv V— [f ﬂ\v/} (V)WJ(G-‘))

and the first term can be evaluated, so we have

dP (V/v)
ﬂ(V) pe LL (v) d(Wv - VfE(V)J . (G-10)

We hotice from Egs. {(G-5) and (G-10) that

oH (V)

{
1 el
I V)= 2 (G-11)

More generally, it follows from the definitions of I—Ie( 6, V) and of
Ie(O, V) in the form of Eq. (1I1-22) that

. . OH (K V)
L V) 2 Ty (G-12)
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3. Expression for Re(G, V)

If we insert Eq. (G-6) in Eq. (VI-3) and reuse the same proce-

dure, we find directly

Re(G, V) = Z ReE(V) Pﬂ(cose) (G-13)
with o
w 1, of (v) L2 dP,(x)
_ 2 dx )/ -x ﬂ
ReE(V) = Zﬂwpe L vdv P n N [ 5 ﬂ(x) + fﬁ(v J .

(G—14)
For any given ' f, the principal-value integral over x can be evaluated

by substitution of the . polynomial PE(X) and use of the expressions

n n n. _1
== 2 Z 2" PxP . (G-15)

and

X - a

1 gy
Pf X _ = In [1 1 . (G-16)
RN ,

However, no general expression valid for all f is apparent.

H. Evaluation of Ig-(@)

With V/v set equal to zero, Egs. (VI-16) and (VI-18) yield
o .
f dp 6(a+b cosd) = (sin26 - cosza)_i/z/v (H-1)
0

.2 2 . . ’ . .
when sin"6>cos a and zero otherwise. With the same approximation

in Eq. (VI-14), we have

I (9 V) ZT\'O.) f dvf d(cosa) cos6 g_fﬂ_‘{ii) . (H-2)
s1n6Vs1n&9 - cosl a (cosa)
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Introducing the dimensionless variables and functions of Sec.VI.C and

including only the contribution of g(x, y), we have

sinf dy .
I (8)=-m cosG[ —_— p(y) (H-3)
g . -sinf *\/m
where
o [ )
ply) = 5= f glx, y)dx . (H-4)
9y &

We may rewrite Eq. - (H-3) by changing variables to ¢ where

y = sinf cos¢  when y >0 - (H-5)

y =-sinf cos¢  when y <0,
This yields

(w2 _
Ig(@) = -7 cosB J' do [p(sin@ cosd) + p(~sinf cosq;)J._ (H-6)
0 v

I. - Evaluation of J1(x) and Jz(x)

From Eqgs. (VI-81) and (VI-59) we find

) * ! er 1/2) 3/2
Ji(x) = m—z—x v£ du u R(u) j_1 y dy : d(cosf) D ke e +1i(x)y

(\

H(6,u) u | -2x -x 8f-| H(6,u) 1 _ uy\ £
T 16, 7) ?L3/z e TYgxltie o) = % %) (x)
R (1-1)
where ,
r, = uy/x i—\/;-yz \ﬂ—uz/xz _ (1-2)
and
D :;(f - 4CosG)(cosG-r_‘)'= 1 —1'12/x2 —cosze—y2+2ux(cose)/y

+
(I-3)
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Notice that D is unchanged by the interchange of u/x, cosf, and vy.
The integral over y and cosf is actually over the region where D
is positive, which is'the' interior of an ellipse. Therefére, we may

trivially interchange the order of integration as

o T Y (F+ )
[-dy {  d(cos9) | :f éosO)J dy [ (1-4)
21 R _ j
where
r:t' = u(cosG)/x + sinf Vi -u /x = c- d - (I-5)
and .
D=(r," -yNy - "). - (I-6)

The integrals over y are now easily evaluated with the sub-

stitution y = ¢ + d cos¢,

T ! ) . (r . ‘ : )
f toognp /2 g, J db(c + d cosp)® | (I-7)
r_l . O . E B
m with n=0
= { mu(cosB)/x v _ with n=1

vuz(cose)z/x2+ 'rr('l-cosze)(i-uz/xz)/z with n=2,

Using these, we find

x 1 2. H(6, u)).
T, (%)= =9 f du u R(u) j d(cosb) ﬁ;{ cose( 3/2 -X ( S (L Y)

'— 2N x0 =1
H( 0, 1) cosb »'"l ,‘ ;2 ) . 2]
+ 1(9”11) = f(x } +1,;— cos 6+—(1-cos 6) 1-XT J
a’ \ ]
’ H(9, H(8, 9f ||
X ) (1 - % 1 uu)/ T S 3&% (1-8)

i
i1
1

/



and similarly -

o= 2 H(6, u)
J,(x) = "'Z fo “du R(u) ﬁ d(cosf) cosb 17—3/2e1fx '{1._' fu 1(9, u)] _ ]

2N % -1 B
H(6, u) cosH u u H(6,u)|, HO,u) u of .
+ I(6’, u) p" ..f(X)+ ;{-—COSO [f(x)(l—;? I(O, 11)>+ m,u) ; -5—] . «

_ ‘ (I-9) -
The integrals over 6 are simply the V_(u) defined by Eq. (VI-84)

~ along with the simple results

. | 2 with n=0
f d(cosf) cos™0 = 0 with n=1 (I-10)
-1 ] 2/3 . with =2,

When these results are used in Egs. (I-8) and (I-9), we find Egs. (VI-82)
and (VI-83). o |

J. Evaluation of .Wn(u, y)

We define
Al (u, cosB) = 11(9) CO_SQ + ig(@) (J-1)
so that '~
I(u, ) = Ij(u) + Al{u, cosb) (J-2)
where Al is an odd function of cosf. Then from Eq. (VI-106)

2

'1-Y ' n ‘ | ’ ’ &
6
W (u,y) = d(cosh) S0 (I-3)
n y ] 1_Y2 _\/"—m cos Io(u)+AI(u cosB) ° .

We now change variables to ¢, where

V1 -yz cosd ~when cos6 >0

V1 -y2 cos when cosB < 0.
y S¢

cosf (J-4) .

cos0



-139-

W (u,y) = [TT/Z dé ..(\/.1-3;‘2 cosy)” . ‘+ . -(-N’/i-y‘z cos¢)® |
, 0 u)+ Al(u1-y%osd) Io(u)-AI(u,Afi_Yzosd).)

, | . o - (3-5)

]

K. Effect of Ion Waves

We neglect the effects of E and of Mordinary" collisions for

the moment. Then Eqgs. (VI-100) and (VI_—105) yield

. - )
dh(x,v,7}) _ 1 & 8h(x y, T) _
R T —x—38—_yts } __(K 1)

~ According to this equation, we have

1 : _ : :
J’ dyh(x, y, 7) = C(x) | K-2)
where C(x) is independent of 7.  That is, the ion waves do not alter
the number of electrons with speed v (in our approximation). We

now define’

H(x, T) = f dy [h(x, Y, '7')] . (K-3)
| L1
If we Write
h(x, y, 7) = 5 C(x) + 5hx, v, 7 (K-4)
we find that - )
) : o 2 1 2 |
_ H(x, ) = > [C(x)} + j dy [éh(x, Y, ’T)} (K-5)
o -1 L i
since
- 1 | .
_ [ dy 6h(x,y, T) = 0. (K-6)

.J-. 1
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We thus see that the minimum value JC(x, 7) could have is CZ(X)/Z will
occur if, ‘and only if, 8h(x, y, T) vanishes,. so h(x, y, T) is isotropic,
"We next consider

93¢ (x, 7) [1 5h 2 Y s oh

Since S(y) vanishes at y = £1, partial integration yields

) L ;
9¥C(x, T) _ -2 dh(x,y, T)
o7 "3 f S(Y){ 3y ] dy - (K-8)

But since S(y) is positive except at y = + 1, this implies

Bebe1) < o (K-9)
and the equality holds if, and only if, 8h(x, y, 7)/8y vanishes for all

We have thus proven that (a) withih our approximationé the ion
waves always tend to make the elecfron velocity distribution more
isbtropic and that (b) their effect vanishes only when fhe electron ve-
locity distribution is isotropic.

A similar "H-theorem' is well known for one-dimensional
problems in quasi-linear theory,

One may verify that the above discussion depends only upon the
_assumption u << x, whirch of course will faillat small x, Although we
Have derived this theorem only for the restricted anisotropy of our
problem, it can probably be easily derived for arbitrary anisotropy.

It is probably true in unstable plasmas -as well as in stable plasmas.
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L. Partial List of Functions and Symbols

A plain letter like v denotes a scalar variable, a letter_underé
lined like C denotes a second-rank tensor quantity, and a letter
underlined 11ke k represents a vector quantlty with magnltude k and
direction k so k = kk

The symbol < > indicates an average, often an ensemble av-
erage, of the enclosed quantity.

The meaning of subscripts is usuélly self-explanatory, .The
s.ubscripts e and i in most cases label electron and ion quantities
respectively, Numerical subscripts 0, 1, 2, etc. in many cases label
coefficients in an expansion in Legendre polynomials,

Below we list primarily the variables and functions that appear

in more than one section.

a =a_ electron thermal speed.

A =a, ' ion thermal speed

bmin = eZ/Ge , minimum impact parameter in Landau equation

b = D maximum impact parameter in L.andau equation .
max e

C(R, T) autocorrelation function for electric-field

- ‘ fluctuations

D, -electron Debye length

a@’a(_\i, t) Lenard-Balescu form of Fokker-Planck co-

efficient for species a

e magnitude of electron charge
_}? (r, t) electric field
EO(—’ t) ‘ electric field not produced by the volume of

plasma under consideration

critical value of E_. at which the plasma in the

charge g

crit Spltzer -Hdrm prolg)lem becomes unstable to
ion waves
n _ea o
Eoun= = ° + value of E_ above which the electrons would
SH ~quickly run away, according to the Landau
equation
E = EO/Erun ‘dimensionless EO
—E-:drag(q’ v') drag on a test particle with velocity v' and



£ v b

f (v, t) = f (v, t)

— e —
F(V; k)
I, v, 1)
f(x)
g (x, y)
' h(>i,' y)
Hk, V)
I(k, V)
J (t)
J, v, t)
k
- -1
km [ min] ‘
K (k, V)
rn(1 = M(1
m:-= ‘me
M = mi
n
a
n=n
e
P
p)@ (Y) .
q(’l = Zae
E_ .
R (k, V)
S(y)
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distribution function for species a

velocity distribution of .electrons:

. velocity. distribution of ions

a function.from which R(k, V) and I(k; V)
can be calculated [see Eq. (III-20)]

Lenard-Balescu form of dynamic friction for
species a ‘

dimensionless fi(v)
dimensionless nonlinear correction in f(v, a)
dimensionless f(v, a)

a function involved in C (R, 7) and in the
Lenard-Balescu equations [see Eq. (IV-10)]

imaginary part of kZ - k2 e(k, kV) with V real
electrical-current density

current of species a in velocity space
variable of Fourier transform in space; wave

number.

the cutoff in the Lenard-Balescu equations
[see Eq. (V-1)]

- a function in the Lenard-Balescu equations

[see Eq. (V-1)]
mass of a particle of species a

mass of an electron

"mass of an ion

number density of species a
number density of electrons

a principal-value integration

Legendre polynomials

charge of a particle of species a

position variable

2

real part of kz—k e(k, kV) with V real

function that determines the effect of ion waves
upon the electron velocity distribution

' [see Eq. (VI-105]

time



u = V/ae
u.
crit
v
v
A\ , vV
min max
W(6, u)
x :v/ae
='cosa
Za=qa/e
a
a
§
Yy =6_/6.
Y - .
&5 =N m/M
65( )
€ = Afa
€(k, w)
6
6
a
polrs t)
A =4mn D 3
e e
v
c
(o
T = v t
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dimensionless phase speed

relative velocity in displaced.Maxweilian '
electron-proton plasma

value of U beyond which certain ion waves
grow :

velocity variable for particles

real part of phase' speed w/k

in a Maxwellian electron-proton plasma, ion

-waves can exist only within V_ . <V<V
min = 'max

distribution of energy in fluctuations asso-
ciated with ion waves [see Eq. (VII-9)]

dimensionless particle speed

angular variable in electron: velocity distribu-
tion

charge of particle of species a in units e
index for labeling species .
angle between v and EO

thermoelectric coefficient

ratio of temperatures (in Sec. VI. C only)
imaginary part of frequency w; grthh rate
square root of mass ratio

Dirac & function of variable in parentheses
ratio of thermal speeds (ion to electron)
Vlasov dielectric function

angle between k and E

temperature of species o in energy units

a charge density not part of the plasma under
consideration

the plasma parameter

a collision frequency [see Eq. (VI-31)]

" electrical conductivity (appears with various

subscripts)

dimensionless time



W

. pa

kV + iy
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variable of Laplace transforms in time;
angular frequency

plasma frequency of species a
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