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Abstract

Abundant evidence from slow wave sleep, anesthesia, coma, and epileptic seizures links high-voltage, slow electroencepha-
logram (EEG) activity to loss of consciousness. This well-established correlation is challenged by the observation that chil-
dren with Angelman syndrome (AS), while fully awake and displaying volitional behavior, display a hypersynchronous delta
(1–4 Hz) frequency EEG phenotype typical of unconsciousness. Because the trough of the delta oscillation is associated with
down-states in which cortical neurons are silenced, the presence of volitional behavior and wakefulness in AS amidst dif-
fuse delta rhythms presents a paradox. Moreover, high-voltage, slow EEG activity is generally assumed to lack complexity,
yet many theories view functional brain complexity as necessary for consciousness. Here, we use abnormal cortical dynam-
ics in AS to assess whether EEG complexity may scale with the relative level of consciousness despite a background of
hypersynchronous delta activity. As characterized by multiscale metrics, EEGs from 35 children with AS feature significantly
greater complexity during wakefulness compared with sleep, even when comparing the most pathological segments of
wakeful EEG to the segments of sleep EEG least likely to contain conscious mentation and when factoring out delta power
differences across states. These findings (i) warn against reverse inferring an absence of consciousness solely on the basis
of high-amplitude EEG delta oscillations, (ii) corroborate rare observations of preserved consciousness under hypersynchro-
nization in other conditions, (iii) identify biomarkers of consciousness that have been validated under conditions of abnor-
mal cortical dynamics, and (iv) lend credence to theories linking consciousness with complexity.

Keywords: disorders of consciousness; neurology; sleep and dreaming; states of consciousness; theories and models

Introduction

Electroencephalography (EEG) offers a window into neural
activity during sleep and wakefulness, generally revealing low-
voltage, fast activity during wakefulness and high-voltage, slow

activity during non-rapid eye movement (NREM) sleep
(Benington et al. 1994; Dijk 1995; Cajochen et al. 1999; Steriade
2000). The former is typically viewed as informationally rich
interactions, whereas the latter is typically viewed as
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informationally poor synchronization, wherein the number of
possible activity states is greatly diminished (Baars et al. 2013).
Similarly to NREM sleep, loss of consciousness in other states
also coincides with a high-voltage EEG rhythm (Alkire et al.
2008; Chennu et al. 2014; Sitt et al. 2014) exhibiting lower signal
complexity (Tononi and Edelman 1998; Casali et al. 2013;
Sarasso et al. 2015; Hudetz et al. 2016; Schartner et al. 2017; Liu
et al. 2018). For instance, in a state of anesthesia, loss of con-
sciousness coincides with a widespread increase in EEG power
at low frequencies (Murphy et al. 2011; Supp et al. 2011; Lewis
et al. 2012; Purdon et al. 2013), marking a decrease in corticocorti-
cal interactions (Mélanie Boly et al. 2012; Monti et al. 2013).
Absence seizures and temporal lobe seizures that impair con-
sciousness are also associated with significant increases in slow
waves (Holmes et al. 1987; Englot et al. 2010). Similar findings
have been reported for other modes of loss of consciousness in-
cluding advanced states of encephalopathy and coma (Kaplan
2004; Sutter and Kaplan 2012), sudden acceleration (Squires
et al. 1964; Wilson et al. 2005), basilar artery migraine
(Muellbacher and Mamoli 1994), and convulsive syncope
(Varrasi et al. 2011).

In apparent contradiction to the above data, children with
Angelman syndrome (AS) display the rich spectrum of purposeful
behavior that implies conscious awareness (as seen here)
(Andersen et al. 2001; Williams 2005; What does Angelman
Syndrome look like? 2016) while exhibiting the high-voltage, slow
EEG phenotype typical of states of reduced consciousness (Fig. 1,
Supplementary Fig. S1; Vendrame et al. 2012; Sidorov et al. 2017;
den Bakker et al. 2018; Frohlich et al. 2019a; external data in Fig.
1C, D, F, H are from Terzano et al., 2001; Goldberger et al., 2000;
Shoeb, 2009). Beyond challenging the general correlation between
unconsciousness and cortical hypersynchronization, it may also
be argued that the AS EEG phenotype is an enigma from a mech-
anistic standpoint. While OFF-periods of cortical silence generally
occur at the trough of each delta cycle in other contexts
(Destexhe et al. 2007; Wilson 2008), a different mechanism may
occur in AS since it is unclear how consciousness—being depen-
dent on the cerebral cortex (Koch et al. 2016)—would persist with
cortical neurons offline. Furthermore, if one assumes that neural
hypersynchronization is antagonistic to neural complexity
(Tononi and Edelman 1998), the AS EEG phenotype may chal-
lenge theories of consciousness such as integrated information
theory (IIT) that conceptually tie consciousness to functional
brain complexity (Oizumi et al. 2014; Tononi et al. 2016).
Specifically, in the case of IIT, the differentiation or diversity of
neural activity is a key requirement for consciousness (Oizumi
et al. 2014). In apparent contradiction to this framework, the
awake state AS EEG appears hypersynchronized, with little differ-
entiation visible at the level of the scalp (Vendrame et al. 2012;
Sidorov et al. 2017; den Bakker et al. 2018; Frohlich et al. 2019a). In
translational work, consciousness is also linked to neural com-
plexity by the perturbational complexity index, a successful
method of inferring consciousness based on the brain’s electro-
physiological “echo” following a magnetic pulse (Casali et al.
2013; Comolatti et al. 2019). Though an inverse relationship be-
tween slow, hypersynchronous EEG activity and complexity is in-
tuitive, it remains uncertain whether this is universally the case.

Although the AS EEG phenotype has long been described in
clinical reports (Boyd et al. 1988), we are the first to characterize
the degree to which the awake EEG in children with AS can sup-
port complex dynamics and, moreover, that these dynamics are
demonstrably lowered as consciousness decreases during sleep.
AS is caused by dysfunction of the gene UBE3A (Kishino et al.
1997; Buiting et al. 2016). Its clinical phenotype encompasses

global developmental delay, intellectual disability, microceph-
aly, epilepsy, and sleep difficulties (Thibert et al. 2013; Bird 2014;
Buiting et al. 2016). Developmental abilities in AS commonly pla-
teau at an age equivalence of less than 30 months (Peters et al.
2004; Gentile et al. 2010) and the majority of individuals with AS
lack functional speech (Williams 1995; Gentile et al. 2010); thus,
this population presents an unusually clear dissociation be-
tween consciousness and other cognitive processes (e.g. lan-
guage) which often confound efforts to associate a particular
quantity with consciousness (Montemayor et al. 2019).
Puzzlingly, awake state EEG recordings from children with AS
display diffuse, slow rhythmic oscillations at delta frequencies
(Sidorov et al., 2017; Frohlich et al. 2019a) reminiscent of those
seen in slow wave sleep and other states of unconsciousness. In
fact, spectral power at the delta peak frequency (2.8 Hz) in
awake children with AS exceeds that observed in typically de-
veloping (TD) children by > 1000% (Frohlich et al. 2019a). At face
value, either the inverse association between EEG delta power
and consciousness does not generalize to the hypersynchron-
ized, but wakeful and conscious, brain in AS, or amidst the
pathologically high-voltage slow rhythm observed in awake
children with AS, sufficiently complex interactions nonetheless
arise and persist over time.

To address this puzzle, we examined whether brain dynam-
ics observed in children with AS during periods of wakefulness
were more complex than those observed during periods of sleep
despite the global presence of large delta oscillations in both
states. As described below, contrary to common readings of EEG
and despite diffuse delta oscillations, the awake EEG of children
with AS supports significantly greater signal complexity than
the asleep AS EEG. This finding persisted even after contrasting
periods of wakefulness showing the most pathological EEG sig-
nature to the periods of sleep least likely to coincide with any
dream experience (Siclari et al. 2013, 2017), and, moreover, after
accounting for differences in delta power between states.

Materials and Methods
Ethics statement

Written consent to participate in the study was obtained from fam-
ilies according to the Declaration of Helsinki and was approved by
the institutional review boards of the participating sites.

Data acquisition

AS is a rare disorder affecting approximately 1 in 10 000–24 000
individuals (Petersen et al. 1995; Mertz et al. 2013). Given the chal-
lenge of obtaining sufficient data from a rare condition, we
sought to maximize our sample size through an NIH funded AS
Natural History Study [NCT00296764] (i.e. we did not calculate an
optimal sample size a priori). Spontaneous EEG recordings from
children with AS were collected from two sites (Boston
Children’s Hospital and Rady Children’s Hospital San Diego)
through the natural history study. Participants were encouraged
to sleep during part of the EEG acquisition; however, due to se-
vere sleep disturbances in AS (Thibert et al. 2013), not all children
were able to fall asleep. EEG recordings were acquired in a clinical
setting using an international 10� 20 EEG montage (19 channels).
Most participants were on central nervous system medications
treating seizures or other symptoms (see Supplementary Table
S3 for a complete list of medications and supplements). All EEG
data were acquired at one of three native sampling rates: 250 Hz,
256 Hz, or 512 Hz. Annotations denoting sleep, drowsiness, and
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behavioral state were provided based on behavioral criteria by
the EEG technician during data acquisition. Sections of data con-
taining drowsiness were excluded from analysis. Due to the
delayed developmental abilities of many children with AS, the
EEG acquisition protocol did not control for eye condition (e.g.
eyes open or eyes closed) during wakefulness. Some participants
gave longitudinal data across multiple visits. Sleep quality data
were collected by asking parents how many nights per week
their child slept through the night.

From a total of 161 EEG recordings from 99 participants, we
identified 35 children with AS whose EEG (48 recordings) con-
tained sections of both sleep and wakefulness. Only partici-
pants in the 1–18 years age range were considered, as this is the
age range in which the AS delta EEG phenotype has been quan-
titatively described (Frohlich et al. 2019a). Participant details are
given in Supplementary Table S1. Only one EEG recording was
analyzed per participant according to criteria that included age
and amount of usable data. In cases where participants gave
data at multiple visits, we analyzed EEG from the visit that
yielded the greatest number of valid frequency transform win-
dows at the lowest frequency analyzed (1 Hz) in data sections
from the targeted comparison. Ties were broken using the
youngest visit, as delta power is known to attenuate with age in
AS (Frohlich et al. 2019a).

Preprocessing

Data were imported to MATLAB (The MathWorks, Inc.,
Torrance, CA, USA) for processing and analysis. We bandpass

filtered all recordings 0.5–45 Hz using finite impulse response
filtering. Noisy channels and sections of data containing gross
artifacts were manually marked to be avoided for purposes of
calculating spectral power and signal complexity measures. We
also omitted sections of data recorded while participants were
exposed to light flash stimuli intended to trigger epileptiform
activity. Stereotyped physiological and technical artifacts were
removed with independent components analysis using the
FastICA algorithm (Hyvarinen 1999; Jung et al. 2000). Bad chan-
nels were spatially interpolated using a spline interpolation.
A prior publication describes the full details of EEG acquisition
and preprocessing (Frohlich et al. 2019a).

Wavelet transform

We computed EEG spectral power using a Morlet wavelet trans-
form. We chose a spectral band-width of 1/2 octave (corre-
sponding to f/rf � 8.7; rf, spectral SD) and spaced the center
frequencies logarithmically (base 2) with exponents ranging
from 0 (1 Hz) to 5 (32 Hz) (inclusive) in 1/8 octave increments,
yielding a total of 41 frequency bins. We then computed power
in successive 3/4-overlapping temporal windows of 1 s duration.
Time-frequency representations were discarded at time points
where the convolution kernel overlapped with sections marked
as artifact by more than 20% (see preprocessing). Finally, we av-
eraged the time-frequency representation. Spectral power was
normalized per octave, i.e., log2(Hz), rather than Hz to account
for the logarithmic nature of EEG signals (Buzsáki and Draguhn
2004). To plot spectral power, we first averaged across channels,
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B   Awake (TD child)
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D   REM sleep (adult)
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Figure 1. 10 s EEG recordings from conscious states (left column) and unconscious states (right column). Voltage traces are color coded by the
log10 root mean squared, with hotter colors indicating a signal with a higher amplitude and cooler colors indicating a signal with a lower ampli-
tude. A general trend of low-voltage, fast activity is visible in all cases from conscious states except for AS, which paradoxically resembles un-
conscious EEG activity even during wakeful consciousness (A). Panels A and E display EEG from a 27-month-old girl with AS included in this
study; other panels display data from outside this study with different acquisition, referencing, and preprocessing and are provided for illus-
trative purposes only. Direct, quantitative comparisons are precluded by these differences. Some EEGs are depicted with amplitude exaggera-
tion (shown inside magnifying glass) to better display waveforms (B, C, D, G, H). (A) Awake state EEG (channel Cz) from a 27-month-old girl
with AS (Participant 10, Supplementary Table S1) marked by high-amplitude delta oscillations that are more typical of diminished conscious-
ness (cf. right column). This participant did not have seizures and was not taking medication. See additional awake state EEG from this partici-
pant in Supplementary Fig. S1B. (B) Awake state EEG (channel Cz) recorded from a typically developing 38-month-old girl. (C) Awake state EEG
(bipolar channel F1–F3) recorded from a healthy 37-year-old woman. (D) REM sleep EEG (bipolar channel F1–F3) recorded from a healthy
37-year-old woman. (E) Sleep EEG from a 27-old-girl with AS; note the extreme similarity in waveform to awake state AS EEG in A. See addi-
tional asleep state EEG from this participant in Supplementary Fig. S1D. (F) Ictal EEG (bipolar channel F3–C3) recorded from a 2-year-old girl
with epilepsy during a seizure. (G) Spontaneous EEG (channel Cz) recorded from a 59-year-old man in a vegetative state. (H) Sleep EEG (bipolar
channel F1–F3) recorded during NREM (Stage N3) from a healthy 37-year-old woman.
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then log-transformed power before averaging across partici-
pants. For statistical comparisons between conditions, we log-
transformed power at each point in channel-frequency space
(see Statistical Analysis below).

Signal complexity

Many different quantitative measures of EEG complexity exist,
including those that capture the complexity of individual chan-
nels (e.g. signal entropy) (Costa et al. 2002; Ibá~nez-Molina et al.
2015) and those that account for interactions between channels
(e.g. phi in the context of IIT, or causal density in the context of
Granger causality; Seth et al. 2011; Toker and Sommer 2019).
While the latter category may be more desirable from a theoret-
ical viewpoint, their validity often rests on model assumptions
that are difficult to satisfy (e.g. Gaussian or stationary data)
(Seth et al. 2015; Toker and Sommer 2019). Thus, we opted for
the former category and measured EEG signal complexity using
two methods, modified multiscale entropy (mMSE) (Costa et al.
2002; Xie et al. 2008) and generalized Lempel-Ziv (gMLZ) (Lempel
and Ziv 1976; Ibá~nez-Molina et al. 2015; Yeh and Shi 2018) com-
plexity. mMSE compliments gMLZ because multiscale entropy,
unlike Lempel-Ziv complexity, does not yield large values for
white noise (Costa et al. 2002). Specifically, mMSE captures the
balance between periodicity and randomness in the signal,
computed as modified sample entropy (mSampEn) (Xie et al.
2008) across 20 timescales using a coarse graining procedure
that excludes high frequencies at each step (Costa et al. 2002).
gMLZ captures the incompressibility or number of unique sub-
strings in the signal (Lempel and Ziv 1976) and is also computed
across 20 timescales (Ibá~nez-Molina et al. 2015) using two me-
dian filters with different smoothing windows to exclude both
low and high frequencies at each step (Yeh and Shi 2018). See
Table 1 for the center frequencies, smoothing window sizes,
and bandwidths at each gMLZ timescale.

Because the sampling rate influences multiscale analyses,
all EEG signals were downsampled to 200 Hz without filtering
prior to computing mMSE and gMLZ. Data sections containing
artifacts, drowsiness, or light flashes were excised prior to com-
puting mMSE and gMLZ. In the full comparison, mMSE and
gMLZ were computed in nonoverlapping segments; in the tar-
geted comparison, we applied 50% overlap between data seg-
ments to give better coverage of shorter data. Further details of
how mMSE and gMLZ were computed can be found in the
Supplementary Methods.

Comparison of sleep versus wakefulness

Our comparison of data from sleep and wakefulness is informed
by the finding that most awakenings from NREM sleep are ac-
companied by reports of dreams (Stickgold et al. 2001) and are
thus “contaminated” by consciousness. In addition to the vari-
ance in level of consciousness encountered in sleep, there is
large variance in delta amplitude encountered during wakeful-
ness in AS children (Sidorov et al. 2017). For these two reasons,
we performed two comparisons of EEG data: (i) a full compari-
son using all usable data from both the awake and the asleep
state and (ii) a targeted comparison using sections of sleep EEG
that are unlikely to coincide with conscious experience (as
judged by parietal EEG activity) paired with sections of awake
EEG that are especially abnormal as judged by their delta power.
For a detailed explanation of how data sections were chosen for
the targeted comparison, see Supplementary Methods.

Statistical analysis

Both mMSE and gMLZ are defined such that regularities (e.g. delta
oscillations) in the signal diminish complexity. For this reason, we
covaried for delta (1–4 Hz integrated) power using simple linear re-
gression models (separate model for each channel, timescale, and
complexity measure). We report results of the targeted compari-
son both with and without covarying for delta power. To infer
whether changes in signal complexity between sleep and wake-
fulness were mediated by changes in delta power, we used a non-
parametric (2 � 104 bootstraps) path analytic framework for
mediation analysis (Montoya and Hayes 2017).

To account for a large number of comparisons across channels
and timescales or frequencies, we used permutation cluster statis-
tics to test for differences between sleep and wakefulness in both
complexity and spectral power (Maris and Oostenveld 2007;
Nichols and Holmes 2002). We first performed t-tests at each chan-
nel and timescale/frequency and then thresholded t-statistics us-
ing P¼ 0.01 before clustering in channel-timescale space
(complexity) or channel-frequency space (spectral power). For each
cluster, we then derived two-tailed statistical significance non-
parametrically by permuting the condition labels 104 times and
comparing the size of the original cluster to the empirical distribu-
tion of cluster sizes. This approach is unbiased with respect to di-
rectionality, frequency/timescale, and electrode location. In total,
we performed eight separate tests: power and complexity were ex-
amined in both a full comparison and a targeted comparison (three
EEG measures� two comparisons), and complexity was also exam-
ined in a follow-up targeted comparison in which we covaried for
delta power (two EEG measures � one comparison). We then ad-
justed for the total number of tests using a Bonferroni correction,
yielding a¼ 0.0063. Effect sizes for each cluster (median across all
cluster members) were measured as Cohen’s d.

Results

Herein, we have assessed the degree to which signal complexity
can emerge from the pathologically hypersynchronous brain
dynamics typical of children with AS and, specifically, whether
such dynamics differ significantly with relative level of con-
sciousness (i.e. wake, sleep). We first addressed this question by
analyzing all usable EEG data (henceforth, full comparison). We
then repeated the analysis while controlling for two possible
confounders (henceforth, targeted comparison). All compari-
sons were within-subject and contrasted awake and asleep EEG
recorded from the same EEG session.

Our sample included a cohort of 35 children with AS (15 fe-
male), ranging from 13 to 130 months of age (mean 6 SD ¼
47.9 6 28.6 months), of which 25 had a deletion of chromosome
15q11-q13 and the remaining 10 had other genetic aberrations
affecting UBE3A (see Supplementary Table S1 for individual de-
mographic details and length of EEG data used in each of the
analyses). Qualitative inspection of EEG recordings revealed
strongly abnormal EEG patterns in both sleep and wakefulness
(see Fig. 1A and E and Supplementary Fig. S1 for examples from
a participant without seizures or medications).

Full comparison

Full comparison: EEG delta and alpha/beta power are modulated by
sleep in AS
The full comparison revealed peaks in the delta band for both the
awake and asleep condition (channel averaged), with a sharper
peak in the awake state and a broader peak in the asleep state
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(Fig. 2A; see Supplementary Fig. S1A for visualization of the
untransformed power). The duration of usable EEG ranged from
3.39 to 167 min (awake state, mean 6 SD ¼ 16.7 6 27.1 min) and
2.89 to 123 min (asleep state, mean 6 SD ¼ 17.3 6 20.1min); high
variance in duration of usable data is likely attributable to the var-
iability of developmental abilities and behavioral phenotype in
participants. Differences in EEG measures between the asleep and
awake state were revealed by clusters of channels and frequency
bins (power) or timescales (complexity) showing similar modula-
tion. Power was generally decreased in wakefulness at frequen-
cies under 20 Hz, with the largest decrease occurring as a 53.0%
reduction at f¼ 1.52 Hz (Supplementary Fig. S2B). These changes
in wakeful power mapped onto a significant cluster (P< 10�4, clus-
ter permutation test) in channel-frequency space with a spatially
diffuse topography that was largest over frontocentral areas
(Fig. 2A3,4; effect size: d ¼ �0.48 6 0.26, median 6 SD; see Table 2
for full details of clusters). Because the spectral profile of this clus-
ter appeared to “fuse” an oscillatory change in the delta frequency
range with an oscillatory change in the alpha-/beta-frequency
range (Fig. 2A4), we then repeated the cluster randomization sta-
tistics with a stricter threshold (P¼ 0.0005) to observe the topogra-
phy of each oscillatory change separately (Fig. 2B, Supplementary
Table S2). We also observed a>100% increase in power at high fre-
quencies (f> 28 Hz) in the awake state relative to the asleep state
(Fig. 2A2, Supplementary Fig. S2B); however, the corresponding
cluster did not reach statistical significance (Cluster 4, Table 2).
See Supplementary Fig. S3 for topographic plots of power by fre-
quency band.

Full comparison: EEG complexity is modulated by sleep
in AS

We next examined mMSE and gMLZ and found greater EEG sig-
nal complexity in the awake state as compared to sleep.

Specifically, the channel averaged mSampEn decreased mono-
tonically with faster timescales, but was greater during wakeful-
ness as compared to sleep (Fig. 3A1,2), with the exception of
frequencies � 6.25 Hz (i.e. the five slowest timescales). Greater
mMSE during wakefulness was marked by a significant cluster
(P¼ 0.0007, cluster permutation test) covering all channels but
largest over central and posterior areas (Fig. 3A3,4; effect size:
d¼ 0.69 6 0.12, median 6 SD). By comparison, gMLZ increased
monotonically with faster timescales and was larger in wakeful-
ness as compared to sleep at all timescales, particularly those
with center frequencies corresponding to delta and beta fre-
quencies (channel-averaged; Fig. 3B1,2). These changes were ac-
companied by a significant cluster (P< 10�4, cluster
permutation test) encompassing 90.8% of channel-timescale
space (Fig. 3B3,4; effect size: d¼ 0.63 6 0.32, median 6 SD). The
cluster appeared to fuse complexity changes corresponding to
fast and slow timescales. We thus repeated the analysis, apply-
ing a stricter threshold (P¼ 0.0005) to t-statistics to view the to-
pography of each change separately (Fig. 3C). Effect sizes in the
low-frequency subcluster were large (d¼ 0.96 6 0.27; Fig. 3C1,
Supplementary Table S2). See Supplementary Fig. S4 for com-
plete visualizations of all clusters and Supplementary Fig. S5 for
visualizations of individual participants’ data. Participant geno-
type (deletion or non-deletion) significantly correlated with
mMSE and gMLZ at some timescales (Supplementary Fig. S6).
This covariate was fully controlled for by the within-subject de-
sign of our study.

Targeted comparison

To account for both the large variance in delta amplitude in
awake children with AS and the possibility of conscious menta-
tion during NREM sleep, we reinforced our full comparison with
a targeted comparison that accounted for the above

Table 1. gMLZ timescale parameters

Scale Center
frequency (Hz)

Bandwidth
(Hz)

Threshold
frequency (Hz)

Smoothing
frequency (Hz)

Thresholding
window (samples)

Smoothing
window (samples)

1 1.00 0.40 0.80 1.20 251 167
2 1.18 0.47 0.95 1.42 211 141
3 1.42 0.58 1.13 1.71 177 117
4 1.68 0.68 1.34 2.02 149 99
5 1.98 0.78 1.57 2.35 127 85
6 2.35 0.95 1.87 2.82 107 71
7 2.82 1.14 2.25 3.39 89 59
8 3.39 1.34 2.74 4.08 73 49
9 3.92 1.48 3.17 4.65 63 43
10 4.65 1.94 3.77 5.71 53 35
11 5.71 2.25 4.65 6.90 43 29
12 6.90 2.59 5.41 8.00 37 25
13 8.00 3.07 6.45 9.52 31 21
14 9.52 4.36 7.41 11.76 27 17
15 11.76 3.81 9.52 13.33 21 15
16 13.33 4.86 10.53 15.38 19 13
17 15.38 6.42 11.76 18.18 17 11
18 18.18 6.84 15.38 22.22 13 9
19 22.22 10.39 18.18 28.57 11 7
20 28.57 17.78 22.22 40.00 9 5

To compute gMLZ (i.e. the difficulty of compressing the signal), we first applied separately two median filters at each timescale: one filter with a smaller kernel

(smoothing window) and a second filter with a larger kernel (thresholding window). The output from the first filter is then binarized according to the output from the

second filter, which acts as a dynamic threshold. Lempel–Ziv complexity is then computed from the binary timeseries. Smoothing and thresholding windows are both

spaced logarithmically to allow for good coverage of the EEG spectrum at all frequency bands, and the difference in size between the smoothing window and the

thresholding window is varied to allow larger bandwidth at higher frequencies.
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confounders (i.e. delta variability and conscious mentation) as
follows. We addressed the fromer concern by focusing only on
the segments of the most abnormal awake state EEG, as opera-
tionalized by delta power. We then addressed the latter concern
by contrasting the pathological awake state EEG with the peri-
ods of asleep state EEG that are the least likely to correspond to
any dream experience, as operationalized by the ratio of parie-
tal delta power to high-frequency power (Siclari et al. 2013,
2017), where higher values of this ratio correspond to a greater
probability of unconsciousness. In other words, we compared
the most abnormal segments of EEG still corresponding, none-
theless, to a state of wakeful consciousness, to the segments of
sleep EEG least likely to correspond to any conscious experi-
ence. By using only these segments, one may expect the find-
ings from the full comparison to disappear if EEG complexity is
not always greater during wakefulness as compared to dream-
less sleep, e.g., during bouts of especially high-amplitude delta
in wakefulness (Sidorov et al. 2017). The duration of selected
EEG ranged from 2.07 to 9.44 min (awake state, mean 6 SD ¼
3.96 6 1.67 min) and 1.48 to 5.32 min (asleep state, mean 6 SD ¼
3.24 6 1.02 min).

Targeted comparison: EEG low delta power is modulated
by sleep in AS

The targeted awake EEG sections were characterized by a prom-
inent peak in the delta band, while the targeted asleep EEG sec-
tions were characterized by two delta band peaks at different
octaves (channel averaged; Fig. 4A1), which are best visualized
in the untransformed power (Supplementary Fig. S7A); this

suggests the presence of two separate oscillatory processes, one
related to sleep and one related more specifically to AS pathol-
ogy. Decreases in power between the two states were restricted
to the delta band (max change: 41.3% decrease at f¼ 1.34 Hz),
with >100% increases also occurring at high frequencies
(f> 25 Hz) (Fig. 4A2, Supplementary Fig. S7B). Permutation clus-
ter statistics identified two small but significant clusters differ-
ing between the two states. The first cluster corresponded to
decreased power at low delta (1.0–2.2 Hz) frequencies in the
awake state (P¼ 0.0011, cluster permutation test) and lacked a
distinct scalp topography (Fig. 4A3,4; effect size: d ¼
�0.60 6 0.19, median 6 SD). The second cluster corresponded
mostly to increased power at largely beta (11.3–32 Hz) frequen-
cies in the awake state (P¼ 0.0022, cluster permutation test) and
displayed a scalp topography suggestive of neck muscle artifact
(Fig. 4A5,6; effect size: d¼ 0.63 6 0.24, median 6 SD). These
results show that, after accounting for the confounders that
motivated our targeted comparison, the most reliable spectral
differences between sleep and wakefulness were found at low
delta frequencies. See Supplementary Fig. S8 for topographic
plots of power by frequency band.

Targeted comparison: EEG complexity is modulated by
sleep in AS

Analysis of EEG signal complexity in the targeted comparison
revealed similar results to the full comparison (channel-aver-
aged; Fig. 5A1,2). Greater mMSE in wakefulness was marked by
a significant cluster (P¼ 0.001, cluster permutation test) exhibit-
ing similar topography to the corresponding cluster found in
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Figure 2. Full comparison: EEG delta and alpha/beta power are modulated by sleep in AS. Results depicted here reflect within-subject compari-
sons of sleep versus wakefulness. (A) EEG spectral power with t-statistics thresholded at P ¼ 0.01 for permutation cluster statistics. (A1)
Channel and participant averaged power spectrum (log-scaled, mean 6 95% CI) and (A2) wake � sleep change (mean 6 95% CI). (A3) Channel-
space profile of cluster (P < 10�4) of decreased power in wakefulness (color coded by the number of frequency bins participating in the cluster
at each channel). (A4) Frequency-space profile of cluster (i.e. number of channels participating at each frequency bin; note that this cluster
fuses high-frequency and low-frequency aspects). (B) Cluster in (A) broken into separate low-frequency and high-frequency subclusters by ap-
plying a stricter threshold (P ¼ 0.0005) to t-statistics. (B1) Channel-space profile of delta-frequency subcluster (decreased power in wakeful-
ness). (B2) Frequency-profile of subcluster showing participation at delta frequencies. (B3) Channel-space profile of alpha-/beta-frequency
subcluster (increased power in wakefulness). (B4) Frequency-profile of subcluster showing participation at alpha/beta frequencies.
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the full comparison (Fig. 5A3,4; effect size: d¼ 0.67 6 0.11, me-
dian 6 SD). The gMLZ curves also exhibited the same behavior
seen in the full comparison (channel-averaged; Fig. 5B1,2) and
yielded a significant cluster (P< 10�4, cluster permutation test)
marking greater complexity during wakefulness (Fig. 5B3,4; ef-
fect size: d¼ 0.64 6 0.32, median 6 SD). The cluster appeared to
fuse complexity changes corresponding to fast and slow time-
scales. We thus repeated the analysis, applying a stricter
threshold (P¼ 0.0005) to t-statistics to view the topography of
each change separately. Effect sizes in the low-frequency sub-
cluster were large (d¼ 0.98 6 0.20, median 6 SD; Fig. 5C,
Supplementary Table S2). See Supplementary Fig. S9 for com-
plete visualizations of all clusters and Supplementary Fig. S10
for visualizations of individual participants’ data. Participant

genotype and log2(age) significantly correlated with mMSE and
gMLZ at some timescales (Supplementary Fig. S11). These cova-
riates were fully controlled for by the within-subject design of
our study.

Effects of sleep on EEG complexity are not mediated by
delta power

As shown in Fig. 4A1, despite having selected the most patho-
logical segments of the awake EEG dataset, delta power still dif-
fered significantly across wakefulness and sleep. Delta power
was also negatively correlated with mSampEn at most time-
scales after averaging across channels, explaining the majority
of the variance in mSampEn at fast timescales (R2 > 0.5 for
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Figure 3. Full comparison: EEG complexity is modulated by sleep in AS. Results depicted here reflect within-subject comparisons of sleep versus
wakefulness. (A) mMSE with t-statistics thresholded at P ¼ 0.01 for permutation cluster statistics. (A1) Channel and participant averaged (mean
6 95% CI) SampeEn and (A2) wake � sleep change (mean 6 95% CI). (A3) Channel-space profile of cluster (P ¼ 0.0007) of increased mMSE in
wakefulness. (A4) Timescale-space profile of cluster showing greater participation at fast timescales. (B) gMLZ with t-statistics thresholded at P

¼ 0.01 for permutation cluster statistics. (B1) Channel and participant averaged (mean 6 95% CI) gMLZ and (B2) wake � sleep change (mean 6

95% CI). (B3) Channel-space profile of cluster (P < 10�4) of increased gMLZ in wakefulness. (B4) Timescale-space profile of cluster fusing low-fre-
quency and high-frequency aspects. (C) Cluster in (B) broken into separate low-frequency and high-frequency subclusters by applying a stricter
threshold (P ¼ 0.0005) to t-statistics. (C1) Channel-space profile of low-frequency subcluster. (C2) Timescale-space profile of low-frequency sub-
cluster. (C3) Channel-space profile of high-frequency subcluster. (C4) Timescale-space profile of high-frequency subcluster.

The paradox of Angelman syndrome | 7

https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niaa005#supplementary-data
https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niaa005#supplementary-data
https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niaa005#supplementary-data
https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niaa005#supplementary-data


Nyquist frequency � 20 Hz, awake, and Nyquist frequency �
50 Hz, asleep, Supplementary Fig. S12A). To account for the pos-
sibility that greater regularity (and thus lower complexity) is in-
troduced in sleep merely by greater delta power, we performed
a mediation analysis to infer whether changes in complexity
were mediated by changes in delta power. Delta power did not
mediate the effect of state (i.e. wakefulness versus sleep) on
mMSE (Supplementary Fig. S12B, P> 0.05 all timescales, uncor-
rected). Even more so than mMSE, delta power was negatively
correlated with gMLZ at most timescales (R2 > 0.5 for center fre-
quency � 2.82 Hz, asleep and awake state, Supplementary Fig.
S12C). Yet again, delta power did not mediate the effect of state
on gMLZ (Supplementary Fig. S12D, P> 0.05 all timescales,

uncorrected). Given the observed negative relationship between
delta power and complexity measures, in what follows we re-
peated the targeted comparison after covarying for delta power
(integrated 1 – 4 Hz).

Targeted comparison: EEG complexity changes are
robust to covarying for delta power

Finally, as shown in Fig. 6, our overall findings remained
unchanged after controlling for delta power differences across
wakefulness and sleep by regressing out 1� 4 Hz power.
Specifically, while mMSE curves were no longer monotonic with
timescale, they still show the awake EEG to be more complex
than the asleep EEG. The largest increase from sleep occurred at
low frequencies (i.e. the fastest timescale; channel-averaged;
see Fig. 6A1,2). This relative increase in mMSE during wakeful-
ness corresponded to a significant (P< 10�4, cluster permutation
test) and nearly saturated cluster (Fig. 6A3,4; effect size:
d¼ 1.92 6 0.81, median 6 SD). With respect to gMLZ, covarying
for delta power again leads to the same qualitative result
reported above, with wakefulness showing consistently greater
complexity than sleep. Intriguingly, however, the divergence in
complexity between the two states is even greater after factor-
ing out delta power, with the largest increase from sleep occur-
ring at the center frequency of 22.2 Hz (i.e. the 19th timescale;
channel averaged; see Fig. 6B1,2). The relative increase in gMLZ
during wakefulness corresponds to a significant (P< 10�4, clus-
ter permutation test) and, again, nearly saturated cluster
(Fig. 6B3,4; effect size: d¼ 2.42 6 1.28, median 6 SD). See
Supplementary Fig. S13 for complete visualizations of all clus-
ters and Supplementary Fig. S14 for visualizations of individual
participants’ data.

Discussion

Children with AS exhibit an EEG phenotype resembling states of
diminished consciousness in typical individuals, while also
exhibiting purposeful behavior consistent with a state of wake-
ful awareness, albeit marked by severe intellectual disability.
This paradoxical EEG pattern during conscious wakefulness, to-
gether with similar circumstances occasionally observed in
non-convulsive status epilepticus (Gökyiǧit and Çalişkan 1995),
Rett syndrome (Laan and Vein 2002), postoperative delirium
(Palanca et al. 2017), schizophrenia (Matsuura et al. 1994), and
immediately following tracheal intubation for general anesthe-
sia (Gaskell et al. 2017), challenges the view that high-voltage,
slow EEG activity is a reliable marker of loss of consciousness.

At face value, the pathological presence of slow, high-
amplitude oscillations during a state of wakeful awareness
appears problematic for theoretical frameworks linking con-
sciousness to complexity (Tononi and Edelman 1998; Oizumi
et al. 2014; Tononi et al. 2016). This is because the hypersynchro-
nization needed to produce such slow, high-voltage rhythms
limits the degrees of freedom on neuronal populations; neurons
are entrained to their neighbors, reducing the diversity of corti-
cal activity. With a smaller repertoire of cortical states, the brain
exhibits less functional differentiation (Koch et al. 2016) and
thus lacks one of the two cardinal elements theoretically
needed for a system to be conscious: differentiation and inte-
gration (Tononi and Edelman 1998; Oizumi et al. 2014; Tononi
et al. 2016). Yet, the data presented above suggest that even in
the presence of pathological, global slowing and synchroniza-
tion of brain dynamics, the complexity of scalp EEG signals still
emerges and systematically varies with levels of consciousness.
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Figure 4. Targeted comparison: EEG low delta power is modulated by
sleep in AS. Results depicted here reflect within-subject compari-
sons of sleep versus wakefulness. (A) EEG spectral power with t-sta-
tistics thresholded at P ¼ 0.01 for permutation cluster statistics. (A1)
Channel and participant averaged power spectrum (log-scaled,
mean 6 95% CI) and (A2) wake � sleep change (mean 6 95% CI). (A3)
Channel-space profile of low delta-frequency cluster (P ¼ 0.0011) of
decreased power in wakefulness (color coded by the number of fre-
quency bins participating in the cluster at each channel). (A4)
Frequency-space profile of low delta-frequency cluster (i.e. number
of channels participating at each frequency bin). (A5) Channel-space
profile of beta-frequency cluster (P ¼ 0.0022) of increased power in
wakefulness revealing a topography suggestive of muscle artifact.
(A6) Frequency-space profile of beta-frequency cluster; participation
at high frequencies is suggestive of muscle artifact.
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It thus remains an open question whether high-voltage delta
rhythms are inversely related to complexity and consciousness
in the manner that has been previously assumed (Tononi and
Edelman 1998), with at least one recent review on the topic ac-
knowledging that slow waves may occur during consciousness
(Koch et al. 2016). The relationship in question is also cast into
doubt by recent EEG work with the psychedelic N,N-dimethyl-
tryptamine (DMT) in healthy adult participants showing that
both elevated Lempel–Ziv complexity and phenomenologically
rich, visual experiences coincide with low-frequency EEG rhyth-
micity induced by DMT (Timmermann et al. 2019).

Our interpretation of our findings withstands two possible
criticisms. First, one may argue that the abnormal EEG pheno-
type in AS is explained entirely by intellectual disability. From
this perspective, the EEG phenotype of awake, behaving chil-
dren with AS is trivial. However, this perspective would fail to
explain how purposeful behaviors that demonstrate conscious-
ness to an observer arise in AS amidst global, high-amplitude
delta oscillations that should be expected to diminish con-
sciousness through cortical down-states. (Franks 2008;
Rosanova et al. 2018). The fact that children with AS have intel-
lectual disability does nothing to resolve the foregoing paradox
given their volitional behavior under these unusual circumstan-
ces. In fact, the presence of intellectual disability in AS may
strengthen our findings, because differences between sleep and
wakefulness are less likely to track cognitive processes such as
language—which are severely impaired in AS (Williams 1995;
Gentile et al. 2010)—that may otherwise confound studies of
consciousness (Montemayor et al. 2019). Incidentally, while cor-
tical hyperexcitability may indeed relate to intellectual disabil-
ity in AS, similar levels of intellectual impairment occur
without high-amplitude delta activity in duplication 15q11.2-
q13.1 syndrome, in which the UBE3A locus is duplicated rather
than deleted (Frohlich et al. 2016, 2019b).

Other criticism of our interpretation may come from the per-
spective that our findings are trivial in so far as EEG activity
reflects not only conscious brain activity but also subconscious

sensorimotor processing. From this perspective, one may argue
EEG complexity should always scale with the degree of sensory
input and motor output regardless of conscious state. However,
when conscious processes go offline and subconscious sensori-
motor processing—including auditory and somatosensory proc-
essing (Portas et al. 2000; Massimini et al. 2003), semantic
processing, (Brualla et al. 1998; Ibá~nez et al. 2006), implicit vocab-
ulary learning (Züst et al. 2019), and ambulatory behavior (Zadra
et al. 2004)—is preserved during NREM sleep, EEG activity
switches from complex, low-voltage, fast activity characterized
by high effective connectivity during wakefulness to uniform,
high-voltage, slow activity characterized by low effective con-
nectivity during NREM sleep (Tononi and Edelman 1998;
Massimini et al. 2005). This switch demonstrates that subcon-
scious sensorimotor processing may occur in the absence of
electrophysiological complexity.

EEG biomarkers of consciousness in AS

For each of three candidate biomarkers of consciousness tested
(spectral power, mMSE, and gMLZ), we found significant clus-
ters that differentiate sleep from wakefulness in AS. Significant
clusters were found regardless of whether we performed a full
comparison of all usable data or a targeted comparison of those
EEG sections that were least likely to coincide with dream expe-
riences (sleep state) or were especially abnormal as judged by
delta EEG power (awake state). The largest within cluster/sub-
cluster effect sizes we observed (without shrinking within con-
dition variance by regressing out delta power) were those
belonging to a low-frequency complexity change in the gMLZ
cluster [dmedian ¼ 0.96/0.98 (full comparison/targeted compari-
son), Figs 3C1,2 and 5C1,2, Supplementary Table S2]. These ef-
fect sizes surpassed those observed for spectral power, even
when considering low-frequency changes encompassed by the
power cluster/subcluster with the largest effects [dmedian ¼ 0.74/
0.60 (full comparison/targeted comparison), Figs 2B1,2 and
4A3,4, Table 2, Supplementary Table S2]. Topographic

Table 2. Channel-frequency (power) and channel-timescale (complexity) clusters identified using permutation cluster statistics

EEG
measure

Comparison Direction
(awake-
sleep)

Regressed
delta
power?

P-value Cohen’s d
(cluster
median)

Cohen’s d
(cluster
SD)

Cluster
size

Percentage Low
freq

High
freq

Minimum
number of
channels

Maximum
number of
channels

Cluster 1 gMLZ Full Increase No <1024 0.63 0.32 345 90.79 1.0 28.6 9 19
Cluster 2 Power Full Decrease No <1024 20.48 0.26 486 62.39 1.0 20.7 1 19
Cluster 3 mMSE Full Increase No 0.0007 0.69 0.12 231 60.79 6.3 100.0 1 19
Cluster 4 Power Full Increase No 0.017 0.56 0.26 83 10.65 19.0 32.0 3 19
Cluster 5 gMLZ Targeted Increase No <1024 0.64 0.32 279 73.42 1.0 28.6 1 19
Cluster 6 mMSE Targeted Increase No 0.001 0.67 0.11 226 59.47 6.3 100.0 3 19
Cluster 7 Power Targeted Decrease No 0.0011 20.60 0.19 177 22.72 1.0 2.2 8 19
Cluster 8 Power Targeted Increase No 0.0022 0.63 0.24 157 20.15 11.3 32.0 2 19
Cluster 9 Power Targeted Increase No 0.1727 0.24 0.02 4 0.51 4.8 6.2 1 1
Cluster 10 Power Targeted Increase No 0.2021 0.27 0.02 3 0.39 4.8 5.7 1 1
Cluster 11 Power Targeted Increase No 0.2448 0.25 0.05 2 0.26 5.2 5.2 2 2
Cluster 12 Power Targeted Increase No 0.3036 0.24 N/A 1 0.13 4.0 4.0 1 1
Cluster 13 gMLZ Targeted Increase Yes <1024 2.42 1.28 361 95.00 1.0 28.6 10 19
Cluster 14 mMSE Targeted Increase Yes <1024 1.92 0.81 346 91.05 5.0 100.0 11 19
Cluster 15 gMLZ Targeted Decrease Yes 0.0844 20.92 N/A 1 0.26 1.0 1.0 1 1
Cluster 16 gMLZ Targeted Decrease Yes 0.0844 20.58 N/A 1 0.26 1.0 1.0 1 1
Cluster 17 gMLZ Targeted Decrease Yes 0.0844 20.71 N/A 1 0.26 1.0 1.0 1 1

Bold rows are clusters reported in the text and figures that meet statistical significance after a Bonferroni correction (a ¼0.0063). P-values are derived from empirical

cluster size distributions using cluster permutation tests. Effect sizes are reported as Cohen’s d (median and standard deviation across all cluster points; standard devi-

ation is reported as N/A for clusters with only 1 point).
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visualizations of mMSE clusters (Figs 3A3 and 5A3) revealed
greater involvement in posterior regions, suggesting the impor-
tance of a posterior hot zone in wakeful consciousness (Melanie
Boly et al. 2017). On the other hand, gMLZ clusters showed
nearly uniform involvement across the entire scalp (Figs 3B3
and 5B3), suggesting that gMLZ may have greater sensitivity
than mMSE to frontal changes in complexity.

Although our study found that delta power was indeed mod-
ulated by diminished consciousness (i.e. sleep) in AS, the effect
sizes in both comparisons (dmedian ¼ 0.60 – 0.74) were a fraction
of that yielded by a prior comparison of delta power between
TD control children and children with AS in the awake state
(d¼ 1.22) (Frohlich et al. 2019a). Expressed as a percent change
referenced to wakefulness, delta power increases with sleep in
AS by a maximum of 162% at f¼ 1.5 Hz (mean across channels

and participants, full comparison), whereas delta power in AS is

greater in the awake state relative to TD control children by
1182% (Frohlich et al. 2019a). Thus, the difference between
groups during wakefulness is an order of magnitude greater
than the difference within AS with sleep/wakefulness. Because
the variance within AS between conscious states is much
smaller than the variance between AS and TD control children,
caution should be applied when using delta EEG power alone as
a biomarker for consciousness.

Neural hypersynchronization in AS

Our results clearly indicate that despite the appearance of
global hypersynchronization in AS, there remains sufficient
information-rich activity to allow the complex dynamics typical

A1

8 16 32 64
Nyquist frequency (Hz)

0

0.5

1

1.5

2

m
S

am
pE

n

wake
wake 95% CI
sleep
95% sleep

20 10 5 2 1
Timescale

 
 T

im
es

ca
le

s
   

   
   

20

0

A3

1  2  4  8  16 32 
Center frequency (Hz)

0

0.2

0.4

0.6

0.8
wake
wake 95% CI
sleep
95% sleep

1 5 10 15 20
Timescale

gM
LZ

B1

 
 T

im
es

ca
le

s
   

   
   

20

0

B3

A2

1  2  4  8  16 32 
Center frequency (Hz)

20

gM
LZ

 c
ha

ng
e 

fr
om

 s
le

ep

wake-sleep
wake-sleep 95% CI

1 5 10 15B2

-0.2

-0.1

0

0.1

0.2

1  
0

5

10

15

20

N
um

be
r 

of
 c

ha
nn

el
s

1 5 10 15 20
Timescale

B4

2  4  8  16 32 
Center frequency (Hz)

Cluster membership

8 16 32 64
Nyquist frequency (Hz)

0

5

5 2 1
Timescale

10

15

20

N
um

be
r 

of
 c

ha
nn

el
s

20 10A4

Cluster membership

Timescale

dmedian = 0.67
dmedian = 0.64

mMSE (threshold: p = 0.01) gMLZ (threshold: p = 0.01)

 
 T

im
es

ca
le

s
   

   
   

20

0

 
 T

im
es

ca
le

s
   

   
   

20

0

C2C1 C3

1  2  4  8  16 32 
Center frequency (Hz)

0

5

10

15

20

N
um

be
r 

of
 c

ha
nn

el
s

Cluster membership

1 5 10 15 20
Timescale

C4

1  2  4  8  16 32 
Center frequency (Hz)

0

5

10

15

20

N
um

be
r 

of
 c

ha
nn

el
s

1 5 10 15 20
Timescale

Cluster membership

dmedian = 0.98 dmedian = 0.50

gMLZ (threshold: p = 0.0005)

1

8 16 32 64
Nyquist frequency (Hz)

m
S

am
pE

n 
ch

an
ge

 fr
om

 s
le

ep

wake-sleep
wake-sleep 95% CI

20 10 5 2
Timescale

0

0.1

-0.1

-0.2

0.2

Figure 5. Targeted comparison: EEG complexity is modulated by sleep in AS. Results depicted here reflect within-subject comparisons of sleep
versus wakefulness. (A) mMSE with t-statistics thresholded at P ¼ 0.01 for permutation cluster statistics. (A1) Channel and participant averaged
(mean 6 95% CI) SampeEn and (A2) wake � sleep change (mean 6 95% CI). (A3) Channel-space profile of cluster (P ¼ 0.001) of increased mMSE
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Figure 7. Hypothetical model of cortical hypersynchronization in AS. A small number of hypersynchronized cortical oscillators may explain the
AS EEG phenotype. In the typically developing brain (left), synchronization between cortical pyramidal cells is relatively weak (blue; each car-
toon pyramidal cell represents a neuronal population composed of millions of actual pyramidal cells). As a result, neuronal populations are
able to oscillate relatively independently; this allows for a large repertoire of cortical states and a corresponding complex, low amplitude EEG.
By comparison, in AS (right), a small number of neuronal populations (red) are likely hypersychronized. Although these hypersychronized neu-
rons are a minority, their activity is more easily detected from the scalp due to their greater coordination. As a result, the AS EEG is dominated
by high amplitude, slow activity from local generators that project globally to the scalp by volume conduction. This is analogous to a small
group of people in a sports area whose synchronized chanting drowns out the uncoordinated chatter of the larger majority. Because the weakly
synchronized neuronal populations in AS are still free to oscillate relatively independent of each other, the AS brain still enjoys the large reper-
toire of brain states theoretically necessary for consciousness.
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of conscious awareness to arise. Given this observation, how do
complex brain dynamics and consciousness emerge against a
background of EEG hypersynchronization? As in all scalp EEG
recordings, the AS EEG is a superposition of signals from many
different cortical processes and regions. To support a state of
awareness, there must be a sufficient degree of complex activity
in AS during wakefulness (Tononi and Edelman 1998; Tononi
et al. 2016), with complexity decreasing as consciousness van-
ishes (i.e. in sleep). Additionally, there must also be a high-
voltage delta signal which drowns out the low-voltage activity
in the AS EEG, just as one may no longer hear the chatter of con-
versation over the chanting of the crowd in an arena when both
signals temporally coincide (Baars et al. 2013). To continue this
analogy, the total power of all chatter in the arena, and in the
brain, may even exceed the total power of the chanting, which,
given its greater coordination, is nonetheless easier to detect
(Nunez and Srinivasan 2006) (Fig. 7).

The “chanting” signal in AS, however, must be different
from the high-voltage, low-frequency activity typically observed
in states of reduced consciousness (Steriade 2000; Alkire et al.
2008; Brown et al. 2010). This is because the trough of such slow
oscillations is believed to be associated with decreased con-
sciousness, in sleep and anesthesia, as the system globally
enters a down-state characterized by neuronal hyperpolariza-
tion (Buzsáki 2006; Destexhe et al. 2007; Wilson 2008; Lewis et al.
2012). Yet, in awake children with AS, consciousness does not
appear to be periodically interrupted (from an observer’s per-
spective) as delta oscillations reach their trough. Because a
widespread cortical down-state would silence pyramidal cells,
it is reasonable to assume that such a global down-state is in-
compatible with wakeful, volitional behavior and therefore not
the mechanism underlying the delta oscillations observed in
awake AS children. Instead, as outlined in Fig. 7, down-states in
small, local patches of hypersynchronized tissue may project
globally to the scalp by volume conduction in AS, resolving the
paradox of diffuse delta activity in wakefulness. Indeed, local
OFF-periods (extracellular manifestations of down-states) have
been observed during wakefulness in sleep deprived rats
(Vyazovskiy et al. 2011), demonstrating that localized patches of
cortical silence during wakefulness are possible. Moreover, in
patients with epilepsy, intracranial EEG has also revealed the
temporal coincidence of local ON- and OFF-periods in different
anatomical regions during NREM sleep (Nir et al. 2011; Sarasso
et al. 2014; Castelnovo et al. 2018). This coexistence of cortical si-
lence and cortical activity is further suggested by the presence
of delta oscillations in scalp EEG recorded from healthy adults
in REM sleep (Bernardi et al. 2019), during which individuals are
likely to be conscious and the cortex overall active.

The foregoing lines of evidence suggest that delta oscilla-
tions in awake children with AS may reflect restricted occur-
rences of down-states amid a cortex that is otherwise abuzz
with complex activity. It is unclear how many such local gener-
ators would be required to explain the AS EEG phenotype.
Volume conduction from a single delta generator should result
in enormously high delta coherence across the scalp. However,
the global delta coherence in AS has recently been shown to be
similar to that in TD children during both wakefulness and
sleep (den Bakker et al. 2018). Thus, if the scenario outlined in
Fig. 7 is correct, many such local generators may exist in AS.
Local field potential recordings from a mouse model of AS have
already shown hypersynchronous delta activity in Layer 4 of V1
while mice are awake, head-fixed, and unanaesthetized (Judson
et al. 2016; Sidorov et al. 2017). Future studies should continue to

explore intracranial recordings in mouse models to delineate
the spatial extent of cortical hypersynchronization.

Beyond the delta oscillations described above, the awake
state AS delta rhythm may also be closely related to delta oscil-
lations involved in inhibiting competing cognitive functions
during wakefulness in healthy adults (Dimitriadis et al. 2010;
Harmony 2013). Perhaps due to their pathologically large ampli-
tude and diffuse nature, delta oscillations in AS might result in
a broad and continuous state of cognitive inhibition, as reflected
in the profound intellectual disabilities typical of this condition.

Conclusion, Limitations, and Future Directions

It is important to be mindful of some shortcomings of the pre-
sent work. First, given the highly abnormal EEG presentation
and the short nature of the sleep events in our data, we could
not accurately perform sleep staging. Boundaries between sleep
and wakefulness were delineated based on visual observation
by the EEG technician and, as such, we acknowledge that sleep
defined based solely on behavioral criteria is a limitation of this
study. Longer sessions (e.g. 24-h recordings) might be better
suited to allow an accurate sleep analysis and comparison of
different stages. Furthermore, while data known to contain
seizures were discarded, not all EEGs were reviewed by a neurol-
ogist and the possible inclusion of absence seizures cannot be
ruled out entirely. Also, along these lines, arousal was not mon-
itored during wakefulness, though sections known to contain
drowsiness were excluded. Next, we were unable to compare
sections of sleep EEG that were most and least likely to coincide
with dream experiences (i.e. sleep EEG with the lowest and
highest ratio of delta to high-frequency power) due to the circu-
lar nature of comparing EEG sections that are already defined
such that they differ in power. Lastly, while we reported a rela-
tive effect of level of consciousness on complexity metrics, a
reference cohort of TD children is needed to assess the overall
level of complexity present in the AS EEG.

In conclusion, this work resolves the apparent paradox of
wakeful, purposefully behaving, children with AS exhibiting an
EEG phenotype most typically associated with states of low/no
consciousness (Laan and Vein 2005; Vendrame et al. 2012;
Frohlich et al. 2019a). By finding complex brain dynamics that
are sensitive to relative level of consciousness even under con-
ditions of extreme cortical hypersychronization, these results
suggest that high-voltage, slow EEG activity is not a reliable in-
dicator of unconsciousness. These findings, along with other
rare conditions with paradoxical EEG signatures during con-
sciousness (Matsuura et al. 1994; Gökyiǧit and Çalişkan 1995;
Laan and Vein 2002), warn against reverse inferring low/no con-
sciousness in patients based on delta power (Fingelkurts et al.
2013; Lechinger et al. 2013). When brain dynamics are severely
altered by genetic disorders, epilepsy, or brain injury,
complexity-based methods, e.g., perturbational complexity in-
dex (Casali et al. 2013; Casarotto et al. 2016; Comolatti et al. 2019),
may be better suited for inferring consciousness.
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