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ABSTRACT OF THE DISSERTATION

Clinically-Guided Engineering for Scaling Wearable Health
Monitoring: Stretchable Adhesive Sensors and Dynamic Statistical

Analyses in Sleep Medicine

by

Dae Y. Kang

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2017

Professor Todd P. Coleman, Chair

Background & Objective: Although the reasons behind the biological

necessity of sleep remain to be fully discovered, emerging data show that sleep is

crucial for maintaining physical health and mental well-being. Despite its great

importance, nearly 40% of US adults experience problems with sleep, ranging from

sleep deprivation (decreased total sleep time) to sleep disorders (e.g. obstructive

sleep apnea, OSA). Furthermore, many millions of these individuals with sleep

disorders are severely underdiagnosed. The major limitation to improved under-

standing of sleep in health, and streamlined identification of at-risk individuals,

is the inability to objectively measure sleep at scale. Gold standard sleep mea-
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surement by polysomnography (PSG) requires bulky, obtrusive measurements of

multiple biological signals that interfere with sleep. Analysis of sleep measure-

ments undergo a manual/visual process that is lengthy, expensive, and subjec-

tive. These impediments to sleep make testing beyond a single night in selected

patients impractical, and make addressing growing public health issues in sleep

seemingly impossible. Methods & Results: To address these shortcomings in

the current sleep medicine paradigm, a systems approach to clinically-guided en-

gineering spanning sensing and analytical aspects of sleep monitoring is described

herein. Adhesive-integrated stretchable sensors were engineered to achieve scal-

able, peel-and-stick sensing on ubiquitously used clinical adhesives, resulting in a

cost-effective, facile, and familiar means for clinical implementation of unobtru-

sive electrophysiological sensors. Simultaneously and in collaboration with sleep

medicine clinicians, small-data statistical analytics were engineered to dynamically

assess clinical-grade sleep architecture from single-channel electrophysiology, the

results of which are on par with in-lab PSG for both healthy/normal individuals

and patients with OSA. Conclusion & Significance: The result of this applied

clinical engineering research is a suite of tools that emphasizes miniaturization of

sleep sensing methods, complemented by analytical endeavors to generate clinical-

grade sleep measures from consequential small-data platforms. The gestalt is not

only envisioned for objective assessment of sleep-based clinical outcomes, but to

also stimulate basic science investigation of sleep dynamics and their context in

other comorbidities. By performing engineering in medicine in a systemic manner,

the principles of this work show potential for extrapolation to advance general

wearable health monitoring practice.
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Chapter 1

Introduction

1.1 Sleep and its Growing Role in Healthcare

Healthcare has increasingly become the new frontier, with many advances

in this space spurred by endeavors in mobile health technologies, materials sci-

ence/engineering, and an improved understanding of how these systems can in-

terface with the human body. Combined with the notion that more and more

individuals are seen as ”unhealthy” or ”at-risk” of certain ailments, the state of

healthcare is experiencing a shift to value-based care and a promise of enabling

personalized medicine to address an increasingly diseased population. For exam-

ple, the World Health Organization estimates that the incidence of cancer will

increase from 14 million patients in 2012 to 22 million in 2032 [1]. Incidence of

diabetes, another increasing and seemingly common disease, is expected to jump

from 382 million patients to 592 million within a similar time span [1].

With these public health issues at bay, and many more to be brought to

light and/or discovered, many now look to invest in and adopt high-tech medical

technologies and data-driven medicine, as a means for improving and advancing the

methods by which medicine is performed. An example of this is the establishment

of the Precision Medicine Initiative/All of Us Research Program [2], one of the

many initiatives that seeks to maximize the effectiveness of medicine through in-

creased understanding of genes, environmental factors, and characteristics of daily

lifestyle. Interestingly, such endeavors seek to consult physiologic phenomena typ-

1
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ically reticent in medicine, but increasingly discussed in a health context, such as

the process of sleep [2].

Sleep and sleep quality data, among other dynamic physiological data, are

now being considered as instrumental in assessing arbitrary disease risk and sever-

ity [2]. Continuous monitoring of sleep data has become somewhat commoditized

through the expansion of the wearable device market and adoption of mobile health

technologies. This comes with good reason, for as many as 50-70 million U.S.

adults suffer from chronic lack of sleep and/or sleep disorders [3]. A recent study

performed by the Centers for Disease Control found that an average of 36.5% of

currently employed adults report short sleep duration, or persistent sleep depriva-

tion. Of the many major occupations sampled, those with the highest prevalence

of short sleep duration were production workers, food service workers, and — iron-

ically enough — healthcare supporters and practitioners [4]. To focus on a pending

public health issue, approximately 20% of U.S. adults are suspected of suffering

from obstructive sleep apnea (OSA), a sleep breathing disorder characterized by a

chronic partial or complete cessation of breathing during sleep [5]. Left untreated,

OSA can lead to increased risk of hypertension, stroke, diabetes, and work-related

accidents (Figure. 1.1) [5, 6]. The intermittent state of hypoxia induced by OSA

and other sleep breathing disorders has been found to be strongly associated with

cancer mortality, even after accounting for possible confounding variables such as

age, body-mass index, and diabetes [7]. Suffice it to say, the pervasiveness of OSA,

its correlation with some of society’s most pressing health issues, and a general

trend toward societal sleep deprivation, suggests that sleep plays a vital role in

maintaining good physical and mental health.

Sleep, though its specific mechanisms are still relatively unknown, can gen-

erally be described as a human state during which one observes a quiescence of

normal ”wakeful” behavior. Physiologically, the human brain undergoes a series of

cyclical transitions between synchonrous and asynchronous electrical activity, as-

sociated with changes in cardio-respiratory dynamics and skeletal muscle tonicity,

among other things. These cycles of physiologic change occur on the order of ev-

ery 90-110 minutes, at least in healthy adult individuals [8]. Standard measures of
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these physiological signals are performed through the use of engineered biomedical

tools/methods, such as electroencephalography (EEG), electromyography (EMG),

pulse oximetry, and thermistor-based temperature and respiratory flow measures,

to name a few. Each signal provides insight into certain physiologic processes (e.g.

brain oscillations, muscle activation, blood flow), which are then used to abstract

certain qualities and characteristics of the sleep process [8].

Figure 1.1: Chronic sleep deprivation and sleep fragmentation can cause (and be
caused by) a number of pathologies, increasing risk of chronic comorbidities and
overall decrease in quality of life.

1.2 The Current Sleep Medicine Paradigm: Room

for Improvement

Taken together, the gold standard method by which clinicians assess sleep

is through the in-lab polysomnogram (PSG), which incorporates the above men-

tioned signals (alongside others) to estimate and categorize different sleep states,

so termed the stages of sleep (Figure 1.2) [8]. A variety of sensors are positioned

from head-to-toe on the body to record relevant sleep physiology throughout the
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course of the night. These many data streams are then interpreted by a skilled

technician and/or clinician to ”score” and condense every 30 second window of

sleep biosignals into a single designation related to predefined sleep states, the so

called stages of sleep. In 1968, Rechtschaffen and Kales published the first desig-

nations for categorizing these seemingly discrete sleep states [9]. Since then, the

interpretation and classification of sleep biosignals into such stages has been revised

and discussed many times over, ultimately leading to our modern day 5-stage sleep

paradigm – stages Wake, Rapid Eye Movement (REM) sleep, N1 (light/drowsy)

sleep, N2 sleep, and N3 (deep) sleep [10].

Figure 1.2: The conventional in-lab polysomnogram (PSG) sleep monitoring
paradigm. The PSG typically consists of multiple physiological measures including
brain, heart, and muscle electrophysiology, measures of respiration and air flow,
and measures of blood circulation/oxygenation. All signals are recorded contin-
uously through the course of the night, for at least one overnight, in-lab sleep
study.

With these 5 designations of sleep, a trained clinician and/or technician is
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able to visually/manually classify the many windows of data acquired throughout

the night to generate a hypnogram – a plot of sleep trajectory through the five sleep

stages, as a function of time (Figure 1.3). At each sleep window, a sleep patient

is to occupy a single arbitrary stage of sleep, and more or less transitions between

these sleep stages throughout the course of the night. The macrostructure of this

whole-night sleep architecture gives the clinician an indication of sleep quality,

through certain metrics extracted directly from the hypnogram, such as total sleep

time, sleep efficiency, and sleep latency [11]. For example, values of total sleep time

close to the total recording time might indicate a restful night of sleep. Conversely,

decreased total sleep time could suggest that the patient exhibits sleep deprivation,

perhaps due in part to a sleep disorder such as insomnia. A closer look at the

hypnogram and its microstructure might reveal frequent arousals to wakefulness

from sleep (i.e. sleep fragmentation), thus causing an inability to achieve N3 deep,

restorative sleep, such as in OSA.

Figure 1.3: A typical sleep hypnogram of healthy sleep. Sleep begins in the awake
state, and transitions through all five clinically-relevant stages throughout the
night. A healthy individual experiences staircase-like sleep cycles of approximately
90-110 minutes, until awakening some 7-8 hours later.

Such insights can be gleaned from the sleep hypnogram, and therefore from

the PSG-based sensing and analysis of relevant biosignals during sleep. While this

method has proven immensely helpful in elucidating the mechanisms and signifi-

cance of sleep , sleep medicine and research has come to require improved methods
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for assessing sleep objectively and at scale. The PSG’s many-sensors montage, in

concert with the cumbersome and subjective visual interpretation of physiologi-

cal signals, is not practical for addressing the growing interest and need in sleep

monitoring and sleep disorder diagnostics (Figure 1.3). In the U.S. alone, over

1 million in-lab clinical PSGs are performed each year [12]. Still, approximately

80-90% of individuals suspected of having OSA (30-35 million individuals) are un-

diagnosed [13]. To make matters worse, sleep scoring agreement between experts

is only about 80%, with declining agreement when scoring sleep in individuals

with sleep disorders [14]. This inherent variability in scoring accuracy leads to

re-testing and increased risk of false positives/negatives, further exacerbating the

disparity of assessing sleep at scale. With associated comorbidities to OSA in-

creasing — such as the rise in both adult and childhood obesity – one suspects

that the standard in-lab scheme cannot keep pace with increasingly undiagnosed

individuals. Furthermore, the lack of robust sleep measures stymies the research

community and its ability to investigate the underpinnings — and therefore the

mechanics and significance — of the sleep process. Some topics of interest here

are the investigation of sleep phenotypes, sleep dynamics within and across sleep

disorders, and the characteristics of sleep in other seemingly unrelated pathologies.

The ”not-yet-applied” research, in this regard, cannot be performed to inform new

clinical understanding of sleep in the context of human health. In short, the ”gold”

standard PSG — from sensing of sleep signals to their analysis and interpretation

— appears more as more of a ”bronze” standard.
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Many bulky, wired 
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• Inadvertently disrupt 

sleep process
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Figure 1.4: Shortcomings of conventional sleep monitoring and diagnostics.

1.3 Thesis: Engineering of Stretchable Sensing

Technology and Low-Resource Analytics for

Scalable Clinical Sleep Monitoring

As discussed, the major limitation to improved understanding of sleep in

health, and streamlined identification of at-risk individuals, is the inability to ob-

jectively measure sleep at scale. The reasons for this are two-fold: 1) Gold standard

sleep measurement by PSG requires bulky, obtrusive measurements of multiple

physiological signals that interfere with sleep and 2) Analysis of subsequent sleep

measurements undergo a labor intensive and subjective scoring process.

Herein I discuss a suite of research work that aims to develop both sensing

and analytic tools for objective and scalable implementation in Sleep Medicine.

Chapter 2 discusses the unconventional microfabrication and testing of stretchable

sensors that are integrated into clinical adhesives, for simple, peel-and-stick ac-

quisition of physiological data. Chapter 3 goes on to discuss the utility of state

space modeling and statistical estimation for automated whole-night sleep staging

from single channel electrophysiology. Chapter 4 presents current work improv-

ing upon the previous chapters and extrapolating the methods described to create
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new sensors and analytics for specific sleep monitoring and diagnostic applications.

Both sensors and analytics implemented in concert could potentially open new av-

enues for clinicians to engage patients in and beyond the hospital, investigate other

poorly understood sleep-related pathologies, and update/develop operations and

policy for improving clinical outcomes. The gestalt is engineering motivated by

applied clinical research and collaboration, with the goal of exemplifying the sig-

nificance of engineering in Sleep Medicine.

+ =

Sleep Architecture Hypnogram

+ =

Sleep Architecture Hypnogram

(a)

(b)

Figure 1.5: Co-development of stretchable sensors and sleep analytics for improv-
ing sleep monitoring.
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Chapter 2

Scalable Microfabrication

Procedures for

Adhesive-Integrated Stretchable

Electronic Sensors

Chapter 2 presents research findings previously published in Kang, D.Y. et

al. 2015 [15]. Here, I delineate my work on stretchable sensors, microfabricated

and designed to integrate into clinical adhesives. This piece represents a response

to the first issue with current sleep monitoring practices, namely the inability to

sense sleep biosignals in a scalable and minimally-irksome manner.

2.1 Abstract

New classes of ultrathin flexible and stretchable devices have changed the

way modern electronics are designed to interact with their target systems. Though

more and more novel technologies surface and steer the way we think about future

electronics, there exists an unmet need in regards to optimizing the fabrication

procedures for these devices so that large-scale industrial translation is realistic.

This article presents an unconventional approach for facile microfabrication and

9
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processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on

a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure

with 50% reduced end-to-end processing time that achieves greater levels of fabri-

cation yield. The methodology is used to demonstrate the fabrication of electrical

and mechanical flexible AP sensors that are peeled-off their carrier substrates by

consumer adhesives. In using this approach, we outline the manner by which

adhesion is maintained and buckling is reduced for gold film processing on poly-

dimethylsiloxane substrates. In addition, we demonstrate the compatibility of our

methodology with large-scale post-processing using a roll-to-roll approach.

2.2 Introduction

Flexible and stretchable electronics systems – comprised of sensors and cir-

cuitry – are increasingly deemed relevant to the future of industrial and consumer

electronics devices. The evolution of bulky and rigid electronics into their thin

and unobtrusive counterparts has required innovative techniques going beyond

standard implementations of CMOS microfabrication. Of these, screen-printing

techniques achieve low-cost and scalable processing of flexible sensors and sys-

tems [16–22], though some devices lack the potential for fully integrated electron-

ics with ultra-thin profiles. Engineering of thin film nanocomposites is another

example of this trend in miniaturizing our every-day electronic devices [23–42].

Within this class, electronics systems utilizing sacrificial layers (e.g. poly(acrylic

acid) (PAA), poly(sodium 4-styrene sulfonate) (PSSNa), poly(n-vinylpyrrolidone)

(PVP), poly(methyl methacrylate) (PMMA), water soluble tape, Silicon (Si), SiO2)

[43–46] and intermediate substrates (e.g. polydimethylsiloxane (PDMS), water sol-

uble tapes) for transfer printing have allowed for nanomembranes with mechanically-

tuned properties [23–32, 47]. For example, epidermal electronics systems boast

ultra-thin, high resolution, skin-like sensors and circuitry designed for conformal

lamination onto the skin [23–27,29–31]. These systems excel in the area of intimate

integration with contoured and elastic real estates, as compared to traditionally

rigid or thin film sheet devices that are otherwise too inflexible and/or unstretch-
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able. The result is robust skin-electrode contact yielding prolonged biosignal ac-

quisition with reduced motion artifact [48]. Overall, these electronics present many

significant advances for mobile technologies, but the manner in which they are fab-

ricated requires intermediate materials, and precision involved in transfer printing

in order to produce high yields.

A demand for tomorrows inconspicuous sensors is quickly rising, in par-

ticular due to the advent of wearable devices and the Internet of Things (IoT)

– a paradigm emphasizing data interconnectedness through the omnipresence of

networked sensors and systems. This is exemplified by the five-fold increase in

sensors from 2012, resulting in 23.6 billion sensors in 2014 [49]. Unfortunately,

these numbers are accompanied by the high cost and complexity of fabricating

minimally obtrusive sensors, which proves to be a barrier for widespread adoption

of IoT practices in spaces such as healthcare, home, and industrial use [49, 50].

Herein we describe an alternative microfabrication approach requiring ap-

proximately half the steps of previous approaches to build similar devices. This

reduction in steps has multiple benefits, including higher yield, lower cost. Also,

the elimination of crucial steps enables new opportunities for large-scale produc-

tion. This new approach uses a weakly-adhering interface and inverted fabrication

scheme, which obviate the need of a sacrificial layer or intermediate transfer print-

ing, and allow for direct integration of the sensor from the donor substrate to target

receiving adhesive. Direct integration without transfer printing is facilitated by a

simple mechanical peel-off step – similar in nature to the methods used for exfo-

liation of graphene and other materials [51–54], except that a complete device is

peeled and packaged without requiring further microfabrication steps. Resulting

adhesive-peeled (AP) sensors are used to record electrophysiological signals and

results compared to those of a transfer printing approach [23–28], demonstrat-

ing similar sensor fidelity while emphasizing a simple peel-off technique that has

potential for industry-scale roll-to-roll post-processing.
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2.3 Methodology

2.3.1 Process Description

Throughout this discussion, we consider approaches that result in a sensor

of pre-specified geometry to be embedded within a given adhesive. The purpose

of this work is to facilitate a process by which the same or similar sensor can be

made more easily and with higher yield. We compare an approach that utilizes

transfer printing (TP) of passive sensors to a new methodology presented herein.

To differentiate the two, sensors produced by the TP approach are designated as

TP sensors, while the presented approach yields AP sensors.

Figure 2.1 provides a conceptual description of the two approaches. The

TP process (top) begins with a donor substrate and undergoes a string of standard

cleanroom procedures, which includes depositing a sacrificial layer (e.g. PMMA).

The donor substrate then is dipped in solvent (e.g. acetone) that dissolves the sac-

rificial layer and separates the carrier substrate from the other deposited materials.

Subsequently, two transferring steps ensue through which the desired pattern is de-

livered to an intermediate transfer material (e.g. PDMS), and then upon pressure,

finally onto a target receiving substrate. This process path culminates in an adhe-

sive with a patterned metal-polymer stack ready for use. The AP process (bottom)

obviates the need for depositing a sacrificial layer or intermediate transfer printing

and allows for direct application of the adhesive onto the donor substrate to embed

the pattern within the adhesive. The AP process accomplishes this reduction in

steps and direct transfer to the adhesive through the use of: 1) a weakly-adhering

donor substrate and 2) inverted production of the metal-polymer stacks comprising

the sensors. The rationale for this approach will be elucidated in the Discussion

section.
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1. Sacrificial  
deposition

2. Polymer  deposition
3. Metallization
4. Photolithography
5. Etching

1. Reverse  
Metallization

2. Combined  Polymer  
Photolithography

3. Etching

Si  Donor  Substrate

Donor  Substrate
(e.g.  PDMS-­coated  Si  

wafer)

Sacrificial  Stripping Intermediate  Transfer  Print Final  Transfer  Print  onto  
Target
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onto  Target

Cleanroom  Procedures

Cleanroom  Procedures

Ready  for  use

Ready  for  use

Figure 2.1: Example of TP vs. AP processes. Top: TP process steps, starting
with Si donor substrate. Includes procedures such as depositing a sacrificial layer,
using solvent for stripping sacrificial layer, and transfer printing by an intermediate
elastomeric substrate; Bottom: AP process obviates the need for sacrificial layer,
use of solvents, or use of an intermediate elastomer for transfer printing. Instead,
a weakly-adhering donor is used, from which reversed metallization and a com-
bined polymer deposition and photolithography step are implemented to create
an inverted sensor. Because the sensor is inverted on a weakly-adhering surface,
peel-off is performed directly by adhesive. Both processes result in the same sensor
embedded within adhesive; the latter requires fewer steps and materials.

2.3.2 Fabrication of AP Sensors

The process for fabrication of AP sensors is illustrated in Figure 2.2. An

example for results in this narrative is as follows. A standard Si wafer is coated

with a thin silicone layer, creating a weakly-adhering interface, which comprises

the donor substrate (Figure 2.2a). Standard cleanroom techniques are applied in

a semi-reversed order for creating inverted flexible sensors on the donor substrate.

Sequential metallization of gold (Au) and chromium (Cr) thin films onto PDMS

form the conductive layer of these sensors (Figure 2.2b): the Au thin film interfaces

with the weakly-adhering donor while Cr is exposed at the top. A photodefinable

polyimide (PPI) is then used for simultaneous formation and patterning of the

sensors polymer backing (Figure 2.2c). An etch-back of the exposed Cr-Au regions

(Figure 2.2d) results in a donor substrate with AP sensors that can be directly

peeled-off by the adhesive of choice (Figure 2.2e,f).

Specifically, formation of the weak-adhering donor substrate is prepared by



14

spin coating and curing a 50µm thick layer of poly(dimethylsiloxane) (PDMS; Syl-

gard 184, Dow Corning, Midland, MI, USA) onto a 4-inch silicon or glass wafer

(University Wafer, USA). Thin metal films are deposited on top of the PDMS

surface using either a sputter system (ATC Orion, AJA, USA) or electron beam

(e-beam) evaporator (Temescal BJD 1800, Ferrotec, Santa Clara, CA, USA) to

form Au and Cr metal layers (in this order) of 200nm and 5nm in the thicknesses,

respectively. A negative-tone photodefinable polyimide (HD-4104, HD Microsys-

tems (Dupont), Wilmington, DE, USA) is spin coated at 3,000 revolutions-per-min

for 1 min, soft baked (150◦C, 1 min), and UV-exposed (EVG620, EV Group, Sankt

Florian am Inn, Austria). The polyimide layer is developed by using a modified

puddle approach found in the literature [55]. The photodefined polyimide (rest-

ing on top of the wafer) is placed in a convection oven (Carbolite, Derbyshire,

UK) at 250◦C for 90 min to ensure full curing of the polyimide patterns and com-

plete bonding to the interfacing Cr layer. The wafer is then dipped in Cr and

Au etchants (Transene, Danvers, MA, USA) (in this order) to remove unneces-

sary metal surfaces, only leaving metal layers directly under the polyimide pattern

intact. Completed devices are peeled onto the target receiving substrate, such as

Tegaderm (3M, Saint Paul, MN, USA), by laminating the target adhesive film over

the devices and delaminating once the device is adhered. Overall process time –

starting with 3 pre-PDMS donor substrates and ending with completely peeled

devices from 3 donors – is approximately 5 hours. Fabrication of AP sensors on

flex substrate follows the same method, except that 25µm Kapton film (DuPont,

Wilmington, DE, USA) is used as the donor substrate. For TP sensors, a stream-

lined version of the fabrication procedures outlined in [23] were used. Under the

same experimental conditions and same number of sensors, the end-to-end TP pro-

cess (from unmodified donor substrate to post-transfer printing) is approximately

10 hours long.
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(a) (b) (c)

(d)

(e)

(f)

Si+PDMS Au,  Cr PPI  pattern

Au,  Cr

Si+PDMS

Adhesive

Figure 2.2: Fabrication process for AP sensors (a) Formation of weakly-adhering
donor; (b) Metallization of Au and Cr films, respectively; (c) Formation and
patterning of PPI polymer backbone; (d) Etch-back of Cr and Au films using PPI
as etch mask; (e) Flexible adhesive substrate adhered to pattern, ready for peel-
off; (f) Pattern peeled-off onto receiving adhesive with Au surface exposed, ready
for use.

2.3.3 EEG & Statistical Testing

To assess the electrophysiological recording capability of new AP sensors,

and signal similarity to traditional TP sensors, electroencephalography (EEG) ac-

quisition was performed with both sensors recording side-by-side in a frontal mon-

tage. Three subjects were each tested on two separate occasions for eyes-opened

and eyes-closed EEG data, acquiring data from both TP and AP sensors. The

testing paradigm epoch is as follows: 10s eyes-opened followed by 20s eyes-closed.

This process is repeated twice more (90 continuous seconds of EEG data, for a total

of 3 epochs) to ensure data without deviant artifacts from the independent record-

ing systems. Of these 3, the cleanest (i.e. least noise prone) epoch is chosen per

subject, per trial – this results in a total of N = 6 epochs of TP-AP EEG data from

3 subjects. Because both sensor sets are used simultaneously, each epoch consists
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of synchronized TP and AP biopotential data. Data sets are then post-processed

to yield Pearsons Correlation coefficient values for evaluation of similarity between

TP and AP sensor performance.

2.3.4 Peel Testing – Initial Interfacial Characterization

PDMS-sensor interfacial adhesion was characterized by peel tests performed

on an array of AP patterns. An array of equally spaced, 1cm x 1cm solid square

patterns were fabricated onto a weak-adhering donor substrate as outlined. Peel-

off force was measured using a force gauge (M2-2, Mark-1, USA), rigidly coupled

to a flat mount lined with adhesive tape. The adhesive end was adhered only to the

full 1cm2 pattern area and the force gauge pulled upwards, normal to the pattern

plane. Maximum force observed during this peel-off was used to characterize the

adhesion force between the PDMS-sensor interface. The process was repeated 5

times, at random positions on the donor substrate. Peel force average and variance

were calculated using the data.

2.4 Results

2.4.1 Qualitative Comparison of Fabrication Methods for

TP and AP Sensors

Figure 2.3 showcases electrical sensors fabricated using the AP process. AP

sensors can be densely packed onto the same working area of the donor substrate

since submersion in the solvent and wafer dicing are not necessary. Figure 2.3a

shows AP sensors on a 4-inch glass wafer, while Figure 2.3b illustrates AP sensors

on a Si wafer. The ease with which a sensor can be peeled-off onto an adhesive

material (Scotch Tape, 3M, USA) is shown (Figure 2.3c). In contrast, TP sensors

are subject to a lengthy release process involving sacrificial layer stripping via

solvent treatment, after which a TP sensor carefully undergoes a two-step transfer

printing process (sacrificial layer being PMMA, solvent being acetone, and transfer

stamp being PDMS). The requirement of controlled pattern release rates from
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the donor substrate during sacrificial stripping can often lead to sensors that are

deformed from the intended design. These challenges are only magnified when

considering larger, more complex heterogeneous sensor patterns, often requiring

subjective user judgment and manual dexterity.

(a) (b)

(c)

Figure 2.3: Alternative approach AP sensors. (a) Dense sensor assembly on
rigid glass donor substrate; (b) Similar sensor assembly on Si wafer; (c) AP sensor
peeled-off from Si donor substrate onto adhesive.

Conversely, with the AP approach, the desired pattern is fabricated and

objectively post-processed onto a receiving adhesive of choice with a one-step peel-

off, obviating the need for solvents and intermediate stamps. The force required

to successfully peel-off AP sensors from the weakly-adhering donor was calculated

at 0.22 ± 0.03 N. Experimental details can be found in the section 2.3.

A montage of consecutively peeled sensors demonstrates the low variability

with which sensors are produced using the AP process (Figure 2.4). Fabricated

sensors are accurate to the desired pattern with very little deformity. Although it

is possible with the TP approach to retrieve sensors identical to the desired pat-

tern, considerable time and expertise are required if performed manually. Though
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automation has been demonstrated for TP production of thin film silicon-based

electronics [56–58], these systems require high precision, multi-point calibration,

and visual inspection of transfer printing to ensure high yield post-processing.

Because the AP approach requires fewer procedures, does not require sacrificial

stripping or undercutting, and is not subject to the variability in release rates,

there is significant potential for automated post-processing of AP sensors. Com-

paring both methods, there is an approximately 50% reduction in processing time

using the AP method.

Desired 
Pattern

AP Sensors

Figure 2.4: AP Sensor variability. Left: desired sensor pattern; Right: AP sensors
consecutively peeled-off from same donor substrate. On average, AP sensors closely
reflect the desired pattern, primarily because release rates in solvents pertaining
to removal of sacrificial layer are not required.

2.4.2 Fabricating on PDMS Surfaces

Microfabrication on PDMS is expected to yield poor adhesion at PDMS-

metal interfaces, due to low wettability of PDMS and the large mismatch in thermal

expansion coefficients between elastomers like PDMS and thin metal films [59–61].

Consequently, compressive stress develops in thin metal films that induce sponta-

neous wrinkling and buckling, which can progress to propagating cracks throughout

the metal layers [62, 63]. However, there are ways to address the issues of prema-

ture buckling of thin Au films during processing on PDMS. During fabrication,

we found stiffening of the PDMS-based weakly-adhering layer (by reducing the

ratio of PDMS pre-polymer to crosslinker) helped prevent adverse buckling during

processing. During sputter-based processing, the known formation of a silica-like

layer through plasma exposure prevented the delamination of sputtered AP sensors

from their weakly-adhering donor substrates.
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Figure 2.5 gives a closer look at the surface topography of peeled-off AP

sensors and their respective optimized PDMS surfaces for e-beam evaporated and

sputter coated processes. Evaporated sensors appear smooth, exhibiting very lit-

tle wrinkling (although wafer-length wrinkles occasionally form around patterns

during processing); the metal layer shows a regular grain pattern with spherical

Au nuclei approximately 50nm in diameter (Figure 2.5a). This smoothness is mir-

rored by the respective weakly-adhering donor (Figure 2.5b), which maintains a

lightly speckled finish akin to the resulting metal grain. In contrast, sputtered AP

sensors demonstrate wrinkled surface topography after processing that extends to

the underlying PPI backing, and a continuum of elliptical Au particles (Figure

2.5c). The respective PDMS surface maintains the same wavy pattern after the

sensor peel-off (Figure 2.5d). This characteristic of Au film wrinkling on PDMS is

expected, though wrinkles are not apparent to the naked eye for sputtered sensors.

Evaporated sensors, on the other hand, occasionally formed wafer-length wrinkles

form around PPI patterns during processing; these wrinkles disappear after PPI

development. Despite the differences, both instances of evaporated and sputtered

AP sensors maintain their electrical interconnects and sensing properties.
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Figure 2.5: SEM images of evaporated and sputter-coated AP sensors. (a) Evap-
orated sensor on adhesive film; (b) Weakly-adhering PDMS surface after evapo-
rated sensor peel-off; (c) Sputter-coated sensor on adhesive film; (d) Weakly-
adhering PDMS surface after sputter-coated sensor peel-off; (insets) Zoomed-in
surface definition of respective surfaces.

2.4.3 Quantitative Comparison of TP and AP Sensors

To ensure functional characteristics of the sensors are preserved when fab-

ricating with the AP approach, a common eyes-opened/eyes-closed paradigm for

measurement of the 8-12 Hz alpha rhythm in electroencephalogram (EEG) [64]

was performed. An EEG test was chosen to demonstrate that AP sensors can

adequately measure lower amplitude-frequency signals, while indirectly suggest-

ing that larger biopotentials such as ECG and EMG can be easily measured with

high fidelity. This is especially true due to golds low impedance in high-frequency

bands, as compared to bands characteristic of EEG signals [65,66]. A set of wired
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AP and TP sensors on Tegaderm (3M, USA) were connected to semi-encapsulated

custom flex cabling (Pica Manufacturing, USA) which is conductive to the sen-

sors, but insulated to the skin. These sets were applied in the 3-lead mastoid

configuration, as per Figure 2.6a; each set consisted of recording (REC, forehead),

reference (REF, right mastoid process), and ground (GND, left mastoid process)

leads. Sensors were carefully arranged side-by-side so to prevent electrical cross-

talk between channels (Figure 2.6b, cables not shown). AP and TP sets were wired

into an Avatar EEG biopotential amplifier system (Electrical Geodesics, Canada)

through the flex cabling. EEG data was simultaneously recorded from both wired

sensor sets according to details found in the Materials and Methods section. The

acquired biopotential data was sampled at 500 Hz and digitally band-passed in

Matlab (MathWorks Inc., USA) to a 6-14 Hz spectral range.

Voltage and time-frequency representations of data from both sensor sets

are illustrated in Figure 2.6c-d. Time-frequency plots were generated using the

robust spectrotemporal decomposition outlined in the literature [67]. In both rep-

resentations, the first 10s of data are eyes-opened followed by 20s of eyes-closed

data, which is characterized by a 10-12 Hz alpha rhythm (Figure 2.6c,d). Visually,

it is easy to confirm that EEG data from both sensor types co-vary closely with

one another. This suggests that this alternative microfabrication approach has no

significantly negative effect on the acquisition capability of such sensors.
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Figure 2.6: Electrophysiological comparison of sensors. (a) EEG testing electrode
montage; (b) Sensors applied to acquisition site — TP on the left, AP on the
right; (c) Time-Voltage plot for one epoch of data: red = TP, blue = AP; (d)
Spectrographic representation of epoch: TP on the left, AP on the right. The
alpha rhythm begins just after the 10s mark for both sensors.

AP sensor fidelity is compared to that of TP sensors by use of the Pear-

sons correlation coefficient [68], which ranges from -1 to 1: -1 being negatively

correlated, 1 being positively correlated, and 0 representing no correlation.

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(2.1)
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Equation 1 is used to calculate the r statistic for each TP-AP pair of simul-

taneously recorded voltage data. Table 2.1 lists correlation coefficients for each

of the 6 TP-AP trials. Many of trials resulted in similar PMMA and AP time

series (r >95%), suggestive of AP sensors high fidelity acquisition despite alterna-

tive fabrication procedures. Still, perfect correlation is not possible in that both

sensors record nuances in thermal noise and motion artifact at the sight of signal

acquisition.

Table 2.1: Pearsons correlation coefficients for EEG testing. TP-AP EEG test
comparisons across 6 total trials.

Subject Trial Correlation Coefficient 

1 1 0.95 
2 0.95 

2 
1 0.98 
2 0.96 

3 1 0.95 
2 0.81 

 

2.4.4 Non-Electrical AP Sensors

Using the AP process, other sensor types are easily fabricated for monitor-

ing through other modalities. An instance of this is the production of a variety of

simple strain sensors (Figure 2.7a). AP strain sensors are fabricated according to

the same framework presented in Figure 2.2; the pattern used during photolithog-

raphy is replaced by the desired pattern to produce a variety of functional strain

sensors with tailored gauge factors. Post-processing of these sensors follows the

same peel-off process — from the donor substrate onto the receiving adhesive of

choice. The axial strain-resistance performance of one AP strain sensor over sev-

eral trials is illustrated in Figure 2.7b, and its gauge factor (GF) calculated. With

a GF of 0.79, these gold strain sensors demonstrate relatively poor sensitivity to

mechanical stimuli, as compared to other strain gauge varieties [69, 70]. However,

the emphasis here is that the present method demonstrates versatility in the types
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of sensors that can be produced, from which improvements can be made.

GF = 0.79
(a) (b)

Figure 2.7: Strain sensor fabrication using AP process. (a) Strain sensors on
wafer; (b) Characteristics of AP strain sensors; (b, inset) Image of AP strain
sensor stretched during testing. Gauge factor (GF) = 0.79.

2.4.5 AP Sensors on Flexible Donor Substrate

Finally, the simple peel-off properties of this method allow us to consider

fabrication on flexible donor substrates; this enables the use case of roll-to-roll post-

processing. Instead of a silicon or glass wafer, Kapton film was used to fabricate AP

sensors; fabrication utilized the same technique outlined (Figure 2.8a,b). AP sen-

sors from flexible donors show no apparent differences as compared to their analogs

from rigid donor substrates. To demonstrate their function, a single-channel EKG

snapshot acquired using wired AP sensors is shown in Figure 2.8c, clearly illus-

trating a strong QRS complex alongside P and T waves. One can imagine simply

inserting a roll of AP sensors to an existing tape manufacturers production line

(with some modifications), where AP sensors are directly peeled directly onto the

target adhesive and sent out to the end user.
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(a) (b)

(c)

Figure 2.8: AP Sensors processed and peeled-off a flexible donor substrate. (a)
AP sensors half-peeled by consumer tape with flexible weakly-adhering donor
mounted on a tube; (b) Free-standing flexible donor substrate with sensors; (c)
Time-voltage plot of EKG acquired using AP sensors off flex donor.

2.5 Discussion

Here we have presented a process scheme by which a class of flexible sen-

sors can be fabricated and post-processed in a relatively efficient manner. It is

important to emphasize here that while there is vast significance in flexible sensor

capability and performance, we ultimately require a process that can scale with

research and consumer needs. It is mentioned that roll-to-roll processing is a ubiq-

uitously used industrial process, which boasts efficiency at the levels of cost and

automation. Rather than re-invent the wheel for accommodating these growing

spaces, it is in our interest to leverage the maturity of other processes such as

roll-to-roll, at least initially at the stage of post-processing and packaging.

To summarize, our AP sensors are fabricated on a weakly-adhering donor

substrate through an inverted construction. Fabrication with PDMS is a not a new

concept – previous methods have demonstrated thin film formation and encapsu-

lation of constructs with PDMS featured as the donor during a multi-step transfer

printing process or underlying substrate [29–32]. Others have created methods by

which a device is either transferred to or is initially constructed on PDMS as a final
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receiving substrate [71–73]. In some of these instances, oxidized PDMS exhibits

relatively strong adhesive properties when in contact with certain materials – such

as SiO2 – that promote silanol hydrogen-bonding [74]. Presented herein, PDMS is

used as a donor substrate without any modifications, so to exploit its weak (but

sufficient) adhesion to Au films [75] during a one step peel- off process. In concert

with the reversed deposition of Au/Cr films and polymer backing, we are allowed to

simply peel-off target features, obviating the need for sacrificial layers, immersion

in solvents, repetitive transfer steps, and intermediate stamps. Other fabrication

details – such as the use of PPI for simultaneous patterning and polymer formation

– make for a streamlined process with fewer process failures and better resource

allocation during AP sensor preparation.

The use of a PPI polymer backbone is attractive here due to its electrically

insulating properties, chemical resistance and thermal stability. Moreover, PPIs

known biocompatibility for clinically implantable electronic systems makes it an

attractive polymer over conventional photoresists [76]. Because some emphasis is

placed on the use of AP sensors for wearable/clinical applications, PPI appears to

be the most feasible polymer to implement in the methodology. For sensors not

involving biological systems, we speculate other polymers like a photoresist can be

used while maintaining the combined formation/patterning step of the AP sensor

backbone, though this needs to be investigated.

Ultimately, any adhesive or adhesive-coated material that can effectively

adhere to the desired pattern (for the weakly-adhering donor example, with an

adhesive force approximately >0.2N) is likely to perform a successful peel-off of

AP sensors during post-processing. Moreover, knowledge of the range of forces

necessary for successful peel-off enables us to consider situations where one might

initially constrain the adhesive to be used and reverse engineer the adhesion force

between PDMS and Au films. For example, if certain types of strong adhesives

cannot be used due to their damaging of a target surface (e.g. application on

neonates with sensitive skin) [77], there is opportunity to tailor the PDMS-sensor

interface. In doing so, one can decrease the interface adhesion for facilitating peel-

off with weaker adhesive material, while maintaining AP sensor stationarity during
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microfabrication.

Because Au flexible sensor fabrication is possible with the weak-interface

approach outlined, a next step is to better characterize the interfacial adhesion and

exploit this method for use with other interfacing material types. It is known that

noble metals possess a proclivity for weak adhesion to an elastomeric rubber such as

PDMS [75]. We surmise the methods outlined here can be readily implemented for

other metals most similar in nature to Au. Of interest might be metal substitutes

such as Ag, of which can be post-processed for yielding Ag/AgCl (one of the best

suited for DC coupled signal acquisition) and Pt AP sensors (used for its long-term

stability and biocompatibility in vivo; standard practice in neural stimulation)

[65,78]. AP sensors comprising Ag or Pt as the interfacing material may be possible

to fabricate by simply changing the layer designations during reverse metallization.

Integrated systems of AP sensors with miniaturized back-end transmission

and processing circuits may be possible using the present approach. With im-

proved integration of active components and passive interconnections, there is

opportunity to integrate with miniaturized rigid electronic circuits [79–81], or fur-

ther transition away from rigid and stiff electronic assemblies to more flexible and

unobtrusive options [28–30]. Advances in this regard might be spurred by recent

actions to strengthen the infrastructure of U.S. manufacturing of smart flexible

hybrid electronics systems [82].

A degree of Au film micro-scale buckling is observed during sputter-based

AP sensor fabrication, though this characteristic of sputtered sensors has not been

observed as detrimental to the sensor fidelity. To the naked eye, sputtered metal

films on optimized PDMS maintain their adhesion during processing and do not

present large wrinkles, buckling, or cracks. It is important to note however that an

overall ease with which the sensors can be peeled-off by an adhesive is maintained

in spite of this adhesion. We hypothesize that during the sputter coating process,

Au nanoparticles are engulfed by the elastic PDMS surface, creating immobilized

nucleation sites that resist metal film delamination during processing. Moreover,

it appears that sputter coating in this instance is responsible for rendering a wavy

PDMS topography as a consequence, surface area is increased which might give
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rise to better adhesion. It has been reported that gaseous plasma treatment (e.g.

Ar plasma) during sputter coating increases the wettability of PDMS and prevents

fast hydrophobic recovery of the PDMS surface, through the creation of hydroxyl-

terminated, silica-like surfaces [83–85]. This phenomenon, in concert with the

increased surface area and engulfed Au nanoparticles, may explain the unexpected

immobilization of Au films during processing on PDMS.

During early evaporation tests, buckling in Au films often lead to propagat-

ing cracks, as was expected due to differences in PDMS and Au thermal expansion

coefficients. We sought to remedy the buckling issues by addressing the mechan-

ical mismatch between the underlying PDMS and the metal film above. It is

known that the relative stiffness of PDMS depends on the ratio of pre-polymer to

crosslinker agents used. The result of a smaller ratio is a stiffer PDMS structure

that exhibits a relatively large elastic modulus, as compared to lower ratios [86].

Keeping this in mind, stiffer concoctions of PDMS (e.g. 3:1) were used, the idea

being that stiffer PDMS (of higher elastic modulus) will resist expansion, there-

fore reducing the disparity in expansion during thermal cycles. A reduction in

film buckling was observed, with no signs of cracking in the resulting AP sensors.

Moreover, total film lamination appeared to improve during processing, though

this was not quantitatively inspected. Ultimately, evaporated AP sensors main-

tain their interconnections conductance during processing, and easily peel-off the

underlying PDMS surface.

Though the AP approach allows for easy peel-off of microscale thin film

features, one should consider the sensor design to be employed. Poorly fashioned

sensor patterns and z-thick metal-PPI stacks may result in micro-cracks across

stress raisers during the peel-off process. Other pattern characteristics, such as the

x-y thickness of pattern features, may pose similar issues due to the inherent tug-of-

war between the weakly-adhering donor and receiving adhesive during the peel-off

process. We speculate that an increase in effective x-y area will cause a departure

in the observed peel-off force threshold, requiring stronger adhesives. Conversely,

a decrease in the x-y area might give rise to premature release of patterns during

fabrication on the donor substrate, causing problems with device yield. Although
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our methodology was successful for relatively large 1cm x 1cm square features,

design constraints and peel-off force thresholds should be characterized for better

understanding the nature of this weak adhesion and applying relevant findings to

future work outlined above.

Lastly, although the present method boasts efficiency over previous works,

AP sensors require an adhesive surface for facilitating peel-off. Moreover, AP sen-

sors cannot be re-used, as the necessary adhesive for peel-off wears down during

use and is difficult to re-apply. Instead, AP sensors might be immediately suitable

as single-use, peel-and-stick sensors in the arena of clinical patient monitoring –

where disposable systems are preferred due to concerns of sterility and contamina-

tion — and more generally in the spaces of consumer and industrial sensing that

benefit from single-use flexible form factors.

2.6 Conclusion

In summary, the work here describes a microfabrication method utilizing

unconventional procedures for faster production of ultrathin AP flexible sensors

on adhesives. AP sensor production utilizes standard microfabrication procedures

while leveraging the expected weak adhesion between PDMS elastomeric substrates

and thin Au films. The methodology is agnostic to the different procedures for

metallization and robust to adverse cracking of sensor layers. Though sensor per-

formance enhancement is not the aim the present method, sensors are objectively

processed and peeled-off onto flexible adhesive substrates in a manner that pro-

vides substantial improvements over existing thin film methods. With significant

technological advances in the realms of wearable and industrial sensors and cir-

cuits, it is important to develop and optimize methods for which production of

these technologies is commensurate with their current and projected commercial

demands. Keeping pace with these trends and demands will allow us to more

readily disseminate flexible electronics technology and usher in a new facade of

our everyday devices.
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Chapter 3

A State Space and Density

Estimation Framework for

Single-Channel Sleep Staging in

Obstructive Sleep Apnea

Chapter 3 presents research findings previously published in Kang, D.Y.

et al. 2017 [87]. Here, I delineate my work on a statistical machine learning

algorithm, that makes use of state space dynamics to adequately score whole-night

sleep architecture using only a single bi-polar channel of sleep EEG. Similarly

to Chapter 2, this piece represents a response to the second issue with current

sleep monitoring practices, namely the inability to analyze sleep biosignals in an

objective and high-throughput manner.

3.1 Abstract

Although the importance of sleep is increasingly recognized, the lack of ro-

bust and efficient algorithms hinders scalable sleep assessment in healthy persons

and those with sleep disorders. Polysomnography (PSG) and visual/manual scor-

ing remain the gold standard in sleep evaluation, but more efficient/automated

31
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systems are needed. Most previous works have demonstrated algorithms in high

agreement with the gold standard in healthy/normal (HN) individuals – not those

with sleep disorders. This paper presents a statistical framework that automat-

ically estimates whole-night sleep architecture in patients with obstructive sleep

apnea (OSA) – the most common sleep disorder. Single-channel frontal electroen-

cephalography was extracted from 65 HN/OSA sleep studies, and decomposed

into 11 spectral features in 60,903 30s sleep epochs. The algorithm leveraged ker-

nel density estimation to generate stage-specific likelihoods, and a 5-state hidden

Markov model to estimate per-night sleep architecture. Comparisons to full PSG

expert scoring revealed the algorithm was in fair agreement with the gold stan-

dard (median Cohens kappa = 0.53). Further analysis revealed modest decreases in

median scoring agreement as OSA severity increased from HN (kappa = 0.63) to se-

vere (kappa = 0.47). A separate implementation on HN data from the Physionet

Sleep-EDF Database resulted in a median kappa = 0.65, further indicating the

algorithms broad applicability. Results of this work indicate the proposed single-

channel framework can emulate expert-level scoring of sleep architecture in OSA.

Algorithms constructed to more accurately model physiological variability during

sleep may help advance automated sleep assessment, for practical and general use

in sleep medicine.

3.2 Introduction

Sleep, like eating and breathing, is an essential part of the daily life cycle.

Although the process of sleep is not fully understood, it has been shown to play a

vital role in immune, cardiovascular, and neurocognitive function [12]. Despite its

great importance, nearly 40% of US adults experience problems with sleep ranging

from insufficient total sleep time, trouble initiating or maintaining sleep (insomnia),

circadian rhythm disorders, sleep-related movement disorders, and sleep-related

breathing disorders such as obstructive sleep apnea (OSA) [8]. All of the above

have been shown to take a toll on the affected individual physically, mentally,

financially, and/or socially.
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Sleep disorders can be diagnosed by an overnight polysomnogram (PSG),

which utilizes multiple sensing modalities to measure biophysiological signals, in-

cluding electroencephalogram (EEG), electrooculogram (EOG), and respiratory

rate and flow [8]. Although considered the gold standard, there are multiple rea-

sons that hinder more widespread PSG use. First, the cumbersome nature of the

equipment interferes with sleep. Second, both the equipment, and the cost/time

of a registered polysomnography technician (RPSGT) who performs sleep scoring

visually according to standard rules, are expensive. Third, clinical scoring of sleep

remains a mundane process with considerable inter-rater variability. To maintain

a standard level of clinical sleep scoring, technicians/physicians adhere to rules de-

lineated by Rechtschaffen and Kales (R&K) and the American Academy of Sleep

Medicine (AASM), which are designed to visually categorize any epoch of sleep into

one of five clinically-recognized sleep stages (Wake, N1, N2, N3, REM) [9, 10, 88].

Despite standardization efforts, the mean inter-rater agreement between experts

scoring sleep in OSA is only 71% [14]. [6]. For all these reasons, relatively few

sleep studies are performed. A robust, yet cost-effective and minimally invasive

system to accurately measure sleep would be valuable to better understand sleep

in a research and clinical context.

In an attempt to remedy the problems of manual sleep scoring, many in the

literature have proposed machine learning and data science techniques for facili-

tating automated scoring of sleep. Such studies have employed algorithms such as

decision trees [89–93], support vector machines [94–97], Markov models [98–103],

and neural networks [104, 105], which operate on combinations of the traditional

multi-channel PSG biometrics (e.g. EEG, EOG, Respiration) to provide algorith-

mic and automated assessment of a patients underlying sleep architecture. To

further simplify the current sleep scoring paradigm, many have presented algo-

rithms which perform on very few or even single-channel recordings from varied

modalities during sleep. [91,92,94,95,98,104–109].

While progress has been made in the multi- and single- channel domain of

automated sleep scoring, agreement can be modest – especially when the number

of inputs is restricted. Additionally, most of the prior work has focused on sleep
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in healthy/normal (HN) subjects. These algorithms may not generalize to older

individuals with chronic diseases, or those with sleep disorders that cause sleep

fragmentation, such as OSA. Given that 25-50% of middle aged men and women

may have clinically relevant OSA [6], algorithms will need to be capable of assessing

sleep in a wide range of people. Additionally, to be feasible, data will need to be

derived from smaller systems and a minimal number of channels.

Presented herein is an algorithmic approach to scoring sleep using only a

single frontal channel of EEG that is satisfactory for automated sleep scoring within

the context of OSA. The work assesses time-frequency features of sleep EEG gen-

erated via the multitaper spectrogram, and leverages a non-parametric likelihood

model for each of the five sleep stages via kernel density estimation. Whole-night

sleep architecture is estimated using a five-state hidden Markov model and the

Viterbi algorithm, designed to operate on the multimodal likelihood structure of

different sleep stages. Results are presented for per- night and per-epoch compar-

isons of algorithm vs. clinical scoring of the sleep data in subjects who are HN as

well as those with OSA. The paper concludes with a discussion of the results and

insight into algorithm performance as a function of OSA severity.

3.3 Methodology

The present work includes a retrospective analysis of eighty clinically-scored

overnight PSG studies. The analysis was divided into two parts: 1) An analysis of

65 datasets recorded at UC San Diego for 15 HN (HNUCSD) and 50 OSA (OSAUCSD)

combined datasets, and 2) an analysis of 15 HN datasets derived from the Physionet

Sleep-EDF Database (HNPhysionet) [110,111].

The first sixty-five datasets were recorded on a 1401-plus interface and Spike

2 software (Cambridge Electronic Design Ltd., Cambridge, UK) at the UCSD

Sleep Laboratory in San Diego, California. Ethical approval for these studies

was obtained from the Human Research Protections Program at the University of

California, San Diego. Manual scoring of sleep was performed by a RPSGT who

had access to all modalities included in the full PSG study to create the clinical
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hypnogram. Fifty of the sixty-five UCSD datasets – comprising a subtotal of

48,819 30s epochs of sleep – contained a mix of OSA severities based on the Apnea

Hypopnea Index (AHI); 9 were mild OSA (5 ≤ AHI < 15/hour), 9 were moderate

OSA (15 ≤ AHI < 30/hour), and 32 were severe OSA (AHI ≥ 30/hour). Another

fifteen of the sixty-five datasets – comprising a subtotal of 12,084 30s epochs of

sleep – contained HN data (AHI < 5/hour). A total of 60,903 30s epochs were

used in the five-fold cross validation scoring analysis described below.

For the purposes of this study, only a single EEG channel (F3-A2) and the

clinical hypnogram from the full HNUCSD and OSAUCSD PSG studies were used for

training and testing of the automated algorithm. Figure 3.1 illustrates the process

workflow for automated assessment of sleep via single-channel sleep EEG. The

algorithm classifies a continuous sleep EEG signal into a 5-stage sleep paradigm

comprised of stages Wake (W), REM (R), N1, N2, and N3. Python 3.4.4 and

modified scripts from of the scikit-learn library were used to create the algorithm.

The final fifteen of eighty datasets were derived from the public Sleep-EDF

Database [110, 111]. Specifically, EEG channel Fpz-Cz and clinical hypnograms

were extracted from Sleep Telemetry subjects 01-02, 04-14, and 16-17. All record-

ings were obtained from subjects who had mild difficulty falling asleep, but who

were otherwise healthy. Processing of these datasets followed suit with the HNUCSD

and OSAUCSD data. Sleep architecture estimation of the HNPhysionet sleep EEG

datasets was performed: 1) as a training-testing analysis entirely separate from

the UCSD-trained algorithm, and 2) by treating the HNPhysionet data as test data

against the UCSD-trained algorithm. The former assessed the generalizability of

the raw algorithm, while the latter assessed generalizability of the F3-A2 training

for classification of data derived from other EEG montages.
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Figure 3.1: Process workflow for automated assessment of single-channel sleep
EEG.

3.3.1 EEG Pre-Processing

Raw single channel F3-A2 EEG data were derived from full PSG recordings

in each of the 65 UCSD datasets. Single-channel EEG was originally sampled at

125Hz. Time series EEG data was bandpass filtered between 0.1Hz and 50Hz using

a zero-phase forward-backward filter (Python, SciPy module). After filtering, 30s

epochs of sleep deemed as NO STAGE in the clinical hypnogram were trimmed

from both the hypnogram and at corresponding points in the time series EEG data.

NO STAGE epochs only appeared at the beginning or end of clinical hypnograms

(accounting for subject wiring and disconnection during the overnight PSG), so

EEG signal continuity during epoch trimming was preserved.

Similarly, raw single channel Fpz-Cz EEG data were derived from each of

the 15 Physionet datasets. Single-channel EEG was originally sampled at 100Hz.

The first 6-hours of each HNPhysionet dataset was used, to ensure alignment between

the EEG data and corresponding hypnograms. In these hypnograms, epochs Stage

3 and Stage 4 were replaced by N3, to be consistent with the analysis of UCSD
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data.

3.3.2 Multitaper Spectral Estimation

Filtered EEG signals were spectrally decomposed using multitaper (MT)

spectral estimation. Like the conventional fast Fourier transform (FFT), MT spec-

tral estimation is an approach for constructing a time-frequency representation of

non- stationary time series signal. The advantage in using the MT approach is in its

use of orthonormal bases to serve as different, uncorrelated tapers (hence multita-

per), resulting in a modulation of spectral estimation variance and bias [112–114].

MT spectral estimation also boasts better frequency resolution than some overlap-

ping segment average approaches, such as Welchs method, for the same spectral

leakage and variance estimators; specifically, the resolution bandwidth for Welchs

method is 20-60% wider than the MT approach [115].

In essence, these multiple tapers are auxiliary to the standard FFT – each

taper augments the FFT separately; the outputs of which are averaged across the

total number of tapers used to assemble the MT spectral estimate (1, 2). If x(n)

is the time series acquisition of sleep EEG with discrete samples n = 0, 1, ..., N,∆

represents the time interval between recorded samples, and h(i)
n denotes the set

of orthonormal tapers i = 1, 2, ..., L at each time sample n, then the MT power

spectral density (PSD) estimate of the sleep EEG signal, S, was given by

S(f) =
1

L

L∑
i=1

S(i)(f) (3.1)

where

S(i)(f) = ∆|
N−1∑
t=0

h(i)
n xne

−i2πtf∆|2 (3.2)

For a mathematical narrative on MT spectral estimation, Babadi and Brown

provide a brief derivation of the MT method and a comparison to other non-

parametric spectral estimation techniques [113]. In the proposed algorithm, EEG

MT spectral estimation was implemented in Python via the Spectrum module

available in the Python Package Index. A 30s non- overlapping window and a



38

suggested time half-bandwidth parameter NW = 3 were used, which resulted in

L = (NW )(2)− 1 = 5 tapers used for EEG MT spectral estimation. Discrete pro-

late spheroidal sequences – or Slepian sequences – were used as the orthonormal

set of tapers. Finally, was converted to a log-PSD:

yt(f) = 20 ∗ log10S(f) (3.3)

3.3.3 EEG Spectral Feature Extraction

Eleven spectral features were extracted on an epoch-by-epoch basis from

the log-MT spectral estimate of sleep EEG (Table 3.1). Frequency bands were

chosen based on the previous literature and guidance from the AASM Sleep Scoring

Manual [10,88,96,102,103,105].

Table 3.1: Spectral Features used for automated classification of sleep EEG.

EEG Frequency 
Bands/Features Spectral Edges (Hz) Characteristic Sleep Stage

Broadband (broad) (0.1, 50) W (Motion Artifact)

Gamma (!) (30,50) W

Beta (") (20, 30) W

Sigma (#) (11, 14) N2 (Sleep Spindles)

Alpha ($%,$', $(,$)) (7, 8), (8, 9), (9, 10), (10, 11) W, N1, R

Theta (*) (4, 7) N1, R (Sawtooth Waves)

Delta (+) (1, 4) N3 (Slow Waves)

Very-Low Frequency (vlf) (0.1, 1) W (Eye Blinks), R (Rapid Eye 
Movements), N2 (K-Complexes)

Of interest here was the decision to split the 7-11Hz alpha band into four

equally spaced bands of 1Hz bandwidth. This was done to implement insight

from the AASM Scoring Manual, which states, The alpha frequency in stage R

often is 1-2Hz slower than during wakefulness. [88] Moreover, stages R and N1

often resemble each other in low-amplitude, mixed frequency activity. Therefore,

a segmentation of the alpha band was performed in an attempt to better discern

these three often misclassified stages.
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In this work, the spectral feature ykt represented a mean PSD value for fre-

quency band k during epoch of an overnight sleep EEG dataset. Denote the set of

frequencies in frequency band k as F (k) and the size of F (k) as |F (k)|. For instance,

for k = 0, the broad feature, we have that F (0) = {0.1, 0.13, 0.16, ..., 49.96, 49.99}
and |F (0)| = 1663. For k = 1, 2, ..., 10, the frequency bands pertaining to F (k)

are given in Table 3.1. For k = 0, 1, ..., 10, each spectral feature ykt calculated as

follows:

ykt =


1

|F(k)|
∑
f∈F(k) yt(f), k = 0

1
|F(k)|

∑
f∈F(k)(yt(f)− y0

t ), k = 1, 2, ..., 10
(3.4)

One feature ( k = 0, broadband EEG activity) was simply calculated as the

mean PSD value between spectral edges (0.1Hz, 50Hz). The remaining features

were calculated as relative spectral values – the difference between activity ykt in

frequency band k (for k 6= 0) and broadband activity y0
t . The result is a feature

vector yt ∈ R11 for each 30s clinically-scored epoch of sleep. Over the entire UCSD

dataset of 65 overnight studies, a total of 60,903 feature vectors were extracted.

For Physionet data, a total of 10,800 feature vectors were extracted.

3.3.4 Kernel Density Estimation

Following epoch-by-epoch spectral feature extraction, the 65 nights of UCSD

EEG feature vectors were equally segmented into five separate folds (13 nights per

fold: 3 HNUCSD and 10 OSAUCSD), defining the 5-fold cross validation paradigm for

algorithm training and testing. Separately, the 15 nights of Physionet EEG feature

vectors were equally segmented into five separate folds (3 HNPhysionet datasets per

fold). To construct likelihood models for the feature vector , kernel density esti-

mation (KDE) was used to estimate the conditional probability density function

of observing EEG spectral features during a specific stage of sleep.

KDE is a non-parametric method for estimating the probability density

function of a continuous random variable. In this formulation, we treat y
(i)
t =

(y
(i)
0 ,y

(i)
1 , ...,y

(i)
T ) as sample vectors of dimension d = 11, drawn from the ith
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class of an unknown density function f
(i)
Y (y). Generally speaking, it is difficult to

determine the true distribution f
(i)
Y (y), so the following kernel density estimate is

used for approximation:

Ri(y) = f̂i,bi(y) =
1

Tibi

Ti∑
t=1

K

y − y
(i)
t

bi

 (3.5)

where K is the kernel function – a d-dimensional, non-negative, zero-mean function

that integrates to one – and bi is a non- negative, non-zero bandwidth parameter

corresponding to the ith class.

KDE is an attractive means to approximate the true topology of a density.

Its formulation is similar to that of a histogram of the data, except that it performs

a weighted average of many kernel functions centered about each data point in the

sample space. In this way, Ri(y) leverages properties of the chosen kernel K to

enforce smoothness and continuity on the likelihood surface.

Moreover, unlike the multivariate Gaussian distribution, Ri(y) can exhibit

multimodal behavior, which is necessary for encoding the variations in sleep archi-

tecture within and across different patients, pathologies, and nights of sleep. For

example, the same stage of sleep could display variants of sleep EEG activity based

on age, sex, mental state, and overall health [116]. Inter-individual variability in

sleep and frequency of sleep arousals increases as a function of age [117, 118], and

is prominent in diseases such as Parkinsons Disease [119] and Rheumatoid Arthri-

tis [120]. Moreover, such variations in regard to sleep arousals and sleep continuity

are mitigated by non-anatomical features such as the arousal threshold, which is

considered an important contributor to the pathogenesis of sleep breathing disor-

ders such as OSA [121]. By utilizing a density estimation approach, such as KDE,

the goal is to model appropriately the heterogeneity of sleep EEG activity within

each stage of sleep for varied classes of subjects and sleep physiology.

To construct the trained likelihood models for each sleep stage class, KDE

was implemented using the SciPy stats.gaussian kde package. An 11-dimensional

N (0, 1) Gaussian was used as the kernel function, and the optimal bandwidth pa-

rameter — was automatically determined for each sleep stage i ∈ {W,R,N1, N2,
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N3} via Scotts Rule [122]. For an arbitrary fold of test data, Ri(y) was constructed

with the remaining 4 folds of data, so to train the likelihood models with data sep-

arate from the testing set. The result per-fold is a set of stage-specific conditional

probability density functions fY|X(y|x), where the sleep stage x probabilistically

exhibits EEG spectral activity y.

3.3.5 Hidden Markov Model

During each 30s epoch of sleep, a hidden stage of sleep emits observable

multivariate EEG spectral activity, giving an indication of the underlying sleep

state. The observed EEG signal varies for different stages of sleep, as well as for

different nights of sleep and sleep pathologies. As sleep evolves over the course

of the night, discrete sleep stage transitions occur between neighboring epochs,

constrained by time-varying physiological phenomena governing the sleep process.

These transitions are traditionally scored such that only the previous epoch can

influence the transition to another sleep stage in the current epoch [88]. To encom-

pass these properties of sleep and sleep scoring, a state space model was utilized to

represent per-night sleep architecture as a 5-state, transition-constrained, Markov

chain. The likelihood model from section 3.3.4 and the Markov model jointly

comprise a hidden Markov model (HMM) [123].

To construct sleep architecture as a HMM, the following variables and pa-

rameters are defined for epochs t = 0, 1, ..., T , and sleep states i, j ∈ {W,R,N1, N2,

N3}:

yt: Multivariate observation vector of single-channel EEG spectral feature at

time t.

xt: Hidden sleep state i at epoch t.

y0:T : (y0,y1, ...,yT−1,yT ). Sequence of observed multivariate EEG spectral ac-

tivity.

x0:T : (x0, x1, ..., xT−1, xT ). Sequence of hidden sleep states composing whole-

night sleep architecture.
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πi: P (x0 = i). Initial probability of sleep state i at time t = 0.

Qi,j: P (Xt = j|Xt−1 = i). Probability of transitioning to state j at time t from

state i at time t− 1.

Ri(y): P (Yt = yt|Xt = i). Probability of observing EEG features yt in sleep

state i.

The goal is to generate a model for which x0:T can be estimated through

a corresponding sequence of observed EEG activity and prior knowledge of sleep

stage transitioning constraints.

The HMM algorithm presented here was formulated using a modified ver-

sion of the framework available in the hmmlearn python module. The modifications

allowed for the use of alternative likelihood models, which are framed as the set of

stage-specific KDE likelihoods Ri(y) generated during the training phase. Since

all PSG studies begin before the onset of sleep, the only non-zero initial probabil-

ity corresponds to the sleep state i = W , such that the initial probability vector

πi = [1, 0, 0, 0, 0]. Values from the work of [124] provide insight on the transition

properties of sleep in clinical populations of healthy subjects and OSA subjects.

As the work was performed for a 4-stage sleep model, OSA-specific values were

extrapolated to create a 5-state transition probability matrix for nights of sleep

in OSA subjects; transition probabilities are graphically illustrated in Figure 3.2.

These values are fixed for each night of sleep in the analysis.
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Figure 3.2: Graphical model of HMM sleep state transitions with corresponding
probabilities. Absence of directed arrow indicates a transition probability Qi,j =
0.00.

Following the HMM formulation, the Viterbi algorithm (VA) was used to

generate an algorithmic representation of the 5-state clinical hypnogram. The VA

is a recursive decoding method for determining the sequence of latent (hidden)

variables most likely associated with a corresponding sequence of observations

[123]. In the case of sleep staging, the VA uses the HMM to identify an optimal

sequence of hidden sleep stages x0:T that best fit the observed set of EEG signals

y0:T during a whole night of sleep via maximum a posteriori sequence estimation.

The final output is the Viterbi path – a sequence of values x0:T = x0, x1, .., xT that

represents the automated sleep staging for a single night of sleep. This process is

performed on a per-night basis.
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3.3.6 Comparison to Clinical Hypnogram

To assess the accuracy of the described algorithm, agreement between au-

tomated sleep scoring and clinical sleep scoring was determined via Cohens kappa.

Cohens kappa (κ) measures the inter-rater agreement between two scorers that

classify items into a number of mutually exclusive categories [125]:

κ =
po − pc
1− pc

(3.6)

Here, po is the observed probability of agreement between scorers and is the prob-

ability of agreement due to chance. In this case, κ is thought to be a more robust

measure than raw accuracy. A κ value of 0-0.2 is considered essentially no agree-

ment, 0.2-0.4 slight agreement, 0.4-0.6 fair agreement, 0.6-0.8 high agreement and

0.8-1.0 nearly perfect agreement [126].

3.4 Results

3.4.1 Whole-Night EEG Multitaper Decomposition

To perform automated classification of whole-night sleep architecture, F3-

A2 single-channel sleep EEG was spectrally decomposed via the conventional FFT

spectrogram and MT spectral estimate.

Figure 3.3 illustrates an example of time-frequency outputs of both methods

for 30s, non-overlapping windows over a whole night of sleep. The corresponding

manually-scored hypnogram is aligned with both representations of the single-

channel EEG data, revealing the connection between EEG spectral features and

full PSG-based sleep scored architecture. Conventional spectral decomposition of

the sleep EEG signal visually exhibited noisier outputs, as compared to the MT

approach. Specifically, spectral bleeding was prevalent in frequency bands between

3-7Hz (i.e. θ and δ waves) and higher frequency components (β and γ) when using

the FFT. This is significant since β and γ waves are essential in distinguishing

between sleep stages W, R, and N1, as previously noted. Though the MT approach

resolved this problem and provided a more de-noised time-frequency image of sleep
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EEG, both methods provided clear association between spectral EEG features and

manually-scored sleep architecture.

Figure 3.3: (a) Conventional FFT spectrogram of channel F3 EEG data for a
full night of sleep; 30s, 0s-overlapping windows. (b) Multitaper spectral estimate
of the same data set; 30s windows and 5 tapers. (c) Ground Truth – full PSG,
manually-scored clinical hypnogram; 30s epochs.

3.4.2 Sleep Stage Spectral Density Estimation

Following EEG spectral feature extraction, the 5-fold cross validation for

65 nights of HNUCSD and OSAUCSD sleep was constructed. Density estimation

was implemented in the training phase of the proposed algorithm to construct the

stage- specific EEG likelihood models Ri(y). All 11 features were used for density

estimation, culminating in 5 probability density functions specific to W, R, N1,

N2, and N3 for each fold of data.

Figure 3.4 illustrates ground truth univariate histograms of all 60,903 ex-

tracted spectral features per each sleep stage (55 histograms total). Many EEG
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features exhibit bimodal structure within the same sleep stage, supporting the

need to go beyond multivariate Gaussian modeling of intra-stage sleep EEG ac-

tivity. Conversely, Figure 3.5 illustrates histograms for 12,084 epochs of HNUCSD

data only, revealing unimodal Gaussian-like structure across all sleep stage-EEG

feature combinations. Figure 3.6 illustrates an example of the 3D likelihood sur-

faces of both density estimation and fitted multivariate Gaussian approaches for

the domain of γ and broad EEG spectral features. EEG spectral data were first

used to construct a ground truth histogram of the likelihood surface during stage

R (yellow bars). Similarly, the data were used in density estimation to generate a

likelihood surface (blue), which closely followed the histograms intricate trimodal

structure. Conversely, the fitted Gaussian likelihood surface (red) failed to depict

accurately the underlying distribution of γ and broad features, instead modeling

it as a single wide peak between the three true modes.

Figure 3.4: Univariate, multimodal histograms of the eleven extracted EEG spec-
tral features listed in Table 3.1, for each true stage of sleep (55 histograms total).
Distributions were generated using all 60,903 30s epochs from 65 total HN/OSA
datasets and their true corresponding labels from expert scoring. Per-stage break-
down of all labeled 30s epochs: W = 14,582, R = 7,105, N1 = 11,398, N2 = 23,021,
N3 = 3,797.
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Figure 3.5: Univariate, multimodal histograms of the eleven extracted EEG spec-
tral features listed in Table 3.1, for each true stage of sleep (55 histograms total).
Distributions were generated using all 12,084 30s epochs from the 15 HN datasets
and their true corresponding labels from expert scoring. Per-stage breakdown of
all labeled 30s epochs: W = 1,247, R = 2,351, N1 = 721, N2 = 5,609, N3 = 2,156.

Figure 3.6: (a) Yellow = Ground truth histogram of and spectral data in stage
R. Blue = bivariate, multimodal distribution of the log-power data generated via
density estimation. (b) Blue = bivariate, multimodal distribution of the log-power
data generated via density estimation. Red = bivariate, unimodal distribution of
the same data generated via fitted Gaussian. Floor projections depict the blue
estimated surface topography.
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3.4.3 Whole-Night Sleep Architecture Estimation

Results from stage-specific density estimation were implemented into the

5-state HMM, along with initial probabilities πi, transition probabilities Qi,j, and

testing feature vectors yt. In concert with the VA, the result was an estimation

of whole-night sleep architecture derived from single-channel F3-A2 and Fpz-Cz

EEG.

An example of the final algorithmic output is shown in Figure 3.7. The same

expert-scored clinical hypnogram from Figure 3.3 is shown again here, juxtaposed

with the corresponding automated score. As is evident, the algorithm was able to

follow closely the macrostructure of expert-scored sleep architecture despite using

only a single channel of EEG. The algorithm was also able to capture many nuances

in sleep microstructure such as the many arousals from stage N2 to stage W, and

reversions back to sleep. An exception of this was the algorithm under-scoring

of stage N2 epochs, which were scored instead as N3 at moments throughout the

night of sleep. For this particular night of sleep, the subject had an AHI = 63.1

events/hr, i.e. severe OSA. In spite of this finding, the algorithm was able to

score accurately whole-night sleep architecture with a κ = 0.70. To put this into

perspective, the mean inter-rater κ between two experts scoring OSA sleep using

full PSG is 0.59 [14].
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(a)

(b)

Figure 3.7: (a) Clinical Sleep hypnogram from full PSG and technician manual
scoring. (b) HMM-based Algorithm using single-lead forehead EEG. Subject AHI
= 63.1 events/hr; κ = 0.70.

3.4.4 Per-Night & Per-Epoch Sleep Staging Comparison

Cohens kappa was used to investigate the algorithms per-night classification

performance against corresponding expert-scored hypnograms. Furthermore, two

instantiations of the proposed algorithm – one using a fitted multivariate Gaussian

likelihood model and another using KDE – were employed to investigate the utility

of density estimation in modeling the expected multimodal structure of sleep EEG.

Figure 3.8 shows a box plot of the per-night κ values generated for each of the two

likelihood models. Each model made use of all 65 whole-night UCSD datasets

(HNUCSD and OSAUCSD) originally separated in the 5-fold cross validation.
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Figure 3.8: Box plots of per-night Cohens Kappa values, for two likelihood mod-
els: fitted multivariate Gaussian and density estimation. Red line = Median. Box
edges = 1st and 3rd Quartiles. Whiskers = (1.5 x IQR). Dashed green and ma-
genta lines = mean inter-rater Cohens Kappa between two experts using full PSG
in HN and OSA subjects, respectively [14].

The framework utilizing density estimation exhibited a slightly higher me-

dian (κ = 0.52) than the alternative using a fitted Gaussian (κ = 0.47). Median

values for both frameworks would classify as fair agreement, and were in the same

agreement domain as the mean inter-rater agreement between two experts scoring

sleep in OSA (κ = 0.59). The inter-quartile range (IQR) of the density estimation

model was also narrower, suggesting less variability in the models ability to classify

accurately whole-night sleep architecture. Moreover, whisker edges of the density

estimation-based model were both higher than the fitted Gaussian approach, with

the 4th quartile of κ values entirely higher than the mean inter-rater κ for OSA.
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When only inspecting the OSAUCSD results, the median κ and IQR for the fit-

ted Gaussian were 0.43 and 0.15, respectively, while for the density estimation

approach were 0.48 and 0.15, respectively. These results suggest that density es-

timation procedures have the potential to better statistically encode the structure

of sleep, and thus are appropriate for use in single-channel automated sleep scor-

ing. In addition to per-night assessment of the density estimation-based algorithm,

sensitivity and specificity values were calculated on a per-epoch basis. Table 3.2

displays a 5-stage confusion matrix between Clinical and Algorithm scores for each

of the 60,903, 30s epochs of sleep. The following is the true per-stage breakdown

of the 30s epochs: Wc = 14,582, Rc = 7,105, N1c = 11,398, N2c = 23,021, N3c =

3,797.

Table 3.2: Confusion Matrix for epoch-by-epoch comparison of Clinical PSG-
based sleep scoring vs. Algorithm scoring.

WA RA N1A N2A N3A Sensitivity

WC 12,367 783 1,132 261 39 85%

RC 466 5,651 646 308 34 80%

N1C 2,059 2,556 4,823 1,894 66 42%

N2C 913 2,586 3,913 12,815 2,794 56%

N3C 35 22 12 426 3,302 87%

Specificity 78% 49% 46% 82% 53%

C
lin
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Using a single-channel of EEG, the proposed algorithm performed excep-

tionally well in per-epoch recall of stages W, R, and N3 (85%, 80%, and 80%,

respectively). Recall that the mean inter-rater agreement for OSA data is just

above 70%; by this metric, the sensitivities for W, R, and N3 were on-par with full

PSG expert scoring. Stages N1 and N2 reported lower sensitivities values (42%

and 56%, respectively). This is expected for stage N1, as it often resembles stages

W and R; this misclassification is evident in the spread of W-R-N1 values in the
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confusion matrix.

Regarding precision, the algorithm performed best in stages W and N2 (78%

and 82%, respectively), with the remaining three stages reporting values between

45-55%. For stage R, the lower specificity is accounted for by misclassifications of

stages N1 and N2, while stage N1 was misclassified most as N2 and R. For stage

N3, specificity was low due to misclassification with stage N2, though algorithm

sensitivity for stage N3 was high.

3.4.5 Algorithm Performance vs. OSA Severity

To determine the effect of OSA on algorithm performance, the per-night κ

values generated via the density estimation-based algorithm were compared across

healthy/normal (N = 15), mild (N = 9), moderate (N = 9), and severe OSA (N

= 32) categories (Figure 3.9). Overall, the downward trend of as a function of

OSA severity was modest, which indicates a robustness in the algorithms ability

to score appropriately degrees of fragmented sleep architecture.



53

Figure 3.9: Box plots of per-night Cohens Kappa values, for four categories of
OSA severity. All values were generated via the density estimation-based algo-
rithm. HNPhysionet Fpz-Cz data were trained and tested separately.

Data extracted from Physionet were separately used for algorithm training

and whole-night sleep architecture classification, using the five-fold cross validation

method described above. The HNPhysionet data (N = 15) were trained and tested

separately due to the difference in sensing montage (Fpz-Cz) used to acquire the

public EEG data. The results of the HNPhysionet analysis are also illustrated in

Figure 3.9, juxtaposed with HNUCSD results to indicate the algorithm performance

based on differing healthy/normal EEG acquisition. Using the Fpz-Cz single-

channel data, the algorithm produced a median κ exactly equal to the mean inter-

rater agreement between two experts scoring sleep in HN subjects (κ = 0.65).

Alternatively, to test the generalizability of the trained algorithm, HNPhysionet data

was used as test data in the F3-A2-trained algorithm. As expected, algorithm
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performance on the HNPhysionet data dropped to a median κ = 0.47, with an inter-

quartile range (IQR) = 0.31, similar to the results for severe OSA F3-A2 data.

Still, more than half of the HNPhysionet classification was considered to be in at

least fair agreement, which suggests the algorithm is able to reconcile similar sleep

EEG features in data from different sensing montages.

In addition to stratifying performance across OSA severity, κ values were

further partitioned based on sleep stages, from whole-night sleep architecture re-

sults. Figure 3.10 illustrates the stage-specific algorithm performance with increas-

ing OSA severity. Only HNUCSD and OSAUCSD data was included (N = 65). As

expected, per-stage performance trends downward as OSA increases from HN to

severe OSA. An exception here is stage N1, which exhibits a modest increase in

κ spread, the largest occurring for severe OSA classification. Stages W, R, and

N2 maintain median κ values in at least fair agreement across OSA severity, with

a large increase in IQR for stage R in the severe case. Stage N3 appears as the

most variable in performance, with an abrupt drop in median κ upon transition

from mild to moderate OSA. Despite this, about one quarter (≈ 8 nights) of all N3

values for severe OSA lie within the fair/high agreement range. This observation,

combined with sustained values in the other stages of sleep, further suggests the

single-channel algorithm demonstrates classification robustness across OSA sever-

ities.
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Figure 3.10: Box plots of per-night Cohens Kappa values, for each stage of sleep
and across OSA severity. HNPhysionet data not included.

3.5 Discussion

To improve the current state of automated sleep scoring and provide a

means for assessing pathological sleep, an algorithm is presented that utilizes a

limited physiologic dataset (i.e. single-channel EEG) to estimate whole-night sleep

architecture in OSA and HN subjects. The algorithm makes use of KDE to gen-

erate statistical models based on single-channel sleep EEG spectral features, and

a HMM to formulate whole-night sleep architecture as a state space, transition-

constrained process. Few studies have focused automated sleep scoring efforts on

OSA subjects [92,94,106,108], and none have implemented a multimodal statistical

framework such as that presented here for investigating OSA sleep architecture.

The results of this study indicate that this statistical approach to scoring sleep in

OSA subjects with single-channel sleep EEG is effective and promising as a means

to emulate expert-level scoring in an automated fashion.

Spectral EEG features were generated via the MT spectrogram, which has
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been shown to produce more accurate spectral estimates of EEG, as compared to

the standard FFT, wavelet transform, and other spectral decomposition techniques

[112,114]. Each feature was extracted to embody the rules used for visual scoring

of sleep EEG, specifically extracting the activity in EEG frequency bands that

possess information about each or a combination of the five stages of sleep. For

example, a 0.1-50Hz broad power feature was used to quantify motion artifact

as sharp deflections spanning most frequency bands in the recorded EEG, which

typically appear during stage W and at the onset of arousal. Other well-known

EEG rhythms (e.g. α, θ, and δ) were used to quantify activity in corresponding

characteristic sleep stages, as per Table 3.1. Unique to this work is the separation

of the α band into four 1Hz bands (α1-α4) to capture the nuanced α activity in

stage R, which is expected as a 1-2Hz slower α rhythm compared to stage W [88].

To develop the distribution of spectral features within each stage of sleep,

density estimation was used over standard fitted Gaussian approaches. Specifi-

cally, KDE was implemented to generate likelihood estimates capturing multimodal

structure of the joint density surface in regards to spectral variability within a stage

of sleep. For example, approximately 20% of the adult U.S. population generates

little or no α activity during wakefulness [88, 127]. In this context, a standard

Gaussian model might not accurately represent both the presence and absence of

α activity within stage W, incorrectly approximating a bimodal distribution as a

single over- smoothed mode in the domain of α activity. In addition, multi- modal

statistical modeling of sleep stages can begin to quantify the errors/variability

in human sleep scoring within sleep stages. Since visual, per-epoch sleep scoring

is not an exact science, small variations in intra-stage human sleep scoring can

manifest as large discrepancies in standard Gaussian modeling, resulting in poor

algorithmic sleep scoring performance.

Figure 3.4 and Figure 3.5 illustrate univariate histograms of all eleven spec-

tral features (Table 3.1) for each sleep stage, depicting the unimodality of HN sleep

EEG and the sometimes subtle changes in EEG spectra as OSA subjects go into

deeper modes of sleep. In some instances, a standard Gaussian would represent

the data distribution accurately (e.g. most HN sleep and the unimodal distribu-
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tions of β and vlf features in most stages for OSA). Conversely, other features –

in particular, γ, δ, σ, and θ – exhibited distinct multimodal structure across all

stages of OSA sleep, which cannot be correctly captured by the standard Gaussian

(Figure 3.6).

In OSA, each of the four α band features extracted display a transformation

from unimodal, skewed Gaussian-like structure in stage W, to bimodal structure in

the positive PSD domain during stage N3. This is interesting since α-type rhythms

are not typically considered key indicators of deeper sleep, yet distinct peaks cen-

tered around 0dB and 30dB are present in N2 and N3 sleep, the latter value of

which is similar to that in stage W and stage R. This suggests that the histograms

(and as a consequence, the KDE likelihoods) capture two different populations of

spectral EEG – one centered about 0dB and another centered about 30dB. The

former might portray the typical suppressed EEG signature of α activity in N2-N3

sleep, while the latter might reflect an increase in activity related to respiratory-

based arousals and increased sympathetic activation during these epochs of sleep

in OSA subjects [8].

Sleep architecture was modeled as a HMM transition-constrained process,

with conditional likelihoods dictating physiologic transitions during sleep. Pre-

vious work in the literature has used HMM to model and score sleep [98–103],

though none has focused on multimodal class conditional densities, nor have they

exclusively focused on OSA subject data as used in the proposed HMM framework.

The 5-stage transition values used in the HMM were extrapolated from previous

work on a 4-stage transition model – Wake, REM, Light (N1/N2), Deep (N3) –

of sleep in OSA subjects [124]. Specifically, the presented algorithm implemented

transition likelihoods for N1 and N2, each stage with identical transition proba-

bilities to ensure parity when expanding the light stage values to the new 5-stage

model. Transitions between N1 and N2 were made more probable (e.g. Qi,j =

0.20), compared to transitions to other stages (e.g. Qi,j = 0.10), to reflect the

increased fragmentation and wake-sleep characteristics of sleep in OSA subjects.

Cohens kappa values for per-night, KDE-based classification of sleep archi-

tecture are shown in Figure 3.8. Values range from κ = 0.20 to κ = 0.77, with
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a median κ = 0.52 and more than three quartiles of the values demonstrating

at least fair agreement in classification accuracy when compared to expert-scored

hypnograms. For perspective, the mean inter-rater Cohens kappa between experts

scoring with full PSG in HN and OSA patients is κ = 0.65 and κ = 0.59, respec-

tively [14]. [6]. While the fitted Gaussian model also produced κ values in fair

agreement, this is suspected to be due largely in part to the inclusion of HN EEG

datasets, which stand to benefit less from a density estimation-based approach

when a simpler unimodal Gaussian will suffice, as depicted in Figure 3.5. It seems

that density estimation plays a smaller role in improving sleep scoring in HN sub-

jects, instead excelling when implemented on sleep that is heavily fragmented (such

as in OSA). These results suggest that the proposed algorithm performs quite well

in scoring sleep architecture in a mix of HN and OSA sleep, despite only using a

single channel of EEG data.

Further investigation of algorithm performance revealed a modest inverse

relationship between per-night κ agreement and OSA severity (Figure 3.9). In-

creased sleep fragmentation equates to more wake-sleep transitioning and a gen-

eral difficulty in sleep architecture classification. While agreement between the

algorithm and clinical scoring decreases as OSA severity increases, Figure 3.9 il-

lustrates that the algorithm achieved fair agreement values above κ = 0.50 for

almost half of the 32 total nights of sleep with severe OSA. An example of the

algorithms ability to accurately classify sleep architecture in a subject with severe

OSA (AHI = 63.1 events/hr) is shown in Figure 3.7. Further speaking to perfor-

mance on HN data, results from a separate 5-fold cross validation on HNPhysionet

data (Figure 3.9) show that the algorithm works equally well on data derived from

another EEG montage (i.e. Fpz-Cz), emphasizing the generalizability of the de-

scribed methods. This suggests that the algorithm may not only be robust to

certain degrees of OSA severity, but can also be improved to appropriately score

sleep in a manner agnostic to sleep fragmentation and EEG acquisition.

A stage-specific analysis of the combined HNUCSD and OSAUCSD results

further revealed modest deterioration of the algorithmic single-channel scoring for

increasing OSA severity (Figure 3.10). As expected, results for stages W, R, and
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N2 are primarily in good agreement, with little deterioration across OSA severity.

Interestingly, stage N1 agreement increased slightly as AHI increased, running

counter to other sleep stages. As OSA worsens, an increase in sleep fragmentation

generally leads to an increased frequency of stage N1, as patients arouse from sleep

more often throughout the night. As a consequence, EEG spectral features related

to stage N1 may become more prominent, which may accommodate increased

classification accuracy of stage N1 in this analysis.

An increase in N1 scoring during OSA would elicit an infrequency of other

sleep stages for the same total sleep time, such as stage N3 and stage R (whose

specific discrimination from N1 is already difficult in HN patients). For stage N3,

many agreement values in moderate and severe OSA dropped dramatically to κ =

0.00, though some values extend past fair agreement and well into high agreement.

The same occurs in stage R for mild and severe OSA. Based on the large degree of

κ spread, it appears low Cohens κ values not only arise from sheer misclassification

between two classes, but also from an uneven distribution of samples between two

classes (e.g. in a whole night of sleep, Rc = 25 epochs, Non-Rc = 600 epochs). The

result is a trade-off in stage-specific κ performance due to OSA severity, specifically

with infrequent sleep stages demonstrating a high agreement due to chance, which

by virtue of the numerator of equation 3.6, results in a low κ score. This happens

to be an example of low κ values resulting from imbalance/low prevalence of an

observation, a limitation of Cohens κ which has been discussed extensively in the

literature [128].

Whole-night classification results demonstrate improved N1 scoring over the

literature, while maintaining high degrees of classification for other sleep stages.

This suggests that the algorithm has the potential to accurately and automatically

generate desirable sleep metrics such as Total Sleep Time, Wake After Sleep Onset,

and Sleep Efficiency. Even so, improvement is necessary, in particular to address

the difficulty in classification for datasets with increased N1-N2 transitioning. As

discussed, this is a general problem of automated sleep scoring, even for scoring in

HN subjects, demonstrated by low-sensitivity results for N1 staging in the single-

channel algorithm literature [91, 92,95,98,105,106,108,109].
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Another area to be addressed is the algorithm sensitivity and specificity

between stages N2 and N3. Differences in the accuracy of N2-N3 scoring have

been observed before, in particular the over-scoring of N3 compared to N2 for data

derived from frontal sensors, as compared to central derivations [129]. More gener-

ally, a marked difference in N2-N3 scoring has been observed between automated

and manual scoring of sleep [93]. It is difficult to ascertain if automated algo-

rithms such as the proposed are incorrectly scoring N2-N3 epochs of sleep, if the

discrepancy is due solely to bias in the manual scoring performed by the expert, or

a combination of the two. Because an automated algorithm can quantify minute

differences in EEG (e.g. presence and strength of delta waves) more easily and

efficiently than a visual scorer, it has been suggested that automated scoring is

possibly more precise in N2-N3 classification [93].

The presented work utilized the MT spectral estimate to generate and ex-

tract frontal EEG spectral features. Implementation of novel spectrotemporal de-

composition techniques [67] might serve to improve algorithm performance through

integrated knowledge of the sparse macrostructure of sleep EEG when rendering

spectral estimates. Regarding EEG- based features, frontal EEG-derived eye move-

ment and K-complex information can be extracted via cross-correlation approaches

to improve the specificity in scoring stages R and N2, respectively [130,131]. More-

over, a natural extension of the proposed work is the automated detection of

arousals and apneas/hypopneas based on single-channel/limited physiologic data

streams. A method for detection of relevant sleep phenomena, and subsequent

generation of clinical criterion for OSA screening, could be formulated by closer

inspection and characterization of the multimodal distributions of EEG spectra

described here. By using appropriate statistical methods that accommodate mul-

timodal distributions, it may be possible to categorize an arbitrary epoch of sleep

EEG as HN or OSA-like. Moreover, it may be possible to use such per-epoch cate-

gorizations to estimate whole-night OSA severity. As such, the resulting paradigm,

using only single-channel EEG, has the potential to serve as a surrogate for clinical

assessment of arousal indices or AHI. In addition, it may even help characterize

different phenotypes of OSA and other sleep disorders.
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Finally, to facilitate frontal-based sensing of physiologic signals during sleep,

novel technologies in the field of wearable sensors and systems [15, 23, 132] can

be leveraged as tools for unobtrusive, peel-and-stick sleep monitoring. Combined

with low-resource algorithms – such as the proposed statistical methods – wearable

systems can begin to monitor sleep objectively, thus allowing clinical metrics that

go beyond the current standard of subjective recall.

3.6 Conclusion

New technologies have the potential to disrupt the clinic, and the field of

Sleep Medicine may be able to move beyond the limitations of the gold standard

PSG through smaller and more efficient devices for recording and generating clini-

cal sleep metrics. While the recent surge of minimalistic, at-home sleep monitoring

devices aims to improve Sleep Medicine practices, these endeavors lack analytic

techniques that efficiently estimate sleep architecture from reduced data streams.

This work outlines a statistical framework for classifying whole-night sleep ar-

chitecture from single-channel EEG spectral features. The algorithm formulated

sleep architecture and the five clinical stages of sleep as a transition-constrained,

state space process with intra-stage multimodality in the domain of EEG spectra.

Results of the study show the algorithm is able to utilize single-channel EEG to au-

tomatically discriminate and score whole-night sleep architecture in both HN and

OSA sleep, in many cases with high Cohens kappa agreement, when compared to

clinical scoring from experts using full PSG. Moreover, the algorithmic approach

sustains fair scoring agreement for increased OSA severity, demonstrating poten-

tial for generalizability and objectivity in the evaluation of the many intricacies of

sleep and sleep disorders. This is one of just a few studies that have implemented

state space modeling for single-channel sleep scoring, and the first known study to

implement such statistical methods for automated sleep architecture performance

in OSA subjects. The continued development of such low-resource algorithms –

guided by clinical expertise and emphasizing clinical practicality – will help realize

automated tools for assessing sleep and sleep disorders in inpatient and outpatient
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populations.
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Chapter 4

Objective and Automated

Assessment of Clinical Sleep and

Sleep Disorders

Chapter 4 presents on-going work that seeks to specialize the sensors work

in Chapter 2, for specific applications in robust measurements of low-frequency

electrophysiology (e.g. EEG) in long-term sleep monitoring. In addition, Chapter

4 discusses an analytical strategy inspired by the methodology in Chapter 3, for

attaining a surrogate measure of the apnea-hypopnea index, the primary metric

for determining presence and extent of OSA.

4.1 Towards A Peel-and-Stick Monitoring Sys-

tem for Continuous Sleep Electrophysiology

To advance the engineering findings from Chapter 2, much work has been

performed on the advancement of stretchable electronics for use in unobtrusive,

objective sleep and OSA monitoring. Specifically, efforts in regards to stretchable

sensor development and a rigid-to-stretch physiological monitoring system have

been pursued simultaneously.

As discussed in Chapter 2, Au stretchable sensors can be integrated seam-
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lessly into peel-and-stick adhesives and used as sensors for measuring biosignals

such as EEG. To further demonstrate their utility, these sensors are currently be-

ing implemented for whole-night sleep EEG acquisition. Figure 4.1 illustrates a

(un-wired) two-channel EEG sensing montage adhered to the forehead of a patient

to undergo a full PSG study. The Au sensors were positioned with channels 1 and

2 at the Fp1 and Fp2 positions, and reference and ground sensors positioned along

the midline of the forehead.

Stretchable sensor positioning was intentional, to confine the current and

future monitoring schemes to the forehead. The forehead is an attractive real

estate for biopotential sensing, as it is mostly devoid of hair, and typically does

not experience heavy motion artifact during sleep, such as tossing and turning on

a pillow. Additionally, it is possible to use reflectance pulse oximetry to record

oxygen saturation (SpO2), a typical biosignal used in full PSG and a signal vital

in the assessment of apneas and hypopneas [8]. Lastly, as the forehead is openly

exposed to the environment, measurement of environmental cues/factors, such as

exposure to light, can be gathered on the same real estate during sleep monitoring.

A 15-second snapshot of raw sleep EEG recorded using one of the two

Au stretchable sensor channels is also shown (green time series), aligned with

corresponding EEG from a conventional gel sensor (red time series). Here, the Au

stretchable sensor was able to capture the signature EEG characteristics of certain

sleep stages, namely the K-complex and sleep spindle combination specific to stage

N2, as well as the rapid eye movement deflection specific to the similarly named

stage REM.
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Stretch/Flex
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(a) (b)

Figure 4.1: a) Two-channel, stretchable EEG sensor system applied via peel-
and-stick clinical adhesive for seamless, all-frontal sleep sensing. b) Raw EEG
data from a clinical overnight polysomnogram using wired conventional sensors vs.
wired adhesive-integrated stretchable sensors.

While capable of acquiring biopotential activity in the form of EEG and

other biosignals, Au-based stretchable films are not perfectly suited for sensing

electrophysiology, due to issues of steady drift and charge accumulation at the

sensor-skin interface [65]. These issues of drift are most pervasive at lower fre-

quencies, in the domain of EEG rhythms (≤ 100Hz). Moreover, because noise due

to drift potentials worsens as a function of time, measurements during whole-night

sleep recordings are susceptible to this effect. Figure 4.2 illustrates a multitaper

spectral estimation of EEG recorded via Au stretchable sensors during a short

period of sleep (approximately 3.5-hours), during which steady drift is apparent in

the δ band.

To advance the utility and robustness of stretchable sensors for low-frequency

electrophysiological monitoring, the microfabrication methods discussed in Chap-

ter 2 have been implemented to create stretchable Ag/AgCl stretchable sensors

(Figure 4.2). As mentioned previously, Ag/AgCl sensors are the standard elec-

trode used in electrophysiology, due to their superior electrode stability and DC

coupling [65]. For this reason, and because Ag (like Au) is a noble metal with gen-

erally poor adhesive properties, there was motivation to microfabricate Ag/AgCl

stretchable sensors using the methods described in Chapter 2. Specifically, the
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Ag/AgCl methodology was almost identical to what is illustrated in Figure 2.2,

only that the metallization of Au onto the weak-adhering elastomer was replaced

with pure Ag. An additional post-processing step is added after the peel-off step

— FeCl3 is used to chemically chlorinate the pure Ag surface, thus forming a thin

layer of AgCl [133]. The result is a new stretchable sensor for which the same

processes can be used in microfabrication and integration into clinical adhesives.

a) b)

Figure 4.2: a) Snapshot of sleep EEG measured using wired Au stretchable
sensors. Note the steady drift in the δ band. b) Stretchable Ag/AgCl sensors for
robust low-frequency electrophysiological monitoring, mounted integrated into 3M
TegadermTM .

To this end, current work includes characterization of the new sensor prop-

erties (e.g. impedance spectroscopy) and the change in mechanical interaction

between the substituted Ag metal and the carrier elastomer (peel and adhesion

tests). After fine-tuning, the stretchable Ag/AgCl sensors will be implemented in

in-lab sleep studies, to measure sleep EEG against conventional Ag/AgCl sensors

typically used in full PSG. The sensors will be feed sleep EEG into a rigid, credit

card-sized wearable bioinstrumentation amplifier capable of 10-12 hours of contin-

uous 8-channel recording, local microSD card storage, and Bluetooth transmission.

This system was designed with components that have smaller packaging, and is

envisioned to be scaled into a solderable, stretchable circuit board on clinical ad-

hesive, as demonstrated in Kim et al. 2017 [134]. Finally, additional tests will be

performed to investigate the utility of these sensors for robust measures of gastric

slow wave activity, which stands to benefit from stretchable Ag/Agcl sensors as

the biosignal manifests at a much lower frequency than EEG [135].
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4.2 Automated OSA and arousal detection via

single-channel EEG

Alongside stretchable sensor and electronics design for unobtrusive sleep

monitoring, the findings discussed in Chapter 3 are currently being re-implemented

for automated analytics in OSA. As shown before, Figure 3.4 in Chapter 3 illus-

trated the histogram distribution of extracted EEG feature power spectral densi-

ties, stratified by sleep state for a combination of healthy/normal (HN) subjects

and OSA patients. Similarly, Figure 3.5 illustrated the same type of data, this

time only for HN subjects. The apparent difference between both figures is the

location of the histogram peak(s) along the PSD axis — in NREM stages of sleep

and lower-frequency rhythms (e.g. θ and δ), the mode of distribution seems to

shift to the left in OSA patients, as compared to the HN group. Conversely, the

higher-frequency rhythms (e.g. γ and β) shift to the right in OSA patients, as

compared to the HN group.

To venture an educated guess about this observation: as sleep in OSA is

typically fragmented and lacking of undisturbed sleep, the characteristic changes

in EEG rhythms expected of increasing depth of sleep are lost. The result might

look like a downward shift in low frequency spectral features observed, to appear

as ”weak” and unstable stages of sleep, akin to what is pictured in Figures 3.4 and

3.5. Should this be the case, it might be possible to discern the epochs of sleep

data belonging to the class of HN-type sleep and those that more closely resemble

OSA-type sleep — a binary classification possibly indicating OSA presence and

severity. Potentially, this method can render a surrogate measure of the apnea-

hypopnea index (AHI) and/or the respiratory disturbance index (RDI), using only

a single channel of sleep EEG.

To investigate this, the distribution of EEG spectral features were marginal-

ized along the sleep stage axis, since most features in Figure 3.4 maintain bimodal-

ity across all sleep stages. Figure 4.3 illustrates the marginalized distributions for

each single-channel EEG spectral feature from Figure 3.4. With exception of the

β and vlf features, all other features exhibit distinct peaks along the PSD axis.
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Figure 4.3: Histogram of single-channel EEG spectral features in HN and OSA
subjects, marginalized across sleep stages. Distinct modes appear for most EEG
spectral features, suggesting there is a contributing factor to EEG variability be-
yond sleep stage.
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Figure 4.4 illustrates the marginalized distribution for the γ EEG feature.

In this plot, there is a clear position along the PSD axis at which a hypothetical

line can be drawn. Perhaps, for the higher frequency γ rhythm, anything to the

left of the boundary (i.e. decreasing in PSD) belongs to the class of HN-type

sleep, while any epoch of EEG data that falls on the right is categorized as OSA-

type sleep. While one expects the γ rhythm to decrease during HN NREM sleep,

the epochs of increased activity seen here may be contributed by cortical arousals

related to respiratory disturbances and a general disposition of wakefulness, which

is characteristic of OSA.

Healthy/Normal sleep? OSA-type sleep; Sleep arousals?

Sleep Phenotype Threshold?

Figure 4.4: A possibility for sleep epoch phenotyping via thresholding of frontal
EEG power spectral density. Single-channel sleep EEG revealed bimodal structure
in the γ spectrum, which may indicate discriminatory sleep signatures specific to
OSA and/or respiratory-induced sleep arousals.

Though the data requires more teasing, the simple histogram/density esti-

mation approach utilized in Chapter 3 could provide great insight here beyond its

use in automated sleep staging. Clearly, the data is telling a story in sleep EEG

variability, possibly due to other confounding variables such as age and sex. Pend-

ing that this bimodality remains in the EEG distributions after accounting for all

other covariates, a next natural step is to crudely classify sleep EEG epochs as HN

or OSA through a decision boundary as in Figure 4.4. Then, after performing this

classification for all epochs in a whole night of sleep, take the sum total in each

category and correlate these values to the subject’s AHI and RDI values for the

same night.

More appropriately, the same data will be used in a testing-training paradigm

involving logistic regression, with the rails of the logistic function representing HN

and OSA-type sleep. In this manner, it is possible to receive a probability asso-
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ciated with the HN/OSA categorization of an arbitrary epoch of sleep, which can

be further implemented as the likelihood model in a simple 2-state HMM, akin

to what was discussed in Chapter 3. To this end, and if the biomodality appears

to be caused by OSA phenomena such respiratory-based arousals, then it is as-

tute to consider the time dynamics and frequency of arousals during a night of

sleep in OSA. Specifically, a state space transition model for sleep arousals will be

generated, such as that depicted in Figure 3.2. Figure 4.5 portrays the Arousal-

No Arousal transition dynamics in a single night of sleep for an OSA patient.

Here, each epoch of sleep was scaled down to 2s. This is appropriate as sleep

arousals (unlike sleep stages) are not clinically labeled on a 30s basis — each la-

beled arousal lasts at least 3s, upwards to 15s in length, after which point the epoch

of sleep during which this arousal occurs becomes stage Wake. By deconstructing

clinically-scored sleep in this manner, an algorithm will not only be trained to iden-

tify sleep arousals from single channel EEG, but will also constrain the dynamics

of sleep arousal transitions to what is expected in the sleep physiology of OSA —

for example, the propensity to remain in a sleep aroused state during an unaided

apneaic/hypopneaic episode. This, in combination with automated sleep staging

from the same EEG signal, could supplant the need for multi-channel, multi-sensor

data to provide seamless measures of sleep and sleep breathing disorders.

Arousal No Arousal

Arousal 585 121

No Arousal 121 10,332
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C u r r e n t  E p o c h
C o u n t

A NA

0.990.83

0.17

0.01

Tr a n s i t i o n  P r o b a b i l i t y  M o d e l

Figure 4.5: Example of an empirical transition model of sleep arousals occurring
in consecutive 2s epochs during a single night of sleep.
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Chapter 5

Conclusion

Although the importance of sleep is increasingly recognized, especially as

short sleep duration becomes more commonplace, the dearth of robust, non-invasive

systems for objective sleep measurement hinders our understanding of the sleep

process, and its role in health and disease. Current methods for measuring sleep are

fraught with expensive equipment and cumbersome sensing montages that inter-

fere with sleep. To make matters worse, interpretation of recorded signals involves

mundane and specialized visual/manual analysis, often resulting in subjective re-

sults and modest variability between sleep experts. With nearly 40% of US adults

experiencing problems with sleep, and many millions of individuals invisibly suf-

fering from OSA, the broad measurement and understanding of sleep is quickly

becoming a necessity for appropriately addressing these public health issues.

The rise of new wearable health devices promises broad usability and a

means for collecting troves of ambulatory health data. Such are poised to replace

the PSG and other bulky and subjective tools for physiological monitoring. Though

today’s devices trend towards new and miniaturized platforms for sleep monitoring

and other related applications, their utility has only been demonstrated in the

consumer markets, for which stringent clinical testing and approval are lax, at

best. Moreover, in regards to sleep, developments in software and analytics lag

behind the hardware innovations, such that devices do not provide measures of

sleep that are on-par with clinical PSG scoring. That is not to say that wearable

devices cannot achieve this level of clinical exactness, but that there is a lack of
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analytical tools capable of interpreting these reduced data streams. To put it

plainly, one cannot get something from nothing. To address these shortcomings in

Sleep Medicine, and to aid in the advances of wearable electronics, this dissertation

sought to develop a suite of tools towards the non-invasive sensing and objective

analysis of sleep and sleep disorders.

First, a thought on clinical usability and an unlikely fabrication method

enabled the engineering and integration of stretchable sensors into peel-and-stick

clinical adhesives. The results of this work were robust sensors through which

quantities such as EEG and mechanical strain could be sensed, and for which

said sensors could be created in a scalable manner while improving sensor qual-

ity. Current work looks to generalize these methods for the microfabrication of

other stretchable sensors, made of metallic materials that are more suitable for the

application of whole-night sleep monitoring. Of interest are stretchable adhesive

sensors for the acquisition of low-frequency electrophysiology, which encompasses

sleep EEG rhythms and includes a relatively unknown (but significant) gastric slow

wave.

Second, a shift in the dissertation to machine learning and a collaboration

with clinicians in Sleep Medicine lead to statistical analytics for automated assess-

ment of sleep architecture from single-channel electrophysiology. Through the use

of non-parametric density estimation, a conditional likelihood model of sleep was

generated to faithfully model the ground truth multimodal characteristics of sleep

EEG. The use of these likelihoods, combined with a state space dynamical model of

sleep, enabled the automated scoring of whole-night sleep architecture. Results us-

ing the same model in both healthy/normal and OSA populations yielded at least

fair agreement with gold standard full PSG scoring, indicating the algorithmic

framework is somewhat agnostic to healthy or diseased sleep. The methods used

to capture the nuanced structure of sleep EEG is currently being implemented for

further automated assessment of respiratory-based arousals and OSA-type sleep.

This is to provide objective assessments of sleep disordered breathing from the

same single-channel EEG source.

The result of this applied clinical engineering research provides a novel
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framework for promoting objective, non-invasive assessments of sleep. Succeeding

in just one of the current works will help to improve the materials and methods

used in the current clinical sleep paradigm. Accomplishing both could greatly

advance the state of the art, by improving objectivity of sleep measurements, im-

proving patient accessibility to clinical-grade at-home sleep testing, and enabling

further research investigation into the underpinnings of sleep and its role in health.

Ultimately, the dissertation work was formulated and executed to entertain broad

applicability of stretchable sensors and analytics for use in all of clinical medicine.

The hope is that this co-development of sensors and analytics, guided and mo-

tivated by clinicians, would exemplify clinically-guided engineering and serve to

advance budding wearable health technologies.
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[104] J. R. Shambroom, S. E. Fábregas, and J. Johnstone, “Validation of an auto-
mated wireless system to monitor sleep in healthy adults,” Journal of Sleep
Research, vol. 21, no. 2, pp. 221–230, 2012.

[105] Y.-L. Hsu, Y.-T. Yang, J.-S. Wang, and C.-Y. Hsu, “Automatic sleep stage
recurrent neural classifier using energy features of EEG signals,” Neurocom-
puting, vol. 104, pp. 105–114, 3 2013.

[106] L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, and H. Dickhaus, “Auto-
mated sleep stage identification system based on time-frequency analysis of
a single EEG channel and random forest classifier,” Computer Methods and
Programs in Biomedicine, vol. 108, no. 1, pp. 10–19, 2012.

[107] G. Garcia-Molina, M. Bellesi, S. Pastoor, S. Pfundtner, B. Riedner, and
G. Tononi, “Online single EEG channel based automatic sleep staging,” Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Ar-



86

tificial Intelligence and Lecture Notes in Bioinformatics), vol. 8020 LNAI,
no. PART 2, pp. 333–342, 2013.

[108] C. Lainscsek, V. Messager, A. Portman, J.-F. Muir, T. J. Sejnowski, and
C. Letellier, “Automatic Sleep Scoring from a Single Electrode Using De-
lay Differential Equations,” in Nonlinear Dynamics and Systems Theory
(J. Awrejcewicz, ed.), vol. 15 of Springer Proceedings in Mathematics &
Statistics, pp. 371–382, Cham: Springer International Publishing, 2014.

[109] A. R. Hassan, S. K. Bashar, and M. I. H. Bhuiyan, “On the classification of
sleep states by means of statistical and spectral features from single chan-
nel Electroencephalogram,” in 2015 International Conference on Advances
in Computing, Communications and Informatics, ICACCI 2015, pp. 2238–
2243, 2015.

[110] B. Kemp, A. H. Zwinderman, B. Tuk, H. A. C. Kamphuisen, and J. J. L.
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