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Chapter 3 studies robust and optimal estimation in a canonical semiparametric IV model

— partially linear IV model — with nonparametric partial identification.
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Chapter 1

Inference on Functions under First

Order Degeneracy

Abstract

This chapter presents a unified second order asymptotic framework for conducting
inference on parameters of the form ¢(6p), where 6y is unknown but can be estimated by
én, and ¢ is a known map that admits null first order derivative at y. For a large number
of examples in the literature, the second order Delta method reveals a nondegenerate weak
limit for the plug-in estimator ¢(én) We show, however, that the “standard” bootstrap is
consistent if and only if the second order derivative (bgo = 0 under regularity conditions, i.e.,
the standard bootstrap is inconsistent if qﬁ’e’o # 0, and provides degenerate limits unhelpful
for inference otherwise. We thus identify a source of bootstrap failures distinct from that
in Fang and Santos (2015) because the problem persists even if ¢ is differentiable. We
show that the correction procedure in Babu (1984) can be extended to our general setup.
Alternatively, a modified bootstrap is proposed to accommodate nondifferentiable maps.

Both approaches are shown to provide local size control under restrictions on én and ¢/6/0-

As an illustration, we develop a test of common conditional heteroskedastic (CH) features



that allows the existence of multiple common CH features. In fact, this chapter contains new
results on the J-test in GMM settings that allow partial identification and/or degeneracy

of Jacobian matrices.



1.1 Introduction

There is a large number of inference problems in economics and statistics in which
the parameter of interest is of the form ¢(6y), where 6 is an unknown parameter depending
on the underlying distribution of the data and ¢ is a known map. In these settings, it is
common practice to employ the plug-in estimator gb(én), where 6,, is an estimator for Ao,

. The Delta method asserts that if

as a building block for conducting inference on ¢(6y

rn{én — 6o} L, G for some sequence 7, T 0o, then

ra{d(6n) — 3(60)} 2 0}, (G) (1.1)

provided ¢ is at least Hadamard directionally differentiable at 6y, where d)’eo is the derivative
of ¢ at 6y (Shapiro, 1991; Diimbgen, 1993). As powerful as the Delta method has proven
to be (van der Vaart, 1998; Fang and Santos, 2015), an implicit and yet crucial assump-
tion for the convergence (1.1) to be useful for inferential purposes is that ¢ (G) or ¢y, is
nondegenerate, i.e., ¢/60 # 0. Unfortunately, such first order degeneracy arises frequently in
asymptotic analysis, with applications including Wald tests or Wald type functionals (Wald,
1943; Engle, 1984), unconditional and conditional moment inequality models (Andrews and
Soares, 2010; Andrews and Shi, 2013), Cramér-von Mises functionals (Darling, 1957), the
study of stochastic dominance (Linton et al., 2010), and the J-test for overidentification in

GMM settings (Hall and Horowitz, 1996).

In the presence of first order degeneracy, one may resort to a higher order analysis
for the sake of a nondegenerate limiting distribution. Shapiro (2000) established that if ¢

is second order Hadamard directionally differentiable (see Definition 1.2.2), then

r2{6(0n) — 6(00) — & (6 — 00)} 25 045, (G) (1.2)

where gbgo denotes the second order derivative of ¢ at 6y. Thus, when first order degeneracy



occurs, (1.2) suggests that we may base our asymptotic analysis on

r2{(0,) — 0(60)} 2 o1 (G) . (1.3)

On the other hand, the common feature that the aforementioned examples share is that ¢
is second order Hadamard (directionally) differentiable and that the resulting derivative is
nondegenerate. Usefulness of the limiting distribution in (1.3), however, relies on our ability
to consistently estimate it. In this regard, Efron (1979)’s bootstrap seems to be a potential
option. Specifically, if HA;’; is a bootstrap analog of 6,, that works for estimating the law of

G, then in view of (1.3) one may hope that

rad6(0;,) — ¢(0n)} (1.4)

can be employed as an estimator for the law of gi)’g’o (G), at least when ¢ is smooth. Unfor-
tunately, there are simple examples where the law of (1.4) conditional on the data, referred

to as the standard bootstrap, fails to provide consistent estimates (Babu, 1984).

As the first contribution of this paper, we show that the standard bootstrap (1.4) is
consistent if and only if ’9’0 = 0, whenever G is centered Gaussian. Thus, the standard boot-
strap is necessarily inconsistent when <;5’9’0 is nondegenerate, while when qb’g’o is degenerate,
the resulting asymptotic distribution is degenerate and hence not useful for inference. We
thus conclude that the failure of the standard bootstrap is an inherent implication of first
order degeneracy. It is worth noting that the failure of the standard bootstrap persists even
when ¢ is differentiable. Hence, we identify a source of bootstrap inconsistency completely

different from that in Fang and Santos (2015) — i.e., nondifferentiability of the map ¢.

Heuristically, the reason why the standard bootstrap fails is that even though
r,%qb’eo (én — 6p) = 0 in the “real world”, its bootstrap counterpart is nondegenerate, i.e.,
T%%n (6% — 6,) = 0,(1), echoing Efron (1979)’s point that the bootstrap provides approxi-
mate frequency statements rather than approximate likelihood statements. This observation

was picked up by Babu (1984) who provided a consistent resampling procedure by including



the first order correction term:

ra{d(0) — ¢(0n) — & (6 — 0n)} - (1.5)

As the second contribution, we generalize the above modified bootstrap (1.5), referred to
as the Babu correction, to settings that accommodate infinite dimensional models and a
wide range of bootstrap schemes for é,"; However, we stress that the Babu correction is

inappropriate when ¢ is only Hadamard directionally differentiable.

As the third contribution of the paper, we follow Fang and Santos (2015) and provide
a modified bootstrap which is consistent regardless of the presence of first order degeneracy
and nondifferentiability of ¢. The insight we exploit is that the weak limit ¢j (G) in (1.3)
is a composition of the limit G and the second order derivative (;5’9’0. Therefore, we may
estimate the law of ¢ (G) by composing a suitable estimator ¢! for ¢p, With a bootstrap
approximation rn{é;; — én} for G. Since the conditions on é;fb proposed by Fang and Santos
(2015) in order for this approach to work are either demanding or hard to check in our
setup, we provide a high level condition that is easy to verify. We further demonstrate
that numerical differentiation provides a desirable estimator ng in general; alternatively, we
show how to estimate d)’e’o by exploiting its structure in particular examples. Interestingly,
we note that the above procedure is a combination of bootstrap and analytic asymptotic
approximations, while initially the former was intended as a substitute for and improvement

upon the latter (Horowitz, 2001).

It is often the case that a hypothesis on 6y can be formulated as: for some ¢,
Hy : ¢(90) =0 H; : (Z)(H()) >0. (16)

In turn, the above asymptotic framework suggests that we employ rﬁqﬁ(én) as the test statis-
tic in the presence of first order degeneracy. Pointwise size control then follows immediately
by employing critical values based on our resampling procedures. As argued by Imbens

and Manski (2004) and Andrews and Guggenberger (2009a), however, pointwise asymp-



totic approximations may be unreliable when qﬁ(én) is irregular, i.e., when the asymptotic
distribution of ¢(6,) is sensitive to local perturbations of the distribution of the data. In
our setup, such irregularity is inherent to first order degeneracy. We show that our test
ensures local size control provided 0, is regular and 7 o ¢lelo is subadditive for some strictly
increasing map 7. We note that unlike Fang and Santos (2015), however, qb’e’o itself often

fails to be subadditive.

Our framework includes many existing results as special cases. To further demon-
strate the applicability of our framework, we develop a test of common conditional het-
eroskedastic (CH) features studied by Dovonon and Renault (2013) but under weaker as-
sumptions that allow partial identification, i.e., allow the existence of more than one com-
mon CH feature. This is important because it is unknown a priori how many common
features there are and in the context of asset pricing the number is presumably large (Engle
et al., 1990). Monte Carlo simulations indicate that our tests substantially alleviate size
distortion and have good power performance. Our approach may also be used to develop
tests for other common features (Engle and Kozicki, 1993). In fact, our paper contains new
results on the J-test in GMM settings that allow partial identification and/or degeneracy

of Jacobian matrices.

There have been extensive studies on the validity of bootstrap schemes (Hall, 1992;
van der Vaart and Wellner, 1996a; Horowitz, 2001). It was realized soon after Efron (1979)
that the bootstrap is not always successful (Bickel and Freedman, 1981); see also Andrews
(2000) for a summary. Babu (1984) provided a simple example of bootstrap failure due
to first order degeneracy, and established the validity of the Babu correction for the spe-
cial case studied there. Shao (1994) showed that m out of n resampling can well serve as
an alternative remedy, while Bertail et al. (1999) provided a two step modified subsam-
pling procedure which involves estimation of the convergence rate in the first stage. Both
methods entail the choice of tuning parameters while our proposal often works without such
nuisances when ¢ is differentiable. Datta (1995) revisited Babu’s example and offered a bias

correction procedure that depends on a first stage shrinkage type estimator. Somewhat sim-



ilar methods were later proposed in Andrews (2000) and Giurcanu (2012). Interestingly,
bootstrap inconsistency for some U and V statistics can also be attributed to first order

degeneracy (Bickel et al., 1997).

Bootstrap inconsistency arising from nondifferentiability was studied in Diimbgen
(1993), Andrews (2000), and recently in Fang and Santos (2015) who formally established
that differentiability of ¢ is a necessary as well as sufficient condition for the standard
bootstrap to work under mild regularities. Our work complements theirs by identifying
a different source of bootstrap failure. In the literature, the two sources are often mixed
together, for example, in Romano and Shaikh (2010), Andrews and Soares (2010), Linton
et al. (2010), and Andrews and Shi (2013). The second order analysis of resampling schemes
such as jackknife and bootstrap has been employed in the statistics literature, though the
focus has been on bias and variance estimation where typically the stronger concept of
second order Fréchet differentiability is imposed (Efron, 1979; Beran, 1984; Rao and Wu,
1985; Shao and Wu, 1989; Shao, 1991). The numerical differentiation approach of estimating
derivatives was implicit in Diimbgen (1993)’s rescaled bootstrap, recently employed by Song
(2014), and comprehensively studied by Hong and Li (2015) including discussions on second
order asymptotics. Our work complements Hong and Li (2015) by providing a more general
condition that may be used to verify “consistency” of derivative estimators (not necessarily

constructed via numerical differentiation).

The remainder of this paper is structured as follows. Section 1.2 formalizes the gen-
eral setup, shows the wide applicability of our framework by introducing related examples,
and establishes the asymptotic framework by presenting a mild extension of the second
order Delta method. Section 1.3 characterizes the inherent difficulties caused by first order
degeneracy, extends the Babu correction to our general setup, and offers a flexible modified
bootstrap procedure. Section 1.4 demonstrates that our procedure is robust to local per-
turbations of the distribution of the data under regularity conditions. Section 1.5 develops
a test of common CH features that accommodates partial identification, while Section 1.6

concludes. Proofs are collected in the appendices.



1.2 Setup and Background

In this section, we formalize the general setup, introduce related examples, and

review notions of differentiability based on which we present the second order Delta method.

1.2.1 General Setup

The treatment in the paper is general in the sense that we allow both the parameter
fp and the map ¢ to take values in infinite dimensional spaces, though attention is confined
to real-valued ¢ when studying tests. In particular, we assume 0y € Dy C D and ¢ : Dy, — E,
where D and E are normed spaces with norms ||-[|p and ||-||g respectively. Moreover, the data
generating process is general as well in that the model can be parametric, semiparametric
and nonparametric and that the data {X;}}" ; need not be i.i.d.. However, we do impose i.i.d.
assumption in our local analysis, but only for simplicity. The results there can presumably
be extended to general asymptotically normal experiments (van der Vaart and Wellner,

1990).

The common probability space on which all (random) maps are defined is the
canonical one. For example, in the simplest i.i.d. setup, we think of the data {X;}!',
as the coordinate projections on the first n coordinates in the product probability space
(12, 2, Q2 A 112, P) where (2, A) is the sample space each X; lives in and P is
the common Borel probability measure that governs each X;. In the presence of bootstrap
weights, we further think of the product space as the “first co” coordinates of the even
“larger” product space (([T32; 27) x #,(Q52; A) @ W, ([1:2, P) x Q), where (#', W, Q)

governs the infinite sequence of bootstrap weights.

Given the generality of our setup, weak convergence throughout the paper is meant
in the Hoffmann-Jgrgensen sense (van der Vaart and Wellner, 1996a). Expectations and
probabilities should therefore be interpreted as outer expectations and outer probabili-

ties respectively defined relative to the canonical probability space, though we obviate the



distinction in the notation. The notation is made explicit in the appendices whenever

differentiating between inner and outer expectations is necessary.

1.2.2 Related Examples

To fix ideas, we now turn to related examples that serve to illustrate the wide
applicability of our framework. The first example is taken from Babu (1984), which provides
an eagsy illustration of bootstrap inconsistency in the presence of first order degeneracy even

if the transformation ¢ is smooth.

Example 1.2.1 (Wald Functional: Squared Mean). Let X € R be a random variable, and

suppose that we are interested in conducting inference on

¢(60) = (B[X])* . (1.7)

Here, 0y = E[X],D=E = R, and ¢ : R — R is defined by ¢(0) = 02. In fact, ¢ is a special
case of the more general quadratic functionals of the form ||[IW6||? for § € R¥ and W a k x k
weighting matrix. This seemingly toy example also arises in VAR models for inference on
impulse responses (Benkwitz et al., 2000) and in some nonseparable models with structural

measurement errors (Hoderlein and Winter, 2010). [ ]

The second example is a special case of the unconditional moment inequality models
studied in Chernozhukov et al. (2007), Romano and Shaikh (2008, 2010), Andrews and
Guggenberger (2009b), and Andrews and Soares (2010).

Example 1.2.2 (Unconditional Moment Inequalities). Let X € R be a scalar random
variable and suppose we want to test the moment inequality E[X]| < 0. The modified

method of moments approach is based on estimating the functional

$(0o) = (max{fy,0})?, (1.8)
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where §p = E[X], D = E = R, and ¢ : R — R is defined by ¢() = (max{6,0})2. The

functional ¢ can be easily adapted to handle general moment inequality models. [ |

The third example concerns the classical Cramér-von Mises functional employed to
test goodness of fit (Darling, 1957; van der Vaart, 1998), which has been widely adopted in

economics and statistics.

Example 1.2.3 (Cramér-von Mises Functional). Suppose that we are interested in testing
if the distribution function of a random vector X € R% is a given function F,. The

Cramér-von Mises approach considers the functional

¢(0p) = / (F — Fy)*dFy .

Here, 6y = F, D = (*(R%), E = R, and ¢ : *°(R%) — R is defined to be ¢(f) =
G Fy)? dFy. More generally, it is possible to test if F' belongs to a parametric family
{F, : v € T} by studying ¢(0p) = infyer [(6p — Fy)? dF,. ]

The fourth example, closely related to but significantly different from Example 1.2.3,

is based on Linton et al. (2010) for testing stochastic dominance.

Example 1.2.4 (Stochastic Dominance). Let X = (XM, X®)T ¢ R? be continuously
distributed, and define the marginal cdfs FU)(u) = P(XU) < w) for j € {1,2}. For a
positive integrable weighting function w : R — R* = {z € R : z > 0}, Linton et al. (2010)

estimate

6(00) = /R max{FO () — FO (u), 0y2w(u)du , (1.9)

to construct a test of whether X1 first order stochastically dominates X (2. In this ex-
ample, we set y = (F(), F(?) D = (*(R) x £*(R), E = R and ¢(0) = [ max{0") (u) —
03 (u), 0}?w(u)du for any 6 = (61, 0)) € 12°(R) x £>°(R). We note that the Cramér-von
Mises type functionals in Andrews and Shi (2013, 2014) shares the common structure of

the functional ¢ in (1.9) and hence can be taken care of by our framework as well. ]



11

The fifth example is a special case of the Kolmogorov-Smirnov type functionals for

inference on conditional moment inequalities studied by Andrews and Shi (2013).

Example 1.2.5 (Conditional Moment Inequalities). Let Z € R? and W € R% be ran-
dom vectors satisfying E[Z(|W] < 0 and E[Z®)|W] = 0. For a suitably chosen class of
nonnegative functions F on R%, the above conditional moment inequality is equivalent to
E[ZWf(W)] <0 and E[Z® f(W)] = 0 for all f € F. Andrews and Shi (2013) propose

testing the above restriction by estimating the functional

¢(0o) = ;telg{[maX(E[Z(”f(W)L 0)]* + (E[2® f(W)))*} . (1.10)

Here, 0y € (>°(F) x £>°(F) satisfies 0y(f) = E[Zf(W)] for all f € F, D = {>°(F) x £>°(F),
E =R, and ¢ : D — E is given by ¢(0) = supfef{[maX(O(l)(f),O)]2 + [0 ()% ]

Our final example provides new results on the J-test of overidentification in GMM
settings proposed by Sargan (1958, 1959) and further developed in Hansen (1982). The
novelty here lies in the accommodation of partial identification and Jacobian matrices not

of full column rank.

Example 1.2.6 (Overidentification Test). Let X € R% be a random vector and consider
the model defined by the moment restriction E[g(X,7)] = 0 for some 79 € I' € R* where
g:R% xT — R™ is a known function with m > k. The conventional J-test can be
recast by estimating the functional ¢ defined as: for some known m x m symmetric positive

definite matrix W,
¢(bh) = igi;E[g(X, VITWE[g(X,7)] . (1.11)

Here, 0y € [[;L, (') is defined by 0o(v) = E[g(X,7)], D = [[jL, £°(T"), E = R, and
¢ J[L (') — R is defined by ¢(0) = inf,er 0(7)TW0(v). The bootstrap for the .J
statistic has been studied by Hall and Horowitz (1996) and Andrews (2002). Note that 6y

is always identified even though g is potentially partially identified. [ |



12

1.2.3 Concepts of Differentiability

All examples in the previous subsection exhibit first order degeneracy, i.e., there

exist points 6 in I such that the first order derivative ¢ is 0 and in some cases ¢ is not

even differentiable at 6, which can be seen from Examples 1.2.1 and 1.2.2 respectively.

As such, we resort to a second order expansion that handles first order degeneracy and

meanwhile accommodates potential nondifferentiability of ¢. Let us proceed by recalling

notions of first order differentiability (Shapiro, 1990; Fang and Santos, 2015)

Definition 1.2.1. Let D and E be normed spaces equipped with norms || - [|p and || - ||g

respectively, and ¢ : Dy C D — E.

(i)

The map ¢ is said to be Hadamard differentiable at 0 € Dy tangentially to a set

Do C D, if there is a continuous linear map ¢, : Dy — E such that:

lmw¢w+%m»—mm

n—o00 tn

— ¢p(h)lle =0, (1.12)

for all sequences {h,,} C D and {t,} C R such that ¢, — 0, h, = h € Dy as n — oo

and 0 + t,hy, € Dy for all n.

The map ¢ is said to be Hadamard directionally differentiable at 6 € Dy tangentially
to a set Dy C D, if there is a continuous map ¢, : Dy — E such that:¢j, : D — E such

that:!
1me“+%“”‘M”

n—o00 tn

— dp(h)lle =0, (1.13)

for all sequences {h,} C D and {t,} C Ry such that ¢, | 0, h, = h € Dy as n — oo

and 0 +t,h, € Dy for all n.

Inspecting Definition 1.2.1, we see that the main difference between Hadamard dif-

ferentiability and directional differentiability lies in the linearity of the derivative. This

turns out to be the exact gap between these two notions of differentiability. In particular,

!We note that the “tangential set” in Shapiro (1991) refers to the domain of ¢ (i.e., Dy in our context),
whereas here it refers to the domain D of the derivative d)/@.



13

(1.13) ensures that the Hadamard directional derivative ¢ is necessarily continuous and

positively homogeneous of degree one, though potentially nonlinear (Shapiro, 1990).

Given the introduced notions of differentiability and in view of the remarkable fact
that Delta method is valid under even Hadamard directional differentiability in terms of
deriving asymptotic distributions (Shapiro, 1991; Diimbgen, 1993), it seems a natural next
step to invoke the Delta method. However, in the presence of first order degeneracy, the
resulting limiting distribution is degenerate at zero, rendering substantial challenges for

inferential purposes.

In essence, the Delta method is a stochastic version of Taylor expansion. There-
fore, one could go one step further to explore the quadratic term when the linear term is

degenerate. We thus follow Shapiro (2000) and define

Definition 1.2.2. Let ¢ : Dy €D — E be a map as in Definition 1.2.1.

(i) Suppose that ¢ : Dy — E is Hadamard differentiable tangentially to Dy C D such
that the derivative ¢ : Dy — E is well defined on D. We say that ¢ is second
order Hadamard differentiable at 0 € Dy tangentially to Dy if there is a bilinear map
oy : Dy x Dy — E such that: for ¢j(h) = @} (h, h),

lim H ¢(9 + 75nhn) — ¢(9) — tngbé(hn) _

n—o00 t%

s(W)le=0, (1.14)

for all sequences {h,} C D and {t,} C R" such that t,, — 0, h, = h € Dy as n — oo

and 0 +t,h, € Dy for all n.

(ii) Suppose that ¢ : Dy — E is Hadamard directionally differentiable tangentially to
Dy C D such that the derivative ¢} : Dy — E is well defined on D. We say that ¢

is second order Hadamard directionally differentiable at 6 € Dy tangentially to Dy if
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there is a map ¢} : Dy — E such that:?

lim H ¢(9 + tnhn) — ‘15(9) — tnqbé?(hn) _

n—o00 t%

s(W)le =0, (1.15)

for all sequences {h,} C D and {t,} C R" such that ¢, | 0, h,, =+ h € Dy as n — oo

and 0 +t,h, € Dy for all n.

The second order derivative ¢y in both cases is necessarily continuous on D, which
can be shown in a straightforward manner as in the proof of Proposition 3.1 in Shapiro
(1990). Similar in spirit to Definition 1.2.1, the key difference between the above two notions
of second order differentiability is that the former is a quadratic form corresponding to a
bilinear map while the latter is in general only positively homogeneous of degree two, i.e.,
¢y (th) = t2¢j(h) for all t > 0 and all h € Dy. The definition of second order Hadamard
(resp. directional) differentiability is defined given first order Hadamard (resp. directional)
differentiability. However, it is possible that ¢ is first order Hadamard differentiable but
only second order Hadamard directionally differentiable (see Example 1.2.2). Tt is also
possible that ¢ is first order Hadamard directional differentiable and yet its second order
derivative is a bilinear map.? In all our examples, ¢ is first order Hadamard differentiable
though ¢f, may be degenerate; see Subsection 1.2.3.1. We stress that requiring ¢j to be well
defined on the entirety of D does not demand differentiability on ID. Instead, it just means
that ¢}, can take elements potentially not in Dy as arguments. Finally, we note that first

and second order (directional) derivatives share the same domain Dj.

Clearly, the second order is not the end of the story. If ¢y in turn is degenerate,
one can go beyond the second order; see Remark 1.2.1. We do not pursue this possibility

at length in the current paper.

Remark 1.2.1. Suppose that ¢ : Dy CD — E is (p — 1)-th order Hadamard directionally
differentiable tangentially to Dy C D such that the derivative qﬁ((,j ), Doy — E is well defined

on D for all j =1,...,p— 1, where p > 2. Then we say that ¢ is pth order Hadamard

2Compared with Shapiro (2000), we omitted % in the denominator for notational compactness.
3For example, consider the map ¢ : R — R defined by #() = max{6,0}.
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directionally differentiable at § € Dy tangentially to Dy if there is a map (ﬁép ). Dy — E such

that:
p—1 )
(0 + tahn) = 6(0) + > 65 (hn) + o) (h) + o(th) | (1.16)
7j=1

for all sequences {h,} C D and {t,} C R" such that ¢, | 0, h, = h € Dy as n — oo and

0 + tphy, € Dy for all n. ]

1.2.3.1 Examples Revisited

We now turn to the examples introduced in Section 1.2.2 and demonstrate how they
fit into the scope of our analysis by calculating the derivatives. From now on, we shall focus
on Examples 1.2.1, 1.2.4 and 1.2.6 exclusively for conciseness; Examples 1.2.2, 1.2.3 and

1.2.5 will be treated in Appendix 1.8.2.

Example 1.2.1 (Continued). In this example, the functional involved is second order

Hadamard differentiable. Trivially we have
Oy(h) = 260, ¢(h) = . (1.17)

Note that the first order derivative ¢j is degenerate when § = 0, whereas ¢y is everywhere

nondegenerate. The bilinear map ®j : R? — R here is given by @y (h,g) = hg. [ |

Examples 1.2.4 involves a functional whose domain is infinite dimensional.

Example 1.2.4 (Continued). By Lemma 1.8.4, ¢ is first order Hadamard differentiable
at any 0 € (>°(R)x(®(R) with ¢}, : £°(R)x/(>®(R) — R satisfying for any h = (h(), h(?)) €
(®(R) x £*(R)

dy(h) = 2 /B 0 =02 @) e

where B4 (0) = {u € R : 0 (u) > 0@ (u)}. Note that ¢j(h) = 0 if By (0) has Lebesgue
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measure zero, i.e., ) < 62 almost everywhere. Moreover, ¢ is second order Hadamard
directionally differentiable at any 6 € ¢*°(R) x ¢>°(R) with the derivative ¢y : {*°(R) x

>*(R) — R satisfying

op(h) = / max{hM (u) — h® (u), 0}2w(u)du + / (A (u) — B® (w)]2w(u)du
Bo(9) B (9)

for any h = (h(M,h?) € 1°(R) x £°(R), where By(f) = {u € R : 6D (u) = 6@ (u)}
is referred to as the contact set of 8 and #). If §1) < 9 then ¢ (h) simplifies to
¢y (h fB max{h(l)(u) — b (u)}?w(u)du. If in addition the contact set By(f) has
Lebesgue measure zero, then ¢j in turn is degenerate, corresponding to the degenerate

limits obtained in Theorem 1 of Linton et al. (2010). ]

In Example 1.2.6, the domain Dy of the derivative ¢g0 is a strict subset of D.

Example 1.2.6 (Continued). Consider 6 € [[7., ¢>°(T') such that 0(y) = 0 for some
v € T. Then ¢ is Hadamard differentiable at ¢ and ¢y(h) = 0 for all h € []72, £>°(T).
Suppose further that I' is compact and that I'g(0) = {y € T : 8(y) = 0} is in the interior
of T'. For C}(T) the space of continuously differentiable functions on T, if 6 € | cHI),
then by Lemma 1.8.6, under additional regularity conditions, ¢ is second order Hadamard

directionally differentiable at 6 tangentially to H;nzl C(T") with the derivative given by: for

any h € [[7L, C(T),

dp(h) = %g}lﬁe) 52;&%('70) J(70)v}TWH{h(v0) — J(0)v} ,

do
where J(y9) = dg) ‘7:%

is the Jacobian matrix. When 7y is point identified and J(7p) is

of full column rank, ¢ becomes second order Hadamard differentiable with

¢p(h) = h(70)"M (70)W M (70)h(70)

where M (v9) = I — J(70)[J (70)TJ (70)] "1 (70)T with I,,, the identity matrix of size m. We

note that I'g(€) being in the interior of I' is not essential and can be relaxed by introducing
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relevant notions of cones (Bonnans and Shapiro, 2000). [ |

1.2.4 Second Order Delta Method

The Delta method for potentially directionally differentiable maps as well as dif-
ferentiable ones has proven powerful in asymptotic analysis (van der Vaart, 1998; Shapiro,
1991; Fang and Santos, 2015; Hansen, 2015). Unfortunately, it is insufficient to handle
substantial challenges for inference arising from first order degeneracy. Heuristically, if

rn{én — 6o} L G and ¢/60 = 0, then the Delta method implies that

rn{6(0n) — #(60)} = 6, (G) =0 .

For real-valued ¢, the usual confidence interval for ¢(6y) at asymptotic level 1 — « is

L 6(0n) — 227 = {6(00)} (1.18)

where the ¢, is the a-th quantile of ¢ (G) = 0 and is zero for all a € (0,1). Clearly,

P(¢(00) € {p(,)}) = 0 if, for example, ¢(f,,) is a continuous random variable.

To circumvent the above difficulty, we resort to higher order expansions and aim
to establish a mild extension of Theorem 2.3 in Shapiro (2000) by accommodating weak
convergence in the Hoffmann-Jgrgensen sense and dispensing with the convexity of Dy and

separability of D. We proceed by imposing the following assumptions.

Assumption 1.2.1. (i) D and E are normed spaces with norms ||-||p and |- ||z respectively;
(i) ¢ : Dy C D — E is second order Hadamard directionally differentiable at 6y € Dy

tangentially to Dy C D.

Assumption 1.2.2. (i) There is 6, : {X;}7_, — Dy such that Fn{0n — 6o} LGinD for

some ry, T 00; (1) G is tight and P(G € Dy) = 1.

Assumption 1.2.3. (i) ¢} can be continuously extended to D; (i) Dy is closed under vector

addition, i.e., hy + ho € Dy whenever hy, hy € Dy; (iii) qb’eo (h) =0 for all h € Dy.
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Assumption 1.2.1 formalizes the requirement that ¢ : D, — E is second order
Hadamard directionally differentiable at 6y, which allows us to conduct higher order expan-
sions. By definition, this necessitates first order Hadamard directional differentiability of
¢ at 0y tangentially to Dy and that %0 is well defined on the entirety of . Assumption
1.2.2(i) characterizes another key ingredient: there is an estimator 0,, for Oy that admits
a weak limit G at a potentially non-y/n rate r,; see Remark 1.3.1. Assumption 1.2.2(ii)
ensures that the support of G is included in the domain of the derivative ¢g0 so that ¢'6'O(G)
is well defined, while tightness of G is only a minimal requirement.* Assumption 1.2.3(i)
allows us to view the map gbgo as well defined and continuous on the entire space I, and
is automatically satisfied whenever Dy is closed (Dugundji, 1951, Theorem 4.1). We em-
phasize, however, that Assumption 1.2.3(i) does not require differentiability of ¢ : Dy — E
tangentially to D, i.e., the extension of ¢/9/0 need not satisfy (1.15) for h € D\ Dy. Assump-
tion 1.2.3(ii) imposes that Dy be closed under addition which, since Dy is necessarily a cone,
is equivalent to demanding that Dg be convex.? This mild requirement is only employed in
some of our results and helps ensure that, when multiple extensions of qbgo exist, the choice
of extension has no impact in our arguments. Finally, Assumption 1.2.3(iii) formalizes the

defining feature of the paper, i.e., first order degeneracy of ¢.

Given Assumptions 1.2.1 and 1.2.2, we are able to establish a second order Delta
method. Assumption 1.2.3(i) is needed to obtain a strengthening in which (;5’9’0 takes elements

potentially in D\ Dy as arguments.

Theorem 1.2.1. If Assumptions 1.2.1 and 1.2.2 hold, then
A A L
ra{6(0n) = #(80) — B, (9 — 00)} = 4,(G) - (1.19)
If in addition Assumption 1.2.3(i) holds, then

rad@(0n) — #(80) = G, (0 — 00)} = 0l (ru{fn — b0}) + 0p(1) - (1.20)

“The support of Gy is the set of all z € D having the property that P(Go € U) > 0 for each open set
U C D containing z.
®We note that convexity of Dy is only needed for the stronger version of the Delta method in (1.20).
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The essence of Theorem 1.2.1 is in complete accord with that underlying the first
order Delta method. In particular, the definition of second order Hadamard directional
differentiability is engineered so that the second order Delta method is nothing more than

a stochastic version of the Taylor expansion of order two, i.e.,

B(00 + tuhy) = d(00) + tndp, (hn) + t2 oy, (h) + o(t2)

where t,, corresponds to 71, and h, to rn{én — 6p}. Note that Theorem 1.2.1 is valid

n

regardless of the nature of the differentiability (i.e., fully differentiable or directionally
differentiable) and the presence of first order degeneracy. When ¢/90 is degenerate, the

convergence (1.19) simplifies to

r2{$(0,) — $(60)} = ¢ty (G) . (1.21)

Finally, we note that higher order versions of the Delta method can be developed along the

lines of Remark 1.2.1; see Remark 1.2.2.

Remark 1.2.2. Suppose that Assumptions 1.2.1(i) and 1.2.2 hold and that ¢ is p-th order

Hadamard directionally differentiable at y € Dy tangentially to Dg. It follows that

p—1 A
2 [6(0,) — {6(60) + Y 65 (B — 60)}] L 6 (G) .

Jj=1

If in addition (Z)é]g ) can be continuously extended to D, then

p—1 . .
P2 [6(0,) — {6(00) + S 87 (0 — 00)}] = 6L (ralbi — 60}) + 0p(1) - .

j=1

1.3 The Bootstrap

Establishing asymptotic distributions as in Theorem 1.2.1 is the first step towards

conducting statistical inference on ¢(fy), the usefulness of which relies on our ability to
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accurately estimate the limiting law. In this section, we discuss how first order degeneracy
of ¢ can complicate inference using the standard bootstrap based on first and especially

second order asymptotics, and provide alternative consistent resampling schemes.

1.3.1 Bootstrap Setup

Throughout, we let 9;; denote a “bootstrapped version” of én, which is defined as
a function mapping the data {X;}!"; and random weights {W;}I" ; that are independent
of {X;}i", into the domain Dy of ¢. This general definition allows us to include diverse
resampling schemes such as nonparametric, Bayesian, block, score, more generally multiplier
and exchangeable bootstrap as special cases. We shall assume the limiting distribution G
of 7n{fn — 6o} can be consistently estimated by the law of r,{#* — 6,} conditional on the

data.

Next, making sense of bootstrap consistency necessitates a metric that quantifies
distances between probability measures. As is standard in the literature, we employ the
bounded Lipschitz metric dpy, formalized by Dudley (1966, 1968): for two Borel probability

measures L1 and Lo on D, define

dBL(Ll,Lg) = sup |/de1 —/de2| s

feBL1(D)

where we recall that BL; (D) denotes the set of Lipschitz functionals whose absolute level

and Lipschitz constant are bounded by one, i.e.,

BLi(D)={f:D— R:sup|f(t)|+ sup Mgl}.

teD tit2eDAt, 1t — f2llp
Since weak convergence in the Hoffmann-Jgrgensen sense to separable limits can be

metrized by dpp, (Dudley, 1990; van der Vaart and Wellner, 1990), we may now measure

the distance between the “law” of G* = r,{0* — 0, } conditional on {X;} and the limiting
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law of r, {6, — 6o} by

gL (G}, G) = sup [Ew[f(ra{0} — 0.})] — E[f(G)]] , (1.22)
f€BL1 (D)

where Ey denotes expectation with respect to the bootstrap weights {W;}7_; holding the
data {X;}!' , fixed. Employing the distribution of rn{é;; — én} conditional on the data as
an approximation to the distribution of G is then asymptotically justified if their distance,

equivalently (1.22), converges in probability to zero.

We formalize the above discussion by imposing the following assumptions on é:‘t

Assumption 1.3.1. (i) 67 : {X;, W;}1| — Dy, with {W;}, independent of {X;}7_,; (i)

é;; satz’sﬁes SupfeBL1(]D)) ‘EW[f(Tn{é:L - én})] - E[f(G)H = Op(l)'

Assumption 1.3.2. (i) E[f(ro{07 — 0.1)*] — E[f(ra{0% — 0,}).] = 0 for all f € BLy(D)
where f(ra{0 —0,1)* and f(ro{0F —0,}), denote minimal measurable majorant and maz-
imal measurable minorant (with respect to {X;, W; Y, jointly) respectively; (ii) f(rn{6 —
On}) is a measurable function of {W;}"_, outer almost surely in {X;}?_, for any continuous

and bounded f : D — R.

Assumption 1.3.1(i) formally defines the bootstrap analog é; of ,,, while Assump-
tion 1.3.1(ii) simply imposes the consistency of the “law” of r,,{#* —0,,} conditional on the
data for the law of G, i.e., the bootstrap “works” for the estimator 0,,. Assumption 1.3.2 is
of technical concern. In particular, Assumption 1.3.2(i) can often be established as a result
of bootstrap consistency (van der Vaart and Wellner, 1996a), while Assumption 1.3.2(ii) is
easy to verify for particular resampling schemes. For example, if {W;}™, — f(r {62 —0,})
is continuous, then Assumption 1.3.2(ii) is fulfilled. When 6j is Euclidean-valued, i.e.,

D = R* with k£ € N, one can dispense with Assumption 1.3.2.
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1.3.2 Failures of the Standard Bootstrap

We now turn to the challenges for inferences using the standard bootstrap caused

by first order degeneracy. As is well known in the literature, the law of

ra{®(05) — d(0n)} (1.23)

conditional on the data provides a consistent estimator of the law of %0 (G) provided ¢ is
Hadamard differentiable (van der Vaart and Wellner, 1996a), which in particular includes
the case when gbgo = 0. In other words, the standard bootstrap, meaning the law of (1.23)
conditional on the data, is consistent for the law of qﬁgo (G) regardless of the presence of first

order degeneracy.

Substantial difficulties, however, arise from using (1.23) for inferential purposes
when first order degeneracy does occur. Ignoring the first order degeneracy or perhaps as a
way to avoid ridiculous confidence intervals such as (1.18), one might consider the following
confidence interval for real-valued ¢(6y):

[6(0n) — El_a/27¢(én) - Eﬂ] : (1.24)

n Tn

where ¢1_, is the (1 — a)-th bootstrapped quantile for « € (0, 1) defined as

Gloq =inf{c € R: Py (ro{o(02) — ¢(0,)} < ¢) > 1—a} .

However, establishing the validity of (1.24) as a level 1 — « confidence interval for ¢(6p) is
problematic because ¢1_ 20 forall a e (0,1) and 0 is a discontinuity point of the cdf of

the limit (see Lemma 1.8.1).

In fact, simple algebra reveals that (1.24) is numerically identical to

2], (1.25)
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where ¢, is defined as
Cl—q =inf{ce R: Pw(T,%{(ﬁ(é;) — gﬁ(én)} <c)>1-a}.

In other words, ¢, is the a-th bootstrapped quantile of the standard bootstrap based on

second order asymptotics:

r2{p(0}) — ¢(0n)} - (1.26)

As illustrated by Babu (1984) for the squared mean example, the law of (1.26) conditional
on the data is inconsistent for the law of ¢j (G) when 6y = 0, the point at which first
order degeneracy arises. We next demonstrate that the bootstrap failure is not peculiar to
this example by generalizing it to our general setup. As the following theorem shows, for
centered Gaussian G, the second order standard bootstrap is consistent if and only if gbgo is

degenerate.

Theorem 1.3.1. Suppose that Assumptions 1.2.1, 1.2.2, 1.2.8, 1.3.1 and 1.3.2 hold, and

that G is centered Gaussian. Then ¢’9’0 =0 on the support of G if and only if

sup | By [f(ra{6(6;) — ¢(6a)1)] — E[f (9, (G)]] = 0p(1) - (1.27)

fEBL1(E)

If, in addition, ¢ is second order Hadamard differentiable, then the conclusion holds without

requiring G be centered Gaussian.

The sufficiency part of the theorem is somewhat expected and not a deep result,
while the necessity is perhaps surprising and has far-reaching implications for statistical
inference as we shall detail shortly. The proof of the latter consists of two steps: in the
first step, we show that bootstrap consistency as in (1.27) implies existence of a bilinear
map @’6’0 corresponding to ’9’0, in similar fashion as the proof of Theorem 3.1 in Fang and
Santos (2015); in the second step, we establish that <I>’9’0 and hence gb’e’o is necessarily degen-

erate. Both steps involve the insights of equating distributions through their characteristic
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functionals as in van der Vaart (1991) and Hirano and Porter (2012).

Theorem 1.3.1 implies that, in the presence of first order degeneracy, if the second
order derivative d)’g’o is nondegenerate, then the standard bootstrap based on second order
asymptotics is necessarily inconsistent whenever G is centered Gaussian. If qbgo is degenerate,
we have a degenerate limiting distribution that can not be directly used for inference. We
thus conclude that bootstrap failure is an inherent implication of models with first order

degeneracy.

Heuristically, the reason why the standard bootstrap fails is that even though
r%qb’eo (én — 6p) = 0 in the “real world”, its bootstrap counterpart is non-negligible. To

see this, consider the squared mean example. If 8g = 0, then
ey (O — 0) = n20, - {0 — 0.} = 2v/n{0, — 00} - V{0, = 0.} = Op(1) .

This is an emphatic reflection of Efron (1979)’s caveat that the bootstrap, as well as other
resampling schemes, provides frequency approximations rather than likelihood approxima-
tions. These heuristics suggest that the standard bootstrap might work if the first order
term r%gzﬁén(é; — én) is included, which turns out to be true for sufficiently smooth maps;

see Theorem 1.3.2.

It is worth noting that Theorem 1.3.1 holds even if ¢ is smooth. Consequently,
first order degeneracy is a source of bootstrap inconsistency completely different from that
discussed in Fang and Santos (2015), i.e., nondifferentiability of ¢. In addition, we note
that, without the qualifier that G is centered Gaussian, bootstrap consistency (1.27) holds if
and only if ¢ (G+h)— ¢y (h) 4 ¢g,(G) for all h € Supp(G) under mild support conditions;

see Theorem A.1 in Fang and Santos (2015).

1.3.3 The Babu Correction

We now extend the Babu correction under our more general setup. We proceed by

imposing the following assumption.
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Assumption 1.3.3. (i) The map ¢ : Dy C D — E is second order Hadamard differentiable
at 0y € Dy tangentially to Do; (i) ¢ is first order Hadamard differentiable at every point in

some neighborhood of 8y tangentially to Dy such that ©

/ /
lim H 00+tngn(hn) B 90(h”)

n—o00 tn

-2 /9/0(97 h)”E =0, (1'28)

for all sequences {gn, hn} C D and {t,} C RT such that t,, | 0, (gn, hn) — (g,h) € Dy x Dy
asn — oo and 0 +t,gn, 0 +t,hy, € Dy for all sufficiently large n, where (I)’O’D Dy xDy — E

1s the bilinear map underlying (bgo.

Assumption 1.3.3(i) defines the scope of our current discussion: the Babu correction
shall be applied to smooth maps. Assumption 1.3.3(ii) is stronger than ¢ being simply sec-
ond order Hadamard differentiable, in that it requires the existence of first order derivative
at all points in a neighborhood of y such that (1.3.3) holds. Assumption 1.3.3 is fulfilled
for the setup considered in Babu (1984) and for Examples 1.2.1 and 1.2.3, but violated for

the remaining examples.

Under Assumption 1.3.3, the corrected bootstrap

rad$(6;) — 6(0n) — & (05— 0n)} (1.29)

is consistent for the law of ¢’9’0 (G) regardless of the degeneracy of qbgo.

Theorem 1.3.2. Suppose that Assumptions 1.2.1(i), 1.2.2, 1.2.8(ii), 1.3.1, 1.3.2 and 1.5.3
holds. If the bilinear form <I>’9’0 can be continuously extended to D x D, then
sup |Ew [f(ri{o(0;) — 0(0n) — & (05 — 6n)})] = ELf (65, (G))]| = 0p(1) . (1.30)
fEBL1 (E) "
Theorem 1.3.2 generalizes Babu (1984) considerably in that it accommodates semi-

parametric and nonparametric models, and allows wider resampling schemes beyond the

nonparametric bootstrap of Efron (1979). The Babu correction works nicely with smooth

5The appearance of the factor 2 is due to omission of the factor 1/2 in Definition 1.2.2.
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maps in the sense of Assumption 1.3.3, but unfortunately is inadequate to handle nons-
mooth ones. This is because when ¢ is only second order directionally differentiable, often
times the derivative qbgo is not “continuous” in y, implying that the Babu correction (1.29)
is unable to estimate ¢g0 properly and in this way results in inconsistent estimates. For this
reason, we next provide yet another resampling method which accommodates nondifferen-

tiable maps.

1.3.4 A Modified Bootstrap

In this subsection, we shall present a modified bootstrap following Fang and Santos
(2015) that is consistent for the law of qﬁgo (G), and adaptive to both the presence of first

order degeneracy and nondifferentiability of ¢.

The heuristics underlying our proposal, however, are connected to those in Fang
and Santos (2015) in a subtle way. In the context of first order asymptotics where ¢ is
only directionally differentiable, inconsistency of the standard bootstrap arises from its
inability to properly estimate the directional derivative qﬁ’eo. In our setup, however, there
are examples in which the derivative gb’g’o is a known map; see Examples 1.2.1 and 1.2.3
which are all differentiable maps. The standard bootstrap in these settings fails because
there is a non-negligible term being neglected. However, in all other examples where ¢ is

not smooth enough, Fang and Santos (2015)’s arguments will come into play as well.

In any case, the second order weak limit d)go (G) is a composition of the derivative

5, and the limit G of 0, as is the first order limit ¢p,(G). Thus, the law of ¢p (G) can
be estimated by composing a suitable estimator (5% for (ﬁ’éo with a consistent bootstrap
approximation for the law of G, in exactly the same fashion as the resampling scheme

proposed by Fang and Santos (2015). That is, we propose employing the law of
o (rnf0;; — 0n}) (1.31)

conditional on the data as an approximation for the law of gb’e’O(G), where QBZ :D—Eisa
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suitable estimator of ¢j . In cases when ¢ is a known map, we may simply set ¢}, = ¢y

for all n € N.

Certainly, we would like ¢ to converge to qbgo in some sense as n — oo. This can

be made precise as follows.

Assumption 1.3.4. qu : D — E is a function of {X;}1_, satisfying that for every sequence

{hn} C D and every h € Dy such that hy, — h as n — oo,

On(hy) 2 ¢ (h) - (1.32)

Assumption 1.3.4 says that dA)x converges in probability to d)go along any convergent
sequence h, — h as n — oo. It is worth noting that Assumption 1.3.4 is equivalent to

requiring: for every compact set K C Dy and every € > 0,

timlimsup P sup |4 (h) = 6, ()] > <) =0, (1.33)

n—oo heK?

where K° = {a € D : infpek ||a—b||p < §}; see Lemma 1.8.2. Condition (1.33) was employed
in Fang and Santos (2015) who also provided several sufficient conditions for it to hold. For
example, if é;fb : D — E is Lipschitz continuous, then pointwise consistency of q% suffices
for (1.33). Unfortunately, second order derivatives often lack uniform continuity and hence
those sufficient conditions are inapplicable. Nonetheless, condition (1.32) is straightforward

to verify in all our examples.

Given the equivalence of conditions (1.32) and (1.33), consistency of our modified

bootstrap (1.31) follows from Theorem 3.2 in Fang and Santos (2015).

Theorem 1.3.3. Under Assumptions 1.2.1, 1.2.2, 1.2.3(i), 1.53.1, 1.8.2 and 1.5.4, it follows

that

sup | Bw [£(& (r{0), — 0n}))] — ELf(¢5,(G))]] = 0p(1) . (1.34)
feBL1(E)

Theorem 1.3.3 shows that the law of ¢/ (r,, {0 —0,}) conditional on the data is indeed
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consistent for the law of (bgo (G), regardless of the degree of smoothness of ¢ and degeneracy
of ¢/00' Interestingly, the resampling scheme in Theorem 1.3.3 is a mixture of the classical
bootstrap and analytical asymptotic approximations. Finally, we note that Assumption
1.3.4 allows us to think of Theorem 1.3.3 as a variant of the extended continuous mapping

theorem.

We now briefly compare the Babu correction, the above composition procedure
and the recentered bootstrap (Hall and Horowitz, 1996; Horowitz, 2001). In some cases (for
instance, Example 1.2.1 and the regular J-test), they coincide with each other. However, the
Babu correction applies to general smooth functionals, rather than just quadratic forms, and
hence can be thought of as a generalization of the recentered bootstrap. The composition
procedure, which works for an even larger class of functionals, is a direct approach by

exploiting the structure of the limits, and hence is more tractable.

Remark 1.3.1. Examples where the convergence rate is not y/n include inference on the
means of kernel density estimators (Hall, 1992),” smoothed maximum score estimators
(Horowitz, 2002), and cointegration regressions (Chang et al., 2006). For nonstandard con-
vergence rates, however, the bootstrap process rn{éz — én} can fail to consistently estimate
the law of G, violating Assumption 1.3.1(ii). Fortunately, as far as Theorem 1.3.3 is con-
cerned, any consistent estimator, which need not satisfy Assumption 1.3.1(ii), will do. For
example, in cube-root estimation problems, one could instead employ some smoothed boot-
strap rn{é;‘; — én} where 9~;“L and 6, are some smoothed estimators, or m out of n resampling
(or subsampling) mn{é;‘nn —0,} where éfnn is a bootstrap estimator based on subsamples of
size m,,. In the context of estimating nonincreasing density functions, see Kosorok (2008b)
and Sen et al. (2010); for bootstrapping the maximum score estimators, see Delgado et al.

(2001) and Patra et al. (2015). ]

"We stress that our assumptions on the primitive parameter 6y exclude cases where 6y is equal to a
density function evaluated at a particular point due to the bias term.
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1.3.5 Estimation of the Derivative

Given the posited bootstrap consistency for the law of G, the remaining crucial
piece towards consistent bootstrap for the law of ¢/9,0 (G) based on Theorem 1.3.3 is then an
estimator <ZA>;; of the derivative ¢g0 that satisfies Assumption 1.3.4. There are two general
approaches for estimation of (bgo: one by exploiting the structure of d)go, and the other one

based on numerical differentiation as we describe now.

When first order degeneracy occurs, we have

¢g (h) — lim ¢(00 + tnh) - ¢(90) .

n—00 t%

(1.35)

Following Song (2014) and Hong and Li (2015), we may then estimate ¢j via numerical

differentiation as follows: for any h € D,

3y = 0t tnti;) — ¢(0n) (1.36)

If ¢,, tends to zero at a suitable rate, the sense of which is made precise by the following

assumption, then g% is a good estimator for (bgo in the sense of Assumption 1.3.4.

Assumption 1.3.5. {t,}°°, is a sequences of scalars such that t,, | 0 and rpt, — oco.

The next proposition confirms the validity of the numerical estimator (1.36).

Proposition 1.3.1. If Assumptions 1.2.1, 1.2.2, 1.2.3(iii) and 1.3.5 hold, then the numer-

ical estimator ¢! in (1.36) satisfies Assumption 1.3.4.

We note that numerical differentiation can also be employed to estimate the deriva-
tive when ¢/90 is degenerate only at points in a proper subset of the parameter space; see
Remark 1.3.2. Proposition 1.3.1 provides a tractable way of estimating the derivative gbgo.
On the other hand, the expression of ¢/0/0 itself often suggests an obvious estimator as we

elaborate in next subsection.
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Remark 1.3.2. If ¢’90 is possibly nondegenerate, then we may estimate ¢’9’0 by: for h € D,

9, 2 , (1.37)
where ¢/ (h) is given by:
n én nh - én
¢ (h) = 2 +SS ) = 96n) (1.38)

and {t,, s, } are tuning parameters that tend to zero. We emphasize that s, should not be
taken to be equal to ¢, because otherwise we have gﬁ%(h) = 0 numerically for all h € D. In
fact, in order for g% and q%{ to possess desired estimation properties, we need put restrictions

on the rate at which s, t,, approach zero. [ |

1.3.5.1 Examples Revisited

We now demonstrate how to exploit the structure of the derivative for the purpose
of derivative estimation. Examples 1.2.1 is trivial since (bgo is a known map and hence one

can simply set ¢/ = Doy

Example 1.2.4 (Continued). Let By(fy) be an estimator of By(f). Then we may

estimate ¢y, by
5 (h) = /B ) max{h® () — 5@ (w), 0}2w(u)du . (1.39)
It is a simple exercise to verify that Assumption 1.3.4 is satisfied provided
/R 1{u € By(00)ABy(6p)}w(u)du 25 0 (1.40)

where AAB denotes the set difference between sets A and B. Such a construction corre-

sponds to the bootstrap procedure studied in Linton et al. (2010). [ |

Example 1.2.6 (Continued). In the classical case when I'g(0) is singleton, we may esti-
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mate ¢/¢9/0 based on the GMM estimator 4,, and the estimated Jacobian matrix Jn. Generally,
there are two unknown objects involved in the second order derivative: the identified set
Io(A) and J(vg). Let M™** be the space of m x k matrices. Suppose that I, cTisa
dpr-consistent estimator for (), and J, : T — M™*¥ an estimator for .J : I — M™*¥

such that sup.ep (7)) — J(v)|| & 0. Then we may estimate Pp, DY

bn(h) = min min {(70) — Tn(10)0}TW{h(v0) = Ju(70)0} (1.41)
Y€l VEBR

where B, = {v € R¥ : |[u|| < t;'} for t, | 0 satisfying t,/n — oo. Consistency of I, can
be established by appealing to Chernozhukov et al. (2007), while uniform consistency of
J,, can be derived using Glivenko-Cantelli type arguments. Following the proof of Lemma

1.8.9, it is straightforward to show that g?);; satisfies Assumption 1.3.4. [ |

1.4 Hypothesis Testing

Resampling methods such as bootstrap have many powerful applications in statisti-
cal analysis. For instance, jackknife and bootstrap initially were intended primarily as tools
for bias reduction and variance estimation (Efron, 1979). If, however, ¢ is nondifferentiable,
biases can not be fully eliminated and bias reduction can cause large variances (Hirano and

Porter, 2012; Fang, 2016). In this section, we instead study the hypothesis
Ho : ¢(6p) =0 Hy:¢(6p) >0. (1.42)

Under first order degeneracy, as is the case in all our examples, we propose using r?lqb(én)
as the test statistic, which, according to Theorems 1.3.2 and 1.3.3, provides pointwise size
control by rejecting Hy if rflgb(én) > ¢1_o Where ¢1_,, is the critical value constructed from

the Babu correction or our proposed bootstrap, i.e.,

é1-o = inf{c € R: Pw(rp{e(0}) — 6(0n) — &) (0 —6n)} <) >1—a}, (143
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or

¢1q =inf{c € R: Py (¢l (ro{0) — 0,}) < ¢) >1—a} . (1.44)

Note that ¢;1_, is generally infeasible in that it is constructed based on the “exact”
distribution of ¢/ (r,{0% — 6,,}) conditional on the data. Nonetheless, it can be estimated
by Monte Carlo simulation which in turn invites additional random error but can be made
presumably arbitrarily small by choosing the number of bootstrap samples (Efron, 1979;
Hall, 1992; Horowitz, 2001). Thus, as standard in the bootstrap literature, we think of ¢;_,,

as known in what follows.

In fact, under additional restrictions, our test can provide local size control. This
property is particularly attractive because of the irregularity arising from nondifferentiabil-
ity of ¢. In this case, pointwise asymptotic approximations can be misleading (Imbens and
Manski, 2004; Andrews and Guggenberger, 2009a). Interestingly, it turns out that there
is another source of irregularity due to second order asymptotics (see Lemma 1.4.1). We
next proceed to investigate the behaviors of our procedure under local perturbations to the

underlying distribution of the data, as characterized in next subsection.

1.4.1 Local Perturbations

We first introduce relevant concepts following Bickel et al. (1998). In what follows we
specialize our setup to the the i.i.d. setting for simplicity.® In particular, the data {X;}?*
is presumed to have a common probability measure P € P, where P is a collection of Borel
probability measures that possibly generate the data. Further, we think of the parameter

6o as a map 6 : P — Dy, i.e., 6y = 6(P). Formally, we impose the following:

Assumption 1.4.1. (i) {X;}?, is an i.i.d. sequence with each X; € R distributed ac-

cording to P € P; (ii) 6y = 0(P) for some known map 0 : P — Dy and ¢(y) = 0.

8Generally, we may consider models that are locally asymptotically quadratic (van der Vaart, 1998;
Ploberger and Phillips, 2012).
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Given the model P defined in Assumption 1.4.1, we now formalize the notion of
local perturbations to the true probability measure P. Intuitively, a local perturbation can
be thought as a sequence of probability measures contained in P that approaches P. Since
the set of probability measures is not a vector space, an appropriate embedding is needed to
make precise sense of this idea. This is simplified by considering one dimensional parametric

models containing P and contained in P (Stein, 1956).

Definition 1.4.1. A function ¢ — P, mapping a neighborhood (—¢,¢€) of zero into P is

called a differentiable path passing through P if Py = P and for some h : R% — R,

2

/2 _ ;p1/2
db, ” —dP %thl/Q =0. (1.45)

t

lim
t—0

Intuitively, a differentiable path is just a parametric model in P and indexed by
t € (—¢,¢€) such that it is getting close to P sufficiently fast as ¢ — 0. The function A is

referred to as the score function of P and satisfies [hdP =0 and h € L*(P).

The perturbations on P are fundamental in that they affect everything that is built
on the model, which in particular includes the parameter 6 : P — Dy and the estimator
0, : {Xi}?_; = Dg. In this paper, we shall only consider # and 6,, that are well behaved

with respect to these local perturbations. This is formalized by the following assumption.

Assumption 1.4.2. (i) For every differentiable path {P;} in P with score function h,
6 : P — Dy is reqular in the sense that there exists 6((h) € Do such that ||0(P;) — 0(P) —

t0h(h)|lp = o(t) (ast —0); (ii) 6y is a regular estimator for 6(P).

Assumption 1.4.2(i) is a smoothness condition on the parameter 6 : P — Dy, while
Assumption 1.4.2(ii) means that 0, is asymptotically invariant to local perturbations. As-
sumption 1.4.2(i) and (ii) in fact are closely related, though themselves alone do not imply
one another. In particular, regularity of 0,, plus a mild condition implies regularity of

6 : P — Dy, and vice versa (van der Vaart, 1991; Hirano and Porter, 2012).

9Formally, 0, is a regular estimator if for every differentiable path {P;} in P with score function h, we
have rn{én —0(P,)} Ly G, where P, = Py,,, and L, denotes the law under [T, Pa.



34

Given the above regularity conditions, we now proceed to characterize local behav-

iors of our test statistic.

Lemma 1.4.1. Let {P,} be a differentiable path with score function h. Suppose that As-

sumptions 1.2.1, 1.2.2, 1.2.8(ii)(iii), 1.4.1 and 1.4.2 hold. Then,
~ Ly
rad(0n) = 65, (G + 0y(h)) , (1.46)
where Ly, denotes the law under []}'_, P, with P, = Py, by abuse of notation.

Lemma 1.4.1 indicates that the asymptotic distribution of r%qﬁ(én) varies as a func-
tion of the score h, and in this sense exhibits second order irregularity, even if the map ¢
is both first and second order differentiable and 6,, is regular. This is perhaps surprising ex
ante and yet somewhat expected ex post. One important implication of Lemma 1.4.1 is that
one should carefully evaluate how sensitive the statistical procedures under consideration

is, in the presence of first order degeneracy.

1.4.2 Local Size and Power

Having derived the asymptotic distributions of r%gf)(én) under local perturbations,
we are now in a position to establish local power performance and local size control of our

test. We consider differentiable paths {P;} in P that also belong to the set
H={{P}: (1) ¢(0(P))=0ift <0, and (ii) ¢(0(P)) > 0if t > 0} .

Thus, a path {P} € H is such that {P;} satisfies the null hypothesis whenever ¢ < 0,
but switches to satisfying the alternative hypothesis at all ¢ > 0. One can think of H as
a simple device to study local size and power in a compact way. Further, we denote the

power function at sample size n for the test that rejects whenever r,%aﬁ(én) > C1—q by

T (P r,) = PMr2p(0,) > ¢1-0)
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where we write P, = and P = [[\"; P,. The following additional assumption ensures

n/rn

local size control of our test.

Assumption 1.4.3. (i) E = R; (ii) The cdf of qbgo (G) is strictly increasing and continuous
at its (1 —a)-th quantile c1-o; (iii) There exists a strictly increasing function 7 : ¢y (Do) —

R such that 7(0) = 0 and 7 o ¢y, : Dy — R is subadditive.

Assumption 1.4.3(i) formalizes the requirement that ¢ be scalar valued. Assumption
1.4.3(ii) requires strict monotonicity of the cdf of ¢ (G) at 1, which ensures consistency of
the critical value ¢;_, and continuity which ensures the test controls size at least pointwise
in P. Subadditivity of 7o qb’a’o as required in Assumption 1.4.3(iii) is crucial for establishing
local size control of our test. This condition was imposed directly on the first order derivative
in Fang and Santos (2015). In our setup, ¢’9’0 itself often violates subadditivity because it
is closely related to quadratic forms. Nonetheless, in all but Example 1.2.6, 7 o d)’e’o is

subadditive for 7 : Rt — R* given by 7(v) = \/v.19
The following theorem derives the asymptotic limits of the power function 7, (P, ., )-

Theorem 1.4.1. Let Assumptions 1.2.1, 1.2.2, 1.2.8, 1.8.1, 1.8.2, 1.8.4, 1.4.1, 1.4.2 and
1.4.3(i)-(ii) hold. It then follows that for any differentiable path {P;} in H with score

function h, and every n € R we have

lim inf 70, (P, ) > P(¢,(G + by(nh)) > c1-a) - (1.47)

n—o0

If in addition Assumption 1.4.3(iii) also holds, then we can conclude that for any n <0

lim sup 7, (P /r,) < @ . (1.48)

n—o0

The first claim of the theorem establishes a lower bound for the power function

under local perturbations to the null which includes in particular local alternatives. In fact,

10For Example 1.2.6, it turns out that ./ /9/0 (+) is subadditive when o is point identified, though the main

motivation for us being general there is to accommodate partial identification as well as the Jacobian matrix
being degenerate.
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the lower bound is sharp whenever ¢, is a continuity point of the cdf of ¢y (G +n6;(h)),
in which case (1.47) holds with equality. The role of Assumption 1.4.3(iii) can be seen from

(1.47) and the inequalities

P((bgo (G+ nﬁé(h)) >c1_q)=P(ro ¢’9/0 G+ 9’0(77h)) > 7(C1-a))
< P(7 0 ¢, (Go) + 7 o ¢y, (6o (nh)) > T(c1-a))
= P(1 0 ¢4, (Go) > 7(c1-a))

= P(¢y,(Go) > c1-a) <,

where the second equality is due to ¢p (05(nh)) =0 and 7(0) = 0.1t

To conclude this section, we note that it is possible to develop a testing procedure
adaptive to potential first order degeneracy, that is, in settings where ¢ is not always first
order degenerate under the null. We emphasize that r,%gb(én) fails to be a valid statistic

since it diverges to infinity at those nondegenerate points, and so does

T%{¢(én) - ¢,90 (én - 90)} )

because 6y might not be identified given ¢(6y) = 0. By introducing an appropriate selection
rule, we can combine first and second order asymptotics to provide a more general testing
procedure; see Remark 1.4.1. Development of adaptiveness not only serves to maintain
generality of our theory, but also is necessary when constructing confidence sets for ¢(6);

see Remark 1.4.2.

Remark 1.4.1. If %0 is only degenerate at some but not all points under the null, then

one may employ the statistic

7, = radln) - 1220 S 1y 206, 1200 < gy

Rn Rn

where k, | 0 satisfying k,r, — oo as n — oo. Heuristically, if qﬁgo is nondegenerate,

"'This is because ¢g, (65 (h)) = limpn 00 n{$(0(Pn)) — #(6(P))} = 0 by Assumption 1.2.1 and {P,} being
a local perturbation under the null.
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then r,¢(0,)/kn = 0,(1)/0,(1) & oo and thus with probability approaching one T, =
@ (6y,) which has nondegenerate weak limit 0p, (G). If ¢ is degenerate, then @ (0y)/fin =
726(00)/kntn = Op(1)/kintn 2 0 and therefore with probability approaching one T}, =
r%qb(én) which has nondegenerate weak limit gbgO(G). Accordingly we may construct the

corresponding critical value as

n$(0n , (6
& =l 1{“i() S 1) 4 éa 15 ‘Z( )

<1}, (1.49)
where for a € (0,1) and some estimator ¢/, of Py
Glq =inf{c € R: Py (¢, (ra{0 — 0,}) <¢) >1—a} .

The indicator functions above serve as a rule for selecting proper statistics based on degen-

eracy of (a finite sample analogue of) ¢j, . [ ]

Remark 1.4.2. Confidence regions for vy = ¢(6p) € E can be constructed by test inversion

based on the statistic

To(10) = rth(0n) - {22 > 1} +1pgp(0,) - {——= < 1}, (1.50)

n Rn

an<én) Tnlb(én)
K

where ¢ : Dy — R is given by 9(6) = ||¢(f) — w||g. Critical values can be constructed
in a similar fashion as in Remark 1.4.1. By the chain rule (Shapiro, 1990, Proposition
3.6), it is straightforward to see that v = ||¢g [[& and so ¢y, = 0 if and only if 15 = 0.
Moreover, wgo = H¢g0 |e when @/Jgo = 0. In general, confidence regions thus constructed are
less conservative than the plug-in type confidence regions ¢(Cy, g) with C, ¢ some level 1 — o

confidence region for 6. [

1.5 Application: Testing for Common CH Features

In this section, we apply our framework to develop a robust test of common condi-

tionally heteroskedastic (CH) factor structure by allowing partial identification. Let {Y;}1
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be a k-dimensional time series. According to Engle and Kozicki (1993), a feature that is
present in each component of Y; is said to be common to Y; if there exists a linear combina-
tion of Y; that fails to have the feature.'?> A canonical example is the notion of cointegration
developed by Engle and Granger (1987) in order to characterize the common feature of

stochastic trend.

1.5.1 The Setup

Following Engle et al. (1990) and Dovonon and Renault (2013), suppose that the

k-dimensional process {Y;} satisfies
Var(Yiy1|Fi) = ADAT + Q| (1.51)

where A is a k X p matrix of full column rank with p < k, D a p X p diagonal matrix with
diagonal (random) elements O'?-t for j =1,...,p, Qak x k positive semidefinite matrix, and
{Fi};2, afiltration to which {¥;}{2, and {ajg-t 1j=1,...,p}2, are adapted. By Engle and
Kozicki (1993), we say that {Y;} has a common CH feature if there exists some nonzero
v € RF such that Var(yTY;| ;) is constant. The conditional covariance structure (1.51) has
some attractive properties that help to understand, for example, asset excess returns in a
parsimonious way (Engle et al., 1990). Thus, tests of common CH features can be used
to detect the underlying common factor structures that simplify capturing interrelations of

economic and financial variables under consideration.

With the help of instrumental variables, a common CH feature can be reformu-
lated by unconditional moments that fit into the classical GMM framework. The following

assumption is taken directly from Dovonon and Renault (2013).

Assumption 1.5.1. (i) A is of full column rank; (ii) Var(c?) is nonsingular for o? =

(0315 02)T; (iii) E[Yypa1|F] = 0; (iv) Zy is an m x 1 Fy-measurable random vector

12A feature has to satisfy three axioms (Engle and Kozicki, 1993): (i) if ¥; has (resp. does not have) the
feature, then vY; will have (resp. not have) the feature for any v # 0; (ii) if neither X; nor Y; have the
feature, then X; + Y; does not have the feature; (iii) if X; has the feature but Y; does not, then X; + Y; will
have the feature.
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such that Var(Z;) is nonsingular; (v) Cov(Z;,a?) has full column rank p; (vi) {Y:, Z;} is

stationary and ergodic such that E[||Z:||?] < oo and E[||Y:||Y] < oco.

Assumption 1.5.1(i)-(ii) ensure that there are exactly k — p linearly independent
vectors 7, spanning the null space of AT, such that Var(yTY;|F;) is constant. In other words,
the common CH features v are nonzero solutions of the equation ATy = 0. Assumption
1.5.1(iii) is a normalization condition that helps to simplify the exposition. Assumption
1.5.1(iv) defines the instrument Z; formed from the information set F;, while Assumption
1.5.1(v) implicitly requires that the number of instruments is no less than that of factors.
Assumption 1.5.1(vi) further specifies the data generating process. We refer the readers to

Dovonon and Renault (2013) for further details of discussions on Assumption 1.5.1.

Assumption 1.5.1 allows us to characterize common CH features as nonzero =y sat-

isfying the vector of unconditional moment equalities (Dovonon and Renault, 2013):

E[Z{(y7Yin)* — (1)} = 0., (1.52)

where c(y) = E[(7TY;41)?]. Tt is then tempting to employ Hansen’s J statistic to test the
existence of common CH features (Engle and Kozicki, 1993). Unfortunately, as noted by
Dovonon and Renault (2013), the Jacobian matrix evaluated at the truth is zero, rendering
standard theory inapplicable. In fact, with the help of second order analysis, Dovonon
and Renault (2013) showed that the asymptotic distribution of the J statistic is highly
nonstandard. Nonetheless, Dovonon and Gongalves (2014) developed a corrected bootstrap
that can consistently estimate the limiting law when the bootstrap of Hall and Horowitz

(1996) fails to do so.

However, a key assumption in previous studies on test of common CH features is
that there exists a unique nonzero « such that (1.52) is satisfied, ensured by normalization
(Dovonon and Renault, 2013; Dovonon and Gongalves, 2014; Lee and Liao, 2014). This is
undesirable for the following reasons. First, it is unknown a priori how many CH features

are common to the series under consideration. Second, as pointed out by Engle et al. (1990)
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in the context of asset pricing, empirical work often considers large numbers of assets and
the numbers of common CH features are expected to be large as well. Third, exclusion
restrictions and normalization condition that are intended to ensure uniqueness of v as
in Dovonon and Renault (2013) might in fact lead to no v satisfying (1.52) and hence
misleading conclusions. For example, suppose that £ = 2 and A = [1,1]T. Then by Lemma
2.1 in Dovonon and Renault (2013), any common CH feature v must satisfy v 4~(2) = 0,
contradicting the linear normalization 4!) 4+ () = 1 proposed in Dovonon and Renault
(2013). These arguments motivate us to modify the J-test in a way that accommodates

partial identification as well as degenerate Jacobian matrices.

1.5.2 A Modified J Test
To exclude zero solution, we employ the following normalization
yeSt={y/ eRF: || =1}. (1.53)

Note that if v is a common feature, so is —y. Thus, under normalization (1.53), the set of
common CH features is never a singleton. Next, to map the current setup into our developed

framework, define a function ¢ : [[7L, £ (S¥) = R by

6(0) = inf 0(7)]* . (1.54)
~v€ES

Then in view of the moment conditions (1.52), the hypothesis that there exists at least one

common CH feature can be reformulated as
Hy : (Z)((g()) =0 H;: ¢(00) >0, (155)

where 0y : S¥ — R™ is defined as 0y(y) = E[Z:{(77Y:4+1)?> — ¢(7)}]. In this formulation,
we have taken the identity matrix I, as the weighting matrix not only for simplicity, but

more importantly because, as pointed out by Dovonon and Renault (2013), the rate of
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convergence of the GMM estimator varies as the weighting matrix changes and hence the

conventional notion of optimal weighting does not make sense.

As expected, under the null ¢ is Hadamard differentiable with degenerate derivative,
and second order Hadamard directionally differentiable at 0y tangentially to [7, C (S¥)

with the derivative given by: for any h € [[jL, C (Sk),

/i . . . T 2
9, (h) = min min |[h(y) + G vec(voT)][*, (1.56)

where Ty = {y € S : 6y(y) = 0} is the identified set of v, and G € M™* with the jth

row given by vec(A;)T and
A= E[Zt(J)(YtHYtL — E[YiY, )] -

Note that partial identification of 7 invites irregularity through the first minimization prob-
lem in (1.56), in addition to the irregularity caused by the second minimization having

multiple minimizers.

Next, let 7 : S¥ — R™ be defined by Or(y) = L S0, Z{(YYiq1)? — é(7)} with
é(y) = % Zthl (77Y;41)%. Given the established differentiability of ¢, the asymptotic distri-
bution of qb(éT) is then an immediate consequence of Theorem 1.2.1 provided 67 converges

weakly. Towards this end, we impose the following assumption as in Dovonon and Renault

(2013).

Assumption 1.5.2. Z;, vec(Y;Y]") and vec(Y,Y,") ® Z; fulfill CLT.'3

Assumptions 1.5.1 and 1.5.2 together imply that

VT{0r — 6y} & G in ﬁ (s, (1.57)

i=1

where G is a zero mean Gaussian process with the covariance functional satisfying: for any

13The symbol ® denotes Kronecker product.
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71, 72 € To and p, = E[Zy],

E[G()G ()] = El(Zi — p2)(Ze — p=){ (3] Yer1)? — c(r) H(W Yig1)? — c(12)}] -

The proposition below delivers the limiting distribution of test statistic T¢(9T).

Proposition 1.5.1. Let Assumptions 1.5.1 and 1.5.2 hold. Then we have under Hy

T min l6r()]1? = min min [|G(y) + G vec(veT)|* - (1.58)

The asymptotic distribution in (1.58) is a nonlinear functional of the Gaussian pro-
cess G. As shown by Dovonon and Gongalves (2014), however, the recentered bootstrap of
Hall and Horowitz (1996) fails to consistently estimate this limit. The bootstrap proposed
by Dovonon and Gongalves (2014) is not directly applicable because their identification

assumption is violated.

We next demonstrate how our bootstrap works. First, let {Y};, Z;}]_; be a boot-
strap sample, which can be obtained by block bootstrap, nonoverlapping or overlapping
(Carlstein, 1986; Kunsch, 1989). But the limiting process {G(v) : v € T'¢} is determined
by a martingale difference sequence indexed by v € I'g, the dependence structure of the
data does not enter into the limit and we may thus employ Efron (1979)’s nonparametric

bootstrap or more general bootstrap schemes. In any case, we set

T 1 T

07(v) = %Z ZHOY)? - @M}, &) =5 D (0 (1.59)

t=1 t=1

To accommodate diverse resampling schemes, we simply impose the high level condition

that HA} satisfies Assumptions 1.3.1 and 1.3.2 (Dehling et al., 2002).

It remains to estimate the derivative (1.56). The numerical differentiation approach
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can be implemented as in the beginning of Section 1.3.5. That is, we estimate ¢} by
0

R inf 0 + krh(¥)||? — mi ) 2
%(h)zlnveSk 107 () + kT (ng min, cgx [|07(7)]| 7 (1.60)

K

where kp satisfies Assumption 1.3.5. We now describe how to estimate ¢/9/0 by exploiting
its structure. Let By = {v € RF : |jv]| < 551/4} where k7 is to be specified. Then we may
estimate ¢j (h) by

p(h) = inf min ||h(y) + G vec(voT)|? , (1.61)
»Yef‘T'UEBT

where I'p = {y € S% : ||07(7)||2 — ¢(67) < k), and G € M™* with its jth row given

by vec(A;)T for

T T

N 1 ; 1 N1

Aj=2) 2V - 7D :Zt(])f > YinYi .
t=1 t=1 t=1

In fact, we may further restrict the bounded set By to reduce the computation burden for

A%; see Remark 1.5.1.

Remark 1.5.1. The derivative (1.56) can be rewritten as:

¢4, (h) = min min ||h(y) + G vec(vvT)|*, (1.62)
7€l vely:

where I‘OL ={\NcR¥: X1y =0, V~y € I'g} denotes the orthogonal complement of I'g. Then

for Ty, = {y € RF: sup, cp,. [YTA| < K,;«/Zl}, we may estimate ¢y (h) by

r(h) = inf  min ||h(y) + G vec(vuT)|? . |
’YEFT ’UGFTYLI’\IBT

Clearly, the sequence {k7} should tend to zero at a suitable rate as T'— oco. This

is made precise as follows.

Assumption 1.5.3. {kr} satisfies (i) k | 0, and (i) VTrp — oo if ¢/f is given by (1.60)

140ne can theoretically ignore qb(éT) in the expression of I'r. As pointed out by Chernozhukov et al.
(2007), however, such a modification helps avoid an empty set of solutions and improve power.
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or Tk — o0 if q% is given by (1.61).

Combining the bootstrap éi} in (1.59) and the derivative estimator, we are then able
to consistently estimate the law of the weak limit in (1.58) following Theorem 1.3.3, which

in turn allows us to construct critical values. Specifically, let ¢;_, be the 1 — a quantile of

3r.(VT {03 — O7}) conditional on the data:'?

¢ =inf{c € R: Py (r(VT{03 —07}) < c) >1—a} . (1.63)

The following proposition confirms that the test of rejecting existence of common

CH features when Tgb(éT) > ¢1_q is valid.

Proposition 1.5.2. Suppose Assumptions 1.8.1, 1.83.2, 1.5.1, 1.5.2, and 1.5.3 hold. If
the cdf of the limit in (1.58) is continuous and strictly increasing at its 1 — « quantile for

a € (0,1), then we have under Hy,
lim P(T min [|07()])? > é1-a) = « .
T—o0 »ygSk

Proposition 1.5.2 implies our test has pointwise asymptotic exact size o and thus
is not conservative (in the pointwise sense). Establishing local size control, unfortunately,
is challenging in this case, because gbgo fails to be subadditive in general when there exist
more than one common CH features. In fact, the problem of developing (at least) locally
valid and non-conservative overidentification tests is prevalent in the literature of partial

identification (Chernozhukov et al., 2007; Andrews and Soares, 2010).

1.5.3 Simulation Studies

In this section, we examine the finite sample performance of our inference framework

based on Monte Carlo simulations and show how the identification assumption in Dovonon

5 As usual, Py denotes the probability taken with respect to the bootstrap weights {IWr}, though in the
current setup they are implicitly defined. Alternatively, one can think of Py as the probability with respect
to the bootstrap sample {Z;, Yy’ 1} holding data fixed.
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and Renault (2013) and Dovonon and Gongalves (2014) can suffer from their imposed linear

normalization.

As in Dovonon and Renault (2013) and Dovonon and Gongalves (2014), we consider
the following CH factor model:
Yi=AF +u (1.64)

where Y; is a k x 1 vector that can be thought of asset returns, F; is a p x 1 vector of CH
factors, A is a k x p matrix of factor loadings, and wu; is a vector of idiosyncratic shocks
independent of F;. The model (1.64) is essentially the factor model that underpins the

arbitrage pricing theory (Ross, 1976).

Following Dovonon and Renault (2013) and Dovonon and Gongalves (2014), we let
{U:} be an ii.d. sequence from N (0, I;/2), and the jth component fj;y1 of Fy4q follow a
Gaussian-GARCH(1,1) model such that

IR 2 . r2 -2
Jit41 = 04641 O = Wwj+ ajfj,t + fBJUj,t—l )

where wj, aj, 85 > 0, {eg+} ~ N(0,1) i.i.d. across both ¢ and ¢, and {ojo} are independent
across j and of {ey;}. It follows that {f;;} are independent across j for each t. The
remaining specifications are detailed in Table 1.1. Our designs are the same as those in
Dovonon and Renault (2013) and Dovonon and Gongcalves (2014) except that different
values for A are used to illustrate the restrictiveness of the linear normalization. Designs
D1 and D2 generate two assets while Designs D3, D4 and D5 generate three assets. In
Designs D1, D3 and D4, the factor loading matrices A ensure the existence of common CH
features and thus serves for investigation of size performance, while no common CH features

exist in Designs D2 and D5, which help us to inspect power performance.

The tests are implemented with m = 2 and instruments Z; = (th, Y22’t)T for De-
signs D1 and D2, and with m = 3 and Z; = (}q%t,YQ%t,}/}ft)T for Designs D3, D4 and

D5. For derivative estimation, we set the tuning parameters kp = T~1/2, T-2/3 7=4/5 and
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Table 1.1: Simulation Designs

Design  # of Assets  # of Factors GARCH Parameters Factor Loadings
D1 k=2 p=1 (wi, a1, B1) = (0.2,0.2,0.6) A= (1,1)7
D2 k=2 p=2 (w1,01,581) =(0.2,0.2,0.6) Aol
(w2, ag, B2) = (0.2,0.4,0.4)
D3 k=3 p=1 (w1, 01, 61) = (0.2,0.2,0.6) A=(1,1,1)T
D4 L3 - (.01 f1) = (02.02,06) [1 1 1]T
(wa, g, B2) = (0.2,0.4,0.4) 1 0 1
(w1, a1, B1) = (0.2,0.2,0.6)
b5 k=3 p=3 (wa, g, B2) = (0.2,0.4,0.4) A=1I4
(w3, a3, B3) = (0.1,0.1,0.8)

kp = T~Y4 T=1/3 T=2/5 for the derivative estimator in (1.61) and the numerical deriva-
tive estimator as in (1.60) respectively. The corresponding results are denoted as CF1 and
CF2, respectively. To show the restrictiveness of the linear normalization v € {7/ € R* :
Zle 7, = 1} as in Dovonon and Renault (2013), Dovonon and Gongalves (2014) and Lee
and Liao (2014), we report the results based on Dovonon and Gongalves (2014)’s corrected
and continuously-corrected bootstrap, which are denoted as DG1 and DG2 respectively.
The sample sizes are T' = 1,000, 2,000, 5,000, 10, 000, 20,000, 40, 000 and 50, 000 following
Dovonon and Gongalves (2014). To minimize the initial value effect, the data are obtained
by generating T' 4 100 samples and dropping the first 100 samples. The results are based
on 2,000 Monte Carlo replications with 200 nonparametric bootstrap replications for each

Monte Carlo. The nominal level is 5% throughout.

The results are summarized in Tables 1.2-1.5. Not surprisingly, Dovonon and
Gongalves (2014)’s resampling methods exhibit substantial size distortion, often times close
to or over 50%, as shown by the columns labeled DG1 and DG2 in Tables 1.2, 1.3 and
1.4. This does not appear to be a finite sample issue as the distortion is especially severe
in large samples. Rather, it is because the linear normalization excludes common CH fea-

tures that actually exists in the data and in this way leads to wrong conclusions. Our tests
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considerably reduce the null rejection rates for all the chosen tuning parameters, though
both CF1 and CF2 exhibit some degrees of over- and under-rejection, due to the issue of
tuning parameters. Tables 1.5 indicates that our tests are consistent, though CF2 seems to
be superior than CF1 in small samples. Another interesting finding is that our bootstrap
based on numerical differentiation appears to be more sensitive to the choice of tuning pa-
rameters, which is somewhat expected because the structural method (CF1) exploits more
information of the derivative. We leave a thorough comparison between these two methods

of derivative estimation for future study.

1.6 Conclusion

In this paper, we developed a general statistical framework for conducting infer-
ence on functionals exhibiting first order degeneracy, i.e., the first order derivative of the
parameter is zero. Our first contribution implies that the standard bootstrap necessarily
fails to work in these settings. In light of this failure, we provided two general solutions:
one generalizes the Babu correction, and the other one is a modified bootstrap following
Fang and Santos (2015). Our framework includes many existing results as special cases.
To further demonstrate the applicability of our theory, we developed a test of common CH
features studied by Dovonon and Renault (2013) but under weaker assumptions that allow

the existence of more than one common CH features.
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Table 1.2:

Rejection rates under the

null: Design D1

T\ Tests

CF1

CF2

DG

T-1/2

T7-2/3

T—4/5

T-1/4

T—1/3

T-2/5

DG1

DG2

1000
2000
5000
10000
20000
40000
50000

0.0850
0.0940
0.1010
0.1010
0.1005
0.1180
0.1070

0.0640
0.0715
0.0740
0.0820
0.0725
0.0900
0.0830

0.0420
0.0530
0.0515
0.0585
0.0525
0.0670
0.0660

0.0395
0.0550
0.0505
0.0550
0.0495
0.0700
0.0665

0.0185
0.0320
0.0290
0.0285
0.0285
0.0410
0.0410

0.0100
0.0120
0.0075
0.0090
0.0115
0.0165
0.0145

0.3975
0.5060
0.6215
0.6375
0.6750
0.6865
0.6895

0.4015
0.5045
0.6185
0.6270
0.6705
0.6845
0.6870

Table 1.3:

Rejection rates under the

null: Design D3

T\ Tests

CF1

CF2

DG

T—1/2

T—2/3

T—4/5

T-1/4

T-1/3

T-2/5

DG1

DG2

1000
2000
5000
10000
20000
40000
50000

0.0605
0.0645
0.0520
0.0690
0.0660
0.0520
0.0745

0.0390
0.0385
0.0385
0.0565
0.0600
0.0460
0.0670

0.0285
0.0280
0.0315
0.0450
0.0490
0.0390
0.0585

0.0660
0.0655
0.0505
0.0830
0.0850
0.0645
0.0920

0.0605
0.0570
0.0455
0.0665
0.0660
0.0475
0.0635

0.0430
0.0380
0.0275
0.0320
0.0335
0.0225
0.0395

0.2300
0.3425
0.3970
0.4385
0.4765
0.5030
0.5255

0.2400
0.3470
0.3965
0.4415
0.4790
0.5065
0.5290
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Table 1.4:

Rejection rates under the

null: Design D4

T\ Tests

CF1

CF2

DG

T-1/2

T72/3

T—4/5 p-1/4

T-1/3

T72/5

DG1

DG2

1000
2000
5000
10000
20000
40000
50000

0.0715
0.0895
0.1055
0.1135
0.1155
0.1280
0.1150

0.0445
0.0515
0.0720
0.0615
0.0715
0.0810
0.0775

0.0265 0.1305
0.0380 0.1485
0.0545 0.1590
0.0485 0.1440
0.0555 0.1530
0.0640 0.1655
0.0660 0.1650

0.0915
0.0935
0.0960
0.0750
0.0960
0.0900
0.0855

0.0415
0.0330
0.0300
0.0290
0.0290
0.0300
0.0260

0.4795
0.6380
0.7810
0.8055
0.8495
0.8650
0.8610

0.4870
0.6515
0.7820
0.8030
0.8485
0.8670
0.8590

Table 1.5: Rejection rates under the alternative
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T\ Tests

Design D2

Design D5

CF1

CF2

CF1

CF2

T71/2

T72/3

T74/5

T71/4

T71/3 T72/5

T71/2

T72/3

T74/5

T71/4

T71/3

T72/5

1000
2000
5000
10000
20000
40000
50000

0.6450
0.9410
0.9975
0.9980
0.9985
0.9995
0.9995

0.5915
0.9185
0.9975
0.9980
0.999
0.9995
0.9995

0.5050
0.8805
0.9960
0.9975
0.9985
0.9995
0.9995

0.7255
0.9530
0.9995
0.9985
0.9995
1.0000
0.9995

0.6890 0.5570
0.9365 0.8785
0.9990 0.9950
0.9985 0.9985
0.9995 0.9985
1.0000 1.0000
0.9995 0.9995

0.1240
0.3520
0.8250
0.9865
0.9980
1.0000
0.9995

0.0740
0.2710
0.7710
0.9850
0.9970
1.0000
0.9995

0.0630
0.2300
0.7255
0.9755
0.9955
0.9985
0.9990

0.3990
0.6975
0.9610
0.9995
1.0000
1.0000
1.0000

0.3645
0.6675
0.9460
0.9985
1.0000
1.0000
1.0000

0.3000
0.5570
0.8885
0.9955
1.0000
1.0000
1.0000
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1.8 Appendix

1.8.1 Proofs of Main Results

PRrOOF OF THEOREM 1.2.1: For eachn € N, let D,, = {h € D : 6+ h/r, € Dy} and define

gn : Dp — E by
gn(hp) = r%{qﬁ(ﬁo + r;lhn) — ¢(6y) — r,jlqﬁgo (hp)} for any h, € D, .

By Assumption 1.2.1, ||gn(hn) — ¢y, (h)[[g — 0 whenever h, — h € Do. Moreover, G € Dy
(almost surely) is separable since it is tight by Assumption 1.2.2(ii). The first claim of the

theorem then follows by Theorem 1.11.1(i) in van der Vaart and Wellner (1996a).

As for the second claim, define f, : D, x D — E x E by
fr(hns h) = (gn(hn), ¢g, (R)) for any (hy,h) € Dy x D .

Assumption 1.2.1 and 1.2.3(i) allow us to conclude again by Theorem 1.11.1(i) in van der

Vaart and Wellner (1996a) that

ra{$(6n) — $(60) — &, (6 —60)}| | |5, (G)
= inExE. (1.65)

&y (rn{0n — 00}) ¢y (G)

By the continuous mapping theorem applied to result (1.65), we have
A A A L
ra{@(6n) — &(60) — 3, (0 — 00)} — ¢, (ra{fn — 60}) =0 . (1.66)

The second claim then follows from result (1.66) and Lemma 1.10.2(iii) in van der Vaart

and Wellner (1996a). [

PrROOF OoF THEOREM 1.3.1: Inspecting the structure of the problem, we see that the
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bootstrap consistency (1.27) is equivalent to ¢y (G + h) — ¢p (h) 4 ¢p,(G) for all h €
Supp(G) by exactly the same arguments as the proof of Theorem A.1 in Fang and Santos
(2015). Thus, it boils down to showing that ¢y, (G+h)—ay, (h) g g, (G) for all h € Supp(G)
if and only if ¢y (h) = 0 for G-almost h in Dy. One direction is immediate since if latter
holds, then both ¢p (G + h) — ¢j (h) and ¢y (G) are degenerate at 0 for all h € Supp(G),

and hence are equal in distribution.

The converse consists of two steps. To begin with, note that by Assumption 1.2.2(ii),
G being centered Gaussian and Lemma A.7 in Fang and Santos (2015), we may assume
without loss of generality that the support of G is D and that D is separable. Since D is
separable, it follows that the Borel o-algebra, the o-algebra generated by the weak topology,
and the cylindrical o-algebra coincide by Theorem 2.1 in Vakhania et al. (1987). Further-
more, by Theorem 7.1.7 in Bogachev (2007), P is Radon with respect to the Borel o-algebra,
and hence also with respect to the cylindrical o-algebra. Finally, let P be the probability

measure on D induced by G.

STEP 1: Show that ¢ corresponds to a bilinear map if ¢y (G + h) — ¢ (h) < ¢, (G) for
all h € Supp(G).

For completeness, we introduce additional notation following Section 3.7 in Davydov
et al. (1998). First, let D* denote the dual space of D, and (x,z*)p = z*(x) for any x € D
and x* € D*. Similarly denote the dual space of E by E* and the corresponding bilinear
form by (-,-)g. Since G is Gaussian, D* C L?(P) (Bogachev, 1998, p.42). We may thus
embed D* into L?(P). Denote by D', the closure of D*, viewed as a subset of L?(P). By
some abuse of notation write 2'(z) = (2/,z)p for any 2’/ € D), and = € D. Finally, for
each h € D we let P" denote the law of G + h, write P* < P whenever P" is absolutely

continuous with respect to P, and define the set:

Hp={heD:P" < PforalrecR}.

Since P is Radon with respect to the cylindrical o-algebra of D, it follows by Theorem
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7.1in Davydov et al. (1998) that there exists a continuous linear map I : Hp — D', satisfying

for every h € Hp:

h
C;ip(x) = exp { (2, Th)p — 5% (h) } o (h) = /D (@, Ih)} P(dx) . (1.67)

Fix an arbitrary e* € E* and h € Hp. Since ¢fj (G + h) — ¢, (h) < ¢} (G) for all
h € Supp(G), it follows that (e*, ¢p (G + 7h) — ¢j (rh))r and (e*, ¢j (G))r must be equal
in distribution for all € R.16 In particular, their characteristic functions must equal each

other, and hence for all r > 0 and ¢ € R:

Elexp{it(e”, ¢,(G))e}] = Elexp{it{(e”, ¢, (G + rh) — ¢g,(rh))e}}]

= exp{—itr?(e*, b, (h))e}Elexp{it(e*, ¢y, (G +rh))e}] , (1.68)

where in the second equality we have exploited gﬁ’éﬂ being positively homogenous of degree

two. Setting C(t) = Elexp{it(e*, ¢ (G))r}], we have by (1.68) that

exp{itr2<e*, d>g0 (h))e}C(t) = Elexp{it(e”, d>g0 (G+rh))r} . (1.69)

forall » >0 and t € R.

We next aim to equate second order right derivatives of both sides in the identity

(1.69). The second order right derivative of the left hand side at » = 0 is given by
20tC(1) (e, 6l (b)) - (1.70)

On the other hand, exploiting result (1.67), linearity of I : Hp — D’ and that h € Hp

implies rh € Hp for all » € R and in particular for all » € [0, 1], we may rewrite the right

YThe proof of Lemma A.3 in Fang and Santos (2015) never exploits that qbgo is a first order derivative
beyond continuity of ¢p, and ¢y, (0) = 0 which are satisfied by ¢g,.
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hand side of (1.69) as

d Prh
dP

Elexp{it(e”, ¢, (G + rh))g}] = /Dexp{it(e*, Py (2))E} (z) P(dz)

2
_ / exp {it(e", 6, (o))s + (e, Thyp = o (h) bP(dr) . (171)
D
The integrand on the right hand side of (1.71) is differentiable with respect to r for all r €
[0, 1] and the resulting derivative is dominated by exp{|(x, IR)p|} x {|{x, Ih)p|+0c?(h)} which
is integrable against P since (G, Ih)p ~ N(0,0%(h)) by Proposition 2.10.3 in Bogachev

(1998) and Ih € D,. Thus by Theorem 2.27(ii) in Folland (1999), the first order derivative

of the right hand side in (1.71) at r € [0, 1] exists and is given by

7“2
/ exp {it(e*, & ())g + r{x, Th)p — EUQ(h)}{@;, Ihyp — ro®(h)}P(dz) . (1.72)
D

In turn, result (1.72) allows us to conclude that the second order right derivative of the

right hand side in (1.71) at r = 0 exists and is given by

/D explit(e", ¢ (@)} (, I3 — o(1)| P(da) . (1.73)

Since the equation (1.69) holds for all » > 0 and t € R, it follows from (1.70) and (1.73)

that for all ¢ € R
2itC(t){e", ¢, (h))E = /Dexp{it<6*7¢’éo ())&} (z, In)G — o?(h)]P(dz) . (1.74)

Note that ¢ — C(t) is the characteristic function of (e, ¢y (Go))r and hence it is
continuous. Thus, since C'(0) = 1 there exists a to > 0 such that C(ty)ty # 0. For such ¢
it follows from (1.74) that

iBlexp{ito(e*, ¢, (G))e}{(G, ITh)5, — o*(h)}]
2toC (o) '

(e, g, (h))E = — (1.75)
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Define a map &y : D x D — E by

@}, (h,9) = 564, (h +9) — 6, (h— g)] (1.76)

It then follows from (1.75) that, for any e* € E* and any g,h € D,

iBlexp{ito(e”, ¢, (G))e H(G, 19)n(G, Ih)p — o(g,h)}]
2t0C (to) ’

(e*, ®p (9, h)E = — (1.77)

where o(g, h) = E[(G, 1g)(G, Ih)]. Since I : Hp — D' is linear, (h,g) = (e*, ®p (9, h))x is
bilinear on Hp x Hp. Moreover, (h,g) — (e*, ®4 (g,h))x is continuous on Hp x Hp due to
continuity of ¢y (and hence &g ) and e* € E*. We thus conclude from Hp being a dense
subspace of D by Proposition 7.4(ii) in Davydov et al. (1998) that (h, g) = (e*, ®p (g, h))E
is continuous and bilinear on D x D. Since e* € E* is arbitrary, it follows from Lemma A.2
in van der Vaart (1991) that &y : D xD — E is bilinear and continuous. By identity (1.76),
we have ¢j (h) = @ (h,h) for all h € D. Hence, ¢j is a quadratic form corresponding to

the bilinear map @’9’0.

STEP 2: Conclude that ¢’9’0 = 0 on the support of G. Note that if ¢ is second order

Hadamard differentiable, then one can directly start with Step 2.

By Lemma A.3 in Fang and Santos (2015), for all h € D,

. (G) £ ¢ (G + h) — ol (h)
= c1>g0(G+ h,G+ h) — g0<h, h)

= 2, (G, G) + 204, (G, h) = ¢4, (G) + 2®5,(G, h) , (1.78)

where the third equality exploited bilinearity of <I>’9’O. Fix an arbitrary e* € E*. By result
(1.78), we have for all r € R and h € D,

Elexp{it(e®, ¢y, (G))e}] = Elexp{it(e”, ¢, (G) + 2%, (G, rh))e}]

= Elexp{it(e”, 3,(G))e} exp{2irt(e”, 24, (G, h))e}] ,  (1.79)
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where the last step used linearity of <I>’9'0 in its second argument. We now equate second
derivatives of both sides at r = 0. The second derivative of the left hand side is trivially zero,
while that of the right hand side, by the recursive use of dominated convergence arguments,

is given by Elexp{it(e*, ¢ (G))r}{2it(e*, ®} (G, h))r}?]. Thus we have for all t € R,
Elexp{it(e*, ¢5,(G))z H2it(e", 24,(G, h))e}*] = 0 ,
which in turn implies that for all ¢ € R\ {0},
Elexp{it(e*, ¢4, (G))e}(e*, ¥4, (G, h))E] =0 . (1.80)

Picking a sequence t, | 0, replacing ¢ with ¢, in (1.80) and letting n — oo leads to, by the

dominated convergence theorem: for all e* € E* and all h € D,
El(e*, 4, (G, h)E] = 0. (1.81)

Consequently, (e*, <I>g0 (g,h))g = 0 for all h € D and P-almost surely g € D. Since e* is
arbitrary, we conclude by Lemma 6.10 in Aliprantis and Border (2006) that ®p (g, h) = 0

for all h € D and P-almost g € D. Hence, ¢j (h) = 0 for P-almost h € D.

Finally, denote by € the collection of all h € D such that ¢ (h) = 0. Then we
have P(2) = 1 by Assumption 1.2.2(ii) and the above discussion. We claim that  is
dense in the support of P. To see this, suppose otherwise and then there must exist some
ho € Supp(P) and some 6 > 0 such that B(hg,d) N Q = (. Note that i) P(B(hg,0)) > 0
since hg € Supp(P), and ii) ¢y (h) # 0 for all h € B(ho,d) by the definition of . These
contradict the fact P(€2) = 1. Since ¢y, is continuous on Dy by Assumption 1.2.3(i), it is
also continuous on the support of P as a subset of Dg by Assumption 1.2.2(ii) and Theorem
I1.2.1 in Parthasarathy (1967). In turn, we may conclude from 2 being dense in Supp(P)

and ¢y =0 on Q that ¢p = 0 on Supp(P). -

PRrOOF OF THEOREM 1.3.2: Let D, = {h € D: 6y + h/r, € Dy} and define for each n € N
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the map ¥, : D,, x D, — E by

¢>(90 + ""glhn) - ¢(90 + Tﬁlgn) - /90+T;19n (Tﬁl{hn - gn})

\Ijn(gna hn) = 2

If {gn, hn}o2, C Dy, satisfies (gn, hn) = (g, h) € Dy x Dy as n — oo, then Assumption 1.3.3

allows us to conclude that

$(00 + 1 hn) — 600 + 1 gn) = & L (i {hn = gn})

\I’n(gny hn) = ) =

T'n

w3 (9n) }

~A{dO0 + 71 ) = 9(00) — 13 B, ()} — {D(00 + 77 gn) — D(00) — 7 B,
— —
{o] (hn) = &y (hn)} = {1, (9n) = P, (9n)}

- 1

Oo+ry ! gn

£

- (I)” (h’ h) - (I)/G/O(g’g) - 2(1)/6/0(97 h) + 2(1)/6/0(9’9)
(1.82)

= U(g,h) = Py, (h, h) + Py, (9,9) — 2P, (g, h) .

Since ¢p, admitting a continuous extension on D, by corresponding extension of ®; accord-
ing to equation 1.76, it follows from (1.82) that

U (Gns hn) — ¥ (gns hn) = i(gn, hn) — ¥ (g, h) — {¥(gn, hn) — ¥ (g, h)} — 0. (1.83)

= r {0 — 0,} and

Next, for notational simplicity, let G, = rn{én — 60}, G
Gl = rn{é; — 600} = G} + G,,. By Assumption 1.2.1, 1.2.2, 1.2.3(ii), 1.3.1 and 1.3.2(i),

it follows from Lemma A.2 in Fang and Santos (2015) that for Gi, G2 independent dis-

tributed according to G,

(Gn, G}) = (G1,Go) . (1.84)

By the continuous mapping theorem and result (1.84) we have

(G, Gl) = (G, G2 +Gp) 2 (G1,Gy + Gs) . (1.85)
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Combining the separability of G; and G2 by Assumption 1.2.2(ii), results (1.83) and (1.85),

we conclude by Theorem 1.11.1(i) in van der Vaart and Wellner (1996a) that
U (G, Gl) — U(Gn, Gf) 50 (1.86)
By Lemma 1.10.2 in van der Vaart and Wellner (1996a) we have from (1.86) that

U, (G, Gl) — U(Gy,, G) = 0,(1) . (1.87)

Now fix € > 0. Note that

sup | Ejy [f (Un(Gn, G}))] — Eiy [f (¥(Gy, G}))]|
fEBL1(E)

< e+ 2Py (| ¥n(Gn, Gf) — U(Gy, Gz >€) . (1.88)
By Lemma 1.2.6 in van der Vaart and Wellner (1996a),

Ex [Py (|Wn(Gp, Gf) = U(Gy, GY)[lg > €)] < P*(|Wn (G, Gf) = U(Gy, G| > €) -
(1.89)

Results (1.87), (1.88) and (1.89), together with € being arbitrary, then yield

sup | By [f(Wn (G, G))] = Efy [ (¥ (G, GH))]| = 0p(1) (1.90)
f€BL1 (E)

Result (1.85) and Assumption 1.2.2(ii) implies that (G, G},) is asymptotically mea-
surable and asymptotically tight. In turn, Lemmas 1.4.3 and 1.4.4 in van der Vaart and
Wellner (1996a) implies that (G, GIL, G1,Gq + Gy) is asymptotically tight and asymptoti-
cally measurable. Fix an arbitrary subsequence {ny}. Then Theorem 1.3.9 in van der Vaart
and Wellner (1996a) implies that (G, G, G1,Gy +G2) converges weakly along a further sub-
sequence of {ng} to a tight Borel law in H?Zl D, which is equal to (G1, G1+ G2, G1,G1+G2)

by marginal convergence. This is a weak limit where the dependence structure between the
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first two components and last two components is known and in fact unique. Since ny is

arbitrary, it follows that
(Gn, GL,G1,G1 + G2) 2 (G1,G1 + Ga,G1,G1 + Ga) . (1.91)

Since ¥ : D x D — E and hence (¥, V) : H?:l D — H?:l E is continuous, it follows from

result (1.91) and the continuous mapping theorem that
(U(Gn, GL), U(G1, Gy + Gs)) 2 (U(G1, Gy + Ga), U(Gy, Gy + Ga)) . (1.92)

Combination of the continuous mapping theorem and Lemma 1.10.2(iii) in van der Vaart

and Wellner (1996a) yields that
U(Gy, Gl) — U(Gy, Gy + Ga) = 0p(1) . (1.93)
By the triangle inequality, we have

sup | Efy [f(U(Gn, G}))] — E[f(¥(G1,G1 + G2))]|
feBL1(E)

< e+ 2P (| %(Gp, Gl) — W (G, Gy + G|l > €) . (1.94)
By Lemma 1.2.6 in van der Vaart and Wellner (1996a) and result (1.93)

Ex Py (|9(Gy, Gf)—T(Gy, Gy + Go)|[g > €)

< P (|¥(Gn,Gl) — ¥(G1,G1 + Ga)|lg > €) =o(1) . (1.95)
Combination of (1.90), (1.94), (1.95) and the triangle inequality leads to

sup | Ejy[f (U0 (G, G))] = E[f(¥(G1, Gy + G2))]| = 0p(1) - (1.96)
fEBL1(E)
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The theorem follows by combining (1.90) and (1.96) and noticing that
U (Gn, G) = 17 {9(07) — $(0n) — & (67, = 0,)} and W(G1, Gy + G2) = ¢, (G2) ,

where the second equality is due to bilinearity of ®j . [ |
0

PrROOF OF THEOREM 1.3.3: Inspecting the proof of Theorem 3.2 in Fang and Santos
(2015), we see that qb’eo being a first order derivative is actually never exploited there. The
conclusion of the theorem then follows in view of Lemma 1.8.2 when combined with exactly

the same arguments in Fang and Santos (2015). ]

PrROOF OF PropOSITION 1.3.1: Let {h,} C D and h € Dy such that h, — h. By

Assumption 1.2.3(iii) ¢} = 0, so we may rewrite @ (hy):

R O + tnhn) — 0(00) — tad) (hn

) = )= 10n) ()

600+ tagn) — $(00) — tady, (9n)  12{B(0n) — B(60) — &, (O — b0)}

_ h — . : (1.97)
tz (rntn)

where g, = (tnrn)_lrn{én — 0o} + hy. By Assumptions 1.2.2(i), 1.3.5, Lemma 1.10.2 in
van der Vaart and Wellner (1996a) and h,, — h, we have g, = h. By Assumptions 1.2.1,

1.2.2(ii) and Theorem 1.11.1(ii) in van der Vaart and Wellner (1996a), it then follows that

0 +tn n) — 0 _tn f n
$(00 + tngn) ;b%( 0) = tn®p, (gn) 2 (n) . (1.98)

By Assumption 1.2.1 and 1.2.2, it follows from Theorem 1.2.1 and r,t, — oo that

r2{3(0n) — $(00) — ¢, (On — 00)} 2

e (1.99)

Combining results (1.97), (1.98) and (1.99) we thus arrive at the desired conclusion. |

PROOF OF LEMMA 1.4.1: By Assumptions 1.2.2, 1.4.1 and 1.4.2, we have for P, = Py, ,

ro{ln — 0(P)} = ro{fn — 0(P)} + ra{0(P) — 0(P)} 2 G + 6))(h) . (1.100)
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Combination of Assumptions 1.2.1, 1.2.3(ii), ¢(0(P)) = ¢j, = 0, and result (1.100) allows

us to invoke the second order Delta method to conclude that
~ A~ A L’VL
a0 (0n) = 12 {d(0n) — G(O(P)) — ¢, (B — O(P))} = 63, (G + () - (1.101)

This completes the proof of the lemma. [ |

PrOOF OF THEOREM 1.4.1: Under the assumptions in Theorem 1.3.3 and Assumptions
1.4.3(i)(ii), we can show following the proof of Corollary 3.2 in Fang and Santos (2015) that
é1—a B ¢1_q under P™. By Theorem 12.2.3 and Corollary 12.3.1 in Lehmann and Romano

(2005), P’ and P™ are mutually contiguous. It follows that
10 2 1, under P . (1.102)

Lemma 1.4.1, Assumption 1.4.3(i)(ii) and result (1.102) allow us to conclude by the port-

manteau theorem that

lim inf 7, (P, ;.. ) > P(¢p,(G + 0y(nh)) > c1-q) - (1.103)

n—o0

This establishes the first claim of the theorem.

For the second claim, note that if n < 0, then

0= tim r2{6(6(P,)) — 6(8(P))} = 6, (B (nh)) . (1.104)
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where we exploited ¢(6(P)) = ¢(0(P,) = 0 for all n and Assumption 1.2.3(iii). Hence,

/) = limsup P2(r26(0,) > ¢1-q)

n—oo n—oo

lim sup 7, (P,

< limsup P*(r2¢(6,) > é1_4)

< P(¢5,(G + b (nh)) = c1-a)
= P(7 0 ¢3,(G + 0p(nh)) = 7(c1-0))
< P(7 0 ¢3,(G) + 7 0 85, (0p(nh)) = 7(c1-0))

= P(6,(@) > c1-a) = 0, (1.105)

where the second inequality is due to the Lemma 1.4.1, result (1.102) and the portmanteau
theorem, the second equality is by 7 being strictly increasing, the third inequality is by
7 o ¢, being subadditive, and the third equality is due to result (1.104), 7(0) = 0 and T

being strictly increasing. This proves the second claim of the theorem. [ |

Lemma 1.8.1. Suppose that Assumptions 1.2.2 and 1.3.1(ii) hold, and that ¢ : Dy C
D — E = R is Hadamard differentiable at 0y € Dy tangentially to Dy with (;5’90 satisfying

Assumption 1.2.3(iii). Then ¢1_o 2 0, where for o € (0,1),

¢1_a =inf{c e R: Py (ro{o(02) — ¢(0,)} <) >1—a} .

PROOF: This lemma is somewhat similar to Lemma 5 in Andrews and Guggenberger (2010)
and we include the proof here only for completeness. Fix a € (0,1) and let ¢;_, = inf{c €
R : P(¢y,(G) <c¢) > 1—a}. Note that ¢;— = 0 for all a € (0,1). Since ¢ is Hadamard
differentiable at 6y € Dy tangentially to D, it follows by Theorem 3.9.15 in van der Vaart
and Wellner (1996a) that

sup | Ew[f(ra{6(6;) — ¢(0:)})] = E[f (9, (G))]| = 0 . (1.106)

f€BL1 (D)
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This, together with Lemma 10.11 in Kosorok (2008a), give us: for all ¢ € R\ {0},
Py (ra{(6}) — 6(6n)} < 1) 5 P(65,(G) <) . (1.107)

Fix € > 0. Clearly, c;_o € € R\ {0} for all e > 0 and all & € (0,1). It follows from (1.107)

that

Py (ra{9(6;) = #(0n)} < c1a — €) & P(¢,(G) S c1oa —) =0 < 1 -,

Pur(rad6(02) — 660} < 1o+ ) B P(6h,(G) < c1 ot e) =1>1—a. o

By definition of ¢1_, it follows from (1.108) that
P(—e<é1_a<€)=P(c1—a—€<é1_q<cCi_q+€) — 1. (1.109)
Since € is arbitrary, the conclusion of the lemma then follows from result (1.109). ]

Lemma 1.8.2. Let Assumptions 1.2.1 and 1.2.3(i) hold, and QAS;’L :D — E be an estimator

depending on {X;}?'_,. Then the following are equivalent:

(i) For every compact set K C Dy and every € > 0,

nmnmsupp( sup [|$L(h) — dp (h)|e > e) ~0. (1.110)
00 nooco heK?

(ii) For every compact set K C Dy, every o, | 0 and every e > 0,

limsupP( sup || ¢”(h) — b, (h)||E > e) =0. (1.111)

n—00 heKon

(111) For every sequence {hy} C D and every h € Dy such that hy, — h as n — oo,

b (hn) = 0, (h) - (1.112)

PROOF: The equivalence between (i) and (ii) is intuitive and straightforward to establish.
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Suppose that (i) holds. Fix a compact set K C Dy, a sequence {d,} with d,, | 0, and

e,n > 0. We want to show that there exists some Ny > 0 such that for all n > Ny,

P( sup [|d(h) — o, ()]s > ¢) <. (1.113)
heK?don

But from (i) we know that there is some dy > 0 such that

timsup P( sup [|1(h) — ¢, (W)llz > ) <n, (1.114)

n—00 heK9%0

which in turn implies that there is some Ny satisfying for all n > Ny

P( sup [ld(h) = 65, (W)ls > €) <. (1.115)
heK?®0

Since 6, | 0, there exists some Ny such that J,, < &y for all n > Ny and hence

P( sup 1) — ¢4, (W)lle > ) < P( sup [ldn(h) — 6, (W)s>€) . (1.116)
heKdn heK?%

Setting Ny = max{Ny, Na}, we see that (1.113) follows from (1.115) and (1.116).

Conversely, suppose that (ii) holds, fix a compact set K C Dy and € > 0, and we
aim to establish (i) or equivalently, there exists some dp > 0 such that (1.115) holds. Pick
a sequence 0, | 0. Then there exists some Ny such that (1.113) holds with “<” replaced by

“<”. Setting dp = dn,, we may then conclude (1.115) from (1.113).

Now suppose (ii) (and hence (i)) holds again and let {h,} C D such that h,, — h €
Dg. Fix § > 0. There must be some N; such that ||k, — hljp < 0 for all n > N;. By the

triangle inequality we have: for all n > Ny,

167 () = S, (Wl < Nl () — D, ()l + 105, () — 6, (B) I

sup || 42(h) — iy, (W) + by, () — & (B) I - (1.117)
heK?d

IN

Part (iii) then follows from (1.117), part (i) and Assumption 1.2.3(i).
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Finally, suppose that (iii) holds. Fix a compact set K C Dy and € > 0. Let d,, | 0.
Note that if supceon |67 (h) — 9, (P)|IE > €, then there must exist some hy, € K% such

that ||¢” (hy,) — @, (hn)|lE > € and this is true for all n € N. It follows that

P(sup [[¢1(h) — ¢, (W)llx > €) < P16 (hn) — 65, (ha) & > ©) - (1.118)
hEKSn

Note that h,, € K% is possibly random and satisfies d(h,, K) = infacx ||hn — allp < 6, — 0
as n — oo. Fix an arbitrary subsequence {ny}. Since K is compact, it follows by Lemma
A.6 in Fang (2016) that there exists a further subsequence {nj;} and some deterministic
h € K such that hnkj L hoas j — oo. By the triangle inequality,
N " N/ " €
P(llén () = ¢, (hn)lle > €) <P(|¢n(hn) — b5, (R)lle > )
+ P([l¢g, (ha) — &, (R) |l >

€

5) - (1.119)

Since hnkj L hoas j — oo, the first term on the right hand side above tends to zero along
{n; } by (iii) and Lemma 1.8.3, while the second term tends to zero along {n, } by Theorem
1.9.5 in van der Vaart and Wellner (1996a) and Assumption 1.2.3(i). Since {ny} is arbitrary,

combination of results (1.118) and (1.119) then leads to (ii). [ ]

Lemma 1.8.3 (Extended Continuous Mapping Theorem). Let D and E be metric spaces
equipped with metrics d and p respectively, g, : D, C D — E a possibly random map for
eachn € N, and g : Dy C D — E a nonrandom map. Suppose that g,(x,) 2, g(z) whenever
Tp = ¢ for x, € Dy and x € Dy. If X, 2y X such that X is Borel measurable, separable

and satisfies P(X € Dg) = 1, then g,(X,) S 9(X).

PRrROOF: We closely follow the proof of Proposition A.8.6 in Bickel et al. (1998) (see also
van der Vaart and Wellner (1990)). Fix € > 0 throughout. First, we show that g : Dy — E
is continuous. By assumption, for each x € Dy we have

léig)llimsup P(Oscy, (B(z,0)) >€) =0, (1.120)

n—oo
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where Oscg, (B(z,6)) = sup, .cp(a,s) P(9n(Y), gn(2)) for B(z,0) = {y € Dy, : d(y,x) < d}.

This can be easily seen by the triangle inequality:

lim lim sup P(Oscy,, (B(z,d)) > €) <limlimsup P( sup p(gn(y),9(x)) > E)
ol n—o0 010 n—oo yGB(z,&) 2

+ limlimsup P( sup p(gn(2),g9(x)) > E)
610 n—oo 2€B(z,5) 2

=0.
Notice that again by assumption, the triangle inequality and result (1.120) we have

p(9(y), 9(z)) < p(9(y), gn(y)) + p(9(x), gn(x)) + p(gn(y), gn(z))

< p(9(y), 9n(y)) + p(9(z), gn(x)) + Oscy, (B(z,d(x,y)))

L (1.121)

as n — oo followed by d(z,y) — oo. Since g is a nonrandom function, we must have

p(9(y),g(x)) — 0 as d(y,z) — 0 and hence g is continuous on Dy.

Next, for x € Dg define

k(x,€e) = min{k : for Vy with d(y,z) < % and all n > k, P(p(gn(y),g(z)) <€) >1—¢€}.

This is well defined by a simple reductio ad absurdum argument as in Bickel et al. (1998).
We now show that k(-,€) : Dy — N is measurable. This is done by proving that k(-,¢) is
lower semicontinuous, i.e., x,, — x for {z, x,,} C Dy implies

liminf k(xp,, €) > k(z,€) . (1.122)

m—00

Fix ¢ € Dg and {z,,} C Dy such that z,, — x as m — oo. Then there must exist some
subsequence {m'} of {m} such that liminf,, o k(@m, €) = lim,/— 00 k(2py, €). Since k(-, €)
is integer valued, we further have liminf,, o0 k(2m, €) = k(xy, €) = K for all m’ sufficiently

large. If k' = oo, then the inequality (1.122) follows trivially. Otherwise, suppose that
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k' < oo. For any y with d(z,y) < 1/k, there exists an mg such that d(x,,,y) < 1/k for all

m’ > my. By definition of k(z,¢), it follows that for all n > &/,

P(p(gn(y), 9(zm)) <€) > 1 —¢€. (1.123)

Letting m’ 1 oo, we have by z,,, — = and continuity of g and P that for all n > ¥/,

P(p(gn(y),9(x)) <€) =1 —€. (1.124)

Thus we must have k(x,€) < k' = liminf,,—,o0 k(2m, €) and hence k(- €) is Borel measurable.

Since P(X € Dy) = 1, we may assume without loss of generality that X takes values
in Dg. In turn, it follows that k(X,¢€) is a Borel N-valued random variable. Thus there

exists some ko = ko(e) such that
P(k(X,€e) > ko) < €. (1.125)
Since X,, & X, there exists some ng = ng(e) such that for all n > ng(e),
P(d(Xn, X) > ]:0) <e. (1.126)

Now define
1
B = {p(gn(Xn), 9(X)) > €}, Cn = {d(Xn, X) > -}, D = {k(X, €) > ko} -
It follows that for all n > max{ng, ko},

P(B,) < P(B,N(C;ND))+ P(B, N (Cy D))

SP(Bnﬂ(CﬁﬁDC))—i—P(Cn)—i—P(D)335,

by definition of k(x,€), results (1.125) and (1.126), and we are done since € is arbitrary. m
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1.8.2 Results for Examples 1.2.1 - 1.2.6

Example 1.2.2: Moment Inequalities

In this example, it is a simple exercise to show that

)
h? if >0
20h  if 0> 0
¢y(h) = , 85(h) = { (max{h,0})2 ifO=0 - (1.127)
0 if6<0
0 if0 <0

\

Thus, ¢ is Hadamard differentiable with the derivative ¢} degenerate at § < 0 and in
particular at the “least favorable point” 6§ = 0. Moreover, ¢y is second order Hadamard
directionally differentiable. The derivative ¢j is nondegenerate at 0, though degenerate

whenever 6 < 0.

Exploiting the structure in (1.127), we may easily estimate the derivative by

;

h? if X,, > K
Fn(h) = < (max{h, 012 if |Xn| < #n - (1.128)
0 if X,, < kin

where k,, | 0 satisfies y/nk, T oo, and X,, = %Z?:l X;. Interestingly, construction of ¢/
as above amounts to the generalized moment selection procedure as in Andrews and Soares

(2010) for conducting inference in moment inequalities models.

Example 1.2.3: Cramer-von Mises Functionals

Cramer-von Mises functionals can be viewed as generalized Wald functionals. It

is straightforward to show that ¢ is first and second Hadamard differentiable at any 6 €
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(> (R%) with derivatives satisfying:

oy(h) = 2 / (0 — Fy)hdFy , (k) = / B dFy

for all h € (*°(R%). Note that first order derivative ¢}, is degenerate when 0 = Fy,
while second order derivative ¢j is nowhere degenerate. The corresponding bilinear map
Py : (°(R) x (*°(R9%) — R is given by ®}(h,g) = [ hgdFy. In this example, there is no

need for derivative estimation because ¢/0,0 is a known map.

Example 1.2.4: Stochastic Dominance

Lemma 1.8.4. Let w : R — RY satisfy [z w(u)du < oo and ¢ : {°(R) x (*(R) — R
be given by ¢(0) = [ max{01) (u) — 03 (u),0}2w(u)du for any 6 = (6D, 02) € 12°(R) x
(>*(R). Then it follows that

(i) ¢ is first order Hadamard differentiable at any 6 € {*°(R) x £*°(R) with ¢}, : {*°(R) X
(>*(R) — R satisfying for any h = (h(Y, h(?)) € 12(R) x £>(R)

¢p(h) =2 /B " [0 (w) = 6@ ()] [AM () — ) (w)]w(u)du ,

where By (0) = {u € R: W (u) > 63 (u)}.

(ii) ¢ is second order Hadamard directionally differentiable at any 0 € {°(R) x £{*°(R)
and the derivative ¢l : £°(R) x £>°(R) — R is given by: for any h = (b, 1) €
(>*(R) x L*(R)

o (h) = / max{hM (u) — h® (u), 0 2w(uw)du + / (A (w) — h® (u))?w(u)du
Bo(0) B4 (6)

where Bo() = {u € R: 00 (u) = 62 (u)}.

PRrROOF: Fix 6§ € (>*(R) x {*°(R). Further, let ¢, L 0, {h,} = {(h%l), hg))} be a sequence in
0°(R) x (=(R) satisfying |5 — hD||oe V |22 — h®) |0 = 0(1) for some h = (b, h(2)) €
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(>*(R) x L*(R), and

B (0)={ueR:0W(u) <0 (w)} .

Observe that since () (u) — 0@ (u) < 0 for all u € B_(6), and || — AP ||oe = O(1) due

to ||h) — h®)|» < oo, the dominated convergence theorem yields that:

lim — / max{(0M (u) — 0P () + t, (MY (u) — K2 (), 0}2w(u)du =0, (1.129)
B_(6)

n—0o0 ty,
lim ti / max{ (0 (u) — 0P (1)) + t,, (MY (u) — K (), 0}2w(u)du =0, (1.130)
n J By(0)
and
lim — / max{(8 (u) — 8@ (u)) + ., (hD (u) — P (u)), 0} 2w (u)du
n—oot,, B (0)
_ / (6 (u) — 63 (u))?w(u)du]
B4(9)
= lim L [max{ (09 (w) — 0 (w)) + tn(hD () — h (u)), 02

= (00 () = 6@ (w))*]w(u)du

=2 / [0 (w) — 0@ (w)][RM (u) — B (w)]w(uw)du . (1.131)
B4.(9)

Combining results (1.129) - (1.131) yields

¢/9(h) = lim ¢(0 + tnhn) — ¢(9)

n—00 tn

—2 [ (80 w) 0 @)]0 () ~ K () (u)d
B4 (0)

which establishes the first claim of the lemma.

Next fix 0 € £>°(R) x ¢>*°(R) and let {hy,} and {¢,,} be as before. Therefore, by the
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dominated convergence theorem we have

lim o) %max{(H(l)(u) — 0@ () + tn (A (u) — K2 (w)), 0V Pw(u)du =0, (1.132)
Jim o) %max{(f)(”(u) — 0P (w)) + tn (B (w) = B (w), 0w (u)du
= / max{hM (u) — K (u),0}2w(u)du (1.133)
Bo(0)
and

It follows from results (1.132)-(1.134) that

i) = 1 PO tahe) = 9(6) = tud )

n—o00 t%

= / max{hM (u) — h® (u), 0}2w(u)du + / (W (w) — h® (w))?w(u)du .
Bo(0) B, (9)

This competes the proof of the second claim and we are done. [ |

Example 1.2.5: Conditional Moment Inequalities

Lemma 1.8.5. Let ¢ : {>°(F) x£>°(F) — R be given by ¢(0) = supfe}-{[max(e(l)(f), 0)]?+

[0@)(£)]?} where F is compact under some metric d. Then it follows that:
(i) ¢ is Hadamard differentiable at any 0 € (>°(F) x £2(F) satisfying 61 < 0 and
02 =0, and its derivative ¢y(h) = 0 for any h € £°(F) x £=(F)

(ii) ¢ is second order Hadamard directionally differentiable at any 0 € C(F) x C(F)

satisfying 0 < 0 and 6® = 0 tangentially to C(F) x C(F), and the derivative is
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given by: for any h € C(F) x C(F),

§(h) = max{ sup {max(h'V(f),0)* + [A®(f)]*}, sup [P (f)]},
feFo FEF\FO

where Fo = {f € F: 0 (f) =0}, and sup = 0.
Remark 1.8.1. Note that if 7y = 0, then ¢j simplifies to ¢ (h) = supfe;[h@)(f)]z. ]
PROOF: Let 6 € £2°(F) x £>°(F) satistying #) < 0 and ) = 0, {h,} C £>°(F) x £>°(F)

such that h,, — h € (%°(F) x £>°(F), and t, . 0. Combining #1) < 0, 6 = 0 and the

triangle inequality, we have

|6(0 + tuha) — $(0)] = | ;gg{[maxw(“(f) + D (1), 0017 + [0 () + tuh D ()1}

< sup[max(0W(f) + t,hV (f),0))2 + 2 sup [P (£))?

fer feF
< sup[max(t, h\V(f), 0)]? + 2 sup[hP (£)]? = o(tn) , (1.135)
fer fer

as desired in part (i), where in the last step we used the fact that Y = h® = O(1).

As for the second claim, let § € C(F) x C(F) satisfying () < 0 and ) = 0,
{hy,} C £°(F) x £2°(F) such that h,, — h € C(F) x C(F), and t, | 0. By 1) < 0 and

6 = 0, Lipschtiz continuity of the sup operator and the triangle inequality we have

‘(25(9 + tnhn)_¢(0 + tnh)‘

= | sup{max (0™ (f) + tnh( (1), 0)” + [tk (1))}

feEF
— sup{max(8WV (f) + t,h 1 (£),0)% + [t,h® (£)]?}|
feF
< sup |max(0W () + t,h{V(f), 0)% — max(0V (f) + t,hV(f),0)?|
feF
+sup |[ta AP ()] = [tk (£ - (1.136)

ferF
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Since ||hn — hlloo = 0(1) and 8 < 0, it follows that

sup| max (0 (f) + t,h D (£),0)2 — max(8M (f) + t,hM (f), 0)?|
feF

< sup |max (01 (f) + toh{P (f),0) — max(0D (f) + tah D (£),0)]
feF

x sup | max(0M () + t,h0 (), 0) + max(0 () + t,h D (f), 0)]
feF

< sup [tnh V() = toh D (f)] sup{max(t,h 1 (£),0) + max(t,h MV (f),0)}
feF feF

= otn)Olt) = o(£2) | (1.137)
and that

sup [t (F)] — [tnh P ()] = o(12) . (1.138)
feF

Combination of results (1.136), (1.137) and (1.138) leads to
600+ taha) — 60+ tah)| = o(12) (1.139)

Next, fix § > 0. By definition of ]-"g , compactness of F and continuity of #(1), we see
that sup ez 72 M (f) < 0. Since also t,h() = o(1) and (Y € C(F), it follows that

O (f) +t,hV(f) <0 for all f € f e F\FS and for all n large. In turn we have

lim lim t;Q sup {max(tg(l)(f)—l—tnh(l)(f), 0)2 + [tnh(Q)(f)P}
040 =00 e\ 8
0

=lim sup [MD(f)]>= sup [HO(f)]?, (1.140)
N0 fer\Fg FEF\Fo
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where the last step is due to h(®) € C(F). On the other hand, we have,

lim lim sup t;Q sup {max(G(l)(f) + tnh(l)(f), 0)2 + [tnh(Q)(f)]Z}
00 n—oo fE]-—g

— t2 sup {max(hM(f),0)? + [A@ ())*}
f€.7:0

< limlimsup ;2 sup {max(t,hV(f),0)? + [t.h? (£)]?}
00 p—oo fE]'—g

— sup {max(t,hV (f),0)% + [t.h P (f)]?}

feFo
<limlimsupt;?2  sup  |max(t,hM(f),0)2 — max(t,h M (g), 0)?|
30 n—oo f.9€F:d(f,9)<5
<lim  sup  |max(hM(f),0)? —max(hM(g),0)? =0, (1.141)

00 pgeFid(f,g)<s

where the first inequality is due to §(f) = 0 for all f € Fy and 91 < 0, the second inequality
exploits the definition and compactness of F?, and the equality is due to uniform continuity

of hM) on F since (M) € C(F) and F is compact.

Finally, combining results (1.140), (1.141), and ¢(6) = 0 we have:

limsupt, 2{$(0 + t,h) — (0)} = limsupt, 2p(0 + t,h)

n—o0 n—oo

= limsupt, 2 sup{maX(H(l)(f) + tnh(l)(f)a 0)* + [tnh(2)(f)]2}
f

n—o00 fe

= l(slin limsupt; 2 max{ sup {max (0 (f) 4 t,hM (f),0)% + [t,h P ()2},

0 n—oo fE]'—g

sup_{max(00(f) + tuh(£),0)% + [t h®) ()2} }
FEF\F}

= maX{ sup {max(h)(f),0)% + (R ()}, sup [h(Q)(f)]Q} : (1.142)
feFo fFEF\Fo

It follows from ¢y = 0, (1.139) and (1.142) that

lim ¢(9 + tnhn) — ¢(9) — tn¢/9(hn)

n—00 t%

=max{ sup_[A®) (), sup {max(hV(f),0? + KA (A} (1.143)
feF\Fo feFo
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as desired for the second claim of the lemma. []

Suppose that Fy and Fo,. are estimators of Fo = {f € F : 9(()1)(f) =0} and F\ F°

that satisfy!”
A (Fo, Fo; L2(W)) = 0,(1) and dg(Fo.e, F \ Fo; L2(W)) = op(1) . (1.144)

Based on Fy and ]A:O’C and in view of Lemma B.3 in Fang and Santos (2015), we may estimate

the derivative as follows:

o (h) = max{ sup {max(hV(£),0)* + K@ (NP}, sup WP (f)°} . (1.145)
refo fefoe

The estimation of Fy and F \ F? is in accordance with the generalized moment selection in

Andrews and Shi (2013); see also Kaido and Santos (2014).

Example 1.2.6: Overidentification Test

Lemma 1.8.6. Let ' € R”* be a compact set, and ¢ : H;nzl (') — R be given by
¢(0) = infyer 0()TWO(y) where 0 € [[7L, £°(I') and W is a m x m symmetric positive

definite matriz. Then we have

(i) ¢ is Hadamard differentiable at any 6 € H;n:1 >°(T") satisfying 6(y) = 0 for some

v € T with the derivative given by ¢j(h) =0 for all h € []j~, £>°(T).

(it) If To(0) = {v € T : 0(y) = 0} is in the interior of T', 6 € [[}.; CHT) satisfies
¢(0) = 0, and for some small € > 0, inf cp\ry(g)c |0(7)]| = Ce* for some x € (0,1]
and some C > 0, then ¢ is second order Hadamard directionally differentiable at 0
tangentially to H;n:l C(T) with the derivative given by: for any h € H;nzl ()

G4h) = _min. min (h(30) = J(0)v} W {h(30) — J(0)0} .

'"We note that for two generic sets A and B in a metric space, neither dg (A, B) controls dg (A, B¢) nor
dp (A°, B°) controls dy (A, B) (Lemenant et al., 2014).
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where J : To(0) — M™** s the Jacobian matriz defined by J(vy) = dg’(ﬁ)

‘7=Wd

ProOOF: Fix 0 € [[72, £°(T') and let t, | 0 and {hy, h} C [[;2, £>°(T') such that h, — h.
For a vector a € R™, define the norm ||a||w = VaTWa. It follows that

|60 + tuha)=6(0)] = inf [0(7) + tahn (V)i
vyel

< inf |0(Y) + tpha (V|3 <2 inf  ||ha())||E = o(ts) | 1.146
_WGFO(B)H (") My < 76FO(Q)H (Ml = olta) ( )

where the second inequality is because 6(y) = 0 for all v € I'g(#) and the last step is due

to hy, = O(1) by assumption. This establishes part (i).

For part (i), fix 0 € [}~ CHT) with ¢(f) = 0 and let t,, | 0 and {h,} C [[L, ()
such that h, — h € [[j, C(T'). First of all, note that for 7o € T'o(0),

600+ tuhn) = (0 + tah)] = | L 0() + talon(7) |y = i 197) + tuh(7) iy
vyel’ vyel’
= | inf [|0(y) + tahn(Y)llw — inf [0(7) + tah()|lw]
~yel ~el
inf |6 tnhn inf |0 tnh
x| inf 1100y) + tuhn ()l + i€ 10(7) + tah()llw |

< tnllhn = hlloc{l10(10) + tnhin (y0) llw + [[6(70) + tnh(0)[lw }

< tallhn = hlloo{llhn () lw + [R(v0)lw} = o(t7) . (1.147)

where the first inequality is due to the Lipschitz continuity of the inf operator and the

triangle inequality, and the last inequality follows from h,, — h and 0(~y) = 0 for vy € Ty(0).

Next, for each fixed a > (20~ maxer ||h(7)||w)'/*, by assumption and the triangle
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inequality we have: for all n sufficiently large so that tf > ¢,
inf O(y) + tnh(v)||lw > inf Oy)|lw —t sup h(y)||lw
YET\To (6)tn 16 + ()l serPagayen 191 4 " er\ro(6)atn IRl

> Clatn)"” — ty max [|h(7)[lw = 2t; max [[h(y)[lw — tn max [[2(v)lw
vyel’ yel’ vyel’
> 2tp max [|h(y)[lw — tp max [[R(y)[lw =t min [A(y)|lw
~yel ~yel ~€T0(0)

= _min [100) + tah(3) w2 V0 + 1B (1.148)

~YETo(

which implies that for all n large,

¢(0 +tyh) = min [6(y) + tuh(y)|5y - (1.149)
Y€ELo(0)%n
Now for 49 € T'g(8), set Vi o(a) = {v € R¥ 1y + t,0 € T, ||v]| < a} and V(a) =
v e RF: ||v]| < al. Note that Vo (@) = To(0)*n. Since § and h are continuous,
’YOGF()(@) ;Y0

it then follows that

¢(0 +t,h) = min min  [|0(70 + tav) + tuh(yo + tav) |3 - (1.150)
Y0 €L (0) vEVR ~¢ (a)

In turn, notice that

0 +t,h)— min min 0(vo + thv) + thh 2
“b( ) 'yoel‘o(a)vevn,m(a)H (70 n ) n (')’0)”W|

< 2t,llh 1y h(vo +thv) — h
< 2t [|h(v0) lw »,Jélﬁ’imexl}iif(a)” (70 ) — h(vo)llw

<22 max  |lh() - h()llw = o(t2) | (1.151)
y1,72€T: |71 =2 (| <atn

where the first inequality follows from the formula |[b? —c?| < |b+¢||b— ¢| and that 7q is any
fixed element in T'y(#), and the last step follows from uniform continuity of h on I" because

h is continuous on I' and I' is compact.
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Since ¢ € [}, C1(T), we further have,

min min  ||0(vo + tyv) + thh 2
‘%ero(e)vevmo(a)“ (o +tnv) + tuh(0) Iy

— min min ||¢ + J(v0)tnv + tuh 2
voeFo(e)vevMO(a)” (70) +J(70) (v0) I3 |

< 2t, max |h - max max ||@(vo + thv) — 0 —J tnv . 1.152
s G0y - mae w60 + )~ 660) ~ o)l (1152)

By the mean value theorem applied entry-wise to 6(yo +tn,v) —0(70), there exist ’77(11) (70, v),

.. ﬁ,(lm) (70,v) all between 6y and 6y + t,v such that

16(y0 + tnv) = 0(%0) = J(vo)twv]| = [T (Gn)tnv — J(0)tnv]l (1.153)
where by abuse of notation we write

do) ‘
~(1
AT Iy=3 (70,0)

do(m) ‘
| DT =" (o)

Since ¢ € [[2, CH(T') and T is compact, J(-) is uniformly continuous on I' and hence

max max JA N0 — J Lo
¥0€L0(0) vEVn A (a) H ('Yn) n (70) n H

<t, ma ma; J(An) — J ol} = olt,) . 1154
o VOEFO)EQ)veVnw}:(a){H (’7) (VO)HH ”} ( ) ( )

Since all norms in finite dimensional spaces are equivalent, it follows from results (1.151),

(1.152), (1.153), (1.154) and 6(p) = 0 for all vy € T'o(0) that

|p(0 +toh) — min  min [|J(0)tev + tah(70)[I7y] = o(t2) - (1.155)
40ET(0) VE Vi g (a)

By assumption, I'g() is in the interior of I and so V}, 4,(a) = V(a) for all n suffi-
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ciently large. It follows that

min min J thov + thh 2 :t% min min ||h —J ol|Z, . (1.156
i min G0 (Ol =15 _min  min k(o) - Jo)olfy . (1.156)

For each g € Tg(6), by the projection theorem there is some v* € R such that

min [|(y0) — T(v0)vllfy = [[A(v0) — T (v0)v* iy - (1.157)

Thus, by choosing a large if necessary so that v* € V(a), we have from results (1.155),

(1.156) and (1.157) that

0 +t,h) —t2 mi in ||h(y0) —J 2 =o(t?) . 1.158
|&( ) Vogﬁe)gﬁll (70) = J(v)vlliy| = o(t) ( )

Combining (1.158), ¢(f) = 0 and part (i), we then arrive at part (ii). [

1.8.3 Proofs for Section 1.5
Lemma 1.8.7. Let ¢ : [[L, (2(SF) = R be given by $(0) = inf, cgr 10(7)||%. Then

(i) ¢ is Hadamard differentiable at any 6 € H;nzl 0>°(S¥) satisfying 0(y0) = 0 for some

Y0 € S and the derivative satisfies ¢j(h) =0 for all h € | £>(Sk).

(ii) ¢ is second order Hadamard directionally differentiable at any 0y(v) = E[Zi{(YTY41)?
—c(7)}] under Assumption 1.5.1 tangentially to [7., C(S¥) with the derivative given
by: for all h € [T5L, C(S¥),

qb'e'o(h) = min min [|h(y) + Gvec(va)H2 , (1.159)
v€lo veRK

where Tg = {y € S¥ : Oy(~y) = 0} is the (nonempty) identified set of v, and G € Mk

with the jth row given by vec(A;)T and

Aj = EZP YV — EYen YD)
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Proor: Fix 0 € [[7%, (> (S¥) satisfying 6(y0) = 0 for some vy € S¥, {h,} C T2, 0°(Sk)

such that h, — h € J[}2, ¢>(S¥), and t,, | 0. Tt follows that

|60+ tnhn) — ¢(8)] = inf [[0(7) + tahn(7)]
~vESk
< 110v0) + tahn(70) |1 = talhn(30)II* = o(tn).
where in the last step we used the fact that sup,cgr [|hn(7)]| = O(1). So ¢p(h) = 0 for any
he [/, 62 (S¥), as desired for the first claim of the lemma.
Now consider 0y(y) = E[Z:{(77Y;+1)? — ¢(v)}] and suppose that Assumption 1.5.1

holds. Pick {h,} C L, ¢>(S¥) such that h,, — h € | C(S*), and t,, | 0. Note that

¢(0p) = 0 under Assumption 1.5.1. Then first, we have

660 + tnhn) — ¢(60 + tnh)| = | inf [[60(y) + tnhn(V)]I> = inf [|6o(y) + tnh(y)]1|
~yeSk ~ESk

IN

| inf [|60(7) + tnhn(y)[| + inf [[0o(y) + tah(¥) ]|
~eSk ~ESk

“tn sup [[hn () = R(7)
~ESk

tol inf [[00(7) + tnhn(v)|| + inf [[6o(7) + tnh(¥)]l]
~v€Tlo ~v€lo

- sup [[hn(v) = h(7)||
~yESk

IN

Next, let T'§ = {7 € S* : minger, ||s — 7| < €} and T = {y € S¥ : minger, ||s — || > €}. By
Equation (7) in Dovonon and Renault (2013), 6p(y) = Cov(Z;, 0?)Diag(ATyyTA)), where
for a p x p matrix A, Diag(A) denotes the p x 1 vector consisting of diagonal entries.

Also, let Apin(-) and )\:ﬁn(-) denote the smallest and the smallest positive singular values,

_1/2A+

respectively. We then have: for C =p + (AT Amin (Cov(Zy, 02)) /2,

Y

min {|6o ()|

min || Diag(ATyyTA) [ Amin(Cov(Z, o7))
y€ETS el

\Y

min [[AT %2 Ain(Cov(Z1, 07)) > Ce?
1
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where the first inequality follows from a simple application of the singular value decomposi-
tion of Cov(Z;, 0?), the second inequality exploits the generalized mean inequality, and last
inequality is by Lemma 1.8.10. Note that Amin(Cov(Z;,07)) > 0 by Assumption 1.5.1(v).
Let A = [3C™ ! max_ g [|(7)]]]*/? > 0 for the nontrivial case max. gk [|[A(7)[ > 0. Then it

follows by the triangle inequality that: for n sufficient large such that t,, < /t,,

min_[|6o(y) + tnh(7)[ > min H9o(v)ll—tng£>gllh(7)ll

WGFI/WA 'yeF{/mA
> 3t,max||h —t, max||h
> 3ty max 5] ~ b max A
>

tn min [|R(y)[| = /@00 + tnh)
~v€lo

and therefore

¢(00 + tnh) = min_[[6o(v) + tah()]* .
'yEF(}/m

For v € Ty, let Vnﬂz{veszv—{—\/tinveSk and [jv]| < A} and VWAE{UGRkZ’YT’U:O

and [|v]| < A}. Then we have

(0o + t,h) = min min ||0o(y + V) + tuh(y + Vi) |2
v€lo veVey,

= min min ||6o(y + V) + thh()||* + o(t2) , (1.161)
y€loveV,ey,

ryina

where the first equality follows by the definition of and the second equality follows

by noting that

| min min
y€loveV2,

100(7 + V&) + tah(y + Vi) |* — min min 1600y + VEnv) + tah ()]
v n,y

< 2ty[[h(y0)|| - tn max max [[h(y + Vi) — h(7)]]
v€lo veEVA

n,y

< 2t2||h(7o max h(v1) — h(72)|| = o(t2) ,
al 4 71,72€8F 71 =2 IS VEIn A | ) =)l (ta)

where 7 in the first inequality is any fixed element in I'y, the last equality follows by the

uniform continuity of h over S¥. By () = G vec(y7T) (Dovonon and Renault, 2013) and
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the definition of I'g, we have

min min [|6g(y + ViEav)+tnh 2 = ¢2 min min ||Gvec(vvT) +h 2
7€lo ”eVnA,wH o{y + Vi) Hah()] " yeTo UEVnA,’Y” wv') )l

= ¢2 min min ||G vec(vvT) + h 2+ o(t?
2 min min |G vec(un") + B0 + o(s)

= ¢2 min min ||G vec(vvT) + h(7)||* + o(t?) , (1.162)
v€lo veRF

where the second equality follows by the fact that VnAﬁ converges to VAYA uniformly in v € [y
with respect to the Hausdorff metric by Lemma 1.8.11 and Lemma B.3 in Fang and Santos
(2015), and the third equality by the facts that G vec(vuT) = 0 for all v € Ty and all u € RF
and that the inside minimum can be attained in VVA for all A large enough. Combining

(1.160), (1.161) and (1.162) yields

¢>(90 + tnhn> . . 2
P, (h) = lim_ 2 = min min [[A(y) + Gvec(voT)|I%,
which establishes the second result. [ ]

Lemma 1.8.8. Under Assumptions 1.5.1 and 1.5.2, we have

VT{br — 00} 5 G in ﬁzm(g’“) ,

j=1

where G is a zero mean Gaussian process with the covariance functional satisfying: for any

Y1, V2 S FO and Hz = E[Zt]7

BlG(n)G(2)] = El(Ze — p2)(Ze — 1) { (1] Ye41)? = c(r) H(03 Yer1)? = c(92)}] -

PRrOOF: By elementary rearrangements we have

VT{0r(v) — 00(7)} = VT Gr(v) — VT (fi — p2){e(y) — e(7)}
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where [i, = %Z;‘;l Zy, ¢(y) = %ZtT:l(’YTE+1)27 and

T
Z {(7Yi1)? = e} = El(Ze — p){(Y Yer1)” = e(M)}] -

By Assumptions 1.5.1(vi) and 1.5.2, and the law of large numbers for stationary and ergodic

sequences and the compactness of S¥, we have

VI(jis — o)~ ) = oy(1) in J[ £¥(5")
j=1
Once again by Assumptions 1.5.1(vi) and 1.5.2, together with Gr(y) = VTG vec(y7T)

where G € M™*** having its jth row given by (VGC(A]‘))T for

T
Z NV Vi, — BV Yih)}
t=1

H\H

— B2 — piO){Yi ¥V}, = BV YIDH |
we have by the compactness of S¥,

Gr 5 Gin J] (s
j=1

for some Gaussian process G(v). In particular, for v € I'y the summand in Gr(v) is a

martingale difference sequence, so for any 71, 72 € I'g, the covariance functional satisfies

E[G()G ()] = El(Zi — p2)(Zs — p=){ (0] Yer1)? — c(r) H(W Yig1)? — c(12)}] -

This completes the proof of the lemma. [ |

Lemma 1.8.9. Suppose Assumptions 1.5.1, 1.5.2 and 1.5.3 hold. Let (5% be constructed as

n (1.61). Then we have: whenever hy — h as T — oo for a sequence {hr} C [}, £°(SF)
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and h € [T}, C(S¥), it follows that
Vr(hr) 5 ¢, () -

PROOF: Pick a sequence {hr} C [[j~, £*(S*) and h € []}~, C(S*) such that hy — h as
T — o0. Define

p4.(h) = min min ||h(y) + G vec(voT)]||? .
'Yel:‘n vEBT

Then we have

| (hr) — &7 (h)]

< ‘ inf min ||hr(y) + Gvec(voT)|| + inf min ||h(y) + Gvec(va)H‘
’Yefn UGBT fyefn UGBT

-| inf min ||hp(y) + G vec(vvT)|| — inf min ||h(y) + G vec(vvT)|||
~veln vEBr ~el, vEBT

< (sup [[hr(y)[| + sup [IR(1)I]) sup [[hr(v) = h()] sup || vec(woT)|[|G — G|

~eSk ~veSk ~veSk vEBT
< sup TVl 2| VT{G - G} < T2 2 VT{G - G}
vEB
— op(1) , (1.163)

where “<” follows from hp — h, and the last step is by Assumptions 1.5.2 and 1.5.3.

Next, under Assumptions 1.5.1, 1.5.2 and 1.5.3, we have by Theorem 3.1 in Cher-
nozhukov et al. (2007) that dg(I'n,To) & 0 as T — oo, with ar = T, by = VT, and
¢ =Tkp. Let

#(h) = min min |[A(7) + G IS
7(h) = min min [[A(y) + G vec(vuT)]|
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Since h € 7L, C(S*) and S* is compact, together with dy (I, To) 2 0, it follows that

@7 (h) — &7(h)]

< sup ’ mlign |h(71) + G vec(voT)||* — 12}311 1A (v2) + Gvec(va)HQ‘
vEBT

ly1—2llo<ds (Fn,To) “SPT

< s ) - )l = op(D) (1.164)
V1 =2llp<ds (T'n,T0)

Since q%ﬁ(h) is monotonically decreasing as T' T 0o, we further have

p7(h) — min min ||k G N[> = ¢, (h) . 1.165
r(h) = min min [[A(y) + G vec(vuT)[[” = ¢y, (h) (1.165)
The lemma then follows from results (1.163), (1.164) and (1.165). ]

PrOOF OF PROPOSITION 1.5.2: By Lemmas 1.8.8 and 1.8.9, Assumptions 1.3.1 and 1.3.2,
and the cdf of the weak limit being strictly increasing at c¢;_,, we have é1_ EN Cl—a
following exactly the same proof of Corollary 3.2 in Fang and Santos (2015).!® Then under
Hjp, the conclusion follows from combining Proposition 1.5.1, Slutsky thoerem, c;_, being

a continuity point of the weak limit and the portmanteau theorem. [ |

Lemma 1.8.10. Let A and I'{ be given as in the proof of Lemma 1.8.7. Then under

Assumption 1.5.1 and Hg, for all sufficiently small ¢ > 0, we have

min [[AT]| > —=

Vel V2

Ur—;in(AT) ’
where o, (AT) denotes the smallest positive singular value of AT.

PROOF: To begin with, note that i) I'g = arg min, g [|ATy|| by Assumption 1.5.1, ii) T'g # ()
under the null, iii) o7, (AT) is well-defined by Assumption 1.5.1(i) so that Iy & Sk. Let
AT = PYQT be the singular value decomposition of AT, where P € MP*P and Q € MF**

pXxk

are orthonormal, and ¥ € M is a diagonal matrix with diagonal entries in descending

"®Note that ¢f, trivially admits a continuous extension on | £°(S*) with the first min replaced by
inf.
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order. Since A is of full column rank, of, (AT) is equal to the pth diagonal entry of X with

p < k.

Fix v € T'{. Let a, = QTy and write a, = [a(vl)T,a(WQ)T]T for agl) € RP and ag) €

R*P. Suppose first that ||a£y2)|| # 0. Then we have
100, ST/ 110l = ay || = 1Q[0, a$ T/ l|a$P || =~ = min f|s — [ > €, (1.166)
since Q[0, a(2)T]T / ||ag2)|| € T’y by direct calculations. In turn, result (1.166) implies
laSP11? + (1 = af?])? = (1.167)
Moreover, we know from @ € M**¥ being orthonormal and v € S¥ that
oD + a2 = 1. (1.168)
Combining results (1.166) and (1.167) we may thus conclude that
2/[aSV )1 = [lafP)? + 1 = [lafP)? = afV 1P + (1 = [af|)? = ¢, (1.169)

implying that Ha7 )H > \[ This also holds for all sufficiently small e > 0 when Ha7 |=0

in which case ||a7 )|| =1 in view of (1.168). Consequently, we have

min ATy = mip | PEQ™| = min [ Sa, |

€
> ALH(AT)ggH (s = Amm(AT)ﬁ : (1.170)
for all sufficiently small € > 0. This completes the proof of the lemma. [

Lemma 1.8.11. Let Vn%7 and Vﬂ{A be defined as in the proof of Lemma 1.8.7. Then

dp (VnAv, VA) — 0 uniformly in v € I'y as n — oo.

PROOF: First, note that V,2, = {v € R : v + \/fv € S* and |jv|| < A}. For u € V2%, set
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u* =u — (yTu)y. It is a simple exercise to verify that u* € V,YA. Tt follows that

1
min |Ju—v|| < |lu—u*|| < VA% . (1.171)
veVA 2

~

In turn, result (1.171) implies that: for all v € I'y,

max min |u—v|| < \/>A2 (1.172)

ueVA veva

On the other hand, for v € VVA, set v* = v —"byy for b, = (1 —+/1 = t,||v]])/Vtn if |[v]| < A,
and v* = anv—b,y for a, = 1—+/f, and b, = (1—+/1 — t,(1 — V,)2||v]|2) /vt if Jv]| = A

In any case, v* € VA by direct calculations. Therefore,

min max |u —v| < min |jv —v*|| = O(Vt,) , (1.173)
veVA

UEVA uEV 5

uniformly in v € Ty, where we exploited the facts that b, = O(y/t,) uniformly in v € T

and that V,YA is bounded. The lemma then follows from results (1.172) and (1.173). [ ]



Chapter 2

Improved Inference on the Rank of
a Matrix with Applications to IV

and Cointegration Models

Abstract

This chapter develops new methods for examining a “no greater than” inequality of
the rank of a matrix and for rank determination in a general setup, which improve upon
existing methods. Existing rank tests assume a prior: that the rank is no less than the
hypothesized value, which is often unrealistic. These tests when directly applied may fail
to control the asymptotic null rejection rate, and the multiple testing method based on
them can be conservative with the asymptotic null rejection rate strictly below the nominal
level whenever the rank is less than the hypothesized value. We prove that our proposed
tests have the asymptotic null rejection rate that is exactly equal to the nominal level under
minimal assumptions regardless of whether the rank is less than or equal to the hypothesized
value. As our simulation results show, these characteristics lead to an improved power

property in general. In application to a context with stationary and nonstationary data,

87
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respectively, our tests yield improved tests for identification in linear IV models and for the
existence of stochastic trend and/or cointegration with or without VAR specification. In
addition, our simulation results show that the improved power property of our tests leads

to an improved accuracy of the sequential testing procedure for rank determination.
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2.1 Introduction

The rank of a matrix plays a fundamental role in numerous economic and statis-
tical settings, including identification of structural parameters (Fisher, 1966), existence of
common features (Engle and Kozicki, 1993) with the canonical example being that of coin-
tegration (Engle and Granger, 1987), the rank of a (consumer) demand system (Gorman,
1981; Lewbel, 1991), specification of factor models (Ross, 1976), dimension reduction in
regression analysis (Li, 1991; Bura and Yang, 2011), and model specification in time series
(Aoki, 1990; Gill and Lewbel, 1992). These problems reduce to examining the following

hypotheses: for an unknown matrix Iy of size m x k with m > k,
Hp : rank(Ilp) <r v.s. Hj:rank(Ilp) >r, (2.1)

where r € {0,...,k — 1} is some prespecified value and rank(Ilp) denotes the rank of ITy. If

r =k —1, then (2.1) is simply a testing problem of whether 1Ty has full rank.

Despite a rich set of results in the literature, previous studies instead focus on the

following hypotheses
(r) . — (r) .
Hy’ :rank(Ilp) = v.s. Hy'’ :rank(Ilp) > 7. (2.2)

In effect, this is a different testing problem and assumes a priori that rank(Ilp) is no less
than r. Unfortunately, in the aforementioned problems, it is unrealistic to make such an
assumption. Asshown in Section 2.2.2, when in fact rank(Ily) < r, directly applying existing
rank tests to (2.1) may fail to control the asymptotic null rejection rate, since the asymptotic
distributions of test statistics can be very different from those when rank(Ily) = r. As we
shall prove (see Lemma 2.7.4), when rank(Ily) < r, the problem (2.1) becomes irregular
in the sense that a functional characterizing the problem admits a degenerate first order
derivative and is second order nondifferentiable. A general inferential framework for such

functionals was not available until very recently (Fang and Santos, 2015; Chen and Fang,
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2015). To the best of our knowledge, no direct tests for (2.1) exist in the literature.

Our method builds on the insight that (2.1) can be equivalently reformulated as
Hy : ¢(H0) =0 v.s. H;: (Z)(HQ) >0, (23)

where ¢(Ily) = Z?:r . ajz(Ho) is the sum of the & — r smallest squared singular values
U?(HQ) of I (i.e., the sum of the k —r smallest eigenvalues of IT[Ily). For a given estimator
II, of IIp, we then employ the plug-in estimator T,%gi)(f[n) as our test statistic, where 7,
is the rate at which II,, admits an asymptotic distribution. Towards invoking the Delta
method, we prove, however, that the first order derivative of the map II — ¢(II) is null at
II = I1p under Hy, necessitating a second order analysis. Since the asymptotic distributions
(under the composite null) implied by the second order Delta method (Shapiro, 2000) are
highly nonstandard, we appeal to the bootstrap procedure recently developed by Fang and
Santos (2015) and Chen and Fang (2015) in order to obtain valid critical values and conduct
inference. We also extend the results to accommodate the case when the convergence rates
of II,, are not homogenous across its columns as in VAR models with stochastic trend and

cointegration (see Appendix 2.7.2).

There are several attractive features of our tests. First, since we rely on the Delta
method, the theory is conceptually simple and requires minimal assumptions. Essentially,
all we need are a matrix estimator II,, that converges weakly and a consistent bootstrap
analog fI;; As a matter of fact, our tests apply to various data generating processes.
Second, implementation of the procedure is computationally easy, only involving calculation
of singular value decompositions. Finally, since construction of the critical values is based
on bootstrapping the asymptotic distributions pointwise in Ily, the resulting tests have the
asymptotic null rejection rate that is exactly equal to the nominal level regardless of whether
rank(Ilp) = r or rank(Ilp) < r. As our simulation results show, these characteristics lead to
good power properties of our tests in general. In application to a context with stationary and
nonstationary data, respectively, our tests yield new and powerful tests for identification in

linear IV models (Fisher, 1966) and for the existence of stochastic trend and/or cointegration
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with or without VAR specification (Engle and Granger, 1987).

As an alternative to the direct application, one may instead adapt existing rank

tests into multiple testing procedures, since Hy holds if and only if H(()Q) holds for some

0 < g < r. Specifically, the multiple testing method rejects Hy if and only if all H(()q)

are
rejected and otherwise fails to reject. However, as demonstrated in Sections 2.2.2 and 2.4.1,
the method can be severely conservative when rank(Ilp) > r and IIj is close to a matrix
with rank strictly less than r, with the asymptotic null rejection rate strictly below the
nominal level when rank(Ilp) < r. This is in sharp contrast to our tests, which by design
achieve asymptotic null rejection rates exactly equal to the nominal level and hence improve
the power properties. In an application to testing for identification in stochastic discount
factor models, compared to the multiple testing method based the Kleibergen and Paap

(2006) test, our tests suggest much weaker evidence of non-identification of the risk premia

parameters.

In some settings such as the rank of a demand system, specification of factor models
and model specification in time series, the main concern boils down to determining the
true rank of a matrix. To determine rank(Ily), one may implement the sequential testing
procedure, following Johansen (1995), based on rank tests for (2.1) or (2.2). Interestingly,
efficient rank determination does not require the ability of detecting whether rank(Ilp) is
strictly less than a hypothesized value. This explains the prevalence of existing rank tests
in rank determination. Nevertheless, the power of detecting whether rank(Ilp) is strictly
greater than hypothesized values plays an important role in the procedure. Our simulation
results show that the improved power property of our tests leads to an improved accuracy

of the sequential testing procedure for rank determination.

As mentioned previously, the literature has been mostly concerned with the hypothe-
ses (2.2). In the context of multivariate regression, Anderson (1951) proposed a likelihood
ratio test based on canonical correlations. This test is restrictive in the sense that it crucially
depends on a Kronecker product structure of the covariance matrix of a matrix estimator.

Building on the LDU decomposition approach in Gill and Lewbel (1992), Cragg and Donald
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(1996) proposed a test with the test statistic being a quadratic form of the vectorization of
a submatrix in the LDU decomposition that is sensitive to variable ordering. In Cragg and
Donald (1997), the authors provided a test based on a constrained minimum x? distance
criterion, which is computationally intensive because it involves minimization over the set
of all matrices with rank r. Moreover, both tests rely on the condition that the asymptotic
covariance matrix of the vectorization of the matrix estimator is nonsingular, which we do
not require in our analysis. Motivated by the need to relax this nonsingularity condition,
Robin and Smith (2000) developed a test based on functionals of the characteristics of a
suitably transformed matrix. However, their test depends on a rank condition that is “em-
pirically nonverifiable”. All these rank tests may fail to control the asymptotic null rejection

rate when directly applied to the hypotheses (2.1).

Moreover, Kleibergen and Paap (2006) proposed a test based on singular value
decomposition of a transformed matrix with the test statistic having the x?((m —7r)(k —7))
asymptotic distribution under H(()T). Despite overcoming many of the deficiencies of previous
tests, this test still requires some covariance matrix nonsingular because it is based on a
Wald statistic, which we do not require in our analysis. More importantly, this rank test
also has the aforementioned drawback when directly applied to the hypotheses (2.1). There
are, nonetheless, a few exceptions that study (2.1), notably Cragg and Donald (1993) who
considered a special case of Cragg and Donald (1997). However, the asymptotic distribution
of the test statistic when rank(Ilp) < r is not available, though Cragg and Donald (1993)
established that the asymptotic null distribution when rank(Ilp) = r is least favorable
under somewhat restrictive conditions. Thus, when rank(Ily) > r and IIj is close to a
matrix with rank strictly less than r, their test can be conservative. We refer the reader to

Camba-Mendez and Kapetanios (2009a), Portier and Delyon (2014) and Al-Sadoon (2015)

for further discussions of the literature.

The remainder of the chapter is organized as follows. Section 2.2 presents related
examples to illustrate the importance of the problem, and demonstrates the drawback of

existing rank tests and the conservativeness of the multiple testing method. Section 2.3
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develops the test statistic, establishes its asymptotic distribution, and proposes a bootstrap
procedure for inference. Section 2.4 presents Monte Carlo studies, applies our method to
study identification in stochastic discount factor models, and demonstrates the accuracy
improvement of the sequential testing procedure for rank determination based on our tests.

Section 2.5 briefly concludes. All the proofs are collected in the appendices.

2.2 Examples and Motivation

In this section, we first present related examples in which the testing problem (2.1)
is of importance. In order to motivate the development of our tests, we then demonstrate
that existing rank tests when directly applied to (2.1) can fail to control the asymptotic

null rejection rate, and that the multiple testing method can be conservative.

2.2.1 Examples

The first example is what motivated this paper in the first place.

Example 2.2.1 (Identification). Let Y € R and Z € R* be random variables satisfying

Y =280+ u . (2.4)

Let W € R™ be instrument variables such that E[Wwu] = 0 with m > k. Then identifi-
cation of the coefficient By reduces to whether E[WW ZT] is of full rank. Thus, testing for

identification of Sy reduces to examining the hypotheses (2.1) with

p=EWZ|andr=k—1. (2.5)

We cannot restrict ourselves to examine the hypotheses (2.2), since it is unrealistic to
assume rank(Ilp) > k& — 1 unless k = 1. More generally, (local) identification in parametric,
semiparametric and nonparametric models can often be expressed in terms of some matrices

being of full rank (Fisher, 1961; Rothenberg, 1971; Roehrig, 1988; Chesher, 2003; Matzkin,
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2008; Chen et al., 2014b). For identification in DSGE models, see, for example, Canova and
Sala (2009) and Komunjer and Ng (2011). In addition, when W = Z, then Ilj is a positive

semidefinite matrix and the concern becomes the existence of perfect multicolinearity among

Z. [ ]

The next example concerns the existence of stochastic trend and/or cointegration

in a vector autoregression (VAR) system (Engle and Granger, 1987; Johansen, 1991).

Example 2.2.2 (VAR Trend/Cointegration). Let {Y;} be a k x 1 time series such that
each component of Y; is integrated of order 0 or 1, that is, each component is a stationary

or unit root process. Assume the entire vector is a VAR(1) process

Yi = @Y1+, (2.6)

where u; are white noise with nonsingular covariance matrix . The error-correction rep-

resentation of (2.6) is given by (Hamilton, 1994, p.580):

AYy = (®g — 1) Y1 +ug . (2.7)

Then the existence of stochastic trend for Y; means that &y — I}, is not of full rank. Thus,

testing for the existence of stochastic trend reduces to examining the hypotheses (2.1) with

My=®)— [pandr=k—1. (2.8)

It is unrealistic to assume that there is at most one linearly independent stochastic trend
(i.e., rank(Ily) > k—1) unless k = 1, so we cannot instead focus on examining the hypothe-
ses (2.2). In addition, the existence of cointegrating relations for Y; means that ®y — I} is
nonzero.! Thus, testing for the existence of cointegration reduces to examining the hypothe-
ses (2.1) with r = 0. We confine our attention to the class of VAR(1) models with white

noise errors for simplicity, but our framework applies more broadly to VAR(p) processes

'Recall that Y; is said to be cointegrated if there exists nonzero \ € R” such that \TY; is stationary.
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with dependent and heteroskedastic errors. [ |

Our results allow us to study stochastic trend and cointegration nonparametrically.
The following example concerns the existence of stochastic trend and/or cointegration with-

out a VAR specification (Engle and Granger, 1987; Bierens, 1997; Shintani, 2001).

Example 2.2.3 (Nonparametric Trend/Cointegration). Let {Y;} be a k x 1 time series
such that each component of Y; is integrated of order 0 or 1, that is, each component is a

stationary or unit root process. Let the first difference of Y; follow a linear process
o0
AY; = C(Lyuy = > Cjuz_j , (2.9)
§=0

where u; are white noise with nonsingular covariance matrix ¥, and Cy = I. Since the
long run covariance matrix of AY; is equal to C'(1)XC(1)7, then existence of cointegrating
relations for Y; means that the long run covariance matrix of AY; is not of full rank. Thus,

testing for the existence of cointegration reduces to examining the hypotheses (2.1) with

o
M= Y E[AYAYpandr=k—1. (2.10)
t=—o0
We cannot restrict ourselves to examine the hypotheses (2.2), since it is unrealistic to assume
there is at most one linearly independent cointegration vectors (i.e., rank(Ilp) > k—1) unless
k = 1. In addition, the existence of stochastic trend for Y; means that ®y — I; is nonzero.

Thus, testing for the existence of stochastic trend reduces to examining the hypotheses (2.1)

with r = 0. ]

Cointegration is just one particular example of the more general notion of common
features (Engle and Kozicki, 1993). Our fourth example pertains to the existence of general

common features.

Example 2.2.4 (Common Features). Let {Y;} be a k x 1 time series. According to Engle

and Kozicki (1993), a feature that is present in each component of Y; is said to be common
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to Y; if there exists a nonzero linear combination of Y; that fails to have the feature. Suppose

that {Y;} is generated according to

Y;g :FSZtJrESWtJrUt y (211)

where W, can be thought of as control variables, and Z; is an m x 1 vector reflecting the
feature under consideration with m > k. For example, testing for the existence of common
serial correlation would set Z; to be lags of Y;, and testing for the existence of common
conditionally heteroskedastic factors would set Z; to be relevant factors. We refer to Engle
and Kozicki (1993), Engle and Susmel (1993) and Dovonon and Renault (2013) for details
of these and other examples. By the definition of common feature and the specification of
(2.11), existence of common features means that I'g is not of full rank. Thus, testing for

the existence of common features reduces to examining the hypotheses (2.1) with

HDZFQ andr=%k-—1. (2.12)

Since the number of common features is unknown a priori, we cannot restrict ourself to

examine the hypotheses (2.2) by assuming rank(Ilp) > k£ — 1 unless k = 1. |

The concerns in the remaining examples reduce to determining the true rank of a
matrix, which relies on examining a sequence of hypotheses (2.1) or (2.2). Our fifth example
is directly related to the rank of demand systems, a notion developed by Gorman (1981)
for exactly aggregable demand systems and generalized by Lewbel (1991) to all demand

systems.

Example 2.2.5 (Consumer Demand). An Engel curve is the function describing the allo-
cation of an individual’s consumption expenditures with the prices of all goods fixed, and
the rank of a demand system is the dimension of the space spanned by the Engel curves of

the system (Lewbel, 1991). Suppose that there are k£ goods in the system and the Engel
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curve is given by

Y =ToG(Z) +u, (2.13)

where Y is a k x 1 vector of budget shares on the k goods, Z is total expenditure, G(-) is a
ro X 1 vector of unknown function with rg < k, and w is a vector zero mean random variables
independent of Z. Assume I'g is of full rank, then the rank ry of the demand system is
equal to the rank of I'g. Let Q(:) be a m x 1 vector of known functions with m > k. Then

the rank of I'y is equal to the rank of

Iy = EQ(2)YT] (2.14)

if E[Q(Z)G(Z)7] is of full rank. Thus, determining the rank ro of the demand system
reduces to determining the rank of Ily. The rank of the demand system provides evidence
on consistency of consumer behaviors with utility maximization, and has implications for
welfare comparisons and aggregation across goods and across consumers (Lewbel, 1991,

2006; Barnett and Serletis, 2008). ]

Factor analysis has been widely used in modeling variations, covariance and dy-
namics of time series (Anderson, 2003; Lam and Yao, 2012). Our next example shows the
importance of matrix rank determination in identifying the number of factors in factor

analysis.

Example 2.2.6 (Factor Analysis). Let Y € R? be generated by the following model

Y = po+ AoF +u (215)

where F'is a 19 x 1 vector of unobserved common factors with E[F| = 0 and rg < p, and u is
an idiosyncratic error term with Efu] = 0. Assume Var(F') is of full rank, then the number
ro of common factors is equal to the rank of Var(F). Let us write Y = [V{[, Y]], YT]T for

Y1 e R™", Y, € R and Yo € RP7F™ for some ro < k < m < p and m + k < p. Write
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Ao = [Ag 1, Af g, Aj3]T with Ag1 and Agz having m and k rows. Given the mild condition
that u is independent of F' and Fluu’] is diagonal, the rank of Var(F) is equal to the rank
of

H() = COV(Yl,YQ) 5 (216)

if Ag1 and Ag are of full rank. Thus, determining the number r¢ of these common factors
reduces to determining the rank of Ily. Such a question also arises in the interbattery factor
analysis (Gill and Lewbel, 1992), the dynamic analysis of time series (Lam and Yao, 2012),

and finance and macroeconomics (Bai and Ng, 2002, 2007). ]

Our final example is taken from Gill and Lewbel (1992), and manifests how matrix

rank determination is useful in model selection for ARMA processes and state space models.

Example 2.2.7 (Model Selection). Let {Y;} be a p x 1 weakly stationary time series, which

has the following state space representation:
Yi=T0Zi+us , Zt = NoZy 1+ € (2.17)

where Z; is a rg X 1 vector of state variables, and u; and ¢; are error terms. It turns out
that the number r( of state variables is equal to the rank of the Hankel matrix

Yi1

g =F 2.1
0 ( VARTIIS AN ) (2.18)

Yigp

for b sufficiently large (Aoki, 1990, p.52). Consequently, determining the number of state
variables rg to model Y; reduces to determining the rank of Ily. When Y; is a scalar and
follows an ARMA (p1,p2) model, then Y; has a state space representation with the number

ro of state variables equal to max(pi,p2) (Aoki, 1990). Thus, determining the rank of the
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Hankel matrix is crucial for model specification in these contexts. [ |

2.2.2 Motivation

To proceed, we let o € (0, 1) be the nominal level and ¢$f) be any one of the existing
rank tests designed for the hypotheses (2.2), which are reviewed in the introduction.? It
has been well established in the literature that lim, ., P( $Z') = 1) = « under H(()T) and

limy, 00 P( 7({) =1) =1 under HY).

When rank(Ily) < r, the asymptotic distributions of test statistics have not been
established and can be very different from those when rank(Ily) = r. On the one hand, ¢${")
may fail to control the asymptotic rejection rate. In Appendix 2.7.3, we prove that this is
true for the Kleibergen and Paap (2006) version of ¢$f). Therefore, qbq(f) cannot be directly
applied to test for the hypotheses (2.1). On the other hand, the asymptotic rejection rate
of qbg) can be strictly below the nominal level, i.e, lim, P((;S,(f) =1) < a. In Appendix
2.7.3, we also prove that this is true for the Kleibergen and Paap (2006) version of (bq(f). By
Theorem 2 of Cragg and Donald (1993), this is also true for the Cragg and Donald (1997)
version of ¢£Z"). In view of this, ¢,(Z") may alternatively be conservative when directly applied
to the hypotheses (2.1). Thus, the critical value may be adjusted to improve the power of

QS?(I) for detecting Hy when Il is close to a matrix with rank strictly less than r.

Given that Hg being false is equivalent to H(()Q) being false for all 0 < ¢ < r, one
may then consider implementing multiple existing rank tests in order to obtain tests for the
hypotheses (2.1) such that the asymptotic null rejection rate is controlled. The multiple
testing method is based on the decision rule ¢,, = HZ:O ¢${1), which means that Hy is rejected
if and only if H[()q) is rejected for all 0 < ¢ < r. In VAR models (see, for instance, Example
2.2.2), Johansen (1995, Chapter 12) used this method to test for inequality of cointegration
rank. In stochastic discount factor models, Kleibergen and Paap (2006) employed this

method to test for identification of the risk premia parameters. Indeed, the asymptotic null

2Rejection means QS;T) = 1 and acceptance means d)ﬁf) =0.
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rejection rate of this method is controlled, since under Hy,

n—oQ n—oo n—oo

lim P(¢, =1)= lim P(¢{¥ =1,...,¢") =1) < lim P(¢p{* M) = 1) = o | (2.19)

where the first inequality holds since P(A) < P(B) for A C B. Moreover, this method is

consistent, since under Hy,

T

' )= i (0) _ (r) _ _ gt (@ — 1)) —
lim P(¢, =1) = lim P(¢;) =1,....¢;7) =1) > 1 2%(1 lim P(¢;) =1)) =1,
q:

where the inequality holds by the Boole’s inequality.

Unfortunately, the multiple testing method can be conservative. When rank(Ily) <
7, the inequality of (2.19) becomes strict whenever lim,,_,o, P( " = 1) < a. This is because

lim P(¢, =1)= lim P(¢¥ =1,...,¢) =1) < lim P =1) < a, (2.20)

n—o0 n—o0

where the first inequality holds since P(A) < P(B) for A C B. As mentioned above, this
is true for the Cragg and Donald (1997) and Kleibergen and Paap (2006) version of qb,(f).
Thus, the critical value of each gzﬁ%n may be adjusted to improve the power of the multiple
testing method for detecting H; when Ilj is close to a matrix with rank strictly less than
r. Furthermore, due to the dependence among {¢$Lq)}g:0 the inequality in both (2.19) and

(2.20) may become strict. In view of this, power loss may occur in a complicated way.

To show the drawback of existing rank tests and the conservativeness of the mul-
tiple testing method, we focus on the Kleibergen and Paap (2006) test and present some
simulation evidence.? We assume that

ZJ:WZ.THO—I—UT i=1,...,n, (2.21)

7

3Two main reasons for the focus are: the Kleibergen and Paap (2006) test is preferred in terms of assump-
tions and computation, and has the most citations (over 1,000) among the existing rank tests according to
Google Scholar.
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i.4.d. i.4.d.

with W; "~" N (0, Ig), u; N(0,Is) and n = 1,000. Let

Iy = diag(1¢—g4,04) + 01 for >0 and d =1,...,6 (2.22)

where 1_4 denotes a (6 — d) x 1 vector of ones and 04 denotes a d x 1 vector of zeros. We
examine the hypotheses (2.1) with » = 5, that is, we test whether Il has full rank. The
design of Tl implies Hy is true if and only if 6 = 0. In particular, rank(Ilp) = 6 — d under
Hy, so rank(Ilp) < r when d # 1 and rank(Ilp) = r when d = 1. Thus, d # 1 represents
the case when Il is close to a matrix with rank strictly less than r, while d = 1 represents
the regular case. From the above argument, it shall be expected that when d # 1, the
Kleibergen and Paap (2006) test may over-reject Hy when 6 = 0 or may be inefficient in
detecting H; when & > 0. Moreover, the multiple testing method may be inefficient in

detecting Hy when § > 0. The value of § represents how strong H; deviates away from Hy.

To implement the Kleibergen and Paap (2006) test and the multiple testing method,
we estimate IIy by II,, = % Sor Wizl See Appendix 2.7.3 for a review on the Kleibergen
and Paap (2006) test. By the central limit theorem, the asymptotic distribution of 1L, is
zero mean Gaussian with convergence rate y/n and all assumptions in Kleibergen and Paap
(2006) are satisfied. Let the nominal level be 5%. The rejection rates, which are based on
10, 000 simulation replications, are plotted in Figures 2.1 and 2.2. We use KP-D to denote
the Kleibergen and Paap (2006) test when directly applied and KP-M to denote the multiple
testing method. First, as expected, the rejection rates of KP-M are no greater than the 5%
nominal level when § = 0 and tend to one as J increases for all cases. When d = 1, the
null rejection rate is close to the 5% nominal level. When d # 1, however, the null rejection
rates are far below the 5% nominal level. This suggests that KP-M may be conservative
when d # 1. Indeed, the power curve shifts to right and more parts fall below the 5%
nominal level as d increases. This hints a method of power improvement by dragging the
curves to the left such that all of them are above the 5% nominal level. Similarly, as Figure
2.2 shows, KP-D has the same issue under the considered model. Note that the difference

between the two methods in Figure 2.2 is negligible, despite the fact that KP-D is more
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powerful.
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Figure 2.1: The rejection rate of the multiple testing method based on the Kleibergen and
Paap (2006) test with 5% nominal level

2.3 Asymptotic Analysis

We can express the hypotheses (2.1) more tractably in terms of singular values.
To see this, let o1(Ilp) > --- > ox(Ilp) > 0 be singular values of ITIp.* Then the rank
of Il is equal to the number of nonzero singular values of Ily; see, for example, Problem
3.1.2 in Horn and Johnson (1991). It follows that the hypotheses (2.1) can be equivalently

reformulated as

k k
Hy : Z 0]2-(1_[0) =0 v.s. Hjp: Z UJQ»(HO) >0. (2.23)
j=r+1 j=r+1

Given the reformulation in (2.23), it is convenient to study the differential properties of the

map Iy — Z?:r 41 ajz (IIp). By leveraging the existing Delta method, we in turn establish
the asymptotic distributions of the plug-in statistic Z?:r 41 O'j2~ (IL,,) under the null for a given

“Recall that o%(Ilo), . ..,07(Ilp) are numerically identical to eigenvalues of TIJTIo.
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Figure 2.2: Comparison between the Kleibergen and Paap (2006) test and the multiple
testing method based on it with 5% nominal level

estimator II,, of II. Since the resulting asymptotic distributions are highly nonstandard,
we resort to the resampling procedure developed by Fang and Santos (2015) and Chen and

Fang (2015) in order to obtain critical values.

2.3.1 Differential Properties

For ease of exposition, define ¢ : M™** — R by

k
¢ = Y oI, (2.24)
=r+

j=r+1

where we recall that o;(II) is the jth largest singular value of II. To derive the differentia-

bility of ¢, it shall prove useful to establish the following representation.

Lemma 2.3.1. Let S¥*1 = {U € MF*1: UTU = I,} forq=1,...,k. Then we have

o(I) = min |OU|2 . (2.25)
UeSkx(k—r)

Lemma 2.3.1 shows that ¢(II) can be represented as a quadratic minimum over the
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k=7) " The special case when r = k — 1 — a test of

II having full rank — is a well known implication of the classical Courant-Fischer theorem,

i.e., o7(IT) = miny = |IIU|?>. Note that the minimum in (2.25) is achieved and hence well

defined.

We are now in a position to analyze the differential properties of ¢. It turns out

that ¢ is not fully differentiable but belongs to a class of directionally differentiable maps.

For completeness, we next introduce the appropriate notions of differentiability.

Definition 2.3.1. Let M"™** be equipped with the norm || - || and ¢ : M™** — R..

(i)

The map ¢ is said to be Hadamard directionally differentiable at II € M™*¥ if there

is a map ¢ : M™*¥ — R such that:

lim (P(H —|—tnMn) — (P(H) — ‘Pi‘[(M) , (2.26)

n—00 tn

for all sequences {M, } € M™** and {t,} C Ry such that t, | 0, and M,, — M €

M"™*k a5 n — 0.

Suppose that ¢ : M™** — R is Hadamard directionally differentiable at IT € M™%,
We say that ¢ is second order Hadamard directionally differentiable at II € M™** if

there is a map o[} : M™%k — R such that:

hm¢m+mMm—wm%%mHMm:@mM% (2.27)

n—o00 t%

for all sequences {M, } € M™** and {t,} C R* such that ¢, | 0, and M, — M €

M"™*k a5 n — .

Compared with Hadamard full differentiability (van der Vaart, 1998) which requires

continuity and linearity of the derivative, the directional derivative is generally nonlinear

though necessarily continuous. In fact, linearity is the exact gap between these two notions

of differentiability. Remarkably, the Delta method remains valid even if ¢ is only Hadamard
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directionally differentiable. We refer the readers to Shapiro (1990, 1991), Diimbgen (1993),
and a recent review by Fang and Santos (2015) for further details. Unfortunately, as shall
be proved, the asymptotic distribution of our statistic qS(fIn) implied by the Delta method
is degenerate under the null, which creates substantial challenges for inference. This mo-
tivates the second order Hadamard directional differentiability. Compared with second
order Hadamard full differentiability which requires a quadratic form of the derivative cor-
responding to a bilinear map, the directional derivative ¢} is generally nonquadratic though
continuous. In fact, quadratic form structure is the exact gap between these two notions of
differentiability. Similarly, the second order Delta method remains valid even if ¢ is only
second order Hadamard directionally differentiable. We refer the readers to Shapiro (2000)

and a recent review by Chen and Fang (2015) for further details.

The following proposition establishes the differentiability of ¢.
Proposition 2.3.1. Let ¢ : M™** — R be defined as in (2.24).

(i) ¢ is first order Hadamard directionally differentiable at any I € M™ F with the

derivative ¢} : M™% — R given by

' (M) = min 2tr(UTIITM 2.9
o (M) min r(U U, (2.28)

where W(II) = arg ming cgrx k- ||[IU]2.

(ii) ¢ is second order Hadamard directionally differentiable at any II € M™* satisfying
o(I1) = 0 with the derivative ¢} : M™* — R, given by
(M) = min min  ||[MU +1IV|]? . (2.29)
UeU(I) VeMkx (k=)
Proposition 2.3.1 implies that ¢ is Hadamard directionally differentiable at any
I € M™**, In particular, when rank(II) < r, it exhibits a degenerate derivative, i.e.,

¢ (M) = 0 for all M € M™%, Moreover, Proposition 2.3.1 implies that ¢ is second order

Hadamard directionally differentiable at any IT € M™** with rank(II) < r. In general, ¢
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is not second order fully Hadamard differentiable at I € M™*¥ with rank(I) < 7 unless
rank(Il) = r, see Lemma 2.7.4. Thus, the accommodation of rank(Il) < r causes the

irregularity of ¢.

To conclude this section, we provide a simplified analytical expression for ¢f;. Let
II = PYXQT be a singular value decomposition of II, where P € S™ and Q € S¥**, and
¥ € M™** is diagonal with diagonal entries in descending order. Let r* = rank(IT). Write
P = [P, P] and Q = [Q1, Q2] for P, € M™*"" and Q; € MF*"™" | respectively. Thus, the
columns of P, and ()2 are the left-singular vectors and right-singular vectors of II associated
with the zero singular values, respectively. Then the following proposition gives a simplified

analytical expression of ¢f].

Proposition 2.3.2. Suppose r* < r and let ¢} : M™k 5 R be given as in Proposition
2.3.1. Then for M € M™*k,

k—r*

M) = > o3 (PIMQ,) . (2.30)
Jj=r—r*+1

Proposition 2.3.2 implies ¢f;(M) is the sum of the k — r smallest squared singular
values of transformed matrix P2T M@s. Observe that P, and Q5 are from singular value
decomposition, so calculation of the derivative requires no more than calculation of singular
value decomposition as in the test statistic. As we will see later, this facilitates the compu-
tation of our test statistic and makes our test procedure attractive. Note P and ()3 can be
chosen up to postmultiplication by (m —7*) x (m —r*) and (k —r*) x (k — r*) orthonormal
matrices, respectively, but the term on the right hand side of (2.30) is invariant to the

choice of P, and Q5.

2.3.2 The Asymptotic Distributions

Given the established differentiability of ¢ and null first order derivative, the asymp-

totic distribution of gb(f[n) can be easily obtained by the second order Delta method
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(Shapiro, 2000), provided 1L, converges weakly. Towards this end, we impose the following

assumption.

Assumption 2.3.1. Let Iy € M™% and there are 1L, : {Xi}, — M™%k such that

Tn(ﬁn — 1) L m for some 1, 1 00 and random matriz M € M™*F.

Assumption 2.3.1 imposes that the estimator II,, for IIy admits a weak limit M €
M™%k at a scalar rate 7,,. The estimator ﬂn is defined as a function of the data {X;} ,
into M™**and the weak convergence «L» is understood with respect to the joint law
of {X;}? ,, which need not be ii.d.. In particular, 7, is allowed to be any parametric or

nonparametric rate that covers all the above examples.

Let Il = POZOQE) be a singular value decomposition of IIy, where Py € S™*™
and Qo € SF** and £y € M™** is diagonal with diagonal entries in descending order.
Let 79 = rank(Ilp). Write Py = [Po1, Po2] and Qo = [Qo.1,Qo2] for Po; € M™ "0 and
Qo € MPFX70 respectively. Thus, the columns of Py 2 and Qo 2 are the left-singular vectors
and right-singular vectors of Il associated with the zero singular values, respectively. The

following proposition delivers the asymptotic distributions of qﬁ(ﬂn)

Proposition 2.3.3. Suppose Assumption 2.3.1 holds. Then we have

~ L .
n(o(11,) — (11 2tr(UTIL) , 2.31
r(0(01,) = 6(10) B min 26(UTTIEMO) 2:31)
and under Hy,
. B k—rg
o) 5 Y 0 (P]aMQoz) - (2.32)
j=r—ro+1

Proposition 2.3.3 implies that Tn¢(ﬁn) converges in distribution to a degenerate
limit at 0 under Hy. This prevents us from making inference based on the first order
framework (Chen and Fang, 2015). Proposition 2.3.3 also implies that Tzqﬁ(ﬂn) converges in
distribution to a generally nondegenerate limit under Hy. This enables us to make inference

based on the second order framework. The limit is a nonlinear function of the weak limit
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M and remarkably nonstandard especially when ro < r. In general, an analytical (pivotal)
distribution is not available. Note that 2 and Qg2 are identified up to postmultiplication
by (m —19) x (m — 1) and (k — rg) x (k — r¢) orthonormal matrices, respectively, but the

term on the right hand side of (2.32) is invariant to the choice of Pso and Q2.

In order to see how our results apply to various settings, we now turn to examples
introduced in Section 2.2.1. We shall focus on Examples 2.2.1 and 2.2.3 exclusively for
conciseness; Examples 2.2.2 and 2.2.4-2.2.7 will be treated in Appendix 2.7.2. In particular,
Assumption 2.3.1 is not well satisfied in Example 2.2.2 since the convergence rates of 1L,
are not homogenous across its columns, and we extend the result in Proposition 2.3.3 for
it.

Example 2.2.1 (Continued). Suppose {W;, Z;}" , is a sequence of data from Example

2.2.1. Let f[n be the method of moment estimator
1 n
I, =~ Zl Wi ZT . (2.33)
1=

Under certain weak dependence and moment condition, the central limit theorem implies
that Assumption 2.3.1 is satisfied with 7,, = y/n and M being a zero mean Gaussian. When

ro < k — 1, the asymptotic distribution of n¢(ﬂn) can be highly nonstandard. [

Example 2.2.3 (Continued). Suppose {Y;}}, is a sequence of data from Example 2.2.3.

Let II,, be a kernel HAC estimator

L= Y kH0G). (2:31)

j=—n+1 n

where I',(j) = %Z::f AY,AY]L; for j >0, [,(j) = Dp(—4)7 for j < 0, k() is a kernel

function, and b,, is a bandwidth parameter. Under certain weak dependence and moment
conditions, 11, is asymptotically normal at the rate \/7% For example, see Hannan
(1970), Brillinger (1981), Priestley (1981) and Berkes et al. (2016). So, Assumption 2.3.1 is
satisfied with 7, = \/n/b, and M being a zero mean Gaussian. In testing for the existence

of cointegration, when ry < k — 1, the asymptotic distribution of nqﬁ(ﬂn) /by, can be highly
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nonstandard. u

We now discuss the result of Proposition 2.3.3 when r¢g = r and its relation to the
literature. In this case, POT’QMQOQ has k—r columns and Z?;:O—ro—f—l UJZ(POT’QMQOQ) is equal

to the Frobenius norm of P({ 9MQo 2. Thus, the asymptotic distribution in (2.32) becomes
HP({QMQ(),QHZ = vec(Py ;MQo2)Tvec(Pj ,MQo2) - (2.35)

When M is a zero mean Gaussian, the limit is a weighted sum of independent x?(1) random
variables. Thus, Proposition 2.3.3 includes Robin and Smith (2000) as a special case. If,
in addition, the covariance matrix of vec(Pj,MQo2) is nonsingular, Kleibergen and Paap
(2006) proved that a normalized version of 72¢(IL,) has a x2((m — r)(k — r)) asymptotic
distribution under H(()T). The asymptotic distribution is not a x-type distribution any more
if ro < r. This suggests that the Robin and Smith (2000) test when directly applied to (2.1)

may fail to control the asymptotic null rejection rate.

2.3.3 The Bootstrap

Given the nonstandard asymptotic distribution in Proposition 2.3.3, no analytical
critical values can be employed for inference. We may resort to the standard bootstrap
method (Efron, 1979) to consistently estimate the asymptotic distribution. Unfortunately,
the consistency of this method fails due to the degeneracy of ¢h0 under the null (Chen and
Fang, 2015). Moreover, the recentered bootstrap does not necessarily correct the inconsis-
tency due to the nondifferentiability of ¢. As such, we resort to the procedure developed
by Chen and Fang (2015) for construction of critical values. See the discussion on m out of

n bootstrap and subsampling in Remark 2.3.1.

Recall that the asymptotic distribution is a composition of M and qbiflo. Our pro-
posed procedure consists of first estimating M by bootstrap and then estimating ¢ﬁ0 For
the former, let f[; denote a “bootstrapped version” of II,,, which is defined as a function of

the data {X;}" , and random weights {W;}"_, that are independent of { X;}?_; into M™*k,
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This general definition allows us to include special cases such as nonparametric, Bayesian,
block, score, more generally multiplier and exchangeable bootstrap. To accommodate di-

verse resampling schemes, we simply impose the following high level condition.

Assumption 2.3.2. (i) TT% : {X;, W; Y7, — M™% with {W;}?_, independent of {X;}7_,;
(i) T (I — 1I,,) L M almost surely, where L3 denotes weak convergence with respect to

the joint law of {W;}"_, conditional on {X;}7_,.

Assumption 2.3.2(i) defines the bootstrap analog ﬁ; of II,,, while Assumption

2.3.2(ii) simply imposes the consistency of the law of 7, (IT¥ — II,) conditional on the data

{X;}, for the law of M, i.e., the bootstrap works for the estimator IL,,.

Next we examine Assumption 2.3.2 in Examples 2.2.1 and 2.2.3; Examples 2.2.2 and
2.2.4-2.2.7 will be treated in Appendix 2.7.2. In particular, Assumption 2.3.2 is not well

satisfied in Example 2.2.2, and we extend the result in Theorem 2.3.1 for it.

Example 2.2.1 (Continued). Let {Zf, W}, be obtained by nonparametric boot-
strapping {Z;, W;}?, when {Z;, W;}I" ; is a sequence of i.i.d. data, and by block boot-
strapping {Z;, W;}?_; when {Z;, W;}_, is a sequence of dependent data. Under certain

weak dependence and moment condition, Assumption 2.3.2 is satisfied with

R 1 &
* * r7kT
I, =~ ;:1 WrzZT. (2.36)
Multiplier and exchangeable bootstrap may also be employed for i.i.d. data. [ |

Example 2.2.3 (Continued). Since IT,, only depends on {AY;}},, it suffices to resample
{AY:}}-,. Note that {AY;}}, is stationary. Let {AY;*}}; be obtained by block bootstrap-
ping {AY;} ;. Under certain weak dependence and moment condition, Assumption 2.3.2

is satisfied with

n—1 .
% J NPk
j=—n+1 n
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where T%(j) = %Z?:_f AY;AY]]T for j >0, [%(5) = T5(—4)T for j < 0, k(-) and b, are
the same kernel function and bandwidth parameter. See Politis and Romano (1992, 1993)

and Politis et al. (1992) for other bootstrap procedures. ]

There are two main methods for estimating ¢’1-’IO: the structure-exploiting approach
and the numerical differentiation approach. For the former, we describe how to estimate
Irllo according to (2.30). Let I, = pnﬁan,Tl be a singular value decomposition of II,,
where P, € S™*™ and Q,, € S¥**, and £, € M™** is diagonal with diagonal entries in
descending order. Let 7, = min{r,#{1 <j <k: aj(f[n) > Kkn}}, where K, | 0 is a tuning
parameter that is required to satisfy certain conditions below.? Write Pn = [151771, ]52’”] and
Q, = [Ql,n,sz] for Pl,n € M™% and Ql,n € MF*™n respectively. By (2.30), we may

estimate ¢fy, by

k—fn
(M) = > o3(P],MQap) . (2.38)
j=r—fnt1

Note that ngn and ng can be chosen up to postmultiplication by (m —#,) x (m — ) and

(k —7) X (k — 7y,) orthonormal matrices, respectively, but the term on the right hand side

of (2.38) is invariant to the choice of ]52,,1 and ng. For the latter, we estimate qbﬂo by

(2.39)

Remark 2.3.1. In effect, m out of n bootstrap and subsampling amounts to estimating
M based on subsamples (with and without replacement, respectively) and qSif[O via the
numerical differentiation approach, in which case the tuning parameters for choosing sub-
samples and estimation of the derivative coincide. Thus, our bootstrap procedure can be
more efficient in two ways. First, our bootstrap procedure makes efficient use of the data
in estimating M, since it is based on full samples. Second, our bootstrap procedure also

provides alternative method of estimating ¢i’10 by exploiting more structural information of

SWe use #A to denote the cardinality of a set A. One can theoretically ignore r in the expression of 7.
However, taking minimum in the expression of 7, is a way of imposing the information under the null to
ensure that the estimator in (2.38) is well defined and improve power.
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the data .

Given a suitable condition on k, | 0, we are then able to prove that the law of the
weak limit in (2.32) is consistently estimated by the law of ¢/ (7,{II* —II,}) conditional
on the data. It in turn suggests employing the 1 — o quantile ¢;_, of QAS;;(Tn{ﬁZ — f[n})

conditional on the data:%
¢ =inf{c € R: Py (¢! (ro {115 = 11,,}) < ¢) > 1—a} . (2.40)

Note that ¢;_, is generally infeasible in that it is constructed based on the “exact” distri-
bution of ¢ (7, {II* — II,,}) conditional on the data. Nonetheless, it can be estimated by
Monte Carlo simulation and the estimation error can be made arbitrarily small by choosing

the number of bootstrap replications (Efron, 1979; Hall, 1992; Horowitz, 2001).

For each realization of 7,,{II* — I, }, the computation of ¢ (7, {II* —II,}) requires
no more than calculating singular value decompositions with ¢/ in (2.38) and (2.39). When
qBZ is given in (2.38), it is only necessary to calculate the singular value decomposition of
Pgnrn{ﬂ,’; — 11,}Qs,,. When ¢ is given in (2.39), it is only necessary to calculate the
singular value decomposition of I, + anTn{ﬂ: — f[n} Thus, the computation of simulated
critical values is as simple as the computation of the test statistic. Comparisons between

the estimators in (2.38) and (2.39) will be investigated in Monte Carlo studies.

The following theorem establishes that the test of rejecting Hy when 72¢/(I1,,) > é1_q

controls the asymptotic null rejection rate and is consistent.

Theorem 2.3.1. Suppose Assumptions 2.3.1 and 2.5.2 hold. Let k,, | 0 and 1,k, — 00.
Let é1_o be given in (2.40) with ¢! in (2.38) or (2.39). If the cdf of the limit distribution in
(2.32) is continuous and strictly increasing at its 1 — a quantile for o € (0,1), then under
Ho,

lim P(r2¢(II,) > é1-a) = o .

n—oo

5Py denotes the probability with respect to the joint law of the random weights {W;}7 ;.
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Furthermore, under Hy,

lim P(r2p(,) > é1-0) =1 .

n—oo

Theorem 2.3.1 implies that our tests have the asymptotic null rejection rate that
is exactly equal to the nominal level, regardless of whether rg = r or r9 < r. This stems
from the design of our bootstrap that estimates the asymptotic distribution pointwise in
IIy. In contrast to existing rank tests and the multiple testing method that may have the
asymptotic null rejection rate strictly below the nominal level when r¢y < r, this distinct
feature shall make our tests more powerful. In particular, when Il is close to a matrix with
rank strictly less than r, our tests shall be more powerful in detecting H; than existing rank
tests and the multiple testing method. In addition, in contrast to existing rank tests that
may fail to control the asymptotic null rejection rate when rg < r, our tests control the
asymptotic null rejection rate regardless of whether rg = r or rg < r. Theorem 2.3.1 also

implies that our tests are consistent.

Several simple, new and powerful tests are immediate from Theorem 2.3.1. First,
applying Theorem 2.3.1 to Examples 2.2.1 yields tests for identification in linear IV models.
Second, applying Theorem 2.3.1 to Examples 2.2.2 and 2.2.3 yields tests for the existence
of stochastic trend and/or cointegration with or without VAR specification, respectively.
Third, applying Theorem 2.3.1 to Examples 2.2.4 yields tests for the existence of common

features.

We now discuss the quantile requirement on the limit distribution in (2.32) imposed
in Theorem 2.3.1. A necessary condition for that requirement to hold is POT’ o MQp2 # 0

with positive probability, that is,
P(R(M)NNI) # §) > 0 and P(R(MT) NN (Ip) # 0) > 0,

where R(A) denotes the range of a matrix A and N (A) denotes the null space of a matrix
A. When M is zero mean Gaussian and rg = r, the limit in (2.32) is a weighted sum of

independent x?(1) random variables as shown in (2.35). This implies the limit distribution
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is continuous, unless the covariance matrix of Vec(P& 9MQo.2) is zero. Thus, in this special
case, the sufficient and necessary condition for the requirement to hold is nonzero of the
covariance matrix of vec(Pj,MQo2). In contrast, Kleibergen and Paap (2006) requires
nonsingularity of the covariance matrix of VGC(P(I 9MQo.2). In view of this, our tests rely

on much weaker conditions than Kleibergen and Paap (2006).

Remark 2.3.2. The requirement on the limit distribution in (2.32) imposed in Theorem
2.3.1 may not be satisfied in testing for perfect multicollinearity in Example 2.2.1. When
I, = %Z?:l Z;Z], then the limit in (2.32) is degenerate at zero, which can be best seen
from (2.32) since MQo 2 = 0. Heuristically, if the smallest singular value of IIj is zero, then
A\TZ; is constantly zero for some constant A € S¥ and the smallest singular value of II,, is

constantly zero. Nevertheless, one can easily prove that the properties of size control and

consistency continue to hold. [ |

2.4 Simulations and Applications

In this section, we first conduct Monte Carlo studies to examine the finite sample
performance of our tests, and show how existing rank tests when directly applied to (2.1)
and the multiple testing method may be conservative. We then apply our tests to study
identification in stochastic discount factor models (Jagannathan and Wang, 1996). Lastly,
we demonstrate how our tests can improve the accuracy of the sequential testing procedure

for rank determination.

2.4.1 Simulation Studies

We start with the performance of our tests for the problem in Section 2.2.2. To
implement our tests, we use the same estimator II,, as in Section 2.2.2 and the same nominal
level 5%. The rejection rates, which are based on 10,000 simulation replications with 500
nonparametric i.i.d. bootstrap replications for each Monte Carlo, are plotted in Figure 2.3.

Clearly, Assumptions 2.3.1 and 2.3.2 are satisfied. The result is based on the derivative
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estimator in (2.38) with s, = n~'/4, while the result for the derivative estimator in (2.38)

1/3 is similar and available upon request. For ease of comparison, we combine

with Kk, = n~
Figures 2.1 and 2.3 to yield Figure 2.4, where CF denotes our tests and KP-M is defined
in Section 2.2.1. In contrast to KP-M, the null rejection rates of CF are close to the 5%
nominal level for all d as shown in Figure 2.3. As expected from Theorem 2.3.1, CF are
more powerful than KP-M uniformly over d # 1 and all § > 0 as shown in Figure 2.4. In
particular, in contrast to KP-M, all power curves of CF lie above the 5% nominal level line.
Note the power curves do not coincide since the data generating process (DGP) is varied
for different d. Figure 2.4 also shows that the greater the value of d is, the greater the
power improvement is. In addition, when d = 1, CF are as powerful as KP-M. Thus, these

findings confirm that KP-M are too conservative, and CF provide power improvement over

KP-M. Given Figure 2.2, the comparison between CF and KP-D is the same.

1
0.8 I
i)
o] - mf— (] =1 _
& 0.6
c —_ 3= -g=2
o
3] d=3
0.4 .
Qo U.a — - =,
e = =4
—— =5
d=6
0.2 —
--------- 5% Level
0\|., P s | ‘ ‘ ‘ | ‘ |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 2.3: The rejection rate of our tests with 5% nominal level

We next investigate the finite sample performance of our tests, the Kleibergen and
Paap (2006) test when directly applied, and the multiple testing method in more compli-

cated DGPs with heteroskedasticity, dependence and different sample sizes. We consider
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Figure 2.4: Comparison between our tests and the multiple testing method based on the
Kleibergen and Paap (2006) test with 5% nominal level

two types of DGPs. For the first DGP (DGP1), we assume

1
Zl;r == WJHO + WLtul with Uy = V¢ — Zl4llvt,1,t == 1, PN ,T,

where v; i N(0,1y), Wy i1 N(0,14) and Wy, is the first element of ;. Note the errors

now are heteroskedastic and autocorrelated. Let
Iy = diag(19,02) + ply for p >0 .
For the second DGP (DGP2), following Kleibergen and Paap (2006) we assume
Ry =1lgF; + &y with eg = v + T, t=1,...,T,

where v, "% N(0,%,) and F, " N(0,Sp) withT € M10¥10, 5, € M10%¥10 apnd 5 € MAx4

given in Appendix 2.7.4. Let

Iy = BaT + plIl; for p >0,
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where a € R, f € R0 and II; € M!'9%% are given in Appendix 2.7.4. These values are
estimates based on the real data used in Section 2.4.2. In view of this, we use DGP2 to

mimic possible scenarios in Section 2.4.2 as in Kleibergen and Paap (2006).

We examine the hypotheses (2.1) with » = 2 and r = 3 for DGP1, and the hypotheses
(2.1) with » = 3 for DGP2. The design of Iy implies that Hy is true if and only if § = 0 for
both cases. In particular, for DGP1 r¢ = 2 under Hy, and for DGP2 ry = 1 under Hy. So
r = 3 for both DGPs represents the case when Il is close to a matrix with rank strictly less
than r, while r = 2 for DGP1 represents the regular case. Given the findings in Figure 2.4,
for the hypotheses with r = 3 for both DGPs, it shall be expected that our tests are more
powerful than the Kleibergen and Paap (2006) test when directly applied and the multiple

testing method.

To implement all tests, we estimate IIy by Iy = % Zthl W.Z[ for DGP1 and by
Iy = Zthl R/F] (Zthl F,FT)~! for DGP2. It is clear that the asymptotic distribution M
of Iy is zero mean Gaussian with convergence rate VT, so Assumption 2.3.1 is satisfied. As
the data exhibits first order autocorrelation, we adopt the simple block bootstrap (Lahiri,
2003) to resample the data with block size b = 2 for implementing our tests. For derivative
estimation in (2.38) and (2.39), we set the tuning parameter kp = T~/* and T-/3. It is
also clear that all assumptions in Kleibergen and Paap (2006) are satisfied. We use HACC
matrix estimator with one lag (West, 1997) for the long run covariance matrix estimator.

See Appendix 2.7.3 for a review on the Kleibergen and Paap (2006) test.

We let p = 0,0.1,---,0.5 for DGP1 and p = 0,0.01,---,0.1 for DGP2, where p
represents how strong H; deviates away from Hy. We consider T' = 50, 100, 300, 1000 for
DGP1 and T = 330 for DGP2. The rejection rates, which are based on 5,000 simulation
replications with 500 bootstrap replications, are reported in Tables 2.1-2.3. We use CF1
and CF2 to denote our tests using derivative estimator in (2.38) and (2.39), respectively,
and KP-D and KP-M to denote the Kleibergen and Paap (2006) test when directly applied

and the multiple testing method, respectively. The nominal level is 5% throughout.

The main findings are summarized as follows. First, CF1 exhibits good finite sample
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performance for all cases, even when T' = 50. Interestingly, as Tables 2.1 and 2.3 show, the
rejection rates of CF1 for r = 2 under DGP1 and r = 3 under DGP2 are invariant to the
choice of k7 in most of cases. The rejection rates of CF1 for r = 3 under DGP1 are not
quite sensitive to the choice of k. Second, the performance of CF2 is not as satisfactory
as that of CF1 in small samples. In particular, CF2 is over rejected for all cases with p =0
when T = 50 or 100. This indicates that good performance of CF2 may require a larger
T than CF1 does. This may be explained by the fact that the structural method (CF1)
exploits more information of the derivative. For large 7', CF2 seems to be more powerful
than CF1 under DGP1 when T = 300 or 1,000, while CF1 seems to be more powerful
than CF2 under DGP2. We leave a thorough comparison between these two methods of
derivative estimation for future study. Third, the performance of KP-M and KP-D is less
satisfactory than our tests. As Table 2.1 shows, KP-M and KP-D over-reject the null for
r = 2 under DGP1 with p = 0 when T' = 50 or 100. This indicates that good performance
of KP-M and KP-D may require a large 7. On other other hand, as Tables 2.2 and 2.3
show, KP-M and KP-D under-reject the null for » = 3 under DGP1 and DGP2 with p = 0.
This is consistent with the finding in Figure 2.1. Moreover, as expected, CF1 and CF2
are uniformly more powerful than KP-M and KP-D as shown in Tables 2.2 and 2.3.7 In
addition, in our designed simulation, the rejection rates of KP-M and KP-D are similar

with insignificant difference, although the latter is slightly more powerful.

2.4.2 Testing for Identification in SDF Models

Following Jagannathan and Wang (1996), the stochastic discount factor (SDF)

model based on the conditional capital asset pricing model is specified as

B[R 1 Fl 1 vl|T] = 1 (2.41)

"In Table 2.2, the rejection rates of KP-M and KP-D under the alternatives are size adjusted ones.



Table 2.1: Rejection rates for » = 2 under DGP1

p=20
CF1 CF2 KP
kp =T V4 kp=T718 =TV gp=T"1F KP-M KP-D
T =50 0.0380 0.0374 0.2764 0.2078 0.1276 0.1658
T =100  0.0402 0.0402 0.1958 0.1232 0.0930 0.0952
T =300  0.0450 0.0450 0.1218 0.0512 0.0606 0.0606
T =1000 0.0472 0.0472 0.0752 0.0368 0.0526 0.0526
p=0.1
CF1 CF2 KP
kp =T YV kp =T V3 gp=T1V  kp=T"1 KP-M KP-D
T =50 0.0812 0.0812 0.3520 0.2676 0.0720 0.0828
T =100  0.1210 0.1210 0.3356 0.2314 0.1262 0.1316
T =300  0.3458 0.3458 0.5144 0.3600 0.3961 0.3962
T =1000 0.8976 0.8976 0.9238 0.8784 0.9784 0.9152
p=02
CF1 CF2 KP
kp =T V4 kp=T713 gp=T"V gp=T"1 KP-M KP-D
T =50 0.2248 0.2248 0.5714 0.4880 0.1904 0.2078
T =100  0.4254 0.4254 0.6950 0.5750 0.4410 0.4520
T =300  0.9350 0.9350 0.9694 0.9366 0.9526 0.9526
T =1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p=0.3
CF1 CF2 KP
kp =TV kp =T 18 =TV gp=T"1 KP-M KP-D
T =50 0.4776 0.4776 0.7852 0.7208 0.3682 0.4142
T =100  0.8044 0.8044 0.9348 0.8906 0.7964 0.8102
T =300  0.9992 0.9992 0.9980 1.0000 1.0000 1.0000
T =1000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p=04
CF1 CF2 KP
kp =T 1V kp =T 13 r=T"V gp=T71 KP-M KP-D
T =50 0.7220 0.7220 0.9236 0.8896 0.5380 0.6212
T =100  0.9618 0.9618 0.9954 0.9832 0.9456 0.9586
T = 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
T =1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p=0.5
CF1 CF2 KP
kp =T V4 kp =T 13 =TV gp=T"1 KP-M KP-D
T =50 0.8872 0.8872 0.9786 0.9658 0.6696 0.7846
T =100  0.9960 0.9960 0.9994 0.9992 0.9840 0.9946
T = 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
T =1000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2.2: Rejection rates for » = 3 under DGP1

p=20
CF1 CF2 KP
kp =T V4 kp=T718 =TV gp=T"1F KP-M KP-D
T =50 0.0594 0.0388 0.1410 0.1248 0.0072 0.0156
T =100  0.0556 0.0328 0.1156 0.0944 0.0066 0.0110
T =300  0.0486 0.0324 0.0766 0.0564 0.0050 0.0062
T =1000 0.0550 0.0484 0.0656 0.0544 0.0044 0.0056
p=0.1
CF1 CF2 KP
kp =T YV kp =T V3 gp=T1V  kp=T"1 KP-M KP-D
T =50 0.0874 0.0534 0.1770 0.1600 0.0168 0.0270
T=100 0.1114 0.0626 0.1936 0.1624 0.0270 0.0344
T =300  0.2926 0.1562 0.3628 0.3068 0.0926 0.0994
T =1000 0.8070 0.5948 0.8226 0.7730 0.5396 0.5428
p=02
CF1 CF2 KP
kp =T V4 kp=T713 gp=T"V gp=T"1 KP-M KP-D
T =50 0.1804 0.1182 0.3334 0.3030 0.0698 0.0910
T =100  0.3162 0.2060 0.4882 0.4342 0.1692 0.1806
T =300 0.7774 0.6724 0.8872 0.8426 0.6644 0.6666
T =1000 0.9988 0.9986 0.9960 0.9994 0.9982 0.9982
p=0.3
CF1 CF2 KP
kp =TV kp =T 18 =TV gp=T"1 KP-M KP-D
T =50 0.3254 0.2538 0.5566 0.5166 0.1906 0.2432
T =100  0.5678 0.4986 0.7886 0.7414 0.4856 0.4962
T =300  0.9602 0.9576 0.9940 0.9874 0.9602 0.9602
T =1000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p=04
CF1 CF2 KP
kp =T 1V kp =T 13 r=T"V gp=T71 KP-M KP-D
T =50 0.4916 0.4460 0.7488 0.7110 0.3544 0.4434
T =100  0.7758 0.7626 0.9422 0.9120 0.7552 0.7656
T =300  0.9972 0.9972 0.9998 0.9996 0.9974 0.9974
T =1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p=0.5
CF1 CF2 KP
kp =T V4 kp =T 13 =TV gp=T"1 KP-M KP-D
T =50 0.6432 0.6288 0.8798 0.8442 0.5182 0.6290
T =100  0.9146 0.9138 0.9880 0.9766 0.9016 0.9116
T =300  0.9998 0.9998 1.0000 1.0000 0.9998 0.9998
T =1000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2.3: Rejection rates for » = 3 under DGP2 when 7" = 330

CF1 CF2 KP

kp =T Y4 kp =T Y3 gp=T"Y4 gp =713 KP-M KP-D
p=000 0.0514 0.0514 0.0468 0.0406 0.0006 0.0008
p=001 0.2834 0.2834 0.1770 0.1104 0.0460 0.0482
p=0.02 0.4228 0.4228 0.1648 0.0864 0.0956 0.1018
p=003 0.5850 0.5850 0.2192 0.1242 0.2044 0.2166
p=004 0.7526 0.7526 0.3268 0.2388 0.3562 0.3768
p=005 0.8706 0.8706 0.4944 0.4010 0.5314 0.5598
p =006 0.9500 0.9500 0.6622 0.5796 0.6898 0.7294
p =007 0.9822 0.9606 0.8064 0.7388 0.7994 0.8464
p =008 0.9932 0.9852 0.9032 0.8628 0.8748 0.9276
p=009 0.9982 0.9936 0.9582 0.9368 0.9144 0.9670
p=0.10 0.9998 0.9984 0.9842 0.9754 0.9306 0.9852

where R; € R™ is a vector of returns on m assets at time ¢, F; € R¥ is a vector of common
factors at time t, Z; is the information set at time ¢, and 79 € R¥ is a vector of risk premia.
The risk premia 7y can be estimated by the generalized method of moments (Hansen, 1982),

see, for example, Jagannathan et al. (2002). The GMM estimator of g is consistent if

B[Ry F 4 |Ti] (2.42)

is of full rank at time ¢, see, for example, Hansen (1982) and Newey and McFadden (1994).
Therefore, it is of importance to test for the full rank of (2.42) to indicate whether g is

identifiable.

When the conditional expectation of Rt+1FtT+1 does not depend on Z; and R; satisfies

a linear factor model

Ry =1lgF; + & (243)

with E[F;e;] = 0 and E[F,F]] being nonsingular, then testing for the full rank of (2.42) is

equivalent to testing for the full rank of IIy. Following Kleibergen and Paap (2006), instead
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of testing for the full rank of (2.42), we opt to test whether Il is of full rank. Thus, this
amounts to examining the hypotheses (2.1) with » = £k — 1. We cannot restrict ourself to

examine the hypotheses (2.2) since it is unrealistic to assume ro > k — 1 unless k = 1.

We use the same set of data as in Kleibergen and Paap (2006). There are returns
R; on 10 portfolios and 4 factors in F}; with observations from July 1963 to December 1990,
som = 10, k = 4 and T = 330. The factors in F}; consist of constant, the return on a
value-weighted portfolio, a corporate bond yield spread and a measure of per capita labor

income growth. We estimate Il by

T T
Iy =) RFI(Y RF)™. (2.44)
t=1 t=1

As demonstrated in Kleibergen and Paap (2006), the data on returns R; exhibits first order
autocorrelation. To compute the test statistics of Kleibergen and Paap (2006) test, we
use HACC matrix estimator with one lag (West, 1997) for the long run covariance matrix
estimator. To implement our tests, we adopt the simple block bootstrap (Lahiri, 2003) to
resample the data with block size b = 1,2,3,4. For derivative estimation in (2.39) and

(2.38), we set the tuning parameter kp = T~1/* and T-1/3.

The results, which are based on 1,000 bootstrap replications, are reported in Table
2.4. We use CF1 and CF2 to denote our tests using derivative estimator in (2.38) and
(2.39), respectively, and KP-D and KP-M to denote the Kleibergen and Paap (2006) test
when directly applied and the multiple testing method based on it, respectively. As Panel
A of Table 2.4 indicates, all our tests fail to reject the non-full rank of ITy with 5% nominal
level, which is consistent with the finding in Kleibergen and Paap (2006). However, the
p values of our tests are uniformly smaller than 15% with some smaller than 10%, while
the p values of the two conventional tests are larger than 90%. This implies that our tests
reject the non-full rank of IIy in some cases at the 10% level, while the conventional tests
never reject the non-full rank of Iy at any conventional significance level. In this sense, the

evidence for non-identification of 7y from our tests is very weak, while the evidence from
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the conventional tests is very strong. Given the drawback of the conventional tests, the
conclusion from our tests is more reliable.

Table 2.4: p values for different tests

Panel A: our tests

CF1 CF2
pep— SV p—— S E pEmp— SV p—— S E
b=1 0.079 0.079 0.118 0.121
b=2 0.094 0.094 0.113 0.119
b=3 0.103 0.103 0.128 0.140
=4 0.082 0.082 0.137 0.138
Panel B: conventional tests
KP-M KP-D
0.9063 0.9063

The p value for KP-M is given by the smallest significance level such that the null
hypothesis is rejected, which is equal to the maximum p value of all Kleibergen and
Paap (2006)’s tests implemented by the multiple testing method.

2.4.3 Rank Determination

Testing for the hypotheses (2.1) only tells whether r( satisfies the inequality or not.
In many cases, however, we still want to know what rg is. In addition to employing the
multiple testing method to test for inequality of cointegration rank, Johansen (1995, Chapter
12) also proposed a sequential testing procedure to determine the rank of cointegration in
VAR models (see, for instance, Example 2.2.2). More examples that concern the true rank
of a matrix can be found in Examples 2.2.5-2.2.7. In this section, we demonstrate how our

tests can improve the accuracy of the sequential testing procedure for rank determination.

We first characterize the sequential testing procedure for rank determination in our
general framework following Johansen (1995, Chapter 12). For o € (0,1), let wq(f) be a
test for the hypotheses (2.1) or (2.2) such that lim,,_ P(q/h(f) = 1) = o when rg = r, and
lim,, oo P(wﬁf) = 1) = 1 when ry > r. For example, it can be any one of existing rank tests
or our tests. The sequential testing procedure starts with ¢ = 0 and carries out wq(f) with

progressively larger g. The rank estimator 7 is defined as the threshold value ¢* when wéq*)
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does not reject the null hypothesis for the first time, and 7} = k if such ¢* does not exist.

Formally, 7% =k if ¥ = 1 for all 0 < ¢ < k — 1 and otherwise
P=min{0<g¢g<k—1:99 =0}. (2.45)

Remark 2.4.1. Clearly, 7 > r is equivalent to @Z)Slq) =1 for all 0 < ¢ < r. Thus, for
given existing rank tests {1/1,({1) g—1- rejecting Ho by the multiple testing method based on
{w,(lq) g—1 1s equivalent to 7 > r where 7 is based on {1/)7({1)}2:1. In fact, Kleibergen and
Paap (2006) relied on this relation for r = k — 1 to test for identification of the risk premia

parameters in stochastic discount factor models. [ |

The following theorem establishes that 7} is a good estimator for ry.

Theorem 2.4.1. For a € (0,1), let wr(f) be a test for the hypotheses (2.1) or (2.2) such
that lim,, oo P(w,(f) = 1) = a when g = r, and lim,_,~ P( ,S’”) =1) =1 when rog > r.
Then lim,,_,o P(7} < 19) =0,

lim P(r;, =r9)=1—a ifro<kandlifro=Fk,

n—oo

and

lim P(r, >ro) =aifro <k and 0 ifro=Fk .

n—oo

Theorem 2.4.1 implies that the true rank is correctly chosen with probability no
smaller than 1 — o asymptotically, a smaller rank is chosen with probability going to zero,
and a larger rank is chosen with probability no larger than « asymptotically. In short,
{7*} provides a confidence set for ro with asymptotic coverage probability no smaller than
1 — «. Interestingly, Theorem 2.4.1 does not rely on the behavior of %(Lq) when ¢ > rg, since
the sequential testing procedure carries out @Z)T(lq) progressively from g = 0 to larger ¢ and
terminates before ¢ = rg with probability no smaller than 1 — « asymptotically. That is,
efficient rank determination does not require the ability of detecting whether rank(Ilp) is

strictly less than a hypothesized value. This explains why the hypotheses (2.2) has become
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prevalent.

However, the procedure crucially depends on the behavior of w,(lq) when g < rg, that
is, the power of detecting whether rank(Ilp) is strictly greater than hypothesized values. In
particular, the probability of ensuring a no smaller rank crucially depends on the probability
of accepting rg > ¢ for ¢ = 0,...,r9—1, which is the power of wé‘n forq=0,...,r9—1. This
suggests that our tests may be leveraged for accuracy improvement in the sequential testing

procedure for rank determination, provided the improved power property of our tests over

existing rank tests as shown in Sections 2.2.2 and 2.4.1.

To show how the sequential testing procedure based on our tests can be more accu-
rate than that based on existing rank tests, we focus on the case of the Kleibergen and Paap
(2006) test and present some simulation evidence. We use the same DGP given in (2.21)
and (2.22) with 6 = 0.1 and 0.12. The design of Iy implies that 7o = 6 for both §’s and
all d =1,...,6. The Kleibergen and Paap (2006) test and our tests are implemented as in
Section 2.2.1 and 2.4.1. The probability distributions of 7}, which are based on 5,000 simu-
lation replications are reported in Figures 2.5 and 2.6. We use CF to denote the sequential
testing procedure based on our tests and KP to denote the one based on the Kleibergen
and Paap (2006) test. The result is based on &, = n~/* and the derivative estimator in
(2.38). The result for x, = n~/? is similar and is available upon request. As shown in
both figures, CF yields more accurate rank estimators than KP uniformly over d =1,...,6
for both d’s. In particular, KP tends to underestimate the true rank when d increases. The
coverage probability of the resulting rank estimator is 5.46% when d = 6 and 6 = 0.1, and
25.3% when d = 6 and § = 0.12. The coverage probabilities of CF’s rank estimator are

greater than those of KP’s rank estimator.

Remark 2.4.2. To obtain a consistent estimator for rg, Cragg and Donald (1997) and
Robin and Smith (2000) make an adjustment dependent on n to the nominal level o. The
consistency of 7 can be obtained when the adjusted nominal level o, = 0 as n — oo and

satisfies certain rate requirement. In fact, the estimator 7, used in (2.38) provides a simple
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d=1 d=2
1 T T T T 8936% 1 T T T
89.20%

68.08%

0.5 1 051
0 . . \ . . 0 \ . . \ ——
0 1 2 3 4 5 6 0 1 2 3 4 5 6
d=3 d=4
1 T T T T 1 T T T
83.12%
0.5 44.50%
Lo N
0 1 2 3 4 5 6
d=5 =6
1 T T T 1 T T T
70.30%
05} 4 05F 60.44% 4

Figure 2.5: Comparison between the sequential testing procedures based on our tests and
the Kleibergen and Paap (2006) test with § = 0.1

1 . d?1 . : 86.76% 1 . d‘=2 . 5
96.72% 06 30 JE8-02%
051 E 05F ]
0 ‘ . ‘ ‘ . —_—— 0 ‘ . ‘ ‘ -l |
0 1 2 3 4 5 6 0 1 2 3 4 5 6

=5 =6

051 40.38% 05F

Figure 2.6: Comparison between the sequential testing procedures based on our tests and
the Kleibergen and Paap (2006) test with 6 = 0.12
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and consistent estimator for rg, see Lemma 2.7.6. ]

2.5 Conclusion

In this paper, we developed a more powerful method for examining a “no greater
than” inequality of the rank of a matrix and a more accurate procedure for rank deter-
mination in a general setup. We proved that our tests have the asymptotic null rejection
rate that is exactly equal to the nominal level regardless of whether the rank is less than
or equal to the hypothesized value. Our simulation results showed that our tests are often
more powerful than the multiple testing method, and improve the accuracy of the sequential
testing procedure for rank determination. We illustrated our methods in several examples,
including testing for identification and testing for the existence of stochastic trend and/or

cointegration, to show the wide applicability of our methods.
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2.7 Appendix

2.7.1 Proofs of Main Results

PROOF OF LEMMA 2.3.1: The proof is based on a simple application of the representation

of extremal partial trace. Recall that o} (Il), ..., o2 (II) are eigenvalues of IITII in descending
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order. Let d =k — r. It follows by Proposition 1.3.4 in Tao (2012) that

k d
— 2 — T )
o(Il) = Z o2 (1) = UI{%dZujH Tu; | (2.46)
j=r+1 j=1
where the infimum is taken over all uq,...,uq € RF that are orthonormal. Let U =

[ui,...,uq). Clearly, U € S¥*4. By (2.46) and the definition of Frobenius norm, we further

have

) = inf tr(UTHTIIU) = inf |[IIU|*. 2.47
o(1) = inf tr( )=, dnf , ITIL| (2.47)

The infimum in (2.47) is in fact achieved on S¥*¢ because U + ||IIU||? is clearly continuous,

Skxd

and is compact since it is closed and bounded. This completes the proof of the lemma.

PROOF OF PROPOSITION 2.3.1: Recall that d = k — 7. Define ¢; : M™*F — C(Skx4)
by ¢1(I1)(U) = ||TIU||2, and ¢o : C(S¥*?) — R by ¢o(f) = min{f(U) : U € S¥*9} thus
¢ = ¢2 0 ¢1 by Lemma 2.3.1. For part (i), we proceed by verifying first order Hadamard

directional differentiability of ¢1 and ¢2, and then conclude by the chain rule.

Let {M,} ¢ M™** be such that M,, — M € M™** and t,, | 0 as n — oo. For each

n € N, define g, : S**¢ — R by

|(T+ £ Mn)U|? — |TIU]? 10U + tn MU — | IU|J?

n U)= ;
gn(U) P :

and g : S¥*¢ — R by g(U) = 2tr((IITU)TMU). Then by simple algebra we have

sup |gn(U) = g(U)| = sup |2tx((IIU)T (M, — M)U) + t, || My U]
UeSkxd UeSkxd

< sup {2|TU||||(M,, — M)U|| + t,|| M, U|*} , (2.48)
UeSkxd

where the inequality follows by the triangle inequality and the Cauchy-Schwarz inequality
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for the trace operator. For the right hand side of (2.48), we have

sup {2|[TIU||[| (M, — M)U || + t,,[| M, U||*}
UeSkxd

= swp L2ATT I, = MU+ tall Ml PIT} = o(1) (2.49)
(= X

where we exploited the sub-multiplicativity of Frobenius norm and the fact that ||U|| = v/d
and that M, — M as well as t,, | 0 as n — co. We thus conclude from (2.48) and (2.49)
that g, — ¢ uniformly in C(S¥*9), or equivalently ¢ is first order Hadamard directionally

differentiable at IT with derivative ¢ p : M™¥E . C(SF*4) given by

¢ (M) (U) = 2tr((1LU)TMU) . (2.50)

On the other hand, Theorem 3.1 in Shapiro (1991) implies that ¢y : C(SF*9) - R
is first order Hadamard directionally differentiable at any f € C(S¥*9) with derivative
NE C(S**4) — R given by

¢o,5(h) = Ug?f) hU) , (2.51)

where, by abuse of notation, ¥(f) = arg mingcgrxa f(U). Combining (2.50), (2.51) and the
chain rule (Shapiro, 1990, Proposition 3.6), we may now conclude that ¢ : M™% — R
is first order Hadamard directionally differentiable at any II € M™** with the derivative
¢y : M™% — R given by

Gh(M) = G g,y © Shn(M) = | min 26x((IU)TMU)

This completes the proof of part (i) of the proposition.

For part (ii), note that ¢(II) = 0 implies that IIU = 0 for all U € ¥(II) and hence
(M) = 0 for all M € M™**. Recall that {M, } € M™** with M,, — M € M™** and
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tn, 1 0 as n — oo. By Lemma 2.3.1 we have

|&( ) = &( )l <[ min Ii( JUIl = min_|( U

X ( min |[(IL+ ¢, M,)U|| + min |II+¢,M)UJ) , (2.52)
UeSkxd UeSkxd

where the inequality follows by the formula a? — * = (a + b)(a — b). For the first term on
the right hand side of (2.52), we have

min ||(IT + t,M,)U|| — min ||[(IL + t, M)U||| < t,Vd||M,, — M| = o(t,) , 2.53
Uesml!( nMp)U || UGSkdeI( WMUJ| < tpVd|| My, | = o(tn) (2.53)

where the inequality follows by the Lipschitz continuity of the infimum operator, the triangle
inequality, the sub-multiplicativity of Frobenius norm and ||U| = v/d for U € S¥*?. For the

second term on the right hand side of (2.52), we have

min (I + ¢, M)U| + min ([(IT+ 8, M)U| < [[(IT+ £, M) U™ |
UeSkxd UeSkxd

H T+ tn MU || < | Mu [T + [ MU = O(tn) (2.54)

where the first inequality follows by letting U* be an element from W(II), and the second
inequality follows by IIU* = 0, the sub-multiplicativity of Frobenius norm and the fact that
|U*|| = v/d and that M,, — M as n — co. Combining (2.52)-(2.54), we thus obtain

|(IL+ tnMy) — G(IL+ t, M)| = o(t7) - (2.55)

Next, for € > 0, let U(II)* = {U € $*** : mingrcqq) U — U|| < €} and Y(I)§ =
{U € s : mingeyn |[U' = Ul| > €}. In what follows we consider the nontrivial case
IT # 0 and M # 0. In this case, ¥(IT) & S¥*d in view of Proposition 1.3.4 in Tao (2012) and
hence W(IT)§ # 0 for e sufficiently small. Let o, (II) denote the smallest positive singular
value of IT which exists since IT # 0, and A = 3v/2[o "

min

(I1)] ™! maxycgexa ||[MU|| > 0 since
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M # 0. Then it follows that for all n sufficiently large

min ||(II+ ¢, M)U|| > mimtnA |IIU|| — t,, jnax |MU||

Uew(Ir)ins Uew(m)*
v o
> 5 tnOin(INA =ty max [|MU]| > tn, max [|MU]
> 1 II+¢t,MU| > II+¢t,M), 2.56
—Ué%i?n)”( + tn MU =2 /(I + M) (2.56)

where the first inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality and the fact that \I/(H)’i"A C S**4 the second inequality follows by

Lemma 2.7.1, the third inequality follows by the definition of A, and the fourth inequality

holds by the fact that TIU = 0 for U € ¥(II). By (2.56), we thus obtain that for all n
sufficiently large

I+ t,M) = i II+t, M)U|? . 2.57

SL4+1,M) = min 11+ £, (257)

Now, for fixed U € ¥(IT), A > 0and t € R, let I'® = {V € MM . ||[V| < A}

and TH(t) = {V eT?:U+tV e S} = {V e T2 : VTU + UTV = —tVTV}. Define a

correspondence ¢ : R — SE*4 x T'A by o(t) = {(U,V) : U € ¥(IT),V € T5(¢)}. Then the

right hand side of (2.57) can be written as

min ||(IT+ ¢, M)U|?= min ||(IT+t,M)(U +t,V)|?
UeW(I)tnd (U, V)€wp(tn)
=¢2  min |0V + MU|]? +o(t?) , (2.58)

" (UV)ep(tn)

where the second equality follows by the fact that IIU = 0 for all U € U(II) and [|[MV| <
|M||A for all V € T2, By Lemma 2.7.2, o(t) is continuous at ¢t = 0. Moreover, ¢ is

obviously compact-valued. We may then obtain by Theorem 17.31 in Aliprantis and Border
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(2006) that

min | TV + MU||* =

min __[|IIV + MU||* + o(1)
(UV)ep(tn (U, V)ep(0)

)

= min  min |0V + MU|*+o(1) , (2.59)
UcW(Il) VeMkxd

where the second equality holds by letting A sufficiently large in view of Lemma 2.7.3.

Combining (2.55), (2.57), (2.58) and (2.59) then yields part (ii) of the proposition. ]

PrOOF OF PROPOSITION 2.3.2 Recall that d = k — r and let d* = k — r*. Noting that the
column vectors in ()3 form a orthonormal basis for the null space of Iy, we may rewrite

U(I1) as W(II) = {Q2V : V € ST >4}, This together with the projection theorem implies

G(M) = min ||(I —TI(IITI) " TIM)MQ.V|?, (2.60)
Vesdtxd

where A~ denotes the Moore-Penrose inverse of a generic matrix A. By the singular value

decomposition of II, we have

(I - TI(IT'I) M) P = P — PEQT(QXTPTPYQT) QXTPTP

= P—PYQTQ(XTPTPY) QTQYTPTP = P — PY(YTS) ST =[0, Py , (2.61)

where the second equality exploited Theorem 20.5.6 in Harville (2008), the third equality
follows from P and @ being orthonormal, and the fourth equality is obtained by carrying out
the Moore-Penrose inverse by Exercise 2.7.4 in Magnus and Neudecker (2007) and noting

that ¥ is diagonal. In view of (2.61), we have

min [|(I — II(IT) " ONMQ2V|? = min [0, R]PTMQ.V|?

VESd*Xd VeSd*Xd
k—r*
= min [[PBPIMQsV||*>= min [[PIMQ,V|?= o2(PIMQ>) , 2.62
Vesd*de 2P MQ:2V| VESd*de 2 MQV| j:r;% (P MQ2) ( )

where the third equality follows from PJP, = I,,_,~ and the final equality follows from

Lemma 2.3.1. Combining (2.60) and (2.62) concludes the proof of the proposition. [ ]
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PROOF OF PROPOSITION 2.3.3: The first and second results are straightforward application
of Theorem 2.1 in Fang and Santos (2015) and Chen and Fang (2015) by noting that
qShO = 0 under Hy, respectively. In particular, Assumptions 2.1(i)-(ii) are satisfied in view

of Proposition 2.3.1 and Assumption 2.2 is satisfied by Assumption 2.3.1. [ |

PROOF OF THEOREM 2.3.1: By Lemma 2.7.5 and the maintained assumptions, each of the
two derivative estimators are consistent for (bﬁo in the sense that they satisfy Assumption
3.4 in Chen and Fang (2015). This, together with Lemma A.2 in Chen and Fang (2015),
Assumption 2.3.2, Proposition 2.3.3, and the cdf of the limit distribution being strictly
increasing at its 1 — a quantile ¢;_, implies that ¢;_, L i, following exactly the same
proof of Corollary 3.2 in Fang and Santos (2015). Then under Hy, the first claim of the
theorem follows from combining Proposition 2.3.3, Slutsky’s lemma, c¢;_, being a continuity

point of the limit distribution and the portmanteau theorem.

For the second part of the theorem, let G* = 7,{II* — II,}. By the definition of
é1—a, if Py (¢L(G*) < 72¢(I1,)) > 1 — v , then we must have & _q < 72¢(I1,) and hence

P(rp¢(Ily) 2 é1-a) = Px(Pv(97,(G;) < 7rg(Ily)) 2 1~ a) . (2.63)

n

We shall show that the right side of (2.63) tends to one as n — oo for each of the two
derivative estimators. First, consider the numerical estimator (2.39). Note that

¢(ﬂn + /fnTn{ﬂ:; - ﬂn}) - ¢(ﬂn)

2
Kn

Py (97,(Gy) < 7 (I1)) = Pow( < To(Il))

¢(ﬂn + ’inTn{ﬂ: - ﬂn})
K2

> Py ( < Tg¢(ﬂn))

= PW(¢(ﬂn + HnTn{ﬂ: - ﬂn}) < (“nTn)2¢(ﬁn)) . (2-64)

Since II, & IIy and ¢ is continuous at Iy, the continuous mapping theorem implies that:

under Hy,

o(I1,) & ¢(1y) > 0 . (2.65)
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By Assumptions 2.3.1 and 2.3.2, together with the assumption that x,, = o(1) as n — oo and
continuity of ¢, we have ¢(IL,, + s, 7, {II, — I1,}) = Op,, (1) with probability approaching

one. Consequently, by k,7, — 0o, with probability approaching one,
P (6(IL,, 4 k{115 — I1,,}) < (kn7n)?0(I1,)) = 1>1— o . (2.66)

By the dominated convergence theorem, we may conclude from results (2.64), (2.65) and

(2.66) that
Px(Pw(¢(Gy) < m2¢(I1,)) > 1—a) — 1. (2.67)

This implies the second claim of the theorem holds when &Z is the numerical derivative
estimator. Second, consider the derivative estimator (2.38). Recall that d, = k — 7, and

d =k —r. By Lemma 2.3.1, we have

Pu(81(63)) < 7o) = Pir( min (1Pma {115~ 1)@, U < m20(11,)
€Sdnx

> Py (|| {11, — 11, }[*mkd < 72¢(11,)) |

where the second inequality exploited HIE’QT P1Q2.n]? < mk and ||U||2 = d. The second

claim of the theorem then follows by analogous arguments as above. [ |
PROOF OF THEOREM 2.4.1: We prove the results for three different cases: when ry = k,
when 1 < ryp < k — 1 and when rg = 0. It suffices to show the first two results. First, we
show the second result. When r¢g = k, we have

lim P(7 = ro)= lim P(y{?) = 1,--- p¢F1 =1) > 1-) (1- lim P(y{¥ =1)) =1,

n—oo n—o0 n—oo
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where the inequality follows by the Boole’s inequality. When 1 < rg < k — 1, we have

lim P, =ro) = lim Py =1,--- 4o~ = 1,9 = 0)
n—oo n—oo
<1—lim P9 =1)=1-a, (2.68)
n—o0

where the inequality follows by the fact that P(A) < P(B) for A C B, and

lim P(7f =r) = lim P@® =1, oD =1 {0 =)

n—o0 n—oo
ro—1
>1_ BT (@) — 1 (ro) — 1) =1 —
> 1 2)(1 lim P(yi?) =1)) - lim Py =1) =1-a, (2.69)
q:

where the inequality follows by the Boole’s inequality. Combining results (2.68) and (2.69)

gives the result when 1 < rg <k — 1. When ryg = 0, we have

lim P(7 =rg) = lim P@® =0)=1— lim PV =1)=1-qa.
n—oo n—oo n—o0

Next, we show the first result. When rq = k, we have

kol
—_

lim P(# < 7o) <Y (1— lim P(y@ =1)) =0,
n—oo n—oo
q

Il
=)

where the inequality holds by the Boole’s inequality. When 1 < rg < k — 1, we have

ro—1
Jim_ P(7, <o) < Z;a = lim P({? =1)) =0,
q:

where the inequality holds by the Boole’s inequality. When 79 = 0, obviously P(#} < rg) =

0. This completes the proof of the theorem. [ ]

Lemma 2.7.1. Suppose I1 € M™ ¥ with T1 # 0 and rank(I1) < r. For e > 0, let W(I1){ be

_l’_

given in the proof of Proposition 2.8.1. Let o . (II) be the smallest positive singular value
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of Il. Then for all sufficiently small € > 0, we have

2
mln HHUH > 50

e .
Uew (I Je

mln(
ProoOF: Let II = PXQT be a singular value decomposition of II, where P € S™*™ and
Q € S¥** are orthonormal, and ¥ € M™** is diagonal with diagonal entries in descending
order. Recall that d = k — r and let r* = rank(II). For U € S¥*?  let Ug = QTU and write
Ul = [U)T,U5)7T] such that Uy € M7 4. Then we have that for U € $*,

1
||| = |PEQTU| = |2Usg]| > o, (TS| (2.70)

where the second equality follows by PTP = I,,, and the inequality follows by the fact that
IT) = o, (II) is the smallest

3’ is diagonal with diagonal entries in descending order and amm(

positive entry. Let Ué) = PUQ)EUQ)Qg) be a singular value decomposition of Ug) where
Qg) € Sxd P((Jz) e Sth=r)x(E=") and Eg) e M(k—")xd 3 diagonal matrix with diagonal

entries in descending order. Note that k —r* > d since r* < r. It follows that for U € Skxd

d
w2 = Zo ) <Y 0 (US) = te([10, 0,—-]2) | (2.71)
j=1

(2))

where the inequality follows by the fact that o;(Ug,") € [0, 1] as singular values of Ug) due

to Ug (2) TU( )+ Ug)TUg) = I, and the second equality follows by noting that the diagonal
entries of Egj) are singular values of Ug). Since HUS)H2 + ||Ué22)||2 = ||[Ug|* = d, thus

combining (2.70) and (2.71) yields that for U € S¥*¢,

ITIU || > a;ﬁn(n)\/d — tr([Ig, 0,_-]S) . (2.72)

Since ||U, (1)||2+||Z I? = HUQ HQ—FHUQ |2 = dand ||[I4,0,_]T||> = d, then simple algebra

yields that for U € SF*4,

2(d — tr ({14, 0a—p]S)) = UG 2 + 158 = (1, 0r— ]I . (2.73)
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Write Q = [Q1, Q2] such that Q1 € M**"". Since Q]Q1 = I+, Q3Q2 = I~ and Q] Q2 = 0

as well as P[(JZ) and Qg) are orthonormal, we then have that for U € S¥*¢,

TS P+ IZE ~ 100r— e ITIP = QU + Q2P (52 ~ (140, INQYTI? . (2.74)

Since UQ = QJU and UQ = QIU by construction and Q1Q]U+Q2QIU = U by QQT = I,

we then have that for U e SF*¢,

QU + QaPY) (L2100, ]NQYT|? = U~ QPP 100, TQETI? . (2.75)
Clearly, Qo P2 140, ]TQPT € W(IT), so combining (2.73)- (2.75) yields that for U € S¥*d,

(2) 2
2(d — tr([Ig,0,_+]27)) > m U—-U 2.
(d — tr([La, 0p—re]Xp;7)) U,e\;r(ln | [ (2.76)

Since II # 0, then U(II)§ # 0 for all sufficiently small € > 0 by Proposition 1.3.4 in Tao
(2012). Fix such an €. By the definition of WU(II){, combining (2.72) and (2.76) yields that
for all U € ¥(II),

2 2
0l = ok, (0 i (0~ 0] 2 %o, (M. (277)

Then the lemma follows by applying minimum over W(II){ to both sides of (2.77) and noting

that the result continues to hold for all sufficiently small € > 0. [

Lemma 2.7.2. Let the correspondence ¢ be as in the proof of Proposition 2.3.1. Then ¢(t)

1s continuous att = 0.

ProoF: Fix Uy € ¥(II), and define the correspondence @ : R, — I'® given by ¢(t) = I‘ﬁo (1),
where ¥(IT), T2 and Fﬁo (t) are given in the proof of Proposition 2.3.1. Recall that d = k—r.

For each {t,} satisfying t,, | 0 and each Vj € @(0), consider the function f : T — MF*d
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given by
ln
fV)y="V — EUOVTV .

Since f is continuous and I'® is compact, f is a compact map in the sense of Granas and
Dugundji (2003). It follows from Theorem 0.2.3 in Granas and Dugundji (2003) that one of
the following two cases must happen: i) f has a fixed point Vj,, € I'2, and ii) there exists
some Vo, € T2 such that |[Van|| = A and Van = A f(Von) with Ay = iz € (0,1). In

case 1), since Uy € ¥(II), Vp € ¢(0) and f(Vi,) = Vin, then by simple algebra we have
tn tn
VILUo + U3 Vi = (Vo= 500V, Vin) o + UJ (Vo= S0V Vi) = =tV Vi . (278)

This together with V;,, € T'2 implies that Vi, € &(tn). Moreover, since f(Vip) = Vi,

|Us|| = v/d and V4, € T2, then by the sub-multiplicativity of Frobenius norm we have
tn T tn \/‘ 2
Vi = Vall = 200V Vi < 2van? (2.79)

In case ii), since Uy € W(II), \2Vy € ¢(0) and A\, Vo, = A2 f(Va,), then by analogous

calculations as in (2.78), we have

This together with \,Va, € I'® due to A\, € (0,1) and Vi, € T'® implies that \,Va, € @(t,,).

Moreover, since A, Va, = A2 f(Vay,), then by analogous calculations as in (2.79), we have
ln
AnVan = Vol < IAGF(Van) = AaVoll + 1A% = 1[IVl € VdA® + A7 = 1]A - (2.80)

where the first inequality follows the triangle inequality and the second inequality follows
since A, € (0,1). Now, for each n € N, define V,* to be Vi, if case (i) happens and A, Va,

otherwise. Let d,, = 1 if case (i) happens and d,, = \,, otherwise. Then V;} € Fﬁo (t,) for all
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n € N, and combination of (2.79) and (2.80) yields

tn
IV = Vall < 5 VdA? + 07 —1]1A =0,

where we exploited the fact that if V5, exists infinitely often, §, = A\, = Hf(‘éiz)ﬂ — 1 due

to f(Von,) = Vo asn — oo and ||[Vp]| < A, and ¢, — 0 as n — oo. It follows that @(t) is

lower hemicontinuous at ¢ = 0 by Theorem 17.21 in Aliprantis and Border (2006).

The lower hemicontinuity of ¢(t) at t = 0 follows easily from that of @(t) again by
Theorem 17.21 in Aliprantis and Border (2006). To see this, let t,, — 0 and (Uy, Vo) € ¢(0).
Define (U}, Vy¥) to be U = Uy and V;} be as in previous construction for all n € N. Clearly,

nr’'n

(Ur, V) — (Uo, Vo), implying that ¢(t) is lower hemicontinuous at ¢ = 0. Since ¢(t) is
contained in the compact set S¥*¢ x T'2 for all ¢, o(t) is upper hemicontinuous at t = 0
by Theorem 17.20 in Aliprantis and Border (2006). We have therefore showed that ¢(t) is

continuous at t = 0. [

Lemma 2.7.3. Suppose II € M™% with TI # 0 and rank(I1) < r, and M € M™** with
M # 0. Let U(II) given in the proof of Proposition 2.3.1. For U € ¥(II) and A > 0, let
Fﬁ(O) be as in the proof of Proposition 2.3.1. Recall that d =k —r. When A is sufficiently
large, then for all U € W¥(II),

Vérrnén(o) IV + MU|* = ,mmin IV + MU|* .
PrROOF: Recall that IT = PXQT is a singular value decomposition of II, where P € S™*™ and
Q € S¥** are orthonormal, and ¥ € M™** is diagonal with diagonal entries in descending
order. Recall that r* = rank(II) < r. We may write ¥ = [¥1, 0] such that ¥; € M™*" is
of full rank with r»* < r. It follows that

min ||IV + MU||?= min |[PS,V + MU|?. (2.81)
VeMkxd Ve]_\/_[r*xd

By the projection theorem, the minimum on the right hand side of (2.81) is attained at
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some point, say V|* € M >4 Moreover, Vi* is uniformly bounded over U € ¥(II). Let
V* = Q[V]T,0]T € M**? then the minimum on the left hand side of (2.81) is attained
at V*. Recall that Q = [Q1,Q2], where Q; € M**™. Then V* = Q,V}" € Fﬁ(()) for all
U € ¥(II), when A is sufficiently large. It implies that the minimum on the right hand side
of (2.81) is attained within I'5(0) as well for all U € W(II), when A is sufficiently large.

This implies that when A is sufficiently large,

min |0V + MU|?> < min [TV + MU|?
VET$(0) VeMkxd

for all U € W(II). The reverse inequality is simply true since I'5(0) C M**4 all U € W(II)

and all A > 0. This completes the proof of the lemma. [

Lemma 2.7.4. Suppose rank(Il) < r and let ¢7; : M™ k 5 R be given in Proposition
2.8.1. If rank(Il) = r, there exists a bilinear map ®f; : M™>k 5 M™*k 5 R such that

(M) = &Y (M, M) for all M € M™ k. if rank(Il) < r, such a ®}; does not exist.

PROOF: Recall that I = PXQT is a singular value decomposition of II, where P € S™*" and
Q € S¥** are orthonormal, and ¥ € M™** is diagonal with diagonal entries in descending

order. Recall that d = k—r. If rank(IT) = r, then Proposition 2.3.2 and Lemma 2.3.1 imply
(M) = min [[PTMQoV|? = [P MQ2|”
VeSdxd

for all M € M™% which is a quadratic form corresponding to the bilinear form Y (M, M)

= tr(QYM{ P2 P] MsQ5) for My € M™ F and My € M™*F,

Next, suppose that rank(II) < ro and assume that there exists a bilinear map @7

corresponding to ¢f}. In turn, bilinearity of ®f; implies that

_ (M + Ma) + ¢y (M — Mo)

1(Mi) + ér(My) 5

(2.82)

for all M; € M™*F and My € M™*F, Recall that r* = rank(IT). If M = P,HQJ for some
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H e Mm=r)x(=1") “then Proposition 2.3.2 and Lemma 2.3.1 imply

0(M) =07 oy (H) + -+ 0f_pe(H) . (2.83)

Now, let H; € Mm)x(k=") bhe diagonal with the (j,j)th entry equal to 1 for j =
1,....k—r*and Hy € Mm—7)x(k=") he diagonal with the (4, 7)th entry equal to —1 for
j=land 1forj=2,....,k—r* Set M; = PH;Q} for i = 1,2, the result in (2.83) implies
S (M) = ¢ (Ms) =k — 7, ¢!\(M1 + My) = 4(k — r) — 4 and ¢!(My — M) = 0. Tt follows
that

Pl (M + Ma) + ¢fy (M1 — Mp)

2k = 1) = (M) + (M) # :

=2k—-r)—2,

which contradicts the result (2.82). Thus, the second result of the lemma follows. ]

Lemma 2.7.5. Suppose Assumption 2.3.1 holds, k, | 0 and 1k, — oco. Let qBZ be con-

structed as in (2.39) or (2.38). Then we have under Hy,
(Mn) = 6, (M)
whenever M,, — M as n — oo for {M,} C M™** and M € M™*F.

PROOF: When (% is constructed as in (2.39), the result of the lemma follows by Proposition
3.1 of Chen and Fang (2015). Next we consider the derivative estimator (2.38). Recall that
d=Fk—r and let cin =k — 7,. By Lemma 2.3.1, we have

|on(Mn) = (M) < | min [P}, MQ2sU|| = min || P] MQ2,Ull|

n

UeSdnxd UeSdnxd
x( min | P],MyQo,Ull+ min [[Bf,MQo,Ull) (2.84)
UeSdnxd UeSdn xd

where the inequality follows by the formula (a? — b%) = (a + b)(a — b). For the first term on
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the right hand side of (2.84), we have

| min LIPJ My Q2,U | — min HPT MQonUl| < VEmA||My — M|l = 0,(1) ,  (2.85)
UeSdn X UeSdnx

where the inequality follows by the Lipschitz continuity of the infimum operator, the triangle
inequality and ||Pyn| < vm, [|Qonl < VE and |U| = /7 for all U € S”Z"Xd, and the
equality follows since M,, — M. For the second term on the right hand side of (2.84), we

have

min | 125, MnQ2,,U|| + min ||P2TnMQ2nU|| < Vkmd||My[| +VEmd|[ M|, (2.86)
UeSdn xd UeSdnxd

where the inequality follows by the sub-multiplicability of the Frobenius norm, ||Py,| <
Vi, |Qanll < VE and ||U|| = /r for all U € S?xd_ Combining (2.84)-(2.86), then we

obtain

[ (My) = G (M)] = 0,(1) - (2.87)

Recall that ¢fj (M) = Y20 02(P],MQoz). By (2.87), Lemma 2.3.1 and 2.7.6, it

suffices to show that given 7, = rq,

k—7n k—rg
Y (P MQon) — > 0 (PIyMQog)| = op(1) . (2.88)
Jj=r—fn+l j=r—ro+1

Let 7, = rg. Let ¢; be the jth column of ng. Since Qg € S¥**, we may write g; = Qo
for some (random) @; € S¥*1. Noting that ¢; is the eigenvector of [I}11,, associated with

the eigenvalue o2 f[n) due to 7, = rg, we then have

T0+j(

A~

(L1, — I3 — (07,4 (I) — 02 4 5 (To)) I, + TIJTTo — o2 4 5 (o) I) Qo

= (1L, — o745 (1) I4)d; = 0 . (2.89)

Noting that ||TIFIT, — T Tlp|| = 0,(1) and |02 , (IT,,) — o7 +;(Io)| = 0,(1) by the continuous

ro+j
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mapping theorem, the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)) and Assumption

2.3.1, we then conclude from (2.89) that
op(1) = [T — 07, ;(Io) Ik]Qoty = QoX{ Sot; (2.90)

where we exploited the singular value decomposition Il = PyXoQf, and the fact that
O’EO 4 (ITIp) = 0. Since the first ry diagonal elements of the diagonal matrix X% are positive
and Qo being nonsingular, we may conclude from result (2.90) that the first 7y elements of

@ are 0p(1) and moreover by the definition of ¢; that for some random Us € Stk=ro)x (k=ro)

Q2. = Qo2Us + 0y(1) | (2.91)

By an analogous argument, we have that for some random V, € S(m—70)x(m=70)

A~

Popn = Py2Va +0,(1) . (2.92)

Combining results (2.91) and (2.92) and the continuous mapping theorem yields that given

A~

Tn = T0,
||152{ SMQa., — VI PJ,MQo2Us|| = 0p(1) . (2.93)

Thus, (2.88) is obtained by (2.93), the continuous mapping theorem and the fact that the
singular values of Vy Pj,MQo2Us are equal to those of Pj,MQo2. This completes the

proof of the lemma. [ |
Lemma 2.7.6. Suppose Assumption 2.5.1 holds, k, | 0 and mk, — o0o. Let 7, =

min{r,#{1 < j < k:0;(I1,) > kn}}. Then we have under Hy,

lim P(7, =r9)=1.

n—oo
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PROOF: Noting that 7,, > rg implies Jm+1(ﬂn) > ky, and that o,,41(Ilp) = 0, we then have

limsup P(7, > r9) < limsup P(’O’r0+1(ﬂn) — 0ro+1(IT0)| > Kn)

n—oo n—oo

< limsup P(||7,(IT,, — p)|| > Tpkin) =0 , (2.94)

n—oo

where the first inequality follows by P(A) < P(B) for A C B, the second inequality
follows by the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)), and the equality follows by

Assumption 2.3.1 and 7k, — 0co. Noting that 7, < rg implies oy, (ﬂn) < Kpn, we then have

lim sup P(#, < r¢) < limsup P(|oy, (IL,,) — vy (Io)| > —kn + 07y (o))

n—o0 n—o0

< limsup P(|[7a(ILy — o) || = 7novy (o) (1 — kn /07y (o)) = 0, (2.95)
n—oo

where the first inequality follows by P(A) < P(B) for A C B, the second inequality
follows by the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)), and the equality follows by

Assumption 2.3.1, o,,(Ilp) > 0, 7, — oo and &y, J 0. Combining (2.94) and (2.95) yields

lim sup P(7, # ro) < limsup P(7y, < r9) + limsup P(7, > 19) =0 .

n—oo n—oo n—oo

A

This completes the proof of the lemma by noting that lim, . P(7, = ro) = 1 — lim,,

P(’f‘n#ro):L |

2.7.2 Results for Examples 2.2.1-2.2.7

Example 2.2.2 (Continued). Suppose {Y;}}", is a sequence of data from Example 2.2.2.

Let II,, be the least squares estimator
5 IR T 1L - T \-1
I, =~ ;Am@_wn ZYY) - (2.96)

Let D,, = diag(y/nl,,,nli_y,) and By = [Qo.1, Po2|T, where 7o, Qo1 and Pp 2 are given in

Proposition 2.3.3. By Lemma A.2 of Liao and Phillips (2015), if & has eigenvalues on or
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inside the unit circle, then

(I, — ) By ' DpBy M = My + My (2.97)

where M; € MF*F with vec(M;) ~ N(0,E ® (Qu1%7'Q);)) and ¥1 = Var(Qf,Y;), and
My € MF*E with

1 1
M2~21/2/0 dBk(t)Bk(t)T21/2P0,2(P(}7221/2/0 Bi(t)Bi(t)Tdts'? Py o) "' P,

and By(t) is a k x 1 Brownian motion defined on the unit interval with identity covariance
matrix at time ¢. Given that Assumption 2.3.1 is not satisfied since the rates in D,, are
not homogenous unless rg = 0 or g = k, we extend Proposition 2.3.3 to accommodate this
case. Next we focus on the nontrivial case of testing for the existence of stochastic trend.

By Proposition 2.7.2, the asymptotic distribution of n2¢(fln) under Hg is given by

k—rg

1 1
S (s / By o () Bors (£)7( / By (1) Biry (0)Td) S5V 2PT,Q02) . (2.98)
j=r—ro+1 0 0
where %,, = PJ,%Po2 and Qo2 is given in Proposition 2.3.3. When rg < k — 1, the
asymptotic distribution can be highly nonstandard. Note that Fy2 and Qg2 are identified
up to postmultiplication by (k —rg) X (k — rg) orthonormal matrices, so the weak limits in

(2.97) and (2.98) are invariant to the choice of Py and Q2.

Another distinct feature of this example is that M depends on Iy, in particular,
on rg. This presents a challenge for estimating M by bootstrap. We propose a residual
based bootstrap following Swensen (2006) and Cavaliere et al. (2012). To this end, we need
a consistent estimator for rg, that can be obtained by various methods, for example, the

estimator 7, used in (2.38). We propose the following bootstrap algorithm.

1. Given the consistent estimator 7, of rg, calculate the reduced rank estimate f[,,,n

and the corresponding residuals 4, ;, for example, following Johansen (1991). Let

c _— A —1 n ~ . ~c . ~
Upy = Uy — 077 Y0 Urg, 1., Uy, arve recentered residuals of dy. .
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2. Check that det|(1 — 2)I} — f[nnz\ has k — 7, roots equal to one and all other roots
outside the unit circle. If so, proceed to the next step.
3. Construct the bootstrap sample {Y;*}}_; recursively from (2.7) with the initial value

Yo, o = I, and uf being generated from {4y, };.; by the nonparametric bootstrap.

Calculate the least squares estimator
R 1 o
I, = n Z AYt*Yt*L(ﬁ ZYt*—lyt*jl)_l : (2.99)
t=2 t=2

Let B, is the analog of By and D,, is the analog of D,, by letting Il = f[ml. It then can be

proved that
'DpB, = M (2.100)

almost surely, where L% denotes the weak convergence conditional on the data. That is, the
law of the weak limit M is consistently estimated by the proposed bootstrap. Note that

Assumption 2.3.2 is not satisfied.

Given that Assumptions 2.3.1 and 2.3.2 are not satisfied, we extend Theorem 2.3.1
to accommodate this case. Let x, | 0, nk, — oo, and q% be given in (2.38). We note that
the same argument in the proof of Theorem 3.2 of Fang and Santos (2015) and Theorem 3.3
of Chen and Fang (2015) can be applied to prove that the law of the weak limit in (2.98) is

consistently estimated by the law of
'DnBy) (2.101)

conditional on the data. Let ¢;_o be the 1 — o quantile of (2.101) conditional on the data.
Then the same argument in the proof of Theorem 2.3.1 can be applied to prove that the
test of rejecting Hyp when n2¢(ﬂn) > ¢1—q controls the asymptotic null rejection rate and

is consistent. [ ]

Example 2.2.4-2.2.7 (Continued). The analysis here is similar to Example 2.2.1. Sup-
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pose the data is generated in Examples 2.2.4-2.2.7. In Example 2.2.4, let I1,, be the least
squares estimator of I'y from regressing Y; on Z; and W; based on (2.11). In Examples
2.2.5-2.2.7, let II,, be the method of moment estimators based on (2.14), (2.16) and (2.18),
respectively. Then, under certain weak dependence and moment condition, Assumption
2.3.1 is satisfied by all of four examples with 7, = y/n and M bing a zero mean Gaus-
sian. Specifically, in Example 2.2.4 the Gaussian limit follows by the standard result of
linear regression, and Examples 2.2.5-2.2.7 the Gaussian limit follows by the central limit

theorem.

Let the resampled data be generated by the nonparametric bootstrap when the
original data is a sequnce of i.i.d. data, and by a block bootstrap when the original data is
a sequence of dependent data. Then, under certain weak dependence and moment condition,
in Example 2.2.4 Assumption 2.3.2 is satisfied with f[:; being be the least squares estimator
of I'g from regressing Y;* on Z; and W} based on (2.11), and in Examples 2.2.5-2.2.7
Assumption 2.3.2 is satisfied with f[;‘l being the method of moment estimators based on

(2.14), (2.16) and (2.18), respectively. ]

Proposition 2.7.1. Let ¢ : M**¥ — R be defined as in (2.24). For II € MF** satisfying
o(I) = 0, let r*, Py, Q1 and Q2 be given in Proposition 2.3.2. Let B* = [Q1, P2|T. Then
for TI € MF** satisfying ¢(I1) = 0, we have

k—r*
. In+ M,T:B* . ¥ .
nh_{rgo il t4n nB’) = g O'?(PZTMQQ) with T = diag(t, L1y, t21p_p) |
n j=r—r*+1

for all sequences {M,} C M*** and {t,} C R* such that t, | 0, M,B* — M € M™*F qs

n — o0.

ProoF: Let {M,} c M**¥ be such that M,B* — M € M¥** and t,, | 0 as n — oo.
Write M,, = [M,, 1, My, 2] such that M, ; € M¥*"™ and M = M + M with M, 1Q] — M
and M, oP) — M. Clearly, MiU = 0 for all U € ¥(II). Recall that d = k —r. For
€ > 0, let U(II)¢ and ¥(II){ be given in the proof of Proposition 2.3.1. In what follows

we consider the nontrivial case with IT # 0 and My # 0. In this case, U(II) Skxd in
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view of Proposition 1.3.4 in Tao (2012) and hence U(II)§ # 0 for e sufficiently small. Let

ot (II) be the smallest positive singular value of II, which exists since II # 0. Let A =

min

5v2[o . ()] ™Y (maxy cgrxa | MaU|| + maxcgrxa | M1U||) > 0, which holds since My # 0.

min

Then it follows that for all n sufficiently large

min ||(II+ M,T;B*)U|| > min HHUH - max | M, T;B*U||

Uew(Im)ins Uew(Ir)ins
@ _ TITI _ 42 T
> 5 tpot (IHA —t, max HMn 1Q1U| —t; max HMn 2 PIU||
Ues Ues

> t2 max || My 2PjU|| > %?H)H(HJrMnT;B*)UH > VoIl + M,T:B*) , (2.102)
UeSk Ue

where the first inequality follows by the Lipschitz continuity of the infimum operator, the
triangle inequality and the fact that \I/(H)li"A C SF*4. the second inequality follows by
Lemma 2.7.1 and the triangle inequality, the third inequality follows by the definition of A,
tn 40, My, 1Q7 — My and M, 2 P] — Ms as n — oo, the fourth inequality holds by the fact
that IIU = 0 and QU = 0 for U € ¥(II), and the last inequality follows by Lemma 2.3.1.
Let T2 and the correspondence ¢ : R — SF*? x T'2 be given in the proof of Proposition

2.3.1. Then it follows that
M, T:B*U|| < t, M, 1QNU + t, V)| + 2 M, 2 PJU
Ueg%axwll [ (U,é??f(tn)”( n1@DWU V)l +t, max |[M U]

2 T 2 T
<ty max [Mn1Qi V]| + 1, max [[Mn2P5 U] (2.103)

where the first inequality follows by the triangle inequality and the fact that ¥(II)"4 C
SkXd - and the second inequality follows by the fact that QIU = 0 for U € ¥(II) and

¢(tn) C W(IT) x T2, By analogous arguments in (2.102), we have for all n sufficiently large

min ||+ M,TB)U| > min |IU|— max |MTBU|
3/2a 3/2 5 UeP(I)tns
Uew(I)™ SN (IT)tna Uew(In);"
*ftS/? (M)A — 2 max |M,1QIV|| — 2 max ||M,2P]U||
N era n, 1% " eskxd n,242

— 2 mm

>ty max [[MnpPJU|| > min |(IL+ M,T,;B)U| = VoIl + M, T¥B*), (2.104)
UeSk Ue¥(II)
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where the first inequality follows by the Lipschitz continuity of the infimum operator, the

3/2
triangle inequality and the fact that ¥(IT)}"

AngmhA ¢ w2 and \Iz(H)tf’/QA N
U (T2 C W(I)2, the second inequality follows by (2.103) and Lemma 2.7.1, the third
inequality follows by the definition of A and T2, t,, | 0, M, 1Q] — My and M, oP] — M
as n — 00, the fourth inequality holds by the fact that IIU = 0 and Q]U = 0 for U € ¥(II),
and the last inequality follows by Lemma 2.3.1. By analogous arguments in (2.104), we

have for all n sufficiently large

min |(IT + M, T B)U|| > \/o(I1 + M, T*B*) . (2.105)
Uexlf(n)tI%Amy(H)timA
Combining (2.102), (2.104), (2.105) and Lemma 2.3.1, we thus obtain that for all n suffi-

ciently large

o1+ M, TB*) = min_||(II + M,T;B"U|*. (2.106)
Uew(IT)tha

Now, for the right hand side of (2.106), we have

| min (T + M,T:B)U|> - min_ ||[(IT+ t, My + t2 M) U|]?|
Uew(m)ha Uew(m)Ha

<(0(t) +0(t))  max_|[(ta(M1,nQ] — My) + t7(Man Pf — Ma))U||,  (2.107)
Uew(I)thA

where the inequality follows by the formula a? —b? = (a+b)(a —b), the Lipschitz inequality

of the infimum operator, the triangle inequality, and the fact that min,; w(myRA ||(IT 4+

M, T:B*)U|| = O(t?) and min (I + MT;B*)U|| = O(t2). For the second term

Uew()thA I
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on the right hand side of (2.107), we have

max || (tn(M1nQ] — M) + 15, (Mo P} — M2))U|
Ue(II)tns

<tn max |[(MpaQ] = M)(U + 6 V)| +¢;  max ||(Mn2P] — M2)U||

(UV)ep(t3) Uel(I)thA
< max t,[[(Ma1Qf = M)V + 1, max |[[(Mn2P] — M2)U| =o(t7),  (2.108)
vera Uew(m)tha

where the first inequality follows by the triangle inequality and the definition of ((t2),
the second inequality follows by the fact that Q]JU = 0 and MU = 0 for U € Y(II)
and @(t2) C W(II) x T2, and the equality follows by applying the sub-multiplicativity of
Frobenius norm and the fact that Mn,lQI — Mj and MngPQT — M5 as n — co. Combining

(2.106), (2.107) and (2.108), we then obtain

oI+ M, T B*) = min_ ||(IT + t, My + t2Mo)U||* + o(t}) . (2.109)
UeW(I)thA

Next, the first term on the right hand side of (2.109) can be written as

min_ ||(IT+t, My + 2Mo)U|? =  min  ||(IT + t, My + 2 M) (U + £2V)))?
UeT(IM)tRa (UV)ep(t)
=t i OV + MU||? + o(t?) , 2.110
n (U,Vrglelg(t%) I [* + o(ty) ( )

where the second equality follows by the fact that IIU = 0 and MU = 0 for U € ¥(II) and

V]| < A for all V € I'*. By analogous arguments in (2.59), we have

min ||V + MU||? = min  min |[IIV + MU|]* + o(1) . (2.111)
(UV)ep(t2) UEw(IT) VeMkxd

Combining (2.109), (2.110) and (2.111), we may conclude that

k—r*
Il + M, T*B*
lim 2ULF e ) _ min  min TV + MU|| =Y o3(PIMQ2), (2.112)
e fn vewi veme j=r—r*+1

where the second equality follows by Proposition 2.3.2. This completes the proof of the
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lemma. [ |

Proposition 2.7.2. Suppose IIy € MF*F | and let r, Qo1 and Py 2 be given in Proposition
2.3.3. Suppose there are 11, : (X}, — MFF such that (ﬁn — HO)BO_IDnBO Lom
kxk

, where D,, = diag(1,1 TQlk—ro) and

for some 1, 1 0o and random matric M € M ros Th

By = [Qo,1, Po2|T. Then we have under Hy,

k—rg

o) B Y 2 (PIMQoy) -

j=r—ro+1
PROOF: For each n € N, define g, : M¥** - R by
gn(M) = 72¢(Ty + M D, ' By) . (2.113)

By Proposition 2.7.1, g, (M,,) — E?;:ir“rl JJZ-(PQTMQQ) whenever M, B* — M. Note that
m26(I1,) = gn((IT,, — Tp) By ' D,,), then the result of the proposition follows by Theorem

1.11.1(i) in van der Vaart and Wellner (1996a). ]

2.7.3 Kleibergen and Paap (2006)’s Test

For ease of reference, we review the rank test by Kleibergen and Paap (2006). Let
I1,, € M™% be an estimator for II; € M™** that satisfies Assumption 2.3.1 with 7, = vn
and vec(M) ~ N(0,Q) for some positive semidefinite matrix Q. Let €2, be a consistent
estimator of 2. Let f[n = pninQIL be a singular value decomposition of f[n, where Pn S
S™xm and Q, € S¥**, and 3, € M™** is diagonal with diagonal entries in descending
order. Write P, = [/ln, En] and Qn = [C’n, ﬁn] for A, € M™*" and C,, € M**"_and let S,
be the right bottom (m — r) x (k — r) block submatrix of 3,. Then the test statistic for

the hypotheses (2.2) is given by

rk(r) = nvec(Sy)T[(Dn ® By)"Qn(Dy, @ By)|™ vec(Sy) , (2.114)
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where ® denotes the kronecker product. Thus, the rank test with the nominal level o € (0, 1)
rejects the null H(()r) in the hypotheses (2.2) whenever tk(r) > x?((m —r)(k —7),1 — «).
Note that B, and D,, can be chosen up to postmultiplication by (m—1r) x (m—r) and
(k —r) x (k — r) orthonormal matrices, respectively, but rk(r) is invariant to the choice of

B,, and D,,.

In order to examine the asymptotic behavior of the rank test when rank(Ilp) < r,
we consider the case with ITy = 0949, 2 is positive definite and r = 1. Let M = PWQ be
a singular value decomposition of M, where P € S?*2 and Q € $?*2, and W € M?*? is
diagonal with diagonal entries in descending order. Write P = [Py, P2] and Q = [Q1, Qo]
for P; € M?*! and Q; € M?*!, and let S be (2,2)th entry of W. Then by Lemma 2.7.7,
the asymptotic distribution of rk(1) is given by

rk(1) L s
(Q2 @ P2)TQ(Q2 ® P2)

(2.115)

Note that Py and Qs can be chosen up to a sign, respectively, but the asymptotic distribution

is invariant to the choice of Py and Qs.

We now plot the distribution function of the weak limit in (2.115) by simulation.

We consider two values of €:

1000 1 0 0 —0.9v5

0100 0 1 0.9v5 0
0 = and Qo =

0010 0 0.9V5 5 0

00 01 —0.9v5 0 0 5

The distribution functions based on 100,000 simulation replications are plotted in Figure
2.7. The weak limit when = Qy is first order dominated by the x?(1) random variable,
and the weak limit when Q = €y first order dominates the x%(1) random variable. This

implies that directly applying the test to (2.1) will under-reject the null when = 5, and



will over-reject the null when Q = Q.

153

1

CDF

0 | |
0 1 2

3 4 5 6

Figure 2.7: The distribution function of the weak limit of rk(1) when IIy = O2x2

Lemma 2.7.7. Let rk(r) be given in (2.114). Suppose Iy = 0242 and 2 is positive definite.

Then the asymptotic distribution of rk(1) is given in (2.115).

PrOOF: For z € R, let sgn(z) = 1{z > 0} — 1{z < 0}. Note that D, and Qy are the

eigenvalue of nIILIL, and MTM associated with the smallest eigenvalue. By analogous

arguments in Lemma 4.3 of Bosq (2000), we have

Isgn(D}Q2) D, — Qall < —

Similarly, we have

Isgn(BIP2) B, — Pa < —
ag

Note that \/nS, = oo(y/nll,) and S = o9(M).

2v/2 .
Rl — MTM|| . 2.116
M) - o3| e
2V2 T - MM (2.117)

(M) = o3(M)

By the fact that singular values are

continuous, (2.116), (2.117) and the continuous mapping theorem, we thus obtain that

(V/nSn, sgn(B]P2) BY, sgn(D] Q2) DI) & (S, P, Q1) -

(2.118)
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Note that rk(1) does not change by replacing B,, and D,, with sgn(BJLPQ)Bn and sgn(f)ﬁ Qg)bn,
respectively, so the result of the lemma follows by (2.118) together with the continuous map-

ping theorem. [ |

2.7.4 Parameters in Section 2.4.1

The values of parameters for DGP2 in the simulation studies in Section 2.4.1 are as

follows:

e The value of ¥ is specified as the sample correlation matrix of {F;}7_,, where {F;}_,

is the real data in Section 2.4.2;

e The values of a and § are specified as o = (0.0813, —0.0271, —0.6203, —0.0460)T and
B =(—0.3411,—-0.1277,-0.3838,—0.5312,—0.2728,—0.3527, —0.2188, —0.2934, —0.2035,
—0.3427)T;

e The value of II; is specified as IT; =IIr — SaT, where f[T:ZleRtFtT(ZleFtFtT)_l

with {F};, R}/, being the real data in Section 2.4.2;



e The value of T is specified as

0.0312 0.0255—0.0185 0.0591 0.0389 0.0953—-0.15150.2286 —0.0806 —0.1659
0.0346 —0.0166 —0.0608 0.0743 0.0794—0.0043 —0.21940.2959 —0.0043 0.0016
—0.0304 0.0624—-0.1347 0.1054-0.0369—-0.0187-0.09890.3571 0.0133—-0.1731
—0.0414 0.0951 0.0029-0.0497—0.0586 0.0910-0.09030.1850 0.0616—0.0865
—0.0570—-0.0845 0.0606—-0.0143—0.1971 0.0528 0.04030.1935—-0.0114 0.1141
—0.0649—-0.0738 0.0030 0.0335 0.0346—0.0432—-0.07870.2199—-0.0266 —0.0013
—0.0334—-0.1163 —0.0139—-0.0218 —0.0390 0.0128 —0.06450.1299 0.1105 0.0097
—0.1029 0.0368 0.0737—0.0005—-0.1686 0.0254 0.01840.0966—0.0176 0.0596
—0.1153 0.0008 0.0373 0.0185—-0.0927 0.1029 0.05460.0529—-0.1792 0.0798

—0.0737—-0.0669 0.0500 0.1466—0.1359 0.0617 0.10900.0402—0.0659—0.0440
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e The value of X, is specified as

Sy = —
100
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Chapter 3

Robust and Optimal Estimation

for Partially Linear Instrumental
Variables Models with Partial

Identification

Abstract

This chapter studies robust and optimal estimation of the slope coefficients in a
partially linear instrumental variables model with nonparametric partial identification. We
establish the root-n asymptotic normality of a penalized sieve minimum distance estimator
of the slope coefficients. We show that the asymptotic normality holds regardless of whether
the nonparametric function is point identified or only partially identified. However, in the
presence of nonparametric partial identification, the model is not regular in the sense of
Bickel et al. (1993) and the asymptotic variance matrix may depend on the penalty, so clas-
sical efficiency analysis does not apply. We then develop an optimally penalized estimator

which minimizes the asymptotic variance of a linear functional of the slope coefficients es-
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timator through employing an optimal penalty, and propose a feasible two-step procedure.
To conduct inference, a consistent variance matrix estimator is provided. Monte Carlos

simulations examine finite sample performance of our penalized estimators.
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3.1 Introduction

Recently nonparametric identification failure in the nonparametric instrumental
variables (NPIV) model has attracted much attention in the literature. As originally dis-
cussed in Newey and Powell (2003), nonparametric identification requires the so-called com-
pleteness condition that is much stronger than the usual covariance restrictions needed for
parametric identification. Santos (2012) discussed that even with restrictions on the param-
eter space, the completeness condition is still a strong requirement and may fail to hold for
a rich class of models. Moreover, recent work by Canay et al. (2013) showed that the com-
pleteness condition is not directly testable. In light of these, identification, estimation and
inference for the NPIV model allowing for nonparametric partial identification have been
extensively studied. Without nonparametric identification, Severini and Tripathi (2012)
derived necessary and sufficient conditions for the identification of linear functional of the
nonparametric function, a necessary condition for its y/n estimability, and the associated
efficiency bound. Based on the necessary condition, Santos (2011) developed a feasible
v/n asymptotically normal estimator for the identifiable linear functional. For inference,
Santos (2012) developed methods for hypothesis testing for linear restrictions on the non-
parametric function, which are robust to a lack of nonparametric identification. In addition,
Liao and Jiang (2011) adopted a Bayesian approach to estimate the identified set of the

nonparametric function.

Nonparametric identification failure may occur in semiparametric conditional mo-
ment restriction models (Ai and Chen, 2003, 2007; Chen and Pouzo, 2009) as well. In
particular, Florens et al. (2012) demonstrated that the completeness condition is necessary
to identify the nonparametric function in the partially linear instrumental variables (PLIV)
model while it is not needed for the identification of the slope coefficients. This motivates us
to consider robust and optimal estimation of the parametric components in semiparametric
conditional moment restriction models without nonparametric identification. Our focus is

on robust and optimal estimation while the current literature focuses on robust inference,
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see Chen et al. (2011a), Hong (2012), Tao (2014) and Chernozhukov et al. (2015) for con-
ditional moment restriction models, and Chen et al. (2011b) for the maximum likelihood
setting. It is well known that in a nonstandard setting such as what is considered here, op-
timal estimation and inference have to be considered separately. So our paper complements
the existing literature. An attractive feature of the PLIV model is that nonparametric
identification failure does not affect the identifiability of the parametric component, which
may not be true in general nonlinear models (Chen et al., 2014a). As such, in this paper
we focus on the PLIV model and consider robust and optimal estimation of the parametric
component allowing for nonparametric partial identification. To the best of our knowledge,
this is the first paper studying optimal estimation for semiparametric conditional moment

restriction models without nonparametric identification.

Existing estimation methods for the PLIV model rely on the identification require-
ment of full parameters. Florens et al. (2012) studied the kernel method for estimating the
slope coefficients. Ai and Chen (2003) studied the sieve minimum distance (SMD) estima-
tion of smooth semiparametric conditional moment restriction models with a compactness
assumption, which include the PLIV model as a special case, while Chen and Pouzo (2009)
studied the penalized sieve minimum distance (PSMD) estimation of nonsmooth semipara-
metric conditional moment restriction models without a compactness assumption, allowing
for both well-posed and ill-posed problems. To establish the y/n asymptotic normality of
the slope coefficients estimators, all existing methods require a strong-norm consistency and

—1/4 of the nonparametric function estimator.

a weak-norm convergence rate faster than n
Without nonparametric identification, strong-norm consistency generally fails while the suf-
ficiently fast weak-norm convergence rate can still be guaranteed. In other words, the lack
of identification of the nuisance nonparametric function does not affect \/n estimability of
the slope coefficients, but presents important technical challenges in deriving the asymp-
totic distribution. As a result, these slope coefficients estimators do not necessarily exhibit

asymptotic normality, which creates substantial challenges for inferential purposes. For

parametric models, Phillips (1989) and Choi and Phillips (1992) showed that the asymp-
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totic distribution of instrumental variables (IV) estimator for the identified coefficients in

partially identified structural equations is a variance matrix mixture of normals.

To fix the problem, we use penalization to select and consistently estimate a unique
element from the identified set of the nuisance nonparametric function, which fortunately
is enough to obtain the asymptotic normality. Specifically, we design a penalty function
that has a unique minimizer over the identified set and add it to the model-based criterion.
When the model-based criterion fails to identify the true nuisance nonparametric function,
the penalty takes effect to select a unique element from the identified set. Given an ap-
propriate penalty tuning parameter, the desired consistency and convergence rate of the
estimator for the selected nuisance nonparametric function follows and then the asymptotic
normality of the slope coefficients estimator is assured. If nonparametric identification is
assumed, the results are consistent with Ai and Chen (2003) and Chen and Pouzo (2009).
When the nonparametric function is only partially identified, the slope coefficients estimator
still enjoys the usual property of being asymptotically normal. For nonparametric models,
the method of achieving identification by penalization has been studied in Florens et al.
(2011) and Chen and Pouzo (2012a) to obtain a consistent estimator of the parameter of
interest. Here our ultimate goal is to obtain an asymptotically normal estimator of the slope
coefficients, rather than a consistent estimator of the nuisance nonparametric function. In
contrast to Chen and Pouzo (2009) that used penalization to deal with the ill-posed problem
arising from discontinuity, we use penalization to deal with the ill-posed problem arising

from noninjectivity (Kress, 2013).

For our penalized estimator of the slope coefficients, the asymptotic variance matrix
may depend on the penalty in the presence of nonparametric partial identification. Heuris-
tically, different penalty functions pin down a different function in the identified set, which
then give arise to a different identification noise defined as the discrepancy between the true
nonparametric function and the function selected by the given penalty. The identification
noise appears as an important part as the error term in the asymptotic variance matrix.

The dependence can be explained by the perhaps expected but unfortunate finding that the
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model with nonparametric partial identification is not regular in the sense of Bickel et al.
(1993), in particular, the slope coefficients are not continuous in the underlying distribution.
This in turn implies that classical efficiency analysis cannot be applied. As such, we study
the optimality in the sense of minimizing the asymptotic variance of a linear functional
of the slope coefficients estimator through employing an optimal penalty, and develop a
two-step feasible optimally penalized estimator. It is worth pointing out that the feasibility
requires only consistency of the penalty estimator, which is in contrast to the sufficiently
fast convergence rate requirement on the weight estimator in the optimally weighted esti-
mation (Ai and Chen, 2003; Chen and Pouzo, 2009). In fact, only a consistent initial slope
coefficients estimator is needed in the two-step procedure and thus is easy to satisfy. With
an optimal weight, our optimally penalized estimator is superior over the estimators in Ai
and Chen (2003) and Chen and Pouzo (2009). When the nonparametric function is point
identified, our estimator gives an efficient estimator. When the nonparametric function is
only partially identified, our estimator exhibits asymptotic normality with locally minimized
variance. To conduct inference, we provide a consistent variance matrix estimator, which

is directly available in the two-step procedure.

The remainder of the chapter is organized as follows. Section 3.2 discusses the mo-
tivation arising from the identification concern. Section 3.3 establishes the strong-norm
consistency, weak-norm convergence rate and asymptotic normality of the penalized esti-
mator. Section 3.4 develops an optimally penalized estimator. In Section 3.5, a consistent
variance matrix estimator is provided, while Monte Carlo simulation studies are presented
in Section 3.6. Section 3.7 briefly concludes. All the proofs are collected in the appen-
dices. For a random vector V', we use its calligraphic version V to denote its support and

L*(V)={g:V = R:E[¢}(V)] < o0}
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3.2 The Model

We consider the PLIV model

Y = X'Bo+ ¢0(Z) + € and E[e|]W] =0, (3.1)

where (3.1) specifies the structural equation for the dependent variable Y € R, and W €
R% are IVs that are mean independent of the error term ¢ € R. The structural function
is partially linear in potentially endogenous variables X € R% and Z € R% for some
Bo € R% and ¢g € L?(Z). This covers the linear IV model and the popular partially
linear regression model (Robinson, 1988) as special cases with ¢g = 0 and X and Z being
exogenous, respectively. As in the partially linear regression model, the slope coefficients 5y
are the parameter of interest while the nonparametric function ¢q is the nuisance parameter.
Our concern differs from that in semi-nonparametric models (Blundell et al., 2007), where

the parameter of interest is the nonparametric function.

Let Tx : R% — L2(W) be given by Tx(8) = E[X'B|W = -] and Ty : L*(Z) —
L?(W) be given by Tz(¢) = E[¢p(Z)|W = -]. Florens et al. (2012) demonstrated that the
identification of ¢ in (3.1) requires the injectivity of 7%z, namely the completeness condition

on the joint distribution of (Z, W), i.e.,

E[¢(Z)[W] = 0= ¢ = 0. (3.2)

Santos (2012) discussed that (3.2) fails to hold for a rich class of models even if the parameter
space for ¢q is restricted. Specifically, to ensure (3.2), the parameter space and the null
space of Tz have to have a zero intersection. This is a strong and undesired requirement.
Moreover, Santos (2012) demonstrated that any distribution of (Z, W) under which (3.2)
holds is arbitrarily closed to a distribution under which (3.2) does not hold. As such,
imposing the identification of ¢y may easily run into the misspecification trouble. On the

other hand, Canay et al. (2013) showed that there does not exist a test for (3.2) with
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nontrival power.

Fortunately, the identification of 3y does not hinge on (3.2). As demonstrated in
Florens et al. (2012), the sufficient and necessary conditions for the identification of 3y are
the injectivity of Tx and R(Tx) N R(Tz) = {0}, where R(T’x) denotes the range of Tx.
For the former, the existence of a finite number of IVs satisfying certain rank condition is
sufficient as in the linear IV model, and there are plenty of well developed rank tests in the
literature, see Camba-Mendez and Kapetanios (2009b) for a review. Under the additively
separable structure, the latter is similar to the non-multicolinearity condition. This is not
as strong as (3.2), and a nontrivial test for it can be developed following Santos (2012),
see Remark 3.2.1. See Florens et al. (2012) for more discussions. As such, it is routine to
impose the identification of By. Motivated by these results, we consider the estimation of

Bo without the completeness condition (3.2).
Remark 3.2.1. One is able to construct a nontrivial test for R(Tx)NR(Tz) = {0} allowing
for a violation of (3.2). The negation is that there exists ¢* € L*(Z) such that

Jnf |ELX'5 - 6" (2)W]| = 0.

where S% = {z € R% : ||z|| = 1}. Let ®* be the parameter space for ¢*. Following Santos

(2012), under contain regularity conditions the negation is equivalent to

inf sup | E[(X'8 — ¢(Z))w(t, W)]| =0
ot sup [B[(X'8 — 0(Z))u(t. W)
for some w : T x W — R, where T C R% is a known compact set. It suggests employing

the following test statistic

1 n
Sp = inf sup |— X{ﬁ — &(Z;))w(t, W),
BESIe pe® teT, ’\/ﬁ ;< (Zi))w( )|

where {X;, Z;, W;}]_, is a set of observations, {®% }7°; and {7,};2, are sieve spaces that

grow to be dense in ®* and T, respectively. The limiting distribution of \S;, can be similarly
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developed as in Theorem 3.1 of Santos (2012) and the bootstrap critical values with size
control and power property can be similarly developed as in Theorem 3.2 and Corollary 3.1

of Santos (2012), respectively.

3.3 Robust Estimation

Without the completeness condition (3.2), the SMD estimator by Ai and Chen
(2003) and the PSMD estimator by Chen and Pouzo (2009) do not necessarily provide a
v/n asymptotically normal estimator of By. This is illustrated in a simple linear IV model,
see Lemma 3.9.1. In particular, the estimator is still \/n consistent, but the asymptotic
distribution is highly nonstandard. The failure is due to the inconsistency of the estimator
of ¢g. To fix the problem, we use penalization to select and consistently estimate a unique
element from the identified set of ¢g, which fortunately is enough to obtain the asymptotic

normality.

To proceed, let B € R% and ® C L?(Z) denote the parameter space for 8y and ¢y,
respectively. Without the completeness condition (3.2), (5y, ¢p) is not necessarily unique
solution to

min | E[(EY — X'8 - o(2)[W))*0 (W) (33

where the weight 0%(-) > 0 is introduced to address potential heteroscedasticity. This
in turn implies that (Bp, ¢o) can not be consistently estimated by minimizing the sample
analog of a nonparametric version of (3.3) with ¢ restricted to a sieve space for ®, which is
the method pursued by Ai and Chen (2003). Nevertheless, to obtain a /n asymptotically
normal estimator of [y, it suffices to obtain a consistent estimator of any element from
the identified set of ¢, rather than a consistent estimator of ¢g. Let N (T7) denote the

null space of Tz, N'(Tz)* denote the orthogonal complement of A/(Tz) and @3 denote the
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projection of ¢g in N'(T)L. Tt is observed that (By, ¢g ) is the unique solution to

BeB,¢e%imI}\f(TZ)i E[(BlY = X'8 = ¢(2)[W])*0*(W)] (3.4)

provided ¢g € ®. It suggests that ((p, ¢5) can be consistently estimated by minimizing
the sample analog of a nonparametric version of (3.4) with ¢ restricted to a sieve space for
® N N(Tz)*. However, it is not straightforwardly feasible since N(Tz) is unknown and a

sieve space for ® NN (Tz)* is not directly available.

Next we introduce how penalization solves the problem. Let ®g denote the identified

set of ¢y,

®) = {60+ 6 € P : E[p(2)|W] = 0}. (3.5)

Without the completeness condition (3.2), ®( is not necessarily a singleton. Let P : ® —
[0,00) be a penalty function that has a unique minimizer over ®, which is denoted ¢p =
arg minge g, P(¢). Let (B, P, $a,,p) denote a solution to

jJuin BB — X8 — ¢(2)[W])*e*(W)] + AuP(9) (3.6)

where 0 < A\, = o(1) is a penalty tuning parameter. Given the identification of [y, a
significant deviation of § from By leads to a significant deviation of the first term from
zero, which dominates the second term for all sufficiently large n since 0 < A, = o(1). A
significant deviation of ¢ from ¢p outside ®( leads to a significant deviation of the first term
from zero while a significant deviation of ¢ from ¢p within ®( leads to a significant deviation
of the second term from its minimal over ®y. Therefore, it follows that (5x, p,®x,.P)
converges to (5o, p) as n goes to infinity. Let {Y;, X;, Z;, W;}7_, be a set of observations

satisfying (3.1). Display (3.6) suggests that a feasible consistent estimator (Bp,qu) for
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(Bo, ¢p) solves !

IR .

inf =) (BY = X'8 = 6(2)|Wil)?67>(Ws) + M P 3.7

sl 7 SEW = X8 = 620 01:) + mP(O) (.7

where @ is a sieve space for ®, E[-|W] is a series estimator for E[-[W], 2(-) and P(-) are
estimators for o%(-) and P(-), respectively. In particular, if P(¢) = E[¢?(Z)] and ¢5 € ¥,
then ¢p = ¢é_ since gb(J)- has the smallest norm over ®3. So our penalization method is

equivalent to the nonstraightforwardly feasible method arising from (3.4). In addition, a

variety of penalties can be employed and thus the penalization method applies more broadly.

For completeness, we review how to construct sieve spaces and series estimators
following Chen (2007). Let {g;(-)}32; denote a sequence of known basis functions (such as
power series, splines, Fourier series, etc.), with the property that its linear combination can
approximate any function in @ well. Let ¢/ (2) = (q1(2),...,qs,(2))’, then the linear sieve

space ®; is given by
®; ={pc®:4(2)=q""(2)B,8€ R} (3.8)

Let {p;(-) ?i1 denote a sequence of known basis functions (such as power series, splines,

Fourier series, etc.), with the property that its linear combination can approximate any

square integrable real-valued function of w well. Let p*»(w) = (p1(w),...,pk, (w)) and
P = (pk(W1),...,p"(W,))’, then the series estimator is given by
ElY — X'~ ¢(2)|W] =p*(W) (P'P)” Y _p*(Wi)(Yi — Xif — 6(Z:))  (3.9)
i=1

for any 8 € B and ¢ € ®.

!The estimators are indexed by P to stress the potential dependence of the asymptotic properties of the
slope coefficients estimator and of the probability limit of the nonparametric function estimator on P(-). On
the other hand, the dependence of the asymptotic properties of the slope coefficients estimator on 02(-) is
suppressed for notational simplicity as it is not our main concern.
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3.3.1 Strong-Norm Convergence

To establish the consistency of (3p, ¢p) under the strong norm || - || + || - [|ec,2 we
require ® to be a set of smooth functions, which ensures both consistency and the uniform
behavior of the empirical process on the parameter space. In particular, we assume ® is
bounded under the Sobolev norm || - ||s,y,. To define || - ||oc,4., for A a d, dimensional vector
of nonnegative integers, let |\| = Z?;l A\ and D p(2) = 8“"(]5(2)/821\1 ...82252 For v, € R,
let . denote the greatest integer smaller than +,. Then the norm || - ||, is given by

DA p(z) — DX p(2)]

o =2

@loo,y, = |£nax sup |D/\¢(z)\ + max sup (3.10)

1<%z zeZ [Al=7z z#z!

A function ¢ with [|¢||cc,,, < 00 has partial derivatives up to order . uniformly bounded,
and partial derivatives of order 7, Hélder continuous with the exponent v, — v, € (0, 1].
Let C}7(Z) be the set of all continuous functions ¢ : Z — R with ||¢||eo. < M, then these
properties hold uniformly in ¢ € CJ;(Z). Specifically, we assume ® = C}7(Z) for some
vz > d/2 and M > 0, and thus ® is compact under || - ||. Given this, we are able to
establish the consistency of ¢p under || - ||s, though only the consistency under L2 norm is

needed.

Remark 3.3.1. In our setting, there are two possible sources for ill-posedness of T, which
are the noninjectivity of T and the discontinuity of its inverse correspondence, see Kress
(2013). As the latter is not our main concern, for simplicity we impose compactness of ®
to circumvent it as in Newey and Powell (2003), Ai and Chen (2003) and Santos (2012).
Alternatively, the second source of ill-posedness can be circumvented by employing a lower
semicompact penalty as in Chen and Pouzo (2009, 2012a), which we do not pursue here.

Therefore, our penalty concentrates on dealing with the first source of ill-posedness.

We proceed by imposing the following assumptions.

Assumption 3.3.1. (i) {Y;, X;, Z;, Wi} is a set of independently and identically dis-

tributed observations satisfying (3.1); (ii) Bo € B C R that is compact and ¢y € ® =

“For 8 € B and ¢ € ®, the strong norm of (8, ¢) is given by ||B]| + ||¢]|co-
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Cl;(Z2) for some v, > d./2 and M > 0; (iii) Z is compact and convex with nonempty
interior; (1) supyepw E[|X|2IW = w] < 0o and sup,epy E(E2|W = w) < oo; (v) R(Tx) N

R(Tz) = {0} and Tx is injective.

Assumption 3.3.2. (i) {®;: J > 1} is a sequence of nonempty closed subsets such that
®; C P forall J; (ii) For ¢ € ®, there is I, € ®;, such that |11, — @|lcc = O(J,;**)

with o, > 0.

Assumption 3.3.3. (i) sup,cyy |02 (w) — 62(w)| = 0p(1) for some o2 : W — (0,00) with
0 < infyew o (w) < sup,,epy 02 (w) < 00; (i) SUpgeq |P(¢) — P(¢)] = Op(dpn) for some
dpn =0(1) and P : ® — [0,00); (iii) P(-) has a unique minimizer ¢p over ®¢ and P(-) is

continuous over ® with respect to || - || co-

Assumption 3.3.4. (i) W is compact and connected with Lipschitz continuous bound-
ary; (i) The density of W is bounded and bounded away from zero over W; (iii) The
eigenvalues of E[pkr (W )pFr(W)'] are bounded and bounded away from zero for all ky; (iv)
Either kn&2 = o(n) or kplog(k,) = o(n) for pFr(w) a polynomial spline sieve, where
&n = supyew [P (w)|; (v) There is T, € R%>*kn such that sup,epy | E[X|W = w] —
ILpke (w)|| = O(k,**) with aw, > 0; (vi) For ¢ € ®, there is 75 € RF" such that

supyew | E[@(2)|W = w] — p*r(w)' 74| = Ok, ) uniformly over ¢ € ®.

Assumption 3.3.1 specifies the data generating process. Specifically, Assumptions
3.3.1(ii) and (iii) impose the compact parameter spaces; Assumption 3.3.1(iv) imposes fi-
nite moment conditions and Assumption 3.3.1(v) assumes the identification condition for
Bo. Assumption 3.3.2 specifies ®;, and its approximation error. In particular, the polyno-
mial rate of approximation error is satisfied with o, = 7y,/d, under Assumptions 3.3.1(ii)
and (iii) if ®;, is a sieve space with tensor-product of power series, splines or Fourier se-
ries. Assumption 3.3.3 specifies the weight and penalty and their estimators. Specifically,
Assumption 3.3.3(i) requires uniform convergence of the weight estimator to a nondegen-
erate and bounded weight, which is obviously satisfied by the identity weight; Assumption

3.3.3(ii) requires uniform convergence of the penalty estimator over ®, which is obviously
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satisfied if P(-) = P(-); Assumption 3.3.3(iii) requires uniqueness of the minimizer of the
penalty over ® and continuity of P(-) over ®, which are key to ensure consistency. In par-
ticular, ®( is convex and compact under Assumptions 3.3.1(ii) and (iii). Then Assumption
3.3.3(iii) is satisfied by all L2-type penalties, i.e., P(¢) = = #?(2)du(z), where p is a finite
measure. For P(¢) = E[¢2(Z)], the natural estimator is given by P(¢) = LS 03 Z)
and Assumption 3.3.3(ii) is satisfied under Assumptions 3.3.1(i)-(iii), see Lemma 3.9.2. As-
sumption 3.3.4 is standard in the use of series estimators for conditional mean functions,
see Newey (1997), Huang (1998, 2003) and Chen and Pouzo (2009, 2012a). In particular,

the polynomial rate of approximation error can be satisfied under certain smoothness as in

Assumption 3.3.2.

The consistency of (8p, dp) under ||-||+]|- || is established in the following theorem.

Theorem 3.3.1. Suppose Assumptions 3.8.1-8.3.4 hold. Let (BAP,QASP) be the estimator
in (3.7). If Jo +dy < kn, 0 < Ay = 0(1) and max{fz k20w J-2021 — o()\,), then

18P = Boll = 0p(1) and |dp — $plles = 0p(1).

Theorem 3.3.1 shows that (3p, ¢p) converges in probability to (8o, ¢p) under || - ||+
| - ||loo provided the penalty tuning parameter A, is appropriately chosen. In particular, it
is required to dominate the estimation error of the series estimator for conditional mean
(%" +k;,22w) and the approximation error of the sieve space for the parameter space (.J,, 2%=).
Heuristically, the penalty is effective in choosing a unique function in ®y only when the
estimation error of the model-based criterion and the approximation error of the sieve
space are asymptotically negligible relative to the penalty term. On the other hand, A, is
required to decay to zero so that the penalty term selects a unique element from ®q rather
than from ®. The argument for Theorem 3.3.1 is similar to the proof of Theorem A.1 in
Chen and Pouzo (2012a), though we only penalize part of the parameters. Here we provide
an explicit lower bound for \,, which ensures the possibility of establishing the asymptotic

normality of 3 p, see Assumption 3.3.6 and Remark 3.3.2.
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3.3.2 Weak-Norm Convergence Rate

Following Ai and Chen (2003), we define the weak norm ||(81, ¢1) — (B2, ¢2)]|w for

any (81, ¢1), (B2, ¢2) € B x ® as
1(B1,61) — (B2, #2)12, = E[(B[X"(B1 — B2)|[W] + E[¢1(Z) — ¢2(Z)|W]) 20 2(W)].  (3.11)

It implies that the identified set {5y} x ®¢ is an equivalence class under ||-||,, since ||(Bo, ¢1)—
(Bo, #2)||?, = 0 for any ¢1,¢2 € ®¢. It turns out that establishing the | - ||,-convergence

rate of (B I p) does not present much technical challenge.
The theorem below establishes the rate of convergence of (3p, dp) under || - |-

Theorem 3.3.2. Suppose Assumptions 3.8.1-3.8.4 hold. Let (Bp,qu) be the estimator
in 3.7). If Jp +dy < kn, 0 < Ay = o(1) and max{%,k;Qo‘w,Jn_zo‘z} = o(A\n), then
1B, dp) = (Bos ) lw = 0p(v/An).-

Theorem 3.3.2 shows that (3p, ¢p) converges in probability to (8o, ¢p) under || - ||,
at a rate faster than +/\,. A rate faster than n~'/4 requires \, = O(n~'/?). In fact,
the result still holds by replacing (5o, ¢p) with any element from {8y} x ®¢ as it is a
equivalent class under || - ||, as discussed above. Moreover, without Assumptions 3.3.1(v)
and 3.3.3(iii), it can be shown that ||(8p, dp) — (8o, ¢0)lw = Op(v/An). So despite the loss
of strong-norm consistency, the weak-norm convergence rate of (B P, qg p) is not lost in the
absence of identification. In fact, the argument for Theorem 3.3.2 does not present much
difference from the corresponding results in Chen and Pouzo (2009, 2012a), but the result
can be improved from O,(v/A,) to 0,(v/A;,) due to Theorem 3.3.1.

3.3.3 Asymptotic Normality

Given the ||-||+]| - ||oo consistency and |- ||, convergence rate of (Gp, p), we are now
able to establish the asymptotic normality of Sp. We first illustrate why the || - || 4 || - [|oo

consistency is crucial for establishing the asymptotic normality.
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For j =1,...,dy, let XU) be the jth component of X and @7 be a solution to

min ) _ 2,2 ‘
uin BI(ELXY = o(2)[W)%0~2(W)) (3.12)

which solves the first order condition
E[E[XY) — ¢5(2)|W]E[¢(Z)|W]o 2(W)] = 0 for all ¢ € L*(Z). (3.13)

Let ®* = (¢7,...,¢; ). Without the completeness condition (3.2), ®* may not be unique,
but E[X — ®*(Z)|W] is unique as the objective function in (3.12) is strictly convex in
E[X) — ¢(Z)|W]. Therefore E[X — ®*(Z)|W] and

[ = B[E[X — & (Z)|W](E[X — &*(Z)|W])o~2(W)] (3.14)

are independent of the choice of ®*, where the latter is positive definite by Assumption
3.3.1(v). By result (3.13) and the law of iterated expectation, we have the linear represen-

tation

Vn(Bp — Bo) = Vil M E[E[X — &*(2)|W](E[X'(Bp — 5o)|W]
+E[pp(2) — ¢p(Z)|W])o™*(W)]

— VAT E[E[X - 0°(2)[W](Y = X'Bp — dp(2)02W)].  (3.15)
In the appendix, we prove that
\/15 Y E[X — &*(Z)|Wi(Y; — X[Bp — bp(Z:))o 2 (W;) = 0,(1), (3.16)
i=1

which can be imagined as the analog of the orthogonality of residuals and regressors in the
least squared regression. In the appendix, we also prove that the class F = {f : R x R% x
ZxW =R fly,x,z,w) = E[X — ®*(Z2)|W = w](y — 2’8 — ¢(2))o2(w), (8, ¢) € B x &}

is Donsker. By the stochastic equicontinuity of the stochastic process indexed by f € F
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and the || - || + || - ||loo consistency of (Bp,¢p) to (o, ¢p) in Theorem 3.3.1, results (3.15)

and (3.16) imply
Vn(Bp—po) = F‘l\}ﬁ > E[X - (2)[Wil(Yi— X{Bo—dp(Z:)o"*(Wi) + 0p(1),  (3.17)
i=1

which delivers the asymptotic normality by the Central Limit Theorem and the Slutsky

lemma. The usefulness of || - || + || - ||« consistency arises from the application of the
stochastic equicontinuity, while || - ||, consistency is not enough since the function class F
is not continuous in B x ® with respect to || - ||. The proof procedure is different from Ai

and Chen (2003) and Chen and Pouzo (2009): both rely on nonparametric identification

and the latter in addition demands strong-norm convergence rates.

To formalize the arguments above, we first impose the following assumptions.

Assumption 3.3.5. (i) ¢ € ® forallj=1,...,dy; (ii) There exists 1% € R=>*kn sych
that sup ey | E[X — ®*(2)|W = w]o?(w) — I;pM (w)[| = Ok, *).

Assumption 3.3.6. (i) n=' Y7 [6%(W;) — 0?(W;)]? = Op(82,,) for some 0gpn = o(n=%);
(ii) There exists ¢, = o(n~"?) such that \, max;<;<q, SUD s |P(¢ + enllng}) — P(¢)| =

OP(E?L)‘

Assumption 3.3.7. 5y is in the interior of B and ¢p is in the interior of ® with respect

to || - [loo-

Assumption 3.3.5 requires qﬁj- to lie in @ for all j = 1,...,d;, and the polynomial
rate of the series approximation error for E[X — ®*(Z)|W = w]o2(w) as in Assumptions
3.3.4(v) and (vi). In particular, Assumption 3.3.5(i) is only required for one ®* if it is not
unique. Assumption 3.3.6 further restricts the weight and penalty estimators. Specifically,
Assumption 3.3.6(i) requires a sufficiently fast convergence rate of the weight estimator
while Assumption 3.3.6(ii) requires uniform continuity of the penalty estimator, which is
satisfied by all L?-type penalties whenever )\, = o(nfl/ 2). In particular, a uniform con-

vergence rate of the weight estimator (Ai and Chen, 2003; Chen and Pouzo, 2009) is not
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required. Assumption 3.3.7 imposes the standard assumption that the true and the selected

parameters are in the interior of the parameter spaces.

Remark 3.3.2. Assumption 3.3.6(ii) ensures that the estimation error of the penalty term is
not involved in the asymptotic distribution of B p. It requires that \,, = o(nfl/ 2). Besides in
the study of general conditional moment models (Chen and Pouzo, 2009), similar assumption
can be found in the study of linear LASSO regression (Knight and Fu, 2000), GMM LASSO
estimation (Caner, 2009) and GMM estimation with moment selection (Liao, 2013; Cheng
and Liao, 2015).

The following theorem confirms the asymptotic normality of /3’ p.

Theorem 3.3.3. Suppose Assumptions 3.8.1-3.3.7 hold. Let (Bp,ggp) be the estimator in
(3.7). If Jy+dy < kn, 0 < X\, max{ke k20w j-20:1 — () and A\, = o(n"1/?), then

n?’m

V(B — o) = N(0, Vp),
where Vp = T71XpT 1 with
Yp = E[E[X — ®*(Z)|W](E[X — &*(2)|[W])'o~*(W)op(W)]

and

ap(W) = E[(e + ¢o(Z) — ¢p(2))*|W].

Theorem 3.3.3 demonstrates that v/n(3p— o) is asymptotically normally distributed
with mean zero and variance matrix Vp. In particular, the asymptotic normality of B p holds
regardless of whether ¢ is point identified or not. When the completeness condition (3.2)
holds, /n(3p — o) has exactly the same asymptotic property as the estimators in Ai and
Chen (2003) and Chen and Pouzo (2009). Leveraging their results in turn implies that Vp is
the efficiency bound in the model with the completeness condition (3.2) if o2(W) = E[£2|W].
When the completeness condition (3.2) does not hold, Bp still enjoys the usual property of

being asymptotically normal.



175

In the present of nonparametric partial identification, Vp nevertheless may depend
on the penalty P(-) in addition to the weight o2(-). Specifically, different P(-)’s pin down
a different ¢pp in ®y, which gives arise to a different identification noise defined as the
discrepancy between ¢y and ¢p. In particular, the dependence is through J%,(W), which is
conditional variance of the error term and the identification noise. Thus, different P(-)’s offer
different asymptotic normal distributions. This may be expected from (3.17) as different
¢p’s give different asymptotically linear statistics, or influence functions (Bickel et al., 1993).
It turns out that this can be explained by the finding that the model with nonparametric
partial identification is not regular in the sense of Bickel et al. (1993), in particular, the
slope coefficients are not continuous in the underlying distribution. This is illustrated in a

simple linear IV model, see Lemma 3.9.9.

3.4 Optimal Estimation

Given the irregularity in the presence of nonparametric partial identification, clas-
sical efficiency analysis cannot be applied. However, minimizing Vp with respect to the
weight o2(-) and the penalty P(-) can be pursued as follows. In particular, an optimal o2(-)
exists to minimize Vp for a given P(-) as in the efficiency analysis for the model with the
completeness condition (3.2) (Ai and Chen, 2003; Chen and Pouzo, 2009). Specifically, an
optimal o2(-) is given by 0%(-), see Lemma 3.9.10. So a feasible optimally weighted estima-
tor can be developed as in Ai and Chen (2003) and Chen and Pouzo (2009), and gives an
efficient estimator in the model with the completeness condition (3.2). Unfortunately, in
general an optimal P(-) does not exist to minimize Vp for a given ¢%(-). In turn, we focus
on the study of optimal P(-) in the sense of minimizing the asymptotic variance of a linear

functional of the slope coefficients estimator for a given o2(-).
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3.4.1 Optimal Penalty

For 0 # A € R%, the asymptotic variance of v/n\ (8p — fo) is given by X' VpA. Since
NVpA is strictly convex in ¢p, the natural penalty for minimizing N'Vp is given by Py(+)

with
Py(¢) = NT712(p)T 1N, (3.18)

where ¥(¢) = E[E[X — ®*(Z)|W](E[X — ®*(Z2)|[W])o*(W)(Y — X'Bo — #(Z))?]. Note
that Py\(+) is strictly convex and continuous in ® with respect to || - ||oo, then there exists a
unique minimizer of Py(-) over the convex and compact set ®(, see Lemma 3.4.1. Obviously,
P,(-) offers a solution to minimizing N'VpA. However, in the absence of nonparametric
identification, the minimizer ¢p, is not necessarily equal to ¢ and may depend on A, so in
general there does not exist a P*(-) such that Vp — Vp- is positive semidefinite for all P(-)
except some special cases. If 0% (W) does not depend on W or E[e(¢o(Z) — ¢p(2))|W] =0
for all ¢p € ®g, then Vp — Vp, is positive semidefinite for all 0 # A € R% . For the latter,

the optimal penalty would choose ¢pp, = ¢¢ and successfully identify ¢o.

Lemma 3.4.1. Suppose Assumptions 3.3.1(i)-(iv), 3.5.3(i) and 3.3.5(i) hold. Let o*(-) be
fixed and Py(-) given in (3.18). Then P(:) = Py\(-) satisfies Assumption 3.3.3(iii) and the

resulting estimator of X' By has the smallest asymptotic variance.

Remark 3.4.1. Unfortunately, Lemma 3.4.1 does not offer an easy solution to minimize
NVpA globally with respect to both P(-) and ¢2(-). By Lemma 3.9.10, minimizing \'VpA
evaluated at 02(-) = 0% (+) with respect to P(-) gives the global minimal. However, in general
NVpA evaluated at o%(-) = 0%(-) depends on P(-) in a complicated and intractable way.
In particular, plugging o2(-) = 0%(+) into X'VpA yields the asymptotic variance N (E[E[X —
>*(Z)|[W](E[X — ®*(Z)|W]) o p*(W)])~A, which is not strictly convex in ¢p since E[X —
®*(Z)|W] may depend on ¢p and o%(-) appears as its inverse. Therefore, no straightforward

penalty satisfies Assumption 3.3.3(iii).
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3.4.2 Two-Step Procedure

To obtain a feasible optimally penalized estimator, we have to estimate Py(-). We
only need to estimate I' and (-). Note that a consistent estimator of o2(-) is given a prior.
The idea is to replace the expectation with the sample average, the conditional mean with

the series estimator and the unknown parameters with their estimators.
To estimate I and X(-), we have to first estimate ®*. For j = 1,...,d,, let qAS;‘ solve

n

Juin S TELXO) = o(2) Wl 200, (319)
o =1

Let &* = (qg’{, . ,quw)’. Then T" can be estimated by

A

P = i;E X — & (2)WI(BLX — & (2) W] o> (W), (320)
and ¥(-) can be estimated by $(-) with

iﬂ [X — Y 2)|Wil(E[X — &*(2)|Wi))' 6~ (Wi)(Yi — X[B1 — ¢(Z))%, (3:21)
where f is an initial estimator of 8y. Thus, Py(-) can be estimated by Py(-) with

Py(¢) = NTI12(¢)D 1. (3.22)

To establish the consistency of Py(-), we only need consistency of E[X — &*(Z)|W = -] to
E[X — ®*(Z)|W = -] that is guaranteed, though ®* may not be consistent for ®* without

the completeness condition (3.2).3
To establish the consistency of ]3)\(~), we establish the following proposition.

Proposition 3.4.1. Suppose Assumptions 3.3.1(i)-(iv), 3.3.2, 3.3.3(i), 3.3.4 and 3.83.5(i)
hold and ||B1 — Bol| = 0p(1). Let T and 3(-) be the estimators in (3.20) and (3.21), respec-

3 Alternatively, a penalty term can be attached to the objective function in (3.19) to ensure the consistency
of ®* by following the method in Section 3.3.1.
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tively. If J, < k,, and max{f k20w J-20:} = o(1), then

sup [D!'S(¢)0 ! =TS ()T | = 0p(1).
PpcP
Proposition 3.4.1 implies that supcq | Py(¢) — Pr(0)]| = 0p(1), and so Py(-) satisfies
Assumption 3.3.3(ii) for Py(+). In addition, for any €, = o(n~'/?), we have SUP e |Pr(¢ +
enllndy) — Pr(¢)| = O,(en) by Lemma 3.9.11, Assumptions 3.3.1(i), (i), (iv), 3.3.3(i) and
3.3.5(i). It implies that Py(-) satisfies Assumption 3.3.6(ii) whenever X\, = o(n~'/2). Tt

together with Lemma 3.4.1 yields the following corollary.

Corollary 3.4.1. Suppose the conditions of Theorem 3.8.3 hold and |31 — Bo|| = op(1).
Let 0%(-) be fized. For 0 # X € R%, let Py(-) be the estimator in (3.22) and (Bp,dp)

be the estimator in (3.7). Then /nX(Bp, — Bo) has no larger asymptotic variance than
VN (Bp — Bo) for any P(-).

Corollary 3.4.1 implies that employing the penalty PA() leads to the feasible optimal
penalized estimator \ B p, With minimum asymptotic variance for a given o2(+). To imple-
ment the feasible optimally penalized estimator, an initial consistent estimator Bl is needed.
As only consistency is required, Bl can be the SMD estimator, the PSMD estimator, or our

penalized estimator. The feasible two-step procedure is summarized as follows.

1. For the identity weight, compute Bl as the SMD estimator, the PSMD estimator, or

the estimator in (3.7) for P(-) being any L?-type penalty.

2. For a given o2(-), compute Py(-) according to (3.22) for 0 # A € R%. For the same

o2(+), compute (BAPA,(ipA) according to (3.7).

It is worth pointing out that the feasible penalized estimator only requires a con-
sistent penalty estimator (i.e., Assumption 3.3.3(ii)), which is in contrast to the sufficiently
fast convergence rate requirement on the weight estimator (i.e., Assumption 3.3.6(i)) for

the optimally weighted estimator (Ai and Chen, 2003; Chen and Pouzo, 2009). In fact, the
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optimally penalized estimator only requires an initial consistent estimator of £y, whereas
the optimally weighted estimator requires an initial estimator of (5y, ¢p) with sufficiently
fast convergence rate. Thus, the feasibility of the optimally penalized estimator is easier to
achieve. Note that if 02(-) = 0%(-) in Step 2 for a given P(-), then our optimally penalized
estimator not only delivers an efficient estimator for 5y when ¢ is identified but also reduces
the asymptotic variance of the estimator of M3y when ¢ is only partially identified. So our
procedure can provide an estimator that is as efficient as those in Ai and Chen (2003) and
Chen and Pouzo (2009) when ¢ is identified, and an estimator with asymptotic normality

and locally minimized variance for X' 8y when ¢ is only partially identified.

3.5 Variance Estimation

For the purpose of inference, a consistent estimation of Vp is needed. The natural
estimator for Vp is given by Vp = f‘lf](qu)f_l with 3, = Bp. Given Theorem 3.3.1 and
Proposition 3.4.1, the consistency of Vp immediately follows by the continuous mapping

theorem. This is given in the following corollary.

Corollary 3.5.1. Suppose the conditions of Theorem 3.3.1 and Assumption 3.3.5(i) hold.
Let (Bp, dp) be the estimator in (3.7), and T' and 3(-) be the estimators in (3.20) and (3.21)
with 31 = Bp.. Then ||Vp — Vp| = op(1).

Corollary 3.5.1 implies VP_IN\/H(BP — Bo) L N(0,1I;,) provided Xp is positive
definite, which holds if and only if 6%(+) is nonzero. This result can be used for hypothesis
testing and confidence set construction for By. Note that the variance matrix estimate is
directly available in the two-step procedure for the optimally penalized estimator, so there

is no extra computation cost for obtaining the variance matrix estimate.
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3.6 Simulation Studies

In this section, we conduct small-scale Monte Carlo simulations to examine finite
sample performance of our penalized estimators and show how the distribution of the SMD

estimator in Ai and Chen (2003) deviates from normality.

We assume that (X, Z, W) € [0, 1]3 are generated according to the density
2 3
Ixzw(z, z,w) = g(a: + z 4+ w) for (z,z,w) € [0,1]°. (3.23)

By construction, E[6Z2 —6Z + 1|X, W] = 0 which implies the completeness condition (3.2)
is violated by fx zw. Let U be uniformly distributed on [0, 1] independent of (X, Z, W),

Bo=1, ¢po(Z) = Z?/2 and Y be generated according to the relationship

Y = XBy+ ¢po(Z) + ¢ with € =

U 1
12 <fZ|X,W(Z|Xa W) 1> . (3.24)

where fx w is the conditional density of Z given X and W. By construction, E[e|X, W]
=0and E[e|Z] = (1 - f2(2))/(24f2(Z)). So (X, W) are exogenous while Z is endogenous.
Note that E[X|X,W] = X and E[¢(Z)|X,W] is a function of both X and W for any

¢ € L*(Z) by symmetry of fx zw, so Assumption 3.3.1(v) is satisfied.

We employ g¢j(z) = 2971 for j = 1,2,... to construct ®,, and p;(x,w) = z and
{pr(x,w)}2, being orthonormal polynomials of w for series estimators.* In constructing
®; , we impose [|@lc2 < 100. We let o%(-) = 1. To investigate the effect of the penalty, we
implement our penalized estimation for four L?-type penalties, which differ in the assigned
probability measure, and the optimal penalty in Corollary 3.4.1, which is denoted as P;(+).
Specifically, the four L2-type penalties are given by P(¢) = fol ®?(2)v(z)dz, with v(z) =
fz(2),1,22,1/((1+ %) In 2) being density functions. We use the SMD estimator as the initial

estimator in our optimal penalized estimation. It is easy to show that all rate requirements

“The results for {g;};2, being splines of order 4 with equally spaced knots and {px}7>, being splines of
order 2 with equally spaced knots are similar and are available upon request.
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are satisfied by letting (ky, Jpn, An) satisfy the conditions of Theorem 3.3.3. However, the
theory offers little guidance as to how to select (ky,, Jy,, An). For simplicity, we let k,, = ﬁ +1
and J, = k, — 1 and \, = n_%, n"s and n=s to investigate the sensitivity of the results
with respect to A,. The results are reported for n = 100,500, 1000 and 2000 based on
1000 Monte Carlo replications. Figures 3.1-3.4 show the distribution of the SMD estimator
and our penalized estimators.® For each case, the normal distribution with mean zero and
identical variance is plotted for comparison. Tables 3.1 and 3.2 report the bias and standard

deviation of our penalized estimators.

The top left graph in Figures 3.1-3.4 shows that the SMD estimator does not exhibit
normality even for n = 2000. In particular, the shape of the graph is similar to shape of
the graph in Figure 1 of Choi and Phillips (1992), so the distribution of the SMD estimator
appears to be a mixture of normals. It suggests the necessity of penalization. The remaining
graphs in Figures 3.1-3.4 show that the distribution of our penalized estimators with A, =

—4/5 is close to normal for all n’s and P(-). The results for A, = n=2/3 and \, = n=8/

n
are similar and are available upon request. Table 3.1 implies that the bias of our penalized
estimators is sensitive to the choice of A, when n = 100 and n = 500, and the sensitivity
becomes less severe as n increases uniformly over all P(+). In particular, the bias is small and
close to zero when n = 2000. Table 3.2 shows that the standard deviation of \/H(B p—fo) is
not sensitive to the choice of \,,, but significantly sensitive to the choice of P(+). It confirms
the theoretical finding in Theorem 3.3.3 and suggests the necessity of optimal penalization.
The last row of Table 3.2 shows that using Pj(-) yields smaller variances than using the

other four L? penalties for all cases except for n = 100. Overall, the performance of our

penalized and optimally penalized estimators is encouraging in finite samples.

5The scale of y-axis in Figure 3.1 is different from those in Figures 3.2-3.4.
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Plot (1,1) is for the SMD estimator (i.e., P(-) = 0) while plots (1,2)-(3,2) are for our penalized estimators,
whose order is the same as in Tables 3.1 and 3.2.

Figure 3.1: The distribution of /n(8p — ) for various P(-) when A, = n~%% and n = 100
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Plot (1,1) is for the SMD estimator (i.e., P(-) = 0) while plots (1,2)-(3,2) are for our penalized estimators,
whose order is the same as in Tables 3.1 and 3.2.

Figure 3.2: The distribution of v/n(3p — ) for various P(-) when A, = n~%? and n = 500
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Plot (1,1) is for the SMD estimator (i.e., P(-) = 0) while plots (1,2)-(3,2) are for our penalized estimators,

whose order is the same as in Tables 3.1 and 3.2.

Figure 3.3: The distribution of \/n(3p — fo) for various P(-) when A, = n~*5 and n = 1000

No penalty

— — — Normal with identical variance

-0.5

— L*-penalty
— — — Normal with identical variance

— LE-penalty

— — — Normal with identical variance

(1.2)
T T
L — L-penalty
— — — Normal with identical variance
_ — . .
05 1 15 2
(2,2)
T T
L — L*-penalty

— — — Normal with identical variance

——— Optimal penalty |
— — — Normal with identical variance

Plot (1,1) is for the SMD estimator (i.e., P(-) = 0) while plots (1,2)-(3,2) are for our penalized estimators,

whose order is the same as in Tables 3.1 and 3.2.

Figure 3.4: The distribution of \/n(8p — Bo) for various P(-) when A, = n~4? and n = 2000



Table 3.1: The bias of Bp for various P(-), A, and n

n =100 n = 500
)\n:n_% )\n:n_% An=n"9 )\n:n_§ )\n:n_% An=n"9
P(¢) = E[¢*(2)] 0.0468  0.0267  0.0178 0.0113  0.0016  —0.0013
P(¢) = [, ¢*(2)dz 0.0454  0.0263  0.0178 0.0125  0.0031  0.0002
P(¢) = [} ¢*(2)22dz  0.0366  0.0179  0.0099 —0.0003  —0.0067  —0.0079
P(¢) = [y aiSihsdz 00418 00244 0.0167 0.0126  0.0041  0.0013
P(¢) = P1(¢) 0.0026  0.0030  0.0033 —0.0011  —0.0011  —0.0011
n = 1000 n = 2000
)\n:nfg )\n:nfé An :nfg )\n:nfg )\n:nfé An :n,%
P(¢) = E[¢*(2)] 0.0017  —0.0040  —0.0049 —0.0024 —0.0051  —0.0048
P(¢) = [, ¢*(2)dz 0.0039  —0.0018  —0.0030 —0.0002  —0.0033  —0.0034
P(¢) = [} ¢*(2)2zdz  —0.0099  —0.0119  —0.0110 ~0.0125 —0.0110  —0.0088
P9) = [ g2l 5dz 00052 —0.0002 —0.0015 0.0014 —0.0017  —0.0021
P(¢) = P1(¢) —0.0007  —0.0005  —0.0005 ~0.0007  —0.0006  —0.0006
Table 3.2: The standard deviation of \/nfp for various P(-), A, and n
n =100 n = 500
)\n:n_% )\n:n_% An=n"9 )\n:n_% )\n:n_% An=n"9
P(¢) = E[¢*(2))] 0.3360  0.3306  0.3224 0.3358  0.3075  0.2848
P(¢) = [, ¢*(2)dz 02933  0.2824  0.2736 0.2627  0.2335  0.2131
P(¢) = [} ¢*(2)22dz  0.4697 04752  0.4667 05940  0.5557  0.5197
P(9) = [ qolilydz 02582 02435 0.2346 01927  0.1646  0.1475
P(¢) = P1(¢) 0.3178  0.3829  0.4396 0.0450  0.0597  0.0719
n = 1000 n = 2000
)\n:nfg A =n"35 A\n :nfg )\n:nfg )\nzn*% )\nzn*%
P(¢) = E[¢*(2)] 0.3511  0.3188  0.2948 0.3360  0.2973  0.2662
P(¢) = [, ¢*(2)dz 0.2654  0.2345  0.2136 02482  0.2147  0.1895
P(¢) = [} ¢*(2)22dz  0.6449  0.5951  0.5552 0.6578  0.5754  0.5063
P(9) = [ qoi)ydz 01852 01579 0.1416 0.1696  0.1418  0.1237
P(¢) = P1(¢) 0.0499  0.0729  0.0948 0.0572  0.0911  0.0988
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3.7 Conclusion

In this paper, we developed /n asymptotically normal estimators for the slope coef-
ficients in the PLIV model, which are robust to a possible lack of nonparametric identifica-
tion. Since the model is not regular in the presence of nonparametric partial identification,
we then developed a feasible two-step optimally penalized estimator with minimum asymp-
totic variance for a linear functional of the slope coefficients through employing an optimal
penalty. In addition, we provided a consistent estimator for the asymptotic variance matrix.
Monte Carlos simulations demonstrated good finite sample performance of our penalized
estimators. Despite the focus on the PLIV model in this paper, the results can be extended
to general semiparametric conditional moment restriction models following the same tech-
nique as long as sufficient structural information on the conditional moment function is

imposed.
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3.9 Appendix

3.9.1 Proofs of Main Results

For ease of reference, Table 3.3 presents simplified notation for random variables,
conditional means and series estimators, which will be used throughout the appendix. Table

3.4 collects the sequences utilized in the text and the location of their introduction.
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Table 3.3: List of simplified notation

p(B,9,Y, X, Z) The random variable Y — X'3 — ¢(Z) for § € B and ¢ € ®.
m(B,¢, W)  The conditional mean E[p(8,¢,Y, X, Z)|W] for § € B and ¢ € .
m(B, ¢, W)  The series estimator E[p(8, ¢,Y, X, Z)|W] for f € B and ¢ € ®.
hj(¢,X,Z) The random variable X\ — ¢(Z) for p € ®, j =1,...,d,.
gi(o, W) The conditional mean E[h;(¢, X, Z)|W] for ¢ € ®, j =1,...,d,.
Gj (¢, W) The series estimator E[hj(gb, X, Z)W]forpe®,j=1,...,d,.

Table 3.4: List of sequences

An The penalty tuning parameter. See Display (3.6).

Jn  The dimension of the sieve space. See Display (3.8).

k, The number of sieves for the series estimator. See Display (3.9).
J,; @ The rate of the sieve approximation error. See Assumption 3.3.2(ii).
k,“v The rate of the series approximation error. See Assumption 3.3.4(v).
dpn The convergence rate of the penalty estimator. See Assumption 3.3.3(ii).
ds.,n ' The convergence rate of the weight estimator. See Assumption 3.3.6(i).
Om,n The convergence rate of the series estimator. See Lemma 3.9.3.

&, The length of sieves for the series estimator. See Assumption 3.3.4(iii).

€, The nuisance sequence for the penalty estimator. See Assumption 3.3.6(ii).

PROOF OF THEOREM 3.3.1: For every € > 0, let A(e) = {(8,¢) e Bx ® : || — ol + ||¢ —

oprlloo > €} and Ay (e) = {(B,0) € Bx @y, : ||B— Lol + ||¢ — dp|loc > €}. By the definition
of (Bp, qu) in (3.7), we have for any € > 0

P(IBp = Boll + 16r — dpllc 2 ) <P( inf Z (B, 6, Wi)6 (W)
+ A P(o Z (B0, Tladpp, Wi)6 2 (W) + A P(Iup)).  (3.25)

By Lemma 3.9.3 and Assumption 3.3.3(ii), result (3.25) implies for any € > 0

P([Bp = Boll + |6p — dplloc > €) < P((Wr)rggn(e) CE[m*(8,¢,W)o (W)

+ )\nP(QS) < c’ E[m2 (,80, Hn¢P7 W)U_Q(W)] + AnP(HnQbP) + Op(An) + Op((sgq,n)) (326)
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Recalling that m(Bo, IL,¢p, W) = E[pp(Z) — IL,,¢p(Z)|W], we have

E[m? (o, Tngp, W)o~*(W)] = E[(E[¢p(Z) — Tnp(Z)|W])?0 (W)

< |Magp — dpll3 < O(J2), (3.27)

where the first inequality follows by Assumption 3.3.3(i) and the second by Assumption
3.3.2(ii). Since A,(e) C A(e) for any € > 0 by Assumption 3.3.2 and |P(Il,¢p) — P(¢p)| =

o(1) by Assumptions 3.3.2 and 3.3.3(iii), results (3.26) and (3.27) imply for any € > 0

P(I3p — Aoll + Idp — dpllc 2 O < P( min  CEm*(8.6.W)s (W)

+ M P(8) < O(J;%%%) + M P(6p) + 0p(An) + Op(62,.0))- (3.28)

Recall that 6, ., = max{\/kn/n,k, "} and max{k,/n, k, >, J, 2%} = o()\,), so result

(3.28) implies for any € > 0

P(IBp = Boll + 16p — dpllec 2 ) <P min  CEm?(8,6,W)o™*(W)]

+ M P(9) < MP(dp) + 0p(Mn))- (3.29)

Note that A(e) is compact with respect to || - || + || - ||co by Assumptions 3.3.1(ii) and (iii)
and C E[m?(8, ¢, W)o~2(W)] + A, P(¢) is continuous in (8, ¢) with respect to || - || + || - |0

by Lemma 3.9.4 and Assumption 3.3.3(iii), so there exists (B n, ¢en) € A(€) such that

CE[M?*(Bens ben, W)o 2(W)] + AnP(e.n)

_ : 2 —2
= (ﬁglég(e)CE[m (8,0, W)o™=(W) + AnP(9). (3.30)

Thus, results (3.29) and (3.30) imply for any € > 0

P(HBP — Boll + HéP — ¢plloc =€) < P(CE[m2(5€7n7¢Eyn, W)U_Z(W)]

+ AP (Pen) — MP(op) < 0p(An)). (3.31)
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By the definition of liminf, there exists a subsequence {n;}?°, such that

p CEI By, Geanis W)™ 2(W)] 4 Ay P(fen,) = A P(0r)

i ing C BB b W) 2(W)] + AP (dn) = P (o)

n—00 An

. (3.32)

Since A(e) is compact, it is without loss of generality to assume that {(Ben, ¢en)}ie; is
convergent with the limit, say (S, ¢.) € A(e). Then it must be one of the cases: (i)
E[m?(Be, e, W)a=2(W)] > 0 or (ii) E[m?(B., ¢, W)o~2(W)] = 0. For case (ii), we have
m?2(Be, pe, W) = 0 almost surely by Assumption 3.3.3(i), and thus 8. = By and ¢. € ®( by
Assumption 3.3.1(v). This in turn implies that ||¢p. — ¢p|lcc > € since (B, @) € A(€), and

thus P(¢c) > P(¢p) by Assumption 3.3.3(iii). For case (ii), we therefore have

1o CEIm2(Benys e, W)o2(W)] 4 An, P(Yens) = M (1)

k—o00 )\nk

> 0. (3.33)

Note that (3.33) is obviously true for case (i) since 0 < A\, = o(1). It combines with result

(3.32) to yield

CE[m®(Bemn, Pen, W) 2(W)] + A P(¢en) — AP (¢p)

hnrggf N > 0. (3.34)
Combining results (3.31) and (3.34) yields for any € > 0
lim P(||3p — Boll + [P — ¢pllee > €) =0, (3.35)
n—oo
which completes the proof of the theorem. [ |

PROOF OF THEOREM 3.3.2: By the definition of (8p, ¢p) in (3.7), we have
1 n
- > i (Bp, dp, Wi 2 (W) + A P(dp)
=1

< i;m%ﬁo,ﬂmm Wo AW + AP(Lér).  (3:36)



189

By Lemma 3.9.3 and Assumption 3.3.3(ii), result (3.36) implies

E[m?*(Bp, ¢p, W)o 2(W)] + M P(¢p) < C'E[m?(Bo, ndp, W)o ™ 2(W)]

+ A P(Indp) + Op(pnAn) + Op(02,,))- (3.37)

By Theorem 3.3.1 and the continuous mapping theorem, there exists d1, J 0 such that

|P(¢p) = P(¢p)| = Op(81,n). Let 8o, = |P(Indp) — P(¢p)|, then 8, = o(1) by Assump-
tions 3.3.2 and 3.3.3(iii). Thus, results (3.27) and (3.37) imply

E[m2(Bp, op, W)o2(W)] < Op((6pn + 61 + 02.0)An) + Op(82,, + J5 2%%). (3.38)

Since dpp+91n+62, = o(1) and 5,2n’n+<]772az = o(\y) by recalling that d,, ,, = max{\/k,/n,

k., *}, result (3.38) implies
Bn2(3p, dp, W) 2(W)] < 0,(0) (3.39)

Note that ||(Bp, ¢p) — (Bo, #p)|12 = E[m2(Bp, pp, W)o2(W)] by the definition of || - ||, in
(3.11), so the result of the theorem follows by result (3.39). ]

PrROOF OF THEOREM 3.3.3: For j = 1,...,d;, let e; be the jth column of the d, x d,
identity matrix. By Theorem 3.3.1 and Assumptions 3.3.1(ii), 3.3.2, 3.3.5(i) and 3.3.7, we
have B ptene; € Band @p + ean¢;f € @, for any €, = o(1) with probability approaching

one. By the definition of (8p,dp) in (3.7), it follows

< % z; ?(Bp F enej, op £ enlln@l, Wi)6—2(W;) + %P(@P + €,11,07)
- i ;mQ(BP, p, W)o—2(W;) — %P@P)
ten
- TE g]( n¢j7 ) (BP ¢P7 ) Q(Wz)

=1

Ma s D Y
+ o Z M5, Wi)o™*(Wi) + 5 P(¢p + enlln}) — TP (o) (3.40)
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for any €, = o(1) with probability approaching one. By Assumption 3.3.6(ii), there exists

€n = o(n~'/2) such that

An g o Aan
o P(6p & enllng}) = TP(0p) = 0p(€y). (3.41)

Since L% 1gj( ngb;f,Wi)é_?(VVi) = Op(1) by Assumptions 3.3.1(ii), (iv), 3.3.2, 3.3.3(1)
and 3.3.5(i), combining results (3.40) and (3.41) yields

S 01065, Woyin(Bp, b, W) 2(W:) = oy (n V). (3.42)
=1

By Theorem 3.3.2, Lemmas 3.9.5 and 3.9.6, Assumption 3.3.3(i), the triangle inequality and

the Cauchy Schwartz inequality, result (3.42) implies
fZg] &%, Wi)i(Bp, p, Wi)o~2(W;) = op(n~1/2). (3.43)

For j = 1,...,d,, let gj(a)( W) = Elg;( ;,W)0'72(W)’W]. Then result (3.43) can be

written as
lZA@*, No(Bo Ao VX 7N — o (=1/2
> 4765, WP, bp. i Ko 20 = oyl (3.44)
By Lemma 3.9.7 and Theorems 3.3.1 and 3.3.2, result (3.44) implies
fZgJ (&5, Wi)p(Bp, dp, Yi, Xy, Zi)o2(Wi) = op(n~'/?). (3.45)

Let G*(W) = E[X — ®*(Z)|W], which is equal to (g1(¢7,W),...,g4,(¢3 ,W))" as well.
For A € S%, let F\ = {f : RxR& x ZxW — R : f(y,z,z,w) = NT71G*(w)
p(B, by, z,2)0%(w), (B, ¢) € B x ®}. Then F, is Donsker by Lemma 3.9.8 since sup,,cyy
INT~1G*(w)| < oo by Assumptions 3.3.1(ii), (iv), (v) and 3.3.5(i). Thus, the stochastic
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continuity and Theorem 3.3.1 imply

fzx LG (W) p(Bp, dp, Yi, Xi, Zi)o (W)
— XNTLE[G*(W)p(Bp, op, Y, X, Z)a 2(W)]
—72)\11 LG (W) p(Bo, b, Yi, Xiy Zi)o 2(W;)

+ NTLE[G*(W)p(Bo, dp, Y, X, Z)a 2(W)] = 0,(n~1/?). (3.46)

Note that E[G*(W)p(Bo, ¢p,Y, X, Z)o~2(W)] = 0, so combining results (3.15), (3.45) and
(3.46) yields

n

N(VA(Bp — fo) = XT-1—— 77 2 G o 6. Yi Xe 200 W) 4 (1). (2.47)

Therefore, the result of the theorem follows by result (3.47), the central limit theorem and

the Slutsky lemma.

PROOF OF LEMMA 3.4.1: For 0 # A € R% let a(W) = NT 'E[X — &*(2)|W](E[X —
O*(Z)|W))o=4(W)L LA, then Py\(¢) = Ela(W)(Y — X'Bo — ¢(Z))?]. By Assumptions
3.3.1(i)-(iv), 3.3.3(i) and 3.3.5(i), we have for any ¢1, ¢ € P,

[PA(¢1) = PA(92)] S [[91 — d2llcos (3.48)

which implies that Py(-) is continuous in ®. Obviously, Py(-) is strictly convex in ®. Note
that ®¢ is convex and compact since ® is compact by Assumption 3.3.1(ii) and (iii), so

Py (-) has a unique minimizer over ®,. This completes the proof of the lemma. ]

PROOF OF PROPOSITION 3.4.1: The proof proceeds by showing |[I' — T'|| = o0,(1) and
SUDsca 12(¢) — 2(#)|| = 0p(1), and concludes the result of the proposition by the triangle

inequality. We first show ||I' — T'|| = 0,(1). By Lemma 3.9.11, Assumption 3.3.3(i) and the
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triangle inequality, for 1 < j, k < d,

fZg] (0, Wi)gie (0, W, Zgg (0, Wi)gio(0, Wi)o 2 (W;) + 0p(1)  (3.49)

uniformly over p,9 € ®. By the similar argument as in the proof of Lemma 3.9.8, we have

{f - W-=R: f(w)=gj(p,w)gr(th, w)o 2 (w),, € ®} is Glivenko Cantelli. So
*Zg; 0, Wi)gi (1, Wa)o™*(W;) = Elg; (¢, W)gk (o, W)o™(W)] + op(1) (3.50)
uniformly over ¢, € ®. Since E[g;(¢7, W) Elp(Z)|[W]o=2(W)] = 0 for all p € ®,

Elgj (¢, W)g(, W)o™*(W)] = Elg;(¢;, W)gi(¢x, W)o™*(W)]

+E[(gj (e, W) = g; (65, W) (gx (40, W) — g5 (&5, W) (W) (3.51)
Combining results results (3.49), (3.50) and (3.51) yields
*Zgj 0, W) g (¥, Wi)6—2(Wi) = Elg; (&5, W)gk(dk, W)~ *(W))]
+E[(g;(0, W) = (65, W) (g (&, W) = g;(65, W))o (W) +0p(1)  (3.52)
uniformly over ¢, € ®. Setting ¢ =1 and j = k in result (3.52) leads to
Zgj 0, Wi)6~*(W;) = Elg; (¢, W)o > (W)]
+E[(g;(0, W) = g;(¢;,W))?0 2 (W)] + 0,(1) (3.53)

uniformly over ¢ € ®. Since 1 3" | § ]( W62 (W;) < 257 1g]( nc;ﬁ;f,Wi)&_2(Wi) by
the definition of QAS;" in (3.19), applying result (3.53) to ¢ = qzbj and I1,¢} leads to

E[(g; (65, W) — g; (¢}, W))202(W)]

< El(gj (0}, W) — g;(¢5, W) 202 (W)] + 0p(1) = 0p(1), (3.54)



193

where the equality follows since E[(g;(Il,¢}, W) — g;( ;T,W))QU*Q(W)] = o(1) due to

11,07 — ¢} llcc = o(1). By the Cauchy Schwartz inequality, result (3.54) implies

El(g;(&5, W) — g5(6, W) (gk (5, W) — gi(df, W) 2(W)] = 0p(1). (3.55)

Combing results (3.52) and (3.55) yields
*Zgy &5, Wi)aw(0k, Wi)e > (Wi) = Elg; (5, W)gk(e, W)o2(W)] + 0p(1),  (3.56)

which implies ||I' — T|| = 0,(1). We next show SUD e 12(¢) — 2(¢)|| = 0p(1). By Lemma
3.9.11, ||B1 — Boll = op(1), Assumptions 3.3.1(i)-(iv) and the triangle inequality, for 1 <

Jik < dy,
1o .
- D 0i(0, Wi)an (¥, Wi)6~ (W) p* (B, 6, Vi, X, Zi)
i=1
729] SOa gk 1/}7 ) ( i)p2(/80)¢7}/i)Xi7Zi) +Op(]') (357)

uniformly over ¢, 1, ¢ € ®. By the similar argument as in the proof of Lemma 3.9.8, we have

{f R x Rdl XZxW—=R: f(y,x,z,w) = g]<§07w)gk('¢aw>o—i4(w) pQ(/B(%(bay:{I:vZ)vQva?
¢ € ®} is Glivenko Cantelli. So

729] 907 gk 1/% ) ( i)p2(507¢)}/’i7Xi7Zi)
= Elgj (o, W)gr(0, W)~ (W) p? (B0, ¢, Y, X, Z)] + 0p(1) (3.58)
uniformly over ¢, 1, ¢ € ®. Combining results (3.57) and (3.58) yields
729] ja ¢k27 ) ( i)p2(BP7¢a)/iaXivz’i)
= Elg; (65, W)gi(9k, W)a ™ (W)p? (o, 6. Y. X, Z2)] + 05(1) (3.59)

uniformly over ¢ € ®. By the triangle inequality and the Cauchy Schwartz inequality,
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results (3.54) and (3.59) imply
S 6563, Wi)aw(d, Wio (W) (B, 6. Yi, Xi, 21
=1
= Elg;(¢F, W)gr(¢%, W)~ (W)p? (B0, ¢, Y, X, Z)] + 0,(1) (3.60)

uniformly over ¢ € ®, which implies sup g 12() = Z()|| = 0p(1). |

PROOF OF COROLLARY 3.5.1: By Theorem 3.3.1, we have ||3p — Bo|| = 0,(1) and ||¢p —

®p|loo = 0p(1). Since B1 = Bp and ¢p € ®, Proposition 3.4.1 implies
IE-18(@p) 01 = TG0 = 0,(1). (3.61)

Note that [|X(¢1) — X(d2)|| S [[¢1 — P2]|eo for any ¢1, ¢2 € ® by Assumptions 3.3.1(i)-(iv),
so X(+) is continuous in ® with respect to || - ||oo. By the continuous mapping theorem, it

together with [|¢p — ¢p|lec = op(1) implies
IT=1S(@p)0 ! = TI5(6p)0 | = 0,(1). (3.62)

Combine results (3.61) and (3.62) to conclude the result of the corollary by noting that

S(¢p) = Sp.

3.9.2 Useful Lemmas

Lemma 3.9.1. Suppose {Y;, X;, Z;, Wi}, is a set of independently and identically dis-

tributed observations according to
Y =XBy+ 2y +¢c with X =Wb+u and Z = W'c+wv,

where Y € R is the dependent variable, X € R and Z € R are potentially endogenous
variables, and W € R? are IVs such that E[W (e,u,v)] = 0. Suppose E]WW'] = I and
| EWW'e?]|| < oo for e € {e,u,v}. If b= (1,0)" and c = 0, then the IV estimator for By is
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not necessarily asymptotically normally distributed.

PRrROOF: The IV estimator for §y is given by

5 Co€1 — C1€2

B = fo+ (3.63)

éaby — é1by’
where b = (51,32)’ = %ZLI W;X;, ¢ = (é1,¢2) = %Z?:l W;Z; and é = (é1,é3) =
LS Wiei. Since |[EWW’e?]|| < oo for € € {e,v} and ¢ = 0, (v/né,/né’) 4 N(0,
E[((e,v)(g,v)") @ WW']) by the central limit theorem, where ® denotes Kronecker product.
Since E[WW'] = I, |E[WW'u?]|| < oo and b = (1,0), b & (1,0)" by the law of large
numbers. It follows from (3.63) by the Slutsky lemma that

ZyZ) — 232
d, 2421 322

V(B = Bo) o (3.64)

where Z = (21, 29, Z3, Z4) is a zero mean Gaussian random vector with covariance matrix
E[((e,v)(g,v)") @ WW’]. The result of the lemma follows by noting that the right hand side
of (3.64) is not normally distributed if E[W;W5v?] = 0 and E[Wiev] = 0. |

Lemma 3.9.2. Suppose ® = C]; for some M > 0 and v, > 0, Assumptions 3.3.1(i) and
(7ii) hold. Then we have

sup |~ 3 6%(2:) — E[6*(2)]] = 0,(1)

n
oe® it

PrOOF: Let G = {f: Z = R: f(2) = ¢*(2),¢ € ®}. For any ¢y, p2 € ®, [¢3(2) — ¢3(2)| <
2M||¢p1 — ¢2|loc- So G is lipschitz in ®. Theorem 2.7.1 and 2.7.11 of van der Vaart and

Wellner (1996b) imply for every e > 0,
Nj(6,G, LI (P)) < N(e/AM, &, |- ) S exp(AM/)/7) < 0. (3.65)

Result (3.65) implies G is Glivenko-Cantelli by Theorem 2.4.1 in van der Vaart and Wellner

(1996b), which gives the result of the lemma. |
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Lemma 3.9.3. Suppose Assumptions 3.3.1(i)-(iv), 3.3.3(i) and 3.3.4 hold. Let 6y =
max{y/kn/n, k,*>}. Then there exists finite constants C,C" > 0 such that

E[m*(8, ¢, W)o~*(W)] — Z (8, ¢, Wi)&>(Ws)

< C"E[m* (8,0, W)a™2(W)] + Oy(3.1)
uniformly over (B,¢) € B x ®.

PROOF: The proof proceeds by verifying the conditions of Lemma C.2(ii) of Chen and
Pouzo (2012a). For j = 1,...,ky, let O; = {f :RxR% x ZxW = R : f(y,z,2,w) =

pj(w)p(B, ¢,y,x,2),(B8,¢) € B x ®}. Note that maxi<;<y, E[p?

Z(W)] < 1 by Assumption

3.3.4(iii), so Lemma 3.9.8 implies

max. I 05 N2ey) S 1. (3.66)

1<5<

Thus, result (3.66) implies Assumption C.2(iii) of Chen and Pouzo (2012a) is satisfied with
Cn < 1. Note that [p(3,9,Y,X,2Z)] < |Y|+ || X||+ 1 and E[(|]Y] + || X] + 1)?W] < 1
by Assumptions 3.3.1(i), (ii) and (iv), so Assumption C.2(i) of Chen and Pouzo (2012a) is
satisfied. Assumptions 3.3.4(v) and (vi) imply that for (3, ¢) € B x ®, there is mg 4 € R*»
such that sup,cyy |m(B, ¢, w) — p» (w)'7s 4| = O(k;, **) uniformly over (3, ¢) € B x @, so
Assumption C.2(ii) of Chen and Pouzo (2012a) is satisfied. In addition, Assumption C.1
of Chen and Pouzo (2012a) is satisfied by Assumptions 3.3.1(i), 3.3.3(i) and 3.3.4(i)-(iv).

Thus, the result of the lemma follows by Lemma C.2(ii) of Chen and Pouzo (2012a). [ ]

Lemma 3.9.4. Suppose Assumptions 3.3.1(i), (ii), (iv) and 3.3.3(i) hold. Then we have

fOT any (ﬁ17¢1)7 (ﬂ27¢2) S B x é;

| E[m*(Br, é1, W)o™2(W)] = E[m*(Ba, 2, W)a 2(W)I| S 181 — Ball + |61 — 2l oo
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PRrROOF: We have for any (01, ¢1), (52, ¢2) € B x &,

| E[m*(B1, ¢1, W)o—*(W)] — E[m?(Ba, 2, W) *(W)]|
< (E[m?(B1, ¢1, W)] + E[m? (B2, ¢2, W)])1/2

x (E[m(B1, 1, W) — m(Ba, a2, W)]2)1/2. (3.67)

by the Cauchy Schwartz inequality and Assumption 3.3.3(i). Note that m(3,¢, W) =
E[X'(Bo — B)|W] + E[¢o(Z) — ¢(Z)|W], so for any (8,¢) € B x @,

E[m*(8,¢,W)] < 1. (3.68)

by Assumption 3.3.1(ii) and (iv). Note that m (81, ¢1, W)—m(B2, 2, W) = E[X'(B2—S1)] +
E[¢2(Z) — ¢1(Z)|W], so for any (581, ¢1), (B2, p2) € B x @,

E[m(B1, g1, W) — m(B2, ¢2, W)]> < (181 = Ball + llo1 — ¢21))° (3.69)

by Assumption 3.3.1(ii) and (iv). Combine results (3.67)-(3.69) to conclude the result of

the lemma. ]

Lemma 3.9.5. Suppose Assumptions 3.3.1(1)-(iv) and 3.3.4 (i)-(iv) hold. Then we have
I~ _
n Zm2(57 ¢, Wi) = op(n 1/2) + Op(kn/n)
i=1

umformly over (57¢) € {(57¢) €EBx®: H(,B,QZ)) - (B07¢P)||w = Op(n_1/4)}'

PROOF: For any (8,6) € B x ®, let u(8,,Y,X,Z,W) = p(8,,Y, X, Z) — m(8,6,W)
and u(B, 9, W) = E[u(ﬁ, 0, Y, X, Z W)|W]. Then by the Cauchy Schwartz inequality and

P(P'P)~ P’ is idempotent, we have
LS 2(8,0,W) < 23 m? (8.0, W) + 2 3 a2(8,6, W) (3.70)
n 1/:1 9 ) 7 —_ n Z:1 ) ) 7 n i:1 ) b 1) *

Following the same argument as in the proof Lemma 3.9.8, we have {f : W — R : f(w) =
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m2(B, ¢, w), (B,¢) € B x ®} is Donsker. Note that E[(m?(8, ¢, W) — m2(Bo, dp, W))?] <

1(8,¢) — (Bo, op) ||, and m(Bo, p, W) = 0, so by the stochastic equicontinuity it follows
1 ¢ -
~ > m*(8.6.Wi) — E[m*(8,6,W)] = op(n"/%) (3.71)
i=1

uniformly over (8,¢) € {(8,¢) € B x ® : ||(8,¢) — (Bo,¢pr)|lw = 0p(1)}. Recall that
E[m?(8, ¢, W)] < [1(8,¢) — (B0, 6p)|[7,, so result (3.71) implies

LS (8,6, W) S 11(8,0) — (o, 0p) %+ 0p(n V) = 0p(n ) (372)
=1

uniformly over (8,¢) € {(8,¢) € B x & : [[(8,¢) — (Bo, ¢p)|lw = 0p(n~"/*)}. By the proof
of Lemma 3.9.3, Assumption C.1, C.2(i) and (iii) of Chen and Pouzo (2012a) are satisfied

with Cp, <1 and Lemma C.1(ii) of Chen and Pouzo (2012a) implies

n

Z (B, ¢, W;) = Op(kn/n) (3.73)

=1

uniformly over (8,6) € {(5,6) € Bx ® : [(8,6) — (B 6p)llw = op(n~"/)}. Combine
results (3.70), (3.72) and (3.73) to conclude the result of the lemma. ]

Lemma 3.9.6. Suppose Assumptions 3.3.1(i), (i), (), 3.3.2(ii), 3.5.4(v), (vi), 3.8.5(i)
and (ii) hold. Then we have

1 . ~ * * 2 200,
@iﬁzn;(gﬂ'm”‘bﬁw") — g; (67, Wi))? = Op(max{J,**, 52, ,}).

PrOOF: By the Cauchy Schwartz inequality, we have

n

1
- > (9 (Mg, Wi) — <

1=1

(g}, We) — §;(85, Wi))?

3\1\9
||M3

3\1\3

Z (05, Wi) — g5(5, W, i))? (3.74)
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Note that P(P’'P)~ P’ is idempotent, so by Assumptions 3.3.2(ii) and 3.3.5(i) we have

n n

D35 W) — 4565, W) < S (65(2) — g} () = O(2). (3.75)

i=1 i=1

Let G% = (g;(¢5, Wh),-..,g;(65, Wo)) and Hf = (hj (6%, X1, Z1), .., b (65, X, Zn))'-

Then we have

D (@565, W) = 9565, W) = (G5 (1 = P(P'P) PG

1 * * — * *
Note that sup,,epy E[(h; (6], X, Z))2|W = w] < 1 by Assumptions 3.3.1(ii), (iv) and 3.3.5(i),
SO %(H;—G;)’P(P’P)*P’(H]’-‘—G;‘.) = Op(ky/n) by the Markov inequality. By Assumptions
3.3.4(v), (vi) and 3.3.5(1), L(G1)/(I — P(P'P)" PG} = O(k;;***). Hence, result (3.76)

implies
1 - ~ * *
LS @55 W) — 05(65, W) = 0 (6%,) (3.77)
i=1
Combine results (3.74), (3.75) and (3.77) to conclude the result of the lemma. |

Lemma 3.9.7. Suppose Assumptions 3.8.1(i)-(iv), 3.8.3(i), 3.8.4(i1i) and 3.3.5(iii) hold.

Then we have

n

max — 373 (6%, Wa) — 6567 Wi~ 2 (W) p(B, 6, Vi, X Zs) = 0p(n~ V%) + Op(Jr2w)

1<j<ds N 4
=1

umformly over (67 ¢) € {(Ba(z)) € Bx®: ”(Bv d)) - (607¢P)”’LU = Op(n71/4)7 HB_BOH =+ |’¢_
¢Plloo = 0p(1)}-

PrROOF: Recalling that u(B,0,Y, X, Z, W) = p(B,¢,Y,X,Z) — m(B,¢,W) for (5,¢) €



200

B x ®, we have

i=1
1 (o)) o . _
= 220,705 W) — g5(65, Wi)o > (Wa)m(8, 6, W)
i=1
1 - [en * * —
@7 (@5, W) - 9505 W)o T (Wi)u(B, 6,0, Xi, Z W), (378)

For j=1,...,dy, let Dj = (g;(¢7, Wi)o=2(W1),. .., gj( ;,Wn)U*Z(Wn))’. Then we have

LSO W) — 05(65, Wo (W) = LT~ P(PPYP)D;. (3.79)
=1

Note that %D;-(I — P(P'P)"P")D; < supyew |G (w)o 2 (w) — 1T phn (w)|| = O(k;2w) by

Assumption 3.3.5(ii), so result (3.79) implies
= Z N85, Wi) — gi(3, Wi)a 2 (W;))? = Op(k 2. (3.80)
By the Cauchy Schwartz inequality, results (3.72) and (3.80) imply
ii(gf)w}f?wi) — (&5, Wi)o 2 (Wa))m(B, 6, W;) = 0p(n~"/%) + Op(k, ™) (3.81)
i=1

uniformly over (8,¢) € {(8,¢) € Bx ® : ||(B,¢) — (bo, opP)||lw = op(n*1/4)}. Due to re-
sult (3.80), L S0 (947 (6%, Wi) — g;(6%5, Wi)o~2(Wi))u(B, &, Vi, Xi, Z;, W;) is stochastically

equicontinuous by Lemma 3.9.8. Thus, it follows

1 - g * * —
52@ (65, Wi) — g;(65. Wi)a (W) ulB. 6, Yi, Xy, Zi, Wy)
—fz (@5, W3) — g5(6%, Wi)a = 2(Wi))u(Bo, 6p, Yi, Xis Zi, Wy) = 0p(n~ %) (3.82)

uniformly over (3,¢) € {(8,¢) € Bx ® : |8 — Bol| + ||¢ — ¢rlloc = 0p(1)}. Now by
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Assumptions 3.3.1(i), (ii) and (iv), we have

— g;(65, Wi)o "2 (W) )u(Bo, dp, i, Xi, Zi, Wi)]?

3\»—‘
M:
i@

@
Il
—

1 (o) ox . _
SEl5 > (67 (65, W) —g;(65, W)o2(Wi)] - (3.83)
By the Markov inequality, results (3.80) and (3.83) imply

fZ (¢, W) — g;(85, Wi)o = 2(Wi))u(Bo, b, Yi, Xis Zi, Wy)

= Op(n~ Y2k ow). (3.84)
Combining results (3.82) and (3.84) yields
- Z — g;(¢5, Wi)o 2 (Wi))u(B, 6, Vi, Xi, Zi, W)
= 0,(nY2) + O, (k 2w) (3.85)

uniformly over (5,¢) € {(8,¢) € Bx ® : ||3 — ol + ||¢ — ¢p|loc = 0p(1)}. Combine results
(3.78), (3.81) and (3.85) to conclude the result of the lemma. [ ]

Lemma 3.9.8. Suppose Assumptions 3.53.1(ii) and (iii) hold. Let ¢ : W — R with
E[¢2(W)] < o0 and F = {f : RxR%“xZxW — R : f(y,z, z,w) = c(w)p(B, ¢, v, z, 2), (3, d)
€ Bx®}. Then there exits K > 0 such that F(y,x,2) = K|c(w)|(|y|+]||z||+1) is an envelope
for F and

I F - lrzey) S1

If in addition Assumptions 3.3.1(i) and (iv) hold, then F is Donsker.

PROOF: Since B x ® is bounded by Assumptions 3.3.1(ii) and (iii), so there exists K > 0

such that [c(w)p(8, ¢, y, , 2)| < Kle(w)|(ly| + [lz]| + 1) for any (8,¢) € B x @, which gives
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the first result of the lemma. We have for any (81, ¢1), (52, ¢2) € B x ®,

lc(w)p(B1, ¢1,y, 7, 2) — c(w)p(Ba, P2, Y, T, 2)|

< H(z,w)(||B1 = Bell + l[¢1 — ¢2ll0), (3.86)

where H(z,w) = c(w)(||z|| + 1). Result (3.86) implies F is lipschitz continuous in (8, ¢) €

B x ®. By Theorem 2.7.11 of van der Vaart and Wellner (1996b), for every € > 0

Ni(&, Fo |l - ll2py) < N(e/ 2l H | 2py), B x @, [ - [[ 4] - [loo)

< N(e/4([1H L2p)), B, - 1) x N(e/ (4l H Il L2p))s @5 || - [loo)- (3.87)

where the second inequality follows by N(e,B x ® || - || + | - [lo) < N(e/2,B, ]| - ||) x
N(e/2,®@,] - |loc). By Assumptions 3.3.1(ii) and (iii), Theorem 2.7.1 of van der Vaart and
Wellner (1996b) implies

1
log N(e, ®, | - loo) < (). (3.89)

Note that N(e,B, | - ||) < (2/€)% and ||H||;2p) < 1 by Assumptions 3.3.1(iv), so results

~

(3.87) and (3.88) imply

1
log Njj(€, F, || - |l z2(py) < log(=)™ + (=)%/7 (3.89)

2
€ €

for e < 1. By Assumption 3.3.1(ii), 7. > d,/2 and then result (3.89) implies

which gives the second result of the lemma. Note that E[F?(Y, X, Z)] < oo by Assumptions
3.3.1(i), (ii) and (iv), so the last result of the lemma follows by Theorem 2.5.6 of van der

Vaart and Wellner (1996b). |

Lemma 3.9.9. Suppose Y, X,Z € R and W € R? satisfy | E[W(Y, X, Z)]|| < oo and
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EW(Y — XBy — Zv)] = 0 for a unique By € R and some v9 € R. Let © € RS be the
parameter space for (E[YW'],E[XW'],E[ZW'])". Then Bo(0) is discontinuous in ©.

PROOF: Since fy is identified, it is either 0305 — 0405 # 0 or 05 = g = 0, 9% + Gi # 0 and
0,0, = 0203, which corresponds to 7 being identified and not being identified, respectively.

It follows

06810502 if 0305 — Oafs # 0
Bo(6) = { P01 306 — 0405 # (3.91)

glor @2 if 05 =05 = 0,63 + 63 # 0,60,64 = 0203.
Consider the path 0(c) = (1,0,1,¢,¢,0) € © for ¢ € R, then (3.91) implies

0 ifc#0
Bo(6(c)) = (3.92)
1 ife=0.

Result (3.92) implies (@) is not continuous at § = (1,0,1,0,0,0) € ©, so the result of the

lemma follows. []

Lemma 3.9.10. Let Vp and o%(-) be given in Theorem 3.3.3. Then Vp — V} is positive

semidefinite for a given P(-), where V} denotes Vp evaluated o*(-) = o5(+).

PrOOF: As E[X — ®*(Z)|W] and T' may depend on o%(-), we write E[X — ®%(Z)|W]
and T, instead of E[X — ®*(Z)|W] and I'. Note that E[E[X — ®%(2)|W]o—2(W)(E[X —
®% (Z)|[W])'] =T, by result (3.13), so we have

Vp = Vi = E[A(W)op (W) (A(W))], (3.93)

where A(W) =T;1E[X — ®4(2)|W]o=2(W) — T, E[X — &} (Z)|W]op*(W). The result

of the lemma follows by noting that the right hand side of (3.93) is positive semidefinite. m

Lemma 3.9.11. Suppose Assumptions 3.3.1(i)-(iv) and 3.3.4 hold and 6y, = o(1). Then

we have

i sup, 19 (0, w) — gj(d,w)| = 0p(1)
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uniformly over ¢ € ®.

PROOF: For ¢ € ® and j = 1,...,dy, let #tj 4 = (P'P)~ 337, pba (W)'hj(¢, X;, Z;). Thus,
gi(o, W) = pk"(W)’frj,(p. By Assumptions 3.3.4(v) and (vi), for ¢ € ® and j = 1,...,d,

there is 7; 4 € R’ such that

sup [g;(¢, w) —p** (w)'mj 4 = Ok, ™) (3.94)

wew

uniformly over ¢ € ®. By the Cauchy Schwartz inequality and Assumption 3.3.4(iii), it

follows

M@AQWW—wwﬂwfk§M@¢—mmF+2g%mmmW—m“wwmm? (3.95)

Following Newey (1997)(p.162), by Assumptions 3.3.1(i), 3.3.4(iii) and (iv), with probability

approaching one P'P/n is invertible and
1770 = mell < Op(1) sup lg;(6,w) — " (W)
|%Z&l hi(b, Xi, Zi) = g5(6, Wa)l (3.96)

uniformly over ¢ € ®. Following Chen and Pouzo (2012b)(p.17-20), by Assumptions

3.3.1()-(iv) and 3.3.4, we have (in particular, C,, < 1 there following the similar argu-

~

ment as in the proof of Lemma 3.9.3)

|w2wl hi(6, X, Zi) — gj(6, W) || = Op(v/kn /1) (3.97)

uniformly over ¢ € ®. Combining results (3.94)-(3.97) yields

E[(3i(6, W) = g; (6, W))?] = Op(67,.). (3.98)

uniformly over ¢ € ®. Note that the density of W is bounded and bounded away from over
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W that is compact by Assumptions 3.3.4(i) and (ii), so result (3.98) implies

sup |3;(¢, w) — g;(¢, w)| = 0p(1) (3.99)
weW

uniformly over ¢ € ®, since 0, , = o(1). This completes the proof of the lemma. [
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