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Standard QCD resummation techniques provide precise predictions for the spectrum and the cumulant of
a given observable. The integrated spectrum and the cumulant differ by higher-order terms which, however,
can be numerically significant. In this paper we propose a method, which we call the σ-improved scheme,
to resolve this issue. It consists of two steps: (i) include higher-order terms in the spectrum to improve the
agreement with the cumulant central value, and (ii) employ profile scales that encode correlations between
different points to give robust uncertainty estimates for the integrated spectrum. We provide a generic
algorithm for determining such profile scales, and show the application to the thrust distribution in eþe−

collisions at NLL0 þ NLO and NNLL0 þ NNLO.

DOI: 10.1103/PhysRevD.95.054024

I. INTRODUCTION

Quantum chromodynamics (QCD) is essential for under-
standing data from collider experiments. Countless mea-
surements at the Large Hadron Collider (LHC), from Higgs
coupling measurements to new physics searches, rely on
precision QCD predictions. The success of these programs
has been enabled through remarkable advances in the
community’s ability to calculate cross sections with a level
of precision that keeps pace with constantly improving
experimental measurements. This will continue to be the
case for the remainder of the LHC program and for future
colliders.
This paper focuses on predictions for observables in QCD

that require resummation of large logarithms. Such observ-
ables are standard at collider experiments, from event and
jet shape observables to classical observables like qT , the
transverse momentum of the vector boson in Drell-Yan
production. The most precise calculations of these observ-
ables match resummed and fixed order results to obtain an
accurate prediction across the entire range of the observable.
However, there is a common inconsistency in resummed
predictions, one which we address in this work.
Resummed calculations for a generic observable τ make

two predictions: the spectrum dσ=dτ (cross section differ-
ential in τ), and the cumulant ΣðτÞ (cross section integrated
over τ). Using standard resummation techniques, these
predictions differ by higher-order terms (see, e.g., Ref. [1]),

Z
τ

0

dτ0
dσ
dτ0

¼ ΣðτÞ þ higher order; ð1Þ

which can be numerically significant. An equivalent form
of the inconsistency is that the derivative of the cumulant
is inconsistent with the spectrum: dσ=dτ ¼ dΣðτÞ=dτþ
higher order.

Each prediction is internally consistent and valid: the
spectrum accurately predicts the value of the differential
cross section and its uncertainties point by point in τ,
while the cumulant accurately predicts the integrated cross
section and its uncertainties. However, standard resum-
mation methods do not accurately model the long-range
correlations in the spectrum, and when the spectrum is
integrated this leads to the inconsistency with the cumu-
lant. Taking τ → ∞ in Eq. (1), a simple statement is that
the integral of the spectrum does not give the correct
inclusive cross section and its uncertainties at the relevant
fixed order accuracy. On the other hand, while these
quantities are correctly predicted by the cumulant, it is a
poor model of the short-range uncertainty correlations,
and so its derivative fails to accurately predict the point-
by-point uncertainties in the spectrum. We will resolve
this basic problem, making the spectrum and cumulant
predictions consistent.
The inconsistency in Eq. (1) arises from the fact that the

renormalization and factorization scales are chosen (by
necessity) to be τ-dependent. We will show that a simple
constraint on these τ-dependent scales will render the
spectrum and cumulant consistent, allowing the spectrum
to correctly predict the inclusive cross section and its
uncertainties. We will provide a generic algorithm, which
we call Bolzano’s algorithm, to choose scales that satisfy
this constraint.
The layout of this paper is as follows. In Sec. II, we

discuss the spectrum and cumulant predictions and the
source of the inconsistency in Eq. (1) in detail. In Sec. III,
we present a technique to make the spectrum and cumulant
consistent, and in Sec. IV we implement the solution for the
example of the thrust distribution in eþe− collisions. We
conclude in Sec. V and describe a specific implementation
of the algorithm in the Appendix.
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II. THE RESUMMED SPECTRUM, CUMULANT,
AND THEIR UNCERTAINTIES

Resummed calculations generally operate within one of
two frameworks: soft-collinear effective theory (SCET)
[2–5], or direct QCD (dQCD) (see, e.g., Refs. [6,7]). Both
frameworks provide equivalent predictions, built by facto-
rizing the cross section in terms of more universal matrix
elements that depend on a restricted set of dynamics and
scales [1,8–10]. The scales at which the factorization
occurs are handles by which uncertainties can be assigned;
this process is called scale variation. There are many
schemes to perform scale variation, and the assessment
of uncertainties can be subjective. However, by comparing
different orders of the calculation (e.g. NLL0 þ NLO versus
NNLL0 þ NNLO) to get a sense of convergence, one can
judge the robustness of an uncertainty scheme.
One feature common to factorization theorems for

resummed calculations is that some factorization scales
are naturally observable dependent. For example, if we
have a resummed cross section for an eþe− dijet event
shape τ, the factorization theorem for the spectrum in SCET
has the form

dσ
dτ

¼ HðQ; μHÞUHðμH; μ0Þ½JðQ; τ; μJÞUJðμJ; μ0Þ�
⊗ ½JðQ; τ; μJÞUJðμJ; μ0Þ� ⊗ ½Sðτ; μSÞUSðμS; μ0Þ�;

ð2Þ

where Q is the center of mass energy, and H, J, and S
are the hard, jet, and soft functions with corresponding
evolution factors UH, UJ, and US, and factorization scales
μH, μJ, and μS [11–13]. The evolution factors sum the large
logarithms of the factorization scales to the arbitrary
common scale μ0, and the factorization scales are chosen
to be similar to the “natural” scales in the functions. In this
example, this means that the jet and soft factorization scales
will be τ-dependent; we refer to them as profile scales (see,
e.g., Refs. [14–24] for a discussion of profile scales in
various contexts). A construction in dQCD will give the
same essential features (see, e.g., Refs. [13,25]).
The spectrum and cumulant predictions for a given

observable each have de facto features guaranteed by their
definitions. For the spectrum, robust matching to fixed
order calculations in the large τ limit (where logarithms
are no longer large) will yield accurate predictions for the
distribution. This feature is nontrivial, as the singular
(which is resummed) and nonsingular (which is typically
not) components of the spectrum have large cancellations at
large τ, and the matching must preserve these cancellations.
This is tantamount to the statement that one must be careful
when, and how, the resummation is turned off at large τ.
Additionally, robust uncertainty models will yield accurate
uncertainty estimates point by point in τ.

For the cumulant, consistent matching to fixed order
predictions will ensure the following condition is met:

Σðτ → ∞; μiÞ → σinclðμÞ; ð3Þ

where μi represents the set of factorization scales and μ is
the renormalization scale (or represents the renormalization
and factorization scales for hadronic collisions). That is, the
fixed order inclusive cross section is recovered in the large τ
(inclusive) limit, which is precisely where fixed order
predictions are robust. This implies that the cumulant is
accurately modeling the long-range scale uncertainties in
the cross section, while the spectrum is accurately model-
ing the short-range scale uncertainties.
These features of the spectrum and cumulant become

inconsistent because of the τ-dependence in the factoriza-
tion scales (see, e.g., Ref. [1]). Consider the spectrum and
cumulant before scales are chosen: by construction they
obey the relation

∂
∂τ Σðτ; μiÞ ¼

dσ
dτ

ðμiÞ: ð4Þ

Because the only τ dependence is through the explicit τ, we
can convert the partial derivative to a full derivative without
penalty. However, once we choose factorization scales to be
τ-dependent (e.g., μJ and μS), we have

d
dτ

¼ ∂
∂τ þ

dμJ
dτ

∂
∂μJ þ

dμS
dτ

∂
∂μS : ð5Þ

This introduces a difference between the cumulant deriva-
tive and the spectrum:

d
dτ

Σðτ; μiÞ −
dσ
dτ

ðμiÞ ¼
X
F¼J;S

dμF
dτ

∂
∂μF Σðτ; μiÞ: ð6Þ

Because the scale dependence cancels through the resum-
mation order achieved, this difference is strictly higher
order. This nonzero difference shows explicitly that the
integral of the spectrum is not equal to the inclusive cross
section; rather it is

Z
dτ

dσ
dτ

ðμiÞ ¼ σinclðμÞ −
X
F¼J;S

Z
dμF

∂
∂μF Σðτ; μiÞ: ð7Þ

This last term can be numerically significant even though it
is higher order, as it accumulates over the entire spectrum.
Furthermore, the value of this term will generally vary for
different scale variations, implying that the uncertainty of
the integrated spectrum can also be different from the fixed
order value.
In Fig. 1, we compare the cumulant to the integrated

spectrum for thrust in eþe− collisions, at both NLL0 þ
NLO and NNLL0 þ NNLO [26–28]. The plots illustrate the
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discrepancy between the two predictions: the integrated
spectrum does not match the cumulant in central value
or uncertainty over most of the range in τ. In particular,
at large τ, the integrated spectrum does not match the
inclusive cross section or its uncertainties.
The uncertainties are estimated through two types of scale

variations: those that probe the size of the logarithms being
resummed (resummationvariations), and those that probe the
absolute size of the scales, including the renormalization
scale (fixed order variations). Resummation variations probe
the size of the logarithms of scale ratios by varying the profile
scales. For the case of thrust, e.g., the logarithms of scale
ratios are of the form

ln
μ2H
μ2J

; ln
μ2J
μ2S

; ð8Þ

and there is a canonical relationship between the scales,
μ2J ¼ μHμS, that can be used to define the μJ profile in terms
of the μS profile.Onemay choose the following resummation
scale variations:

(i) Vary μS by a factor fSðτÞ (and its inverse).
(ii) Vary μJ by a factor fJðτÞ and μS by f2JðτÞ, keeping

the canonical relationship intact.
Additionally, one may choose to vary the profile shapes to
quantify the uncertainty associated with the choice of profile
scales. For the fixed order variations, a standard procedure
is to vary all scales by a common factor of 2 or 1=2. This
maintains the size of the logarithms but varies the renorm-
alization scale dependence in the resummation as well as the
matching.

III. A SPECTRUM WITH INTEGRATED
ACCURACY

In this section we describe the general approach used in
this work to obtain consistent predictions for the spectrum

and cumulant. As discussed above, these quantities have
complementary advantages and disadvantages, and our
method is a way of capturing the advantages of both. It
consists of two steps:
(1) Add higher-order terms to the resummed spectrum

to improve the agreement with the inclusive cross
section.

(2) Assess the resummation uncertainty using profile
scales that preserve the integrated value of the
spectrum.

The first step resolves the numerical difference between
the integrated spectrum and the cumulant, which can be
outside the uncertainties of either prediction (see Fig. 1).
The higher-order terms are also useful to ensure the
spectrummatches the inclusive cross section for the central,
up, and down scale variations (each with a different
renormalization scale μ).
The second step allows for resummation variations to be

fully uncorrelated with the uncertainty in the inclusive cross
section, which is governed by fixed order variations. Note
that this is not guaranteed using standard profile scales (as
one can see in Fig. 1, standard profile variations lead to large
uncertainties in the integrated spectrum).We have devised an
algorithm to generate such cross section–preserving profile
scales, requiring them to satisfy basic criteria such as
monotonicity, smoothness, and boundedness.
The following subsections describe these two steps in

further detail.

A. Step 1: Higher-order terms

We add the following higher-order terms to the standard
resummed spectrum:

δσRðτ; ~μiÞ ¼ κðτÞ
�
d
dτ

Σðτ; ~μiÞ −
dσ
dτ

ð ~μiÞ
�
; ð9Þ
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FIG. 1. Comparison of the cumulant with the integrated resummed spectrum for thrust in eþe− collisions at NLL0 þ NLO and at
NNLL0 þ NNLO. The cumulant matches onto the inclusive cross section at large τ, while the standard integrated spectrum differs in
both value and uncertainty. The integrated spectrum with the σ-improved scheme gives a consistent prediction.
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which restore the inclusive cross section in the spectrum,

Z
dτ

�
dσ
dτ

ðμiÞ þ δσRðτ; ~μiÞ
�
¼ σinclðμÞ: ð10Þ

Above, the ~μi are special profiles with two features. First,
since the difference between the spectrum and the deriva-
tive of the cumulant is proportional to d~μi=dτ, we want
these profiles to have smooth derivatives. Second, they are
designed to turn off the resummation earlier than the
standard profiles. This ensures that the cancellation
between the nonsingular and resummed singular parts of
the matched spectrum are preserved in the tail region of the
distribution.
The function κðτÞ is a smooth function of τ that goes to

zero at large τ and whose maximum is anOð1Þ value. Since
κðτÞ enables us to tune the effect of the higher order terms,
we will take them to be such that the integral of the
spectrum exactly matches the inclusive cross section for all
fixed order scale variations (variations of the matching
scale). This ensures that the fixed order variations preserve
the inclusive cross section and its uncertainties. Of course,
tuning the higher order terms to precisely match the
inclusive cross section is not necessary, but it simplifies
the latter step of producing profiles that preserve the
inclusive cross section (e.g., it allows the straightforward
identification of the central scale).
Including the higher-order terms, the spectrum is

dσR
dτ

ðμiÞ ¼
dσ
dτ

ðμiÞ þ δσRðτ; ~μiÞ; ð11Þ

where dσ=dτ is the standard resummed spectrum (without
any higher-order terms added). We will call dσR=dτ the
σ-improved spectrum. A similar procedure was adopted in
Ref. [29]. For the thrust example discussed in Sec. IV, we
give the explicit form of ~μi and κðτÞ in the Appendix.

B. Step 2: Bolzano’s algorithm

Finding profile scales μi that give a spectrum whose
integral is the inclusive cross section can be phrased in
terms of solving an integral equation:

Z
dτ

dσR
dτ

ðμiÞ ¼ σincl; ð12Þ

where the renormalization scale dependence of the inclu-
sive cross section is implicit. Given the complex depend-
ence of the spectrum on the factorization scales, an analytic
approach is not feasible but we can devise a numeric
algorithm to find profile scales that solve the equation to
within a negligible tolerance. We will discuss the algorithm
in terms of finding profile scales μSðτÞ, but the same ideas
carry through straightforwardly for μJðτÞ.

We will identify profile scales obeying the following
constraints:

(i) μSðτÞ is monotonic and smooth.
(ii) μSðτÞ has fixed shapes near the end points.
(iii) μSðτÞ is bounded; μmin

S ðτÞ < μSðτÞ < μmax
S ðτÞ.

The first condition ensures the smoothness of the
spectrum but not necessarily its monotonicity, which
should be further checked.
The second condition imposes canonical profile shapes

near the end points. In the low τ region, nonperturbative
effects on the resummed distribution can be large and often
determine the profile scales [12,30–33]. Thus, for τ < τNP,
we fix the profile to a given shape normalized by the value of
the profile at τNP. Similarly, in the large τ region, to preserve
the cancellations between singular and nonsingular terms,we
fix the shape of profiles for τ > τtail. We have the freedom to
change the profile scales in the range τNP < τ < τtail.
The third condition ensures that the profile scales

produce reasonable uncertainty estimates, consistent with
convergence between different orders of resummed pertur-
bation theory and the relative size of the singular and
nonsingular contributions. In practice, we choose the
boundary functions μmin

S ðτÞ and μmax
S ðτÞ to be the standard

minimum and maximum variations from the central profile,
so that the goal is to fill the standard band with profiles
μSðτÞ that solve Eq. (12).
Our strategy to generate profile scales satisfying these

constraints is based on the intermediate value theorem (also
known as Bolzano’s theorem), and we will refer to it as
Bolzano’s algorithm. Bolzano’s theorem states that if a
continuous function takes values of opposite sign at the end
points of an interval, then there is at least one point within
the interval where the function vanishes:

continuous f∶½a; b� → R; fðaÞ < 0 < fðbÞ
⇒ ∃c ∈ ða; bÞ such that fðcÞ ¼ 0: ð13Þ

Suppose we have two profiles μdSðτÞ and μuSðτÞ which
give spectra that integrate to values below and above the
inclusive cross section, respectively:

Z
dτ

dσR
dτ

ðμdSÞ ¼ σdincl < σincl;Z
dτ

dσR
dτ

ðμuSÞ ¼ σuincl > σincl: ð14Þ

Then, defining

dσðd;uÞR ðαÞ
dτ

¼ α
dσR
dτ

ðμuSÞ þ ð1 − αÞ dσR
dτ

ðμdSÞ; ð15Þ

Bolzano’s theorem guarantees that there exists an
α0 ∈ ½0; 1�, in this case
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α0 ¼
σincl − σdincl
σuincl − σdincl

; ð16Þ

such that

Z
dτ

dσðd;uÞR ðα0Þ
dτ

¼ σincl: ð17Þ

The corresponding profile scale is found by inverting the
scale dependence of the spectrum.
Alternatively, one can also use the same concept to

directly solve for profile functions that give a spectrum with
the inclusive cross section. Defining

μðd;uÞS ðαÞ ¼ αμuSðτÞ þ ð1 − αÞμdSðτÞ; ð18Þ

α smoothly interpolates between the down-type profile μdS
and up-type profile μuS in Eq. (14), and thus there exists an
α� for which

Z
dτ

dσR
dτ

ðμðd;uÞS ðα�ÞÞ ¼ σincl: ð19Þ

This approach does not require inverting the spectrum to
find the profile, but it requires solving for α� numerically.
Let us give a formulation of Bolzano’s algorithm:
(1) Generate a set of smooth profiles that have fixed

shapes near the end points.
(2) Sort the profiles into down-type and up-type.
(3) For each pair of down-type and up-type profiles,

determine the combination whose spectrum integra-
tes to the inclusive cross section.

(4) Select the solutions that are correctly bounded and
monotonic.

(5) Define a default central profile, if not assumed to be
the standard central profile.

This is illustrated in Fig. 2. Note that, in the first step, we
include profiles that are slightly nonmonotonic or slightly
outside the bounds since they may still lead to monotonic
and bounded solutions. Particular implementations of the
algorithm are discussed in the Appendix.

IV. EXAMPLE: THRUST

In this section we apply the σ-improved scheme to the
resummed thrust distribution in eþe− collisions [26].
We define thrust as

τ ¼ 1 −max
~n

P
ij~pi · ~njP
ij~pij

; ð20Þ

where ~pi are the three-momenta of the particles in the event
and the maximization over unit three-vectors ~n determines
the thrust axis. The limit τ → 0 corresponds to two
collimated back-to-back jets. The distribution of τ depends
on different energy scales such as the collision center of
mass energy Q, the typical jet mass Q

ffiffiffi
τ

p
, and the typical

energy of soft emissions Qτ. As discussed in Sec. Ref. II,
logarithms of ratios of these scales appear in the fixed order
prediction of the spectrum and cumulant, and, near the
threshold region τ → 0, these logarithms become large and
have to be resummed.
Figure Ref. 1 shows the integrated σ-improved spectrum

at NLL0 þ NLO and NNLL0 þ NNLO [27,28]. The
σ-improved spectrum is consistent with the cumulant: it
integrates to the inclusive cross section and reproduces its
uncertainty. Convergence is also preserved in the new
scheme as shown in Fig. 3. The upper panels show the
peak and transition regions of the σ-improved spectrum at
NLL0 þ NLO and NNLL0 þ NNLO. The lower panels
show a comparison between the NLL0 þ NLO and
NNLL0 þ NNLO predictions of the cumulant and of the
integrated σ-improved spectrum. These are the same curves
in Fig. 1 but are reproduced here to emphasize that the
integrated σ-improved spectrum has the convergence prop-
erties of the cumulant.
We stress that the point-by-point uncertainties in the

spectrum are equivalent to the standard case since the
profile variations obtained with the Bolzano algorithm fill
the standard fiducial band. However, in contrast to the
standard case, each profile variation obtained with the
Bolzano algorithm preserves the inclusive cross section,
and thus encodes correlations between uncertainties at
different points of the spectrum. This leads to the signifi-
cant difference in uncertainties between the standard and
σ-improved integrated spectra shown in Fig. 1. We illus-
trate this further in Fig. 4 by comparing the uncertainty
ΔðτÞ of the integrated spectrum from the resummation

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Our method to find solutions to Eq. (12) is based on
determining profiles that give an inclusive cross section less than
(down-type profiles) or greater than (up-type profiles) the true
inclusive cross section, and then identifying for each pair the
combination that solves the equation and is monotonic, smooth,
and bounded.
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variations in both schemes as well as from the fixed order
variations.
As expected, the resummation uncertainty in the

σ-improved scheme goes to zero at large τ, leaving only
the fixed order uncertainty. Thus, in the σ-improved
scheme, the resummation uncertainty is fully uncorrelated
with the inclusive cross section, while the fixed order
uncertainty is fully correlated with the inclusive cross
section. This makes it straightforward to build a covariance
matrix from uncertainties in different bins of the observ-
able. For example, in the case of two bins, the resummation
and fixed order uncertainties exactly map into migration
and yield uncertainties defined in Ref. [34] (see also
Refs. [35,36]), and they are given in Fig. Ref. 4 for the
two-jet bin defined by the interval ½0; τ�.

V. CONCLUSIONS

Resummed predictions for cumulants and spectra of
generic QCD observables are often inconsistent. Even
though the difference is formally higher order, it can be

numerically relevant, and furthermore, uncertainty corre-
lations across the spectrum are not properly included in
standard resummation schemes.
In this paper, we defined the σ-improved scheme, a

two-step procedure that makes cumulants, spectra, and their
uncertainties consistent. In the first step, we provided a
prescription to add higher-order terms that make the value
for the integrated spectrum consistent with the inclusive
cross section. In the second step, we devised Bolzano’s
algorithm to select profile scales that preserve the inclusive
cross section, thus encoding proper uncertainty correlations
across the spectrum. We applied the scheme to the thrust
distribution at NLL0 þ NLO and NNLL0 þ NNLO, dem-
onstrating consistent predictions for the cumulant and the
integrated spectrum (Fig. 1), good convergence properties
(Fig. 3), and robust uncertainty estimation (Fig. 4). As
discussed in Sec. IV, in the σ-improved scheme, resum-
mation and fixed order uncertainties exactly map onto
migration and yield uncertainties, and thus a covariance for
different bins of an observable can be straightforwardly
computed [34].

FIG. 3. Convergence of the thrust σ-improved spectrum in the peak (upper left panel) and transition (upper right panel) regions, and of
the cumulant (lower left panel) and integrated σ-improved spectrum (lower right panel). The slight nonconvergence in the peak region is
an artifact of pinching in the resummation scale dependence and exists also in the standard case. In contrast to the standard case, the
integrated σ-improved spectrum exhibits the convergence properties of the cumulant, as expected.
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The σ-improved scheme defines a general strategy which
can be applied to other observables. For example, it would
be interesting to consider the Higgs transverse momentum
and C-parameter distributions [37–42]. Furthermore, we
have implemented a simple version of Bolzano’s algorithm;
improvements to the computational efficiency and to the
matching of the integrated spectrum and cumulant (e.g., by
matching at additional intermediate points) can be pursued.
In this paper, we worked with resummation within the
SCET framework, but the same techniques can be applied
to resummed spectra in dQCD.

ACKNOWLEDGMENTS

We thank Frank Tackmann for collaboration in the early
stages of this work, as well as Christopher Lee and Iain
Stewart for useful discussions. This work used resources
of the National Energy Research Scientific Computing
Center and was supported by the DOE under Contract
No. DE-AC02-05CH11231.

APPENDIX: IMPLEMENTATION DETAILS

In this Appendix we discuss an implementation of the
σ-improved scheme for the thrust distribution.
We first added higher-order terms to the thrust spectrum

to restore consistency between its integral and the inclusive
cross section, according to Eqs. (9) and (11). The explicit
form of the suppression factor κðτÞ we used is given by

κðτÞNLL0 ¼ 0.90625ð1 − tanhð8τ − 0.56ÞÞ; ðA1Þ

κðτÞNNLL0 ¼ 0.8475ð1 − tanhð8τ − 0.56ÞÞ: ðA2Þ

For the profiles ~μS;JðτÞ in the higher-order terms in
Eq. (9), we used the form

~μSðτÞ ¼ 0.003þ 0.4985ð1þ tanhð10τ − 2ÞÞ; ðA3Þ

~μJðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q ~μSðτÞ

p
; ðA4Þ

where Q is the center of mass energy.
We now discuss Bolzano’s algorithm, based on the

solution presented in Sec. III B. The goal is to fill a band,
defined by boundary functions μmin

i ðτÞ and μmax
i ðτÞ, with

profiles whose integrated spectrum is equal (within toler-
ances) to the inclusive cross section. Additionally, we
require that the profiles are monotonic, smooth (at least
C1), and have fixed shapes near the end points.
As mentioned in Sec. III B, we will solve Eq. (12) in the

subdomain ½τNP;∞Þ, assuming that the contribution to the
total cross section from ½0; τNPÞ is given by the cumulant.
Thus, Eq. (12) is replaced by

σincl ¼ ΣðτNP; μiðτNPÞÞ þ
Z

∞

τNP

dτ
dσR
dτ

ðμiÞ: ðA5Þ

The shape of profiles in the region τ ≤ τNP is fixed by the
value at τNP as

μiðτÞ ¼
μiðτNPÞ
μcðτNPÞ

μcðτÞ; 0 ≤ τ < τNP; ðA6Þ

so that the cumulant depends on μiðτNPÞ. Above, μcðτÞ is
the default central profile, here taken to be the standard
central profile. In general, Eq. (A5) is no longer linear in the
spectrum, and the solution in Eq. (16) is invalid. However,
if we consider profiles with the same value at τNP, the
boundary term is simply a constant, and we recover, with
appropriate redefinition, the linear system solved by
Eq. (16). The complete set of solutions that fill the
bounding functions can then be obtained by considering
various values of μiðτNPÞ.
The first step is to generate profiles, and it is done by

interpolating a curve through randomly sampled points.
Gridded sampling can also be done, but may be less
efficient given the unknown distribution of solutions and
the high dimensionality required for coverage. To obtain
solutions with the properties listed below Eq. (12), the
generated profiles have the following properties:
(1) fixed shapes near end points. In particular, all

profiles have the same value at τNP.
(2) roughly bounded: μmin

i ≲ μi ≲ μmax
i .

(3) roughly monotonic: 0≲ dμi
dτ .

(4) smooth and artifact free.
The first property enforces standard behavior in the

nonperturbative and tail regions, as discussed in Sec. III B.
We require that solutions obtained in the subdomain
connect smoothly at τNP to the functional form given in
Eq. (A6). In the tail region, imposing strict boundedness,

μmin
i ðτÞ ≤ μiðτÞ ≤ μmax

i ðτÞ; τ > τtail; ðA7Þ
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FIG. 4. Uncertainties of the thrust integrated spectrum from
resummation variations in both the standard and σ-improved
schemes and from fixed order variations.
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is sufficient for obtaining solutions that reduce to unity
since both boundary functions obey μmin;max

i ðτÞ → 1. Note
that in standard approaches, additional uncertainty is
accounted for by varying the value of τtail. Here, this
uncertainty is effectively accounted for by appropriate
choice of the boundary function μmax

i ðτÞ.
The second property follows from the μ-range of the

chosen sampling regions. Note that profiles that are slightly
unbounded or nonmonotonic may still lead to solution
profiles that are bounded and monotonic. For example,
considering profiles outside the boundary functions may be
useful for obtaining solutions close to (and within) the
boundaries. On the other hand, profiles that are too far
outside the bounds, or are highly oscillatory, are unlikely to
yield acceptable solutions, and are not considered.
The third and fourth properties require a careful choice of

the τ-range of sampling regions, and of the interpolation
method employed. For example, we may avoid highly
oscillatory profiles by controlling the number, range and
locations of the sampling regions, or by using a monotone
interpolation method. Similarly, we are careful to choose

sampling and interpolation strategies that do not lead to
profiles that exhibit artifacts such as kinks, nodes, and gaps.
Steps two through five described at the end of Sec. III B

are straightforward and we will not discuss them further.
In our basic implementation of the algorithm, it takes

Oð0.01Þ seconds on a standard laptop to generate one
profile solution. We also obtain similar efficiencies when
solving directly for the profiles using Eq. (18) and a
numerical root-finding method. Note that the efficiency
depends not only on the solver but also on the strategy for
generating initial candidate profiles, and the guidelines
for step one described above are useful to increase
the yield of solutions with the required properties.
Interestingly, there may be small regions within the
boundary functions that are hard to fill with solutions,
demanding precise correlations at small and large τ to
yield the right cross section while maintaining monoto-
nicity. These gaps can be supplemented by focusing the
initial sampling regions, but in practice, the remaining
gaps are not large enough to significantly impact the
point-by-point uncertainty estimation.
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