UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Reading A Program Is Like Reading A Story (Well, Almost)

Permalink
https://escholarship.org/uc/item/0zg6b8g\
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 5(0)

Authors

Soloway, Elliot
Ehrlich, Kate
Gold, Eric

Publication Date
1983

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/0zg6b8gv
https://escholarship.org
http://www.cdlib.org/

READING A PROGRAM IS LIKE READING A STORY
(WELL, ALMOST)

Elliot Soloway, Kate Ehrlich, Eric Gold
Dept. of Computer Science
Yale University
New Haven, Ct. 06520

1. A Schemata-Based Theory of Program Comprehension!

A computer program, a mathematical proof, and an electronic circuit diagram all are (1) products of a problem
solving process that required specific technical knowledge and (2) can be “executed” to obtain a specific result.
However, these entities can also communicate information beyond simply the desired specific goal: in reading such
“problem solving texts” and analyzing the techniques, style, comments, digressions, etc. one can gain insight into the
problem itsell — and even into the problem solver himself. “Stories” can also be conveyed as texts; on the other
hand, they typically are not the products of technical knowledge nor are they executed for a specific result. As such,
stories differ from problem solving texts. However, these two text forms are similar when both are used as a
communicative vehicle. This similarity between the two text forms serves to raise an intriguing question: Do the
information representations and processing strategies that underlie the comprehension of stories also underlie the
comprehension of “problem solving tezxts™ 7 In particular, can the schemata-based approach to story understanding be
productively used in developing a theory of how programmers read and understand computer programs? In this brief
paper, we will outline an affirmative answer to this question and describe one empirical study that supports our
position. (See also [15, 16, 7, 9].)

The term we have used to express the notion of schema in the domain of computer programs is programming plan.
Just as a schema [13, 3, 2]captures generic knowledge, a programming plan specifies the critical information that is
representative of the stereotypic action sequences in programs. For example, we can identify two types of
programming plans in the program in Figure 1: control Mow plans and variable plzns‘z For example, the RUNNING
TOTAL LOOP PLAN and the SKIP GUARD PLAN are two control flow plans in this program. The former plan repeatedly
reads in some values and accumulates their total. The latter plan is also a common one: it protects the main
computation of the loop from an illegal input value; should the value be input, the main processing steps are skipped
over. Variable plans serve to highlight the role a variable plays in a program: just as actors take on different roles in
a play, variables take on different functions in a program. For example, the COUNTER VARIABLE, Count, is used to
count the number of elements being accumulated, e.g., Count:=Count+1l. Similarly, the RUNNING-TOTAL VARIABLE is
used to accumulate a total, e.g., Sum:=Sum+Num. While both variables are updated using an assignment statement,
programmers do seem to distinguish between them on the basis of their functions [16].

2. Generating Plan-like and Unplan-like Programs

What makes a program plan-like rather than unplan-like 1s the way in which plans are composed in a program. In
particular we have identified two rules of plan composition that can be used to systematically vary the planliness of a
program. These rules are: (1) vary the typicality of the plans being composed into a program, (2) modify a typical
plan in an atypical manner (usually to let the plan do "double duty”). In Figure 1, we illustrate the effect of applying
these rules. The programs, which all solve the problem given in the figure, were generated using the two rules above.
Programs A, B in Figure 1 reflect compositions of increasingly less typical plans. Program C reflects compositions of
typical plans that have been modified in such a way as to be atypical. The heart of the problem in this figure requires
a SENTINEL-CONTROLLED RUNNING TOTAL LOOP PLAN. The key issues are to add up the numbers being read in while
keeping the sentinel value from being added into the total and keeping the count from also being updated. What

This work was co-sponsored in part by the Personnel and Training Research Groups, Psychological Sciences Division, OfTice of Naval Research
and the Army Research Institute for the Behavioral and Social Sciences, under Contract No. N00014-82-K-0714, Contract Authority Identification
Number, Nr 154-482, Approved for public release; distribution unlimited. Reproduction in whole or part is permitted for any purpose of the United
States Government. This work was also sponsored in part by NSF RISE under grant number SED-81-12403.

'Variable plans are related to, but are richer than, the computer science notion of abrtrect data types, in that plans have more properties (e.g.,
relatedness, goal) than are usually associated with abstract data types.



Soloway, Ehrlich, Gold Page 1

follows is a detailed plan analysis of these programs.
e In Pascal, SENTINEL-CONTROLLED RUNNING TOTAL LOOP PLAN is most appropriately realised with a WHILE looping
construct [17|(Figure 1A). The sentinel is prevented from corrupting the loop in the following manner:
» a Read of the input is positioned before the loop begins

» if the sentinel value turns up on this first Read, it will be detected be fore the loop is executed even once; in this case processing
with drop dowp to the IF statement.

» if the sentinel value does not turn up on the first Read, then this legitimate value is added into the running total, Sum, and the
counter, Count, is updated accordingly.

# after these updates occur, the next value is Read in and processing returns to the top of the loop where the new value is tested;
should this value be the sentinel, processing will drop down to the IF statement without further processing in the loop (i.e.,
without adding the sentinel into the running total).

The COUNTER and RUNNING TOTAL VARIABLES employ the standard VARIABLE FLAN initialization and update techniques:
start the value off at 0, and update appropriately. Thus, the composition of the vanable plans and the loop plan is
accomplished using standard techniques.

e The program in Figure 1B, however, does not use a WHILE loop, but rather a REPEAT loop. In order to protect the
running total and the count from being incorrectly updated, a SKIP GUARD PLAN is used that encloses these update
steps. In otherwords, there is a causal relationship between the LOOP PLAN and the GUARD PLAN: we need the GUARD
PLAN to make up for the LOOP PLAN's inadequacy. SKIP GUARD plans are typical techniques in programming; we see one
used to protect the average calculation from a divide by O case. Again, the COUNTER and RUNNING TOTAL VARIABLES
employ the standard VARIABLE FLAN initialization and update techniques. While the composition of the variable plans
and the loop plan and the skip guard plan is accomplished using standard techniques, it is less typical to realize a
SENTINEL CONTROLLED LOOP PLAN with a REPEAT loop composed with a SKIP GUARD PLAN. This judgement of typicality
is based on experience in teaching Pascal from numerous textbooks and on articles describing good programming style

[17].

e While the program in Figures 1C still achieves the overall objective, it was constructed by taking standard plans and
modifying them in an atypical manner. For example, the sentinel value must again be backed out of the running total
variable and the counter variable. This time, however, the initialization technique of the two variable plans are
modified to serve this additional function: to say the least, initializing a variable to -99999 is a very curious
construction.

Does planliness effect program comprehension? One of the most important implications of a schema is that it
provides a structure for comprehending and encoding information. Researchers have shown that a story is
remembered better if it is more schema-hke eg. |2, 11, 5. Similar results have been obtained for comprehension in
non-story domains [6]. In the next section we will present one study in which we examined the this the issue of
planliness and program comprehension using versions of the programs shown in Figure 1.

3. Empirical Evidence: A Taste

Advanced programmers (end of at least second semester of programming) were split into two groups; half were
presented with program Alpha in Figure 2, while the other half were presented with the program Beta. Both groups
were asked to fill in the blank line with a line of code that, in their opinion, most reasonably completes the program.
Subjects were not told what problem the program was intended to solve. A version of this technique was used by
Bower, Black, and Turner [3] and Kemper [10] in order to tap into the schemata people used in comprehending stories.
Our hypothesis 13 that if programmers are using programming plans to comprehend the programs, then the
expectations set up by those plans will make it easier to fill-in-the-blank in the more plan-like programs (Alpha,
Figure 2). However, we suggest that it will be more difficult to comprehend the less plan-like program (Beta, Figure
2), since few expectations will be set in motion.

The results are displayed in Figure 2C. The correct answer for problem Alpha was Count := 0, while the correct
answer for Beta was Count := -1. Based simply on the number of correct and incorrect answers, it was clear that
program Beta elicited very different performance from that of program Alpha: there were more correct responses to
Program Beta than to Program Alpha (X? = 47.7, p < 0.001). Moreover, it is not just that there are differences in
the accuracy of the responses but also that subjects took longer to give their responses in the unplan-like program.
An analysis of variance on the time to read the program and fill in the blank reveals that subjects took longer to read
the unplan-like program (Beta) than to read the plan-like program (Alpha) (F[1,91] = 4.60, p < 0.05). There was no
difference in reading time between correct and incorrect responses (F|I, 91] = 3.06, p > 0.05). The result that is
particularly interesting is that there is an interaction between the factors of program and response: the difference in
response time between correct and incorrect responses is much greater for Program Beta than for Program Alpha (F|[1,
91] = 4.50, p < 0.05). That is, subjects took longer to get Beta correct than to get Alpha correct. These results lend



Soloway, Ehrlich, Gold Page 2

strong support to our claim that experienced programmers use their knowledge of plans to comprehend programs and
that they will therefore take longer to comprehend unplan-like programs correctly than to comprehend plan-like
programs correctly.

Interestingly, standard software engineering metrics of program complexity such as (1) lines of code or (2) a
Halstead [8] metric, predict that program Beta, with fewer lines, less volume, and fewer nested structures would be
easier to comprehend that program Alpha. However, given our plan-based analysis, we have argued for Alpha being
the less complex -— and the experimental data cited above supports this position.

4. Concluding Remarks

In this brief summary, we have attempted to indicate the direction in which our research into program
comprehension is going. We have given a brief description of how one can create plan-like and unplan-like programs,
and we have described results from one experiment in which we used these programs in order to examine the use of
schemata in program comprehension. These results are consistent with, but more fine-grained than, previous work on
the role of schemata in technical domains in general [6, 4, 5], and programming in particular |14, 1, 12].

1. Adelson, B. "Problem Solving and the Development of Abstract Categories in Programming Languages." Memory and
Cognition 8 (1981), 422-433.

2. Bartlett, F.C.. Remembering. University Press, Cambridge, 1932.
3. Bower, G.H., Black, J.B,, Turner, T. "Seripts in Memory for Text.” Cognitive Psychology 11 (1978), 177-220.
4. Chase, W.C. and Simon, H. "Perception in Chess." Cognitive Psychology 4 (1973), 55-81.

5. Chiesi, HL, Spilich, G.J. and Voss, J.F. "Acquisition of domain-related information in relation to high and low domain
knowledge.” Journal of Verbal Learming and Verbal Behavior 15 (1878), 257-273.

6. deGroot, AD.. Thought and Choice in Chees. Mouton and Company, Paris, 1965.

7. Ehrlich, K., Soloway, E. An Empirical Investigation of the Tacit Plan Knowledge in Programming. in Human Factors in
Computer Systems , J. Thomas and M.L. Schneider (Eds.), Ablex Inc., in press.

B. Halstead, MM.. Elements of Software Science. Elsevier, New York, 1977,

9. Johnson, L., Draper, S., Soloway, E. Classifying Bugs is a Tricky Business. NASA Workshop on Software Engineering, in
press.

10. Kemper, S. "Filling in The Missing Links.” Joumal of Verbal Learning and Verbal Behavior 21 (1982), 99-107.

11. Kintsch, W., van Dijk, T.A. "Toward a Model of Text Comprehension and Production.” Psychological Review 85 (1978),
363-394.

12. McKeithen, K.B., Reitman, J.S., Rueter, HH., Hirtle, S.C. "Knowledge Organization and Skill Differences in Computer
Programmers." Cognitive Peychology 15 (1981), 307-325.

13. Schank, R.C. and Abelson, R.. Seripte, Plane, Goals and Understanding. Lawrence Erlbaum Associates, Hillsdale New
Jersey, 1977.

14. Shneiderman, B. "Exploratory Experiments in Programmer Behavior.” Intemational Journal of Computer and
Information Sciencer 52 (1976), 123-143.

15. Soloway, E., Bonar, J., Ehrlich, K. . Cognitive Strategies and Looping Constructs: An Empirical Study. Communications of
the ACM, in press.

18. Soloway, E., Ehrlich, K., Bonar, J., Greenspan, J. What Do Novices Know About Programming? In A. Badre,
B. Shneiderman, Ed., Directione in Human-Computer Interactione, Ablex, Inc., 1982.

17. Wirth, N. "On the Composition of Well-Structured Programs." ACM Computing Surveys 6, 4 (1974).



Soloway, Ehrlich, Gold

Probltes  Read in nusbers. taking their sus

n)
PROCRAM OrangeAlpha .

unti| the number 99999 1s seen

Page 3

Report the sus Do not include the final 99999 1n the sus

VAR Sus, Count, Nus  INTEGER,
Average  REAL.
Counter Variable BEGIN
Plan =~ meemmrms > Count = 0.
| —->Sus = 0. Running Total Loop Plan
| | Read(Nue)  <—~—-—=—
Running Total| | WHILE Nus <© 99999 DO <--—-—|
Variable Planl | BEGIN |
| —=--——--> Sum = Sua ¢ Nus, <--—-—|
____________ > Count = Count + 1. |
Read(Num) Cmmmme e
END Skip Guard Plan
IF Count > 0 THEN C=m-mmrmmce e
BEGIN “———mm—m o |
Average = Sum/Count, <-—--== |
Writein( Average), <-—-—-—- |
END <- ————m— |
ELSE o s e |
Writeln( "no legal inputs’). <-|
END
(B)
PROGRAM OrangeB. Running Total Controlled Running Total Loop Pian
VAR Sum, Count. Num  INTEGER. 1aplemented with a REPEAT Loop Plan that
Average  REAL. realizes a Read-Process Loop Strategy
BEGIN coaposed with a Skip Guard Plan
Sum = 0. to sisulate a3 Sentinel-Controlled Running Total Loop Plan
Count =0, using Count Variable Plan
REPEAT Running Total Variable Plan
Read(Nus) . New Value Variabie Plan
IF NUM <> 99999 THEN Skip Guard Plan
BEGIN using average calculation
Sus = Sum + Nus,
Count = Count + 1
END.
UNTIL Nue = 99999
IF Count > O THEN
BEGIN
Average = Sun/Count.
Writeln( Average).
END
ELSE
Writeln( 'no legal inputs’).
END
(€)
PROGRAM OrangeC. Running Total Controlled Running Total Loop Plan
VAR Sus.  Count, Nua INTEGER, taplemented with a REPEAT Loop Plan that
Average  REAL. realizes a Read-Process Loop Strategy
BEGIN cosposed with 3 Patch Plan
Sur = -99999, Modify Initialization of Count Varrable
Coynt = -1, Modify Initialization of Running Total Variable
REPEAT to sisulate 3 Sentinel-Controlled Running Total Loop Plan
Read(Nua), using Count Variable Plan
Sus = Sua ¢ Nus, Running Total Variable Plan
Count = Count + 1. New Value Variable Plan
UNTIL Num = 99999, Skip Guard Ptan
IF Count > O THEN using average calculation
BEGIN
Average = Sum/Count
Writein( Average).
END
ELSE
Writeln( 'no legal 1nputs’).
END

Figure 1: Examples of Programming Plans



Soloway, Ehrlich, Gold

(ALPHA)

PROCRAM Orangedipha

VAR Sus  Count Nus  INTEGER,
Average  REAL

BEGIN
Sus =0
| |
REPEAT

END

Readin(tty) Read(tty Num)
IF NUM <> 99999 THEN

(BETA)

PROGRAM OrangeBeta
VAR Sus Count Nus  INTECGER

Average  REAL

BEGIN

Sus = -99§989,

REPEAT

Readin(tty) Read(tty Nus)

Sus = Sum + Nus,

BEGIN Court = Count + 1,
Sum = Sum + Num, INTIL Nus = 99999
Count = Count « 1, Average = Sum/Count.
END Writein(tty Awverage),
UNTIL Num = 99999 END
Average = Sum/Count
Writeln(tty, Average)
Correct Incorrect
mean time n mean time n
Version Alpha  2.26 ar 2.4] 10
Version Beta 3.98 3 2.42 41

{the time is in minutes)

Figure 2: FIB programs

Page 4






	cogsci_1983_194-199



