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To resist strong intensity earthquakes, the design of reinforced concrete 

members often relies on well-detailed plastic hinge regions for a ductile response. 

Within these plastic hinges, large strain deformations are expected in both the concrete 
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and steel reinforcement. In the case of ordinary bridge columns, experimental testing of 

full-scale specimens has shown that fracture of longitudinal reinforcement, following 

visible plastic buckling is a common failure mode in the plastic hinge of columns 

designed according Caltrans’ Seismic Design Criteria (SDC). This type of failure is 

defined herein as “Plastic Buckling-Straightening Fatigue” (PBSF), as the name “Low-

cycle fatigue” commonly used for it is inconsistent with limitations set forth by ASTM 

standards for this phenomenon. The mechanism under which the PBSF type of failure 

occurs starts with micro-cracks developing at the root of bar deformations, in the 

concave side of a buckled bar, which start to propagate for an abrupt fracture when the 

bar stretches. Knowing the process under which the fracture occurs, the buckling 

behavior of the longitudinal reinforcement, considering the effect of material properties 

and the configuration of transverse hoops is studied, evaluating the fatigue life of the 

bars. Based on the regression of multiple Finite Element Model results, a simple design 

and verification procedure is proposed to control the PBSF limit state in ordinary bridge 

columns, recommended for inclusion in Caltrans SDC specifications. 

The use of large diameter reinforcement has proven an effective method to 

expedite the construction process of reinforced concrete bridges (Marsh, et al., 2011). 

The fatigue life of large bars however, has not been well documented yet, with the use 

of large diameter reinforcement in seismic regions limited to #11 bars vertical members 

in most ordinary bridges. For this research work, a series of Grade 60 #18 bars were 

tested under large amplitude cyclic strain histories, evaluating the fatigue life of the 

reinforcement for different length to diameter ratios and amplitude of deformations. The 
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tests performed herein correspond to the first successful examination of the response 

under large amplitude strain reversals, including the fracture under PBSF, for 

reinforcement of this size. 

 



 

1 

 

Chapter 1.  

 

 

 

 

INTRODUCTION 

 

1.1. Motivation 

The structural design of most ordinary bridges in California rely on plastic hinges 

to provide a ductile response under high intensity earthquakes. This plastic hinge is 

capacity designed to develop and maintain the desired inelastic mechanism.  

In the past two decades, the California Department of Transportation, Caltrans, has 

funded multiple experimental efforts to assess and improve the seismic design provisions 

for ordinary bridges (see Caltrans SDC, 2013). In 2010 a full-scale reinforced concrete 

bridge column, designed according to Caltrans provisions (SDC v1.6, 2010), was tested at 

the Large High-Performance Outdoor Shake Table (LHPOST) at UC San Diego. The 

column design showed satisfactory results, with good structural integrity of the element 

after multiple design-level earthquakes. The column was later subjected to higher than 

design level shaking until failure, at which point a significant number of longitudinal bars 
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fractured after buckling or showed clear signs of buckling. The failure mode observed in 

this test is consistent with results observed in other experimental efforts (Goodnight et al. 

2015) and suggests the deformation capacity of ordinary bridge columns may be limited 

by post-buckling fracture of longitudinal reinforcement in the plastic hinge region. This 

type of failure however, is not included explicitly in Caltrans specifications (SDC v1.7, 

2013) for column design. The term “low-cycle fatigue” has been commonly used for this 

type of failure, despite violating the explicit limitation against buckling placed by ASTM 

E606 (2012) for strain-controlled fatigue testing. The name “Plastic Buckling-

Straightening Fatigue” (PBSF) is used instead when referring to the post-buckling fracture 

of longitudinal bars observed in tested bridge columns (Schoettler et al. 2012). 

In the quest for “Accelerated Bridge Construction” (ABC), Caltrans has 

encouraged the development of new construction techniques, including the use of precast 

concrete construction. The use of large diameter reinforcement, such as #18 bars, could 

significantly expedite the construction process, however a wide gap in knowledge exists 

on the behavior of such reinforcement under large cylic strain histories (Marsh et al., 2011). 

A big concern is the “low cycle fatigue” life of large bars, as experimental work has shown 

a reduction in the fatigue life with increasing bar size (Brown and Kunnath, 2004). Previous 

research efforts to characterize the cyclic behavior of #18 Grade 60 reinforcement have 

been largely unsuccessful due to problems with the loading apparatus. Because of this, the 

experimental assessment of the fatigue life of this type of reinforcement would be a 

significant contribution to current research efforts aimed at Accelerated Bridge 

Construction. 
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1.2. Objectives and Scope 

The research work presented herein focuses on the behavior of steel reinforcement 

in ductile reinforced concrete members subjected to cyclic loads, particularly for ordinary 

bridge columns located in high seismicity regions. An initial part of the research focused 

on the calibration of parameters from two commonly used constitutive stress-strain 

relationships for steel reinforcement, the Giuffrè-Menegotto-Pinto and Dodd-Restrepo 

models. This study was carried out to fullfil the need, by researchers and engineering 

professionals alike, for an appropriate set of model parameters representing the behavior 

of steel reinforcement manufactured under current ASTM standards (A615, 2016, and 

A706, 2016). Additionally, given the absence of a stable implementation of the constitutive 

stress-strain relationship by Dodd and Restrepo in structural analysis software available to 

the author, an improved version of the model, including a closed-form solution for the 

Bauschinger effect, was implemented and made available to researchers and engineering 

professionals via the OpenSees software framework.  

Extensive experimental work was also performed on #18 Grade 60 bars, 

characterizing its fatigue life under cyclic loading. The goal of this project, funded by the 

California Department of Transportation, was to assess how viable is the use of large 

diameter reinforcement for ordinary bridge columns in seismic regions. The use of large 

reinforcement is one of the main lines of research for Accelerated Bridge Construction, 

thus several authors have attempted similar work. The cyclic tests carried out for this 

project however, were the first of its kind, as previous attempts by other authors have been 

largely unsuccessful, due to issues with the loading apparatus. 
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Plastic Buckling-Straightening Fatigue (PBSF), also know as “low-cycle fatigue”, 

is a common failure mode for the plastic hinge region of bridge columns and other ductile 

reinforced concrete elements. In this phenomenon, after the bar buckles, micro-cracks 

develop at the root of the deformations in the concave side (Restrepo et al. 1993, see Figure 

2.1), which then propagate as the bar stretches, leading to a brittle fracture. The final part 

of this research studies the buckling phenomenon and its effect on the fatigue life of the 

reinforcement from an engineering design perspective.  

Although its influence is well recognized (Bresler and Gilbert, 1961; Mander et al. 

1984), the effect of transverse reinforcement in the post-buckling response of longitudinal 

reinforcement has yet to be quantified. Furthermore, few authors consider the buckled 

shape of longitudinal bars within reinforced concrete elements spanning multiple sets of 

hoops (Papia et al. 1988), as observed in experimental tests (Schoettler et al. 2012). A study 

based on finite element model results was performed to assess, by means of simple 

equations, the effect of the reinforcement configuration and material properties in the 

buckling and subsequent fracture of longitudinal reinforcement. Using these simple 

equations, a design and verification procedure was then recommended for inclusion into 

Caltrans’ Seismic Design Criteria (SDC) for ordinary bridge columns.  
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1.3. Outline 

This section presents a brief description of the eight chapters included in this 

dissertation: 

- Chapter 1: Introduction 

This chapter details the objectives, scope, and motivations of the research work, 

including an outline of the content presented in the dissertation. 

 

- Chapter 2: Literature Review 

A detailed description of the research efforts in the study of plastic buckling of 

reinforcing bars is presented in this chapter. 

 

- Chapter 3: Calibration of GMP Constitutive Stress-strain Relationship for 

Reinforcing Steel 

This chapter describes the research work done to establish a set of model 

parameters for the Giuffrè-Menegotto-Pinto (GMP) constitutive stress-strain 

relationship calibrated for Grade 60 Reinforcing steel, manufactured according 

to ASTM A615 and A706 standards. 

 

- Chapter 4: Improved Implementation of the Constitutive Stress-Strain 

Relationship by Dodd and Restrepo for Reinforcing Steel. 

In this chapter an improved formulation of the constitutive stress-strain 

relationship by Dodd and Restrepo is implemented into OpenSees and tested on 
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large scale structural models. A calibration of the model parameters, similar to 

the one performed on the GMP constitutive stress-strain relationship (Chapter 

3) is performed to characterize Grade 60 ASTM A615 and A706 reinforcing 

steel. 

 

- Chapter 5: Experimental Work on Large Diameter Reinforcement 

Description of the design, implementation and main results of the cyclic testing 

of #18 Grade 60, ASTM A706 reinforcing steel bars. This chapter includes, 

among other things, the design of the loading apparatus, the selection of the 

loading protocols, the steps to prepare and test each specimen, and the main 

results obtained. 

 

- Chapter 6: Longitudinal Bar-Hoop Interaction in Circular Columns 

This chapter describes a series of regression analyses, based on finite element 

results, to find the correlation between the reinforcement configuration and 

material properties of reinforcing steel with the plastic buckling behavior of the 

longitudinal reinforcement. Regression equations were introduced to predict 

geometric properties (e.g. the distance between points of inflection, dPOI) and 

relation between smeared and local strains of the buckled reinforcement. 

 

- Chapter 7: Design and Verification Procedures for Plastic Buckling-

Straightening Fatigue (PBSF) of Longitudinal Reinforcement. 
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Based on the regression equations found in Chapter 6, a design and verification 

methodology are introduced for circular bridge columns to prevent premature 

Plastic buckling and subsequent fracture of longitudinal reinforcement. The 

proposed method is then verified by column test results found in the literature. 

 

- Chapter 8: Conclusions 

Description of the main findings of this research and future work. 
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Chapter 2.  

 

 

 

 

LITERATURE REVIEW 

 

2.1. General 

Buckling and straightening of longitudinal reinforcement in the plastic hinge of 

bridge columns can be caused by the dynamic response of a bridge during earthquake input. 

Such phenomena can have a significant impact on the deformation capacity and ductility 

of these elements. Buckling and straightening results in “low-cycle” fatigue in those 

regions of the buckled bar where the curvature reaches the peak. Crack initiation, as seen 

in Figure 2.1, is believed to be dependent on factors like the geometry of the deformations, 

including local defects at the root of the bar deformations arising during the rolling process 

and the pattern of the deformations. On the other hand, crack propagation is believed to be 

dependent on the strain history and temperature of the bar at the onset of buckling, among 

various other parameters. This Chapter reviews the existing literature relevant to the plastic 

buckling of longitudinal reinforcement and, to a lesser extent, the fatigue life of reinforcing 

bars. 
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(a) (b) 

Figure 2.1. Electron Microscope Image of a Longitudinal Section of a Deformed 

Reinforcing Bar After Buckling Showing Crack Initiation: (a) Buckled Longitudinal 

Bar (scale in mm.); (b) Cracks at the Bar Deformation Roots (Restrepo-Posada et 

al., 1994) 

 

2.2. Plastic Buckling of Longitudinal Reinforcement 

The first mathematical formulation of the buckling phenomenon was introduced by 

Euler in 1757 (Oldfather, et al. 1933). Under the assumption of a linear-elastic material, 

Euler found the critical axial load under which a column will develop lateral deformations, 

 
=crP

E I

L

2

0

2  2.1 

 

Where E0 is the elastic Young’s Modulus, I is the moment of inertia of the section, 

L is the length between supports, and Pcr is the critical load for the onset of buckling. 

More than a century after Euler, Engesser (1889) and Considère (1891) began to 

study the buckling phenomenon. They proposed formulations similar to Euler’s critical 

load, replacing the elastic Young’s Modulus by either a tangent (Engesser, see Equation 
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2.2a) or effective stiffness (Considère, Equation 2.2b), as a way to calculate the critical 

plastic buckling load, see Figure 2.2. 

 

 
=cr

TP
E

L

I2

2  (a) 

2.2 


=
 eff

crP
E

L

I2

2
 (b) 

 

Where ET is the tangent modulus, and Eeff the effective (or reduced) modulus, 

satisfying the condition ET ≤ Eeff ≤ E0, although Considère did not specify a formulation 

for Eeff. 

Research work into critical load leading to plastic buckling was continued by von 

Karman (1910), who introduced the concept of double-modulus (see Equation 2.3). This 

concept accounts for the effect of strain bifurcation, where some fibers in the cross section 

begin to decompress (unload) while the others continue deforming in compression, 

developing a curvature in the bar, see Figure 2.3.  

Although von Karman’s formulation was theoretically more accurate than any 

previous work, many researchers found the tangent-modulus theory (Engesser, 1889) to be 

more consistent with experimental results (Templin, et al., 1938). 

 


= r
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where Er is the reduced modulus (double modulus), I1and I2 are the moments of 

inertia of the segments of the section being decompressed and compressed (after 

bifurcation takes place), respectively. 

The controversy between both Engesser-Considère tangent modulus and von 

Karman’s double-modulus theories, which appear correct but led to different plastic 

buckling loads, was not resolved until 1946, when Shanley published his historical paper 

“The Column Paradox”. In this paper Shanley demonstrated that both formulations were 

in fact correct, but each represented a different state of the plastic buckling process  

(Shanley F. R., 2012). By assuming that a short column has additional axial load capacity 

after the onset of buckling, thanks to post-yield hardening of the material, it was possible 

to have bending without any strain reversal, which was the main assumption in the double-

modulus theory. Because of this, the tangent modulus predicts the load at the onset of 

buckling, while the double-modulus returns the maximum capacity of the buckled element 

if the tangent modulus remains constant. 
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Figure 2.2. Engesser-Considère Buckling Formulation (Chen and Lui, 1987) 

 

 

Figure 2.3. Double Modulus Formulation by von Karman (Chen and Lui, 1987) 
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To prove his formulation, Shanley analyzed the simple case of a two-legged hinge 

column, in which the hinge is a unit “cell” formed by two small axial elements (Shanley, 

2012), see Figure 2.4. By equating the internal and external moment, the critical load can 

be easily defined as,  

 

-





 +
+

+


=

 
 
 
 
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cr T d

v

P P
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1
1

1
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 2.4 

 

Where 


= TT

A d
E

L
P  and  = TE

E0

, with A the area of the deformable cell, d the 

distance between the two legs in the cell, and v0 the lateral deformation of the column, see 

Figure 2.4 and Figure 2.5. 

 

Figure 2.4. Shanley’s Simplified Two-Flange Column (Shanley, 1947) 
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Figure 2.5. Variation of Column Load Capacity (Normalized by Load at Onset of 

Buckling) vs Lateral Deformation (Shanley, 1947) 

Following Shanley’s demonstration, extensive experimental work by several 

authors (Madsen, 1941; Osgood, 1951) focused on the effect of residual stresses in steel 

columns, resulting in significant advances in the understanding of the behavior of these 

elements. 

Bresler and Gilbert (1961) developed some of the earliest work on critical loads in 

reinforcing steel, and were the first proponents of a maximum tie spacing to ensure the 

stability of longitudinal reinforcing bars, based on tangent modulus theory.  

One of the first closed-form solutions for the hysteretic response of a pinned column 

under axial load, including the effect of buckling, was developed by Nonaka (1973), under 

the simplifying assumption the material was elastoplastic. Papadrakakis and Loukakis 

(1988) extended this formulation for partially restrained imperfect bars with various end 

conditions, using a piece-wise linear approximation of the axial force-moment interaction 

curve of the section. These formulations rely on the plastic-hinge (lumped plasticity) 

cr
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concept and cannot predict the decrease in carrying capacity of the column after the first 

cycle of loading, which is mostly attributed to the spread of plasticity near the plastic 

hinges. Both the original and extended formulations were developed analytically, without 

experimental verification. 

Mander et al. (1984) conducted monotonic tests on reinforcing bars at different 

slenderness ratios, and proposed a modification to the double modulus theory to account 

for the onset of buckling observed experimentally when the longitudinal reinforcement 

yields in compression, see Figure 2.6. This modified double modulus theory uses a secant 

modulus E’T, defined in Equation 2.5, instead of the tangent modulus ET to compute the 

critical load Pcr (see Equation 2.3). 

 

' - ( - ) 


= sh

sh

cr cr
T

f f
E  2.5 

 

Where fcr is the critical buckling stress (Pcr/A), εsh the steel strain at onset of strain 

hardening, εcr the strain corresponding to fcr, and f(εcr-εsh) is the steel stress at strain of εcr-

εsh. 

Another finding by Mander et al. (1984) was that a limit spacing of approximately 

six bar diameters is a suitable ratio to preclude premature longitudinal bar buckling and to 

ensure the desired ductility is reached. The spacing limitation resulted from the modified 

double modulus theory (see Equation 2.5), by imposing the critical buckling stress fcr to 

match the steel tension stress at a strain of 5%, well within the plastic-zone of the material, 
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. = r

bn cr

Es

d f
1 5  2.6 

 

where dbn is the nominal diameter of the longitudinal reinforcement, and s the 

spacing between hoops. 

 

Figure 2.6. Test Results Compared with Theoretical Predictions (Mander et al., 

1984) 

 

Mander et al.’s formulation assumed the transverse reinforcement was stiff enough 

to limit bar buckling between consecutive sets of hoops, for an effective buckling length 

of s/2, Figure 2.7.  

Zahn et al. (1985) extended Mander et al. work by testing the spacing limit 

(Equation 2.6) for different steel grades, and developed diagrams for the maximum spacing 

allowed for a given critical stress, fcr, and strain, εcr, see Figure 2.8 and Figure 2.9. A linear 

formulation of the critical strain and stress for s/dbℓ ≥ 4 (at lower slenderness levels the 
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buckling effect is negligible) is also shown in the figures, closely matching experimental 

results. 

 

Figure 2.7. Model for Buckling of Longitudinal Reinforcement in a Cage Proposed 

by Zhan et al. (1985) 

 

  
(a) (b) 

Figure 2.8. Ultimate Compressive Strain and Stress vs Hoop Spacing. Grade 275 

MPa Steel (Zahn, 1985): (a) Buckling Strain εsuc vs Hoop Spacing; (b) Normalized 

Buckling Stress fsuc/fy vs Hoop Spacing 
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(a) (b) 

Figure 2.9. Ultimate Compressive Strain and Stress vs Hoop Spacing. Grade 380 

MPa Steel (Zahn, 1985): (a) Buckling Strain εsuc vs Hoop Spacing; (b) Normalized 

Buckling Stress fsuc/fy vs Hoop Spacing 

 

In his work, Zahn et al. observed that in some tests the bars tended to buckle across 

several hoops, especially for s/dbℓ ≤ 4, but did not consider those cases in the analysis. Also, 

since the formulation assumes monotonic load, Zahn et al. suggested a correction for cyclic 

loading, where the compressive strains are increased to an equivalent monotonic strain as 

a function of the compressive axial load. According to him, the predicted results with this 

correction were likely unreliable, and therefore the simplistic monotonic formulation was 

recommended. 

Tanaka et al. (1990), continuing the work of Mander et al. and that of Zahn et al., 

studied the buckling of reinforcement across multiple hoops, see Figure 2.10. They 

determined analytically the capacity of 90° hook ties and peripheral hoops to prevent 

buckling of longitudinal reinforcement. The analyses included the effects of core concrete 

expansion (Poisson effect) and initial imperfections of the longitudinal reinforcement. 
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(a)  (b) 

Figure 2.10. Buckling of Intermediate Longitudinal Bar Restrained by Cross Ties 

with 90° and 135° or 180° (Tanaka et al., 1990): (a) Buckled Shape; (b) Buckling 

Model 

 

Papia et al. (1988) studied the critical load of longitudinal reinforcement 

considering a buckled bar could span multiple sets of hoops. They modeled the hoops as 

linear-elastic and used Bernoulli-Euler beam elements to represent the longitudinal 

reinforcement, see Figure 2.11a. The addition of appropriate boundary conditions, 

including a restriction for elements bending into the core concrete, complete the system of 

equations required to determine the critical buckling load. Figure 2.11b shows the resulting 

critical load, Pc, normalized by the critical load of a hinged segment between consecutive 

hoops (P0 = π2EI/s2), versus the ratio between the stiffness of the hoops and the shear 

stiffness of the longitudinal bars (αs and EI/s3 respectively). Results from the formulation 

consistently overestimated critical loads obtained experimentally, which was attributed to 

geometric and mechanical imperfections of the real specimens. Based on the average error 
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between analytical and experimental results, Papia et al. suggested reducing the predicted 

critical load by a factor q =1.2. 

 
 

(a) (b) 

Figure 2.11. Analysis Model and Critical Load Result Diagram (Papia et al. 1988):  

(a) Mechanical Model; (b) Normalized Critical Load vs γ Parameter 

 

Although initial studies on the buckling of reinforcing steel focused on the critical 

load rather than the post-critical behavior, Mau and El-Mabsout (1989) carried out a series 

of parametric analyses. They used beam-column elements to predict the post-buckling 

stress-strain response of reinforcement at different slenderness levels. Their results closely 

matched previous experimental results for reinforcement under monotonic load, see Figure 

2.12.  

Fj=αsδj 

γ=αsℓ
3/(E I) 
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Figure 2.12. Comparison of Experimental Results and Analytical Results (Mau and 

El-Mabsout, 1989) 

 

Monti and Nuti (1992) created a simple, yet effective model for the cyclic response 

of steel including inelastic buckling, calibrated experimentally in terms of the slenderness 

ratio s/dbℓ. Their initial conclusion was that inelastic buckling develops under the condition: 

s/dbℓ > 5. The model was tested under both symmetric and anti-symmetric strain histories, 

showing significant improvement in the fit of experimental results for s/dbℓ > 5, compared 

to typically used material models that do not include buckling, see Figure 2.13. Like the 

model by Menegotto and Pinto (1973) on which it is based, the formulation by Monti and 

Nuti (1992) overestimated the stress response following a partial unloading and reloading, 

this issue was later resolved by Fragiadakis et al. (2008), see Figure 2.14. 
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(a) (b) (c) 

Figure 2.13. Comparison between Experimental and Analytical Models for 

Asymmetric strain history. s/dbℓ = 11 (Monti and Nuti, 1992): (a) Monti- Nuti;  

(b) Filippou-Bertero-Popov; (c) Menegotto and Pinto 

 

 
(a) (b) 

Figure 2.14. Corrected and Uncorrected Stress-Strain Paths (Fragiadakis et al., 

2008): (a) s/dbℓ = 12; (b) s/dbℓ = 6 

 

Gomes and Appleton (1997) also developed a simple model for inelastic buckling 

for steel reinforcement by combining the Menegotto-Pinto formulation and a lumped 

plasticity mechanism in the buckled reinforcement, see Figure 2.15. The model assumed 

the plastic model of the bar is not dependent on the axial force and that buckling 

concentrates between consecutive hoops. 
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(a) (b) 

Figure 2.15. Buckling Model by Gomes and Appleton ( 1997): (a) Equilibrium of 

Buckled Longitudinal Bar; (b) Stress-Strain Response of the Model 

 

Rodriguez et al. (1999) performed a series of monotonic and cyclic tests on steel 

reinforcing bars conforming to most of the ASTM A706 requirements, with aspect ratios 

of 2.5, 4, 6, and 8. Based on moment-curvature analyses of typical column sections, values 

of 1 and 2.3 for the ratio between maximum tensile and compressive strains ( m
+

, 
-

m  

respectively) were used for the cyclic strain histories. The onset of buckling during the 

cyclic tests was defined from the strain readings on opposite sides of the specimen, 

compared to the peak strains reached in the corresponding cycle, ( m
+

 and 
-

m ). They 

proposed a procedure to predict the onset of buckling based on the plastic strain following 

the largest reversal from tension, 0
+

, see Figure 2.16, and the critical stress, fp, calculated 

from reduced modulus theory, see Equation 2.3. This research assumed buckling occurs 

between consecutive hoops and did not address the post-buckling behavior, and the critical 

stress, fp, was calculated from reduced modulus theory, see Figure 2.16. 
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Figure 2.16. Cyclic Stress Strain Curve for Steel (Rodriguez et al. 1999) 

 

El-Bahy et al. (1999) tested six reinforced concrete circular bridge piers under 

monotonic and cyclic loading to obtain their relevant force-deformation and “low-cycle” 

fatigue characteristics. Constant amplitude cycles of displacement amplitudes ranging from 

a corresponding 2 percent lateral drift up to 7 percent were used. The authors conclude that, 

under sequences of predominantly low amplitude cycles, a confinement failure is more 

probable, while for predominantly high amplitude inelastic cycles, buckling and “low-

cycle” fatigue fracture of the longitudinal reinforcement is more likely.  

Bayrak and Sheikh (2001) studied the effect of buckling in the longitudinal 

reinforcement at the section level, developing a procedure to predict the monotonic 

moment-curvature response in the plastic hinge of a RC column. The procedure relies on 

experimental results for the lateral load due to expansion of the concrete core, and the 

stress-strain response of longitudinal reinforcement between hoops (in between hoops, the 

bond between concrete and steel is lost after the onset of buckling). For this purpose, 

Bayrak and Sheikh tested 56 #6 steel specimens at multiple slenderness ratios (from s/dbℓ=4 
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to s/dbℓ = 10) and initial imperfection ratios (from e/dbℓ = 0 to e/dbℓ = 0.03, with e the initial 

lateral deformation of the reinforcement) under monotonic load. The moment-curvature 

results from this procedure showed a better fit to experimental data compared to 

conventional section analyses, Figure 2.17. 

 

 

Figure 2.17. Experimental and Predicted Moment-Curvature Response.  

SU: Sheikh and Uzumeri; MKP: Kent and Park; MAN: Mander; SU+B: Bayrak 

and Sheikh (2001) 

 

Dhakal and Maekawa (2002) ran several finite element simulations of the buckling 

response of bare reinforcing bars (without core concrete or transverse reinforcement 

interaction). Through a parametric study, they found the product / b ys d f  (fy: yield 

stress), can accurately define the post-buckling behavior of reinforcing steel, not just the 

slenderness ratio s/dbℓ, as stated by Monti and Nuti, 1992. A model for the monotonic post-

buckling response was suggested, see Figure 2.18, which could be used as an envelope for 

the Menegotto and Pinto cyclic model. The model was tested against experimental response 
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originally recorded by Monti and Nuti, see Figure 2.19. Kunnath et al. (2009) implemented 

a material model including the effects of buckling, “low-cycle” fatigue and cyclic 

degradation; using the formulation by Dhakal and Maekawa for the buckling effect. The 

material model is currently implemented in OpenSees as ReinforcingSteel. 

Moyer and Kowalsky (2003) showed experimentally how the buckling of 

reinforcement is dependent on the level of tensile strains the bars are initially subjected to, 

an observation first made by Wang and Restrepo (1996) in their work on columns confined 

with fiberglass/epoxy jackets, see Figure 2.20. The relationship can be explained as 

follows: for a longitudinal bar to buckle, a large tensile strain is first required to open the 

cracks in the surrounding concrete; at the following loading reversal, the reinforcing bar 

represents the sole source of compression capacity until the cracks close, if the critical load 

is reached before then, the bar will start to buckle. 

 

Figure 2.18. Proposed Model by Dhakal and Maekawa (2002) 
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Figure 2.19. Comparison of Analytical and Experimental Hysteretic Response 

(Dhakal and Maekawa, 2002) 

 

 

Figure 2.20. Inelastic Buckling Behavior of Grade 430 Deformed Reinforcing bar 

with Aspect Ratio s/dbℓ=9 (Wang and Restrepo, 1996) 

 

Bae et al. (2005) tested 162 #8 and #10 bars under monotonic load for multiple 

combinations of slenderness ratio and initial lateral imperfection ratio. Using the 

experimental results to model the relationship between axial stress, lateral displacement, 

and axial strain, a simple monotonic material model, suitable for fiber discretization 

critical stress
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models, was developed and tested against experimental data with satisfactory results, see 

Figure 2.21. 

 

 

Figure 2.21. Experimental and Predicted Moment-Curvature Response (Bae et al., 

2005) 

 

Berry and Eberhard (2005) proposed a procedure for earthquake engineering 

practice to estimate the lateral deformation at which a RC column reaches the onset of 

buckling, which represents an important performance state of the system. The method 

combines experimental formulations for the yield displacement (Priestley et al. 2003), 

plastic hinge length (Mattock, 1967), strain of steel at onset of buckling, and plastic 

curvature (Berry, 2003). The resulting lateral deformation equation depends on five 

constants, see Equation 2.7, calibrated from a database of experimental results from 104 

columns tested under cyclic load: 
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Where Δbb is the predicted lateral displacement at the onset of bar buckling, Δy the 

lateral displacement at yield, C0 through C4 are the calibrated constants, L and D are the 

length and diameter of the column, λ is a constant dependent on the type of transverse 

reinforcement, and ρeff = fy/f’c the effective volumetric transverse ratio. 

From the calibration analysis, Berry and Eberhard (2005) proposed the following 

equation,  
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With ke-bb = 40 for rectangular-reinforced column, 150 for spiral-reinforced column, 

and 0.0 when s/dbℓ > 6. The ratio between experimental and predicted results for Δbb 

resulted in a mean of 1.0 and standard deviation of 25%. 

Cosenza and Prota (2006) performed extensive experimental work on the 

monotonic response of smooth steel bars under a wide range of slenderness ratios, from 

s/dbℓ = 5 to s/dbℓ = 70. They defined threshold values of s/dbℓ for the type of response to be 

expected: from plastic behavior without buckling for s/dbℓ < 5, to elastic buckling for  

s/dbℓ > 20. Smooth reinforcement and large slenderness ratios are representative of the 

typical reinforcement in RC structures built in the 1960s. This work was expanded by Prota 

et al. (2009) with the study of the cyclic response of smooth bars under multiple slenderness 

ratios. The study found the cyclic behavior to be heavily influenced by the loading history 

(in particular, the maximum plastic elongation and hysteretic energy dissipated) besides 
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s/dbℓ. The study also found that most material models available could not capture the 

response of specimens with s/dbℓ > 8. 

Massone and Moroder (2009) proposed a plastic model based on early unpublished 

work by Restrepo (2007). In it, an initial imperfection is introduced to the reinforcement 

and the deformations concentrate in four plastic hinge locations along the buckled bar, see 

Figure 2.22. 

 

Figure 2.22. Mechanical model for Bar Buckling. Massone and Moroder, 2008 

 

Zong et al. (2013) defined a post-buckling envelope curve similar to the formulation 

by Dhakal and Maekawa (2002), calibrating the model using simulation results from the 

finite element software LS-DYNA. The interaction with transverse reinforcement was 

included using the bar-with-spring model developed by Zong (2011). 

Feng et al. (2014) proposed a two-step numerical method to predict the occurrence 

of longitudinal bar buckling under seismic load. First, a fiber-based finite element model 

is used to obtain the response of the full structural element under seismic excitation. The 
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resulting strain history in the plastic hinge zone is used as input in a second finite element 

model, developed in the software Abaqus, which includes the interaction with the concrete 

core and transverse reinforcement, see Figure 2.23. This procedure accurately predicted 

the observed onset of buckling of three experimental tests.  

Kashani et al. (2015) did a comprehensive experimental testing on ninety 

reinforcing bars under “low-cycle” fatigue strain history with various slenderness ratios, 

diameters, yield strengths and surface roughness (deformed and smooth bars). The 

deformed reinforcing bars were B500B and B460 for the smooth bars. Aspect ratios of 5, 

8, 10, 12, and 15 were used with strain amplitudes ranging from 1-5% for 12 mm bars and 

1-4% for 16 mm bars. Their work shows that crack initiation due to fatigue testing occurs 

earlier for bars with larger aspect ratios and that cracks start at the concave face of the 

buckled bars. They suggest that, when a bar buckles, the total strain amplitude at the 

concave face of the bar increases due to combined axial and bending deformation. Once 

formed, fatigue cracks propagate away from the transverse rib into the body of the bar 

normal to the bar axis, suggesting that the largest stresses lie in the longitudinal direction 

of the bar. Also, a reduction in “low-cycle” fatigue life is noted for larger diameter bars.  

Yang et al. (2016) developed a modified version of the Gomes-Appleton model 

using four plastic hinge locations, improving the prediction of the original model, 

especially for small slenderness ratios (s/dbℓ). 

Analytical models of the post-buckling behavior can be divided into three main 

categories: beam-column elements, material models, and geometric formulations. Beam-

column element models rely on Bernoulli-Euler beam theory to analyze the post-buckling 
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behavior. Initial work by Mau and El-Mabsout (1989), Nonaka (1973), Papadrakakis and 

Loukakis (1988), among others, assumed fixed ends of the reinforcement at the transverse 

ties.  

 

 

Figure 2.23. Geometry of the Plastic Hinge Zone Model in Abaqus (Feng et al. 2014) 

 

Material models account for the nonlinear response through various simplifications, 

calibrating their formulation using computer simulations (e.g. Dhakal and Maekawa, 2002) 

or experimental results (e.g. Monti and Nuti, 1992).  

Geometric models address the non-linear geometric compatibility directly, using 

finite element analysis or a plastic mechanism model. The finite element model approach 

has been investigated by several authors (e.g. Nakamura and Higai 2002, and Feng et.al 

2014). The accuracy of the results from this method are, however, at the expense of high 

computational demand, making them unpractical for the modeling of full scale systems.  

Plastic mechanism models are based on concentrated plasticity theory, such as the 

work by Engesser- Considère, von Karman, and Shanley. The simplified models by Gomes 
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and Appleton (1997), and Papadrakakis and Loukakis (1988), also incorporate 

concentrated plasticity in their formulation.  

The experimental efforts of several authors (Bayrak and Sheikh 2001, Bae et al. 

2005, Cosenza and Prota 2006), have enabled the development of a comprehensive 

database, available for the verification of analytical models of buckling, although results 

for large diameter reinforcement under cyclic loading are still scarce. 

 

2.3. Fatigue Life of Reinforcing Bars 

The fatigue phenomenon is of great importance to the response of reinforced 

concrete (RC) members when subjected to large deflections during an earthquake. While 

numerous studies have focused on studying and characterizing such phenomenon, there is 

very limited data on the fatigue characterization of large-diameter steel bars. The purpose 

of this section is to briefly cover the fundamental concepts of fatigue and the various 

methods used to characterize the fatigue life of steel reinforcement.  

Fatigue can be defined as a degradation of mechanical properties leading to failure 

under cyclic loading (Meyers and Chawla, 2009). From mechanics of materials, the two 

principal methods for material deformation and failure are crack growth and dislocations, 

as well as plastic flow. As high stress concentrations occur at the tip of cracks, the 

mechanism of fracture can involve plastic deformation at such locations. A material which 

allows plastic deformations to take place at the cracks is “tough”, otherwise, the material 

is “brittle”. Deformation processing, such as rolling, forging, and extrusion involve 

substantial plastic deformation and the response of the material will depend on its plastic 
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behavior during such processes. The material properties of steel are also highly affected by 

heat treatment. Quenching produces a hard, martensitic structure, which is gradually 

softened by tempering treatments at higher temperatures. On the other hand, the annealed 

structure is ductile, but results in a low yield stress. 

 

2.3.1. Fatigue Process 

As previously mentioned, fatigue can be defined as a degradation of mechanical 

properties leading to failure of a material under cyclic loading. Typically, the failure under 

cyclic loading occurs at much lower stress levels than the strength measured under 

monotonic loading. The study of cyclic behavior can be divided into three classes: the 

stress-life approach, the strain-life approach, and the fracture mechanics approach.  

The stress-life approach is useful when stresses and strains mainly remain in the 

elastic range. The main drawback of this approach is the inability to distinguish between 

the initiation and propagation phases of fatigue life. For elastic-plastic materials, such as 

reinforcing steel, this approach is used when dealing with high-cycle fatigue (1,000 cycles 

or more to failure). The strain-life approach is useful when there is a significant amount of 

plastic strain and is the basis of this research. The fatigue life is typically quite short under 

these conditions and is referred to as low-cycle fatigue (less than 1,000 cycles to failure). 

In the fracture mechanics approach, estimates of the life spent in propagating a crack from 

an initial size to larger size, or to the critical failure, are determined.  

The first step in the fatigue process in most materials corresponds to crack 

nucleation at singularities or discontinuities. Discontinuities may be on the surface or in 

the interior of the material. The singularities can be structural (such as inclusions or second-
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phase particles) or geometrical (such as scratches or steps). The explanation of preferential 

nucleation of fatigue cracks at surfaces perhaps resides in the fact that plastic deformation 

is easier there and that slip steps form on the surface (Meyers and Chawla, 2009). While 

slip steps alone can be responsible for initiating cracks, they can also interact with existing 

structural or geometric defects to produce cracks. In metals, surface singularities may be 

present from the beginning or may develop during cyclic deformation, such as the 

formation of intrusions and extrusions at what are called the persistent slip bands (PSBs). 

Figure 2.24 illustrates the fatigue crack nucleation at slip bands. As loading takes place, 

slip occurs on a favorably oriented plane and, during unloading, reverse slip occurs on a 

parallel plane, since slip of the original plane is inhibited due to hardening or due to the 

oxidation of the newly formed free surface. The first cyclic slip may create an extrusion or 

an intrusion at the surface. An intrusion may grow and form a crack by continued plastic 

deformation during subsequent cycles. At large stress or strain amplitudes, as much as 90% 

of a material’s fatigue life is consumed in the growth or propagation of a crack (Meyers 

and Chawla, 2009). 

 

 

Figure 2.24. Fatigue Crack Nucleation (Meyers and Chawla, 2009) 
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2.3.2. Effects of Bar Geometry 

Hanson et al. (1968) performed two series of fatigue tests on No. 8 bar embedded 

in rectangular concrete beams. They suggest that the radii at the base of the lugs should be 

approximately equal to the height of the lugs to obtain good fatigue characteristics. An 

increase in lug radius at the base increases the fatigue strength of steel reinforcement. They 

also conclude that the fatigue strength of the bars is not necessarily improved by 

terminating the transverse lugs before they reach the longitudinal ribs.  

Kokubu and Okamura (1969) performed a series of high-cycle fatigue tests on 

reinforced concrete beams using different types of high-strength #6 and #8 deformed bars. 

They concluded that the most influential factor governing the high-cycle fatigue of 

deformed bars is the degree of change in slope at the base of the lug. However, they note 

that if arcs with radii of 5 or more times the height of the lugs are used, bonding between 

the bar and concrete is impaired. To reduce this effect, they suggest abruptly changing the 

slope of a lug at a point about one-third up the lug such that the upper half will be vertically.  

MacGregor et al. (1971) carried out high-cycle fatigue tests on RC beams 

reinforced with a single #5, #8, or #10 bar. Such bars had two longitudinal ribs, parallel 

transverse lugs inclined at about 75 degrees to the bar axis, and all lugs merged into the 

longitudinal ribs. They conclude that, for design purposes, the fatigue strength of hot-rolled 

deformed reinforcing bars is not affected by changes in the tensile strength of the bars. 

They also note a small decrease in the fatigue strength with an increase in the diameter of 

the bar. 
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The effects of bar deformations were studied by Fei and Darwin (1999). They tested 

#4 and #5 bars in air and showed that deformations cause high stress concentrations at the 

root and serve as potential fatigue crack initiators. Also, that the ratio of the lug base radius 

to the lug height (r/h) has a significant influence on the stress concentration at the base of 

deformations. They conclude that bar diameter has a significant effect on the fatigue 

strength of bars, with larger bars having a reduced fatigue strength.  

 

2.4. Gaps in Knowledge 

Significant progress has been made over the years in the understanding and 

prediction of buckling of reinforcement in the plastic hinge region of reinforced concrete 

members. However, an accurate and efficient formulation of this effect, capable of 

integrating this phenomenon in simulations of large scale models, has yet to be developed. 

Currently, efficient buckling formulations available for fiber-based finite element models 

assume, for simplicity, that the transverse reinforcement constrains lateral deformations 

between adjacent hoops, despite experimental results showing otherwise. More accurate 

material models, which include the interaction between longitudinal, transverse 

reinforcement and the core concrete, have computational requirements that make them 

unsuitable for the modeling of large scale systems. 

Little is known about the development of micro-cracks in buckled reinforcing steel 

bars. As previously noted, all damage processes have typically been simply lumped as 

“low-cycle” fatigue, which only considers the number of cycles and strain amplitude in 

most formulations of this phenomenon.  
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Definition of strain alone poses an interesting and rarely explored problem. Should 

the strain amplitude used to determine the low-fatigue of the bars be defined at the global 

level, at the local level, or at the microscopic level? The problem of defining strain at the 

local level alone is that the buckling observed in test samples is slightly different from the 

buckling observed in longitudinal bars in columns, so such formulation can contain a 

significant bias. The definition of strain at the microscopic level would also pose a problem 

as it would only be meaningful within a metallurgist perspective. Perhaps the best 

engineering approach is to establish relationships between global and local strains and 

relate strain amplitude and damage between these two strain definitions. 

 

Chapter 2, in part, is a reprint of the material as it appears in SSRP Report 17/10: 

Plastic buckling-straightening fatigue of large Diameter reinforcing steel bars, 2018. 

Duck, David; Carreño, Rodrigo; and Restrepo, José I. The dissertation author co-authored 

this material. 
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Chapter 3.  

 

 

CALIBRATION OF GIUFFRÈ-MENEGOTTO-PINTO 

CONSTITUTIVE STRESS-STRAIN RELATIONSHIP FOR 

REINFORCING STEEL 

3.1. Abstract 

The uniaxial Giuffrè-Menegotto-Pinto constitutive steel model is widely used in 

non-linear modeling of reinforced concrete elements. However, parameters required in this 

constitutive stress-strain relationship are not easily identifiable from mechanical tests. An 

extensive literature review shows that most authors use the parameters recommended 

during the early development of the constitutive model. The authors of this paper believe 

that a calibration of the model parameters to steel manufactured in accordance with ASTM 

A615 and A706 would be a significant contribution to researchers and engineering 

professionals. 

A series of cyclic stress-strain tests were performed on thirty-six reinforcing steel 

Grade 60 ASTM A615 and A706 coupons. To obtain data about statistical variability, bars 

were sourced from three different manufacturers. Test results were used to calibrate the 

model parameters, which were then verified using a set of validation reversed cyclic stress-

strain tests. The strain rate effects were analyzed using equivalent cyclic coupon tests at 
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rates of 0.001/sec and 0.02/sec. Final calibration results are presented in terms of expected 

values, prediction intervals, and correlation functions between the model properties. 

3.2. Introduction 

The Giuffrè-Menegotto-Pinto (GMP) constitutive stress-strain relationship has 

been widely used in the modeling of the non-linear response of reinforcing steel under 

cyclic loading. The model, as first described by Giuffrè and Pinto (1970), was based on the 

non-linear stress-strain relation proposed by Goldberg and Richard (1963), and 

incorporated the effect of plastic deformations on the Bauschinger effect (Bauschinger, 

1886) observed in steel coupons tested experimentally. The resulting constitutive stress-

strain relationship, although still relatively simple, could effectively replicate stress-strain 

responses observed experimentally. Giuffrè and Pinto (1970) proposed a set of parameter 

values for the constitutive stress-strain relationship based on the cyclic response of a single 

10 mm diameter coupon tested under symmetric tension-compression cycles up to ±0.75%. 

The formulation was further improved by Menegotto and Pinto (1973), and subsequently 

used by multiple authors due to its simplicity and accuracy predicting the response of 

reinforcing steel (Stanton and McNiven, 1979, and Ciampi et al. 1982). The model 

provided better predictions of the stress-strain response compared to other formulations 

available, such as the bilinear and those proposed by Ramberg and Osgood (1943) and 

Dafalias (1975). 

Filippou et al. (1983) later incorporated the effect of isotropic hardening into the 

constitutive stress-strain relationship, given the relevance of this phenomenon in the steel 

response at higher strain amplitudes. Additional improvements of the model have been 
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implemented by other authors since then (Monti and Nuti 1992, Dhakal and Maekawa 

2002, Bosco et al. 2016, Kolozvari et al. 2018). However, the formulation by Filippou et 

al. (1983), or some variation of it, is often preferred in the modeling of reinforced concrete 

systems, given its reliable results and reduction of convergence issues in non-linear 

analyses. 

A quick literature review shows the widespread use of the GMP constitutive stress-

strain relationship in the modeling of a variety of reinforced concrete structures (Mitra and 

Lowes, 2007, Bao et al. 2008, Haselton et al. 2008, Mullapudi and Ayoub, 2010, Lu and 

Panagiotou, 2013). However, despite the widespread use of the constitutive stress-strain 

relationship, the material parameters used by most authors are often based on the original 

values specified by Giuffrè and Pinto (1970) and Filippou et al. (1983). For this reason, the 

authors believe a set of calibrated parameters for reinforcing steel specifications currently 

used, such as ASTM A615 (2016) and A706 (2016), represents a useful contribution to the 

work of researchers and engineering practitioners alike. A limited study is thus performed 

herein, using #4 Grade 60 reinforcing bars satisfying the ASTM A615 and A706 standards 

from three different manufacturers. To facilitate the experimental procedure, the coupons 

used for the calibration and cyclic testing were machined at mid-length to a 9 mm diameter 

and 2:1 aspect ratio. Although some noticeable differences between tensile test results of 

machined and unmachined coupons are observed and analyzed herein, the results for 

calibrated parameters presented in this article are based on the response of machined 

coupons. 
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The effect of strain rate in the cyclic response of the reinforcing bars and calibrated 

parameters of the constitutive stress-strain relationship is also investigated. Though 

multiple studies on strain rate effects have been performed on reinforcing bars (Manjoine 

1944, Mirza and MacGregor 1979, Restrepo-Posada et al. 1994), the scope of such studies 

have mainly focused on the monotonic response. 

The Open System for Earthquake Engineering Simulation, or OpenSees (McKenna 

et al. 2000) is a popular software framework for the modeling of large structural systems. 

This article focuses in the GMP constitutive stress-strain relationship implemented in 

OpenSees as STEEL02. 

 

3.3.  Testing Procedure 

3.3.1. Description of Test Coupons 

Two straight, never coiled #4 bars of equal length – 4.6 meters – were acquired 

from three different steel mills, labeled henceforth as mills A, B and C. Each bar was 

manufactured to comply with the specifications for Grade 60 ASTM A615 or A706. The 

selection of specimens allows a limited study on the variability of the stress-strain response 

for the given Grade, bar size, and ASTM standards.  

From each bar, a series of 250 mm long coupons were extracted for testing. Such 

coupons were classified into six groups with six coupons each, divided by manufacturer 

and ASTM specification, Table 3.1. The bars were machined at the center to ensure a 

uniform cross section and define the location of the failure mode, Figure 3.1. The machined 
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portion of the bars had a length to diameter ratio of 2 to minimize the effects of nonlinear 

geometry in the hysteretic response (Mander, 1983, Bae et al. 2005). 

Three additional coupons from each steel batch, two unmachined and one machined 

to the same specifications in Figure 3.1, were subjected to a pure tension test until failure. 

 

 
(a) 

 
(b) 

Figure 3.1. Test Coupons Used for Testing: (a) Machined #4 Coupon used in 

Cyclic and Tensile Tests; (b) Unmachined #4 Coupon Used for Tensile Tests Only 

Table 3.1 summarizes the properties of each steel category, including the 

mechanical properties indicated by the manufacturer and the results from in-house testing 

of unmachined coupons (average of the two coupons per steel category). As noted on the 

table, the characteristic stresses from in-house testing are consistently below the value 

indicated by the manufacturer, with an average difference of 7%. The observed difference 

lies within the expected range considering strain rate effects, given the common practice 

by U.S manufacturers of testing bars at high strain rate, as confirmed by metallurgists from 

two major U.S. mills, whose products were used for this study.  
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Table 3.1. Mechanical Properties of the Coupons 

      

MILL 

CERTIFICATE 

IN-HOUSE TEST 

(UNMACHINED) 

COMPARISON 

-( - ) /mill in house millf f f   

COUPONS MILL ASTM 

Yield 

Strength 

(MPa) 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(%) 

Tensile 

Strength 

(%) 

A61 & A62 A A615 474 741 445 720 6.1% 2.9% 

B61 & B62 B A615 503 731 487 725 3.3% 0.8% 

B71 & B72 B A706 453 631 438 626 2.9% 0.7% 

A71 & A72 A A706 492 687 440 660 10.5% 4.0% 

C71 & C72 C A706 492 641 414 576 15.7% 10.1% 

C61 & C62 C A615 608 707 525 638 13.6% 9.9% 

Tensile tests for machined coupons exhibited differences in the mechanical 

properties with respect to the unmachined coupons, see Table 3.2. One reason for this 

difference is the unknown cross-section area of unmachined coupons, with the nominal 

value for the bar size differing from the actual value by as much as 10%, whereas the cross-

section area for machined coupons can be measured very accurately. Also, the variable 

cross-section area along unmachined coupons results in a non-uniform strain distribution 

in the longitudinal direction, as strains concentrate between bar deformations, where the 

cross-section area is smallest. Moreover, the hot-rolling process to manufacture reinforcing 

bars can produce different material properties between the center and the surface of each 

bar, given the temperature gradients while cooling and the rearrangement of grains on the 

surface of the rolled bars. Finally, the machining process can produce additional changes 

in the mechanical properties of the material, as heating and cooling of the surface of the 

coupon may harden the material, an effect that could not be measured.  
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Table 3.2. In-house Test Results for Unmachined and Machined Coupons 

    UNMACHINED MACHINED 

CATEGORY ASTM 

fy  

(MPa) 

εsh 

(%) 

εu 

(%) 

fu 

(MPa) fu/fy 

fy 

(MPa) 

εsh 

(%) 

εu 

(%) 

fu 

(MPa) fu/fy 

A6 A615 445 0.74 9.4 720 1.62 438 0.37 10.4 839 1.91 

B6 A615 487 1.16 9.6 725 1.49 537 0.78 11.0 837 1.56 

B7 A706 438 1.26 11.6 626 1.43 483 0.66 14.3 724 1.50 

A7 A706 440 0.82 10.6 660 1.50 475 0.42 12.1 765 1.61 

C7 A706 414 1.40 10.6 576 1.39 430 1.26 16.2 653 1.52 

C6 A615 525 1.34 8.8 638 1.21 522 1.80 14.1 690 1.32 

The in-house tension test results show not only a significant difference between 

yield and tensile strengths of machined and unmachined coupons, but also a large contrast 

in the uniform strain, εu, justified by the non-uniform strain distribution in the longitudinal 

direction of unmachined coupons. Furthermore, the difference between tensile to yield 

strength ratios, fu/fy, suggests that machined and unmachined coupon results differ not only 

due to the assumed cross-section area, but also from a change in material properties 

between the center and the surface of the bar. 

For the cyclic testing and parameter calibration in this study, the use of machined 

coupons was preferred because the geometrical non-linear response is practically 

eliminated, allowing only material non-linearities contribute to the hysteretic response. 

Table 3.3 shows the chemical composition of each steel category as indicated by 

the manufacturers. The steel sets were sorted by their carbon content in descending order. 

Table 3.1 through Table 3.3 show that every steel category satisfies the mechanical 

properties and chemical composition set forth in the ASTM standards they were 

manufactured for, ASTM A615 (2016) and A706 (2016). 
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Table 3.3. Chemical Composition of the Coupons 

CATEGORY 
C 

(%) 

Mn 

(%) 

Cu 

(%) 

Ni 

(%) 

Cr 

(%) 

V 

(%) 

Mo 

(%) 

P 

(%) 

S 

(%) 

Si 

(%) 

CE 

(%) 

A6X 0.42 1.13 0.23 0.11 0.18 0.0046 0.023 0.009 0.036 0.2 0.64 

B6X 0.42 1.14 0.24 0.08 0.07 - 0.017 0.014 0.035 0.2 0.62 

B7X 0.28 1.21 0.3 0.09 0.13 0.023 0.02 0.006 0.025 0.18 0.51 

A7X 0.28 1.2 0.29 0.11 0.11 0.027 0.025 0.014 0.04 0.21 0.50 

C7X 0.27 1.1 0.31 0.12 0.12 0.001 0.028 0.012 0.041 0.21 0.47 

C6X 0.26 0.75 0.34 0.11 0.11 0.001 0.02 0.015 0.038 0.21 0.44 

 

3.3.2. Instrumentation 

All machined test coupons were outfitted with two diametrically opposed 5 mm 

high-yield electrical foil strain gages in the machined region for cyclic testing, see Figure 

3.2, to record a smeared longitudinal strain along the cross section and identify the onset 

of buckling. In tensile tests, strains were measured with a high-precision extensometer 

instead. All tests were performed using a 500 kN MTS Universal Testing Machine, Load 

Unit model 318.50 (MTS Systems Corporation 2009), at the Charles Lee Powell 

Laboratories at the University of California in San Diego. 

 

Figure 3.2. Application of Strain Gages to Machined Coupons 
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3.3.3. Strain Histories 

The machined coupons were tested under four different cyclic strain histories (SH1, 

SH2, SH3, and SH4), at a nominal strain rate of 0.001/sec, see Figure 3.3. Additionally, 

two machined coupons per steel category were tested under strain histories SH1 and SH2 

at a strain rate of 0.02/sec, to evaluate strain rate effects, see Figure 3.4. Data was collected 

at 256 Hz and time stamped.  

The selected “high” strain rate, at 0.02/sec, is consistent with the average rates 

recorded experimentally during seismic testing. In particular, the strain response of 

reinforcement in the plastic-hinge region of a full-scale bridge column, tested under seismic 

demands exceeding the design level, was used as a reference (Schoettler et al. 2012). The 

reduction in the nominal rate by a factor of 20 for the “low” strain rate (0.001/sec), is 

significant enough to display strain rate effects in the hysteretic response, and sufficiently 

large to keep the duration of each test within a few minutes, see Figure 3.3. Quasi-static 

strain rates (1E-5/sec – 1E-4/sec) were not used given the duration of testing, and the 

discrepancy of such rates with those experienced by reinforcing bars during seismic 

excitation. 

Instead of traditional “sawtooth” shape strain histories, randomized strain histories, 

similar to those observed experimentally in reinforcing steel during seismic tests 

(Schoettler et al. 2012), were preferred for testing in this study. Furthermore, the selected 

strain histories represent a variety of response conditions, including high amplitude strain 

reversals (see strain histories SH1, SH3, and SH4), medium level reversals (SH2), multiple 

unloading/reloading reversals (SH1, SH3, and SH4), histories skewed towards positive or 
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negative strains (SH1 and SH3 respectively), etc. By selecting these histories, the material 

model and the calibrated parameters suggested for it, are evaluated under conditions similar 

to those in a seismic event, unlike more traditional “sawtooth” shaped and incremental 

amplitude strain histories. 

Figure 3.3 and Figure 3.4 show the strain histories used for cyclic testing. The 

magnitude of strains was limited to ±5% during testing, within the range of strains 

experienced by reinforcing bars during seismic shaking, and where the strain gages 

attached to the specimens provide reliable readings. Strain history SH3 was generated by 

changing the sign of strain history SH1, Figure 3.3c.  

 

Figure 3.3. Strain histories with nominal strain rate = 0.001 (1/sec) used for 

testing: (a) SH1-L; (b) SH2-L; (c) SH3-L; (d) SH4-L 
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Figure 3.4. Strain histories with nominal strain rate = 0.02 (1/sec) used for testing:  

(a) SH1-H; (b) SH2-H 

 

3.3.4. Coupon Identification 

The coupons were labeled according to their manufacturer, the ASTM code they 

comply with, and the strain history used for testing. Each strain history was assigned to a 

specimen number, see Table 3.4. Strain history “T” corresponds to monotonic tension until 

failure for unmachined and machined coupons, while the remaining strain histories refer to 

cyclic loading. 

Table 3.4. Coupon Identification for Each Strain History 

Strain 

Histories 
Coupon # 

Cross-

Section  

T  1 Unmachined 

T 2 Unmachined 

T 3 Machined 

SH1-L 4 Machined 

SH2-L 5 Machined 

SH3-L 6 Machined 

SH4-L 7 Machined 

SH1-H 8 Machined 

SH2-H 9 Machined 
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The following labeling scheme was used for each coupon: 

[MANUFACTURER]+[ASTM CODE]+[COUPON # FROM TABLE 3] 3.1 

For example, an ASTM A706 machined coupon from manufacturer B, tested under 

strain history SH3 at “low” strain-rate is labeled as B76 (= [B]+[7]+[6]). 

 

3.4. Experimental Results 

3.4.1. Tensile Tests 

In the monotonic tension tests, a commercial clip-on extensometer measured the 

deformations, while the cyclic tests used diametrically opposed strain gauges to detect the 

onset of buckling. Figure 3.5 shows the stress-strain response in axial tension for one 

machined and two unmachined coupons per steel category. The average strain rate of these 

tests was 0.001/sec. 

Results from Figure 3.5 confirm the differences in the response of machined and 

unmachined coupons detailed in the Description of Test Coupons section. Besides the 

differences in ductility and magnitude of yield and tensile strength, the machined coupons 

also show a significant reduction in the extent of the yield plateau, see εsh in Table 3.2. 

Although the source of this effect is not fully understood, it is suspected that the machining 

process, due to the heating and subsequent cooling of the surface of the coupons, may cause 

some hardening in the material. 
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Figure 3.5. Axial Tension Test Results for all Steel Categories: (a) A63;(b) B63;  

(c) B73; (d) A73; (e) C73; (f) C63 

Figure 3.5 also shows a significant difference in the response of coupons from 

different manufacturers. In ASTM A615 machined coupons, the observed difference in 

yield and tensile strength between manufactures is as much as 23% for each parameter, 

with the tensile to yield strength ratio, fu/fy, ranging from 1.32 to 1.91, see Table 3.2. For 

ASTM A706 specimens, given the more stringent requirements for the chemical 

composition and mechanical properties of the standard, the maximum observed difference 

in yield and tensile strength is reduced to 12% and 17% respectively, with a narrower range 

for the strength ratio, fu/fy, between 1.50 and 1.61, see Table 3.2. 

In terms of toughness, UT, defined in Equation 3.2, specimens from each ASTM 

standard showed similar variability between manufacturers. The observed average 
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toughness of ASTM A706 coupons was 10% greater than that observed for the ASTM 

A615 coupons, see Table 3.5.  
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3.2 

Where UT is the toughness, ε and f are the strain and stress of the material, and εu is 

the uniform strain. 

Table 3.5. Toughness from In-House Tension Tests 

SPECIMEN ASTM 

UT  

(J/cm3) 

A63 A615 76.7 

B63 A615 81.8 

B73 A706 94.1 

A73 A706 83.4 

C73 A706 95.3 

C63 A615 88.8 

 

3.4.2. Cyclic Tests 

Following the tensile tests, four machined specimens per steel category were axially 

loaded under the “low” strain rate histories detailed in Figure 3.3. For a preliminary 

analysis of the stress-strain responses Table 3.6 shows, for each steel category, the average 

stress at yield and the average relative deformation energy (that is, the energy normalized 

by the mean value between specimens under the same strain history, see Equation 3.3).  

The average yield strength from cyclic responses, see yf  in Table 3.6, is in most 

cases within 5% of the observed value from monotonic tests, see fy  of machined specimens 

in Table 3.2. In steel category A6 however, the observed difference in yield strength 

increases to 12%. These results are consistent with monotonic and cyclic tests having an 

equivalent nominal strain rate. Also, in each steel category fy remained stable between 



 

53 

 

loading histories, as observed in the coefficient of variation (c.o.v.) under 3% for all cases, 

see Table 3.6. 

,  

1  

1




=





=



 

i i

i SH j

N

k S j

j

e

k k

H

r l

d

U

f

df
N

  

3.3 

Where 𝑈𝑟𝑒𝑙
𝑖,𝑗

 is the relative toughness of specimen i under strain history SH j, fi and 

εi are the corresponding stress and strain histories of specimen i, and N is the number of 

specimens from all steel categories subjected to strain history j. 

 

Table 3.6. Average Cyclic Test Properties per Steel Category (Strain rate = 

0.001/sec) 

CATEGORY 

𝒇̅𝒚 

(MPa) 

(c.o.v.) 

Ūrel (J/cm3) 

(c.o.v.) 

A6 
490 

(2.8%) 

1.02 

(1.1%) 

B6 
548 

(0.6%) 

1.06 

(0.9%) 

B7 
484 

(2.6%) 

1 

(0.7%) 

A7 
493 

(2.5%) 

1.05 

(0.4%) 

C7 
421 

(0.4%) 

0.91 

(1.4%) 

C6 
519 

(1.3%) 

0.96 

(1.1%) 

 

Results for Urel show that the relative hysteretic energy dissipated by each steel 

category remains stable for different loading histories, as noted by the small c.o.v. values 

in Table 3.6. The observed range of deformation energies is however small, between 0.91 
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and 1.06. As expected with strain histories of large amplitude, Urel is highly correlated to 

the tensile strength of the material, fu, as seen in the results from monotonic tests in tension, 

see Figure 3.6. 

 

Figure 3.6. Tensile Strength, fu vs Average Relative Deformation Energy, Ūrel, from 

Cyclic Tests 

To illustrate the difference in the response of the steel types under study, Figure 3.7 

shows the stress-strain response of each specimen tested under strain history SH1-L, 

including the maximum stress, |fmax|, and hysteretic energy, U, of each response. As seen 

in the figure, the stress-strain responses can be clearly differentiated between steel types, 

both in terms of stress magnitude and shape of hysteretic loops. 
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Figure 3.7. Cyclic Response for Strain History SH1-L: (a) A64; (b) B64;(c) B74;(d) 

A74;(e) C74; (f) C64 

 

3.4.3. Strain Rate Effects 

Strain rate effects are examined using the response from two cyclic strain histories 

(SH1 and SH2), tested at “Low” and “High” nominal strain rates, corresponding to 

𝜀̇=0.001/sec and 𝜀̇=0.02/sec respectively. Figure 3.8 compares the stress-strain response of 

two equivalent specimens from category C6 under strain history SH1 at the two nominal 

rates. As observed in Figure 3.8, an increase in the strain rate correlates with a higher yield 
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stress (see top-left corner of the figure) which, in Figure 3.8, corresponds to a 12% increase, 

the largest difference observed between all the tested steel categories.  

 

Figure 3.8. Effect of Strain Rate in Hysteretic Response. C65 at 𝜺̇ = 0.001/sec and 

C69 at 𝜺̇ = 0.02/sec 

Table 3.7 shows the measured yield strength in all coupons subjected to strain 

histories SH1 and SH2 at the two nominal rates. In all but steel category A6, the yield 

strength increases with larger strain rates, which is consistent with findings from other 

authors (Manjoine, 1944; Atalay et al. 1972; Mirza & MacGregor, 1979; Restrepo-Posada 

et al. 1994). 

Besides the variation in the yield strength, the effect of strain rate in the cyclic 

stress-strain response of the tested coupons is very small, at a normalized least-squared 

difference, defined in Equation 3.4, under 3% in all cases, see Table 3.8. Because of this, 
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the hysteretic responses under high strain rate (Coupons 8 and 9 as per Table 3.4) were not 

considered in the subsequent calibration of the model parameters. 
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Where 
0.001/sec=f  is the stress measured at strain rate 𝜀̇ = 0.001/sec at strain step i, 

and 
0.02/sec =f  the corresponding stress measured at a strain rate 𝜀̇ = 0.02/sec. 

Table 3.7. Strain Rate Effect on Measured Yield Strength 

Category 

Measured Yield Strength (MPa) 
(𝒇𝒚

𝑯 − 𝒇𝒚
𝑳)/𝒇𝒚

𝑳 

(%) SH1-L 

(0.001/sec) 

SH1-H 

(0.02/sec) 

SH2-L 

(0.001/sec) 

SH2-H 

(0.02/sec) 

A6 502.3 486.8 503.8 486.8 -3.2% 

B6 550.0 571.9 544.8 567.8 4.1% 

B7 486.5 500.9 476.1 500.9 4.1% 

A7 471.5 504.4 500.0 504.4 3.9% 

C7 421.1 452.9 421.1 452.9 7.6% 

C6 515.1 552.5 510.6 570.0 9.4% 

 

Table 3.8. Normalized Least-Squared Difference of Stress-Strain Response at two 

Different Strain Rates 

Category 

Normalized Least-Squared Difference 

(%) 

SH1 SH2 

A6 2.2 2.31 

B6 1.79 1.94 

B7 1.88 1.78 

A7 2.83 2.16 

C7 2.72 2.29 

C6 3.00 1.36 
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3.5. Description of the Constitutive Model 

The Giuffrè-Menegotto-Pinto model (Menegotto and Pinto, 1973), implemented 

into OpenSees as STEEL02, is a uniaxial constitutive stress-strain relationship for the 

modeling of reinforcing steel in structural concrete members. This section provides a 

description of the material model, detailing the role of each parameter to be calibrated. 

STEEL02 is defined by ten model parameters: E0, fy, b, R0, cR1, cR2, a1, a2, a3, and 

a4, see the Notation section for the description.  

The material model is represented by Equation 3.5, (Giuffrè & Pinto, 1970) 
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Where ε* and f* are the normalized strain and stress, see Equation 3.6 and 3.7. 
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Based on Equation 3.5, the material model computes the stress for a given strain 

from a smooth transition between two linear asymptotes: one with slope E0 for the elastic 

response, followed by the post-yield response, with a slope E1=b∙E0. The linear asymptotes 

are updated at each strain reversal, with the elastic asymptote originating from the reversal 

point (εr, fr) and intersecting the post-yield asymptote at the updated yield point (ε0, f0), see 

Figure 3.9. 
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Figure 3.9. Asymptote Update Between Reversals 

 

The transition between asymptotes has a curvature defined by the parameter R, a 

state variable of the model that changes at each strain reversal. R is dependent on the strain 

distance between the latest reversal point and the maximum excursion in the loading 

direction after the reversal, see Equation 3.8 and Figure 3.10. 

1
0

2

1-




 
=  

+ 

cR
R R

cR
 0( ) R   3.8 

Where ξ is a normalized measure of the plastic strain, defined as follows: 

-r p

y

 



=   3.9 

Where εp is the maximum recorded strain excursion in the loading direction after 

the reversal at εr. 
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Figure 3.10. Change in Parameter R Defining Curvature of Bauschinger Curve: 

(a) Definition of R(ξ); (b) Partial Unloading and Reloading 

 

The location of the yield point (ε0, f0), depends on the previous reversal point (εr, 

fr), and the effect of isotropic hardening, which is implemented as a parallel shift of the 

post-yield asymptote by a stress fst, see Figure 3.11.  

The Isotropic Hardening in STEEL02 is implemented by two equations, one per 

loading direction. Equation 3.10 and 3.11 show the stress shift for isotropic hardening in 

tension and compression respectively. 
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Where εy is the original yield strain, 
min p  and 

max p  are the minimum and maximum 

recorded strains at the latest strain reversal. 

 

 

Figure 3.11. Stress Shift of Hardening Asymptote: (a) Isotropic Hardening in 

Compression (a1≠0); (b) Isotropic Hardening in Tension (a3≠0) 

The isotropic hardening in STEEL02 differs from the original formulation by 

Filippou et al. (1983), which defined a single equation for the stress shift in tension and 

compression, Equation 3.12. In this formulation, the stress shift depended on the maximum 

strain in absolute value in either direction, see εmax in Equation 3.13. 
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Where 1a  and 2a  are the isotropic hardening parameters of the original 

formulation and 
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max min

max )max( , -  = p p  
3.13 

The isotropic hardening formula defined by Filippou et al. 1983 specifies a 

minimum ductility for the onset of isotropic hardening through 2a , unlike the formulation 

from OpenSees (see Equations 3.10 and 3.11).  

 

3.6. Parameter calibration 

3.6.1. Preliminary Analysis 

From Equations 3.10 and 3.11, it is observed that the strain hardening effect, as 

defined by the constitutive stress-strain relationship under study (STEEL02), can be defined 

by a single parameter relation for each loading direction: ( )
0 8

3 4

.
a / a  and ( )

0

1 2

8.
a / a  for 

tension and compression respectively. Because of this, the four isotropic hardening 

parameters in the model can be simplified into only two independent variables, a1 and a3, 

by keeping a2 and a4 constant.  

Preliminary optimization analyses also show a high correlation between R0 and cR1, 

variables controlling the curvature of the Bauschinger curve, see R(ξ) in Equation 3.8. This 

results in significant variations in the optimal values found for parameters R0 and cR1, 

depending on the initial estimates. The different (R0, cR1) pairs obtained however, result in 

equivalent functions R(ξ) for ξ > 1, corresponding to the most common domain of the 

function in a non-linear stress-strain response. Figure 3.12 shows an example of four (R0, 

cR1) combinations yielding almost identical hysteretic responses using the constitutive 

stress-strain relationship. Because of this the calibration analysis is simplified, without 

losing much generality of the material model, by assuming R0 is constant. A value R0 = 20 
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was selected, both to represent the sharp slope change at the yield plateau of the material 

and to maintain consistency with typical values used in the literature for this parameter. 

 

Figure 3.12. Example of “Equivalent” (R0, cR1) Combinations in GMP’s 

Constitutive Stress-strain relationship: (a) Curvature of Transition between 

Asymptotes, R, vs Normalized Accumulated Plastic Deformation, ξ. (b) Hysteretic 

Response of the Model for each (R0, cR1) Combination 

 

3.6.2. Optimization Algorithm 

Material model parameters were calibrated from the stress-strain records of 

coupons tested under low strain-rate histories, see Figure 3.3, using a normalized least-

squares error optimization between measured and predicted hysteretic response. The error 

used was defined as follows: 
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Where fm,i is the measured stress at the ith strain step, x is a vector with the 

parameters of the constitutive stress-strain relationship, and fp,i(x) is the stress predicted by 

the material model in the ith strain step. 

Estimates of the Young’s Modulus, E, and yield strength, fy, were identified from 

the hysteretic response of each coupon used in the calibration. The modulus E was 

identified using linear interpolation of the initial elastic cycles, while the yield strength was 

computed by averaging the stresses measured in the yield plateau region. During the 

optimization analyses E was kept constant, while fy was further optimized to account for 

the discrepancy between the definition of fy in the material model and the value identified 

in the measured stress-strain response. Reasonable upper and lower bounds for each 

material property were also defined to expedite the calibration process. 

Calibration analyses were performed using MATLAB’s Optimization Toolbox  

(2016) for constrained multivariate functions. Several algorithms available in the toolbox, 

including the interior-point, trust-region-reflective, active-set and sqp (MathWorks, 2018), 

were compared in terms of speed, stability of results, and magnitude of the optimal error. 

The interior-point algorithm (Byrd et al. 1999), which is based on a logarithmic barrier 

function to impose the upper and lower limits of each parameter, was chosen as the best 

alternative. From multiple optimizations tests, the interior-point algorithm was the most 

stable to changes in the initial conditions and gave the smallest errors. 
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3.6.3. Calibration Results 

The calibration analyses on each stress-strain response produced an average fit 

error, as defined by Equation 3.14, of only 5.4%. The goodness-of-fit achieved at this error 

level can be appreciated from the response comparisons in Figure 3.13 and Figure 3.14.  

 

Figure 3.13. Measured vs Predicted Stress-Strain Response: (a) A64; (b) B64; (c) 

B74; (d) A74; (e) C74; (f) C64 

Comparison between measured and predicted responses for the different strain 

histories exposes some of the limitations of the material model, among them the inability 

to capture the change in hardening of the material at large strains; the symmetry of the 

model in engineering coordinates, when the actual material is only symmetric in 

natural/true coordinates (Dodd and Restrepo, 1995); and the un-realistic Unloading-

Reloading behavior depicted in Figure 3.10b, also seen in Figure 3.14d. 
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Figure 3.14. Measured vs Predicted Stress-Strain Response: (a) A64; (b) A65; (c) 

A66; (d) A67 

Table 3.9 summarizes the results of the calibration process of each steel type under 

low rate cyclic tests (SHX-L, see Table 3.4), in terms of average values and coefficients of 

variation (c.o.v). Figure 3.15 shows the calibration results in a box-plot representation. 

Table 3.9. Average and Coefficient of Variation of Calibrated Model Properties 

Category 
E (GPa) 

(c.o.v.) 

fy (MPa) 

(c.o.v.) 

b 

(c.o.v.) 

cR1 

(c.o.v.) 

cR2 

(c.o.v.) 

a1 

(c.o.v.) 

a3 

(c.o.v.) 

A6 
211 

(1.5%) 

524 

(4.2%) 

0.027 

(8.8%) 

0.904 

(0.6%) 

0.07 

(24.2%) 

0.04 

(36.1%) 

0.027 

(29.1%) 

B6 
217 

(1.4%) 

544  

(4%) 

0.025 

(7.5%) 

0.898 

(0.5%) 

0.07 

(16.5%) 

0.039 

(31.8%) 

0.029 

(28.6%) 

B7 
215 

(1.9%) 

484 

(3.9%) 

0.016 

(8.5%) 

0.895 

(0.3%) 

0.08 

(22.3%) 

0.038 

(30.5%) 

0.03 

(21.7%) 

A7 
212 

(1.6%) 

518 

(4.2%) 

0.019 

(9.6%) 

0.891 

(0.6%) 

0.08 

(19.5%) 

0.04 

(29.9%) 

0.032 

(24.6%) 

C7 
214 

(0.9%) 

423 

(3.7%) 

0.014 

(9.5%) 

0.906 

(0.4%) 

0.08 

(19.7%) 

0.035 

(28.1%) 

0.029 

(22%) 

C6 
218 

(1.1%) 

505 

(4.1%) 

0.013 

(11.7%) 

0.9 

(0.6%) 

0.08 

(12.3%) 

0.018 

(57.7%) 

0.013 

(59.8%) 
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Figure 3.15. Box Plot of Calibrated Parameters: (a) E; (b) fy; (c) b; (d) cR1; (e) 

cR2; (f) a1; (g) a3 

In Figure 3.15, the central line in each box represents the median of the calibrated 

property, the bottom and top edges of the box are the 25th and 75th percentiles, and the 

whiskers extend to the maximum and minimum values obtained. Since the results are based 

on only four data points per steel category, the statistical significance of these results is 

only limited. 

Several observations can be made from the results in Table 3.9 and Figure 3.15 for 

each calibrated parameter. For example, the Young’s modulus, E, shows, as expected, very 

small variability within each steel category, with an average c.o.v. of only 1.4%. 

Furthermore, the average value of E is almost identical in between categories, with of only 

a 3% difference between the most extreme categories (A6 and C6, see Table 3.9). It is 

important to remark the limitations of the statistical results obtained within steel categories 
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for each material parameter (e.g. E, fy, b, cR1), given the small number of specimens tested 

per category. 

In the case of fy, there is also a very small variability within each category, with an 

average c.o.v. of 4%. However, in between categories the yield stress can differ 

significantly, despite all coupons being specified by their manufacturers as Grade 60, by 

as much as 29% between the average of categories B6 and C7. It is also observed that the 

calibrated values of fy in Table 3.9 differ from the values initially identified from the yield 

plateau in the hysteretic responses, see Table 3.6. The average difference is however small, 

with the ratio of calibrated over identified yield stress, /calibrated identified

y yf f , between 0.97 

and 1.07. 

The post-yield slope ratio, b, displays a larger variability within each category, with 

an average c.o.v. of 9.3%. Despite the variance of the results within categories, the 

difference between steel types is still clear, with average values ranging from 0.013 to 

0.027. Noting that steel categories in Figure 3.15 are sorted by carbon content, C (%), a 

correlation between b and C (%) and, to a lesser extent, between cR1 and C (%) can be 

observed.  

Of all calibrated model parameters, cR1, which controls the shape of the 

Bauschinger curve, is the most stable within each steel category, as observed from the 

average c.o.v. at 0.5%. Furthermore, the values obtained for cR1 range in a narrow window 

between 0.88 and 0.91. The small variability of cR1 is justified by the high sensitivity of 

the hysteretic response of the material model to this parameter, as seen in the Sensitivity 



 

69 

 

Analysis section. As mentioned in the Preliminary Analysis, cR1 is highly correlated to the 

parameter R0, assumed constant and equal to 20 during the calibration.  

The second parameter controlling the shape of the Bauschinger curve, cR2, has 

significant dispersion within each material category, with an average c.o.v. of 19%. The 

large dispersion of the values identified suggests the use of a constant cR2 for all steel types. 

Finally, parameters accounting for isotropic hardening show the largest variability 

within steel categories, with an average c.o.v. of 36% and 31% for a1 and a3 respectively. 

Except for category C6, the mean values per category remain stable around overall 

averages of ā1=0.038 and ā3=0.029. Additionally, most coupons showed larger isotropic 

hardening in compression than tension (a1 > a3, with an average a1/a3 = 1.6), which 

compensates for the increased cross-section area of the coupon in compression, not 

accounted for by engineering stresses (Dodd and Restrepo, 1995). In the calibration 

analysis, only when the strain history was skewed towards negative values, see SH3 in 

Figure 3.3, a3 became larger than a1, however, this type of strain history is uncommon in 

reinforcing bars, which are usually intended to undergo large tensile deformations. 

 

3.6.4. Sensitivity Analysis 

The sensitivity of the material model to parameter variations is assessed via the 

relative increment in the error, as defined in Equation 3.14, resulting from a relative 

variation in each material parameter independently. Figure 3.16 shows, for example, the 

effect of a 10% increment/reduction of each material property on the predicted stress-strain 

response for a simple strain history. 
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Figure 3.16. Effect of 10% Variation in Each Material Property on the Predicted 

Stress-Strain Response: (a) E; (b) fy; (c) b; (d) cR1; (e) cR2; (f) a1; (g) a3 

 

As Figure 3.16d shows, the hysteretic response is most sensitive to parameter cR1, 

whereas parameter cR2 has the least noticeable effect, see Figure 3.16e. 

For each stress-strain record, the material model parameters were perturbed 

independently by up to 25% above and below their optimal values. The error was then 

normalized by the minimum error from the optimization of the corresponding record, given 

by: 

( )
( )

+
=

opt opt

opt

x Δx

x
norm

error
e

error
 3.15 

 



 

71 

 

Where enorm is the normalized error, xopt is a vector with the calibrated parameters 

of the material model, and Δxopt is a vector with a perturbation of the parameters. Figure 

3.17 and Figure 3.18 show for each calibrated parameter the average of the sensitivity 

analysis of all stress-strain records processed. 

 

Figure 3.17. Average Sensitivity Analysis Results Between Stress-Strain Records. 

Normalized Error vs Relative Variation of Calibrated Parameters 
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Figure 3.18. Average Sensitivity Analysis Results Between Stress-Strain Records. 

Tornado Diagram of Normalized Error vs Relative Variation of Calibrated 

Parameters: (a) 1.0 % Variation; (b) 5.0% Variation; (c) 10% Variation; (d) 25% 

Variation 

As observed in the sensitivity analysis results, equivalent variations of the model 

parameters can have widely different effects on the predicted stress-strain response. For 

example, changes in cR2 of as much as 25% only produce a 1% increment in the normalized 

error, enorm, while equivalent variations in parameter cR1 can raise the error more than a 

hundredfold, see Figure 3.18d.  

Based on the sensitivity analysis, model parameters can be classified into two main 

groups: low-sensitivity variables, which include cR2, the post-yield slope ratio, b, and strain 

hardening parameters a1 and a3; and high-sensitivity variables, including the Young’s 

modulus, E, yield stress, fy, and cR1. 
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As observed in Figure 3.17 and Figure 3.18, in most model parameters the effect of 

perturbations around the calibrated values is symmetric, with similar increments in the 

normalized error, enorm, whether the variable is increased or reduced. In the case of cR1 

however, sensitivity analysis shows much larger error increments when cR1 is 

overestimated. This behavior originates in the formulation of the material model, which 

imposes an upper limit for cR1 around 1 for the curvature of the Bauschinger curve to be 

well-defined, as specified by the condition R(ξ)>0 in Equation 3.8. 

Among variables causing the largest effects, E and cR1 show very small difference 

in between the analyzed steel categories, as discussed in the Calibration Results section. 

This condition greatly simplifies defining an estimate for these variables. Only the yield 

stress, fy, combines high sensitivity over the stress-strain response with high variability 

between steel categories. Because of this, a proper estimation of fy is essential for a good 

prediction of the hysteretic response using this constitutive stress-strain relationship. 

 

3.6.5. Proposed Model Parameters 

This section describes the statistical analysis for the determination of an all-purpose 

set of calibrated model properties, to accurately predict the hysteretic response of 

reinforcing steel bars.  

The Young’s Modulus, E, found to have a small variability both within and in-

between steel categories, see Table 3.9, did not show any correlation to other material 

properties. Furthermore, an ANOVA analysis (Montgomery and Runger, 2010) showed no 

difference between the mean values of E for the two ASTM specifications considered in 
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this study (A615 and A706). Based on these results, the use of a constant value of E would 

be sufficient to attain a good fit of the hysteretic response of ASTM A615 and A706 bars. 

The average Young’s modulus for all machined coupons, at E = 215 GPa, represents the 

actual modulus of the material, given a well-known cross-section area, see Figure 3.19. 

However, since the common practice is to use nominal cross-section areas to model 

reinforcement, a correction factor αc = 0.94, the average ratio of E from the tensile tests of 

machined and unmachined coupons, see Figure 3.5, is applied to E, resulting in a proposed 

value for the parameter E = 202 GPa (29,300 ksi). 

 

Figure 3.19. Histogram of Calibrated Values for the Young’s Modulus, E, in 

Machined Coupons 

 

Similar to the Young’s Modulus, the parameters controlling the shape of the 

Bauschinger curve, cR1 and cR2, showed a limited correlation to other material properties. 

Furthermore, an ANOVA analysis of both parameters showed no difference in between the 

results for ASTM A615 and A706 coupons. Given these conditions, a constant value cR1= 
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0.9 and cR2=0.08, corresponding to the average for all tested coupons, is proposed, see 

Figure 3.20. 

  

Figure 3.20. Histogram of Calibrated Values for Bauschinger Curve Parameters: (a) 

cR1; (b) cR2 

 

The isotropic hardening parameters, a1 and a3, are the last set of model properties 

for which the use of a constant value is proposed, a1= 0.039 and a3= 0.029, given their 

limited correlation to mechanical properties of the material. Additionally, a negligible 

difference is found between the results from the two ASTM standards considered, as per 

an ANOVA analysis. As noted in the Calibration Results section, for a strain history biased 

towards negative values (see SH3 in Figure 3.3), the isotropic hardening factor for tension, 

a3, becomes larger than the one for compression, a1. For this case, although uncommon in 

reinforced concrete elements, the recommended values for a1 and a3 can be interchanged  
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Figure 3.21. Histogram of Calibrated Isotropic Hardening Factors: (a) a1; (b) a3. 

 

The post-yield slope ratio, b, was the only parameter showing a clear correlation to 

the chemical composition of the material and, as expected from the definition of the 

parameter, with the measured tensile strength, fu. 

Based on Figure 3.22, when the tensile strength of the material, fu, is known, the 

post-yield slope ratio, b, can be best estimated using Equation 3.16. 

-510  (MPa) - 0.037 > 0 = 7.5 ufb    3.16 
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Figure 3.22. Correlation Analysis of Post-Yield Slope Ratio in Machined Coupons 

 

In practice, however, the value of fu is likely unknown (for suggested values of fu, 

see Table 3.11). For these cases, a constant value of b, dependent on the ASTM standard 

is proposed: b = 0.016 for ASTM A706 and b = 0.025 for ASTM A615 machined coupons. 

As with the Young’s modulus, E, a correction factor is required for b to account for the 

difference between machined and unmachined coupons. In the case of b, this difference is 

not related to the cross-section area of the coupons, but to the change in ductility, measured 

through εu, and variation in the yield to tensile strength ratio, fu/fy. Using the ratio between 

the post-yield secant modulus, as defined in Equation 3.17, from the tensile tests of 

unmachined and machined coupons, results in a correction factor αc= 0.78 for both ASTM 

A706 and A615 coupons, see Table 3.10, resulting in values of b of 0.012 and 0.02, 

respectively. 
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Where E*
sec is the secant stiffness of the tensile response of the material between 

the onset of yield (εy, fy) and the stress-strain point where 90% of the tensile strength is 

reached (ε*,0.9∙fu). 

Table 3.10. Secant Post-Yield Modulus from Tensile Tests of Machined and 

Unmachined Coupons 

 Unmachined Machined 
E*

sec ratio 

Unmachined/Machined Category 
ε* 

(%) 

0.9∙fu 

(MPa) 

E*
sec 

(MPa) 

ε* 

(%) 

0.9∙fu 

(MPa) 

E*
sec 

(MPa) 

A6 3.7 648 5879 3.9 756 8670 0.68 

B6 3.8 653 4697 3.9 756 5992 0.78 

B7 4.1 564 3291 4.3 651 4132 0.80 

A7 3.7 594 4476 4.1 689 5536 0.81 

C7 4.1 519 2748 5.2 588 3174 0.87 

C6 3.1 574 1775 4.4 622 2405 0.74 

 

As mentioned in the Sensitivity Analysis section, the yield strength of the material, 

fy, not only has a significant effect on the predicted hysteretic response of the model but 

can also differ considerably between manufacturers. Furthermore, regression analyses of fy 

did not show a correlation to other mechanical properties of the material. Because of this, 

a statistically significant sample size of reinforcing bars yield strengths is required for an 

accurate estimate of the parameter. Due to the limited experimental information collected 

in this study, the author consulted a comprehensive survey of mechanical properties of 

reinforcing bars performed at the University of Kansas (Bournonville et al. 2004). Based 

on this survey, the recommended average yield strength for ASTM A615 Gr 60 bars is fy = 

480 MPa, while the corresponding value for A706 Gr 60 specimens is 476 MPa. Table 3.11 

includes additional statistical information extracted from this study for reference. 

 



 

79 

 

Table 3.11. Yield and Tensile Strength Distribution Results (Bournonville et al. 

2004) 

  A615 Gr 60 A706 Gr60 

  fy (MPa) fu (MPa) fy (MPa) fu (MPa) 

Average 480 728 477 656 

c.o.v. 7.2% 6.3% 5.3% 5.2% 
     

Percentiles         

5 437 663 437 598 

10 444 680 444 613 

25 457 699 458 635 

median 473 724 475 657 

75 495 749 493 679 

90 526 776 510 701 

95 550 798 522 713 

 

Based on the proposed values for the material model parameters summarized in 

Table 3.12, along with typical parameter values used in the literature, the error between 

measured and predicted stress-strain response of the coupons used in the calibration 

analysis is computed. The histogram in Figure 3.23 shows the error distribution using the 

proposed model parameters (without the correction factors included in E and b for 

unmachined bars). 

  



 

80 

 

Table 3.12. Proposed Material Model Parameters (Unmachined Reinforcing Bars) 

Parameter Proposed value 

Typical values used 

(Filippou et al. 1983,  

Menegotto and Pinto, 1973) 

E 202 GPa  (29,300 ksi) 205 GPa 

fy 
480 MPa (69.6 ksi) (A615 steel) 

476 MPa (69.0 ksi) (A706 steel) 

420 MPa* 

b 
0.02 (A615 steel) 

0.012 (A706 steel) 

0.02 

R0 20 20 

cR1 0.9 0.925 

cR2 0.08 0.15 

a1 0.039 0.01† 

a2 1.0 7‡ 

a3 0.029 - 

a4 1.0 - 

 

As seen in Figure 3.23, the fit error with the proposed model properties is, on 

average, twice the minimum error obtained from the calibration of the individual records. 

Despite the error increment, the calibrated material model properties still result in a 

reasonable match of the hysteretic response. Figure 3.24 compares the measured and 

predicted response with the proposed parameter values (without correction factors in E and 

b for unmachined bars) for steel category C7 which, along with category C6, resulted in 

the largest error magnitude. 

                                                 
* Nominal yield strength for Grade 60 steel. This value is usually replaced by expected yield strength values 

or tensile test results 
† Value of isotropic hardening parameter 𝑎̂1from the original formulation by Filippou et al. (1983), see 

Equation 3.12 
‡ Value of isotropic hardening parameter 𝑎̂2from the original formulation by Filippou et al. (1983), see 

Equation 3.12 
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The relatively large error in the stress-strain fit of category C7, compared to other 

categories under study, is justified by the difference between the proposed yield strength, 

fy=476 MPa, and the optimal value for the category, fy=423 MPa. Figure 3.25 shows the 

stress-strain response comparison after changing the proposed yield strength to fy = 420 

MPa. The change in the yield strength alone reduced the average stress-strain error using 

the proposed material model properties from 14% to 6.8%. 

 

Figure 3.23. Histogram of Error Between Measured Stress-Strain Response and 

Material Model with Proposed Material Model Properties: (a) Fit Error; (b) Fit 

Error Normalized by Optimal Error 
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Figure 3.24. Measured vs Predicted Stress-Strain Response Using Proposed 

Material Model Parameters: (a) C74; (b) C75; (c) C76; (d) C77 
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Figure 3.25. Measured vs Predicted Stress-Strain Response Using Proposed 

Material Model Parameters and Optimal Yield Strength for the Category: (a) C74; 

(b) C75; (c) C76; (d) C77 

 

3.6.6. Verification of Results 

The verification of the proposed parameters for the constitutive stress-strain 

relationship, see Table 3.12, is performed using experimental results collected from cyclic 

tests on #4 ASTM A706 unmachined coupons. The coupons in these tests belong to a 

different batch of reinforcement than the coupons used for calibration.  

For this separate study, a series of #4 bars were tested under cyclic load at the 

Charles Lee Powell Laboratories at the University of California in San Diego, to evaluate 
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the effect of buckling in coupons with different length to diameter ratio. Two of the 

coupons were tested at an unbraced length of 3dbℓ, for which the effect of non-linear 

geometry is still small. Figure 3.26 compares the measured and predicted stress-strain 

responses for these two coupons. The fit error using the proposed model properties remain 

small, at 10.5% and 8.8% for coupons 1 and 2 respectively. For both coupons, a noticeable 

difference in the peak stress in tension is observed, with the predicted response exceeding 

the measured value by up to 16%. This difference, as well as the magnitude of the fit errors, 

is justified by the smaller than average yield strength of the coupons, measured at  

fy = 440 MPa from tensile tests. 

 

Figure 3.26. Measured vs Predicted Stress-Strain Response Using Proposed 

Material Model Properties for two ASTM A706 Coupons Not Used in Calibration: 

(a) Coupon 1; (b) Coupon 2 
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3.7. Conclusions 

A study to calibrate the Giuffre-Menegotto-Pinto (GMP) steel model to the 

hysteretic response of reinforcing bars manufactured in accordance to ASTM A615 (2016) 

and A706 (2016) standards is performed. A batch of thirty-six #4 Grade 60 bars, from three 

different manufacturers and complying with one of two ASTM specifications (A615 or 

A706) were tested under different cyclic strain histories. The selection of specimens allows 

a limited study on the variability of the stress-strain response and calibrated material 

parameters for the Grade, bar size and ASTM standards tested. It is noted that the results 

presented herein, including the calibrated parameters for the constitutive stress-strain 

relationship, are based on the cyclic response of machined coupons. Such coupons were 

used because they practically remove geometrical non-linearities, leaving only material 

non-linearities in the hysteretic response. Three additional coupons, two unmachined and 

one machined, per steel category were tested under monotonic tension until failure.  

In each of the six steel categories studied, four coupons were tested under “low” 

strain rate, 𝜀̇=0.001/sec, while the remaining two were tested under “high” strain rate, 

𝜀̇=0.02/sec. Comparative analysis between coupons tested under equivalent strain histories 

at different strain rates showed no significant difference in the hysteretic response, with the 

exception of the observed yield strength at the yield plateau, which increased up to 12% at 

the higher strain rate.  

A detailed formulation of the material model is presented herein. Using the 

definition of the parameters, it was reasoned that the number of model properties to 
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calibrate can be reduced from 10 to 7 without losing accuracy in the model, by fixing 

parameters R0, a2 and a4. 

Preliminary calibration results showed some limitations of the material model, such 

as symmetric stress-strain response in engineering coordinates, unlike the actual material, 

with symmetric behavior only in natural coordinates.  

A sensitivity analysis evaluated the increase in the error with perturbations of the 

calibrated model properties. Material model parameters were divided into two groups: low-

sensitivity variables, including cR2, b, a1 and a3; and high-sensitivity variables, including 

E, fy and cR1. Among the high-sensitivity variables, only fy showed significant variability 

between steel categories, with the rest remaining almost constant.  

For parameters E, cR1, cR2, a1 and a3, a unique value was proposed regardless of 

the ASTM standard of the reinforcement. For the post-yield slope ratio, b, a correlation to 

the tensile strength, fu, was found, but given the limited material information available in 

practice, a value of b was proposed for each ASTM standard. Given the different response 

observed between machined and unmachined coupons in tensile tests, a correction factor 

for model parameters E and b, calibrated from machined bars, was suggested to model 

unmachined bars used in practice. For the yield strength, fy, an average value was proposed 

for each ASTM standard. However, given the significant variability of fy, combined with 

high sensitivity of the predicted hysteretic response, it is recommended to perform a 

sensitivity analysis of this variable when using the GMP steel model. For this purpose, 

some useful statistical results were extracted from a comprehensive survey of mechanical 

properties of reinforcing bars made at the University of Kansas, (Bournonville et al. 2004). 
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The proposed model parameters were verified using test data from a separate study, 

whose results were not used in the calibration analysis. The predicted response using the 

proposed material model properties, at an error below 11%, matched satisfactorily the 

measured stress-strain response. 

 

Chapter 3, in full, has been submitted for publication of the material as it may 

appear in Material Model Parameters for the Giuffrè-Menegotto-Pinto Uniaxial Steel 

Stress-Strain Model, ASCE Journal of Structural Engineering, 2018. Carreño, Rodrigo; 

Lotfizadeh, Koorosh; Conte, Joel P.; and Restrepo, José I. The dissertation author was the 

primary investigator and author of this paper. 
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Chapter 4.  

 

 

IMPROVED IMPLEMENTATION OF THE CONSTITUTIVE 

STRESS-STRAIN RELATIONSHIP BY DODD AND 

RESTREPO FOR REINFORCING STEEL 

4.1. Abstract 

The uniaxial constitutive stress-strain relationship developed by Dodd and Restrepo 

at the University of Canterbury, New Zealand, is widely used to represent the hysteretic 

response of reinforcing steel bars. The model has many advantages over other constitutive 

models. Among them, it is defined by recognizable mechanical properties of the material, 

represents all branches of the monotonic response, accounts for the Poisson effect, and 

considers the reduction in uniform strain capacity during cyclic loading. The model, 

however, also presents some disadvantages due to the relative complexity of the 

formulation and unreliable implementations available to use. In this paper, a new 

implementation of the model is incorporated into OpenSees, with some additions and 

corrections to increase the reliability and robustness of the model, making it suitable for 

the analysis of large scale structures. A calibration analysis of the parameters of the model 

is also presented, and verified, to further facilitate its future use. 
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4.2. Introduction 

The Dodd-Restrepo model (Dodd and Restrepo, 1995), is a popular constitutive 

stress-strain relationship for the hysteretic response of reinforcing steel. The model has 

multiple advantages over other popular material formulations, such as the Giuffrè-

Menegotto-Pinto model (Menegotto and Pinto, 1973). Among these advantages is the 

ability to represent the different branches of the monotonic response (Mander, 1983), the 

use of natural coordinates (Nadai, 1950) to account for the Poisson effect, the easily 

identifiable material properties used as model parameters, and accounting for the reduction 

in the magnitude of the elastic modulus and uniform strain capacity, εu, due to plastic 

deformations. 

One disadvantage of the constitutive stress-strain relationship preventing its 

widespread use in the research and engineering practice community is its relative 

complexity, with computational implementations of the model being scarce. The lack of a 

closed form solution for the Bauschinger effect, and the use of an iterative process instead, 

is somehow inefficient and subject to convergence issues. The model is also not defined 

past the uniform strain, εu, with an abrupt loss of capacity beyond this point, which causes 

additional convergence problems in the model. The constitutive stress-strain relationship 

also returns tangent stiffness values close to zero at large strains and the yield Plateau 

which, although consistent with the actual behavior of the material, can cause convergence 

issues in structural models, particularly those using flexibility-based members (e.g. force-

based beam-column elements).  
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Other authors have added improvements to the model by incorporating phenomena 

like buckling and low-cycle fatigue (Kim and Koutromanos, 2016). However, working 

implementations of these models are not readily available in commonly used structural 

analysis software (e.g. OpenSees), therefore the stability and accuracy of such 

implementations has yet to be assessed. 

This paper introduces a new formulation of the material model that includes a 

closed form expression for the Bauschinger effect, a post-necking response, and several 

improvements on the stability of the algorithm, which has been tested on several large-

scale structural models.  

A calibration analysis is performed over the stress-strain response of ASTM A615 

and A706 Grade 60 reinforcing steel coupons, sourced from different U.S. manufacturers, 

introducing a set of recommended model parameters. 

 

4.3. Original model formulation 

This section presents a summary of the original model formulation (Dodd and 

Restrepo, 1995). One of the main features of the Dodd-Restrepo model is the internal use 

of natural strains (Nadai, 1950), ε’s, and true stresses, f’s, thus incorporating the Poisson 

effect. Experimental results show a symmetric stress-strain behavior of reinforcing steel 

under ε’s-f’s coordinates, unlike in engineering strain, εs, and stress, fs, see Figure 4.1. 

Definitions of uniaxial strain and uniaxial stress for an element in each coordinate system 

can be found in Equation 4.1.  
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Where ℓ0 and ℓ are the initial and instantaneous length of the uniaxial element, A0 

and A are the initial and instantaneous cross-section area, and N is the axial force applied. 

 

Figure 4.1. Sample Backbone Curve of Reinforcing Steel in Tension and 

Compression: (a) Engineering Strain vs Engineering Stress; (b) Natural Strain vs 

True Stress (Dodd and Restrepo, 1995) 

Transformations of strain, stress, and tangent modulus between coordinate systems 

are based on parameter definitions, see Equation 4.1, and the assumption of incompressible 

material (A∙ℓ=A0∙ℓ0), which is reasonable under plastic deformations: 
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The original formulation by Dodd and Restrepo (1995) was defined by eight 

parameters: E0, fy, εsh, εu, fu, εsh,1, fsh,1, and Ωfac, see notation section for the full description. 

Most of the model parameters can be extracted from the backbone curve of the material, as 

seen in Figure 4.2. Only Ωfac, which controls the hysteretic energy under the curve, requires 

additional information, and has been associated to the Carbon content of the material (Dodd 

and Restrepo, 1995). 

 

Figure 4.2. Parameters of the Material Model: (a) Parameters Extracted from 

Backbone Curve; (b) Shape of the Bauschinger Effect 

 

 

4.3.1. Backbone Curve of the Model 

In mild steel, the backbone curve can be divided into four regions: (1) Linear-

Elastic branch; (2) Yield Plateau; (3) Post-Hardening region; and (4) Post-Ultimate stress 

zone, see Figure 4.3. Based on the formulation by Mander (1983), the Dodd-Restrepo 

model considers only the three initial regions of the backbone curve, see Equation 4.3, as 

the Post-Ultimate stress zone does not have a well-defined strain measure: beyond the 
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uniform strain, ε’u, elongations concentrate in a small portion of the bar, a phenomenon 

known as necking, making the strain measure dependent on the gage length, see Figure 4.3. 
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4.3 

Where s corresponds to the sign of strain ε’s, c1 is defined in Equation 4.4, and the 

exponent P > 1 is generated to intersect with (ε’sh,1, f’sh,1) in the strain hardening branch, 

resulting in Equation 4.5. 
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Figure 4.3. Backbone Curve of the Dodd-Restrepo Model 

 

4.3.2. Response Following First Strain Reversal 

Once the material undergoes plastic deformations in the backbone curve, the post-

reversal response of the model is divided into three branches: (i) a linear unloading branch; 

(ii) a Bauschinger curve, transitioning from the end of branch (i) to the boundary conditions 

defined by a previous reversal; and (iii) The shifted backbone (see iii-a in Equation 4.6), 

or a Bauschinger curve converging to the shifted uniform strain (see iii-b in Equation 4.6). 
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 4.6 

Where (ε’r, f’r) are the coordinates of the last reversal point, E’u is current elastic 

modulus, which decreases with the magnitude of plastic deformations (see ε’M in Equation 
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4.7), ε’a is the strain at the end of the linear unloading (see Equation 4.8 and Figure 4.4). 

ε’rejoin is the strain where the Bauschinger curve rejoins either a previous Bauschinger curve 

or a shifted backbone (see (iii-a) and (iii-b) in Equation 4.6 respectively). ε’0 is a two-

element state variable with the plastic strain accumulated for tension and compression, 

Equation 4.9, and K is an index dependent on the direction of loading following the 

reversal, s. The function backbone(x), used after a reversal from the yield plateau, 

corresponds to Equation 4.3. bausch(x,y,z) corresponds to the iterative process computing 

the Bauschinger curve between the boundary conditions (strain, stress and tangent 

modulus) defined by y and z.  
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The strain ε’rejoin is defined by the preceding reversal history of the material. The 

constitutive stress-strain relationship defines three types of reversals: major, minor and 

simple, for more details refer to Dodd and Restrepo (1995). 
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Figure 4.4. Post-Reversal Linear Unloading 

 

 

4.3.3. Bauschinger Effect  

Once the boundary conditions at both ends of the curve are determined (Point a: εa, 

fa, Ea and Point b: εb, fb, Eb), the original formulation of the model (Dodd and Restrepo, 

1995) suggests an iterative process to generate a curve satisfying the boundary conditions, 

including an extra variable to control the hysteretic energy. In this process, the natural 

strain/true stress coordinates of the curve (ε’s,f’s) are transformed, in two steps, into a 

coordinate system ( ˆˆ ,s sf ) where the curve can be approximated by a power function, see 

Figure 4.5 and Equation 4.10. 
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Figure 4.5. Coordinate Transformation of Bauschinger Curve: (a) Natural Strain – 

True Stress Coordinates; (b) Transformed Coordinates; (c) Normalized Coordinates 

 

From Equation 4.10, a stress-strain relation in normalized coordinates is obtained 

as follows: 

1 2
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The power function in Equation 4.13 satisfies the boundary conditions and the 

concave shape required of the Bauschinger curve in normalized coordinates, see Figure 

4.6. 
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Q
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Where Q ϵ [0,1] controls the area under the power function, and was calibrated to 

match an empirical estimate of the area under the stress-strain curve, Ω, see Equation 4.14 

and 4.15. 
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Where ε’p/ε’u and f’p/f’t are non-dimensional variables defined as per Figure 4.7. 
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As seen in Equation 4.16, the parameter Ωfac in the constitutive stress-strain 

relationship is used to scale the empirical factor Ω for the computation of the exponent Q. 

Replacing Equation 4.13 in 4.11 results in a non-linear equation for the normalized 

strain, ˆ
s , which can be solved iteratively using the Newton-Raphson algorithm as follows: 
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With a recommended initial estimate ( ) ( )(0)ˆ /s s a ab     = − −  . For small values of 

ˆ
s , the Newton-Raphson algorithm may not converge, thus a bisection algorithm is 

recommended for cases where (0)̂  is less than 0.2.  

Once convergence of the normalized strain ( )ˆ i

s  is achieved, the corresponding 

normalized stress, ˆ
sf , is computed from Equation 4.13 evaluated at ( )ˆ i

s . The natural 

coordinates, ε’s and f’s, can then be computed by solving a linear system of equations based 
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on Equations 4.10a and 4.10b. The tangent modulus, E’s, is computed using the chain rule 

of differentiation as follows:  
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Figure 4.6. Experimental Bauschinger Curve vs Power Function Approximation in 

Normalized Stress-Strain Coordinates 
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Figure 4.7. Non-Dimensional Variables for Empirical Formulation of the Area 

Under the Bauschinger Curve, Ω, Following a Major Reversal 

 

4.4. Features Implemented 

4.4.1. Closed-Form Bauschinger Curve 

The search for a closed-form solution of the Bauschinger effect in the Dodd-

Restrepo constitutive stress-strain relationship has found little success since the model was 

first introduced (Dodd and Restrepo-Posada, 1995). The main challenge was to find a 

continuously differentiable curve (class C1, see Krantz, 1999) that not only satisfies the 

required boundary conditions for strain, stress and tangent modulus, but also maintains the 

sign for the curvature and has a parameter to control the area under the curve. Kim and 

Koutromanos (2016) recently developed a closed-form formulation for the Bauschinger 

effect using non-uniform rational b-splines, also known as NURBS (Piegl and Tiller, 

1997). Their approach defines the Bauschinger curve as two NURBS segments connected 

at a characteristic point in the curve, (ε’char, f’char). The strain, stress, and tangent modulus 
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of this characteristic point is defined to match the area under the curve, Ω, as defined in 

Equation 4.14 in the original formulation by Dodd and Restrepo. However, a computer 

implementation of the model by Kim and Koutromanos (2016), which also includes the 

effects of inelastic buckling and low-cycle fatigue, was not available in any non-linear 

analysis tool accessible to the authors (e.g. OpenSees, McKenna et al., 2000). Because of 

this, the accuracy and stability of the model could not be initially assessed, thus a partial 

implementation of it was incorporated into the authors’ computer code for OpenSees, to 

compare with the results of the approach presented in this article. 

An alternative closed-form solution for the Bauschinger effect, using parametric 

Bezier curves (Bezier, 1970), is presented herein.  

A Bezier curve of order n is defined by n+1 control points, P0 to Pn which, 

combined with polynomials of the independent parameter t, generate a curve in the space 

containing the control points, see Equation 4.18 and Figure 4.8. 

0 ,( )) (i n i

n

i
C tt B

=
= P  4.18 

Where t ϵ [0,1] is the independent parameter and Bi,n(t) is the ith Bernstein 

polynomial of order n (Bernstein, 1912), see Equation 4.19. 
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Figure 4.8. Sample Bezier Curves: (a) Quadratic (n=2) Bezier in 2D Space; (b) 4th 

Order Bezier in 2D Space; (c) 4th Order Bezier in 3D Space 

 

Since a given set of control points defines a unique Bezier curve, additional control 

over the shape can be achieved using weight factors, wi, as defined for Rational Bezier 

functions, see Equation 4.20 and Figure 4.9. 
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Figure 4.9. Effect of Weight Factors in Rational Bezier Curve with Fixed Control 

Points 

For the Bauschinger effect, the control points of the Bezier curve belong to the two-

dimensional strain-stress space (i.e. Pi = (εi, fi)). Following the analysis of different Bezier 

curves of order 2 and higher, a cubic rational Bezier (n=3) showed the best fit for the 

Bauschinger effect, see Equation 4.21. 
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Where points P0 and P3 are the ends of the curve, while P1 and P2 are intermediate 

points along the two asymptotes, defined by the stress-strain coordinates and tangent 

modulus at each end point, see Figure 4.10. 

As seen in the diagram in Figure 4.10, to satisfy the boundary conditions of the 

Bauschinger effect, the control points of the Bezier curve are defined as follow: 
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Where εa, fa and Ea are the boundary conditions for the beginning of the curve, while 

εb, fb and Eb are the corresponding values for the end of it. Factors ξa and ξb ϵ [0,1] define 

the location of the intermediate control points, P1 and P2, between the ends of the curve, 

P0 and P3, and the intersection between the asymptotes (see (εint,fint) in Figure 4.10). 

 

Figure 4.10. Bauschinger Effect Representation Using Rational Cubic Bezier Curves 

 

For a strain ε* within the Bauschinger curve, the corresponding stress can then be 

computed as follows: 
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(i) First, replace the strain at the control points, Equation 4.22, into the parametric 

definition of the curve, Equation 4.21: 
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(ii) Rearrange the terms as a cubic equation for t*: 

*3 *2 *

3 2 1 0 0a t t ta a a  ++ + =  4.24 
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(iii) Solve the cubic equation. Cardano’s method (Weisstein, 2002) produces the 

following three roots for the equation: 
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(iv) Based on the discriminant Δ, see Equation 4.27d, select the appropriate root: 

 

a. If Δ =0, all three solutions of Equation 4.26 are real, two of which are 

equivalent:  
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Select the solution in the interval [0,1] 

 

b. If Δ > 0, only one solution of Equation 4.26 is real 

3* 3
= + + + − t p R R  4.29 

c. If Δ < 0, all three solutions are real and different: 
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And select the solution in the interval [0,1] 

 

(v) Once t* is calculated, the stress f* is determined from the definition of the curve 

and the stress at the control points: 
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Where diag(fp) is the diagonalization function applied over vector fp. 
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(vi) Finally, the tangent modulus is computed using the chain rule of differentiation. 

The result is presented in matrix form for brevity: 
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4.4.1.1. Parameters of the Bezier function 

The proposed function for the Bauschinger effect includes six parameters to control 

the shape of the curve, while still satisfying the boundary conditions. Two parameters, ξa 

and ξb, define the location of the intermediate control points, P1 and P2, along the 

asymptotes defined by the slope at the ends of the curve, see Figure 4.10. While four 

weighting factors: w0, w1, w2 and w3, define the relative influence of each control point on 

the shape of the curve. 

To calibrate the parameters of the proposed function, a least-squared minimization 

of the difference between experimental and analytical Bauschinger curves was used. The 

experimental curves were extracted from cyclic tests on #4 machined bars, also used in the 

calibration of the general parameters of the constitutive stress-strain relationship and 

described in the following section. As for the analytical curves, the stress-strain response 
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from the iterative formulation (see Bauschinger Effect section) for a variety of boundary 

conditions and relative areas under the curve, Ω, see Equation 4.14, was assumed as the 

“true” response to match with the proposed solution. 

Following calibration and sensitivity analyses of all six parameters (ξa, ξb, w0, w1, 

w2 and w3), a good approximation of the experimental results and the Bauschinger curves 

computed with the iterative formulation, was attained by keeping a constant value for five 

of the parameters and computing the one remaining, w3, as a function of Ω, see Equation 

4.36. 
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Figure 4.11 shows the optimal values of w3, fitting both experimental and analytical 

Bauschinger curves (the latter computed with the iterative formulation), against Ω. With a 

coefficient of determination R2 = 0.89, the regression analysis for w3 provides satisfactory 

results. 

Figure 4.12 shows some experimental stress-strain responses compared to the 

predicted values using both the original and the proposed formulations for the Bauschinger 

effect. To facilitate visualization, the curves in the figure were shifted to start at zero stress 

and zero strain, and loading in the positive direction. Figure 4.12 shows the predicted 

response of a Bezier curve matching experimental results as accurately as the iterative 

formulation. 
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Figure 4.11. Regression Analysis of Bezier Curve Parameter w3 vs Ω 

 

 

Figure 4.12. Sample Bauschinger Curves Recorded Experimentally against 

Prediction with Iterative Formulation, and Prediction with Proposed Bezier 

Function 
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Furthermore, Figure 4.13 compares the predicted stress-strain response, for 

multiple values of Ω, from both the original and the proposed formulations. As seen in the 

figure, both formulations have very similar results, with only some small differences at 

values of Ω close to the upper limit of 0.1, see Equation 4.14. 

The original formulation of the constitutive stress-strain relationship assumed a 

fixed value Q = 0.35, see Equation 4.13, for Bauschinger curves following a minor or 

simple reversal. Similarly, the Bezier formulation uses a constant value w3 = 11.8 

following a minor or simple reversal. 

 

Figure 4.13. Comparison of Bauschinger Effect Predicted with Iterative and 

Proposed Formulation for Different Values of Ω 
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4.4.2. Post-Fracture Response 

As mentioned in the description of the original model, the Dodd-Restrepo 

constitutive stress-strain relationship is not well defined for strains beyond the tensile 

strength, fu. Because of this, the stress-strain response shows an abrupt loss in capacity after 

the onset of necking in tension, or crack development in compression, see Figure 4.14. This 

behavior of the constitutive stress-strain relationship not only misrepresents the material 

response but carries convergence issues for large scale models using the material model. 

 

Figure 4.14. Response of Original Model Formulation Following Uniform Strain in 

Both Loading Directions: (a) Response After Onset of Necking; (b) Response After 

Cracks in Compression have Developed 

 

The constitutive stress-strain relationship implemented herein includes a parabolic 

post-necking response for a smooth loss in capacity until the fracture strain defined by the 

user, εfract, is reached, see Figure 4.15a. Once εfract is exceeded, the material model loses all 

capacity in either loading direction. In compression on the other hand, the model assumes 
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a linear hardening branch following the uniform strain in natural coordinates, see Figure 

4.15b. The increased capacity in compression is consistent with the behavior of the material 

when geometric non-linearities, such as buckling, are ignored (Nadai, 1950). 

 

Figure 4.15. Response of New Model Formulation Following Uniform Strain in Both 

Loading Directions: (a) Response After Onset of Necking; (b) Response After 

Cracks in Compression have Developed 

 

For reversals within the parabolic post-necking response, a Bauschinger curve is 

used to connect the reversal point to the backbone stress-strain response at the uniform 

strain in compression, see Figure 4.16a. A reversal from this curve will transition back to 

the parabolic post-necking response using another Bauschinger curve, see Figure 4.16b. 

For reversals from the linear hardening branch in compression, the implemented 

material model unloads to zero stress at the plastic strain for the beginning of the linear 

hardening branch, see Figure 4.17a. Once zero stress is reached, the material loses capacity 

in either loading direction, see Figure Figure 4.17a. Reversals from the unloading curve, 
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before zero stress is reached, follow the same unloading path to return to the linear 

hardening branch, see Figure 4.17b. 

 

Figure 4.16. Response of New Model Formulation for Reversals after Onset of 

Necking in Natural Coordinates: (a) Reversal from Parabolic Post-Necking Branch 

(b) Reversal from Bauschinger Curve Starting in Post-Necking Parabolic Branch 

 

 

Figure 4.17. Response of New Model Formulation for Reversals after Compressive 

Crack Development, in Natural Coordinates: (a) Reversal from Compressive 

Hardening Branch (b) Reversal from Unloading after Compressive Hardening 

Branch 
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4.4.3. Tangent and Secant Modulus 

An option to select the modulus, E, returned by the material model at each analysis 

step was implemented into the constitutive stress-strain relationship. Despite its simplicity, 

this feature can have a significant effect reducing convergence issues of full-scale structural 

models. At large strain amplitudes, and within the yield plateau, the constitutive stress-

strain relationship yields small values for the tangent modulus, ET, which can result in 

singular stiffness matrices, at the section or element level, for models based on fiber 

discretization. This problem is particularly relevant for flexibility-based elements (i.e. 

forceBeamColumn in OpenSees), which require inverting stiffness matrices at each 

analysis step.  

The implemented constitutive stress-strain relationship provides three alternatives 

for the modulus returned at each step: 1) The tangent Modulus, ET, of the last analysis step; 

2) The original Young’s Modulus, E0; 3) A secant modulus, Esec, from the slope between 

the last analysis step and the preceding strain reversal, εr, see Figure 4.18. 



 

116 

 

 

Figure 4.18. Alternative Definitions of Modulus Returned by New Implementation 

of the Constitutive Stress-strain relationship 

 

4.5. Calibration of Model Parameters 

4.5.1. Coupon Testing 

To calibrate the parameters of the constitutive stress-strain relationship, two 

straight, never coiled #4 bars, conforming to the ASTM A615 (2016) and A706 (2016) 

standards for Grade 60 reinforcing steel, were acquired for testing from three different 

manufacturers, labeled henceforth as mills A, B and C. 

A total of fifty-four 250 mm long coupons were extracted for testing, divided into 

six groups of nine coupons according to manufacturer and ASTM standard they comply 

with. The mechanical properties of each material were determined from two coupons per 

steel category, tested under pure tension in its original unmachined form, see Figure 3.1b.  
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The remaining coupons were machined in the middle to a 9 mm diameter section 

with a length to diameter ratio of 2, see Figure 3.1a. This machining was performed to 

minimize geometric non-linearities in the hysteretic response (i.e. buckling), thus isolating 

the nonlinear effects from the material itself. One of the machined coupons per steel 

category was also tested in pure tension, to evaluate any change in the measured 

mechanical properties, while the rest was tested under cyclic strain histories. 

Table 3.2 compares the mechanical properties measured from tensile tests on 

unmachined and machined coupons, with each steel category labeled by a letter-number 

combination, indicating the manufacturer (A, B or C) and the ASTM standard it complies 

with (6 for ASTM A615 or 7 for ASTM A706). As seen in Table 3.2, the mechanical 

properties identified for machined and unmachined coupons can differ significantly within 

the same steel category. This difference could be explained by multiple factors, including 

the different accuracy in the value for the cross-section area of the coupons, the variation 

in chemical composition and residual stress distribution between the core and surface of 

the reinforcing bars, and the lack of stress concentrations in the smooth surface of a 

machined coupon. 

For cyclic testing, four randomized strain histories (SH1, SH2, SH3 and SH4) were 

generated for testing with a nominal strain rate   = 0.001/sec, see Figure 3.3. The use of 

randomized strain histories was preferred over traditional “sawtooth” shaped ones to 

replicate strain responses recorded experimentally in a full-scale structure tested under 

seismic load (Schoettler et al. 2012). Within each steel category, four coupons were tested 

under the strain histories at the original strain rate, while two additional coupons were 
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tested under strain histories SH1 and SH2 at a rate   = 0.02/sec to assess strain rate effects. 

Figure 4.19 compares the cyclic stress-strain response of the coupons tested under strain 

history SH2 at the original strain rate. As seen in Figure 4.19, the hysteretic response from 

different steel categories are very distinctive, which is also apparent from the peak stress, 

|fmax|, and dissipated energy, U, values indicated in the figure. 

Previous work by the author (Carreño et al. under-review) offers a detailed 

description of the experimental procedure and results of the coupon testing. For this work, 

the results of the calibration analysis on the parameters of the implemented constitutive 

stress-strain relationship are presented directly. From all the cyclic tests performed, only 

the results for strain histories at a strain rate   = 0.001/sec are used in the calibration (four 

coupons per steel category), as strain rate effects can be neglected for simplicity, as found 

in Carreño et al. (under-review). 
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Figure 4.19. Cyclic Response Under Strain History SH2, at Strain Rate  

  = 0.001/sec, of Coupons from Steel Categories: (a) A6; (b) B6; (c) B7;  

(d) A7; (e) C7; (f) C6 

 

4.5.2. Preliminary Analysis 

As mentioned in the original formulation of the constitutive stress-strain 

relationship, the Dodd-Restrepo steel model is defined by eight parameters: E0, fy, εsh, εu, 

fu, εsh,1, fsh,1, and Ωfac, seven of which can be directly identified from the backbone curve of 

the material, see Figure 4.3. Instead of input parameters εsh,1 and fsh,1, the implemented 

constitutive stress-strain relationship can use the exponent P as input to represent the strain 

hardening branch, see Equation 4.3. The use of parameter P, in lieu of εsh,1 and fsh,1, is 

recommended due to the stability of the parameter for a variety of reinforcing steel types, 

as observed by the author in multiple coupon tests (e.g. Table 3.2). 



 

120 

 

The parameter Ωfac in the constitutive stress-strain relationship, defining the shape 

of the Bauschinger effect, was originally calibrated for Grade 300 and Grade 430 New 

Zealand steel (NZS 3402: 1989), to a default value Ωfac=1.0. This calibrated value 

however, may not be representative of reinforcement typically used today in the United 

States, such as the Grade 60 ASTM A615 (2016) and A706 (2016) reinforcing bars used 

in this study. Based on experimental results by Wilson and Bate (1986, see Figure 4.20) 

Dodd and Restrepo (1995) suggested a negative correlation between Ωfac and the carbon 

content of the material. At an average of 0.22%, the carbon content in the coupons tested 

by Dodd and Restrepo (1995) is consistently lower than in the coupons used in this study, 

see Table 3.3, thus the current calibration analysis is expected to result in values of Ωfac 

less than 1.0, see Figure 4.20. 

 

Figure 4.20. Backbone and Bauschinger Curves in Terms of Absolute Value of 

Stress and Strain for Low and High Carbon Steel (adapted from Wilson and Bate, 

1986) 
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4.5.3. Calibration Results 

The calibration of parameters from the constitutive stress-strain relationship was 

performed using MATLAB’s Optimization Toolbox (MathWorks, 2016), by minimizing 

the error between measured and predicted hysteretic responses of the machined coupons, 

according to the definition: 
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Where fm,i is the measured stress at step i, and fp,i(x) is the corresponding stress 

predicted by the constitutive stress-strain relationship using the material parameters in 

vector x. This measure of error has been normalized by the measured stress history, fm,i, 

and the results expressed in percentage. 

Table 4.1 shows the average and coefficient of variation (c.o.v) of the calibrated 

material parameters found for each steel category. Results for the Young’s Modulus, E0, 

show little variation within each steel category and in-between them, with an overall 

average of E0= 221360 MPa and a corresponding coefficient of variation (c.o.v.) of 2.5%. 

The yield and tensile strengths, fy and fu, show a relatively small variability within each 

category, with average c.o.v. values of 3.1% and 1.8% respectively. In between categories 

however, the difference in strengths can be significant, with the average yield strength as 

low as 438 MPa and as high as 582 MPa, a difference of 28% between sets with the same 

nominal strength. Similarly, the tensile strength found for different steel groups ranged 

between 629 and 829 MPa, a difference of 27%.  
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A comparison between the calibrated strength values, see Table 4.1, with those 

obtained from monotonic tests on machined coupons, see Table 3.2, shows noticeable 

variations in some steel categories, particularly for the yield strength, at an average 

difference of 7%. The largest discrepancy in fy was observed in Category A6 at 18%, 

justified by the multiple ways this parameter influences the cyclic response in the 

constitutive stress-strain relationship, including the definition of major reversals and the 

extent of the linear unloading branches following a strain reversal. Dodd and Restrepo 

(1995) indicated the extent of these post-reversal branches can range between 0.7 and 1.3 

times fy in tested coupons, with the constitutive stress-strain relationship assuming a value 

of 1.0 fy for simplicity, see Figure 4.4. In the case of steel coupons in category A6, the 

linear unloading branches extend longer than 1.0 fy, thus the calibration analysis returns 

larger values of fy to better fit the overall cyclic response. The differences between 

calibration analysis, Table 4.1, and tensile tests, Table 3.2, for the tensile strength, fu, are 

significantly smaller at an average of 3%. Additionally, the values of fu obtained show a 

positive correlation to the carbon content C(%), as seen in Figure 4.21. 
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Table 4.1. Average and Coefficient of Variation (c.o.v) of Calibrated Parameters for 

the Constitutive Stress-strain relationship per Steel Category 

CATEGORY 
E0 

MPa 

fy  

MPa 
εsh εu 

fu  

MPa 
P Ωfac Error 

A6 
215320 539 0.78% 11.0% 829 4.1 0.73 7.9% 

(3%) (7.2%) (16.2%) (4.6%) (2.1%) (7.7%) (3.9%) (18.7%) 

B6 
218564 582 0.88% 10.9% 828 3.2 0.79 7.1% 

(1.7%) (4.6%) (11.1%) (6.7%) (1.5%) (8.9%) (3.8%) (18%) 

A7 
222316 526 0.82% 10.1% 728 2.9 0.90 5.9% 

(0.8%) (2.2%) (23.7%) (18%) (0.7%) (15.3%) (5.8%) (12.7%) 

B7 
227261 498 1.12% 13.8% 704 3.6 0.96 5.8% 

(1.8%) (1.3%) (22.8%) (5.7%) (2.3%) (7%) (5.5%) (10.7%) 

C7 
219441 438 1.27% 15.9% 629 3.4 0.95 5.7% 

(0.7%) (0.9%) (23.1%) (7.5%) (1.3%) (24.4%) (1.8%) (7.2%) 

C6 
225281 506 1.73% 13.3% 657 3.7 0.96 5.4% 

(1.5%) (2.7%) (29.9%) (13%) (3.2%) (10.6%) (1.4%) (13.1%) 

 

 

 
(a) (b) 

Figure 4.21. Calibrated Parameter Ωfac and fu vs Carbon Content, C(%), for all 

Coupons Tested Under Cyclic Strain Histories: (a) fu; (b) Ωfac 
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A higher variability within steel categories is observed for εsh, with an average c.o.v. 

at 21%. This variability is expected due to the small influence of the parameter on the 

response predicted by the constitutive stress-strain relationship, see Sensitivity Analysis 

section. Given the large dispersion within each steel group, differences in εsh between 

categories are relatively small, with a constant value of εsh for all groups likely providing 

reasonable predictions of the stress-strain response, see Recommended Model Parameters 

section. 

The uniform strain, εu, shows some variability within steel groups, with an average 

c.o.v. of 9.3%, see Table 4.1. The difference between categories is however noticeable, 

ranging from 10% to 16%. The results obtained for this parameter however, may not be 

representative of reinforcement in real structures, as the monotonic tests in tension showed 

a significant increase in ductility of machined over unmachined coupons, see Table 3.2. 

The exponent for the strain hardening branch of the backbone curve, P, shows 

relatively high variability within steel categories, with an average c.o.v. of 12.3%. Given 

its limited influence in the hysteretic response of the constitutive stress-strain relationship 

after the first major strain reversal, an overall average among all steel categories, P ≈ 3.5, 

could provide a good fit of the material model to experimental results. 

The last parameter of the constitutive stress-strain relationship, controlling the 

shape of the Bauschinger curve, Ωfac, has stable results within steel categories and 

distinctive values in-between them, see Table 4.1. Furthermore, the parameter shows a 

negative correlation to the carbon content, as anticipated by Dodd and Restrepo (1995), see 

Figure 4.21.  
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The calibration results presented herein were determined with the implementation 

of the constitutive stress-strain relationship using a Bezier curve for the Bauschinger effect. 

It was also verified that an analysis with the original iterative formulation yields almost 

identical results. 

 

4.6. Sensitivity Analysis 

Completing the study of the model parameters, a sensitivity analysis is performed 

over each cyclic record. In this analysis, the increment in error between measured and 

predicted stress-strain response is calculated for variations in each model parameter by a 

fraction of its optimal value, see Equation 4.38. The analysis was performed for each of 

the cyclic records, with Figure 4.22 showing the overall average. 
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Where error(x) is the function as defined in Equation 4.37, where xopt is a vector 

containing the optimal parameters of the constitutive stress-strain relationship for the 

current record, and Δxopt a vector with the variation in one of the optimal parameters being 

evaluated. 

Results from Figure 4.22 shows both parameters P and εsh have an almost negligible 

effect on the predicted stress-strain response, within the ±25% range of variation evaluated 

in the figure. Following P and εsh, the uniform strain, εu, shows only small increments in 

the fit error within a ±10% variation of the parameter, with a relative error increment of 

11% on average. For changes in the parameter of 25% or higher however, the fit error 

shows a significant relative increase, over 39% on average. 
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The response of the constitutive stress-strain relationship shows a similar sensitivity 

to both the Young’s Modulus, E0, and the yield strength, fy, see Figure 4.22. The sensitivity 

to these variables is relatively high, with a variation of ±25% in either of them resulting in 

twice the optimal fit error. As seen in the previous section however, the Young’s Modulus 

is very stable between different steel groups, with a c.o.v. of 2.5% among all the calibration 

results. Assuming a 5% maximum error in the estimation of E0, when using the mean value 

E0= 221360 MPa obtained in the previous section, the fit error will be, on average, only 

14% higher than the minimum value. The yield strength, fy, on the other hand, can vary 

significantly between steel coupons of the same grade (see Calibration of Model 

Parameters section), with differences of as much as 28% between tested coupons from 

different manufacturers. Considering that an error of ±10% in the estimation of the yield 

strength results on an average relative increase of 33% in the fit error, a good estimate of 

fy is essential for the material model to predict an accurate stress-strain response.  

The parameters the constitutive stress-strain relationship shows the most sensitivity 

to are Ωfac and fu, see Figure 4.22, with a ±25% variation in the optimal values increasing 

the fit error by a factor of 2.8 and 4.6, on average, respectively. From the calibration 

analysis results, both these parameters not only show great stability within each steel 

category, but can also be correlated to the carbon content C(%), see Figure 4.21. Given the 

high sensitivity of the constitutive stress-strain relationship, with a ±5% variation from the 

optimal value increasing the fit error by 19% for Ωfac and 37% for fu, an accurate estimate 

of these parameters is of great importance when using the Dodd-Restrepo material model. 
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Figure 4.22. Average of Sensitivity Analysis Results from all Coupons Tested Under 

Cyclic Strain Histories 

 

4.7. Recommended Model Parameters 

Based on the results from calibration and sensitivity analyses, a set of parameter 

values of the Dodd-Restrepo constitutive stress-strain relationship are recommended for 

Grade 60 ASTM A615 (2016) and A706 (2016) steel reinforcement. Given the stability of 

the calibrated results for the Young’s modulus among all tested coupons, an average value 

E0 = 221 GPa can be used for machined coupons. For the Young’s Modulus a correction 

factor shall be applied on the recommended value of E0 to account for the differences 

observed between machined and unmachined coupons, see Table 3.2. These differences 

are mainly justified by the use of nominal instead of exact cross-section areas to compute 

the stress in unmachined coupons. From the average ratio of E0 between machined and 

unmachined coupons in Table 3.2, the recommended Young’s Modulus for the unmachined 

case is E0 = 200 GPa.  
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A unique value is also recommended for parameters εsh and P in the constitutive 

stress-strain relationship, given the low sensitivity of the predicted cyclic response to these 

parameters. Based on the overall average results from calibration analysis, a value of 

εsh=1.1% and P = 3.5 can be used. 

The calibration results for εu obtained from machined coupons in Table 4.1, may 

not be representative of unmachined steel bars, as observed from tensile tests on machined 

and unmachined coupons, see Table 3.2. Because of this, the results from pure tension tests 

of unmachined coupons are used for the recommended value of εu. Given the similarity 

between the uniform strains from each steel group in Table 3.2, with a small coefficient of 

variation at 5%, the overall average εu=10.6% is recommended for unmachined steel bars. 

The 5% c.o.v. between steel categories satisfies the limits to keep the stress-strain fit error 

small according to the sensitivity analysis of εu, which requires to use an estimate within 

10% of the optimal value, see Figure 4.22. Since the results obtained herein stem from 

small diameter reinforcement, #4 bars, the recommended value for εu should decrease with 

larger diameter of reinforcement (see section 3.2.3 in Caltrans SDC, 2013).  

For parameters fu and Ωfac, a correlation to the carbon content in the material, C(%), 

is found, with the following regression equations, see Figure 4.21: 

( ) 61036 (%) 39uf CMPa  +=  (a) 
4.39 

1.22 (%) 1.27fac C = −  +  (b) 

Given the limited experimental data available in this study, the use of equations 

4.39a and b can only provide rough estimates for parameters fu and Ωfac. For more accurate 

regression functions a larger database is required for statistically significant results. 
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Since the chemical composition of the reinforcement is not usually available to 

research and engineering professionals, recommended values are suggested on the basis of 

the typical carbon content per ASTM specification. For ASTM A706 (2016) Grade 60 

steel, for which the standard defines an upper limit of 0.3% for the carbon content to 

enhance weldability, a typical value of C(%) = 0.28 results in recommended values for fu 

and Ωfac at 686 MPa and 0.93 respectively. In the case of the ASTM A615 (2016) standard, 

since no limitations are specified on the carbon content in the material, a higher variability 

in the value of C(%) is expected for specimens under the standard. Assuming an average 

carbon content C(%) = 0.36 for Grade 60 ASTM A615 bars, see Table 3.3, results in 

recommended values fu = 769 MPa and Ωfac = 0.83.  

For the yield strength, fy, the calibration analysis showed high variability between 

the tested steel categories, with differences as much as 28% between extreme values, and 

no evident correlation with other mechanical or chemical properties of the material. 

Furthermore, the predicted hysteretic responses showed significant sensitivity to changes 

in fy, reaching twice the minimum fit error for a 25% deviation from the optimal fy, see 

Figure 4.22. Based on these observations, and the limited number of coupons tested for this 

study, it was determined that to recommend values of fy a more comprehensive statistical 

survey is required. The report by Bournonville et al. (2004) details a statistical analysis on 

23,768 heats of steel from 29 mills in the United States and Canada, including a wide 

variety of bar sizes, grades and ASTM standards. Table 3.11 summarizes the results for fy 

and fu of Gr 60 ASTM A615 and A706 specimens extracted from this report. Based on 

these statistical results, the average value fy=478 MPa is recommended for both ASTM 
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A615 and A706 Grade 60 reinforcement. When using the Dodd-Restrepo constitutive 

stress-strain relationship and the yield strength of the material is not available, a sensitivity 

analysis using the percentile values indicated in Table 3.11 is recommended. 

Table 4.2 summarizes the recommended values suggested for each of the 

parameters in the Dodd-Restrepo constitutive stress-strain relationship. 

Table 4.2. Recommended Parameter Values for Dodd-Restrepo Constitutive Stress-

strain relationship 

Parameter Recommended Value   

E0 200 GPa (29,000 ksi)   

fy
§ 478 MPa (69 ksi)  

εsh
** 1.1%  

εu 10.6%  

fu
†† 769 MPa (112 ksi) (ASTM A615) 

 686 MPa (99 ksi) (ASTM A706) 

P 3.5  

Ωfac
‡‡ 0.83 (ASTM A615) 

  0.93 (ASTM A706) 

 

  

                                                 
§ A sensitivity analysis using percentiles in Table 3.11 is recommended given the high variability in fy 
** Parameter value may decrease for bar diameters larger than the #4 coupons tested. However, the cyclic 

response is not significantly influenced by this parameter. 
†† Parameter the constitutive stress-strain relationship is most sensitive to. Use Equation 4.39 for a rough 

estimate if carbon content is known. Alternatively, consider performing a sensitivity analysis based on the 

percentile values for fu in Table 3.11. 
‡‡ Constitutive stress-strain relationship shows high sensitivity to this parameter, consider using Equation 

4.39 for a rough estimate if carbon content C(%) is known. 
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4.8. Verification of Recommended Parameters 

The parameters proposed for the constitutive stress-strain relationship in Table 4.2, 

are verified with experimental test results independent from the calibration analyses. A 

study performed in 2011 at UC San Diego’s Charles Lee Powell Laboratories studied the 

cyclic response of reinforcing bars under different unsupported lengths, evaluating the 

effect of buckling. A series of #4 Grade 60 ASTM A706 unmachined bar coupons, from a 

different batch than those used in the calibration analysis, were tested under cyclic strain 

histories for unsupported lengths of 3, 6 and 9 bar diameters, dbℓ. The stress-strain response 

from two coupons with the lowest unbraced length (3 dbℓ), and therefore the smallest non-

linear geometry effects, is compared to the results of the constitutive stress-strain 

relationship using the recommended model parameters. As seen in Figure 4.23, the 

hysteretic response of the recommended parameter values in Table 4.2 significantly 

overestimate the stress in experimental results. This difference comes from the 

overestimation of the tensile strength, fu, in the tested steel coupons, measured at 620 MPa 

from a monotonic test in tension, which lies below the 25th percentile indicated by 

Bournonville et al. (2004), see Table 3.11. When the parameter fu is modified to 620 MPa, 

the predicted stress-strain response attains a very close fit of the experimental results, see 

Figure 4.24. 
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Figure 4.23. Verification Example, Experimental vs. Predicted Response Using 

Recommended Model Parameters in Table 4.2. 

 

 

Figure 4.24. Verification Example, Experimental vs Predicted Response Using 

Recommended Model Parameters in Table 4.2, and fu = 620 MPa from Tensile Test 
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4.9. Analysis of Large Scale Model 

A full-scale bridge column tested under seismic load at UC San Diego’s Large 

High-Performance Outdoor Shake Table (LHPOST) in 2010 (Schoettler et al. 2012), was 

modeled in OpenSees using two material models for the reinforcing steel: STEEL02 and 

SteelDRC. STEEL02 corresponds to the commonly used constitutive stress-strain 

relationship by Giuffrè-Menegotto-Pinto (Menegotto and Pinto, 1973), while SteelDRC is 

the improved Dodd-Restrepo model implemented in this study. The response from each 

model was then compared to the experimental results, both at the global and local level. 

The full-scale bridge column in Figure 4.25 was designed according to Caltrans 

design guidelines and post-tensioned to the shake table for a fixed-base configuration. A 

large concrete mass (Wtop = 2.5∙1010 kN-m2/g) was positioned at the free top of the column 

to account for the superstructure mass. 

 

Figure 4.25. Full-Scale Bridge Column Tested Under Seismic Loading at UC San 

Diego’s Large High-Performance Outdoor Shake Table (Schoettler et. al 2012) 
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Based on the known dimensions, reinforcement configuration (Figure 4.26), and 

properties of the concrete and steel reinforcement, see Table 4.3, a fiber-discretization 

model, using a single force-based element for the column was developed in OpenSees 

(McKenna et al. 2000). The model uses a corotational geometric transformation to account 

for second order effects (e.g. P-Δ) and a modified Radau hinge integration (Scott, 2011) 

with the equivalent plastic hinge length as defined by Paulay and Priestley (1992), see 

Equation 4.40. 

0
0.08

0. 22
p b yL L d f

MPa
 +=    4.40 

Where Lp is the equivalent plastic hinge length, L is the length of the columns, dbℓ 

is the diameter of the longitudinal bars, and fyℓ is the yield strength of the longitudinal 

reinforcement. 

 

Figure 4.26. Reinforcement Configuration in Full-Scale Column (Schoettler et al. 

2012) 
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Table 4.3. Material Properties of Large-Column Test (Schoettler et al. 2012) 

Material Properties 

Concrete 

f'c = 42 MPa 

εc0 = 0.26% 

Ec = 22900 MPa 

Longitudinal 

Reinforcement 

fy = 519 MPa 

Es = 196000 

εsh = 1.1% 

εu = 12.2% 

fu = 707 MPa 

Transverse 

Hoops 

fy = 338 MPa 

εu = 12.5% 

fu = 592 MPa 

 

Two models, one per constitutive stress-strain relationship for the reinforcing steel, 

were subjected to a time-history analysis using the base acceleration records from all ten 

consecutive earthquakes used in the testing of the bridge column. The results for 

earthquakes 3 through 9 are presented herein, given the little non-linear behavior observed 

in first two records, and the mass at the top of the column impacting the safety restraints 

during the last earthquake. 

To analyze the effect of the constitutive stress-strain relationship used for the 

reinforcing steel in the global response, Figure 4.27 compares the predicted displacement 

histories at the top of the column to the experimental results. The predicted peak 

displacements from each model closely resemble the experimental results, see Table 4.4, 

with the biggest difference observed in the residual values after each record. While the 

STEEL02 model shows very small residuals after each earthquake, the SteelDRC model 
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can capture some larger residual displacements, although a close match to the experimental 

results is only achieved after two of the records (earthquakes 3 and 8). 

The models are also compared in terms of the base shear vs displacement response, 

see Figure 4.28. From the figure, similar responses are observed from the two OpenSees 

models, although results from SteelDRC show less “pinching”. The experimental base-

shear of the column is highly influenced by the rotation of the mass at the top, producing 

the particular shape observed in Figure 4.28, and higher amplitudes than the analytical 

responses, see Table 4.4.  

 

Figure 4.27. Drift History at the Top of the Bridge Column for Earthquakes 3 to 9: 

(a) Experimental vs OpenSees with Steel02; (b) Experimental vs OpenSees with 

SteelDRC 
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Figure 4.28. Normalized Base Shear vs Drift at the Top of the Column for 

Earthquakes 3 to 9: (a) Experimental vs OpenSees with Steel02;  

(b) Experimental vs OpenSees with SteelDRC 

For the effect of the constitutive stress-strain relationship on the local response of 

the model, the Moment-Curvature response at the base of the column is shown in Figure 

4.29. Unlike the base-shear response, the rotation of the concrete block at the top of the 

column has little effect in the experimental moment. Both OpenSees Models under-

estimate the Moment and Curvature values found experimentally, see Table 4.4, which 

could be corrected by changing the equivalent plastic hinge length Lp, for the curvature, 

and increasing the stress capacity of the confined concrete core for the moment. Similar to 

the base-shear response, the SteelDRC model shows less “pinching” in the response.  
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Results in this section show that the SteelDRC implementation can be used reliably 

in larger scale models with highly non-linear behavior and multiple cycles, with results 

comparable to those obtained with the commonly used STEEL02 model. 

It is noted that reinforced concrete elements using SteelDRC, unlike with STEEL02, 

can suffer from localization issues (Coleman and Spacone, 2001), given the representation 

of softening and fracture of the material at large strains by the constitutive stress-strain 

relationship. 

 

Figure 4.29. Normalized Moment vs Normalized Curvature at the Base of the 

Column for Earthquakes 3 to 9: (a) Experimental vs OpenSees with Steel02;  

(b) Experimental vs OpenSees with SteelDRC 

 

 

 



 

139 

 

Table 4.4. Peak Global and Local Response Values for Bridge-Column. Comparison 

of Experimental and OpenSees Models Results 

  Δ (m) Base shear (kN) Moment (kN-m) Curvature (1/m) 

  min max min max min max min max 

Experimental -0.55 0.64 -887 813 -7378 7215 -0.105 0.140 

OpenSees (SteelDRC) -0.60 0.64 -668 674 -6218 6248 -0.081 0.074 

OpenSees (Steel02) -0.67 0.69 -683 686 -5859 5833 -0.088 0.085 

 

 

4.10. Conclusions 

In this study, a series of improvements to the constitutive stress-strain relationship 

by Dodd and Restrepo, including a closed-form Bauschinger curve, a post-necking stress-

strain response, and alternative definitions for the output tangent modulus, are implemented 

into OpenSees in the uniaxial material model SteelDRC. 

Based on cyclic tests on #4 Grade 60 bars from three different manufacturers, and 

complying with two ASTM standards (A615, 2016, and A706, 2016), the parameters of 

the Dodd-Restrepo constitutive stress-strain relationship were calibrated by minimizing the 

least squared error between the measured and predicted stress histories. The sensitivity of 

the predicted stress-strain response to variations of each parameter was also assessed, 

finding that parameters εsh, P and εu have the least influence in the predicted cyclic 

response, while the parameters the predicted response is most sensitive to are, in ascending 

order: E0, fy, Ωfac and fu. Calibration analysis results also showed that two material 

parameters, fu and Ωfac, can be correlated to the carbon content, which is consistent with 

observations made by Dodd and Restrepo (1995). A set of recommended parameter values 

for Grade 60 reinforcement, dependent on the ASTM Standard (A615 or A706), is 

summarized in Table 4.2. A verification example, using steel coupons not involved in the 
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calibration analysis, shows the close fit to the measured hysteretic response attained by the 

material model when the tensile strength of the material is estimated accurately. When only 

limited information is available for the tensile and yield strength of the reinforcement in a 

structure, performing a sensitivity analysis in the Finite Element model is recommended, 

using the statistical results extracted from Bournonville et al. (2004), see Table 3.11. 

Using a large-scale structural model, the Dodd-Restrepo constitutive stress-strain 

relationship implemented in OpenSees, SteelDRC, is evaluated against the commonly used 

formulation by Giuffrè-Menegotto-Pinto, STEEL02, comparing responses at the global and 

local level. Experimental results from a full-scale bridge column, tested under seismic load 

(Schoettler et al. 2012), are used to evaluate the accuracy of OpenSees models using each 

reinforcing steel implementation. Results from this analysis show that the implementation 

of the constitutive stress-strain relationship provides reliable results for large scale-highly 

non-linear structural models undergoing multiple cycles. Furthermore, the results obtained 

with SteelDRC are comparable with results from STEEL02. 

 

Chapter 4, in full, is currently being prepared for submission for publication of the 

material. Carreño, Rodrigo; Lotfizadeh, Koorosh; Conte, Joel P.; and Restrepo, José I. The 

dissertation author was the primary investigator and author of this paper. 
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Chapter 5.  

 

 

EXPERIMENTAL WORK ON LARGE DIAMETER STEEL 

REINFORCEMENT 

 

 

5.1. General 

This chapter covers the design and implementation of a loading apparatus capable 

of cyclically testing large diameter reinforcing steel bars under large strain amplitudes. The 

main objective is to characterize the plastic buckling-straightening fatigue (PBSF) life of 

the bars, commonly known as “low-cycle fatigue”. The innovative use of a modified sulfur-

based concrete to grip the bars is explained along with the many aspects required to perform 

the experimental work. Experimental issues and the solutions implemented are also 

covered. The material properties and geometrical characteristics of the tested large 

diameter bars are detailed herein. The geometrical characteristics are explored to 

investigate their effect on the fatigue life of the bars. The procedure to generate the loading 

protocols for the experimental work is described, along with the main experimental results 

obtained.  
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The design of the loading apparatus and loading protocols used for testing was part 

of the work by Mr. David Duck, a current PhD student. The experimental work and 

processing of the results was carried-out jointly by the author and Mr Duck, thus an 

extended version of this Chapter will be included in his PhD Dissertation (see Duck et al. 

2018) 

 

5.2. Test setup 

5.2.1. Bar Gripping 

To avoid issues with bar gripping experienced by other authors who attempted 

similar experimental work, an innovative approach was taken by embedding the ends of 

the bars into a highly-confined modified sulfur and aggregate mix, referred to as sulfur 

concrete henceforth. As described in ACI 548.2R (1993), sulfur concrete is a thermoplastic 

material prepared by hot-mixing modified sulfur and mineral aggregates. The three main 

characteristics of sulfur concrete that made it an ideal material for the gripping mechanism 

are: 1) it solidifies and gains strength rapidly upon cooling, 2) can be remelted and reused, 

and 3) has a high strength and fatigue resistance. The rapid gain of strength after cooling 

allows for a relatively fast turnaround between tests using a single test setup, that otherwise 

would not be possible.  

Compression tests on a series of sulfur concrete mix design cylinders were 

performed to obtain the best grip. Different amounts of 3/8-in. diameter smooth beach 

pebbles and crushed aggregates were mixed with different ratios of plasticized, silica filled 

modified sulfur, see Figure 5.1. A mix consisting of 33.8% (by weight) crushed aggregate, 

35.7% (by weight) smooth beach pebbles, and 33.5% (by weight) modified sulfur, which 
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recorded a compressive strength of 6.3 ksi after 2 days was used for the lower pipe grip 

(LPG), while a mix of 55.9% and 44.1% of crushed aggregate and modified sulfur, with a 

recorded compressive strength f’c= 8.5 ksi after 10 days, was used for the upper pipe grip 

(UPG).  

 

Figure 5.1. Sulfur Concrete Mix Design Materials: (a) 3/8 in. Diameter Smooth 

Beach Pebbles; (b) 3/8 in. Diameter Rough Crushed Aggregate (c) Plasticized, Hot-

Pour Silica Filled, Modified Sulfur 

 

5.2.2. Loading Apparatus Specifications 

A crucial aspect of the research effort was the design of a loading frame capable of 

testing large-diameter #18 Grade 60 bars under large strain amplitude cyclic loading, see 

Figure 5.2. The test apparatus had to be sufficiently rigid to sustain the buckling of the #18 

bars while providing near full fixity. A finite element model analysis in SAP2000 showed 

that, when the plastic moment from the #18 reinforcement is applied to the pipe system, it 

will remain well within the elastic range, with a maximum expected rotation at the top of 

(a) (b) (c)
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the pipe of 1.61x10-4 radians, or about 8.05% of the maximum allowable rotation of 0.002 

radians, see Duck et al. (2018) 

 

Figure 5.2. 3D Rendering of Loading Frame Apparatus (Duck et al. 2018) 

 

To provide sufficient stiffness to the upper pipe grip, a lateral bracing system 

allowing the movement and removal of the pipe, was required. Given the issues faced by 

other authors attempting similar experimental work, the bracing system for the loading 

frame was designed to resist the moment applied by the buckled bars without allowing 

excessive out-of-plane movement. A system consisting of an outer sleeve through which 

the pipe grip could slide was chosen, see Figure 5.3. Friction between the pipe and the 

sleeve was reduced by providing a greased brass interface (see Duck et al. 2018) 
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Figure 5.3. View of Bottom Pipe with Heater Terminals and Lateral Bracing 

System Connected to Strong-Wall 

Given the high confinement provided by the pipes and using results from bond slip 

tests performed by Murcia-Delso et al. (2011), the minimum embedment length of 25dbℓ 

recommended by AASHTO (2014) to develop the #18 bars embedded in 5,000 psi concrete 

was reduced to 19dbℓ for the design of the upper pipe. Given the complexity of the LPG, a 

larger development length equal to 28dbℓ was used in the design, to allow for future use in 

the testing of high-strength Grade 80 bars. Similar to Mander (1983), 4-in. thick circular 

steel end blocks with a 2.5 in. center hole were placed around the test specimens on both 

pipe grips at the surface of the sulfur concrete to restrain the bars when buckling occurs, 

see Figure 5.4. These blocks simulate the restraint provided by the transverse reinforcement 

in a column and the cone formed at the base of RC columns after cyclic loading. The steel 

blocks were supported by L-shaped brackets welded around the inside of the pipes, see 

Figure 5.5. 

Axial load was applied using two 500-kip capacity servocontrolled hydraulic 

actuators connected by a heavily-reinforced, built-up, W36x302 spreader beam, see Figure 

5.2. 
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Figure 5.4. Circular End-Blocks 

 

 

Figure 5.5. L-shaped Brackets Welded Inside the Pipes to Support the Circular 

End Blocks 

 

5.2.3. Development of the Earthquake Smeared Strain History Protocol 

To develop a strain history for use in the bar buckling test apparatus, a strain history 

was derived from the experimental results of a full-scale bridge column tested at the single 

axis Large High-Performance Outdoor Shake Table (LHPOST) at the University of 

California - San Diego (Schoettler et al., 2012), see Figure 5.6.  



 

147 

 

 

Figure 5.6. Overall View of Full-Scale Reinforced Concrete Column Tested at the 

Large High-Performance Outdoor Shake Table at the University of California – 

San Diego (Schoettler et al., 2012) 

Smeared longitudinal strains and curvatures were computed from the vertical 

displacement sensors placed on the North and South faces (perpendicular to the direction 

of shaking). The vertical displacement sensors were spaced 8 in. apart, starting 2 in. above 

the column base and extending for 48 in. (i.e. one column diameter). Above this, 24 in. and 

31 in. spacings were used, see Figure 5.7 and 5.80. The 2-in. spacing at the column base 

was left to minimize the effect of fixed-end rotations, caused by strain penetration of the 

column bars anchored in the foundation, in the curvatures and strains derived from these 

sensors. The fixed-end rotation was monitored using two pairs of vertical displacement 

sensors, which spanned the horizontal crack expected to develop at the column-foundation 

interface (Schoettler et al. 2012). 
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The experimental work was completed after several longitudinal bars fractured in 

the plastic hinge region of the column, while the others showed significant signs of 

buckling, see Figure 5.9. 

 

 

Figure 5.7. Schematics of Column Deformation Panels on: (a) South Face; (b) 

North Face (Duck et al. 2018) 
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Figure 5.8. Curvature, Shear, and Fixed-End Rotation Linear Potentiometers of 

the Full-Scale Column: (a) Instrumented South Face (b) Plan View of Column 

and Linear Potentiometers; (c) Instrumented North Face (Schoettler et al., 2012) 

 

 

Figure 5.9. Longitudinal Bars Extracted from Column after Completion of 

Experimental Work (Schoettler et al., 2012) 

The classical approach to obtain longitudinal strains and strain histories from one 

such column, has been the use of an equivalent plastic hinge length, Lp, following the form: 

(a) (c)

(b)
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np ye bL = L+ f d     5.1 

 

where L is the column shear span, fye is the expected yield strength and dbn is the 

nominal diameter of the column longitudinal bar. The first term on the right side of 

Equation 5.1 corresponds to the contribution of the spread of plasticity along the column 

height to Lp, while the second term in the equation accounts for the strain penetration effect. 

Supported on the experimental work carried out in columns at the University of Canterbury 

in the late 1970s and 1980s, Paulay and Priestley (1992) proposed the coefficients α = 0.08 

and β = 0.15/ksi for Equation 5.1. These coefficients have been adopted by SDC (2013). 

Figure 5.10a depicts a laterally loaded column that has been displaced well past 

yielding to a displacement Δ. Figure 5.10b and c show the bending moment diagrams and 

corresponding curvature diagrams at two stages of loading: (i) at first yield and (ii) at a 

stage well into the plastic range where a plastic hinge has developed in the column. Figure 

5.10d shows the idealized curvature diagram used by Paulay and Priestley (1992) to define 

the equivalent plastic hinge length for the second loading stage. In this approach, the 

maximum curvature in the idealized curvature diagram is made equal to the peak curvature, 

ϕk, computed for the test column at a stage of loading well into the plastic range. This 

assumption makes it possible to determine coefficients α and β and the equivalent plastic 

hinge length Lp (Restrepo et al., 2006).  
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(a) (b) (c) (d) 

Figure 5.10. Definition of Peak Curvature-based Equivalent Plastic Hinge Length 

Lp: (a) Column; (b) Bending Moment Diagram; (c) Curvature diagram; (d) 

Idealized Curvature Diagram (Duck et al. 2018) 

 

Figure 5.11 compares coefficients α and β calculated using the approach proposed 

by Paulay and Priestley for the test column with the coefficients proposed by these 

researchers. The values of coefficient α calculated for the experiment, see Figure 5.11a, 

increase with the drift ratio (or with the displacement ductility). That is, as the column 

undergoes further plastic displacements, the portion of the equivalent plastic hinge length 

spreading over the column increases as the displacement ductility increases. The 

correlation of coefficient α with ductility had also been pointed out by Restrepo et al. 

(2006). This means that a constant coefficient α seems to be only a fair approximation. The 

values of coefficient β calculated for the test column, see Figure 5.11b, are largely 

uncorrelated with the imposed drift ratio (or displacement ductility), an observation also 

made by Restrepo et al. (2006), which justifies the use of a constant value for this 

coefficient. Nevertheless, in this test, the values of coefficient β are much lower than that 
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those recommended by Paulay and Priestley. Restrepo et al. (2006) had reported values of 

β greater than the proposed value of β = 0.15/ksi.  

 
(a) 

 
(b) 

Figure 5.11. Comparison of Equivalent Plastic Hinge: (a) Coefficient α;  
(b) Coefficient β. (Duck et al. 2018) 
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The significant correlation between coefficient α and displacement ductility implies 

that the equivalent plastic hinge length, Lp, is also correlated with displacement ductility, 

something that is not recognized in Equation 5.1, see Figure 5.12. 

 

Figure 5.12. Comparison of Equivalent Plastic Hinge Lengths (Duck et al. 2018) 

 

The development of longitudinal bar strain histories from the approach proposed 

by Paulay and Priestley (1992), using a ductility independent equivalent plastic hinge 

length, will therefore distort the strain amplitudes at low and at large displacement 

ductilities, which will have an effect in the prediction of the strain amplitudes to determine 

the life of a bar. A more suitable approach is to calculate longitudinal strain histories using 

a smeared strain compatible equivalent plastic hinge length, Lpε. In this approach, the 

equivalent plastic hinge experiences a smeared curvature, k  , see Figure 5.13, such 

that the test strains recorded on the extreme longitudinal bars in tension and compression, 
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each smeared over length Lpε, equals the strains computed from a moment-curvature 

analysis at curvature  , Figure 5.14. 

 

(a) (b) (c) (d) 

Figure 5.13. Definition of Smeared Curvature-based Equivalent Plastic Hinge 

Length Lpε: (a) Column; (b) Bending Moment Diagram; (c) Curvature diagram; 

(d) Idealized Curvature Diagram (Duck et al. 2018) 

 

 
(a) (b) 

Figure 5.14. Definition of Smeared Curvature-based Equivalent Plastic Hinge 

Length Lpε: (a) Domain Used in the Theoretical Moment-Curvature Response;  

(b) Cross Section, Curvature and Key Strains at Point A (Duck et al. 2018) 
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An optimization procedure of the experimental data recorded during column testing 

(Schoettler et al. 2012) resulted in the coefficient values α = 0.248 and β = 0.15/ksi for the 

smeared curvature-based equivalent plastic hinge length, resulting in Lpε = 0.3L = 1.82D, 

or Lpε = 2.24Lp. As expected, the use of the smeared curvature and smeared strains results 

in a length Lpε significantly greater than Lp and 0.5D, a value often cited for the equivalent 

plastic hinge length, which clearly indicates the two equivalent plastic hinge length 

definitions are not interchangeable. The advantage of the smeared curvature equivalent 

plastic hinge length is that, at constant value, it can predict very closely the test tensile and 

compressive strains smeared over the length Lpε for the entire range of drift ratios and 

displacement ductilities, see Figure 5.15. 

 

Figure 5.15. Smeared Tensile and Compressive Strains Measured along Lpε 

against Predicted Values from Idealized Curvature Distribution using Lpε at 

different Displacement Levels (Schoettler et al. 2012) 
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Figure 5.16a shows the smeared strain history computed using length Lpε for an 

extreme longitudinal bar in the test column reported by Schoettler et al. (2012) during the 

first eight ground motions, see Figure 5.16a. This strain history was simplified to capture 

the most relevant reversed cycles, see Figure 5.16b, and then simplified further to generate 

the “random” protocol used for testing of the rebar specimens, see Figure 5.16c. 

 

Figure 5.16. Strain History of Long. Bars from Testing of Full-Scale Bridge 

Column: (a) Complete Strain History; (b) Condensed Strain History;  

(c) Simplified Strain History used for Testing 

 

 

5.2.4. Mean Strain History Protocols 

Besides the “random” strain history depicted in Figure 5.16c, a series of constant 

amplitude tests were also performed for the various aspect ratios, ℓ/dbℓ, of the rebar 

specimens used in the experimental work. These tests were performed to establish a 



 

157 

 

relationship between deformation amplitude and the number of cycles to failure, to allow 

for comparison with current fatigue models. All constant amplitude strain histories began 

with a series of three elastic cycles with an amplitude equivalent to half the expected yield 

strain of the bars. After the elastic cycles, constant amplitude cycles with strain amplitudes 

ranging from 2.8% to 4.5%, were used until fatigue failure of the specimens. The complete 

histories are shown in Figure 5.17.  

 

Figure 5.17. Constant Amplitude Strain Histories 

 

5.3. Reinforcing bar Properties 

Four monotonic tensile tests were performed on ASTM A706 Grade 60 bars from 

two different manufacturers (MFR-A and B) to obtain their mechanical properties. Testing 

procedures were according to ASTM E8 (2016) using a closed-loop active hydraulic 

SATEC universal testing machine. Two sets of bars were tested per manufacturer, where 

MFR-A corresponds to the bars provided by Manufacturer-A and MFR-B corresponds to 
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bars provided by Manufacturer-B. Complete monotonic stress-strain responses of the bars, 

up to fracture, were recorded for all specimens. Strain measurements were obtained using 

both a 2-in. gage length extensometer and an in-house designed clip gage. Stresses were 

obtained by dividing the force exerted by the machine, by the nominal bar area. The results 

of all four tests are plotted in Figure 5.18 and the material properties tabulated in Table 5.1. 

 

Figure 5.18. Monotonic Tensile Tests of Four ASTM A706 Grade 60 Bars from 

Two Manufacturers in Engineering Coordinates 

 

The average yield stress, fy, of the bars from MFR-A was 71.3 ksi which satisfies 

the ASTM A706 requirements for Grade 60 bars (fy ≤ 78 ksi). On the other hand, the 

average yield stress for the two MFR-B bars was 60.2 ksi, barely exceeding the minimum 

strength of 60 ksi prescribed in the A706 standard. The upper and lower yield strengths are 

also tabulated, per ASTM E8 (2016), see Table 5.1. The average tensile strength, fu, for 
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MFR-A bars was 98.4 ksi (1.38⸱fy) and 85 ksi (1.41⸱fy) for MFR-B bars, thus meeting the 

ASTM requirement for the tensile-to-yield strength (T/Y) ratio fu ≥ 1.25⸱fy. The average 

engineering uniform strain, εu, equaled 12.4% for MFR-A and 13.1% for MFR-B. Per 

ASTM E8 (2016), the uniform strain corresponds to the strain at maximum force sustained 

by the bar just prior to necking and includes both elastic and plastic strains. The power 

term, P, obtained from a least-squared optimization between each recorded strain hardening 

branch and the formulation for this curve proposed by Mander (1983) is also tabulated. The 

elastic energy, Wy, defined as the area under the monotonic curve up to εy, is numerically 

integrated and shown in Table 5.1 

The equivalent carbon content from the mill certificates provided by the 

manufacturers is tabulated in Table 5.2. Both equivalent carbon contents meet the 0.55% 

limit established by ASTM A706 (2016), at 0.470% and 0.436% for MFR-A and MFR-B 

respectively. 

Table 5.1. Material Properties from Monotonic Tensile Tests in Engineering 

Coordinates 

 fy (ksi)        

 Upper Lower Avg εy (%) εsh (%) fu (ksi) εu (%) P T/Y 
Wy 

(kip/in2) 

MFRA-1 71.4 70.9 71.0 0.280 1.01 96.8 12.7 3.2 1.36 10.2 

MFRA-2 71.6 71.5 71.6 0.300 0.660 99.9 12.0 3.6 1.40 10.9 

MFRB-1 60.0 59.9 59.9 0.190 0.847 84.8 12.9 3.2 1.42 5.84 

MFRB-2 60.6 60.3 60.5 0.230 0.887 85.2 13.2 3.4 1.41 7.36 
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Table 5.2. Chemical Composition and Equivalent Carbon Content (C.E.) of 

Reinforcing Steel Bars  
 

C (%) Mn (%) P (%) S (%) Si (%) Cu (%) Ni (%) Cr (%) 

MFR-A 0.29 0.91 0.02 0.023 0.29 0.44 0.13 0.16 

MFR-B 0.26 0.98 0.007 0.021 0.21 0.21 0.08 0.09 

  
Mo (%) Sn (%) V (%) Nb (%) Al (%) Cb (%) C.E. 

MFR-A 0.03 0.014 0.043 0.003 0.003 - 0.470 

MFR-B 0.02 - 0.049 - - 0.001 0.436 

 

 

 

5.4. Instrumentation 

Given the importance of establishing a relationship between global and local strains 

to define strain amplitude and damage to the bar, each bar was well instrumented. Smeared 

strains for each specimen were measured using at least two diametrically-opposite clip 

gages with a fixed gage length equal to half the bar’s unsupported length, see Figure 5.19. 

Cyclic tests were controlled by the readings from the clip gage to match the desired testing 

protocols, see Figure 5.16 and 5.17. The clip gages were designed in-house specifically for 

this project and consisted of 1.5mm (0.063in) thick aluminum 7075-T6 arches mounted on 

a steel frame. Each clip gage arch was instrumented with two strain gages, one on the 

convex face and one on the concave face of the arch. The thickness and dimensions of the 

arches were such that at a maximum expected bar elongation of 6%, the maximum axial 

strain in the arches remained less than 50% of the aluminum yield strain. This design 

criterion ensured a good measurement resolution and that the clip gages would be reusable. 

While the main objective of the clip gages was to accurately measure large deformations, 

even when the bars buckled, their design ensured an excellent resolution even for strains 
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less than the bar’s yield strain. A set of clip gages was built for unsupported lengths of 6dbℓ 

and 8dbℓ. Once built, each clip gage was calibrated using monotonic tensile tests on a 

closed-loop active hydraulic SATEC universal testing machine. The clip gage data 

obtained from these tests was compared to the data obtained from a 2 in. MTS extensometer 

to obtain the calibration factors between the axial strain of the clip gage arches and the 

axial strain of the bar. Figure 5.20 shows a comparison of a tensile monotonic test between 

the extensometer and the calibrated clip gage. The four contact points of the clip gages 

with the specimens where along the bar’s vertical ribs at the theoretical inflection points of 

the buckled shape, using hardened steel tips. 

Local strains on the bar were measured by 5mm (0.197in) long electrical-foil strain 

gages. Two sets of two diametrically-opposite strain gages were placed for all specimens 

at the theoretical inflection points of the buckled shape, orthogonal to the face of the bar’s 

vertical ribs. A series of strain gages were placed at the bars’ mid-height to obtain the 

longitudinal strain profile in the critical section of the buckled bar. The maximum 

compressive and tensile engineering strains, corresponding to the concave and convex 

faces of the buckled bar, as well as the curvature at the mid-section of the tested specimens, 

were computed from a least-squares fit of the strain gauge records collected during each 

test, using Bernoulli’s hypothesis. Under the assumption that plane sections remain plane, 

finding the average strain and curvature of a deformed section is equivalent to computing 

the parameters of the plane containing the deformed section. By using sets of three strain 

gages, the coordinates of three points are known and the parameters of the plane equation 

can be solved from a simple linear system with equal number of equations and unknowns. 



 

162 

 

Since each set of three strain gauges results in a different response for the average strain 

and curvature in the mid-section, the more representative combination was selected. This 

selection was based on the authors’ engineering judgement, to determine the extreme 

values of strain in the concave and convex side of the buckled bar. 

Rotations of the upper and lower grip pipes as well as of the loading spreader beam 

were measured using three pairs of inclinometers placed orthogonal to each other (total of 

six inclinometers). The relative horizontal displacements between the UPG and the lateral 

restraint system (LRS) sleeve were measured through four linear potentiometers place on 

the sleeve and bearing against the upper grip pipe. The potentiometers were placed on the 

North, South, East, and West faces of the sleeve. The vertical displacement of the spreader 

beam connecting the actuators was measured by four cable-extension displacement 

transducers, referred from here on as string potentiometers, placed atop the strong floor, 

away from the actuators, one on each corner of the beam.  
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Figure 5.19. Specimen Instrumentation 

 

 

Figure 5.20. Monotonic Tensile Test Used to Calibrate Clip Gage Using 

Extensometer 
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5.5. Test Setup 

5.5.1. Day 1: Bar Embedment in Upper Pipe Grip (UPG) 

Once all the previously described components of the loading frame were fabricated 

and assembled, the first step in the test setup was to fill the pipe grips with the sulfur 

concrete. The sulfur was first crushed into a fine powder and mixed with the aggregate, in 

the amounts previously discussed. The UPG was filled with the sulfur concrete mix and 

placed inside the concrete tank filled with the heat transfer fluid, and the heating system 

turned on. After approximately 4 hours of heating the sulfur in the mix has melted, and any 

previously tested bar still embedded in the pipe was removed. The bar removal was 

achieved by welding a 1.5 in threaded rod (or a large bolt) at the top of the bar, placing a 

metal plate through it and a nut to prevent it from moving up, then a pair of hydraulic jacks 

were installed between the circular steel block at the top of the pipe and the plate, pushing 

the bar out, see Figure 5.21. 

To facilitate the embedment of a new bar specimen, while the sulfur is still liquid, 

the circular block was removed from the pipe and a 4” hole was drilled in the sulfur, all the 

way to the bottom of the pipe, using an auger. Once the augering was completed, the 

circular block was re-positioned at the top of the pipe and the aligning metal frame installed 

over the tank, see Figure 5.2. The rebar specimen was placed inside the pipe vertically 

aligned, with a typical embedment length between 39 in and 44 in., although two successful 

tests were performed with a development length of only 32 in. The 4-in. thickness of the 

steel blocks was not accounted for in the development length of the bars. Air voids were 
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removed using a formwork vibrator attached to the embedded bar and sulfur concrete was 

added until the molten material reached the required height. At this point the concrete tank 

heating system was turned off. The pipe was left inside the tank overnight to cool down.  

  
(a) (b) 

Figure 5.21. Removal of Tested Bar from Sulfur Mix: (a) Welded Bolt at the Top 

of the Fractured Bar; (b) Hydraulic Jacks Pushing Rebar out  

 

5.5.2. Day 2: Bar Embedment in Lower Pipe Grip (LPG) 

The following day the aligning frame and upper pipe grip were removed from the 

tank. Oil on the outside of the pipe was removed and the pipe was flipped vertically, with 

the free end of the bar pointing downward. The heating system for the Lower Pipe Grip 
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was turned on and left running for approximately 4 hours. Once the sulfur in the LPG had 

melted any tested bar still embedded was removed following a similar procedure to the one 

used in the UPG, see Figure 5.21. Following the bar removal, the circular block was 

extracted from the lower pipe, to drill a 4” diameter, 60” deep hole in the sulfur with the 

auger, facilitating future embedment. 

With the sulfur in the lower pipe still molten, the upper pipe was hoisted through 

the sleeve of the LRS, see Figure 5.2, and the bar aligned to go through the center hole in 

the circular block re-installed at the top of the pipe, see Figure 5.4. The bar was then 

embedded a few inches into the LPG, using the self-weight of the upper pipe alone. The 

required bar embedment is then achieved by connecting the spreader beam to the base of 

the upper pipe and pushing down with the hydraulic actuators at each end of the beam. 

Development lengths used for the lower grip ranged from 48 in. to 52 in. and did not 

consider the portion of the bar inside of the steel block. The sulfur concrete mix was then 

added to the lower pipe in a similar manner as with the upper pipe. After the bar was 

embedded, air voids in the sulfur concrete were removed by attaching a formwork vibrator 

to the bar. The heating system for the LPG was turned off and the sulfur concrete was let 

cool overnight.  

It is worth noting that, while the sulfur concrete has a very rapid strength gain, it 

also has a very low thermal conductivity. Hence, the outer region of the sulfur concrete 

inside the pipes would cool at a faster rate than the core of the material. This phenomenon, 

plus the time it took for the oil around the LPG to cool, lead the researcher to wait at least 

24hrs prior to testing after embedding the lower end of the bars, to allow for all materials 
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to reach room temperature and ensure the sulfur concrete had gained the required strength. 

Two tests were performed less than 24hrs after embedding to test this assumption. In both 

cases, the bars pulled out of the sulfur concrete.  

 

5.5.3. Day 3: Instrumentation 

With the bars embedded into both pipe grips and after post-tensioning the rods 

connecting the spreader beam to the base of the upper pipe, the specimens were 

instrumented. First, the strain gages were placed on the bar’s theoretical inflection points 

and mid-height, as described in section 5.4. A total of four punch marks were then made 

on the vertical ribs of the bar, at the theoretical inflection points, marking the location 

where the four steel tips of the clip gages would attach to the bar. These punch marks also 

helped the tips to remain in place when the bar elongated or shortened during testing. For 

several tests, two horizontal string pots were attached at the mid-height of the bar to 

measure out of plane displacements. The horizontal linear potentiometers on top of the 

sleeve were then attached and placed against the side of the upper pipe to measure their 

relative displacement, see Figure 5.22. Finally, the orthogonal pairs of inclinometers on the 

upper and lower pipes and loading beam were installed.  

With all the instrumentation installed, an overall system check was performed to 

balance and shunt the strain gages and ensure all instrumentation was functioning properly.  



 

168 

 

 

Figure 5.22. Linear Potentiometers and Clinometers Measuring Relative Motion 

Between Upper Pipe Grip (UPG) and Lateral Restraint System (LRS) 

 

5.5.4. Day 4: Testing and Disassembly  

Cyclic testing was performed, using the clip-gauge readings as reference for the 

testing protocol, see Figure 5.16 and 5.17. Once testing was completed and the specimen 

fractured due to plastic buckling-straightening fatigue, the spreader beam was detached 

from the UPG, so the pipe could be removed and placed inside the concrete heating tank. 

This was the final stage of the test setup.  
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The described four-day testing procedure was the product of multiple adjustments 

to the methodology initially planned for this project, as multiple challenges arose during 

the experimental work. Bar embedment into highly confined sulfur concrete proved to be 

the most challenging aspect of the experimental work, and different approaches were taken 

to try and perform this task as efficiently as possible. 

 

5.6. Results 

5.6.1. General 

A total of thirty-five tests were performed, with Table 5.3 summarizing the main 

properties and outcome of the tests. Steel reinforcing bars from two different manufactures 

were used for the experimental work. Specimen01 thru Specimen29 were from the same 

batch from manufacturer A, while Specimen30 thru Specimen35 were from the same batch 

from manufacturer B. Unsupported lengths of 8dbℓ and 6dbℓ were used in the specimens 

tested, based on the expected distance between points of inflection, dPOI, corresponding to 

one-half of the unsupported length, in the reinforcement of bridge columns designed 

according to Caltrans Specifications. A total of three tests, specimens 27 to 29, were 

performed with an aspect ratio equal to 1.5 to remove nonlinear geometrical effects 

(Restrepo -Posada, 1992) and mainly for academic purposes.  

For the commissioning of the loading apparatus, two monotonic tests were 

performed first to ensure the test setup was able to properly apply and transfer the loads 

required to fail a specimen under uniaxial tensile load. After the commissioning tests, a 

series of random history and constant amplitude tests were performed, with different aspect 
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ratios, to compare the effects of buckling on the fatigue life of the bars. As previously 

explained, given the initial difficulties with the embedment of the bars and in collecting 

accurate data from cyclic loading, results from specimens 3 thru 13 were not used for 

analysis. 

The effects of a larger aspect ratio and bar buckling on the fatigue life of the bars 

are clearly visible when comparing the cyclic response of bars with different aspect ratios 

tested with the same constant amplitude strain history: Figure 5.24 shows the cyclic 

response for Specimen16 with an unsupported length of 8 dbℓ, while Figure 5.25 shows the 

response of Specimen20 with an aspect ratio of 6. While both specimens show a 

progressive reduction in stress for the same strain target, the strength degradation due to 

the formation and propagation of fatigue cracks occurs at an earlier stage and at a faster 

rate for the bar with the larger aspect ratio. This leads to a reduced fatigue life for the bar 

with the largest aspect ratio, as summarized in Table 5.4.  

Strain penetration was visible in all tests and must be accounted for when 

interpreting the results of the experimental work. For instance, as the unsupported length 

of the bar increases due to strain penetration, the stress at buckling continues to decrease 

with each successive cycle. While strain penetration is to be expected in a RC column, if 

buckling occurs at the base of the column, strain penetration will occur only at the base of 

the bar. In the current experimental work, the effects of strain penetration are exacerbated 

as the tested bars experience strain penetration at both the top and bottom of the bars. 

Moreover, while the steel blocks placed around the bars at the surface of the sulfur concrete 

simulate the restraint provided by the transverse reinforcement in a column and the cone 
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formed at the base of RC columns after cyclic loading, they further intensify the effects of 

strain penetration. The combined strain penetration (top plus bottom) at the end of testing 

equaled to 1.6 in. for Specimen19 (8.88% of original unsupported length), 0.9 in. for 

Specimen20 (6.67% of original unsupported length), and 1.25 in. for Specimen24 (9.26% 

of original unsupported length).  

5.6.2. Typical Modes of Failure 

Except for the specimens tested under monotonic tension that exhibited necking 

prior to failure, the specimens tested under Buckling-Straightening conditions developed 

one or more cracks on the concave side. All observed cracks began at the root of the 

transverse deformations of the bar and propagated toward the convex side of the bar. These 

cracks resulted in failure once there was not enough material to transfer the applied loads. 

No necking was observed prior to failure of these specimens. Figure 5.23 shows the 

fracture surface of two of the specimens tested. 

  

(a) (b) 

Figure 5.23. Fracture Surfaces Due to Plastic Buckling-Straightening Fatigue:  

(a) Specimen15; (b) Specimen16  

Stable cracks Unstable cracks 
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Table 5.3. Summary of Experimental Program 

 

Aspect 

Ratio 

(s/dbℓ) MFR Test Type§§ Test Outcome Notes 

Specimen01 8.56 A Monotonic Fractured Bar Strain data from SG 

Specimen02 5.56 A Monotonic Fractured Bar Strain data from SG 

Specimen03 10.00 A Cyclic - RH Fractured Bar Strain data from SG 

Specimen04 7.78 A Cyclic - RH Fractured Bar Strain data from SG 

Specimen05 7.78 A Cyclic - RH Fractured Bar Strain data from SG 

Specimen06 8.00 A Cyclic - RH Fractured Bar Strain data from vertical SP 

Specimen07 7.78 A Cyclic - RH Bar Pullout Strain data from vertical SP 

Specimen08 7.89 A Cyclic - RH Duct Pullout Strain data from vertical SP 

Specimen09 7.56 A Cyclic - RH Bar Pullout Strain data from vertical SP 

Specimen10 8.36 A Cyclic - RH Fractured Bar Strain data from vertical SP 

Specimen11 8.00 A Cyclic - RH Fractured Bar 
Strain data from CG / CG leg 

slipped on second to last cycle 

Specimen12 8.22 A Cyclic - RH Bar Pullout Strain data from (2) CG 

Specimen13 8.00 A Cyclic - RH Fractured Bar Strain data from (2) CG 

Specimen14 8.06 A Cyclic - CA Fractured Bar Strain data from (2) CG 

Specimen15 8.00 A Cyclic - CA Fractured Bar Strain data from (2) CG 

Specimen16 8.00 A Cyclic - CA Fractured Bar Strain data from (2) CG 

Specimen17 8.11 A Cyclic - CA Fractured Bar 
Strain data from (2) CG / CG 

pushed out by buckled bar 

Specimen18 8.00 A Cyclic - CA Fractured Bar Strain data from (4) CG 

Specimen19 8.00 A Cyclic - RH Fractured Bar Strain data from (4) CG 

Specimen20 6.00 A Cyclic - CA Fractured Bar Strain data from (4) CG 

Specimen21 6.00 A Cyclic - CA Fractured Bar Strain data from (4) CG 

                                                 
§§ RH: Random strain History, see Figure 5.16. CA: Constant Amplitude strain history, see Figure 5.17 



 

173 

 

Table 5.3. Summary of Experimental Program (Continued) 

 

Aspect 

Ratio 

(s/dbℓ) MFR Test Type Test Outcome Notes 

Specimen22 6.00 A Cyclic - CA Fractured Bar 
Strain data from (4) CG / No SG 

at mid-height 

Specimen23 6.00 A Cyclic - CA Fractured Bar Strain data from (4) CG 

Specimen24 6.00 A Cyclic - RH Fractured Bar Strain data from (4) CG 

Specimen25 8.00 A Cyclic - CA Fractured Bar Strain data from (4) CG 

Specimen26 8.00 A Cyclic - CA Fractured Bar No instrumentation used 

Specimen27 1.67 A Cyclic - CA Fractured Bar 
Strain data from SG / Bar 

buckled while embedding - 

Results not reliable 
Specimen28 1.50 A Cyclic - CA Bar Pullout Strain data from SG 

Specimen29 1.50 A Cyclic - CA Fractured Bar 
Strain data from SG / Gages not 

reliable on last tensile cycle to 

failure 
Specimen30 8.11 B Cyclic - RH Fractured Bar 

Strain data from (4) CG / CG 

slipped mid-test 

Specimen31 7.89 B Cyclic - CA Fractured Bar Strain data from (4) CG 

Specimen32 8.00 B Cyclic - CA Fractured Bar Strain data from (4) CG 

 

Table 5.4. Summary of Constant Amplitude Tests  

Strain 

History 

εmax 

(%) 

εmin 

(%) 

εamp
*** 

(%) Specimen Aspect Ratio (s/dbℓ) MFR 2Nf 

Wft 

(kip/in2)  

1 3.0 -0.5 1.75 Specimen14 8 A 13 19.4 

2 2.4 -0.4 1.4 

Specimen15 8 A 29 36.0 

Specimen16 8 A 23 24.0 

Specimen20 6 A 41 56.6 

Specimen22 6 A 37 47.6 

3 3.0 -1.0 2.0 

Specimen18 8 A 9 16.2 

Specimen31 8 B 17 23.2 

Specimen23 6 A 17 33.1 

4 0.0 -4.5 2.25 

Specimen25 8 A 5 10.9 

Specimen32 8 B 7 12.7 

Specimen21 6 A 7 18.0 

 

                                                 
*** εamp=(εmax-εmin)/2 
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Figure 5.24. Axial Stress-Strain Response of #18 Bar with Unsupported Length of 

8 dbℓ Subjected to Constant Amplitude Cycles of +2.4%, -0.4% (Specimen16) 

 

 

Figure 5.25. Axial Stress-Strain Response of #18 Bar with Unsupported Length of 

6 dbℓ Subjected to Constant Amplitude Cycles of +2.4%, -0.4% (Specimen20) 
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Figure 5.26. Axial Stress-Strain Response of #18 Bar with Unsupported Length of 

8 dbℓ Subjected to Constant Amplitude Cycles of +3.0%, -1.0% (Specimen18) 

 

 

Figure 5.27. Axial Stress-Strain Response of #18 Bar with Unsupported Length of 

6 dbℓ Subjected to Constant Amplitude Cycles of +3.0%, -1.0% (Specimen23) 
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Figure 5.28. Axial Stress-Strain Response of #18 Bar with Unsupported Length of 

8 dbℓ Subjected to Random History Cycles (Specimen19) 

 

 

Figure 5.29. Axial Stress-Strain Response of #18 Bar with Unsupported Length of 

6 dbℓ Subjected to Random History Cycles (Specimen24) 

 



 

177 

 

5.7. Summary 

Through the innovative use of sulfur concrete as part of a loading apparatus, the 

cyclical testing of large diameter reinforcing steel bars under large strain amplitudes was 

successfully achieved after multiple unsuccessful attempts by others. These tests allowed 

to obtain the missing characterization of the plastic buckling-straightening fatigue life of 

large diameter bars. Results from relevant experimental work were used to derive a random 

strain history to test the bars in the bar buckling test apparatus. A series of constant 

amplitude tests were also performed to establish a relationship between deformation 

amplitude and the number of cycles to failure. Smear strains for all tests were measured 

using in-house designed clip gages with a fixed gage length equal to half the bar’s 

unsupported lengths. The smeared strains calculated from these displacement sensors more 

closely approximate the strains assumed in design. Unsupported lengths equivalent to 

1.5dbℓ, 6dbℓ, and 8dbℓ were used for the experimental work. Results from these tests show 

strength degradation of the bars due to the formation and propagation of fatigue cracks, 

which occur at an earlier stage and at a faster rate for bars with larger aspect ratios. As a 

result, bars with larger unsupported lengths tend to have a reduced plastic buckling-

straightening fatigue life. The influence of the total strain amplitude, εamp, on the fatigue 

life of the bars was also evident. A larger strain amplitude resulted in a reduced fatigue life 

of the bars. These results match the trends observed by previous research.  
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Chapter 5, in full, is a reprint of the material as it appears in SSRP Report 17/10: 

Plastic buckling-straightening fatigue of large Diameter reinforcing steel bars, 2018. 

Duck, David; Carreño, Rodrigo; and Restrepo, José I. The dissertation author was a co-

author of the report. 
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Chapter 6.  

 

 

LONGITUDINAL BAR – HOOP INTERACTION IN 

CIRCULAR COLUMNS 

 

 

 

6.1. General 

A very common mode of failure observed in the testing of circular bridge columns 

designed per Caltrans specifications is fracture of the longitudinal reinforcement following 

buckling. After spalling off of the concrete cover and upon large amplitude strain reversals, 

bars begin to buckle, first unnoticeably to the naked eye, pushing against the hoops and, 

under some conditions, the hoops yield and buckling of the bar becomes evident. For this 

reason, a number of researchers have investigated the response of reinforcing bars after 

buckling. Section 2.2 presents a review of this research effort. Limited research has taken 

place to assess the response of reinforcing bars that buckle over sets of hoops, with the 

focus of attention taking place in the buckling of bars in between adjacent sets of hoops. 

This section describes the method used and results of the investigation carried out to 
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understand the interaction between the longitudinal and transverse reinforcement in 

circular bridge columns loaded past the onset of buckling in the longitudinal reinforcement. 

The main interest here is the determination, with simple equations, of the characteristic 

dimensions of the buckled shape (e.g. distance between points of inflection, dPOI), and 

maximum strains in the concave side of the reinforcement, as a function of reinforcement 

configuration (e.g. bar size, spacing.), loading history, and material properties (e.g. yield 

stress, ultimate stress). This information is key in determining the fatigue life of a bar and 

is a crucial parameter in the design procedure described in Chapter 7.  

For this study, a series of Finite Element models, representing different 

combinations of column sizes, transverse and longitudinal reinforcement, and material 

properties (e.g. ultimate stress of longitudinal or transverse reinforcement), were developed 

in OpenSees (McKenna, et. al. 2000). The response under axial load was then used to 

identify characteristic dimensions and local strains in the buckled reinforcement, and how 

they correlate to the parameters under study. 
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6.2. Description of the Finite Element Model 

In the OpenSees Finite Elements (FE) models analyzed, each longitudinal bar and 

hoop was modeled as a single displacement-based beam-column element, discretized along 

its length into multiple sub-elements, see Figure 6.1a. The use of displacement-based 

elements accounts for both the axial and bending capacity of the reinforcement.  

The nonlinear behavior of steel is included in the material fibers used to define the 

cross section of each element, see Figure 6.2b, using the steel model by Dodd and Restrepo 

(1995). The geometric nonlinearities, of great importance in the buckling phenomenon, are 

accounted for by corotational geometric transformations in every sub-element of the model 

(Crisfield, 1997). Shear deformations were accounted for by a linear model, with a shear 

modulus, G, computed for a Poisson’s ratio of υ = 0.26. Furthermore, an initial lateral 

imperfection is introduced to the longitudinal elements, to ensure the occurrence of 

buckling, see Figure 6.1c. The magnitude of such imperfection, at only 0.01 inch, has a 

negligible effect on the model response, besides triggering buckling. 

Here it is assumed for simplicity that the cover concrete in the column does not 

influence the response of the longitudinal bars. Often times spalling of the column cover 

precedes the onset of bar buckling, otherwise initial onset of buckling triggers the spalling. 

The concrete in the core of the column, however, influences the response of the 

reinforcement in two ways: it prevents the bars from developing lateral deformations 

towards the core, and exerts a pressure on the longitudinal bars from the lateral expansion 

of the confined concrete due to dilation. The latter effect can be significant when the neutral 

axis depth in the column is deep, which is not the case of bridge columns, which have 
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moderate longitudinal reinforcement ratios and low axial compression. For this reason, a 

model of a bare column cage was chosen to conduct the parametric analysis described in 

this chapter. 

For the loading configuration a triangular axial load distributed pattern was applied 

along each longitudinal element at the hoop locations, with the maximum force at the top 

and bottom nodes, see Figure 6.2.With this load pattern, the maximum axial force 

concentrates at the mid-height of the column, in a length of at least three hoop spacings, 

forcing the first buckling mode at this location. The model includes boundary conditions 

restraining translation and rotation in the nodes at the bottom of the column, and restraining 

all but the vertical displacement in the nodes at the top, see Figure 6.2b. With this load 

pattern and boundary conditions, all longitudinal bars are expected to have equivalent 

lateral deformations along the radial axis of the column.  
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(b) 

 
(a) (c) 

Figure 6.1. OpenSees Model: (a) 3D Model; (b) Reinforcing Bar Cross Section;  

(c) Longitudinal Bar with Initial Imperfection 

 

 
(a) (b) 

Figure 6.2. Loading Configuration and Boundary Conditions: (a) Model Loading; 

(b) Single Bar Boundary Conditions  
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6.3. Variables Investigated 

The characteristic dimensions and maximum/minimum local strains in the buckled 

reinforcement are evaluated for different combinations of geometric and material 

properties of the column, including: column diameter, bar size, reinforcing steel ratio, hoop 

distribution, yield to ultimate strength ratio (T/Y) of longitudinal and transverse 

reinforcement. Additionally, the models were tested under multiple loading histories, see 

Figure 6.4. 

FE models were classified into thirty-three categories for the reinforcement 

configuration, see Table 6.1, combined with eighteen material property combinations for 

the longitudinal and transverse reinforcement, see Table 6.3. The effect of the loading 

protocol was analyzed for a subset of geometric and material property combinations, under 

three loading protocols. 

 

6.3.1. Reinforcement Configuration 

Typical bridge pier designs under Caltrans SDC (2013) have a longitudinal 

reinforcement ratio, ρℓ, ranging between 1% and 2.5%. Similarly, the volumetric 

reinforcement ratio, ρs, ranges between 0.7% and 1.5% with an on center (o.c.) distance, s, 

between hoops satisfying the limitations of SDC Section 8.2.5. When possible, a minimum 

clear spacing of 5 inches between hoops was used in the Finite element models to mimic 

the construction practice. For academic purposes case 27 and onwards, Table 6.1, use 

unrealistic large values of ρs to evaluate the effect of high ρs/ρℓ ratios on the characteristic 

dimensions and strain distributions in the buckled elements. 
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Figure 6.3 shows the basic geometry of the column cages investigated and the 

geometric properties considered. The longitudinal reinforcement consists of equal size bars 

distributed on the perimeter of the column in a single layer. Single or double hoops were 

used, spaced a distance s, as indicated in Table 6.1.  

 
(a) (b) 

Figure 6.3. Column Geometry. (a) Column cross section; (b) Column elevation 
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Table 6.1 Column Model Categories by Reinforcement Configurations 

Case Diameter 

(ft) 

ρℓ 

(%) 

ρs 

 (%) 

Bar  

size 

nbar Hoop size s/dbℓ ρs/ρℓ 

1 4 0.99 0.70 #14 8 #6 (single) 3.5 0.7 

2 4 1.55 0.70 #18 7 #6 (single) 2.7 0.5 

3 4 1.55 0.70 #11 18 #6 (single) 4.3 0.5 

4 4 1.55 1.00 #11 18 #5 (double) 4.3 0.6 

5 8 0.99 0.70 #14 32 #9 (single) 3.5 0.7 

6 8 0.99 0.70 #18 18 #9 (single) 2.7 0.7 

7 8 0.99 1.00 #14 32 #8 (double) 4.1 1.0 

8 8 0.99 1.00 #18 18 #8 (double) 3.1 1.0 

9 8 1.55 0.70 #18 28 #9 (single) 2.7 0.5 

10 8 1.55 1.00 #18 28 #8 (double) 3.1 0.6 

11 8 1.55 1.30 #18 28 #9 (double) 3.1 0.8 

12 8 1.55 0.70 #14 50 #9 (single) 3.5 0.5 

13 8 1.55 1.00 #14 50 #8 (double) 4.1 0.6 

14 8 1.99 0.70 #18 36 #9 (single) 2.9 0.4 

15 8 1.99 1.00 #18 36 #8 (double) 3.1 0.5 

16 8 2.49 0.70 #18 45 #9 (single) 2.7 0.3 

17 8 2.49 1.00 #18 45 #8 (double) 3.1 0.4 

21 8 1 0.45 #18 18 #5 (double) 2.5 0.5 

22 8 1.99 0.90 #18 36 #7 (double) 2.4 0.5 

23 8 2.49 1.12 #18 45 #8 (double) 2.7 0.4 

24 8 1.55 1.09 #18 28 #8 (double) 2.7 0.7 

25 8 1.99 1.39 #18 36 #9 (double) 2.7 0.7 

26 8 1.99 1.39 #14 64 #9 (double) 3.5 0.7 

27 8 2.49 1.74 #18 45 #10 (double) 2.7 0.7 

28 8 1.55 1.55 #18 28 #10 (double) 3.0 1.0 

29 8 1.99 1.99 #18 36 #10 (double) 2.3 1.0 

30 8 1.99 1.99 #14 64 #10 (double) 3.1 1.0 

31 8 2.49 2.49 #18 45 #11 (double) 2.3 1.0 

32 8 1 1.40 #18 18 #9 (double) 2.7 1.4 

33 8 1.55 2.17 #18 28 #11 (double) 2.7 1.4 

34 8 1.99 2.79 #18 36 #11 (double) 2.0 1.4 

35 8 1.99 2.79 #14 64 #11 (double) 2.7 1.4 

36 8 2.49 3.49 #18 45 #11 (double) 1.7 1.4 
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6.3.2. Material Properties 

Uniaxial fibers in the FE model used the constitutive stress-strain relationship 

developed by Dodd and Restrepo ( 1995). Most of the parameters of this formulation can 

be extracted from the monotonic response of the material, see Figure 4.3. Additional 

parameters of the model control the shape of strain hardening backbone curve and the 

Bauschinger effect (P and Ωfac, respectively). Work by Restrepo-Posada et al. ( 1994) 

suggests that Ωfac is correlated to the carbon content in the steel, see Figure 4.20.  

Table 6.2. Material Properties P, T/Y and Ωfac vs Carbon Content (C) 

Coupon # Manufacturer ID ASTM Bar 

Size 

C (%) P Ωfac 

1 1 A615 4 0.42% 3 0.83 

2 1 A706 4 0.28% 3 0.98 

4 2 A706 4 0.27% 2.9 0.91 

5 3 A615 4 0.42% 3.2 0.77 

6 3 A706 4 0.28% 3.1 0.96 

 

With the exception of Set 0, all material property combinations used in the FE 

models (Table 6.3) were based on the average, 10 percentile, and 90 percentile yield 

strength (fy) found by Bournonville, et.al (2004) for Grade 60 ASTM A706 steel. Each 

value of fy was combined with typical T/Y ratios (from 1.25 to 1.5), and with correlated 

values for P and Ωfac. For the remaining material parameters, typically more stable between 

different steel batches, constant values were used, see Equation 6.1. 

Set 0 in Table 6.3 matches the experimental material properties of reinforcement 

used in the Full Scale Bridge Column tested at UC San Diego (Schoettler, et al. 2012). 

Results from Set 0 are used to verify the computational model results against experimental 
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values. Note that in the test the transverse reinforcement, with a yield strength of 54.4 ksi, 

does not comply with Grade 60 reinforcement specifications. 

For material properties not listed in Table 6.3 the values indicated in 6.1 are used, 

consistent with experimental results of ASTM A706 steel specimens. Note that the strain 

at onset of strain hardening in transverse reinforcement, εsh,t, is only slightly larger than the 

yield strain, εyt, to account for the lack of yield plateau in the work-hardened hoops.  

 

Table 6.3. Column Model Combinations of Material Properties 

 LONGITUDINAL 

REINFORCEMENT 

TRANSVERSE 

REINFORCEMENT 

set fyℓ 

(ksi) 

fuℓ 

(ksi) 

Pℓ Ωfac,ℓ fyt 

(ksi) 

fut 

(ksi) 

Pt Ωfac,t 

0 75.2 102.4 3.2 0.89 54.4 85.9 3.9 1.06 

1 66 89 3.1 0.88 70 95 3.1 0.89 

2 66 95 3.4 0.95 70 95 3.1 0.89 

3 66 102 3.7 1.04 70 95 3.1 0.89 

4 70 89 2.9 0.82 70 95 3.1 0.89 

5 70 95 3.1 0.89 70 95 3.1 0.89 

6 70 102 3.5 0.97 70 95 3.1 0.89 

7 75 95 2.9 0.81 70 95 3.1 0.89 

8 75 95 2.9 0.81 70 89 2.9 0.82 

9 75 102 3.2 0.89 70 95 3.1 0.89 

10 70 95 3.1 0.89 66 89 3.1 0.88 

11 70 95 3.1 0.89 75 102 3.2 0.89 

12 66 89 3.1 0.88 66 89 3.1 0.88 

13 66 89 3.1 0.88 75 102 3.2 0.89 

14 75 102 3.2 0.89 66 89 3.1 0.88 

15 75 102 3.2 0.89 75 102 3.2 0.89 

16 66 82.5 2.8 0.80 70 95 3.1 0.89 

17 66 99 3.6 1.00 70 95 3.1 0.89 
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Esℓ = 29,000 ksi (a) 

6.1 

εuℓ = 13% (b) 

εsh,ℓ = 4 εyℓ  (c) 

Est = 29,000 ksi (d) 

εut = 12% (e) 

εsh,t = 1.1 εyt  (f) 

 

 

6.3.3. Loading Protocol 

In addition to the reinforcement configuration and material properties, the effect of 

the loading protocol on the resulting buckled shapes is also evaluated. Two cyclic and one 

monotonic loading protocols are tested, see Figure 6.4. 

Cyclic protocols 1 and 2, with maximum tensile strains of 4.5% and 6%, represent 

extreme strain histories observed in the reinforcement at the plastic hinge region of RC 

bridge columns, where the axial load ratio is typically low. In the selected histories, low-

amplitude reversals typically seen in seismic responses were omitted to expedite the 

computational analysis, assuming they do not play a significant role in the buckling 

parameters under study. 

The use of a monotonic strain history in compression, although unrealistic for the 

reinforcement in a RC bridge column, represents an extreme case to evaluate the effect of 

the loading protocol. 
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Figure 6.4. Loading Protocols: (a) Protocol 1; (b) Protocol 2; (c) Protocol 3 
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6.4. Analysis Results 

FE model analyses were performed for multiple combinations of reinforcement 

configuration (Table 6.1) and material properties (Table 6.3) under Loading Protocol 1 

(Figure 6.4a), with the objective of defining simple equations for characteristic dimensions 

and damage indices of the buckled reinforcement. The effect of the Loading protocol was 

assessed by analyzing a subset of the models under all three protocols, Figure 6.4. 

In all the computational analyses displayed herein, longitudinal reinforcement 

elements underwent significant buckling deformations, well beyond the onset of buckling. 

Comparison to experimental results corroborate the accuracy of the computational models. 

Experimental verification is however limited, since very few studies detailing the state of 

buckled reinforcement from bridge column specimens are available in the public domain. 

Using the strain recorded at the concave and convex side of the critical plastic hinge 

in the buckled shape (εkv and εkx respectively) several characteristic states of the analysis 

are identified: 

1) Zero stress, following the maximum reversal in tension, ε0, corresponding to 

the plastic strain in the material. This step is represented in the figures by the 

symbol ×. 

2) Bifurcation point, when the difference between εkv and εkx becomes greater than 

10%, representing the onset of buckling. The strain at this point is called 

henceforth “Engesser-Considère strain”, εEC. For the following figures the step 

is represented by the symbol: ○.  
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3) Peak Stress in compression is reached, when the segments outside of the 

buckled shape begin unloading in tension, represented in the figures by the ∆ 

symbol. The smeared strain at this point is identified as “von-Karman strain”, 

εvK. 

4) Natural strain in the concave side, shifted by the plastic strain ε’0(1), reaches 

one-half the uniform strain in compression (ε’kv = ε’0 – ε’u/2). This step is 

represented by a □ symbol in the analysis figures. 

5) Natural strain in the concave side, shifted by ε’0, reaches the uniform strain  

(ε’kv = ε’0 – ε’u, DI = 1.0). The ◊ symbol represents this state in following 

figures. 

6) Analysis step halfway between 4) and 5), used for the measurement of 

characteristic dimensions in the buckled shape. In following figures represented 

by the ⁎ symbol. 

 

6.4.1. Characteristic Dimensions of Buckled Bars 

For this section two main dimensions of the buckled reinforcement are identified: 

1) The distance between points of inflection, dPOI, and 2) the distance between centers of 

the rotation in the two plastic hinges at the end of the buckled shape, dCR, see Figure 6.5. 

The distance between points of inflection, dPOI, is identified from the locations of 

zero curvature above and below the plastic hinge in the middle of the buckled shape, where 

the fracture of reinforcement is expected. The distance between centers of rotation, dCR, on 

the other hand, is computed from the centroids of the curvature distribution between the 
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point of inflection and the next point of zero curvature, both above and below the middle 

plastic hinge, see shaded areas in Figure 6.5b. 

 

 
(a) (b) (c) 

Figure 6.5. Characteristic Dimensions in Buckled Shape: (a) Buckled 

Reinforcement; (b) Curvature Distribution; (c) Simplified Buckled Shape Model 

 

Figure 6.6 to Figure 6.8 show the results from the Finite Element model matching 

the reinforcement configuration and material properties of the large column test performed 

at UC San Diego’s Shake Table (Schoettler et al. 2012). Comparison to the experimental 

results in terms of distance between points of inflection, with an analytical dPOI at 3.0∙dbℓ 

and experimental dPOI at 3.3∙dbℓ, yields a difference of only 9%. 

 



 

194 

 

 

Figure 6.6. Global Response of FE model, Set 0-Case 4-Protocol 1: (a) Tri-

dimensional Representation of Buckled Shape; (b) Smeared Natural Strain vs 

Average Stress in one Longitudinal Bar, including analysis steps from Section 6.4 

 

 

Figure 6.7. Deformed Shape of Buckled Reinforcement at Analysis Step 6) (see 

Section 6.4). Set 0 – Case 4- Protocol 1: (a) Lateral Deformation; (b) Node 

Rotations; (c) Curvature Distribution 
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Figure 6.8. Variation of Parameters in Buckled Reinforcement at Each Time-Step. 

Set 0 – Case 4 – Protocol 1: (a) Strain History Smeared Between CRs, Local Strain 

in Concave and Convex Face of Reinforcement; (b) Ratio Between Local and 

Smeared Strains (see 6.4); (c) Average Axial Stress in Reinforcement; (d) Lateral 

Deformation/Eccentricity of Buckled Bar, ecc, Normalized by Bar Diameter, dbℓ; (e) 

Distance Between POIs and CRs, Normalized by dbℓ 
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Figure 6.9. Local vs Smeared Response in Buckled Reinforcement. Set 0 – Case 4 – 

Protocol 1: (a) Natural Strain vs Stress response; (b) Natural Strain Time-History 

 

Table 6.4 and Table 6.5 are the result matrices for the values of dPOI and dCR 

obtained from all cases analyzed under Loading protocol 1. Considering cases 1 through 

26, which have the more realistic reinforcement configurations (see Section 6.3.1), the 

range found for dPOI was between 2.1 and 4.2 bar diameters, with an average of 2.7 and a 

coefficient of variation of 18%. Similarly, the results for dCR range between 4.0 and 8.7 bar 

diameters, with a mean value of 5.3 and a coefficient of variation of 19%. 
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Table 6.4. Results of dPOI/dbℓ from FE Model under Loading Protocol 1. 

  SETS 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

C
A

S
E

S
 

1 3.5 3.0 3.0 3.5 3.0 3.0 3.5 3.0 3.0 3.5  3.0 3.0 3.0 3.5 3.0 3.0 3.0 

2  3.8 4.2 4.2  4.2 4.2 4.2 4.2 4.2 4.2 4.2 3.8 3.8 4.2 4.2 3.8 4.2 

3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.4 3.0 

4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

5 3.0 2.5 2.5 3.0 2.5 2.5 3.0 2.5 2.5 3.0 2.5 2.5 2.5 2.5 3.0 3.0 2.5 2.5 

6 2.3 2.7 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.7  2.3 2.3 2.3 2.3 

7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

8 2.7  2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2   2.2 2.2 2.2 2.2 

9 2.7 2.3 2.3 2.3 2.3 2.3 2.7 2.3 2.3 2.7 2.3 2.3 2.3 2.3 2.7 2.7 2.3 2.3 

10 2.7 2.2 2.2 2.7 2.2 2.2 2.7 2.7 2.7 2.7 2.2 2.2 2.2 2.2 2.7 2.7 2.2 2.7 

11 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 

12  3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

13 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

14  2.5 2.9 2.9 2.5 2.9 2.9 2.9 2.5 2.9 2.9 2.5 2.9 2.5 2.9 2.9 2.5 2.9 

15 2.7 2.2 2.2 2.2 2.2 2.2 2.7 2.2 2.2 2.7 2.2 2.2 2.2 2.2 2.7 2.7 2.2 2.2 

16  2.7 3.0 3.0 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.7 2.7 3.0 3.0 2.7 3.0 

17  2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 

21 4.0 3.6 3.3 3.6 3.3 3.6 3.6 3.6 3.6 3.6 3.6 3.3 3.3 3.3 3.6 3.6 3.3 3.6 

22 2.4 2.1 2.1 2.4 2.1 2.1 2.4 2.1 2.1 2.4 2.1 2.1 2.1 2.1 2.4 2.4 2.1 2.4 

23 2.7 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

24 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

25 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

26 3.0 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 3.0 2.5 2.5 3.0 3.0 2.5 3.0 

27 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

28 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 

29 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

30 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 

31 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

32 1.9 3.2 1.9 1.9 1.1 1.1 1.0 1.9 1.9 1.9 1.1 1.1 2.9 3.2 1.9 1.9 1.9 1.9 

33 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 

34 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

35 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

36 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 
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Table 6.5. Results of dCR/dbℓ from FE Model under Loading Protocol 1. 

  SETS 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

C
A

S
E

S
 

1 7.5 6.4 6.8 7.1 6.6 6.8 7.0 6.7 6.7 7.0  6.6 6.6 6.4 7.1 6.8 6.1 6.2 

2  7.6 7.8 8.0  7.7 7.9 7.9 7.8 8.7 7.9 7.6 7.5 7.2 7.9 7.8 7.2 7.7 

3 6.1 5.3 5.7 5.9 5.3 5.5 5.7 5.4 5.4 5.5 5.4 5.5 5.5 5.3 5.8 5.5 4.6 5.5 

4 5.5 5.0 5.2 5.3 5.1 5.2 5.2 5.1 5.1 5.2 5.2 5.1 5.1 5.0 5.3 5.2 4.7 5.2 

5 5.6 5.0 5.1 5.4 5.0 5.1 5.4 5.0 5.0 5.4 5.1 5.0 5.0 4.9 5.3 5.3 4.9 5.1 

6 4.7 5.1 4.2 4.5 4.2 4.3 4.5 4.3 4.2 4.4 4.3 4.3 4.9  4.3 4.3 4.0 4.3 

7 5.3 5.2 5.3 5.2 5.2 5.2 5.3 5.2 5.2 5.3 5.2 5.2 5.2 5.2 5.3 5.3 5.1 5.3 

8 4.4  4.3 4.5 4.2 4.3 4.4 4.3 4.3 4.4 4.3 4.3   4.4 4.3 4.2 4.3 

9 5.5 4.4 4.7 5.0 4.4 4.5 5.2 4.6 4.6 5.0 4.5 4.4 4.4 4.3 5.1 5.1 4.4 4.7 

10 4.9 4.3 4.4 4.6 4.3 4.4 4.7 4.4 4.4 4.5 4.4 4.4 4.4 4.3 4.5 4.5 4.3 4.6 

11 4.3 4.2 4.2 4.3 4.2 4.2 4.3 4.2 4.2 4.3 4.2 4.2 4.2 4.2 4.3 4.3 4.1 4.2 

12  6.3 6.6 6.7 6.1 6.2 6.7 6.2 6.2 6.8 6.7 6.3 6.5 6.1 6.9 6.6 6.0 6.5 

13 6.9 6.2 6.3 6.2 6.1 6.0 6.2 6.3 6.3 6.5 6.1 6.0 6.1 6.1 6.4 6.3 6.2 6.1 

14  5.3 6.0 6.6 5.0 5.8 6.2 5.4 5.3 6.3 6.1 5.3 5.6 4.9 6.5 6.1 5.1 6.1 

15 4.6 4.3 4.4 4.6 4.3 4.4 4.7 4.4 4.4 4.5 4.5 4.4 4.3 4.2 4.5 4.5 4.3 4.5 

16  6.4 7.0 7.1 5.8 6.5 7.1 6.6 6.7 6.8 6.7 6.6 6.3 6.2 7.3 6.5 5.0 7.3 

17  5.3 5.3 5.6 5.0 5.2 5.9 5.2 5.2 5.5 5.0 5.1 5.1 5.2 5.5 5.2 4.8 5.8 

21 7.9 6.6 6.7 7.6 6.5 7.0 7.3 6.9 7.2 7.2 6.8 6.9 6.6 6.4 7.2 7.0 6.7 6.9 

22 5.4 4.3 4.4 5.1 4.2 4.4 4.6 4.3 4.3 4.6 4.4 4.4 4.3 4.3 4.6 4.5 4.4 4.8 

23 5.1 4.6 4.7 5.0 4.6 4.7 4.9 4.7 4.7 4.8 4.6 4.7 4.5 4.6 5.1 4.8 4.5 4.8 

24 4.2 4.0 4.0 4.2 4.0 4.1 4.2 4.7 4.7 4.3 4.1 4.1 4.0 4.0 4.2 4.3 4.3 4.0 

25 4.2 4.0 4.3 4.4 4.3 4.2 4.4 4.5 4.5 4.3 4.1 4.2 4.0 4.0 4.3 4.3 4.2 4.4 

26 5.8 5.6 5.6 5.6 5.6 5.6 5.8 5.7 5.7 5.8 5.7 5.7 5.6 5.6 5.8 5.8 5.6 5.6 

27 4.4 4.2 4.5 4.5 4.6 4.2 4.4 4.7 4.7 4.5 4.3 4.2 4.2 4.2 4.5 4.5 4.5 4.4 

28 4.0 3.9 3.9 4.0 4.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.9 3.9 4.0 4.0 3.9 4.0 

29 4.0 3.6 4.0 4.0 3.8 4.0 3.9 3.9 3.9 4.0 3.9 4.0 3.6 3.6 4.0 4.0 3.6 3.8 

30 5.1 4.7 4.8 5.0 4.8 5.0 5.1 5.0 5.0 5.1 5.0 5.0 4.7 4.7 5.1 5.1 4.6 5.0 

31 4.1 3.9 3.9 4.1 3.8 4.1 4.0 3.9 3.9 4.1 4.1 4.1 3.9 3.9 4.1 4.1 3.7 4.0 

32 3.7 2.6 3.6 3.7 2.6 2.6 2.6 3.7 3.7 3.7 2.6 2.6 2.6 2.6 3.7 3.7 3.6 3.7 

33 3.6 3.5 3.6 3.6 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.6 3.6 3.5 3.5 

34 3.3 3.1 3.4 3.7 3.2 3.2 3.5 3.2 3.2 3.2 3.2 3.2 3.1 3.1 3.2 3.2 3.1 3.6 

35 4.6 4.4 4.3 4.5 4.6 4.5 4.5 4.7 4.7 4.6 4.5 4.5 4.4 4.4 4.6 4.6 4.5 4.5 

36 3.2 3.1 3.0 3.2 3.3 3.2 3.1 3.4 3.4 3.3 3.2 3.2 3.1 3.1 3.3 3.3 3.3 3.1 
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The effect of the loading protocol on the resulting dPOI and dCR was tested using a 

subset of the FE models (Set 5, Cases 1 - 36) under the strain histories specified in Figure 

6.4. A comparison of the results of dPOI and dCR for the different protocols found negligible 

differences between the two cyclic protocols, and slightly larger values for the monotonic 

case, limited to a 20% increment, see Figure 6.10. Given these results and considering the 

extreme case a monotonic loading in the reinforcing steel of a bridge column represents, 

the effect of the loading protocol on the characteristic dimensions of a buckled bar can be 

neglected. 

 

Figure 6.10. Comparison of Loading Protocol Results for Set 5: (a) dPOI/dbℓ;  

(b) dCR/dbℓ 
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To evaluate the accuracy of the FE model results, the experimental data and post-

mortem information collected from the large bridge column tested at UC San Diego in 

2010 (Schoettler et al. 2012), is studied for comparison to the corresponding analytical 

results. 

Following ten strong intensity ground motions, extensive damage was observed in 

the plastic hinge region of the specimen, including buckling and fracture of the longitudinal 

reinforcement, with limited crushing of the concrete core, see Figure 6.11. 

 

 

Figure 6.11. Column Base East Face View after EQ10 (Schoettler et al., 2012). 

 

As part of the post-mortem analysis, longitudinal bar segments from the plastic 

hinge region were extracted and photographed, providing valuable information on the 

buckled shape of large diameter bars when interacting with transverse hoops. 

For the specimens in Figure 6.12, the distance between inflection points was 

independently measured by five structural engineers, and a weighted average was obtained 

to minimize individual bias. The weight assigned to the measurements from each member 

was based on the precision of the method they used, see Figure 6.13, and the accuracy of 
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their estimation of buckled shapes artificially generated, for which dPOI was known, see 

Figure 6.14. 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 6.12. Buckled Non-Fractured Reinforcement for Identification of dPOI (a) 

Specimen SW2; (b) Specimen SW3; (c) Specimen NE4; (d) Specimen NW3 

 

The results of the weighted average prove satisfactory, with an average error of 3% 

for the measurement of artificial buckled shapes, smaller than the average error in the 

prediction by any one individual. The weighted average of the distance dPOI for each 

specimen in Figure 6.12 is detailed in Table 6.6. 

 

Table 6.6. Weighted Average Distance Between Points of Inflection 

Specimen 

Average 

dPOI/dbℓ 

SW2 4.21 

SW3 2.95 

NE4 2.98 

NW3 3.02 

Mean 3.29 
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Figure 6.13. Specimen SW2 Measurement of Distance Between Points of Inflection. 

 

 

Figure 6.14. Artificial Buckled Shape, dPOI = 2.8 dbℓ 

 

The average dPOI found for the specimens was 3.3∙dbℓ, which was closely predicted 

by the corresponding FE model analysis, see Figure 6.7, with a difference of only 9%. 

A regression analysis of the results from the FE model analyses found the 

characteristic dimensions of the buckled shape, dPOI and dCR, most closely correlate to the 

following reinforcement configuration parameters: ρs/ρℓ, nbar, and s/dbℓ. A simple equation 

is suggested for each dPOI and dCR, Equation 6.2 and 6.3. 
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Figure 6.15a and Figure 6.16a show the fit between the results from Equation 6.2 

and 6.3 and the output from the Finite Element models. The lack of bias and small standard 

deviation of the ratio between FE model solutions and the value predicted by the regression 

equations (μ≈1.0 and δ < 12%, Figure 6.15b and Figure 6.16b), suggests Equation 6.2 and 

6.3 provide an accurate prediction of the dimensions in the buckled shape. Furthermore, 

the fragility curves for each parameter shows the ratio between “measured” (FE model) 

and predicted values can be well approximated by a lognormal distribution, particularly in 

the case of dCR/dbℓ. 

 

Figure 6.15 Regression Results for dPOI/dbℓ, 6.2: (a) Regression Results vs FE Model 

Results; (b) Fragility Curve for Ratio between Regression and FE Model Results 
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Figure 6.16 Regression Results for dCR/dbℓ, 6.3: (a) Regression Results vs FE Model 

Results; (b) Fragility Curve for Ratio between Regression and FE Model Results 

For most predictive variables found in the regression analyses of both characteristic 

dimensions (dPOI and dCR), and limit strains covered in section 6.4.2 (e.g. εvK), there is a 

straightforward explanation of their influence on the buckling response of reinforcing bars. 

The number of longitudinal bars, nbar, however, usually found in the term 3
barn  

throughout regression functions presented in this chapter, needs some additional 

justification. The effect of nbar in the buckling response is two-fold: first, an increase in nbar 

at a constant ρℓ will reduce the diameter, and therefore increase the slenderness, of the 

longitudinal reinforcement; and second, the number of longitudinal bars controls the 

deformed shape and efficiency of the hoop reinforcement in restraining lateral 

deformations, a phenomenon called herein the “polygon effect”. The influence of nbar on 

the slenderness of longitudinal reinforcement had little significance for the size of bars 

typically used in bridge columns, which are large enough to ensure the buckled shape will 
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span between multiple hoops (for extreme changes in bar size however, this effect cannot 

be neglected). On the other hand, the “polygon effect” has significant importance for small 

values of nbar, with the effect reducing as the number of bars increases. For a small number 

of longitudinal bars, the lateral deformations after the onset of buckling will push the 

transverse hoops at very discrete locations, forcing the circular hoop to a deformed shape 

resembling a polygon with vertices at the location of each longitudinal bar. To achieve this 

deformed shape, the circular hoops will bend at the vertices, producing noticeable “kinks” 

see Figure 6.17. Transverse hoops are most effective restraining lateral deformations when 

working in pure tension, not bending, therefore as the number of bars increases, pushing 

the hoops to deform as a circle, the hoops can restraint lateral deformations more 

effectively. The “polygon effect” is expected to be significant only for small values of nbar, 

and become less important as nbar increases, which is consistent with the cubic root, 3
barn

, found in the regression results. 
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(a) (b) 

Figure 6.17. Polygon Effect Observed in Plastic Hinge of Type II shaft (source: 

Lotfizadeh and Restrepo, in-preparation) 

 

6.4.2. Relation Between Local and Smeared Strains 

The compressive strain in the concave side of buckled steel reinforcement, εkv, is a 

critical index of damage, and ultimately controls the strain at fracture. Because of this, the 

estimation of the critical local strain, εkv, in terms of the strain smeared along the plastic 

hinge length of a RC member, is essential to assess damage and predict fracture of 

longitudinal reinforcement. As with the geometry of the buckled shape in section 6.4.1, the 

relation between local and smeared strains in buckled bars is dependent on the 

reinforcement configuration of the RC member, as well as the material properties of 

transverse hoops and longitudinal bars. 

For the analyses in this section, a parameter λCR is defined as the ratio between the 

natural strain in the concave fiber, ε’
kv, and the smeared natural strain between centers of 
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rotation of the buckled shape, ε’
CR, see Equation 6.4. The use of natural over engineering 

strains accounts for the change in geometry of the steel bar at large deformations and takes 

advantage of the symmetric tension/compression response of the material in natural 

coordinates (see Figure 4.1). Both local and smeared strain in λCR are shifted by the peak 

strain in tension, ε’
st, following the change in uniform (natural) strain of steel, ε’

u, found by 

Dodd and Restrepo (1995), see Figure 6.18.  
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Figure 6.18. Effect of Shift Strain on True Strain at Ultimate Tensile Load (Dodd 

and Restrepo, 1995) 
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As stated by Wang and Restrepo (1996), and by Moyer and Kowalsky (2003), the 

buckling of reinforcement in a RC member is highly dependent on the deformations in 

tension, and any longitudinal bar buckling will occur for relatively large values of ε’st, see 

Section 2.2 for details. 

 

From the results of the FE model analyses, the relation between the smeared strain 

amplitude, Δε’CR, and λCR at each analysis step following the onset of buckling (state 2 of 

the analysis, see Section 6.4) was determined for each reinforcement 

configuration/material property combination (Table 6.1 and Table 6.3 respectively). As 

seen in the results for Set 0 – Case 4 in Figure 6.19, the relation between the smeared strain 

and λCR can be approximated by a linear function, see Equation 6.5. The parameters 

defining the line, c1 and Δε’EC, can be determined from a regression analysis of the FE 

model results. 

 

( )CR 1 CR ECλ  = 1+ Δε -Δεc  
 

6.5 

 

Where Δε’EC = ε’st – ε’EC is the amplitude between peak tensile strain and the onset 

of buckling (Engesser - Considère strain). 
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Figure 6.19. Smeared Strain between Centers of Rotation (CR), Shifted by Peak 

Tensile Strain ε’st, vs Ratio of Local Strain in Concave Fiber over Smeared Strain 

(λCR, see 6.4). Set 0 – Case 4 – Protocol 1 

 

Based on Equation 6.4a and 6.5, an upper limit for the strain amplitude between 

centers of rotation, Δε’CR, is determined for the condition of the damage index, DI, 

remaining below 1.0 in fibers in the concave side of the reinforcement, Δε’kv ≤ ε’su, see 

Equation 6.6. 
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Similar to the analysis of the characteristic dimensions dPOI and dCR a simple, yet 

accurate, regression function is generated to predict the value of Δε’EC in Equation 6.5 from 

the reinforcement configuration and material properties of the column, see Equation 6.7 

and Figure 6.20. The mean and standard deviation of the ratio between finite element model 
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and the regression analysis results, at μ=1.0 and σ=8.8%, indicate the good accuracy 

attained by the regression function. 
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Figure 6.20 Regression Results for Δε’EC, 6.7: (a) Regression Results vs FE Model 

Results; (b) Fragility Curve for Ratio between Regression and FE Model Results 

 

Completing the formulation for λCR, the slope c1 in Equation 6.5 is determined by 

regression analysis, see Equation 6.8. Only the cases where c1 was greater than 10 and the 

stability condition ρs/ρℓ > 0.48 was satisfied, see section 6.4.3, were considered for the 

analysis. Only within these limits for c1 the value λCR is expected to control the design for 

plastic buckling-straightening fatigue. For values of c1 under 10, the buckling of 

reinforcement is significantly delayed, therefore large strain concentrations in the concave 

side, ε’kv, are not a concern, whereas reinforcement configurations with ρs/ρℓ ≤ 0.48 will 
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likely have an unstable post-buckling behavior, see section 6.4.3, thus requiring a redesign 

to prevent premature fracture. 
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Figure 6.21 Regression Results for c1, 6.8: (a) Regression Results vs FE Model 

Results; (b) Fragility Curve for Ratio between Regression and FE Model Results 

 

A simplified regression equation for c1, including only variables typically available 

to the design engineer is presented in Equation 6.9. The equation includes a constant bias, 

overpredicting c1 in 95 percent of the analyzed models. This formulation is intended for 

the design of transverse reinforcement to prevent the limit state of plastic buckling-

straightening fatigue for the longitudinal reinforcement, see Chapter 7. . 
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6.9 

In a design procedure, the strain in the reinforcement of the critical element section, 

obtained from a Moment-Curvature (M-ϕ) analysis, corresponds to the smeared value 

along the strain compatible equivalent plastic hinge length of the member, Lpε, described 

in section 5.2.3. By simple geometry, the relation between engineering strain smeared 

along the equivalent plastic hinge of the member, εs, and engineering strain between centers 

of rotation of the buckled shape, εCR, is as follows: 

( ) ( ) ( ) ( )1 1 1p s CR CR p CR EXTL d L d    + =  + +  +−  6.10 

Combining Equation 6.10 for the states of maximum tension and subsequent 

buckling in compression, εs equals εst and εsc in Figure 6.22, results in the following 

relation: 

( )-p t c CR CR p CR EXTL dd L    =  − +  6.11 

Where Δεt-c = εst – εsc is the engineering strain amplitude smeared along the plastic 

hinge length Lpε, ΔεCR=εst-εCR is the engineering strain amplitude smeared between centers 

of rotation of the buckled shape, and ΔεEXT = εst–εEXT is the engineering strain amplitude 

outside the buckled shape of the bar. εst is the maximum engineering strain in tension 

preceding the onset of buckling, see Figure 6.22. Rearranging the terms in Equation 6.11, 

the strain amplitude between centers of rotation, ΔεCR, can be computed as follows: 

( )ε ε EXTΔ Δp t-c p CR

CR

CR

L L d

d

 


 − 
=

−
  6.12 
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(a) (b) 

Figure 6.22. Strain Distribution in Buckled Reinforcement: (a) Dimensions of 

Buckled Element; (b) Stress-Strain Response of Buckled Bar 

 

From Figure 6.22b, the strain smeared along the plastic hinge length of the 

reinforced concrete column, εsc, matches the smeared strain between centers of rotation, 

εCR, until the strain at the peak compressive stress, εvK, defined herein as the von Karman 

strain, is reached. Once εvK is exceeded, the bar segments outside the buckled portion start 

to unload in tension, thus εsc and εCR start to diverge. Assuming that for a well-designed RC 

member the drop in compressive stress following εvK is small, the value of ΔεEXT can be 

approximated by ΔεvK in 6.12 to compute ΔεCR, see Figure 6.22b. 

 

The natural strain amplitude at the peak compressive stress, Δε’vK, can be 

determined from a regression analysis of the FE model results, see Equation 6.13. For a 

reliable performance against plastic buckling-straightening fatigue (PBSF), the strain 
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demand of reinforcing bars shall remain below the von Karman strain amplitude, 

preventing large strain concentrations between centers of rotation of the buckled shape.  
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Figure 6.23 Regression Results for ε’0-ε’vK, 6.13: (a) Regression Results vs FE Model 

Results; (b) Fragility Curve for Ratio between Regression and FE Model Results 

 

As with the characteristic dimensions of the buckled shape (dPOI and dCR), the strain 

estimates obtained from regression analyses should consider the effect of the loading 

protocol. Figure 6.24 shows the results for Δε’EC and Δε’vK for all reinforcement 

configurations with one combination of material properties (Set 5 – Case 1 to 36) for the 

three loading protocols described in section 6.3.3. Unlike the distances dPOI and dCR 

described in Section 6.4.1, the effect of the loading protocol cannot be neglected in the 

values of Δε’EC and, to a lesser extent, Δε’vK. Figure 6.24a shows that an increase in tensile 
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strains, εst, corresponding to 4.5%, 6.0% and 0% for loading protocols 1, 2 and 3, increases 

the distance Δε’EC. A correction factor dependent on εst should therefore be included in 

Equation 6.7. The significant difference in the results of Δε’EC and Δε’vK for the monotonic 

loading protocol is expected, given the difference in the stress-strain response preceding 

the onset of buckling in steel that has not experienced initial strain hardening. However, 

for typical bridge column members with low axial load ratio, the critical reinforcement is 

expected to undergo large plastic deformations in tension before the onset of buckling. The 

following correction to Equation 6.7 is suggested:  
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Figure 6.24. Comparison of Loading Protocol Results for Set 5: (a) Δε’EC; (b) Δε’vK 

 

The effect of the loading protocol on the value of Δε’vK is much less pronounced, 

and no clear trend was observed, see Figure 6.24b. Because of this, no corrections to 

Equation 6.13 are deemed necessary. 

 

6.4.3. Stability of Post-Buckling Response 

Among all the reinforcement configuration and material property combinations 

analyzed as part of this Chapter, a small set of the stress-strain responses – 6 percent of all 

analyses –showed a rapid decrease in the stress capacity after the peak in compression, fvK, 



 

217 

 

was reached, see Figure 6.25. This is an undesirable behavior for the design of the plastic 

hinge region of a column, with a non-ductile response before fracture and large strain 

concentrations in a short span of the reinforcement (e.g. dCR). This section introduces a 

simple formulation, based on statistical analysis of the FE model results, to predict the 

stability of the post-peak response in reinforcing bars, based on the reinforcement 

configuration used. 

 

  

(a) (b) 

Figure 6.25. Stress-Strain Response with Rapid Decrease in Capacity after fvK: (a) 

Set 0 – Case 12; (b) Set 7 – Case 16 

 

For the purposes of this study, a post-peak response is considered stable when one 

of two conditions are met:  

1) The strain amplitude between the peak stress in compression and the plastic 

strain in tension, ε’vK-ε’0, is greater than 5%. This is a conservative limit for the 
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amplitude of strains in the reinforcement of bridge columns under a design level 

earthquake, see Figure 6.26a. 

2) The magnitude of the stress in compression following fvK decreases less than 

10% before the uniform strain, εu, is attained in the concave fiber of the buckled 

shape (ε’0-ε’kv ≥ ε’u, DI = 1), see Figure 6.26b. 

 

  
(a) (b) 

Figure 6.26. Stable Post-Peak Stress-Strain Response: (a) ε’0-ε’vK ≥ 5% (Set 0-Case 

25); (b) Post-Peak Stress Reduction Less Than 10% (Set 3 – Case 10) 

 

From a logistic binary regression, commonly used to predict variables with only 

two possible outputs, in this case between a “Stable” and “Unstable” post-peak response, 

a probability function for the “Stable” condition is obtained:  
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Figure 6.27 shows the fit between the probability function in 6.15 and the observed 

behavior from the Finite element models. Assuming, conservatively, that a reinforcement 

configuration will yield a Stable post-peak response only if P(Stable) > 95%, results in the 

following limit condition: 
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Figure 6.27. Observed Stable or Unstable Post-Peak Response with Logistic Binary 

Regression Function 
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6.5. Summary 

In this chapter the analysis of more than 500 finite element model realizations were 

performed. The models capture the behavior of reinforcing bars well beyond the onset of 

buckling, taking into account the interaction with transverse hoops. Typical reinforcement 

configurations and material properties of bridge columns designed in accordance to 

Caltrans SDC were considered. 

A statistical analysis of the computational results showed that characteristic 

dimensions of the buckled shape (e.g. dPOI, dCR), and the relation between smeared and 

local strains after the onset of buckling, are highly correlated to the reinforcement 

configuration parameters ρs, √nbar
3

, and s/dbℓ, as well as T/Y, the tensile to yield strength 

ratio of the longitudinal reinforcement. Equations 6.2 to 6.16, resulting from the regression 

analysis of the FE model results, are presented herein to predict the geometry of the buckled 

reinforcement (e.g. dPOI, dCR), characteristic strain limits (e.g. εE-C, εvK), and amplification 

factors between smeared and local strains (λCR).  

Based on regression analyses, the effect of the loading protocol on reinforcing bars 

has a negligible effect on the geometric properties of the buckled shape (dPOI, dCR). 

Conversely, the strain amplitude at the onset of buckling, ΔεEC, shows a significant 

correlation to εst, see Equation 6.14. 

Results from the FE model analyses closely match the behavior observed in the 

longitudinal reinforcement of a bridge column designed according to Caltrans SDC and 

tested at UC San Diego’s large outdoor shake-table (Schoettler et al., 2012). The column 

showed significant plastic buckling-straightening fatigue in the plastic hinge region. 
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Comparison of analytical and experimental response was performed in terms of the 

geometry of the buckled bars, in particular dPOI, the information most readily available 

from the experimental results. 

Finally, based on binary regression of the analytical results, a simple limit for the 

ratio between transverse and longitudinal reinforcement ratios, ρs/ρℓ, is established to 

prevent an undesirable drop in the stress capacity of reinforcing bars after the peak 

compressive stress is reached, see Equation 6.16. 

 

Chapter 6, in full, is a reprint of the material as it appears in SSRP Report 17/10: 

Plastic buckling-straightening fatigue of large Diameter reinforcing steel bars, 2018. 

Duck, David; Carreño, Rodrigo; and Restrepo, José I. The dissertation author was a co-

author of this report and first author of the specific Chapter. 
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Chapter 7.  

 

 

DESIGN AND VERIFICATION PROCEDURES FOR PLASTIC 

BUCKLING – STRAIGHTENING FATIGUE (PBSF) OF 

LONGITUDINAL REINFORCEMENT  

 

7.1. General 

Caltrans SDC (2013) specifies minimum design requirements necessary to meet the 

performance goals for Ordinary Bridges. The purpose of this specification is to update 

current Structure Design manuals with new and existing seismic design criteria, based on 

multiple documented research efforts. SDC v.1.7 (2013) addresses some of the most recent 

seismic design philosophies, using displacement demand/capacity for the design of ductile 

members, and capacity design for elements not intended to develop plastic deformations 

(e.g. bent-caps). 

According to Caltrans SDC, the Collapse Limit State in a ductile bridge column 

can be defined by one of two strain limits in the Moment-Curvature analysis of the plastic 

hinge region: crushing of the concrete core, or fracture of the longitudinal reinforcement. 

The code defines a reduced ultimate strain for the longitudinal reinforcement, εu
R, which 
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does not explicitly account for Buckling-Straightening fatigue fracture of bars, often 

observed in bridge column specimens subjected to seismic loads (Schoettler et al. 2012). 

In this section, a design procedure based on SDC specifications is suggested for the 

ductile design of RC bridge columns, with the fracture of longitudinal reinforcement due 

to buckling-straightening fatigue considered explicitly. Additionally, a verification 

procedure is described, to be used when all reinforcement configuration parameters are 

known. 

 

7.2. Current Design Procedure 

As per Caltrans SDC, the capacity and demand of ordinary bridge systems is 

evaluated in terms of the lateral displacement. This section describes a step-by-step 

procedure for the design of a fixed based bridge columns following SDC specifications. 

1) Definition of the geometry of the column (e.g. length, diameter) and initial 

configuration of the longitudinal reinforcement, ρℓ, meeting the limits set forth 

by SDC, Equation 7.1.  

 

,max  0.04st gAA =   (a) 
7.1 

,min  0.01st gAA =   (b) 

 

2) Compute the expected nominal moment capacity, Mne, using expected material 

properties of steel and concrete. 
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3) Compute over-strength shear demand, V0, and design the shear reinforcement 

configuration, ρs, according to Section 3.6 in SDC, using nominal material 

properties. 

col

p ne. .
L L

M M
V = 

0
1 2 1 2  (a) 

7.2 

0nV V    (b) 

Where The resistance factor ϕ for shear is 0.9 (Section 3.2.1 in SDC) 

Verify the conditions for minimum and maximum shear reinforcement are met, 

Equation 7.3 (see SDC section 3.6). 
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4) Determine the equivalent lateral stiffness of the column, K, using either a 

Pushover analysis, Moment-curvature (M-ϕ) response (see Equation 7.4a), or 

effective section properties (see Equation 7.4b), as per section 5.6 in SDC: 

y

y
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 2
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5) Based on the effective lateral stiffness, K, and tributary weight of the column, 

W, compute the first predominant period of the column system. 
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6) Compute the displacement demand for period T1 from the design response 

spectrum (Chapter 2 in SDC). Transform modal displacement demands into 

displacement at the top of the column using the modal shape and participation 

factor of the first mode. 

( ) top

d d
S T  =  

1 1 1  7.6 

Where Γ1 is the modal participation factor of the first mode and φ1
top the 

component of the first mode shape at the top of the column. 

 

7) Determine the plastic displacement demand on the member, Δp in Equation 7.7a, 

and compute the equivalent plastic hinge length, Lp, as per section 7.6.2 in SDC. 

col

p d Y  = −  (a) 

7.7 2
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3
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  (b) 

 

8) Using the plastic rotation concept, θp, compute the plastic curvature, ϕp, along 

the equivalent plastic hinge length to reach Δp. 
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Figure 7.1. Displacement Capacity of Cantilever Column with Fixed 

Base (SDC v.1.7) 

 

9) Perform a monotonic M-ϕ analysis of the critical section of the column, 

considering expected material properties and confinement of the concrete core, 

see Figure 7.2. 

 

10) Identify ϕu for the strain limit states of the concrete core and longitudinal 

reinforcement, Equation 7.9. Verify the minimum displacement ductility 

demand on the column (see Equation 7.10) 
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11) If the plastic curvature capacity from the M-ϕ curve, ϕu-ϕY
col, is greater than the 

demand in Equation 7.8b, move to step 12). If curvature capacity is insufficient, 

modify design depending on the controlling limit state (e.g. if core concrete 

crushes, consider increasing transverse reinforcement for higher confinement) 

and return to Step 4). 

 

12) With the Plastic moment capacity from the M-ϕ curve, Mp
col in Figure 7.2, 

compute overstrength moment, M0, and the shear demand, V0. 

0 1.2 = col

pMM  (a) 

7.11 
M

V
L

= 0
0

 (b) 

 

13) Verify shear design, Equation 7.2b. If transverse reinforcement is sufficient, 

continue with seismic detailing (Chapter 8 in SDC). If transverse reinforcement 

is insufficient, repeat shear design and return to Step 9). 

 

 

Figure 7.2. Moment- Curvature curve (M-ϕ). Column section at the plastic 

hinge (SDC v.1.7) 
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Figure 7.3. Design Flowchart for Ductile Cantilever Bridge Column, as per SDC 

v.1.7 (2013) 

Define geometry and 

longitudinal reinforcement 

Determine Mne using fye and f’ce 

Compute V0 and perform shear 

design (ϕVn≥V0) 

Determine equivalent lateral 

stiffness of the column, K 

Compute period of first 
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Define demand, ∆D, from Disp. Response 

Spectrum and modal properties 

Compute plastic displacement 

demand, ∆p 
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7.3. Proposed Design procedure 

To account for plastic buckling-straightening fatigue of reinforcing bars, the first 

step is to consider the cyclic nature of the bar response. Instead of using a monotonic M-ϕ 

analysis, as indicated by Caltrans SDC (2013), it is recommended to perform the M-ϕ 

analysis in both directions, assigning to the reinforcement the combined strain amplitude 

from both analyses, Δεt-c = εst-εsc. This approach uses the strain amplitude, Δεt-c, as it is a 

better indicator of damage in the reinforcement than the strain in either direction separately, 

see Dodd and Restrepo (1995). 

 

 

 

(a) (b) 

Figure 7.4. Pseudo-Cyclic Method: (a) Strain Profile for Each Seismic Direction; (b) 

Stress-Strain Response of Extreme Reinforcement for Initial and Reversed 

Direction 

 

For a bridge column with constant axial force (e.g. interior column, see Figure 7.5), 

only one M-ϕ analysis is required, as the response is symmetric in both directions. In the 
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case of variable axial force (e.g. exterior column, see Figure 7.5), at least one M-ϕ analysis 

is required for each loading direction.  

To include the plastic buckling-straightening fatigue phenomenon in the design 

procedure as per Caltrans SDC (2013), the following steps can be introduced after the 

column shear design is completed (step 3 in section 7.2): 

 

3-i) Compute the minimum transverse reinforcement, ρs,PBSF1, to prevent the strain 

amplitude demand, Δε’t-c from exceeding the von Karman strain amplitude, Δε’vK. 

A simplified regression for Δε’vK, assuming strain amplitudes in engineering and 

natural coordinates are equivalent in the range of values typically used 

(Δε’vK≈ΔεvK), and a constant bias for a conservative design, is presented in Equation 

7.12. With this bias, the value of ΔεvK is underpredicted in 95% of the FE model 

results analyzed in Chapter 6. The resulting limit for the transverse reinforcement, 

ρs,PBSF1, is then computed as per Equation 7.13. 

( )0.02 min 0.054 0.032 2. 30.017 95 3
vK s bar= + , n -(%) -     7.12 

 

- 3
, 1

- 0.02
3

2
(%) 0.55 - 2.9

0.03

t c
s PBSF barn





 +   7.13 

 

This formulation is limited for a spacing between hoops under 4.5dbℓ. 

 

3-ii) Determine the minimum transverse reinforcement ratio, ρs,PBSF2, required to prevent 

the concave fibers of reinforcement from reaching a damage index of 1, Δεkx = εu, 

before exceeding the von Karman strain amplitude, ΔεvK. Equation 6.6, combined 
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with the condition Δεt-c = ΔεCR when Δεt-c ≤ ΔεvK results in an upper limit for the 

strain amplitude demand: 

2

1 EC u 1 EC
t-c

1 1 1

1- c 1- c
+

1
  -  

2
4

c c c

  


 
     

 






 




        

-t c vK     7.14 

Replacing the right-hand side of Equation 7.14 with a first order approximation 

results in a simple relation: 

u
t-c

c


 

1

 7.15 

Finally, with the simplified (biased) regression of c1 in Equation 6.9, a limit for the 

transverse reinforcement is defined as follows: 

, 2

3
2

-

39.1

 -  29

s PBSF

u
bar

t c

n











 
 
 

 
7.16 

3-iii) Additionally, a minimum transverse reinforcement is required for a stable stress-

strain response after the von Karman strain amplitude, ΔεvK, is exceeded: 

s,PBSF3 0.48    7.17 

 

3-iv) Select the maximum between transverse reinforcement computed for the shear 

demand, ρs,shear, and plastic buckling-straightening fatigue: ρs,PBSF1, ρs,PBSF2, and 

ρs,PBSF3. 

( ), , 1 , 2 , 3max , , ,s s shear s PBSF s PBSF s PBSF    =  

 

4.5
b

s

d
   

7.18 
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(a) 

 
(b) (c) 

Figure 7.5. Strain Profile for Columns in a Bridge Bent: (a) Elevation View of Bent 

Frame; (b) Strain Profile in Interior Column; (c) Strain Profile in Exterior Column 

 

Exterior

column

Interior

column
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7.4. Design Verification 

For the verification of an existing bridge column design, with all reinforcement 

configuration parameters known, the unbiased regression equations from Chapter 6.  can 

be used. The following procedure is suggested to verify the design of a bridge column 

against plastic buckling-straightening fatigue of reinforcing bars: 

1) Compute the von-Karman strain amplitude, ΔεvK, from Equation 6.13. If the 

tensile to yield strength ratio of the longitudinal reinforcement is unknown, 

assume T/Y = 1.4, see Equation 7.19. 

0.030 min(0.054 0.032 30.0175 2.93
s baK rv = + , (%))-' n -     7.19 

 

2) Compute the limit strain amplitude for a damage index of 1.0 preceding the von 

Karman strain, as seen in Equation 7.15. From the unbiased regression of c1, 

see Equation 6.8, and assuming T/Y= 1.4 when the tensile to yield strength ratio 

is unknown, compute ΔεDI=1 as per Equation 7.21. 

925. 9.  91 .5

-1

s
bar

bl

3
1 0c - 

d
= > 

s
+   n  





 
   
 

 7.20 

 

u
DI

c

DI 
 =


 =1

1

 7.21 

 

3) Determine the maximum strain amplitude demand allowed by the longitudinal 

reinforcement as the minimum of the two strain amplitude limits: 

MAX

t-c vK DI min( ) ,   = =   1  7.22 
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For a column with constant axial force, the corresponding maximum curvature 

allowed in the critical section is computed as follows: 

0.95

MAX

t-c
u

D
=







 7.23 

 

Where 0.95D is the approximate distance between the longitudinal 

reinforcement at both extremes of the critical section of the column. 

 

4) Compute the lateral deformation due to plastic rotations in the plastic hinge 

region of the column, Δp. 

Based on the work by Guerrini and Restrepo (in-press) the extent of plasticity, 

ℓpr, in a cantilever bridge column is characterized by the flexure-shear 

interaction. For slender columns, with weak flexure-shear interaction, the extent 

of plasticity, ℓ1, is computed as follows: 

( )
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 
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− −  
 

=

+ −

 7.24 

Where Guerrini and Restrepo (in-press) defined each parameter in terms of the 

material properties and reinforcement configuration of the column, see 

Appendix A for details. 

In case of Strong Flexure-Shear interaction, the extent of plasticity, ℓ2, can be 

computed as follows:  



 

235 

 

0

2

0

1.52

0.94 0.62 1

1.1

.12

2
y y

st y st y yh s

y y

st y st y yh s

T

T

D D
f f

D

fT
x

A A f

T f
x D

A f A ff









  
 − 

   
= 

  
− +      



  

 

  

 7.25 

Based on the type of level of flexure-shear interaction, defined in terms of the 

column slenderness L/D herein, the lateral displacement capacity due to plastic 

rotations in the plastic hinge region can be computed as follows: 

o If L/D ≥ 4.5 (Weak Flexure-Shear Interaction) 

( )1 100 13 . 5. up L =  −    7.26 

o If L/D< 4.5 (Strong Flexure-Shear Interaction) 
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7.27 

Where: 

2

*

0 0

ˆ
dem yy h s

dem y s

f

f f A

D  


 

−
=

+ −
  7.28 

The details of the derivation of Equation 7.27 can be found in Appendix A. 

5) Compute lateral displacement contributions from bond-slip and linear-elastic 

deformations in the column.  
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From Paulay and Priestley (1992), the plastic rotation at the base of the column 

due to strain penetration can be estimated as follow: 

0.15
sp u y bf d

ksi
 =     7.29 

Where fy is the yield strength of the longitudinal reinforcement and dbℓ the 

corresponding bar diameter.  

Since the rotation θsp occurs at the interface between column and footing, the 

lateral displacement due to strain penetration, Δsp, can be computed as follow: 

sp sp L =    7.30 

Since the contribution from linear-elastic deformations in the column is small, 

it can be computed simply as:  

21

3
ye L=   7.31 

Where the curvature at yield, ϕy, can be estimated using the formulation 

proposed by Priestley (2003): 

2.25
Y

ye

D





=  7.32 

Where εye is the expected yield strain of the longitudinal reinforcement. 

6) Compute the ultimate displacement capacity, Δu, and displacement ductility, μΔ, 

and verify they are greater than the seismic demand, ΔD and μD. 

 

p sp e Du  + +=      (a) 

7.33 
D

Y

u 


= 


 (b) 
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7.5. Design and verification Example 

7.5.1. Design Example 

Consider the bridge column tested at UC – San Diego’s Large Outdoor Shake table 

(Schoettler et al., 2012), with a longitudinal reinforcement ratio ρℓ = 1.55%, corresponding 

to 18 #11 bars with a measured uniform strain εu=12.2%. A strain amplitude for the 

longitudinal reinforcement of Δεt-c=4% was extracted from experimental results for a drift 

ratio of 7.5%, see Figure 5.15. According to the proposed design procedure, the minimum 

transverse reinforcement required to prevent plastic buckling-straightening fatigue can be 

computed as follows: 

3

s,PBSF

3
bar 2

0.04-0.02
=max =0.8%

39.1 1.55%
+0.55 18-2.93 , ,0.48 1.55%

0
-

0.04

.1220.032
n   29

 

 
 
 
 
 
 




 
 
 

 7.34 

The actual volumetric ratio of the column, at ρs=0.953%, meets the requirements 

presented herein to prevent a PBSF type of failure. 

7.5.2. Verification Example 

In the following, a step-by-step procedure to verify the lateral displacement 

capacity of the column, with ρs=0.953% and s = 6 (in), is described:  

1) Compute the von Karman strain amplitude: 

K

3

v 0.030 min(0.054,0.03 3 %2 ) -0. .017' 0.953 18 - 2.9 55 5  == +   

2) Compute the smeared limit strain for a damage index of 1.0, assuming it occurs 

before the von Karman strain is reached 
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3) Define the maximum strain amplitude demand, 
-

MAX

t c , and the corresponding 

curvature, ϕu. 

( )-   min 5.5% ,  5.0%   5.0%MAX

t c = =  

0.050
0.0011

0.95

1

48"
u

in
 = 


=  

4) Compute the lateral deformation due to plastic rotations in the plastic hinge 

region of the column. 

Since L/D = 6 ≥ 4.5, assume weak flexure-shear interaction: 

( ) ( )
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−
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Where the parameters used for the computation of ℓ1 are extracted from the 

empirical relationships proposed by Guerrini and Restrepo (in-press) as follow: 
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The lateral displacement due to plastic rotation is then computed as follow: 

( )
0.0011

114" 288" 0.15 114 "0.3 " 10.2p
in

   −  ==    

5) Compute the contributions of strain penetration and elastic deformations in the 

lateral displacement of the column: 

75.2 ksi 1.41" 0.0175 rad
0.0011 0.15

ksi
sp

in
 ==     

0.0175 rad "288" 5.04sp  ==  

-

Y

42.25 0.0026 1.22 10

4 ni8"


 
==  

( )
4

2

y

1 1.22
288" 3.37"

3 in

10−
 = =  

6) Compute the ultimate displacement capacity and ductility: 

u 10.15" 5.04" 3.37" 18.61"= + + =  

18.61
5.5

3.37
 = =  

During testing, the maximum lateral displacement recorded before the first 

longitudinal bar fracture was Δmeasured = 21.8” (δmeasured = 7.6%). The relative difference 

between predicted and measured lateral displacement/drift is thus 16%. 

Additionally, the verification analysis is performed on the same column for a range 

of transverse reinforcement ratios, ρs, between 0.34% and 1.35%, with the resulting drift 

and displacement ductilities presented in Figure 7.6. The limits for ρs correspond to the 

volumetric ratios when replacing the transverse hoops with either #3 or #6 bars (lower and 

upper limit respectively). 
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Figure 7.6 shows that equivalent volumetric ratios, ρs, with single or double hoop 

configurations will yield different results as the transverse reinforcement increases, with 

the more closely spaced single hoops providing better protection against PBSF failure 

(although constructability becomes an issue for very small spacing). From the analytical 

formulation presented herein, large values of ρs will result in high displacement capacities 

(e.g. μ∆ ≥ 9 for #6 single hoops). In practice, the ductility capacity of bridge columns is 

capped by failure modes not considered by the current formulation (e.g. sideway buckling 

of longitudinal bars). Because of this, the curves in Figure 7.6 are only drawn as continuous 

lines until a limit displacement ductility μ∆=9, a commonly observed capacity of bridge 

columns tested experimentally. 

 

Figure 7.6. Drift and Displacement Ductility Capacity for a PBSF Damage Index of 

1.0 vs ρs (Double Hoops @ 6” or Single Hoops @ 3”) 
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7.6. Prediction of experimental results 

To complete the verification of the methodology proposed herein, experimental 

results of reinforced concrete circular bridge columns tested under cyclic load were 

extracted from the literature. In all columns under consideration, the main failure 

mechanism observed was fracture of longitudinal reinforcement, following the onset of bar 

buckling. Table 7.1 shows the lateral displacement recorded in each column before the 

fracture of the first longitudinal bar, Δu,m, as well as the column properties required by the 

verification procedure in section 7.4. 

The experimental test results in Table 7.1 include two full scale columns, one tested 

under seismic excitation (Schoettler et al. 2012), and the other under quasi-static reversed 

cyclic load (Lotfizadeh and Restrepo, in-preparation). The remaining test columns were 

scaled to either one-half (Trejo et al. 2014, and Goodnight et al. 2015) or 35% scale 

(Stephan et al. 2003), with section diameters between 18” and 36”. 

The test columns considered include a wide variety of reinforcement 

configurations, with ρℓ between 0.83% and 3.10%, ρs between 0.82% and 1.74%, and 

reinforcement ratio ρs/ρℓ ranging from 0.3 to 1.0, see Table 7.1.The relative axial load 

applied also shows some variability between cases, ranging between 5% and 20% of f’c Ag, 

see Table 7.1. 

Specimens tested by Goodnight et al. (2015) and Trejo et al. (2014) used spirals for 

the transverse reinforcement, unlike the single and double hoops of the analytical models 

used in regression analysis. This discrepancy in the reinforcement configuration, however, 

showed little effect on the accuracy of the verification procedure described in section 7.4. 
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Table 7.1. Column Properties and Maximum Lateral Displacement 

Source Spec 
ρs 

(%) 

ρℓ 

(%) 
nbar s/dbℓ 

D 

(in) 

L 

(in) 

εy 

(%) 

εu 

(%) 

fyℓ 

(ksi) 

fuℓ 

(ksi) 

fyt 

(ksi) 

f'c 

(ksi) 
'

u

c g

P

f A
 

(%) 

Δu,m 

(in) 

Goodnight  

et al. 2015 

9 0.92 1.60 16 2.67 24 96 0.24 11.9 68.1 92.8 74.1 6.81 5.5 6.7 

13 1.60 1.60 16 3.67 24 96 0.24 13.3 68.1 94.8 69.9 6.10 6.2 6.5 

14 0.50 1.60 16 5.33 24 96 0.24 13.3 68.1 94.8 64.6 6.64 5.7 6.4 

15 0.70 1.60 16 3.67 24 96 0.24 13.3 68.1 94.8 64.6 7.23 5.2 6.7 

16 1.30 1.60 16 2.00 24 96 0.24 13.3 68.1 94.8 64.6 6.71 5.6 8.3 

19 1.30 1.70 10 2.67 18 96 0.25 11.8 68.1 92.4 65.6 6.33 10.0 6.9 

20 1.30 1.70 10 2.67 18 96 0.25 11.8 68.1 92.4 65.6 6.47 5.0 7.0 

21 1.30 1.70 10 2.67 18 132 0.25 11.8 68.1 92.4 65.6 6.39 5.0 11.9 

22 1.30 1.70 10 2.67 18 132 0.25 11.8 68.1 92.4 65.6 6.53 10.0 12.6 

23 1.30 1.70 10 2.67 18 156 0.25 11.8 68.1 92.4 65.6 6.61 5.0 19.4 

24 1.30 1.70 10 2.67 18 156 0.25 11.8 68.1 92.4 65.6 6.47 10.0 14.3 

25 1.00 2.10 16 2.29 24 96 0.24 11.4 69.7 95.5 63.9 6.29 5.0 7.2 

26 1.00 2.10 16 2.29 24 96 0.24 11.4 69.7 95.5 63.9 5.89 10.0 6.0 

27 1.00 1.60 16 2.67 24 96 0.24 11.8 68.7 93.7 63.9 6.15 10.0 5.5 

28 1.30 1.70 10 2.67 18 96 0.24 11.8 68.7 93.7 63.9 6.24 15.0 8.0 

29 1.30 1.70 10 2.67 18 96 0.24 11.8 68.7 93.7 63.9 5.91 20.0 8.1 

30 1.30 3.10 10 2.00 18 96 0.24 10.9 70.5 97.7 63.9 6.05 15.0 7.4 

Trejo et 

al. 2014 

C1 0.82 1.10 16 4.00 24 144 0.26 13.1 66.7 93.7 72.8 4.77 5.0 7.5 

C2 0.82 0.83 12 4.00 24 144 0.31 10.7 86.2 114.3 85.6 4.84 5.0 7.5 

C3 0.82 2.19 22 3.33 24 144 0.26 14.0 67.2 100.6 72.8 3.59 5.0 10.0 

C4 0.82 1.58 16 3.33 24 144 0.31 12.3 85.7 114 85.6 4.66 5.0 10.0 

C5 0.82 2.19 22 3.33 24 72 0.26 14.0 67.2 100.6 72.8 3.58 5.0 4.4 

C6 0.82 1.58 16 3.33 24 72 0.31 12.3 85.7 114 85.6 3.85 5.0 4.4 

Schoettler et al. 

2012 
1.00 1.55 18 4.26 48 288 0.26 12.2 75.2 102.4 54.8 6.10 5.3 21.8 

Stephan et al. 

2003 
1.74 2.54 84 2.50 36 114 0.23 10.5 61.8 103.2 60 9.30 6.3 6.8 

Lotfizade and 

Restrepo,  

in-preparation 

1.00 1.74 14 2.95 48 216 0.35 9.2 87 114.3 87.8 5.17 8.9 20.5 

 

Figure 7.7 compares measured and predicted values for the maximum drift at the 

top of each column before the occurrence of bar fracture. 
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Figure 7.7. Predicted Lateral Drift Ratio at the Top of the Column: (a) 

Experimental vs Predicted Lateral Drift; (b) Fragility Curve of Ratio between 

Experimental and Predicted Results 

As seen in Figure 7.7, the verification process slightly under-predicts the measured 

lateral drift before bar fracture, with an average ratio of experimental to predicted drift of 

μ = 1.03. The small coefficient of variation (c.o.v) for the distribution of ratios, at δ= 12.3%, 

suggests a high precision of the method developed herein. Furthermore, the fragility curves 

in Figure 7.7b indicate that the lateral drift ratios can be well approximated by a Log-

normal distribution. 

Chapter 7, in full, is a reprint of the material as it appears in SSRP Report 17/10: 

Plastic buckling-straightening fatigue of large Diameter reinforcing steel bars, 2018. 

Duck, David; Carreño, Rodrigo; and Restrepo, José I. The dissertation author was a co-

author for this report and first author of the specific Chapter.  
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Chapter 8.  

 

 

 

CONCLUSIONS 

Research efforts in this dissertation focused on the behavior of longitudinal steel 

reinforcement under large cyclic strain reversals, such as those experienced in the plastic 

hinge region of bridge columns. 

For the first stage of this research, a series of reinforcing steel coupons from 

different manufacturers were tested under randomized cyclic strain histories. Based on the 

hysteretic response of such coupons, the parameters of two popular uniaxial constitutive 

stress-strain relationships: the Giuffrè-Menegotto-Pinto (GMP) and the Dodd-Restrepo 

(DR) steel models, were calibrated for Grade 60 reinforcement complying with either the 

ASTM A615 (2016) or ASTM A706 (2016) standards. The calibration study included 

sensitivity analyses for each parameter and verification examples, based on coupon tests 

not used in the calibration, yielding satisfactory results. 

The lack of a robust implementation of the Dodd-Restrepo constitutive stress-strain 

relationship in structural analysis software has prevented its wider use in engineering 

practice. To address this issue, a new implementation of the material model, including a 

closed-form formulation of the Bauschinger effect among several improvements, was 
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developed for the OpenSees software framework (McKenna et al., 2000) as SteelDRC. The 

implemented uniaxial material was used in a large-scale structural model subjected to high 

intensity earthquake loads, showing similar results and convergence speed during the 

analysis compared to the popular Steel02 model in OpenSees. 

Cyclic testing was performed on large diameter steel reinforcement using an 

innovative gripping system based on a modified sulfur-based concrete mix. The test results 

collected for #18 ASTM A706 Grade 60 reinforcement provided the first successful 

experimental evaluation of the fatigue life of reinforcing bars of this size. Unsupported 

lengths equivalent to 1.5dbℓ, 6dbℓ, and 8dbℓ were used for the experimental work. Results 

show a relation between the strength degradation of the bars, due to the formation and 

propagation of fatigue cracks, with the unsupported length.  

A series of finite element model realizations were performed to assess the buckling 

behavior of reinforcing bars interacting with transverse hoops. Multiple configurations of 

reinforcement (transverse and longitudinal) and material properties were tested. From 

regression analyses, it was found that both the geometry (e.g. dPOI) and characteristic strain 

limits (e.g. Engesser-Considère strain, εE-C) of the buckled reinforcement are highly 

correlated to the following parameters: ρs, 3
barn , s/dbℓ and ρs/ρℓ. The presence of a factor 

3
barn   in the prediction variables for the response of buckled reinforcement can be 

explained by the “polygon effect”, under which hoops are less effective restraining lateral 

deformations of few reinforcing bars, where hoops work in bending, with the effect 

becoming less and less important as the number of bars increases, hence the cubic-root 

limiting the effect for large nbar. Regression analyses also showed that the loading protocol 
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had little effect on the geometry of the buckled shape, as well as the strain amplitude when 

the peak stress in compression is reached (von Karman strain, ∆εvK). The strain smeared 

between the centers of rotation of the buckled shape, εCR, and the local strain in the concave 

side of the bar, εkv, was shown to closely follow a linear relation, the constants of which 

can be computed in terms of parameters 3/s barn   and s/dbℓ. 

For an adequate response against plastic buckling-straightening fatigue, a logistic 

binary regression of the FE model results produced a limit for ρs/ρℓ of 0.48 to ensure the 

post-buckling response of the reinforcement is stable. A stable post-buckling response was 

defined by one of the two conditions: the von Karman strain amplitude, ∆εvK, being greater 

than 5%, or the loss in stress capacity is less than 10% following the peak stress, fvK. 

A design procedure was proposed to prevent PBSF failure in the longitudinal 

reinforcement by imposing a stable post-buckling response, ρs/ρℓ>0.48, and both the von 

Karman strain amplitude, ∆εvK, and strain amplitude for a damage index DI=1, ΔεDI=1, 

greater than the strain demand, ∆εt-c. Additionally, it is recommended to limit the spacing 

between hoops to 4.5 bar diameters, s/dbℓ ≤4.5. 

A verification procedure is also proposed for existing bridge columns designs. A 

step-by-step procedure is described to determine the drift ratio and displacement ductility 

capacity of a bridge column for a PBSF Damage Index of 1, to compare against the seismic 

displacement demand. 

  



 

247 

 

REFERENCES 

ACI Committee, 5. (1993). 548.2R Guide for Mixing and Placing Sulfur Concrete in 

Construction. 

Ajovalasit, A. (2012). The measurement of large strains using electrical resistance strain 

gages. Experimental Techniques, 36, 77-82. 

American Association of State Highway and Transportation Officials (AASHTO), LRFD 

Bridge Design Specifications. (2014). 7th Edition. 

ASTM E606 Standard Test Method for Strain-Controlled Fatigue Testing. (2012). ASTM 

International. 

ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials. (2016). 

ASTM International. 

ASTM International. (2016). ASTM A615/A615M-16 Specification for Deformed and 

Plain Carbon-Steel Bars for Concrete Reinforcement. West Conshohocken, PA: 

ASTM International. doi:10.1520/a0615_a0615m-16 

ASTM International. (2016). ASTM A706/A706M-16 Specification for Deformed and 

Plain Low-Alloy Steel Bars for Concrete Reinforcement. West Conshohocken, 

PA: ASTM International. doi:10.1520/a0706_a0706m-16 

Atalay, M. B., Mahin, S. A., Bertero, V. V., & Rea, D. (1972). Rate of Loading Effects 

on Uncracked and Repaired Reinforced Concrete Members. 

Bae, S., Mises, A. M., & Bayrak, O. (2005). Inelastic buckling of reinforcing bars. 

Journal of Structural Engineering, 131(2), 314-321. 

Bao, Y., Kunnath, S. K., El-Tawil, S., & Lew, H. S. (2008). Macromodel-based 

simulation of progressive collapse: RC frame structures. Journal of Structural 

Engineering, 134(7), 1079-1091. 

Bate, D. V. (1987). Bauschinger effects in strain aged steels. Materials Forum, 10, 33-42. 

Bauschinger, J. (1886). On the change of the elastic limit and the strength of iron and 

steel, by drawing out, by heating and cooling, and by repetition of loading 

(summary). Minutes of Proceedings of the Institution of Civil Engineers with 

Other Selected and Abstracted Papers, 87, 463. 

Bayrak, O., & Sheikh, S. A. (2001). Plastic hinge analysis. Journal of Structural 

Engineering, 127, 1092-1100. 



 

248 

 

Bernstein, S. (1912). Démonstration du théorème de Weierstrass fondée sur le calcul des 

probabilités. Communications of the Kharkov Mathematical, XIII. 

Berry, M. (2003). Estimating flexural damage in reinforced concrete columns. Master 

Thesis, Dept. of Civil and Environmental Engneering, Univ. of Washington. 

Berry, M. P., & Eberhard, M. O. (2005). Practical performance model for bar buckling. 

Journal of Structural Engineering, 131, 1060-1070. 

Bezier, P. (1970). Numerical Control - mathematics and applications. Wiley. 

Bosco, M., Ferrara, E., Ghersi, A., Marino, E. M., & Rossi, P. P. (2016). Improvement of 

the model proposed by Menegotto and Pinto for steel. Engineering Structures, 

124, 442-456. 

Bournonville, M., Dahnke, J., & Darwin, D. (2004). Statistical analysis of the mechanical 

properties and weight of reinforcing bars. Tech. rep., University of Kansas Center 

for Research, Inc. 

Bresler, B., & Gilbert, P. H. (1961). Tie requirements for reinforced concrete columns. 

Journal Proceedings, 58, pp. 555-570. 

Brown, J., & Kunnath, S. K. (2004). Low-cycle fatigue failure of reinforcing steel bars. 

ACI materials journal, 101, 457-466. 

Byrd, R. H., Hribar, M. E., & Nocedal, J. (1999). An interior point algorithm for large-

scale nonlinear programming. SIAM Journal on Optimization, 9(4), 877-900. 

Caltrans, S. D. (2010). Caltrans seismic design criteria version 1.6. California 

Department of Transportation, Sacramento. 

Caltrans, S. D. (2013). Caltrans seismic design criteria, v. 1.7. April. 

Carreño, R. P., & Restrepo, J. I. (in-preparation). Plastic Buckling-Straightening Fatigue 

Limit State for Longitudinal Reinforcement in Circular Bridge Columns. 

Carreño, R., Lotfizadeh, K., Conte, J. P., & Restrepo, J. I. (in-preparation). 

Implementation of Improved Dodd-Restrepo Constitutive Stress-Strain 

Relationship. 

Carreño, R., Lotfizadeh, K., Conte, J. P., & Restrepo, J. I. (under-review). Material 

Model Parameters for the Giuffrè-Menegotto-Pinto Uniaxial Steel Stress-Strain 

Model. 

Chen, W.-F., & Lui, E. M. (1987). Structural stability: theory and implementation. 

Elsevier New York. 



 

249 

 

Ciampi, V., Eligehausen, R., Bertero, V., & Popov, E. P. (1982). Analytical model for 

concrete anchorages of reinforcing bars under generalized excitations. Berkeley: 

Earthquake Engineering Research Center. 

Co, T. S. (2014, 6). YF-series Post-Yield Strain Gage Manual. Retrieved from 

http://www.tml.jp/e/product/strain_gauge/catalog_pdf/YEF_YF_YHFseries.pdf 

Coleman, J., & Spacone, E. (2001). Localization issues in force-based frame elements. 

Journal of Structural Engineering, 127(11), 1257--1265. 

Considere, A. (1891). Résistance des pièces comprimées. Annexe au compte rendu du 

congr{\`e}s International des proc{\'e}d{\'e}s de construction. Paris. 

Corporation, M. T. (2009). MTS 318 Load Unit Product Information Manual. Eden. 

Retrieved from http://w.mts-

systems.de/cs/groups/public/documents/library/mts_004909 1.pdf 

Cosenza, E., & Prota, A. (2006). Experimental behaviour and numerical modelling of 

smooth steel bars under compression. Journal of Earthquake Engineering, 10, 

313-329. 

Crisfield, M. A. (1997). Non-linear finite element analysis of solids and structures. 

Wiley. Retrieved from https://books.google.com/books?id=INtRAAAAMAAJ 

Dafalias, Y. (1975). On cyclic and anisotropic plasticity. A general model. 

Dhakal, R. P., & Maekawa, K. (2002). Modeling for postyield buckling of reinforcement. 

Journal of Structural Engineering, 128(9), 1139-1147. 

Dhakal, R. P., & Maekawa, K. (2002). Path-dependent cyclic stress--strain relationship of 

reinforcing bar including buckling. Engineering Structures, 24, 1383-1396. 

Dodd, L. L., & Restrepo-Posada, J. I. (1995). Model for predicting cyclic behavior of 

reinforcing steel. Journal of structural engineering, 121, 433-445. 

Duck, D. E., Carreño, R., & Restrepo, J. I. (2018). SSRP-17/10: Plastic Buckling-

Straightening Fatigue of Large Diameter Reinforcing Steel Bars (Vol I & II). 

University of California, San Diego. La Jolla: Dept. of Structural Engineering. 

El-Bahy, A., Kunnath, S. K., Stone, W. C., & Taylor, A. W. (1999). Cumulative seismic 

damage of circular bridge columns: Benchmark and low-cycle fatigue tests. ACI 

Structural Journal, 96, 633-641. 

Engesser, F. (1889). Die knickfestigkeit gerader stäbe. W. Ernst & Sohn. 



 

250 

 

Fei, J., & Darwin, D. (1999). Fatigue of high relative rib area reinforcing bars. Tech. 

rep., University of Kansas Center for Research, Inc. 

Feng, Y., Kowalsky, M. J., & Nau, J. M. (2014). Finite-element method to predict 

reinforcing bar buckling in RC structures. Journal of Structural Engineering, 141, 

04014147. 

Filippou, F. C., Bertero, V. V., & Popov, E. P. (1983). Effects of bond deterioration on 

hysteretic behavior of reinforced concrete joints. 

Fragiadakis, M., Pinho, R., & Antoniou, S. (2008). Modelling inelastic buckling of 

reinforcing bars under earthquake loading. Computational Structural Dynamics 

and Earthquake Engineering: Structures and Infrastructures Book Series, 2, 347. 

Giuffrè, A., & Pinto, P. (1970). Il comportamento del cemento armato per sollecitazioni 

cicliche di forte intensità. Giornale del Genio Civile. 

Goldberg, J. E., & Richard, R. H. (1963). Analysis of nonlinear structures. Journal of the 

Structural Division ASCE, 89(4), 333-352. 

Gomes, A., & Appleton, J. (1997). Nonlinear cyclic stress-strain relationship of 

reinforcing bars including buckling. Engineering Structures, 19, 822-826. 

Goodnight, J. C., Feng, Y., Kowalsky, M. J., & Nau, J. M. (2015). The Effects of Load 

History and Design Variables on Performance Limit States of Circular Bridge 

Columns - Volume 2: Experimental Observations. Juneau, AK: Alaska 

Department of Transportation and Public Facilities. Retrieved from 

http://www.dot.state.ak.us/stwddes/research/assets/pdf/4000-072v2.pdf 

Guerrini, G., & Restrepo, J. I. (in-press). Extend of Plasticity in Reinforced Concrete 

Column. ACI. 

Hanson, J. M., Burton, K. T., & Hognestad, E. (1968, September). Fatigue Tests of 

Reinforcing Bars Effect of Deformation Pattern. PCA Research and Development 

Laboratories, 10, 2-13. 

Haselton, C. B., Goulet, C. A., Mitrani-Reiser, J., Beck, J. L., Deierlein, G. G., Porter, K. 

A., . . . Taciroglu, E. (2008). An assessment to benchmark the seismic 

performance of a code-conforming reinforced-concrete moment-frame building. 

Berkeley: Pacific Earthquake Engineering Research Center. 

Johnston, B. G. (1983). Column buckling theory: historic highlights. Journal of 

Structural Engineering, 109, 2086-2096. 



 

251 

 

Kashani, M. M., Barmi, A. K., & Malinova, V. S. (2015). Influence of inelastic buckling 

on low-cycle fatigue degradation of reinforcing bars. Construction and Building 

Materials, 94, 644-655. 

Kato, B. (1973). Predictable properties of material under incremental cyclic loading. 

IABSE Symposiums, Theme III, 13, pp. 119-124. 

Kim, S. H., & Koutromanos, I. (2016). Constitutive model for reinforcing steel under 

cyclic loading. Journal of Structural Engineering, 142, 04016133. 

Kokubu, M., & Okamura, H. (1969). Fatigue behavior of high strength deformed bars in 

reinforced concrete bridges. 

Kolozvari, K., Orakcal, K., & Wallace, J. W. (2018). New opensees models for 

simulating nonlinear flexural and coupled shear-flexural behavior of RC walls and 

columns. Computers and Structures, 196, 246-262. 

Krantz, S. G. (1999). Handbook of Complex Variables. Boston, MA: Springer Science \& 

Business Media. 

Kunnath, S. K., Heo, Y., & Mohle, J. F. (2009). Nonlinear uniaxial material model for 

reinforcing steel bars. Journal of Structural Engineering, 135, 335-343. 

Lotfizadeh, K., & Restrepo, J. I. (in-preparation). High-Strength Steel Reinforcement in 

Critical Regions of Earthquake-Resistant Bridges. La Jolla, California. 

Lu, Y., & Panagiotou, M. (2013). Three-dimensional cyclic beam-truss model for 

nonplanar reinforced concrete walls. Journal of Structural Engineering, 140(3). 

MacGregor, J. G., Jhamb, I. C., & Nuttall, N. (1971). Fatigue strength of hot rolled 

deformed reinforcing bars. Journal Proceedings, 68, pp. 169-179. 

Madsen, I. (1941). Report of crane girder tests.  

Mander , J. B., Priestley, M. N., & Park, R. (1984). Seismic Design of Bridge Piers. 

University of Canterbury. Civil Engineering. 

Mander, J. B. (1983). Seismic Design of Bridge Piers. Ph.D Dissertation. 

Manjoine, M. J. (1944). Influence of rate of strain and temperature on yield stress of mild 

steel. J. Appl. Mech., 11, 211-218. 

Marsh, M. L., Wernli, M., Garrett, B. E., Stanton, J. F., Eberhard, M. O., & Weinert, M. 

D. (2011). NCHRP Report 698: Application of Accelerated Bridge Construction 

Connections in Moderate-to-High Seismic Regions. Transportation Research 

Board, Washington, DC. 



 

252 

 

Massone, L. M., & López, E. E. (2014). Modeling of reinforcement global buckling in 

RC elements. Engineering Structures, 59, 484-494. 

Massone, L. M., & Moroder, D. (2009). Buckling modeling of reinforcing bars with 

imperfections. Engineering Structures, 31, 758-767. 

MathWorks. (2016). MATLAB Optimization Toolbox 2016b. Natick, MA, USA. 

MathWorks. (2018). Constrained Nonlinear Optimization Algorithms. Retrieved from 

https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-

algorithms.html 

Mattock, A. H. (1967). Rotational Capacity of Reinforced Concrete Beams' by W. G. 

Corley. Journal of the Structural Division. ASCE. 

Mau, S. T., & El-Mabsout, M. (1989). Inelastic buckling of reinforcing bars. Journal of 

engineering mechanics, 115, 1-17. 

Mazzoni, S., McKenna, F., Scott, M. H., Fenves, G. L., & others. (2006). OpenSees 

command language manual. Pacific Earthquake Engineering Research (PEER) 

Center. 

McKenna, F., Fenves, G. L., & Scott, M. H. (2000). Open system for earthquake 

engineering simulation. University of California, Berkeley,CA. 

Menegotto, M., & Pinto, P. (1973). Method of analysis for cyclically loaded RC plane 

frames including changes in geometry and non-elastic behavior of elements under 

combined normal force and bending. Proc. of IABSE symposium on resistance 

and ultimate deformability of structures acted on by well defined repeated loads, 

(pp. 15-22). 

Meyers, M. A., & Chawla, K. K. (2009). Mechanical behavior of materials (Vol. 2). 

Cambridge University Press Cambridge. 

Mirza, S. A., & MacGregor, J. G. (1979). Variability of mechanical properties of 

reinforcing bars. Journal of the Structural Division, 105. 

Mitra, N., & Lowes, L. N. (2007). Evaluation, calibration, and verification of a reinforced 

concrete beam--column joint model. Journal of Structural Engineering, 133(1), 

105-120. 

Montgomery, D. C., & Runger, G. C. (2010). Applied statistics and probability for 

engineers. John Wiley and Sons. 

Monti, G., & Nuti, C. (1992). Nonlinear cyclic behavior of reinforcing bars including 

buckling. Journal of Structural Engineering, 118(12), 3268-3284. 



 

253 

 

Moyer, M. J., & Kowalsky, M. J. (2003). Influence of tension strain on buckling of 

reinforcement in concrete columns. ACI Structural Journal, 100, 75-85. 

Mullapudi, T. R., & Ayoub, A. (2010). Modeling of the seismic behavior of shear-critical 

reinforced concrete columns. Engineering Structures, 32(11), 3601-3615. 

Murcia-Delso, J., Stavridis, A., & Shing, B. (2011). Modeling the bond-slip behaviour of 

confined large-diameter reinforcing bars. III ECCOMAS thematic conference on 

computational methods in structural dynamics and earthquake engineering.  

Nadai, A. (1950). Theory of flow and fracture of solids (Vol. 1). New York: McGraw-

Hill Book Co. Inc. 

Nakamura, H., & Higai, T. (2002). Modeling of Nonlinear Cyclic Behavior of 

Reinforcing Bars. ACI Special Publication, 273-296. 

Nonaka, T. (1973). An elastic-plastic analysis of a bar under repeated axial loading. 

International Journal of Solids and Structures, 9, 569-580. 

Oldfather, W. A., Ellis, C. A., & Brown, D. M. (1933). Leonhard Eulerś elastic curves. 

Isis, 20, 72-160. 

Osgood, W. R. (1951). The effect of residual stress on column strength. Proc. 1st US Nat. 

Cong. Appl. Mech, (p. 415). 

Papadrakakis, M., & Loukakis, K. (1988). Inelastic cyclic response of restrained 

imperfect columns. Journal of engineering mechanics, 114, 295-313. 

Papia, M., Russo, G., & Zingone, G. (1988). Instability of longitudinal bars in RC 

columns. Journal of Structural Engineering, 114, 445-461. 

Paulay, T., & Priestley, M. J. (1992). Seismic design of reinforced concrete and masonry 

buildings. 

Piegl, L., & Tiller, W. (1997). The NURBS book. Berlin, Germany: Springer-Verlag. 

Priestley, M. J. (2003). Myths and fallacies in earthquake engineering, revisited. IUSS 

press. 

Prota, A., De Cicco, F., & Cosenza, E. (2009). Cyclic behavior of smooth steel 

reinforcing bars: experimental analysis and modeling issues. Journal of 

Earthquake Engineering, 13, 500-519. 

Ramberg, W., & Osgood, W. R. (1943). Description of stress-strain curves by three 

parameters. Washington D.C.: National Advisory Committee for Aeronautics. 



 

254 

 

Restrepo, J. I. (2007). Advanced Seismic Design Course Notes. Department of structural 

Engineering, University of California, San Diego. 

Restrepo, J. I. (2010). Results from a Full-scale Bridge Column Shake Table Test. 

unpublished. 

Restrepo, J. I., Park, R., & Buchanan, A. H. (1993). Seismic behaviour of connections 

between precast concrete elements. University of Canterbury, Department of 

Civil Engineering. 

Restrepo, J. I., Seible, F., Stephan, B., & Schoettler, M. J. (2006). Seismic testing of 

bridge columns incorporating high-performance materials. ACI Structural 

Journal, 103, 496. 

Restrepo-Posada, J. I. (1992). Seismic Behaviour of Connections Between Precast 

Concrete Elements. Christchurch, New Zealand: University of Canterbury. 

Restrepo-Posada, J. I., Dodd, L. L., Park, R., & Cooke, N. (1994). Variables affecting 

cyclic behavior of reinforcing steel. Journal of Structural Engineering, 120, 3178-

3196. 

Rodriguez, M. E., Botero, J. C., & Villa, J. (1999). Cyclic stress-strain behavior of 

reinforcing steel including effect of buckling. Journal of Structural Engineering, 

125, 605-612. 

Schoettler, M. J., Restrepo, J. I., Guerrini, G., Duck, D. E., & Carrea, F. (2012). A full-

scale, single-column bridge bent tested by shake-table excitation. Center for Civil 

Engineering Earthquake Research, Department of Civil Engineering, University 

of Nevada. 

Scott, M. H. (2011). Force-Based Beam-Column Element - OpenSeesWiki. Retrieved 

from OpenSeesWiki: 

http://opensees.berkeley.edu/wiki/index.php/File:IntegrationTypes.pdf 

Shanley, F. R. (1947). Inelastic column theory. Journal of the Aeronautical Sciences, 

14(5), 261-268. 

Shanley, F. R. (2012). The column paradox. Journal of the Aeronautical Sciences. 

Slavin, C. M., & Ghannoum, W. M. (2015). Defining Structurally Acceptable Properties 

of High-Strength Steel Bars through Material and Column Testing, PART I: 

MATERIAL TESTING REPORT. techreport, University of Texas at Austin. 

Standards Association of New Zealand. (1989). NZS 3402: Steel bars for the 

reinforcement of concrete. 16. 



 

255 

 

Stanton, J. F., & McNiven, H. D. (1979). The development of a mathematical model to 

predict the flexural response of reinforced concrete beams to cyclic loads, using 

system identification. Berkeley: Earthquake Engineering Research Center. 

Stephan, B., Restrepo, J. I., & Seible, F. (2003). Seismic behavior of bridge columns built 

incorporating MMFX steel. SSRP, 9. 

Tanaka, H. (1990). Effect of lateral confining reinforcement on the ductile behaviour of 

reinforced concrete columns. 

Tanaka, H., & Park, R. (1987). Prediction of the ultimate longitudinal compressive 

concrete strain at hoop fracture using energy considerations. Bulletin of the New 

Zealand National Society for Earthquake Engineering, 20, 290-305. 

Templin, R. L., Sturm, R. G., Hartmann, E. C., & Holt, M. (1938). Column strength of 

various aluminum alloys. Tech. Paper, 1. 

Trejo, D., Barbosa, A. R., & Link, T. (2014). Seismic Performance of Circular 

Reinforced Concrete Bridge Columns Constructed with Grade 80 Reinforcement. 

Corvallis, OR: Oregon Department of Transportation. Retrieved from 

http://www.oregon.gov/odot/programs/pages/research.aspx 

von Kármán, T. (1910). Untersuchungen über Knickfestigkeit. In Mitteilungen über 

Forschungsarbeiten auf dem Gebiete des Ingenieurwesens insbesondere aus den 

Laboratorien der technischen Hochschulen (pp. 1-44). Springer Berlin 

Heidelberg. doi:10.1007/978-3-662-01994-8_1 

Wang, Y. C. (2000). Retrofit of reinforced concrete members using advanced composite 

materials. University of Canterbury nz. University of Canterbury. Civil 

Engineering. 

Wang, Y. C., & Restrepo, J. I. (1996). Strength enhancement of concentrically loaded 

reinforced concrete columns using TYFO S fibrwrap jackets. Department of Civil 

Engineering, University of Canterbury. 

Wang, Y. C., & Restrepo, J. I. (2001). Investigation of concentrically loaded reinforced 

concrete columns confined with glass fiber-reinforced polymer jackets. Structural 

Journal, 98, 377-385. 

Weisstein, E. W. (2002). Cubic formula. omega, 86, 87. 

Wilson, D. V., & Bate, P. S. (1986). Reversibility in the work hardening of spheroidised 

steels. Acta Metallurgica, 34(6), 1107-1120. 



 

256 

 

Yang, H., Wu, Y., Mo, P., & Chen, J. (2016). Improved nonlinear cyclic stress--strain 

model for reinforcing bars including buckling effect and experimental 

verification. International Journal of Structural Stability and Dynamics, 16, 

1640005. 

Zahn, F. A. (1985). Design of reinforced concrete bridge columns for strength and 

ductility. 

Zong, Z. (2011). Uniaxial material model incorporating buckling for reinforcing bars in 

concrete structures subjected to seismic loads. Ph.D. Dissertation, University of 

California, Davis. 

Zong, Z., Kunnath, S., & Monti, G. (2013). Material model incorporating buckling of 

reinforcing bars in RC columns. Journal of Structural Engineering, 140, 

04013032. 



 

257 

 

APPENDIX A 

 

 

 

LATERAL DISPLACEMENT IN CIRCULAR BRIDGE 

COLUMNS WITH WEAK AND STRONG FLEXURE-SHEAR 

INTERACTION 

 

The development of plasticity in reinforced concrete columns under lateral forces 

can be characterized as having either weak or strong flexure-shear interaction. Weak 

flexure-shear interaction typically occurrs in slender and lightly reinforced columns, for 

which the effect of shear forces in the deformation is small, and classical flexure theory 

can be applied. In columns with weak flexure-shear interaction, a nearly horizontal crack 

pattern is observed in the plastic region at large deformations, see Figure A.1a. In elements 

with strong flexure-shear interaction, the plastic region shows a diagonal crack pattern, 

forming diagonal concrete struts, no longer well represented by classical flexure theory. 

Diagonal cracks from strong flexure-shear interaction are divided into two regions: a 

fanned diagonal compression field (FDCF) and a parallel diagonal compression field 

(PDCF). The FDCF starts with a nearly horizontal crack at the base, with cracks at 
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increasing angles from the horizontal converging toward the compressive force resultant 

in the critical section, see Figure A.1b. After a critical crack angle is reached, the remaining 

cracks in the plastic region remain parallel at the critical angle, corresponding to the PDCF, 

see Figure A.1b. 

 
(a) (b) 

Figure A.1. Crack Patterns Observed Experimentally: (a) Column with Weak 

Flexure-Shear Interaction (Schoettler et al. 2012); (b) Column with Strong Flexure-

Shear Interaction (Restrepo et al. 2006) 

For columns with weak-flexure shear interaction, Guerrini and Restrepo (in-press) 

established an equation to compute the extent of plasticity, ℓ1, defined as the length of the 

column where the bending moment exceeds the first-yield moment, M’y: 
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Where T0 and T’y correspond to the resultant tensile force in the column sections at 

moments M0 and M’y. Pu is the compressive axial force applied to the column, α0 and α’y 

are the distance between the tension forces T0 and T’y and the center of the column, 

normalized by the lever arm between compressive and tensile force resultants, jd0 and jdy. 
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ωℓ=ρℓ fy/f’c is the mechanical reinforcement ratio. All of these parameters were determined 

empirically by Guerrini and Restrepo (in-press) and summarized in Table A.1. 

 

Table A.1. Empirical Relationships for Circular Columns (Guerrini and Restrepo, 

in-press) 

Parameter Empirical Formula 
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An analysis of circular columns with weak-flexure shear interaction tested 

experimentally found that, using plastic rotation theory with an equivalent plastic hinge 

length Lp=0.3ℓ1 resulted in good approximations of the lateral displacement capacities 

observed experimentally, see Section 7.6. 

For element with strong flexure-shear interaction, Guerrini and Restrepo (in-press) 

determined the extent of plasticity, ℓ2, based on a free body diagram of the plastic region, 

see Figure A.2. To simplify the analysis, the shear capacity of concrete was neglected and 

the distance between compressive and tensile force resultants, jd, was assumed constant 

throughout the extent of plasticity, at jd = 0.56D for circular columns. It was also assumed 
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that classical flexure theory applies at the ends of the plastic region, thus the parameters 

for sections with moment M’y and M0 can be determined using Table A.1. 

 

Figure A.2. Free-Body Diagram of Plastic-Hinge Region with Strong Flexure-Shear 

Interaction: (a) Crack in the Fanned Diagonal Compression Field (FDCF);  

(b) Crack in the Parallel Diagonal Compression Field (PDCF) 

For the angle θ* defining the transition between the FDCF and PDCF, Guerrini and 

Restrepo (in-press) assumed a value θ*=26.6°, which satisfies the condition cotan(θ*)=2. 

 

Free-Body Diagram of Plastic-Hinge Region with Strong Flexure-Shear Interaction:  

(a) Crack in the Fanned Diagonal Compression Field (FDCF); (b) Crack in the Parallel Diagonal 

Compression Field (PDCF) 
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To determine the extent of plasticity in the column, the magnitude and location of 

the force provided by the hoops crossing the diagonal cracks must be determined. 

Assuming all hoops in the plastic region are yielding, the force Fv and location xv can be 

determined as follow, see Figure A.3: 

 
(a) (b) 

Figure A.3. Lateral Force Provided by the Hoops: (a) Elevation; (b) Section A-A 
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Using the simplified formulas for Fv and xv in Equations A.3b and A.4b, a moment 

equilibrium around O, see Figure A.2, results in the following distribution of the tensile 

resultant within the extent of plasticity:  
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With the extent of plasticity, ℓ2, calculated as the value of x where the yield resultant 

T’y is reached, see Equation A.6. 
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The tensile resultant distribution along the extent of plasticity, T(x), is then 

transformed into stress of the longitudinal reinforcement by assuming all bars in tension 
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reach their yield strength at moment M’y, and the area of steel in tension remains constant 

throughout the extent of plasticity:  
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Where:  
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Based on the stress distribution, see Equation A.7, the strain in the longitudinal 

reinforcement in tension can be approximated by a linear function, see Equation A.9 and 

Figure A.4. 

( )

( )

2

0

0

1 0.34

( )

1 0.84

2

0.62 2

dem

dem

x
jd

D

x

x

x

x jd
D

  



  

 
+   



 
 

 
+   − 

  
− 


 


   = 

 
− 

 

 A.9 

 

Where εdem is the strain demand in the critical section of the column and ε0 the plastic strain 

in compression. η is a unitless variable defined as follows: 
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Figure A.4. Approximated Stress-Strain Relation for Longitudinal Reinforcement  

 

Once the strain distribution along the reinforcement in tension is known, the lateral 

displacement at the top of the column can be estimated from the cumulative rotation from 

diagonal crack openings within the extent of plasticity, see Figure A.5.  
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(a) (b) 

Figure A.5. Rotation Increment from Diagonal Cracks in Element with Strong 

Flexure-Shear Interaction: (a) Global View of Reinforcement; (b) Close up of 

Infinitesimal Bar Length, dx, and Elongation, ε dx 

 

The rotation increment will vary depending on the strain distribution in the longitudinal 

reinforcement, ε(x), and the region within the diagonal compression field (fanned or 

parallel):  
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The lateral displacement at the top of a cantilever column can be computed from the 

integrals: 
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Which result in Equation A.13:  
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