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Modeling of Lead Rubber Bearings at Large Strains and Effects on Structural Response 
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Joaquin Fabian Marquez 

Doctor of Philosophy in Structural Engineering 

University of California San Diego, 2021 

Professor Gilberto Mosqueda, Chair  

 

 Seismic isolation is an effective method to mitigate the damaging effects of horizontal 

ground motions. The flexible layer, typically placed at the base of the structure, reduces forces 

transmitted from ground shaking at the expense of concentrated displacements at the seismic 

isolation layer. Base isolation systems within a basement of a building require a free clearance to 

allow for such displacements to occur. A surrounding moat wall can be placed to constrain the 

isolation devices from exceeding their displacement capacity. However, impact to the moat wall 

can be damaging to the structure with recent studies concluding that the required clearance to stop 
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(CS) specified by building design codes is insufficient for high consequence low-frequency ground 

motions. 

The Lead Rubber Bearing (LRB) is widely used in practice for implementation of seismic 

isolation. Current models for LRB are not able to capture the salient characteristics of bearing 

behaviors observed in experimental data, especially under large displacement demands. Therefore, 

the large strain lead rubber bearing (LSLRB) model is proposed to better predict the response of 

base isolated structures under extreme earthquake shaking considering the combined effects of 

lead core heating, and material strain hardening in the lead and rubber. The LSRLB model was 

implemented in a full-scale Nuclear Power Plant (NPP) numerical model under earthquake loading 

and demonstrated to reduce displacement demands and lower velocities in the case of impact to a 

moat wall. Consideration of extending the moat wall clearance and allowing the bearings to reach 

strain hardening at large displacements showed to be effective in improving the overall seismic 

response under large ground motions. In terms of the effect of bearing models on the critical 

internal contents of NPPs, the LSLRB model showed a reduction in floor spectral accelerations 

throughout the superstructure compared to current models utilized in practice. The results 

presented are also highly dependent on modeling of the moat wall impact. Current models are 

reviewed and extended to better predict the amount of moat wall deformation considering the 

concrete retaining wall, soil contribution and coefficient of restitution.  
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Chapter 1 INTRODUCTION 

Seismic isolation systems are utilized to elongate the lateral vibration period of a building 

structure as a means of protecting the structure from seismic shaking. The added flexibility, 

typically placed at the base of the structure, provides many benefits for isolated structures. First, 

for short period structures, it elongates the fundamental period and reduces the effective seismic 

forces by shifting the vibration frequency away from the most damaging higher frequency 

earthquake shaking. Second, the isolation system can inherently dissipate significant energy or 

supplemental damping (i.e. dampers) can be added to limit displacements at the isolation level and 

the shear forces in the superstructure. Lastly, the increase in flexibility results in larger 

displacement demands, however these displacements are confined to the bearings themselves that 

can endure large deformations without permanent damage. For buildings, the base isolation system 

is typically placed within a moat at the basement level to allow for these displacements to be 

achieved without obstructions. A surrounding moat wall can function as a stop to limit isolator 

displacements and prevent their failure. However, recent investigations of moat wall clearance 

requirements as specified by building design codes have indicated that the design displacements 

may be insufficient for acceptable performance of isolated buildings under large earthquakes.   



2 

 

Two types of bearings are commonly used for base isolation: elastomeric and friction 

bearings. This dissertation focuses on modeling of a type of elastomeric bearing known as the Lead 

Rubber Bearing (LRB), to more accurately capture the behaviors produced by these bearings at 

large strains. A new model is proposed and compared to experimental data from large amplitude 

cyclic testing of two identical large bearings under a constant axial load to focus on the material 

nonlinear response. Capturing the behavior of the bearings is highly dependent on the variation of 

axial load and the size of the bearing (i.e. shape factors) which is not examined here (Sheridan et 

al. 2012). The benefits of the proposed model in terms of predicting maximum displacements of 

the isolation system and the potential for impact to moat walls under high consequence low-

frequency earthquakes is examined. 

1-1    Lead Rubber Bearings 

The use of lead rubber bearings (LRB) for seismic isolation was proposed in 1974 in New 

Zealand by Skinner et al. (1974), and since then they have been the subject of various research 

studies. They were developed in detail by Robinson and Tucker (1977) experimentally 

demonstrating that the isolation system performed as anticipated. Since then, LRBs have become 

one of the most widely applied devices for seismic isolation. The LRB consists of alternating thin 

rubber layers and steel shims that allow for horizontal flexibility while the steel shims prevent 

bulging of the rubber and produce a high vertical stiffness. The lead is typically placed at the center 

of the bearing as a form of hysteretic energy dissipation. The lead core’s material makeup allows 

for the mechanical properties of the lead to be recovered within minutes of previous excitations 

and allows for repeated use of the LRB under multiple earthquakes. The rubber shims are made of 

an unfilled elastomer typically known as natural rubber. The mechanical behavior of the elastomer 
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is well established at low to intermediate strains, and because of its low damping properties, it is 

often simplified as an elastic material.  

Although the behavior of LRBs have been heavily researched, one persistent challenge is 

capturing the exact response of bearings due to various factors such as scragging, rate effects, 

contamination, temperature, initial lead hardening, and distance travelled. Current design codes 

conservatively account for these complex behaviors in an estimated sense, using property 

modification factors such as in ASCE 7-16 (2017). Furthermore, simple models currently 

implemented in software and widely used by practicing engineers seem to capture the response of 

LRBs accurately for design level earthquake shaking.  However, a recent emphasis of examining 

the response of seismically isolated buildings under extreme earthquake shaking requires more 

advanced models that capture the aforementioned behaviors.  

Ideally, a mathematical model for LRBs should capture all the various nonlinear behaviors 

observed at small to large strains: scragging, rate effects, initial lead hardening, contamination, 

temperature, and distance travelled. Modeling all these behaviors is impractical, therefore being 

able to strategically select the features that are most important towards determining key response 

parameters is critical. The most practical approach to pinpointing the contributions of the complex 

behavior demonstrated by LRBs is to separate the main components and understand their key 

material properties.   

The rubber portion of LRBs at low to intermediate strains of the model can simply be 

modeled as an elastic material, however at higher strains it develops hardening and softening 

effects, behaving similar to that of the High Damping Rubber (HDR) (Diani et al. 2009). Rubber 

damage referred to as scragging and Mullins effect, are more prominent at higher strains and may 

consequently develop hardening and softening ‘unloading’ effects that result in a widening of the 
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hysteresis at peak displacements. Regardless of the root of this phenomenon, these nonlinear 

effects need to be accounted for when conducting analysis of critical structures (Dall’Asta and 

Ragni, 2008).  

The heating of the lead core has shown to be an important behavior of the LRB, it is the 

passive energy dissipation component of the bearing and highly influential in the overall behavior. 

A recently developed model in OpenSees (2014) named LeadRubberX, has the ability of predicting 

the strength degradation due to heating of the lead core. One feature that has not been fully 

identified is the initial lead hardening of the lead core and has been speculated to occur due to 

high-speed error or instrumental error. However, accounting for this initial lead hardening is 

beneficial in determining the actual characteristic strength of the LRB. 

1-2    Research Objectives 

A key response parameter in the analysis of seismically isolated structures is the 

displacement at the isolation level. The displacement demands on the isolation system and LRBs 

can be limited by a surrounding moat wall and exceeding this displacement limit results in impact 

causing possible detrimental effects on the structural response. Current design standards, 

specifically for NPPs, aim to limit the occurrence of impact by specifying the minimum required 

clearance to stop (CS) as the lognormal 90th percentile horizontal displacement for Beyond Design 

Basis Earthquake (BDBE) shaking defined as a high consequence low frequency earthquake event 

with a return period of 100,000 years (U.S. NRC 2014). Recent studies have shown that impact of 

an isolated structure to a moat wall can result in a significant amplification in the seismic response 

of the structure (Komodromos 2008; Masroor and Mosqueda 2015; Sarebanha et al. 2018). For the 

isolation systems, recent studies conducted on various structural systems by Kitayama and 
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Constantinou (2018, 2019), discuss the significance of the stiffening behavior of the isolators and 

restraints to improve the performance of isolated structures. Increasing the displacement capacity 

of the isolators, resulted in lower probability of collapse when considering Maximum Credible 

Earthquake (MCE) ground motions (ASCE 2017) or a high consequence low frequency event.  

One key objective of this dissertation is to examine LRB subjected to large displacement 

demands and to develop accurate models capable of capturing the various nonlinear behaviors 

ranging from initial lead hardening at small displacements to rubber hardening and damage effects 

at large displacements. Reliable models can better predict displacement demands, and the potential 

for minimizing or reducing the velocity before impact to moat walls, thus reducing the damage to 

the superstructure and contents. In the case of impact, an extension of an existing moat wall model 

is further explored to accurately predict the amount of moat wall deformation given an impact 

velocity and moat wall properties.  

1-3    Organization of Thesis 

An overview of the sequence of each chapter and brief summaries are provided in this 

section. In Chapter 2, existing experimental work is examined to identify the complex behavior of 

LRBs and the sources of the various nonlinear behaviors. The various existing bearing models are 

reviewed to gain insight on their capabilities and limitations. Finally, recommendations for 

advancement in LRB models are proposed. 

In Chapter 3, the recently developed LeadRubberX model is examined in order to 

understand its performance under earthquake excitations. The model is compared against a Bouc-

Wen (smooth bilinear) model using ASCE code requirements by applying property modification 

factors to observe if the LeadRubberX model can provide similar conservative results as the code. 
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The LeadRubberX model was found to be sensitive to long-duration ground motions resulting in 

excessive displacements, caused by excessive heating of the lead core, which resulted in 

exceedance of the bounds.  

Chapter 4 presents experimental data to examine the nonlinear behavior in a large sized 

LRB subjected to large strains. A combination of existing bearing models is utilized to fully 

capture experimental data. A nonlinear time history analysis (NLRHA) is conducted on a SDOF 

system with the novel parallel model named, Large Strain Lead Rubber Bearing (LSLRB), and is 

compared against current LRB models to demonstrate differences in response prediction with these 

models. 

In Chapter 5, the parallel model is implemented for nonlinear response history analysis 

(NLRHA) on a full-scale Nuclear Power Plant (NPP) model to understand the potential benefits 

of including the nonlinear behaviors observed in LRBs. The clearance to stop (CS), distance to the 

moat wall, will be examined in order to observe any benefits of the LRBs hardening effects may 

have on reducing impact velocities and consequently reducing superstructure demand. For 

impacts, an extension of a previous moat wall deformation prediction model is revisited to predict 

the moat wall deformation given an impact velocity and the moat wall properties.  

In Chapter 6, an improvement to the parallel model named Large Strain Lead Rubber 

Bearing (LSLRB), is extended to account for bidirectional behavior. The model includes the ability 

to capture initial lead hardening, lead core heating, high strain hardening, anisotropic damage 

behavior, and softening “unloading” effects from scragging and Mullins effects. The advantage of 

the LSLRB model is that the calibration is done for one set of parameters for various levels of 

strains and strain rates. The model is implemented in OpenSees software and a NLRHA is 
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conducted on a SDOF system in order to understand the behavior compared to other simpler 

models.  

In Chapter 7, a NLRHA is conducted on a full-scale Nuclear Power Plant (NPP) model in 

OpenSees with the implementation of the novel LSLRB model. The analysis provides insight for 

the potential benefits of extending the moat wall, and in preventing or reducing impact velocities 

to the moat wall. Although recent studies have shown extending the moat wall may be desirable, 

this analysis helps identify at what levels of strain this may be useful and the costs and benefits of 

allowing large strains for the LSLRB model. The previously updated moat wall deformation 

prediction model is considered and proves to be a viable design solution to provide conservative 

predictions.  

Chapter 8, summarizes the research work that was conducted for this dissertation, 

emphasizes the main contributions and provides recommendations for future work.  
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Chapter 2 REVIEW OF MODELS AND 

EXPERIMENTS FOR LEAD RUBBER BEARING 

 

In an effort to develop reliable bearing models that are able to capture the behavioral 

characteristics of lead-rubber bearings (LRB) under large amplitude cyclic displacements, existing 

experimental work of such characteristics are first reviewed. Characteristics of interest include the 

strength reduction in the bearing due to the heating of the lead core as well as initial lead core 

hardening. With respect to the behavior of the rubber, a model that can capture high strain 

hardening effects as well as the softening “unloading” effects is desired. While certain models 

capture key characteristics, a model demonstrating to capture the full complex response of LRBs 

was not identified. Before remedying extant deficiencies, a clear understanding of existing 

experimental work is first reviewed in order to pinpoint the sources of the nonlinear behaviors 

exhibited in LRBs. Then, examination of existing bearing models is conducted to understand the 

capabilities and the limitations these models may have in capturing these nonlinear effects.   
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2-1    Existing Experiments 

In this section, experiments of LRBs will be examined to identify the complex behaviors 

that the bearings may exhibit. LRBs have continuously shown to develop various nonlinear 

characteristics ranging from the initial lead core hardening followed by degradation from heating 

of the lead core. Additionally, at larger strain levels, the rubber in LRBs develops hardening, 

softening “unloading” effects, and anisotropic effects. Existing experimental work will be 

presented in order to identify the various nonlinear behaviors. 

2-1-1    Lead core behavior 

Many experimental tests have been conducted on LRBs since they were first introduced by 

Skinner et al. (1974). Experimental data is a natural way to gain knowledge and understanding of 

the behavior of such composite systems. Shear tests of solely the lead core were conducted in order 

to understand the behavior of the lead core itself (Aramaki et al. 2004). The dimensions of the lead 

specimen are shown in Figure 2-1a, and the resulting hysteresis from a cyclic shear test is shown 

in Figure 2-1b. The lead specimen clearly undergoes strength degradation associated with heating 

of the lead material. Moreover, in the initial cycle, material strain hardening can be observed and 

is often overlooked in experimental results of LRBs. Some researchers have speculated that this 

initial lead hardening phenomenon may occur due to instrumental error or high-speed testing. 

However, this slow experiment (at 0.1Hz) along with others, oppose this speculation as the initial 

lead hardening phenomena have been observed in other various experimental tests of LRBs (Eem 

and Hahm 2019; Kalpakidis and Constantinou 2009a; McVitty and Constantinou 2015; Sanchez 

et al. 2013; Tyler and Robinson 1984b). 



12 

 

   
a.)                                                                  b.) 

Figure 2-1 Fatigue testing at 0.1Hz a.) Lead Core Specimen b.) Load-Displacement Hysteresis 

(Aramaki et al. 2004) 

 

In Figure 2-2, the force-displacement loops are shown for a cyclic shear test of a LRB 

demonstrating the same variation in strength as the lead specimen.  A decrease in the width of the 

hysteresis by cycle is evident due to the strength degradation of the lead core. Furthermore, the 

initial loading cycle in the negative direction demonstrates an initial hardening of the lead core. 

This phenomenon has not been investigated for LRB and may be of importance especially for short 

duration near fault type ground motions having few cycles of response. Kalpakidis and 

Constantinou (2009a) investigated the heating of the lead core in LRBs from cyclic loading by 

utilizing thermodynamic equations to find the relationship between shear displacements and 

strength degradation due to the heating of the lead core (described in section 2-2-2-1).  
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Figure 2-2 Force-Displacement Loops of LRB Load=67kN, Displacement Amplitude=114mm 

and Frequency =0.5Hz (Kalpakidis and Constatinou 2008) 

2-1-2    Rubber Behavior 

Natural rubber exhibits linear elastic behavior at low to medium strains, however at higher 

strains it begins to develop hardening effects behaving similar to High Damping Rubber (HDR) 

(Diani et al. 2009). Harwood and Payne were able to demonstrate that natural rubber (NR) 

experiences the same level of softening effects when the natural rubber sustains the same amount 

of stress as the HDR specimen (Harwood et al. 1965; Mullins 1969). As shown in Figure 2-3, the 

natural rubber undertaken to the same level of stress as the NR filled with 80 to 20 phr (Parts per 

Hundred Rubber) of carbon black (CB) experienced similar softening effects, however only at 

larger strains. While the focus of this dissertation is on LRBs, experimental observations and 
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models for HDR bearings will also be examined since similar nonlinear behavior is observed in 

LRBs only at large strains. 

 
Figure 2-3 Stress (referred to original cross-section) versus strain for (a) gum vulcanizate, (b) 

vulcanizate containing 20 phr HAF, and (c) vulcanizate containing 80 phr HAF: (I) 

initial stressing curve; (2) first retraction curve; (3) second stressing curve; (4) second 

retraction curve (Harwood et al. 1965) 

 

Ishida et al. (1991) tested three identical bearings: a natural rubber bearing (NRB), a lead 

rubber bearing (LRB), and a high damping rubber (HDR) bearing. The purpose of the study was 

to gain insight of the bearings undergoing various loading types and deform the bearing to large 

shear deformations to understand the safety margins and ultimate characteristics (or failure). In 

Figure 2-4, the loading types applied on the NRB and LRB were a static cyclic, static monotonic, 

and dynamic monotonic testing. The authors of this study deduced important implications of these 

bearings: regardless of the strain rate and the amount of previous cycles (or damage), the bearing 

failed at 500% shear strain. First, it is important to note that both the NRB and the LRB exhibit 

rubber hardening at these large strains. Second, the pronounced softening ‘unloading’ effects can 

be observed for both bearings which may be attributed to Mullins effect or scragging damage. 
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More recently, tests were conducted on large LRBs for NPPs imposing various characterization 

tests of up to 500% shear strain without failure, exhibiting various nonlinear behaviors such as 

rubber hardening and softening ‘unloading’ effects along with lead core strength degradation due 

to heating and initial lead hardening (Eem and Hahm 2019). An et al. (2020) conducted  many 

experimental tests on LRBs shearing the bearing with various axial loads to failure, resulting in 

failures occurring at greater than 400% shear strain, implicating the LRBs extensive capacity.  

These tests are presented in more detail later as they are used for the development of the models 

proposed here.  

 
(a.)NRB                                                                  (b.) LRB 

Figure 2-4 Shear stress-strain curves a.) Natural Rubber Bearing (NRB) b.) Lead Rubber Bearing 

(LRB) (Ishida et al. 1991) 

 

Experimental tests of single layer HDR specimens were tested in various directions and it 

was recognized that the accumulated rubber damage behaved in an anisotropic manner. 

Accordingly, a model capable of capturing such effects was proposed by Tubaldi et al. (2017). 

Ragni et al. (2018) to further understand the anisotropic behavior of the HDR material, a circular 

pad was imposed to the shear strain history shown in Figure 2-5. The idea of imposing the strain 
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history was to observe the cyclic shear response in the reference direction versus the rotated 

direction with increasing shear strain.  

 
Figure 2-5 Imposed strain history of the rotated double shear test (Ragni et al. 2018) 

 

With the imposed shear strain history, the shear stress of the rubber specimen was obtained 

showing anisotropic behavior (Figure 2-6). The authors concluded that when the rubber specimen 

is rotated by 180° (Figure 2-6f) the response is essentially equivalent to the reference direction. 

However, when the bearing is displaced in the same direction (Figure 2-6a) evident damage had 

developed in the bearing and as the angle increased the amount of damage decreased. These 

experimental results verify that the cumulative damage is in fact anisotropic and implementing the 

idea of representative directions (Freund and Ihlemann 2010) along with damage formulations 

developed in (Tubaldi et al. 2017) were deemed necessary to account for such effects for 

calibration of 2D tests (Ragni et al. 2018). Considering these HDR tests, when carefully observing 

Figure 2-4, the LRB and NRB exhibit roughly the same amount of stress at the positive and 

negative directions suggesting anisotropic behavior, similar behavior as observed in HDR bearing 

(Figure 2-6).  
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Figure 2-6 Double shear tests on rotated test pieces: (a) 𝜃 = 0° (b) 𝜃 = 30° (c) 𝜃 = 60° (d) 𝜃 =

90° (e) 𝜃 = 135° (f) 𝜃 = 180° (Ragni et al. 2018) 
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2-2    Existing Bearing Models  

2-2-1    Linearized viscoelastic model  

In design of buildings, computational time is costly and therefore performing a simplified 

analysis is often desired. In order to defer extraneous analyses, certain requirements have to be 

met in order to perform an Equivalent Lateral Force (ELF) analysis, sometimes referred as 

Equivalent Linear Analysis (ELA), Linear Static Analysis, or Equivalent Static Analysis (ASCE 

2017; BSSC 1997; CEN 2004). For base isolated buildings, the idea of performing an ELF analysis 

is based on the observation that the response is dominated by its first mode of vibration, in which 

the horizontal displacements are concentrated at the isolation level, while the superstructure moves 

like a rigid body. For that reason, base isolated buildings can then be modeled as an equivalent 

elastic SDOF system, whose stiffness is taken as the effective stiffness of the isolation system, 

evaluated for the design displacement. For US design standards (ASCE, 2017) to allow such 

analysis, the following criteria have to be met:  

1.) The Base-isolated structure cannot exceed certain height requirements depending on the 

lateral force system. 

2.) Fixed-base period must be well separated from the isolated period.  

3.) The isolation system must have an adequate restoring force.  

4.) The isolated structure may be on Site Classes A, B, C, or D without restriction on 𝑆1, with 

effective isolated periods up to 5s, and with moderate irregularities. 

With the requirements met for ELA, the isolation system can be reduced to a SDOF linearized 

system. When considering a linear damped system, the differential equation is expressed as:  
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𝑀𝑥̈𝑒𝑞(𝑡) + 𝐶𝑒𝑞𝑥̇𝑒𝑞(𝑡) + 𝐾𝑒𝑞𝑥𝑒𝑞(𝑡) = −𝑀𝑥̈𝑔(𝑡) (2− 1) 

where M, 𝐶𝑒𝑞, and 𝐾𝑒𝑞 are the mass, equivalent viscous damping, and equivalent stiffness of the 

system and the overdot denotes differentiation with respect to time. The acceleration, velocity, and 

displacement of the single degree of freedom (SDOF) system with respect to the ground are 

expressed as 𝑥̈𝑒𝑞(𝑡), 𝑥̇𝑒𝑞(𝑡), and 𝑥𝑒𝑞(𝑡), respectively. As shown in Figure 2-7, the hysteretic 

behavior of the isolation system is simplified and represented by an equivalent linearized system 

that includes an elastic spring force and viscous damping force. Although, this type of analysis 

may be desired, it may not capture the actual behavior of isolation system and often the stringent 

requirements of the code require nonlinear representation of such isolation systems. Models for 

nonlinear time history analysis are described next. 

 

Figure 2-7 Linear analysis method (Liu et al. 2014). 

2-2-2    Bouc-Wen Model  

One of the most utilized hysteretic models in structural engineering is the Bouc-Wen model 

(Bouc 1967; Wen 1976). The attraction of this model is the versatility it has in modeling different 

types of hysteretic systems. The equations of motion along with the Bouc-Wen model restoring 

force is expressed as:  

𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐹(𝑡) = −𝑀𝑥̈𝑔(𝑡)  (2− 2) 

where F(t) is the Bouc-Wen restoring force. The restoring force is given by,  
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𝐹(𝑡) = 𝛼𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑥(𝑡) + (1 − 𝛼)𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑧(𝑡) (2− 3) 

where 𝛼 is the ratio of post-yield stiffness to the pre-yield stiffness, 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙. The non-observable 

hysteretic parameter 𝑧(𝑡), sometimes referred to as the hysteretic displacement, is a nonlinear 

differential equation with zero initial condition z(0)=0, and has dimensions of length:  

 𝑧̇(𝑡) = 𝑥̇(𝑡){𝐴 − [𝛽𝑠𝑖𝑔𝑛(𝑧(𝑡)𝑢̇(𝑡)) + 𝛾]|𝑧(𝑡)|𝑛} (2− 4) 

The sign denotes signum function, and A, 𝛽 are always positive values. Parameters 𝛾 and 𝑛 are 

dimensionless quantities controlling the behaviour of the model (i.e. 𝑛 = ∞ generates an 

elastoplastic hysteresis), with more details found in Wen (1976). The dimensionless constants 

𝐴, 𝛽, and 𝛾 must satisfy the following A/( 𝛽 + 𝛾) =1 (Mokha et al. 1993). Typically for elastomeric 

bearings, A is set equal to 1 and both 𝛽 and 𝛾 are set to 0.5. One of the benefits of this model is 

that it can more accurately capture the transition between the pre-yield and the post-yield stiffness 

both at its initial state and at reversals (Wong 2014). The robustness of this model allows for the 

model to be easily adaptable for many applications. The following subsections comprises two 

models that have been modified for the use of various applications such as lead core heating and 

rubber hardening.    

2-2-2-1   Lead Core Heating Model 

In order to include the lead core heating that is observed in LRBs, the Bouc-Wen model 

was extended to include strength degradation. To accurately implement the strength degradation 

due to heating of the lead core, the relationship between temperature and shear strength of the lead 

core were examined by Kalpakidis and Constantinou (2009b). A formulation was proposed to 

calculate the heating from cyclic loading and the model was later implemented in OpenSees 

(2014), labeled LeadRubberX, capable of capturing the lead-core heating effects using the 
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temperature-lead strength relationship (Kumar et al. 2014). The backbone of this model is the 

Bouc-Wen formulation, the coupled bi-directional hysteretic model is isotropic and allows 

degradation of the hysteresis (i.e. the characteristic strength of the lead). The restoring force 

components 𝐹𝑥  and 𝐹𝑦 are in terms of displacements 𝑈𝑥 and 𝑈𝑦, along orthogonal directions x and 

y as follows:  

 {
𝐹𝑥
𝐹𝑦
} = 𝑐𝑑 ∙ {

𝑈̇𝑥
𝑈̇𝑦
} + 𝐾2 ∙ {

𝑈𝑥
𝑈𝑦
} + (𝜎𝑌𝐿(𝑇𝐿)𝐴𝐿) ∙ {

𝑍𝑥
𝑍𝑦
} (2 − 5) 

𝑌 ∙ {
𝑍̇𝑥
𝑍̇𝑦
} = (𝐴 ∙ [𝑰] − 𝐵 ∙ [Ω]) ∙ {

𝑈̇𝑥
𝑈̇𝑦
} (2 − 6) 

 [Ω] = {
𝑍𝑥
2 ∙ [𝑠𝑔𝑛(𝑈̇𝑥𝑍𝑥) + 1] 𝑍𝑥𝑍𝑦 ∙ [𝑠𝑔𝑛(𝑈̇𝑦𝑍𝑦) + 1]

𝑍𝑥𝑍𝑦 ∙ [𝑠𝑔𝑛(𝑈̇𝑥𝑍𝑥) + 1] 𝑍𝑦
2 ∙ [𝑠𝑔𝑛(𝑈̇𝑦𝑍𝑦) + 1]

} (2 − 7) 

In Equations 2-5 through 2-7, [𝑰] is the identity matrix and dimensionless parameters 𝑍𝑥 and 𝑍𝑦, 

are bounded by the values of ±1. In this formulation, the Bouc-Wen model from Equation 2-3 is 

extended to capture the biaxial interaction of hysteretic systems (Park et al. 1986). The Bouc-Wen 

model is further simplified from Equation 2-3, by imposing B=𝛽=𝛾=0.5. The quantities A and B 

should be related with the following expression (A=2B) in order for the equations to properly 

function, therefore A=1 is imposed. These equations produce a typical hysteretic response of a 

smooth bilinear Bouc-Wen model with the addition of yield strength degradation of the lead core 

is included and expressed as a function of the temperature of the lead core, 𝜎𝑌𝐿(𝑇𝐿). The 

temperature of the lead increases as the bearing is being cycled (Kalpakidis and Constantinou 

2009b), and consequently, the strength of lead core decreases. The thermodynamic relationship of 

strength degradation and cyclic displacement were derived using experimental temperature-tensile 

strength relationship. Various assumptions were deduced such as the interface temperature 

increases at half the increase of the bulk of the lead core and that perfect contact exist between the 
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lead core and steel plates along with others (Kalpakidis and Constatinou 2008). The formulation 

for strength degradation, 𝜎𝑌𝐿(𝑇𝐿), using the assumptions described and solution type 2, which 

considers the heat conduction through steel plates (more accurate) are as follows:  

𝑇̇𝐿 =
𝜎𝑌𝐿(𝑇𝐿) ∙ √𝑍𝑥

2 + 𝑍𝑦
2 ∙ √𝑈̇𝑥

2 + 𝑈̇𝑦
2

𝜌𝐿𝑐𝐿ℎ𝐿
−

𝑘𝑆 ∙ 𝑇𝐿
𝑟 ∙ 𝜌𝐿 ∙ 𝑐𝐿 ∙ ℎ𝐿

∙ (
1

𝐹
+ 1.274 ∙ (

𝑡𝑠
𝑎
) ∙ (𝜏)−

1
3) (2− 8)

 

 𝐹 =

{
 
 

 
 2 ∙ (

𝜏

𝜋
)

1
2
−
1

2
∙ [2 − (

𝜏

4
) − (

𝜏

4
)
2

−
15

4
∙ (
𝜏

4
)
3

] ,   𝜏 < 0.6

8

3𝜋
−

1

2(𝜋 ∙ 𝜏)
1
2

∙ [1 −
1

3 ∙ (4𝜏)
+

1

6 ∙ (4𝜏)2
−

1

12 ∙ (4𝜏)3
] , 𝜏 ≥ 0.6

}
 
 

 
 

(2− 9) 

𝜏 =
𝛼𝑆𝑡

𝑟2
 (2− 10) 

 𝜎𝑌𝐿(𝑇𝐿) = 𝜎𝑌𝐿0 ∙ exp(−𝐸2𝑇𝐿) (2− 11) 

Eqs. (2-8) to (2-11) shown above, are used to find the current shear yield stress of the lead core by 

solving for the temperature of the lead, 𝑇𝐿. The geometric parameters found in Equation 2-8 are 

represented as the following:  ℎ𝐿 is the height of the lead core, r is the radius of the lead core, and 

𝑡𝑠 is the total shim plate thickness. The material properties in Equation 2-8 are the following: 𝜌𝐿 

is the density of lead, 𝑐𝐿 is the specific heat of lead, 𝛼𝑠 is the thermal diffusivity of steel, 𝑘𝑠 is the 

thermal conductivity of steel, and 𝜎𝑌𝐿0 is the effective yield stress of lead at the reference (starting) 

temperature. The dimensionless quantity, 𝜏, is dimensionless time and 𝑡, is the time since the 

beginning of the motion. Note that Equation 2-11 describes the dependency of the lead core 

strength on its increase in temperature. The value of the lead core strength 𝜎𝑌𝐿(𝑇𝐿), given the 

temperature, is related by the parameter 𝐸2 which describes the rate of the degradation. The 

material parameter values chosen for typical LRBs are the following: 𝜌𝐿=11,200 𝑘𝑔/𝑚3, 𝑐𝐿 = 130 

J/(kg◦C), 𝑘𝐿 =50W/(m◦C), 𝛼𝑆= 1.41×10−5 𝑚2/𝑠, and 𝐸2 =0.0069/◦C. Figure 2-8 shows the typical 
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hysteresis of the Bouc-Wen model including strength degradation when considering Equations 2-

8 and 2-11.  

 
Figure 2-8 Hysteresis for Bouc-Wen model including strength degradation. 

 

The initial stiffness 𝑘1,  post-yield stiffness 𝑘2, and the characteristic strength 𝑄𝑑 are the 

primary parameters of an LRB model. Note, the characteristic strength degrades as it returns to 

zero lateral displacement. The hysteresis for the modified Bouc-Wen model is smooth in transition 

from pre-yield to post-yield stiffness. The characteristic strength is calculated by multiplying the 

yield shear stress by the cross-sectional area of the lead. 

2-2-2-2   Bouc-Wen with Prager’s Rule 

In order to capture hardening effects that may occur in various hysteretic systems, the 

Bouc-Wen model was further modified to include Prager’s rule (Bouc 1967; Casciati 1989). The 

model was later implemented in OpenSees by Schellenberg et al. (2015) as shown in Figure 2-9, 

with hardening at larger strains.   



24 

 

 
Figure 2-9 Bouc-Wen Hardening Element (Schellenberg et al. 2015) 

Prager’s rule was introduced into the Bouc-Wen model by Casciati (1989) being solely 

phenomenological. Alongside the hardening capability captured in the model, the  hysteresis loops 

allow for rounded corners which resemble the physical behavior of elastomeric bearings as 

described by Casciati (1989). Casciati advanced the classical plasticity theory for bearing behavior 

by connecting the discontinuity between the elastic and plastic phases. The formulation is as 

follows: 

{
𝐹𝑥
𝐹𝑦
} = 𝐾2 ∙ {

𝑈𝑥
𝑈𝑦
} + (𝑄𝐷) ∙ {

𝑍𝑥
𝑍𝑦
}  +  𝐾3 ∙ sgn {

𝑈𝑥
𝑈𝑦
} ∙  |

𝑈𝑥
𝜇

𝑈𝑦
𝜇| (2 − 12) 

𝐾3 = 𝛼2 ∙ 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (2 − 13) 

where the first two terms in the restoring force formulation consists of the post-yield stiffness, 𝐾2, 

and the constant characteristic strength, 𝑄𝐷, resembling that of a typical Bouc-Wen model. The 

model deviates with the last term of the equation, in which the hardening term is aggregated. The 

parameter, 𝛼2, is the post-yield stiffness ratio of non-linear hardening component and 𝐾3 is the 

post-yield nonlinear stiffness. The restoring force formulation reaffirms that the model can be 
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highly nonlinear depending on the value of  𝜇. The hardening effects can be observed in Figure 

2-9, as the displacement increases the stiffness increases.  For instance, if the value of 𝜇 is set high, 

then the hardening can occur prematurely, conversely, if the value is set low then the hardening 

will occur at higher strains. One of the setbacks for this model is that the stiffness is dependent on 

each orthogonal direction therefore making this system uncoupled.  

2-2-3    Huang model  

The model implemented by Huang et al. (2000) is based on the rate independent plasticity 

theory (Lubliner and Moran 1992). The model can capture the behavior of elastomeric bearings 

utilizing a yield function formulation consisting of the back force 𝜶𝒚, and a radius 𝑄𝐷 as follows:  

 fy = ‖𝑭 − 𝜶𝒚‖ − 𝑄𝐷 (2− 14) 

where, 

 𝑭 = 𝐾1 ∙ 𝑼
𝒆 = 𝐾1(𝑼 − 𝑼

𝑝) (2− 15) 

and the restoring force, 𝑭 = [𝐹𝑥   𝐹𝑦]
𝑇
, in a bearing is assumed to depend only on the shear 

deformation, 𝑼 = [ 𝑈𝑥  𝑈𝑦]
𝑇
= 𝑼𝑒 + 𝑼𝑝, in orthogonal horizontal directions, decomposed into 

elastic and plastic parts. In this formulation it can be considered linearly isotropic, with the force 

related to the displacement by a constant stiffness parameter, 𝐾1. An associative flow has shown 

to describe LRBs and HDR bearings at low to intermediate strains (Huang 2002).  The implication 

of associative flow is that the evolution of the plastic displacement vector is always normal to the 

yield surface in force space, giving the following:  

𝑼̇𝑝 = 𝛾̇
𝜕𝑓𝑦(𝑭, 𝜶𝑦)

𝜕𝑭
= 𝛾̇𝒏 (2− 16) 
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Where 𝛾̇ is the consistency parameter and 𝒏 is defined as follows:  

𝒏 =
𝜕𝑓𝑦(𝑭,𝜶𝑦)

𝜕𝑭
=

𝑭 − 𝜶𝑦

‖𝑭 − 𝜶𝑦‖
 (2− 17) 

The consistency parameter, 𝛾̇, must satisfy the Kuhn-Tucker conditions (Lubliner and Moran 

1992) as follows: 

 𝑓𝑦 ≤ 0, 𝛾̇𝑓𝑦 = 0 , 𝛾̇ ≥ 0 (2− 18) 

The Kuhn-Tucker conditions in Equations (2-18) establishes the following two requirements: 

Elastic force states to lie on or inside the yield surface (𝛾̇ = 0), for plastic force it states (𝛾̇ > 0) 

to lie on the yield surface. Finally, the consistency condition must be satisfied, given by:  

 𝛾̇𝑓𝑦̇ = 0 (2− 19) 

This forbids the force point from abandoning the yield surface during plastic flow. Lastly, a linear 

kinematic hardening rule is specified as:  

 𝜶̇𝒚 = 𝐾2𝑼̇
𝑝 = 𝐾2𝛾̇𝒏 (2− 20) 

where 𝐾2 is a constant hardening modulus. When considering 1-D, the pre-yield stiffness is simply 

𝐾1, and the post-elastic stiffness is 𝛼𝐾1, the hardening modulus is given by:  

 𝐾2 = 𝐾1
𝛼

1 − 𝛼
(2− 21) 

Where 𝛼 is the ratio of post-yield stiffness to the pre-yield stiffness.  
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2-2-4    HDR Element  

The HDR element consists of an elastic component and a hysteretic component (Grant et 

al. 2004). The elastic component uses the Mooney-Rivlin strain energy function, with five 

elasticity constants. The elastic component is denoted by 𝑭𝟏, as shown in Eq. 2-22, and is a 

function of the displacement and the damage evolution parameters 𝐷𝑠 and 𝐷𝑀 which account for 

scragging and Mullins’ damage effects, respectively.   

The hysteretic component, represented by  𝑭𝟐 in Eq. 2-22,  uses an approach that is similar 

to bounding surface plasticity (Dafalias and Popov 1975). The formulation may be defined in terms 

of the magnitude of the displacement vector. The hysteretic force evolves towards the direction of 

the velocity vector, such that, even under a sudden change in loading direction, the change in 𝑭𝟐 

is smooth. Unlike Huang’s formulation, it provides a continuous response under load reversals 

without restrictions to harmonic loading (Huang 2002). In the restoring force equations below, the 

latter part of the equation is not only a function of the magnitude of the displacement but also the 

normalized velocity vector n, with addition to scragging damage effects, denoted by 𝐷𝑠.  

𝑭(𝑼,𝒏, 𝐷𝑠 , 𝐷𝑀) = 𝑭𝟏(𝑼, 𝐷𝑠, 𝐷𝑀) + 𝑭𝟐(𝑼,𝒏, 𝐷𝑠) (2− 22) 

This phenomenological model consists of 10 parameters, three of which account for the hyper-

elastic component (𝑎1 − 𝑎3), three for the hysteretic component (𝑏1 − 𝑏3), and four for the damage 

parameters (𝑐1 − 𝑐4) for scragging and Mullins effects.  

2-2-4-1   Elastic Component  

Isotropic strain energy functions are typically utilized for constitutive models of 

elastomers, considering a hyperelastic stress-strain relationship. The generalization of the 
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Mooney-Rivlin strain energy function is considered, with five elasticity constants where a similar 

function can be found in Haupt and Sedlan (2001):   

Ψ(𝑪) = 𝑐1(Ι − 3) + 𝑐2(ΙΙ − 3) + 𝑐3(Ι − 3)(ΙΙ − 3) + 𝑐4(ΙΙ − 3)
2 + 𝑐5(Ι − 3)

3 (2− 23) 

where 𝑐1 to 𝑐5 are material parameters. The right Cauchy-Green strain tensor is denoted by, 𝑪. The 

first two invariants of the right Cauchy-Green strain tensor Ι and ΙΙ are as follows:  

 Ι = 𝑡𝑟 𝑪      ΙΙ =
1

2
[(𝑡𝑟 𝑪)2 − 𝑡𝑟(𝑪)2] (2− 24) 

Simple shearing of the entire bearing may be represented by a single state of stress and plain strain. 

The deformation gradient, F, and right Cauchy-Green tensor for this deformation are given by: 

𝐅 = [
1 𝛾 0
0 1 0
0 0 1

]        𝑪 = 𝑭𝑻𝑭 = [
1 𝛾 0

𝛾 1 + 𝛾2 0
0 0 1

] (2− 25) 

where 𝛾 represents the shear strain. It is important to note that this assumption is equivalent to 

representing the entire bearing by a single Gauss integration point and does not consider localized 

effects caused by bearing boundary conditions. The first two invariants both simplify to: 

Ι = ΙΙ =   𝛾𝟐 + 3 (2− 26) 

In design practice, the Cauchy stresses are of engineering significance. They are obtained 

from the second Piola-Kirchoff stress tensor by transforming to the ‘spatial description’ of solid 

mechanics, through the following relationship:  

 𝝈 = 𝐽−1𝑭𝑺𝑭𝑇 (2− 27) 
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where J =1 is the Jacobian of the transformation. The second Piola-Kirchoff stress tensor, 𝑺, is 

derived as described in (Bonet and Wood 2008). The form for the Cauchy stress tensor is obtained 

after some calculations:  

 𝝈 = [

𝐸(𝛾6) 𝑂(𝛾5) 0

𝑂(𝛾5) 𝐸′(𝛾4) 0

0 0 𝐸′(𝛾4)

] (2− 28) 

where the terms 𝑂(𝛾𝑛) and 𝐸(𝛾𝑛) are odd and even polynomials of the nth order of the shear 

strain, 𝛾, and the apostrophes signify that the functions are different for each component, though 

the matrix is symmetric. The coefficients of each polynomial are given by factors of the material 

parameters 𝑐1 to 𝑐5. The shear component of Equation 2-28 is shown below:  

 𝜎12 = 𝑂(𝛾5) = (2𝑐1 + 8𝑐2)𝛾 + (4𝑐2 + 2𝑐3)𝛾
3 + (12𝑐3 + 8𝑐4 + 22𝑐5)𝛾

5 (2− 29) 

It is important to note that the shear stress is symmetrical 𝜎12 = 𝜎21, and that the shear stress 

components are of importance in bearing models. A potential simplified two parameter model is 

the Gent model (Gent 1996), performing similar steps as in the formulation of for the Mooney-

Rivlin function, the shear component of Equation 2-28 simplifies as follows:  

 𝜎12 =
𝜇𝐽𝑚𝛾

𝐽𝑚 − 𝛾2
(2− 30) 

where 𝜇 is the shear modulus and 𝐽𝑚 = 𝐼𝑚 − 3 where 𝐼𝑚 is the limiting value. The model can 

exhibit the severe strain hardening effects in the stress response. However, it tends to deviate at 

moderate levels of shear strain. Therefore, the Mooney-Rivlin is considered, with simplification 

of the equation, the model reduces to a fifth order equation with three constants 𝑎1, 𝑎2, and 𝑎3 as 

shown below:  

 𝑭𝟏 = 𝐾𝑆1𝐾𝑀[𝑎1 + 𝑎2‖𝑼‖
2 + 𝑎3‖𝑼‖

4]𝑼 (2− 31) 
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where, ‖𝑼‖ denotes the displacement magnitude and 𝐾𝑆1 and 𝐾𝑀 are the scragging and Mullins 

damage parameters commencing at one and decaying to a fraction of one. These damage 

parameters will be later detailed in a subsequent section 2-2-4-3.  

2-2-4-2   Hysteretic Component  

The second term in Equation 2-32, the hysteretic component, is based on Dafalias and 

Popov (1975), where 𝑭𝟐, represents the hysteretic force of the bearing. The bounding surface in 

force space, with radius R(||U||), is defined as follows: 

𝛣(𝑼) = ‖𝑭𝟐‖ − 𝑅(‖𝑼‖) (2− 32) 

The radius R is isotropic, rate independent, and utilizes a quadratic relationship between the radial 

force and the current magnitude of the displacement as defined below and shown in Figure 2-10.  

 𝑅 = 𝑏1 +𝐾𝑆2𝑏2‖𝑼‖
2 (2 − 33) 

where 𝑏1 and 𝑏2 are material parameters, and 𝐾𝑆2 is a reduction factor due to scragging effects 

(described in section 2-2-4-3).  

 
Figure 2-10 Evolution of hysteretic force, (a) Unidirectional and (b) bidirectional evolution of 

hysteretic component of force (Grant et al. 2004).  

 

As shown in Figure 2-10, a scalar distance variable, 𝛿, captures the distance of the force 

vector relative to the bounding surface. The unit direction vector, 𝝁, defines along which direction 



31 

 

the distance is measured. Both terms are derived from the “image force”, 𝑭̂, which performs a role 

analogous to the “image stress” in bounding surface plasticity (Dafalias and Popov 1975). The 

image force is projected from the origin onto the bounding surface as follows: 

 𝑭̂ = 𝑅𝒏 (2− 34) 

where the 𝒏 is the velocity unit vector. The parameter 𝛿 can be interpreted as the magnitude of the 

vector pointing from the current force point to the image force and the parameter 𝝁 as the unit 

direction as follows:  

𝛿 = ‖𝑭̂ − 𝑭𝟐‖      𝑎𝑛𝑑      𝝁 =
𝑭̂ − 𝑭𝟐

‖𝑭̂ − 𝑭𝟐‖
(2− 35) 

The magnitude of the change is given implicitly in terms of a scalar evolutionary equation for 𝛿: 

 𝛿̇ = −𝑏3𝛿‖𝑼̇‖ (2− 36) 

the equation above defines the smooth transition, with a rate dictated by the material parameter, 

𝑏3. The appearance of the rate form in Equation 2-36 can be misleading insinuating rate 

dependence; however it is important to note that the time derivatives appear on both sides of the 

equation resulting in a rate-independent model. Furthermore, it is important to note that a sudden 

change of load direction changes the direction and magnitude of the vector δµ, according to 

Equation 2-36. However, this formulation does not experience the “overshooting” phenomenon of 

conventional bounding surface plasticity. In order to further elucidate the parameter 𝛿, the 

equations are integrated using backward euler method producing the following equations:  

𝑛 =
𝑼 − 𝑼𝒏
‖𝑼 − 𝑼𝒏‖

(2 − 37) 

  𝛿 =
𝛿𝑛

1 + 𝑏3‖𝑼 − 𝑼𝑛‖
(2 − 38) 
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Considering 𝑼 and 𝑼𝒏 represent the current time step and previous time step, respectively. Note, 

that Equation 2-38 allows for the smooth transition, dictated by the material parameter 𝑏3,  

regardless of any abrupt changes in the displacement path.  

2-2-4-3   Damage parameters for HDR model 

Scragging and Mullins effect are included in both the hyperelastic and hysteretic 

formulation of the HDR model. The equations to account for the damage effects are formulated as 

exponential degradation equations as follows: 

𝐾𝑆1 = exp (−𝑐1𝐷𝑆
3)  (2− 39) 

𝐾𝑆2 = exp (−𝑐2𝐷𝑆
3) (2− 40) 

  𝐾𝑀 = 𝑐3 + (1 − 𝑐3) exp(−𝑐4𝐷𝑀
3 ) (2− 41) 

The parameters 𝑐1 through 𝑐4 are input parameters that are calibrated with experimental data. 𝐾𝑆1 

and 𝐾𝑀 are damage factors that affect the hyperelastic component of the HDR model, whereas 𝐾𝑆2 

effects the plasticity portion, more specifically, the hardening in the bounding surface as shown in 

Equation 2-33. Parameters 𝑐1 and 𝑐2, are the damage parameters that account for degradation due 

to scragging effects and parameters 𝑐3 and 𝑐4 account for degradation due to Mullins effect. The 

𝑐4 parameter represents the rate of damage, while the 𝑐3 parameter varies from zero to one dictating 

the limit of damage. The evolution of the damage parameters can be seen in Figure 2-11, where 

𝐷𝑆 is the scragging damage parameter and 𝐷𝑀 is the damage parameter for Mullins’ effect. The 

scragging damage parameter, 𝐷𝑆, represents the ‘permanent’ damage induced in the bearing. The 

evolution parameter 𝐷𝑆,0
+ , acts as a placeholding damage from any previous maximum damage. If 

‖𝑼‖ extends past the previous maximum displacement, 𝐷𝑆,0
+ , then the 𝐷𝑆

− accumulates as a 
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placeholder of the amount of damage, as shown in Figure 2-11 (between 𝑡1 and 𝑡2). Once the 

displacement norm reduces below the threshold of the 𝐷𝑆
− parameter (between 𝑡3 and 𝑡4), then the 

scragging damage, 𝐷𝑆, increases. For a damage amount of 𝐷𝑆, the formulations (Equations 2-39 

and 2-40) would undergo exponential decay for both 𝑭𝟏 and 𝑭𝟐 at a rate dependent on the material 

parameters 𝑐1 and 𝑐2. The evolution of the scragging parameter, 𝐷𝑆,  is summarized as follows: 

 

{
 
 
 
 

 
 
 
 𝑖𝑓 ‖𝑼‖ = 𝐷𝑆

+ 𝑎𝑛𝑑 ‖𝑼‖̅̅ ̅̅ ̅̅̇ > 0

𝐷̇𝑆
+ = 𝐷̇𝑆

− = ‖𝑼‖̅̅ ̅̅ ̅̅̇

𝐷̇𝑆 = 0

𝑖𝑓 ‖𝑼‖ = 𝐷𝑆
− 𝑎𝑛𝑑 ‖𝑼‖̅̅ ̅̅ ̅̅̇ > 0

𝐷̇𝑆
+ = 0

𝐷̇𝑆
− = ‖𝑼‖̅̅ ̅̅ ̅̅̇

𝐷̇𝑆 = −‖𝑼‖̅̅ ̅̅ ̅̅̇

(2− 42) 

As for Mullins effect, unlike scragging, the degradation occurs over successive cycles of 

loading, regardless of previous peak magnitude displacements ‖𝑼‖. Mullins’ effect accumulates 

damage as the displacement norm experiences reversals. The rate of increase of 𝐷𝑀 is given by the 

rate of decrease of the displacement norm, ‖𝑼‖. The initial Mullins damage parameter evolution 

parameter, 𝐷𝑀,0, provides an initial short-term damage that may have previously existed. The 

damage evolution equations are summarized below and the evolution of 𝐷𝑀 from a general 

displacement history is shown in Figure 2-11(b). Unlike scragging parameter 𝐷𝑆, Mullins’ effect 

parameter 𝐷𝑀 increases whenever the magnitude displacement is decreasing (𝑡2 to 𝑡4 and 𝑡5 to 𝑡7), 

and does not consider any thresholds. 

 

{
 
 

 
 𝑖𝑓         ‖𝑼‖̅̅ ̅̅ ̅̅̇ > 0

   𝐷̇𝑀 = 0

𝑖𝑓         ‖𝑼‖̅̅ ̅̅ ̅̅̇ < 0

           𝐷̇𝑀 = −‖𝑼‖̅̅ ̅̅ ̅̅̇

(2− 43) 



34 

 

The Mullins effect formulation (Equation 2-43) limits the amount of damage and tends to become 

insignificant after several cycles. Note, Mullins effect only affects the hyperelastic component, 𝑭𝟏. 

 

Figure 2-11 (a) Arbitrary history of displacement norm, ‖𝑼‖, and scragging parameter upper and 

lower thresholds, 𝐷𝑆
−and 𝐷𝑆

+ and (b)evolution of scragging and Mullins’ effect 

damage parameters, 𝐷𝑆 and 𝐷𝑀 (Grant et al. 2004) 

 

2-2-5    Anisotropic model 

Ragni et al. (2018) used a similar hyperelastic model but modified the formulation by 

extending the formulation proposed in Tubaldi et al. (2017). The modification was made due to 

experimentally finding that high damping rubber inherently experiences damage in an anisotropic 

manner. By experimentally demonstrating that the stress softening, or damage, only occurs if the 

rubber specimen is displaced in the same direction; proving that if the bearing is displaced in an 

increasing angle of its original displacement the bearing would begin to develop similar stresses 
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as in the original displacement. The following formulations were utilized in order to model such 

anisotropic behavior:  

 𝜎𝑚𝑒 = 𝛼𝑒(1 − 𝑞𝑒
+)𝜎𝑒   for 𝜖

𝜃  > 0 (2− 44) 

 𝜎𝑚𝑒 = 𝛼𝑒(1 − 𝑞𝑒
−)𝜎𝑒    for  𝜖

𝜃  < 0 (2− 455) 

where 𝜎𝑒 is the hyperelastic model from Equation 2-31 and 𝛼𝑒 is the initial damage parameter. 

The 𝑞𝑒
+ and 𝑞𝑒

− are damage evolution parameters for the positive and negative directions (opposite 

directions). For example, the evolution laws of the elastic damage parameters for 𝜖𝜃  > 0 are posed 

in the following form:  

𝑞̇𝑒
− = 0 (2− 46) 

𝑞̇𝑒
+ = 𝜁𝑒| 𝜖̇

𝜃| ((
𝜖𝜃 

𝛾𝑚𝑜𝑑
)

𝛽

− 𝑞𝑒
+ )   𝑖𝑓 𝑞𝑒

+ < (
𝜖𝜃 

𝛾𝑚𝑜𝑑
)

𝛽

(2− 47) 

 𝑞̇𝑒
+ = 0  𝑖𝑓 𝑞𝑒

+ ≥ (
𝜖𝜃 

𝛾𝑚𝑜𝑑
)

𝛽

(2− 48) 

where 𝜖𝜃 is the one-dimensional (1D) displacement along a representative direction (Equation 2-

49). For 𝜖𝜃<0, similar evolution laws are used except roles for 𝑞̇𝑒
+ and 𝑞̇𝑒

− are interchanged in 

Equations 2-46 to 2-48, and 𝜖𝜃 is replaced with |𝜖𝜃|. During a cyclic strain history, both the 

damage parameters 𝑞𝑒
+ and 𝑞𝑒

− tend to the same limit value, depending on the amplitude of the 

strain cycle, and the velocity of the damage evolution which is controlled by the parameter 𝜁𝑒 . The 

maximum value that can be reached by 𝑞𝑒
+ and 𝑞𝑒

− for strain amplitudes not exceeding |𝜖𝜃| is given 

by the expression (𝜖𝜃/𝛾𝑚𝑜𝑑)
𝛽

, where 𝛾𝑚𝑜𝑑 is the maximum amplitude for which the model is 

deemed valid. Equation 2-47 ensures that damage is not decreased and that they do not increase 

further once the limit is reached by the current strain. The material parameters (𝛼𝑒 , 𝜁𝑒 , 𝛾𝑚𝑜𝑑, 𝛽) are 
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calibrated by utilizing experimental data.  This model was further extended to include the idea of 

representative directions (Lubliner and Moran 1992) which allows the use of a one dimensional 

material law with damage parameters to simulate more complex 2D or 3D material behaviors. 

Ragni et al. (2018) implemented the idea of representative directions in order to extend the 

anisotropic model for bidirectional experimental data of HDR specimens. The homogenization 

technique, considering in reference to 2D shear, is based on the selection of uniformly distributed 

directions in the plane. Then the 2D shear strain state, 𝛾, are projected onto the unit vector 

representative direction via 𝒏𝜃. The unit vector 𝒏𝜃 represents the direction corresponding to the 

angle 𝜃, the projection along that direction identifies the one-dimensional strain:  

 𝝐𝜃 = 𝛾 ∙ 𝒏𝜃 (2− 49) 

For each direction, a 1D constitutive law relates the one-dimensional deformation measure 𝜖𝜃 with 

the associated stress 𝜎𝜃 , oriented as 𝒏𝜃. The set of internal variables is required to describe the 

damage dissipative phenomena. These variables can be collected in the vector 𝒗𝜃as their values 

may differ from direction to direction. The response in the individual directions is known with 

evolution laws and internal variables are expressed as:  

𝒗̇𝜃 = 𝑔(𝜖𝜃, 𝜖̇𝜃; 𝒗𝜃) (2− 50) 

And the corresponding stress is a derived quantity can be expressed as:  

 𝜎𝜃 = 𝑓(𝜖𝜃, 𝜖̇𝜃; 𝒗𝜃) (2− 51) 

If the selected directions are homogenously and continuously distributed, the global 2D shear 

stress 𝜏𝑚 due to Mullins effect can be attained from the following integral, 

𝜏𝑚(𝛾, 𝛾̇; 𝒗) =
1

𝜋
∫ 𝑓(𝜖𝜃, 𝜖̇𝜃
𝜋

0

, 𝒗𝜃)𝒏𝜃𝑑𝜃 (2− 52) 
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where 𝒗 contains the state variables for the specified directions. It is important to note the 

summation is extended to only 𝜋 rather than 2𝜋 due to the fact that the generic angle 𝜃 represents 

fibers along both the positive and negative directions. For numeric applications, finite amount of 

fibers will be utilized thus Equation 2-51 can be approximated to a sum over all discrete directions 

and the state vector function reduces to a finite number of internal variables. Implementation of 

representative directions utilize the evolution laws from Equations 2-45 to 2-49 with the extension 

to each individual homogenous fiber.   

2-3    Conclusions 

In this section various plasticity, elastic, and damage models were reviewed to demonstrate 

the current state of practice for modeling elastomeric bearings. The complex behavior of the 

bearing materials of LRBs, the lead core and rubber, are verified through experimental data. Of 

particular interest for LRBs, the lead core nonlinear behaviors range from lead core heating to 

initial lead core hardening. The nonlinear behaviors in the rubber ranged from hardening, 

scragging/Mullins’ damage effects, pronounced softening ‘unloading’ effects, and anisotropic 

behaviors. While the models presented aimed at capturing one or more of these behaviors, a model 

that captures all these behaviors was not found.  In the following chapter, a parallel model will be 

introduced, demonstrating its capabilities in capturing the behaviors of interest as observed in LRB 

experiments undergoing large strains.  
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Chapter 3 RESPONSE OF A SEISMICALLY 

ISOLATED STRUCTURE WITH LEAD RUBBER 

BEARINGS CONSIDERING HEATING EFFECTS 

3-1    Introduction 

There are several factors that contribute towards the complex behavior of the Lead rubber 

bearing (LRB) response such as scragging, rate effects, contamination, temperature, and distance 

travelled. In design, these effects are conservatively bounded in an estimated sense by an analysis 

with upper and lower bound property modification factors to capture the range of response 

(McVitty and Constantinou 2015). In an effort to more accurately predict bearing behavior, more 

advanced models are examined in this chapter. Specifically, the temperature effect in the lead core 

of LRBs are examined by comparing simple, more widely used, models with the recently 

developed LeadRubberX model (Kumar et al. 2014). A base isolated structure using various 

models for the isolation system is examined under various types of ground motions to evaluate the 

performance of the model.  
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Upper and lower bound values for bearing properties are used by applying property 

modification factors to the LRB’s post elastic stiffness and characteristic strength, in an effort to 

bound the response of the isolators. The factors that are applied to obtain the upper and lower 

bound are used to account for any possible response it may have throughout the isolator’s design 

life. In the current design approach, the method used for analyzing upper and lower bound, is 

typically done to bound the possible maximum forces and the maximum displacements. The lower 

bound mainly accounts for the maximum displacements. The upper bound is conducted to find the 

maximum forces that can be achieved in the isolators due to the increased characteristic strength 

of the isolator along with scragging effects of the rubber.  

Various studies have examined the effects of isolation bearing properties on the structural 

system response using bounding analyses. A recent study examined the LeadRubberX model for 

strength degradation by conducting a nonlinear response time history analysis (NLRHA) on an 

isolated hospital in Turkey subjected to near fault excitations (Özdemir and Avşar 2017). It was 

reported that the upper and lower bounds of bearing properties were able to, for the most part, 

bound the response. In this study, a similar analysis will be conducted however only applying the 

modification factors to the characteristic strength of the bearing to observe if the heating effects of 

the LeadRubberX model is bounded by the lower and upper bounds. An isolated ordinary 

concentric braced frame (OCBF) will be analyzed using lower and upper bound analysis 

comparing against the strength degrading model for short and long-duration ground motions scaled 

using procedures in ASCE 7 (2017) 
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3-2    Building Model 

The 3-story building investigated here is based on the hypothetical model that was designed 

by professional engineers and described by Erduran et al. (2011). The building consists of a 4 by 

6 bay OCBF building modeled in OpenSees (2014) with the layout shown in Figure 3-1. The 

buildings center of gravity was purposefully placed off-centered to incite torsional effects.  

 

Figure 3-1 OCBF building model in OpenSees (Left: Plan view of building model and brace 

layout. Right: Brace Configuration.) 

 

This office building (occupancy category II and importance factor of I=1.) was designed 

to meet the requirements of the Equivalent Lateral Force (ELF) Method (Erduran et al. 2011). The 

building was designed at the location (34.50N, 118.2W) in Los Angeles on stiff soil (site class D 

with reference shear wave velocity of 180 to 360 m/s). The spectral values have changed since the 

building was designed, however to be consistent with previous studies, the same values were used 

in this study. The mapped spectral accelerations for this location are 𝑆𝑠=2.2g for short periods and 

S1=0.74g for a 1-s period (g=gravitational acceleration).  

 For this building, the fundamental time period was chosen to be 𝑇𝑀 = 3.07 𝑠𝑒𝑐 and 𝛽𝑀 =

15.8%. The design displacement is calculated by using the equation from ASCE (2017) as follows:   
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𝐷𝑀 =
𝑔𝑆𝑀1𝑇𝑀
4𝜋2𝐵𝑀

(3 − 1) 

where 𝐵𝑀 is the coefficient for damping and 𝑆𝑀1 is 1-s spectral accelerations for the corresponding 

events. The design displacement resulted in 𝐷𝑀=24.3 inches and with the accidental torsion effects 

considered 𝐷𝑇𝑀= 29.16 inches.  

3-3    Numerical Modeling 

The LRB model utilized for analysis is the LeadRubberX model which was implemented 

in OpenSees (2014) by Kumar et al. (2014). The model includes the addition of the lead core 

heating effects (Kalpakidis and Constantinou 2009a) by modifying the generalized bidirectional 

Bouc-Wen mathematical model (Park et al. 1986; Wen 1976). The hysteretic portion of the model 

allows for degradation by incorporating the temperature dependence of the yield strength, 𝜎𝑌𝐿(𝑇𝐿). 

The forces 𝐹𝑥 and 𝐹𝑦 and displacements 𝑈𝑥 and 𝑈𝑦 along orthogonal directions x and y, 

respectively, are as follows:  

{
𝐹𝑥
𝐹𝑦
} = 𝑐𝑑 ∙ {

𝑈̇𝑥
𝑈̇𝑦
} + 𝐾𝑑 ∙ {

𝑈𝑥
𝑈𝑦
} + (𝜎𝑌𝐿(𝑇𝐿)𝐴𝐿) ∙ {

𝑍𝑥
𝑍𝑦
} (3 − 2) 

In Equation 3-2, the overdot denotes differentiation with respect to time, [𝐼] is the identity matrix 

and dimensionless parameters 𝑍𝑥 and 𝑍𝑦, are bounded by the values of ±1. The post-elastic 

stiffness is denoted by 𝐾𝑑. For LRBs, typically 𝑐𝑑 is the viscous damping in the rubber, however 

for natural rubber it is typically set to zero and only shown here for completeness.  

3-3-1    Bounding Analyses  

With the obtained design values (Equation 3-1), the material properties such as the post 

elastic stiffness and characteristic strength were obtained. With the given quantities, it was possible 
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to deduce dimensions of the bearing required for the LeadRubberX model (Kumar et al. 2014). As 

seen in Figure 3-2, the dimensions of the interior isolator are shown.  

 

In this analysis, the upper and lower bound property modification factors are only 

considered for the characteristic strength of the bearing. Since only the lead core heating is being 

analyzed and compared to the upper and lower bounds, the initial and post-elastic stiffness are 

unaltered. The yield strength of the bearings were chosen to be 𝜎𝐿 =10 MPa which is typical for 

LRBs. The upper bound for the characteristic strength of the lead core was set to be  𝜎𝑢=1.35*𝜎𝐿= 

13.5 MPa (Constantinou et al. 2007). As shown in Table 3-1, three cases are analyzed, the upper 

bound, the nominal value (with the inclusion of heating of lead core), and lower bound case. The 

nominal case, for the LeadRubberX model, commences at the upper bound value and accounts for 

lead strength degradation during simulations to observe if exceedance of the bounds will occur. 

The upper and lower bounds do not consider the heating effects and have a fixed characteristic 

strength. The nominal (heating) case, in order to reduce below the lower bound characteristic 

strength, has to overcome the conservative value of 75% reduction of the upper bound value. In 

ASCE 7-16, the default lower bound value is 80% of the nominal and therefore the 75% reduction 

factor is conservative.  

Figure 3-2  Interior isolator dimensions for OCBF building. 
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Table 3-1 Properties of upper and lower bound analyzed cases. 

 Upper Bound Nominal (heating) Lower bound 

𝑄𝐷 , 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ [𝑘𝑖𝑝] 654.4 654.4 484.7 

𝑘1, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 [𝑘𝑖𝑝/𝑖𝑛] 1290.5 1290.5 1290.5 

𝑘2, 𝑃𝑜𝑠𝑡- 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 [𝑘𝑖𝑝/𝑖𝑛] 59.3 59.3 59.3 

 

 Previous works (Kalpakidis and Constantinou 2009b; Özdemir and Avşar 2017) have also 

conducted similar nonlinear analysis for 1-D and 2-D directions, however, only considering near-

fault short duration ground motions. Their conclusions were similar, concluding that the upper and 

lower bound were able to mainly bound the results of the LeadRubberX model that accounts for 

the strength degradation of the lead core. For this reason, the ground motions selected for this 

analysis includes long duration ground motions. 

In order for a ground motion to achieve long duration status, the following criteria was 

required to be met: significant duration 𝐷𝑠5−95 of at least 45s or the significant duration 𝐷𝑠5−75 

of at least 25s (Chandramohan et al. 2016). The significant duration value is calculated by using 

one of the components and calculating the cumulative energy of the ground motion for 5-95% or 

5-75% of the motion, and measuring the amount of time for each component to achieve the 

cumulative energy, and selecting the longer duration (Chandramohan et al. 2016). This method 

was used to distinguish between short duration and long duration ground motions. The significant 

duration method is utilized as it is the most suitable duration metric (Chandramohan et al. 2016). 

This method is unaffected by scaling, does not bias spectral shape, and is uncorrelated to common 

IMs like PGA and Sa(1s) (Bommer et al. 2004). 

 A total of 20 ground motions were selected from PEER NGA-West2 (Ancheta et al. 2013). 

Seven ground motions were near-fault and seven were long-duration ground motions. Since the 

location is based in Los Angeles (LA), the fault type was required to be strike-slip fault for the 14 
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ground motions. The remaining six motions were reverse and reverse oblique and are analyzed 

separately and shown in Table 3-2 in grey highlight. To find the appropriate ground motions in the 

PEER database, several constraints were implemented such as: soil site class D, within 50km of 

rupture, and the scale factor being less than 10 which is recommended (Bommer et al. 2004). As 

shown in Table 3-2, the scale factor for each ground motion is less than 10 and the average is equal 

to 4.26. The magnitude range was 6.5-7.8 as recommended in the Department of Conservation 

California Geological Survey (USGS 2005).  

Table 3-2 List of ground motions utilized in NLRHA (Short and Long-duration ground motions) 

(Highlighted gray: Reverse and Reverse oblique) 

 

The amplitude scaling procedure used, consists of applying the same scale factor to each 

horizontal pair component as suggested in the National Earthquake Hazards Reduction Program  

(NEHRP 2011). As discussed in Chapter 17 of ASCE 7-16, the time period range of scaling of the 

horizontal ground motion have been updated since ASCE 7-10 (2010). Since the fixed base 

structure will not be analyzed from Erduran et al. (2011), the period range for the target hazard 

spectrum differs. Rather than the scaling being performed for the period range of 0.2𝑇𝑀 to 1.5𝑇𝑀, 

the scaling will be conducted from the period range, per section 17.4, of 0.75𝑇𝑀,𝑢𝑝𝑝𝑒𝑟 to 
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1.25𝑇𝑀,𝑙𝑜𝑤𝑒𝑟  (ASCE 2017). The MCE design period is 3.1s, meaning that the scaling will be from 

2.145 to 3.875s. The lower bound time period (0.75 𝑇𝑀,𝑢𝑝𝑝𝑒𝑟) is calculated by using the upper 

bound values of the isolation system and calculating the period of the structure per ASCE 7-16. 

Conversely, the upper bound time period (1.25𝑇𝑀,𝑙𝑜𝑤𝑒𝑟) is calculated using the lower bound 

values of the isolation system. In Figure 3-3, the mean spectrum can be observed along with the 

individual ground motion spectrums plotted in light grey. It can be observed that for some ground 

motions at the short period range there are large acceleration values. This is due to the fact that 

scaling was done between the 2 to 4 sec range, disregarding the distribution out of this period 

range. From the periods between 2 to 4 seconds, the deviation from the mean spectrum can be 

observed to be minimized. 

 

3-3-2    Results 

In this section, the nonlinear response history analysis (NLRHA) of the twenty ground 

motions is analyzed using OpenSees. In Figure 3-4, the lower bound maximum displacements are 

compared against the displacements obtained by the LeadRubberX model which includes the 
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heating effects. The percent increase indicates the amount the displacement of the heating case 

exceeds the lower bound displacement. It is important to note that the maximum displacements 

are calculated by finding the magnitude of the x and y directions. The heating case has the same 

material properties initially as the upper bound, however the strength degradation due to the 

heating effects are considered. The first seven ground motions on the top portion of the bar graph 

shows the response for the short-duration ground motions, and the bottom seven show the response 

for the long-duration ground motions. It is also important to note that the pairs of ground motions 

were applied orthogonal directions east-west and north-south direction (Figure 3-4a). Then the 

directions were switched (Figure 3-4b). Since similar results were obtained only one configuration 

was utilized for further analysis. 

In Figure 3-4, it can be seen that the overall displacements for short duration ground 

motions are greater than those of long duration ground motions. However, the percent increase of 

the displacements due to the heating effects compared to the lower bound is significantly higher 

in long-duration ground motions compared to short duration ground motions. These percent 

differences may be important when considering designing bearings using ELF approach. The 

upper and lower bound may not suffice when designing isolators or providing sufficient distance 

for the clearance of the isolation system. 
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In Figure 3-5, the ground motion, velocity time-history, and hysteresis are shown for 

ground motions (GMs) 2 and 10. GM 2 is a short duration ground motion which is the only short-

duration ground motion that the heating case exceeded the lower bound maximum displacement. 

Ground motion 2 has a large excursion invoking large displacement and velocity demands. The 

LeadRubberX model exceeds the lower bound by about 3%. As for the long duration ground 

motion 10, the displacement exceeded the lower bound by about 45%. The peak velocity for GM 

10 is half of GM 2, however due to the accumulated temperature increase caused by the long 

duration ground motion, it resulted in significant strength degradation leading to larger exceedance 

of displacements to that of the lower bound.  

 

 

Figure 3-4 Lower-Bound comparison with Heating case: (Top: Short-duration)  (Bottom: Long-

Duration) a.) GM dir1 b.) GM dir2. 

a.) b.) 
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 In Figure 3-6, the significant duration 5-95% is compared against the percent increase in 

heating displacement to the lower bound maximum displacement. A clear trend can be observed, 

as the significant duration increases, the percent increase of the heating to the lower bound 

maximum displacement, increases. As mentioned before, the classification of a long-duration 

ground motion is determined as significant duration reaches 45 seconds or greater.  

Figure 3-5 Example results GM-2 (short-duration) and GM-10 (long-duration). 
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Figure 3-6 Displacement increase versus significant duration 5-95% 

 

In Figure 3-6, it can be observed that the exceedance in displacements occurs as the 

significant duration reaches near the 45 second threshold. For this figure the plot is not shown for 

the case in which the ground motion pairs are changed orthogonally for the second direction due 

to the fact that the results were identical. Ground motions 15-20 were included to compare with 

the behavior of reverse and reverse oblique type earthquakes. It can be seen that ground motion 20 

is an outlier in the analyzes, while 15-19 follow the trend. With all ground motions included the 

norm of residuals is a value of 0.61. With ground motions 1-14, the norm of residuals is a value of 

0.39, meaning it has a stronger correlation. 

3-4    Conclusion 

In this chapter, the ASCE upper and lower bound methodology is compared with a 

nonlinear time history analysis, by using various LRB models. The LeadRubberX model, is able 

to capture the lead core strength degradation effects due to heating and is used to compare with 

the characteristic strength property modification factors. The factors are applied to two smooth 

bilinear models representing the upper and lower bounds for the LeadRubberX model to examine 
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if the bounds suffice for short duration and long-duration ground motions. The short duration 

ground motions reached larger displacements overall for the heating and lower bound cases. 

However, for long duration ground motions, the percent of exceedance in the maximum 

displacements when comparing heating case to the lower bound case resulted in the heating case 

exceeding the maximum displacements by 50%. Default modification factors may not be 

satisfactory in bounding, especially for long duration ground motions. 

 It was observed that a significant correlation exists between significant duration and the 

increase in displacements when comparing the heating case to the lower bound case. For long-

duration ground motions, a nonlinear analysis is recommended since the heating case exceeded 

the lower bound maximum displacements. The significant duration measure for distinguishing 

short from long duration ground motions has a significant impact in the heating of the lead core. 

Additional studies should be conducted using a wider variety of ground motions since the small 

sample of reverse and reverse oblique faults resulted in variable effects on lead core heating. 

 

 

 

 

Chapter 3, in part, are a reprint of the material as it appears in “Response of a Seismically 

Isolated Structure with Lead Rubber Bearings Considering Heating Effects.” Marquez, J. F., and 

Mosqueda, G., Proceedings of the 11th National Conference in Earthquake Engineering, 

Earthquake Engineering Research Institute (2018). The dissertation author was the primary 

investigator and author of this paper. 
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Chapter 4 MODELING OF LEAD RUBBER 

BEARINGS UNDER LARGE CYCLIC MATERIAL 

STRAINS 

Recent models for elastomeric bearings have been introduced by Kumar et al. (2014), Ishii 

and Kikuchi (2019a), and Oliveto et al. (2019). These models are currently utilized for modeling 

LRBs and high damping rubber (HDR) bearings and are mostly based on observed experimental 

response.  Kumar et al. (2014) introduced a model in OpenSees (OpenSees 2014) that accounts for 

strength degradation due to heating of lead core and vertical loads on LRBs. Kikuchi and Aiken 

(1997) introduced a detailed model that is able to capture the complex behavior of high damping 

rubber bearings and lead rubber bearings. The model was later refined to include the effects of 

large axial loads by accounting for P-Δ effects and for a nonuniform initial compression modulus 

and is also available in OpenSees (Ishii and Kikuchi, 2019; Kikuchi et al. 2010). Oliveto et al. 

(2019) proposed a combination of models for the calibration of high damping rubber bearings 

(HDRs), integrating a hyperelastic and hysteretic models in order to calibrate for many 

bidirectional tests up to 200% shear strain.  
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Only a few experimental programs of large sized bearings have been reported (e.g., CERF, 

1998).  Using the data from large bearing tests by Kim et al. (2017, 2019) to evaluate current 

models, it was identified that one model could not capture the dominant nonlinear behaviors 

observed in testing of large size bearings to near ultimate strains. Such models are necessary to 

simulate the seismic response of base isolated structures through a wide range of shaking including 

Beyond Design Basis Earthquakes (BDBE). The objectives of this study are to characterize the 

nonlinearities observed in LRBs and propose a model that captures this behavior from small to 

large strains. Experimental results presented in the next section demonstrate the complexities of 

the LRBs behavior through a wide range of strains. A parallel model is proposed to capture these 

observed behaviors including i) strength degradation in the lead due to heating (Kalpakidis and 

Constantinou 2009b), ii) hardening of the elastomer at large strains (Grant et al., 2004) and iii) 

Mullins and scragging effects that can be expected to manifest within the lifetime of the bearings 

when considering BDBE or Maximum Considered Earthquake (MCE) shaking (Dall’Asta and 

Ragni, 2008). The influence of these modeling parameters on predicting the behavior of isolated 

structures is examined to arrive at a practical model for accurate numerical simulations. The 

current model is developed for one-dimensional (1D) simulations focusing on material behavior 

under large amplitude cyclic strains and does not account for axial load effects, limitations that 

will be addressed in future versions of the model. 

4-1    Experimental Bearing Behavior 

The complex nonlinear behavior exhibited by LRBs is examined through experimental data 

of large scale LRB tests conducted at the University of California San Diego Seismic Response 

Modification Device Facility (SRMD). The bearings tested were designed for a nuclear power 
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plant applications with dimensions shown in Figure 4-1. Two identical bearings were tested under 

a range of cyclic shear strain amplitudes and strain rates. The test data from one of the two LRBs 

is used for the development and verification of the unidirectional model proposed here. 

Importantly, the set of parameters obtained in this analysis to characterize the LRB will require 

recalibration as the bearing size changes (i.e. shape factor) or axial load differs (Sheridan et al. 

2012) 

 
Figure 4-1 Lead rubber bearing dimensions (in mm) 

The bearings were subjected to various characterization tests, with only the tests considered 

in this study shown in Table 4-1 for brevity. Detailed information on the full test series is provided 

by (Kim et al. 2019). The original test number is shown to indicate the order and sequence of tests.  

The tests were selected to verify bearing behavior for a wide range of strains and strain rates. The 

experimental tests verified that the bearing is able to withstand up to 500% shear strain in 1D and 

well over 400% shear strain in 2D loading patterns (Eem and Hahm 2019; Kim et. al 2017). 

Considering this range of strains, a model that can account for the observed nonlinearities at these 

high strains is investigated. A constant axial load of 22,000 kN, corresponding to an average 

pressure of 13MPa (considering area of rubber) was applied for all tests. This axial load is less 

than 20% of the undeformed bearing buckling load for which no stiffness degradation was 

observed. The axial behavior of the bearing and horizontal-vertical coupling effects are not 

examined here since the experimental data is not sufficient to provide further insight. The 
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importance of axial load variation has been highlighted in other studies (Koh and Kelly 1988; Ryan 

et al. 2005; Sanchez et al. 2013; Sarebanha et al. 2019; Vemuru et al. 2016; Warn et al. 2007). 

Table 4-1 Test log (Tests utilized for calibration) 

 
 

 

 

 

A review of the experimental data highlights complex nonlinear behaviors that deviate 

from a typical bilinear model with constant parameters typically used to model seismic isolators. 

As shown in Figure 4-2a, the lead contributes to two types of nonlinearities: initial lead hardening 

and strength degradation due to heating of the lead core.  Initially, the lead displays a strain 

hardening behavior that is prevalent in the initial cycle as the strength increases. However, as the 

lead temperature increases from repeated cycling, strength degradation of the lead is evident. In 

Figure 4-2b, two sources of observed nonlinearities are caused by the rubber: hardening and 

unloading effects. These various nonlinearities shown in LRBs are further examined in this study 

to capture these effects in models and to quantify the influence these behaviors have on the seismic 

response of structures isolated with LRBs.  

Initial hardening of the lead has been documented in past experiments on LRBs (Kalpakidis 

and Constatinou 2008; McVitty and Constantinou 2015; Sanchez et al. 2013; Tyler and Robinson 

1984a). The cause of this has been speculated to be high speed instrument error, although this 

behavior has been observed at varying strain rates in previous studies. A study of a pure lead 

specimen tested in shear at a low strain rate also displayed this initial hardening phenomenon 

(Aramaki et al. 2004), confirming the source to be a lead behavior. A mathematical model is later 

Test (#) Strain 

(%) 

Max Strain 

Rate (1/s) 

Type Number of 

cycles  

14 100 1.3 Sine 3 

8 200 2.5 EQ EQ 

11 300 3.8 Sine 1 

13 400 5.0 Sine 1 

15 500 6.3 Sine 1 
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introduced to account for this initial hardening and found to be beneficial in better estimating the 

bearing characteristic strength.  Lead heating and associated strength degradation has been studied 

in detail by Kalpakidis and Constantinou (2009a). The heating of the lead as it undergoes cyclic 

plastic deformation, because of the lead’s malleability and low melting point, results in strength 

degradation. Kalpakidis and Constantinou (2009a) examined the lead core of LRBs and were able 

to predict the temperature of the lead core and relate the temperature to the strength utilizing 

thermodynamic equations that were verified experimentally in cyclic tests (Kalpakidis and 

Constantinou 2009a). Kumar et al. (2014) introduced a state-of-the-art model LeadRubberX  

implemented in OpenSees (OpenSees 2014) that includes this lead heating formulation. 

The rubber also contributes to the complex bearing behavior by exhibiting hardening and 

pronounced unloading effects (Figure 4-2b). Mullins’ effect, also sometimes referred to as 

scragging, contributes to the softening behavior due to the cyclic reduction of the bulk modulus of 

elastomers at moderate-to-high shear strains (Mullins 1969). For seismic isolation purposes, the 

two main components of Mullins effect are considered: i)  Stress softening due to a strain 

exceeding a previously maximum strain  causing ‘permanent’ damage (often interchanged with 

scragging damage), and ii) Cyclic damage or softening occurring for strains lower or equal to the 

maximum strain ever applied (Diani et al. 2009). While scragging has been considered a subset of 

Mullins effect, Clark et al. (1997) construed this effect into two different phenomena: scragging is 

the permanent damage or “long term” damage of the rubber when it reaches peak strains, and 

Mullins’ effect is the “short term” damage that is accumulated as the rubber is being cycled. 

Scragging and Mullins effect may also cause the unloading effects that results in a widening of the 

hysteresis following a displacement reversal. Regardless of the root of this phenomenon, these 

need to be accounted for when conducting analysis of critical structures (Dall’Asta and Ragni, 



61 

 

2008). The larger the strains the bearing undergoes the larger the hardening and reversal effects 

are present. Ishida et al. (1991) studied two identical natural rubber bearings, one with a lead core 

and one without a lead core. Static tests were conducted, and the unloading effects occurred in 

both, substantiating that the unloading effect is due to the rubber and is not strain rate dependent. 

       a.)                                                   b.) 

 
Figure 4-2 Nonlinear behavior in LRB experimental tests a.) lead: initial lead hardening and 

strength degradation b.) rubber: hardening and unloading effects 

 

Table 4-2 Existing models for elastomeric bearings in OpenSees. 

Bearing Models Features Limitations 

LeadRubberX 

(Kumar et al. 2014) 

i) Strength degradation due to lead heating,  

ii) cavitation and post-cavitation, iii) 

buckling load variation, iv) horizontal 

stiffness, v) vertical stiffness variation, iv) 

only requires dimensions and basic material 

properties.   

i) No initial lead hardening, ii) no rubber strain 

hardening. 

HDR Element 

(Grant et al., 2004) 

i) Hyperelastic formulation can account for 

rubber hardening and Mullins and scragging 

effects in shear ii) cavitation and post-

cavitation, iii) buckling load variation, iv) 

vertical stiffness variation.   

i) Features are not optional in OpenSees, 

ii) isotropic damage in rubber.  

KikuchiBearing 

Element 

(Kikuchi et al. 2010) 

i) Multiple normal springs for large axial 

loads (P-Delta effects), ii) only requires 

dimensions and basic material properties.   

i) No strength degradation due to lead heating,  

ii) no initial lead hardening, iii) no rubber 

hardening. 



62 

 

4-2    Numerical Modeling 

Some of the more advanced bearing models available in OpenSees are listed in Table 4-2 

identifying the features that the models capture. Note that various models include vertical load 

effects not considered in this study. Limitations of the models, particularly as related to capturing 

the bearing behaviors described in the previous section, are also included. To more accurately 

simulate LRB behavior, a parallel model for large strain LRB (LSLRB) is proposed consisting of 

a strength degrading plasticity model (heating of the lead core), a hyperelastic model for rubber 

hardening and a plastic portion for the unloading effects. A parallel model with different 

components was also proposed (Eem and Hahm 2019), but does not capture all salient 

characteristics of LRBs at various strains with one set of parameters.  The components of the model 

are described next and build from components of existing models.  

4-2-1    Hysteretic model  

A hysteretic model was developed in order to capture behaviors such as lead core heating 

and initial lead hardening. The hysteretic model utilized and modified in this study is based on the 

model by Dafalias and Popov (1975) and later introduced into OpenSees by Grant et al. (2004) as 

the hysteretic portion of the HDR element. The formulation is as follows:  

𝑭2 = 𝑅𝒏 − 𝛿𝝁 (4 − 1) 

 𝑅 = (𝑏1 + 𝑏2 ∙ 𝐾𝑆2 ∙ ‖𝑼‖) (4 − 2) 

where,  

𝛿̇ = −𝑏3𝛿‖𝑼̇‖ (4 − 3) 



63 

 

Since the appearance of the time derivatives in Equation 4-3 occurs on both sides of the equation 

it remains a rate independent model, furthermore, converting Equation 4-3 into temporal 

discretization results in the following equation:   

𝛿 =
𝛿𝑛

1 + 𝑏3‖𝑼 − 𝑼𝒏‖
(4 − 4) 

The parameter 𝛿 is a scalar quantity that depends on the parameter 𝑏3, which dictates the sharpness 

of the transition between one bounding surface to the other bounding surface for each reversal. 

The overdot denotes the derivative with respect to time and ‖𝑼‖ represents the norm or magnitude 

of the displacement. The parameter, 𝑼𝒏, denotes the previous time step while 𝑼 denotes the current 

time step in Equation 4-4. The parameters 𝛿 and 𝝁 are the magnitude and unit direction of the 

vector oriented from the current force point to the image force. 𝑅 represents the bounding surface 

which is a function of the parameter 𝑏1, the characteristic strength of the LRB, and 𝑏2 is the 

hardening of the material that takes the form of a quadratic function of the displacement magnitude. 

𝐾𝑆2 is the scragging damage that varies from one to zero and is explained in a later section.  More 

details on the model and parameters can be found in Grant et al. (2004). 

4-2-1-1   Lead heating model 

In order to capture the heating effects that occur in the lead core, the heating formulation 

proposed by Kalpakidis and Constantinou (2009a) was aggregated to the hysteretic model 

(Equation 4-2). Kalpakidis and Constantinou conducted experiments of lead specimens at different 

temperatures and found the ultimate strength of the lead in tension. Since LRBs are utilized for 

shearing, a simplified thermodynamic equation was identified in order to find the temperature of 

the lead plug and consequently the strength of the lead using a tension-shear strength relationship. 
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A thermodynamic equation consisting of material parameters of the lead and the steel shims 

through which heat dissipation occurs was proposed and shown below: 

𝑇𝐿(𝑖 + 1) = 𝑇𝐿(𝑖) + 𝑑𝑇𝐿 (4 − 5) 

 𝑅(𝑖 + 1) = 𝑅(𝑖) ∙ exp(−𝐸2  ∙ 𝑇𝐿(𝑖 + 1)) (4 − 6) 

The strength-temperature relationship constant, 𝐸2, which was found experimentally to be 0.0069 

(Kalpakidis and Constantinou 2009b) and 𝑑𝑇𝐿, change in lead core temperature, is determined 

using thermodynamic equations that consist of material parameters of the LRB. In Equation 4-6, 

the bounding surface, 𝑅(𝑖 + 1), is modified by introducing strength degradation due to heating as 

the temperature of the lead core increases. Consequently, the plasticity model from Equation 4-1 

is updated as shown in Equation 4-7:  

𝑭2 = 𝑅(𝑇𝐿)𝒏 − 𝛿𝝁 (4 − 7) 

The hysteretic force is a function of the temperature of the lead and therefore strength degradation 

of lead can be simulated. This formulation has been implemented in OpenSees as the LeadRubberX 

material model. It should be noted that an update to the model was recently proposed since the 

previous implementation only allowed an increase in lead core temperature (Kitayama and 

Constantinou 2021) and is included here. 

4-2-1-2   Initial lead strain hardening  

Initial lead hardening is exhibited in LRBs and shown in Figure 4-2a. This initial hardening 

has not been given much attention in modeling and is further examined here. In order to account 

for this phenomenon a new phenomenological model is introduced. This modeling approach is 

similar to the damage model for Mullins’ and scragging introduced by Grant et al. (2004) with 

modifications.  In Equation 4-8, the typical hysteretic force formulation is given.  
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 𝑭2 = 𝑅𝒏 − 𝛿𝝁 (4 − 8) 

 𝑅 = (𝑏1 + 𝑏2 ∙ 𝐾𝑆2 ∙ ‖𝑼‖
2) ∙ 𝐾𝐿 (4 − 9) 

where,  

 𝐾𝐿 = 1 − 𝑐5 ∙ 𝑒
−𝑐6∙𝐷𝐿 (4 − 10) 

In Equation 4-10 it can be observed that the inverse of a typical damage parameter such as Mullins’ 

and scragging discussed by Grant et al. (2004) is applied. The parameter DL increases with the 

accumulation of displacement increments which can be analogous to distance travelled. 

Parameters 𝑐5 and 𝑐6 are user inputs, the former varies from zero to one and the latter being any 

positive value. Accordingly, the model commences at a low yield point and then approaches the 

actual strength as 𝐷𝐿 increases, and consequently, KL increases to one (Equation 4-10). 

Comparisons to experimental data will be demonstrated later.  

4-3    Rubber Model 

4-3-1    Hyperelastic model  

The second element in the parallel system is the hyperelastic model (Grant et al. 2004). 

This hyperelastic model is available in OpenSees (2014) as part of the HDR element. The elastic 

component uses the generalized Mooney-Rivlin strain energy function, with five elasticity 

constants. The model reduces to a fifth order equation with three constants 𝑎1, 𝑎2, and 𝑎3 as shown 

below:  

 𝑭𝟏 = 𝐾𝑆1𝐾𝑀[𝑎1 + 𝑎2‖𝑼‖
2 + 𝑎3‖𝑼‖

4]𝑼 (4 − 11) 

 The elastic component is denoted by 𝑭𝟏 and is a function of the displacement and damage 

parameters 𝐾𝑆1 and 𝐷𝑀 which account for scragging and Mullins’ effect, respectively. More details 

are presented in a later section and formulations can be found in Grant et al. (2004). The 



66 

 

hyperelastic behavior can be observed in Figure 4-4b. The hyperelastic element is utilized to 

provide a higher order equation to account for the rubber’s behavior at low to high strains with the 

addition of being able to capture for Mullins’ and scragging effects through damage parameters 

discussed in Section 4.3.3.  

4-3-2    Unloading (Hysteretic) Model  

In addition to the hyperelastic and the hysteretic model (i.e. including heating and lead 

hardening effects), an additional hysteretic model is included to capture the unloading effects. The 

previously mentioned hysteretic model is aggregated with carefully selected parameters, shown in 

Equations (4-1) and (4-2), to capture the hysteretic unloading effects as observed experimentally 

in Figure 4-2b. The parameter 𝑏1 is essentially set to zero while 𝑏2 is set to a finite number in order 

to have a bounding surface at higher strains. The 𝑏3 parameter, which dictates the sharpness when 

unloading between one bounding surface to the opposing surface as shown in Figure 4-2b, is set 

to a low value in order to properly capture the unloading effects as have been observed at large 

strains and shown in Figure 4-4c.   

4-3-3    Damage parameters  

At large strains, characteristic behaviors representative of Mullins and scragging effects can 

be observed within the bearing and are considered here. These effects evolve with the loading 

history on the bearing. The equations used to account for damage effects are shown below:  

𝐾𝑆1 = exp (−𝑐1𝐷𝑠
3) (4 − 12) 

𝐾𝑆2 = exp (−𝑐2𝐷𝑠
3) (4 − 13) 

 𝐾𝑀 = 𝑐3 + (1 − 𝑐3) exp(−𝑐4𝐷𝑀
3 ) (4 − 14) 
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The parameters 𝑐1-𝑐4 are input parameters that are calibrated with experimental data. 𝐾𝑠1 

and 𝐾𝑀 are damage factors that affect the hyperelastic portion of the model. 𝐾𝑆2 effects the 

hardening portion of the plasticity model as shown in Equation 4-2. Parameters 𝑐1 and 𝑐2 , are the 

damage parameters that account for degradation due to scragging effects and parameters 𝑐3 and 𝑐4 

account for degradation due to Mullins effect. The evolution of the damage parameters can be seen 

in Figure 4-3, where 𝐷𝑠 is the scragging damage parameter and 𝐷𝑀, is the damage parameter for 

Mullins’ effect. The damage parameters evolution for Test 13 are shown and it can be observed 

that damage is carried over from Test 11 since scragging is the ‘permanent damage’. Mullins 

effect, 𝐷𝑀, on the other hand is initially set to zero (short term damage), and the accumulation of 

damage increases as it is being cycled.   

 

 
Figure 4-3 Damage parameter evolution due to displacement norm (Test 13 example).  
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4-4    LSLRB Model 

A parallel system consisting of the three models (hysteretic model, hyperelastic model, and 

unloading model) is proposed and named LSLRB model (Figure 4-4). The hysteretic model 

accounts for the heating of the lead and the initial lead hardening, the hyperelastic model accounts 

for the hardening effects at large strains and damage parameters, and the unloading (hysteretic) 

model accounts for the unloading effects that are seen at higher strains. 

                (a)                                   (b)                                (c) 

 

Figure 4-4 Parallel System. (a) Plasticity (heating and LH) model, (b) Hyperelastic (rubber 

hardening) model, (c) Unloading (Hysteretic) model 

In calibrating the model, bounds for the parameters were set in order to ensure convergence 

and computational efficiency. The initial design values such as the characteristic strength of 980 

kN and the post-elastic stiffness of 3,375 kN/m were set as initial values for the calibration process. 

With regards to the damage model, the degradation parameters 𝑐1 − 𝑐4 were set to be positive 

values given that negative values would produce instabilities and unrealistic effects. Also, Mullins 

degradation parameter 𝑐3 is bounded between zero to one due to the damage equation for 𝐾𝑀 

(Equation 4-14). The scragging damage represents the permanent damage, therefore the scragging 

damage parameter 𝐷𝑆, was retained from the previous loading history (experimental test) resulting 

in residual damage as demonstrated in Figure 4-3 (Equations 4-12 and 4-13). Note that the 

experimental tests were conducted with rest times varying from 30 minutes to 24 hours, and 
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therefore the ‘short term’ damage 𝐷𝑀 was set to zero for each test and the scragging damage 

parameter 𝐷𝑆 was retained between for the entire test sequence since this parameter captures the 

permanent damage. As for the initial lead hardening in the LSLRB model, the parameters for 

Equation 4-10 result in both 𝑐5 and 𝑐6 being positive values and 𝑐5 set to varying from zero to one. 

The minimization of a normalized root mean-squared error (NRMSE) was applied through 

a multi-objective function considering various experimental tests to account for a wide range of 

strains and strain rates. The downhill simplex algorithm (Lagarias et al. 1998) was used to find the 

one set of parameters for all tests considered that minimize the NRMSE.  

∈=  ∑ (𝑤𝑖𝑁𝑅𝑀𝑆𝐸𝑖)

𝑛𝑜. 𝑡𝑒𝑠𝑡𝑠

𝑖=1

 (4 − 15) 

Per Equation 4-15, the 𝑁𝑅𝑀𝑆𝐸𝑖 for each test is calculated as the difference of the experimentally 

measured force and the force resulting from the model normalized by the range of the maximum 

and minimum forces observed experimentally. All tests in Table 4-1 are considered with equal 

weights, 𝑤𝑖 , when minimizing the multi-objective function. The NRMSE results are also shown 

and contributions of the model components for test 13 and 15 can be seen in Figure 4-6. The 

minimization multi-objective error function resulted in the calibration of the parameters shown in  

Table 4-3. 
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Table 4-3 LSLRB model calibration of parameters 

 

 

 

  

 

 

 

 

 

 

 

In order to evaluate the LSLRB model and its parameters, a comparison is made with two 

other widely utilized models for LRBs, a smooth Bouc-Wen bilinear model with constant 

parameters implemented in OpenSees as the LeadRubberX model (without lead heating) 

hereinafter referred to as a bilinear model, and the LeadRubberX model (with lead heating). The 

calibration for these models were conducted by initially setting the initial values to the preliminary 

design values including a characteristic strength of 980 kN and post-elastic stiffness of 3,375 

kN/m. In contrast to the LSLRB model calibration, the multiobjective NRMSE function for the 

bilinear model and LeadRubberX model consisted of only experimental tests 14 and 11. Tests 14 

and 11 correspond to shear strains of 100% and 300% and the weights applied are 0.75 and 0.25, 

The larger weight is applied to test 14 data with three loading cycles as the characteristic strength 

is typically obtained as the average over three cycles. Consideration of other test data led to larger 

discrepancies in the calibrated models as they attempted to capture rubber strain hardening. 

MODEL Parameter Bounds Calibrated 

Parameters  

Plasticity 

(w Lead 

Heating)  

model 

parameters 

930 ≤ 𝑏1 ≤ 1150 (𝒌𝑵) 1081 

0 ≤ 𝑏2 ≤ 0 (𝒌𝑵/𝒎
𝟐) 0.00 

0 ≤ 𝑏3 ≤ 500 (𝒎−𝟏)  288 

0 ≤ 𝑐5 ≤ 1 0.59 

0 ≤ 𝑐6 ≤ ∞ (𝒎
−𝟏) 8.86 

 

Hyperelastic 

model 

parameters 

2950 ≤ 𝑎1 ≤ 3800 (𝒌𝑵/𝒎) 3036 

−10000 ≤ 𝑎2 ≤ 0(𝒌𝑵/𝒎
𝟑) -3613 

0 ≤ 𝑎3 ≤ 10000 (𝒌𝑵/𝒎
𝟓) 3635 

0 ≤ 𝑐1 ≤ 100 (𝒎
−𝟑)  0.02 

0 ≤ 𝑐3 ≤ 1 0.77 

0 ≤ 𝑐4 ≤ 100 (𝒎
−𝟑) 11.30 

Unloading 

(Hysteretic) 

model 

parameters 

0 ≤ 𝑏1 ≤ 40 (𝒌𝑵) 8.90 

0 ≤ 𝑏2 ≤ 5000 (𝒌𝑵/𝒎
𝟐) 2094 

0 ≤ 𝑏3 ≤ 100 (𝒎
−𝟏)  7.35 

0 ≤ 𝑐2 ≤ 100 (𝒎
−𝟑) 0.57 
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4-5     Comparison of LRB models  

The calibrated models are compared to the experimental data in Figure 4-5 at 100% and 

300% shear strain. Key observations at 100% shear strain are: (i) the bilinear model resulted in the 

lowest characteristic strength of 867 kN which is the average over the range of cycles, (ii) the 

LeadRubberX characteristic strength is 943 kN then degrades as it cycles, (iii) the LSLRB model 

results in a strength of 1081 kN with initial hardening followed by degradation due to heating.  For 

all cases, when attempting to calibrate for the final cycle (as the bearing is returning to zero 

displacement), a clear overestimation of the lead strength is observed. This is likely due to the 

heating of the lead and the lower strain rates allowing for further reduction in the strength of the 

lead. For shear strains of 300%, it can be seen that the LSLRB model is able to capture the initial 

lead hardening and the rubber hardening as well as the pronounced unloading effects resulting in 

the lowest NRMSE of 2.98% (Figure 4-5f). For 300% shear strain, the bilinear and LeadRubberX 

model are not able to capture the hysteresis from cycle to cycle and at best interpolate between 

cycles. These figures indicate that for shear strains up to 300%, the proposed model can provide a 

more accurate representation of LRB behavior.  
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a.)                                                   b.)                                                      c.) 

 

d.)                                                   e.)                                                      f.) 

  

Figure 4-5 Model calibration comparisons to experimental data at various shear strains a.) 

Bilinear (100%) b.) LeadRubberX (100%) c.) LSLRB (100%) d.) Bilinear (300%) e.) 

LeadRubberX (300%)  f.) LSLRB (300%) 

For the design of seismically isolated structures with LRB, 300% shear strain is near the 

upper limit considered for maximum allowable design displacement. However, testing of these 

bearings showed that they can sustain much larger shear strain and this behavior is further 

examined. A study of a seismically isolated  nuclear power plant using an earlier version of this 

model indicated that the displacement CS could be set around 385% shear strain (An et al. 2020).  

In Figure 4-6, the total calibrated LSLRB model and the component contributions are shown for 

test run 13 (400% shear strain).  In Figure 4-6a, the hyperelastic model is able to capture the first 

cycle hardening followed by the associated damage observed in the experimental data. The HDR 

(unloading) model captures the unloading effects that are observed at these high strain cycles. The 

LSLRB model with the combination of the lead hardening and lead heating tracks the variation in 

strength starting with initial lead hardening followed by heat induced strength degradation (Figure 

4-6).  
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a.)                                                                     b.) 

 

Figure 4-6 Comparison of LSLRB to test data for a.) Test 13 (400% shear strain) b.) Test 15 

(500% Shear Strain) 

 In Table 4-4, the NRMSE are shown for one set of parameters for each of the three models 

over a wide range of strains. The LSLRB model results in the least error with the NRMSE ranging 

from 2.24% to 5.38%.  The larger NRMSE are observed for low strain tests compared to large 

strain tests due to the normalization over the range of forces in the NRMSE formulation. For the 

other models, the calibration utilized tests ranging from 100% to 300% shear strain with higher 

calibration weight for test 14. The high strain tests are not included in the calibration because the 

simplified model does not capture any hardening and therefore would result in larger strength 

values and larger errors in the lower amplitude tests. Overall, the LSLRB model provides better 

fit for all strain levels. The bilinear model resulted in the highest NRMSE for experiments at 100-

300% shear strain as expected for its inability to capture the strength degradation. The 

LeadRubberX model, on the other hand, is able to capture the strength degradation for the low 

strain tests hence reduced error. The bilinear model has lower errors compared to the heating at 

larger strains because the lack of strength degradation in the model more closely follow the 

unloading effect compared to the LeadRubberX model.  
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Table 4-4 NRMSE of various models against unidirectional experimental tests. 
  

 

4-6    Earthquake Response Analysis  

A single degree-of-freedom (SDOF) analysis was conducted to observe the response of the 

different models under simulated earthquake loading. In the nonlinear response history analysis 

(NLRHA), maximum displacement and potential impact velocities to moat wall are examined for 

a given CS. This analysis is conducted in order to examine differences in response prediction when 

using the three different models: Bilinear, LeadRubberX (heating) model and LSLRB model. In 

the SDOF system, no actual moat wall is considered but the velocity is captured at a given 

displacement that could be representative of a moat wall CS. The three models only consider the 

hysteretic damping of the isolation system model utilized without any additional damping.  The 

CS values are considered to evaluate the effects the LSLRB model may have on potential impact 

velocity compared to other models. Using the models with parameters from previous section, a 

SDOF system was analyzed under a set of 40 different ground motions (20 ground motion pairs). 

The ground motions were scaled following the U.S. Nuclear Regulatory Commission Guidelines 

(USNRC 2014). These ground motions were generated in a  previous study as dispersion-

appropriate, single-damping spectral-matched for the USNRC target response spectra scaled to a 

design basis earthquake (DBE) with 0.5g peak ground acceleration (PGA) having a return period 

of 10,000 years (Schellenberg et al. 2014) . The ground motions were then scaled by a factor of 

Test (#) Strain 

(%) 

Type NRMSE (%) 

Bilinear 

NRMSE (%) 

LeadRubberX 

NRMSE (%) 

LSLRB 

14 100 sinusoidal 6.69 5.55 5.26 

8 200 EQ 9.35 5.76 5.38 

11 300 sinusoidal 5.84 5.42 2.98 

13 400 sinusoidal 6.08 6.11 2.24 

15 500 sinusoidal 6.78 6.96 2.63 
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two in order to consider beyond design basis earthquake (BDBE) corresponding to a return period 

of 100,000 years. 

Using the bearing model calibrated from the cyclic test data, a study was conducted to 

observe the response and variations between the different models considered. The ground motion 

and displacement time histories are examined for (GM 7:  2002 Denali, Alaska earthquake (Taps 

pump station #09) scaled to BDBE (Figure 4-7). One key observation is the two pulses induced 

during the beginning of the ground motion causing two high displacement demand cycles, first in 

the positive direction and then in the negative direction. At about 5 seconds, when approaching 

the negative peak, the models seem to deviate likely due to hardening and unloading effects in the 

LSLRB model (Figure 4-8). The slope of the LSLRB model seems to reduce as a result of a 

decrease in velocity compared to the other models. After 5 seconds, the LSLRB model continues 

in a different trajectory especially at peak displacements. 

  Figure 4-8 shows the hysteretic response of the three models for the same earthquake. The 

lower displacements for the LSLRB are likely due to the hardening and the unloading effects 

(Figure 4-8). In addition, the initial lead hardening allows for a higher characteristic strength 

calibration and therefore more energy dissipation especially for pulse type records with the initial 

large amplitude cycles prior to significant lead heating. 
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Figure 4-7 BDBE ground motion and displacement time-histories for GM7: 2002 Denali. 

 

Figure 4-8 Isolator response to single ground motion (GM7: Denali, Alaska (Taps pump station 

#09)) 

4-6-1    Maximum Displacement Comparison  

In order to gain broader insight into the effects that the LRB models have on the overall 

system response, the resulting maximum displacements are shown in Figure 4-9 for the three 
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different bearing models: LSLRB model, LeadRubberX (heating) model and bilinear model. 

Following USNRC guidelines for the design of seismically isolated nuclear power plants, the CS 

or the moat wall distance should be placed at greater than or equal to 90th percentile displacement 

for BDBE analysis. This ensures that impact to the moat wall is highly unlikely and that if impact 

does occur the velocity at impact is minimal. A reduction in the CS can be substantiated by analysis 

considering impact. A lognormal distribution and logarithmic standard deviation were assumed in 

order to calculate the required displacements (Kumar et al. 2015) to compare the predicted values 

for the three models. 

The response results at the DBE level are first shown in Figure 4-9. In this case, the 99th 

percentile displacement response is utilized for structural design of the superstructure and to ensure 

no failure at these displacements. Since this is a single degree of freedom (SDOF), only the isolator 

displacements are calculated and no superstructure limit states are considered. The LSLRB model 

resulted in a slightly lower 99th percentile displacement compared to the other two models. This 

may be due to the initial lead hardening that allowed for a higher characteristic strength. It is 

important to note that the bilinear model 99th percentile displacement is beyond the range of all 

predicted displacements due to the assumed lognormal distribution. 

 
Figure 4-9 DBE GMs: Maximum displacement comparison for each model. 
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Maximum displacement results for BDBE analysis are shown in Figure 4-10, with the 

maximum 90 percentile displacements of 485%, 667%, and 452% shear strain for the LSLRB, 

LeadRubberX, and the Bilinear model, respectively. The LeadRubberX model’s average 

displacement overestimates the LSLRB model by approximately 38% when considering all 

records (Figure 4-10). The maximum displacements for ground motions 9, 10, 18, and 19 can be 

considered statistical outliers, particularly for the LeadRubbberX model. Ground motion pairs 

GMs ([19 39] and [18 38]) can be classified as long duration ground motions since the significant 

duration, 𝐷𝑠5−75 (i.e. the time interval over which 5% to 75% of the integral of the ground 

acceleration squared is accumulated), is above 25 seconds (Chandramohan et al. 2016). It has been 

demonstrated in Chapter 3 of this dissertation, that long duration ground motions can result in 

larger displacements for the LeadRubberX  model due to significant heating in comparison to a 

bilinear model. The experimental test program did not include long duration cyclic motions to 

further verify the models under these conditions, however comparing the statistical analysis 

without these long duration ground motions may be insightful. When excluding long duration 

ground motions pairs (i.e. [18 28, 19 38]), the maximum 90 percentile displacements result in 

473%, 634%, and 454% for the LSLRB, LeadRubberX, and the Bilinear model, respectively. 

Significant reductions in the maximum 90 percentile displacements can be observed for both 

models considering heating and more pronounced for the LeadRubberX model that does not 

account for rubber hardening. These ground motions provide important insight that should be 

further investigated. First, consideration of heating effects is critical for predicting bearing 

displacements for long duration ground motions. Second, when comparing displacements for the 

three models, the LSLRB model tends to compensate for the lead heating with the engagement of 

rubber hardening at large strains, resulting in significantly lower displacements than the 
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LeadRubberX model and larger displacements compared to the bilinear model. For BDBE level 

shaking it is essential to capture the different nonlinearities observed in experimental data. The 

bilinear model is able to interpolate the heating and hardening effects of the LSLRB and resulted 

in similar 90th percentile displacements as shown in the Figure 4-10.  However, the record-to-

record variability is high when comparing LSLRB and the bilinear model.  

 

Figure 4-10 BDBE GMs: Maximum displacement comparison for each model. 

 

4-6-2    Considerations for Moat Wall Impact Velocity   

The potential impact velocity at a given distance is evaluated since it has been 

demonstrated that severitiy of impact is highly dependent on this parameter (Masroor and 

Mosqueda 2013). Results for impact velocity are examined for the SDOF system with the three 

different models. An actual moat wall was not implemented, rather, a wall clearance was assumed 

at different displacements, then the relative velocity between the ground and superstructure was 

calculated at that distance. The purpose of this analysis was to observe any effects the different 

models would have on the impact velocity or the severity of impact by considering the moat wall 

at different distances for CS. Due to the fact that the first impact could affect the second impact 

from rebound effects, only the first impact velocity was analyzed. Impact is not expected for DBE 
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level GMs therefore only BDBE are presented.   

The average impact velocities along with the standard deviations indicated at each CS in 

increments of 25% shear strain are provided in Figure 4-11. The LSLRB model and the Bilinear 

model tend to have reduced average and standard deviation at large strains (>350%). The 

LeadRubberX model gives larger impact velocities for the LRB especially at high strains, while 

the bilinear model tends to underestimate the impact velocities within the ‘medium to high’ strains 

(i.e. 275-375% ). The LeadRubberX model has the highest impact velocities for all CS cases, 

except for CS 250% shear strain. More importantly, the LSLRB model obtained similar average 

impact velocities compared to the LeadRubberX model and bilinear model at lower strains (i.e. 

200-250% shear strain), for which all three models have very similar in characteristics and begin 

to deviate at larger strains.  

 
Figure 4-11 Comparison of BDBE Impact Velocity vs Moat Wall Clearance for different models. 

At 275% shear strain, the LSLRB model begins to diverge from the LeadRubberX model 

and approaches the bilinear model velocity predictions as the hardening and unloading effects of 

the LSLRB model engage at these large strains. Hardening at large strains is beneficial for reducing 

displacements and lowering the impact velocities. A similar stiffening effect is demonstrated by 
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triple friction pendulum bearings at large displacements (Fenz and Constantinou 2008). Future 

studies are needed to observe the effects the LSLRB model may have on the superstructure. 

The variation of impact velocities for the three different bearing models subjected to the 

2002 Denali record is shown in Figure 4-12. The displacement time history in Figure 4-7 

demonstrated the near-fault pulse response for this motion. For this particular motion, significant 

reductions in impact velocities is observed for LSLRB model at shear strains above 300%. When 

comparing the models, the trends shown here are different from Figure 4-11. The simulated 

impacts for CS of 200-325% shear strain for the three models occurred at the first cycle in the 

positive direction within seconds of the ground motion prior to significant lead core heating. The 

reduction in impact velocity of the LSLRB model is likely due to the calibration of the higher 

characteristic strength. For CS of 325% and 350%, all three models impact in the positive direction. 

In addition to the LSLRB model’s higher characteristic strength, the rubber hardening effects 

further reduce impact velocities. The larger the strain the more pronounced the hardening and 

unloading effects are, which result in larger reductions in impact velocity for cases greater than 

325% shear strain where the hardening is engaged in the LSLRB model. For example, at 325% 

shear strain the impact velocities for the three models were 0.86, 1.21, and 1.29 m/s, for the 

LSLRB, LeadRubberX, and bilinear model, respectively. This significant decrease in velocity of 

the LSLRB model is noteworthy and confirms the benefits of capturing the large strain behavior 

of the rubber.  Furthermore, at 375% shear strain and higher, no impact was observed for the 

LSLRB model.  
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Figure 4-12 Impact Velocity vs Moat Wall Clearance (GM 7: Denali, Alaska, Taps Pump Station 

#09) 

 

To further investigate the record-to-record variability of the three models, the impact 

velocities at a CS of 350% shear strain are shown in Figure 4-13. The resulting mean and standard 

deviation for each model (including no impacts) are LeadRubberX (0.837,0.514), Bilinear 

(0.392,0.513), and the LSLRB (0.580,0.498). The models demonstrate large variations in velocity 

at 350% shear strain, with the bilinear model providing the lowest average velocity by not 

accounting for strength degradation and use of this model should be carefully considered.  

 

Figure 4-13 Record-to-record variability for impact velocities at CS 350% shear strain 
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4-7    Conclusion 

Models for elastomeric bearings are reviewed then utilized in parallel in order to capture key 

characteristic behaviors that are observed experimentally in LRB. The parallel system named 

LSLRB model, can capture experimentally observed behaviors such as lead strength degradation, 

initial lead hardening, rubber hardening, and unloading effects. The model is a combination of the 

LeadRubberX model, hyperelastic (hardening) model, and the unloading model. The model utilizes 

one set of parameters to capture the various nonlinear behaviors at various strain levels only 

considering a constant axial load, therefore the size of the bearing and variance in the axial load 

will require recalibration of the LSLRB model. The LSLRB model calibrated to measured bearing 

behavior was utilized in analysis of a SDOF nonlinear time history analysis to examine the 

unloading and rubber hardening effects may have on the system response compared to a bilinear 

model and the recently developed LeadRubberX model. In this study it was found that the velocity 

at first impact under different clearance to stops (CS) above 250% shear strain resulted in the 

LSLRB model essentially bounded by the LeadRubberX model and the bilinear model for BDBE, 

however large variations in impact velocities are observed at 350% shear strain, with the bilinear 

model providing the lowest average velocity by not accounting for strength degradation and use 

of this model should be carefully considered. When comparing the maximum displacements of 

90th percentile BDBE for all three models, the Bilinear model and LSLRB model resulted in similar 

90th percentile maximum displacement for BDBE comparatively to the LeadRubberX model. For 

BDBE, it is important to note that the LeadRubberX model highly overestimates the impact 

velocities and peak displacements compared to the LSLRB model, while the bilinear model tends 

to obtain similar displacements to the LSLRB model, the impact velocities are highly 

underestimated. In considering these results, it is important to note the proposed LSLRB model 
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begins to show notable difference in response prediction at shear strains greater than 250%, 

particularly for impact velocities. In current practice, bearing displacements are limited around this 

range of strain for design consideration. Extending the range of strain by verifying bearing 

performance through experimental testing can significantly reduce impact velocities and minimize 

damage to the superstructures in the case of a rare earthquake. Additional studies will be conducted 

to examine the effects of bearing models on the superstructure response as well as the contribution 

of vertical loads on bearing behavior. 

  

 

 

 

 

 

 

 

 

Chapter 4, in part, are a reprint of the material as it appears in “Modeling of Lead Rubber 

Bearings Under Large Cyclic Material Strains.” Marquez, J.F., Mosqueda, G., & Kim, M.K., ASCE 

Journal of Structural Engineering (2021). The dissertation author was the primary investigator 

and author of this paper. 
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Chapter 5 SUPERSTRUCTURE RESPONSE WITH 

LSLRB MODEL  

5-1    Introduction 

The seismic response of a full-scale Nuclear Power Plant (NPP) model is examined with the 

implementation of the large strain lead rubber bearing (LSLRB) model proposed in Chapter 4. 

NPPs are critical infrastructures designed to stringent safety criteria for seismic design and require 

analysis under Beyond Design Basis Earthquake (BDBE) shaking (ASCE 2017a) to verify their 

response for low-frequency high-risk event. Bearings are required to be tested to verify they can 

achieve the maximum displacements obtained from the BDBE analysis under the expected axial 

load.  

Previous experimental studies on moat wall impact have found that velocity of impact is a key 

parameter for the impact force and the amplification of structure response (Fukui et al. 2020; 

Masroor and Mosqueda 2012). Estimation of the impact velocity is thus critical for analysis 

considering moat wall impact. ASCE 4 (2017) requires explicit analysis of the isolated structure 
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system for impact loading if the provided clearance is less than the required clearance to stop (CS) 

with little guidance provided for procedures to model or mitigate the effects of impact. 

Modeling of the seismic isolation system plays a key role in simulating the seismic response 

of NPPs subjected to ground shaking, including prediction of maximum isolation system 

displacements and velocity in case of exceeding the CS. The United States Nuclear Regulatory 

Commission (USNRC 2014) provides requirements for the modeling of the seismic isolation 

system, requiring that the model shall accurately capture the expected horizontal force-

deformation relationship at the amplitude from zero to the CS. Therefore, accurately modeling the 

various nonlinear behaviors at low to high levels of strain are critical as described in Chapter 4. 

The parallel LSLRB model proposed from Chapter 4 is compared with other widely used LRB 

models. The LSLRB model consists of the LeadRubberX model (Kalpakidis and Constantinou 

2009b; Kumar et al. 2014) and components of the HDR model (Grant et al. 2004). The LSLRB 

model is able to capture initial lead core hardening and the lead core strength degradation due to 

heating, in addition to, rubber hardening and softening effects at large strains. The benefits of using 

the LSLRB model is demonstrated in terms of estimating isolator displacements and capturing the 

impact velocity as the isolation system exceeds the CS as well as the consequences of impact on 

the superstructure. 

5-2    Model of Nuclear Power Plant 

NPPs are considered critical infrastructures designed to stringent safety criteria for daily 

operation as well as for the consideration of different hazards including seismic loading. For the 

seismic analysis of NPPs, simplified stick models to detailed finite elements models have been 

developed to examine the response of these structure under different loading conditions. For these 
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studies examining the effect of impact, the Archetype Nuclear Test (ANT) model based on the 

APR 1400 NPP was used for the superstructure (Schellenberg et al. 2016). As shown in Figure 

5-1, the superstructure is considered as a stick model while the base mat and isolation system are 

modeled in detail to capture the response of the seismic isolation system and base mat impact to a 

moat wall. The base mat has overall plan dimensions of 103.6 m x 102.4 m with a thickness of 5 

m and modeled using SSPbrick element in OpenSees to capture the local response of the base mat 

and the seismic isolation system during impact. The three bearing models considered are: the 

Bouc-Wen model (Bouc 1971; Wen 1976), the LeadRubberX model (Kumar et al. 2014) and the 

LSLRB model. A moat wall model is added as a macro element that considers impact behavior, 

the dynamic response of the retaining wall, and backfill soil (Sarebanha et al. 2018b). 

  

(a) (b) 

Figure 5-1 a) ANT model in OpenSees, b) Moat wall macro element to represent surrounding 

moat wall (Sarebanha et al. 2018b) 

 

The concrete retaining wall portion of the moat wall system (Figure 5-1b) was modeled 

with elastic beam elements and nonlinear rotational springs to capture the response of plastic 

hinges along the height of the wall. Backfill soil was also considered in the modeling of the moat 



92 

 

wall using the hyperbolic force displacement model developed by Duncan and Mokwa (2001) and 

Shamsabadi et al. (2007). In order to correctly obtain the maximum stiffness and ultimate force of 

the backfill soil, extrapolation of data from experimental work by Wilson (2009) was utilized. The 

Hertz model was utilized (Goldsmith and Frasier 1961) for the modeling of the impact interface 

during structural impact. The ImpactMaterial based on an approximation to the Hertz damped 

model proposed by DesRoches and Muthukumar (2002) was used in order to implement in 

OpenSees. More recent findings, have shown that the impact material utilized for analysis does 

not affect the overall global response of the system (Hughes and Mosqueda 2020).  

5-3    Effects of Bearings Models on NPP response 

In this section, the effects of bearing model selection on the seismic response of the NPP 

are examined to understand the potential mitigation efforts in reducing maximum displacements 

and impact velocities. Different bearing models were implemented in the APR 1400 ANT model 

to conduct simulations, namely the smooth bilinear Bouc-Wen, the LeadRubberX and the LSLRB 

model (See Chapter 4 for bearing model parameters and calibration). The studies here are 

conducted for one horizontal component of excitation due to the one-dimensional (1D) limitation 

of the LSLRB model. A nonlinear response history analysis (NLRHA) is conducted utilizing a set 

of 20 ground motions at BDBE having a return period of 100,000 years (Schellenberg et al. 2014). 

The maximum displacements, number of total impacts, and impact velocities at selected CS values 

are compared. Various CS values are examined in order to observe any potential benefits in the 

nonlinear behaviors captured in the LSLRB model when allowed to reach different levels of strain. 

The CS is considered in terms of bearing shear strain considered in the range of 325-375% to better 

relate to the expected amount of rubber hardening. A previous study conducted using a similar 
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model and bearings and seismic hazard proposed a CS in the same range as the values considered 

here (An et al. 2020). 

5-3-1    Selection of Bearing Models 

The NLRHA of the NPP with the LSLRB, the Bouc-Wen and LeadRubberX model are 

conducted to compare the differences between each model. The displacement time history is 

shown for all models for the Denali, Alaska (Taps pump station #09) ground motion 7 record 

(GM7) (Figure 5-2). As observed in Chapter 4, the ground motion tends to have two pulses initially 

in the positive and then in the negative direction having a near-fault type characteristic. The 

LSLRB model obtained lower displacements compared to the Bouc-Wen and LeadRubberX 

model, demonstrating the effectiveness of the model in reducing displacements for these types of 

ground motions.  

 

Figure 5-2 Isolator model displacement time-history comparison for single ground motion 

(GM7: Denali, Alaska (Taps pump station #09)   

The hysteresis for each model is compared in Figure 5-3. The LSLRB model tends to 

reduce the displacements compared to the other models. One factor for this reduction is likely due 

to the LSLRB model more accurately capturing the characteristic strength. Additionally, the 
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LSLRB model is able to capture the hardening and softening effects producing widening of the 

hysteresis and therefore dissipating more energy. The widening of the hysteresis, due to the 

nonlinear effects, tend to reduce the displacement at the negative shear strains compared to the 

Bouc-Wen and LeadRubberX model. Furthermore, the Bouc-Wen and LeadRubberX model 

undergo larger displacements in the negative direction compared to the positive direction, while 

the LSLRB model tends to obtain the same displacement magnitude as in the positive direction. 

When comparing the third cycle displacements in the positive direction among the three models 

(Figure 5-2), the LSLRB model shows further reductions in displacements due to the 

aforementioned behaviors.  

 

Figure 5-3 Isolator response to single ground motion (GM7: Denali, Alaska (Taps pump station 

#09) 

In order to clearly observe the variation of the maximum displacements for the three LRB 

models, the moat wall was not considered in the following analysis. The resulting peak 

displacements are shown in Figure 5-4. The USNRC guidelines (Kammerer et al. 2019) specify 

that the moat wall should be placed at the 90th percentile displacement assuming a lognormal 

distribution of peak displacements resulting from the considered set of ground motions at BDBE. 

The NLRHA indicate that the CS should be placed at 406%, 430%, and 610% bearing shear strain 
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for the Bouc-Wen, LSLRB, and LeadRubberX model, respectively. The LeadRubberX model 

results in the largest CS estimates due to the strength degradation of the model causing reduced 

energy dissipation resulting in a 42% percent increase in maximum displacements when compared 

to the LSLRB model. The Bouc-Wen model resulted in the lowest displacements of the three 

models however the LSLRB model, at some instances, further reduced displacements compared 

to the Bouc-Wen model (i.e. GMs 1,5,6,7,11,14,16,20). This demonstrates that the LSLRB model 

is capable of mitigating the effects of the lead core heating by compensating with the rubber 

hardening effects. Importantly, the model selection could have a significant effect on peak 

displacement estimates and potentially placing the CS at larger distances than required. For 

example, considering the LeadRubberX model will highly overestimate the moat wall placement 

when compared to the LSLRB model, requiring a redesign of the isolation system due to the 

excessive displacement demands.  

Although the Bouc-Wen and LSLRB model attained similar 90th percentile displacements, 

apparent record-to-record variability is observed between the two models. The maximum 

displacements for ground motions 9, 10, 18, and 19 can be considered statistical outliers. For 

ground motions 9 and 10, since the ground motions were synthetically created, these particular 

ground motions contained pulse-like demand towards the end of the record and are considered 

non-realistic as mentioned in Schellenberg et al. (2014). As for ground motions 18 and 19, they 

can be classified as long duration ground motions since the significant duration, 𝐷𝑠5−75 (i.e. the 

time interval over which 5% to 75% of the integral of the ground acceleration squared is 

accumulated), is above 25 seconds (Chandramohan et al. 2016). Particularly for the LeadRubberX 

model, the largest displacements corresponded to longer duration shaking and subsequently more 

strength degradation resulting in larger displacements when compared to a bilinear model (more 
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in Chapter 4). The experimental test program did not include long duration cyclic motions to 

further verify the models under these conditions, however comparing the statistical analysis 

without these long duration ground motions may be insightful. When excluding long duration 

ground motions 18 and 19, the maximum 90th percentile displacements result in 406%, 420%, and 

581% for the Bilinear, LSLRB, and the LeadRubberX model, respectively. Significant reductions 

in the 90th percentile displacements can be observed for both the LSLRB and LeadRubberX model 

when compared to including all ground motions. Importantly, although both models consider 

heating, more significant reductions are observed for the LeadRubberX model in which rubber 

hardening is not included. These ground motions provide important insight that should be further 

investigated. First, consideration of the lead core heating effects is crucial for predicting bearing 

displacements for long duration ground motions. Secondly, when comparing the maximum 

displacements for the three models, the LSLRB model tends to compensate for the lead core 

heating when rubber hardening and softening effects are accounted for at large strains. When 

considering BDBE level shaking, it is essential to model the various nonlinear behaviors observed 

in experimental data.  

 
Figure 5-4 Maximum displacements for LRB models 
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5-3-2    Response of the Superstructure   

The average pseudo response spectra along the height of the reactor containment building 

(RCB) of the NPP are computed for the BDBE ground motions without a moat wall to focus on 

the effects of the three bearing models on the superstructure response (Figure 5-5). There are two 

distinct peaks at frequencies 0.3hz and 3.5hz, representing the isolation system fundamental 

frequency and the fundamental frequency of the Reactor Containment Building (RCB), 

respectively. A notable result here is that the hardening effects of the LSLRB model do not amplify 

the spectral accelerations at dominant peak of 3.5hz as may be expected for a hardening system. 

On the contrary, it tends to dampen the higher frequencies 8 hz and higher for all heights of the 

structure.  

  

Figure 5-5 Average floor response spectra of RCB for 20 GMs with no moat wall. 

The average pseudo response spectra for all three LRB models with a moat wall at three various 

clearances to stops (CS) 325, 350, and 375% shear strain are shown in Figure 5-6. Similarly, the 

two distinct peaks at frequencies of 0.3hz and 3.5hz are present with the second peak increasing 

in amplitude for all CS compared to the no moat wall case, likely due to impact amplification. 
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However, for the LSLRB model, there is a significant reduction in the average pseudo acceleration 

from 5.2g to 3.3g by increasing the clearance to stop from 325% to 375% shear strain. The other 

two models show negligible reductions in average pseudo accelerations with a decrease from 5.6g 

to 5g for LeadRubberX model and a decrease from 4.3 to 3.3g for the Bouc-Wen model. These 

results indicate that extending the CS or potentially engaging the hardening earlier may be 

beneficial for lowering impact velocities and consequently reducing accelerations in content within 

the superstructure.  
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Figure 5-6 Average floor response spectra of RCB for 20 GMs with moat wall clearance set 

at: a) 325% shear strain, b) 350% shear strain, and c) 375% shear strain 

5-3-3    Moat wall impact 

Considering the NPP model with moat walls placed at three different distances of 325%, 350%, 

and 375% shear strain, the total number of impacts, including any subsequent impacts to the 
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opposing sides are shown in Figure 5-7. The three LRB models are subjected to BDBE ground 

motions and the total number of impacts for various CS are considered. As expected, the 

LeadRubberX model resulted in the most impacts for all clearance to stop values with some ground 

motions causing multiple impacts. For clearance to stop of 325% and 350% shear strain, the 

LSLRB model had more impacts compared to the Bouc-Wen model, indicating that the hardening 

effects of the LSLRB model were not fully engaged at these shear strain levels. For CS of 375% 

shear strain, the LSLRB model and the Bouc-Wen model resulted in 15 and 8 impacts, 

respectively, demonstrating that the hardening and softening effects of the LSLRB model 

counteract the lead degradation and therefore reduce the number of impacts to levels near the 

Bouc-Wen model.  

 

Figure 5-7 Total number of impact cases for 20 BDBE GMs at various CS 

Bearing model selection also influences the velocity at impact for a given CS, which 

determines the severity of impact. In Figure 5-8, the average impact velocity for a CS at specified 

shear strains are compared for the first, second and third impacts where applicable. The LSLRB 

model is essentially bounded by the other models. However, the LSLRB model obtained similar 

average impact velocities compared to the Bouc-Wen model at 375% shear strain or greater for all 
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three impacts. The average impact velocities for the LSLRB model, for all three impacts, begin 

converging to the Bouc-Wen model starting near 350% shear strain. This suggests that the 

contributions of the hardening and softening effects, causing the widening of the hysteresis, 

counteract the strength degradation from heating effects that otherwise would result in higher 

impact velocities. The LSRB model requires large strains (~325%) in order to develop sufficient 

rubber hardening as observed in the hysteresis from Figure 5-3. For the 3rd impact, the Bouc-Wen 

model only attains impact for the 375% shear strain case which may be due to the moat wall 

placement dependence for 325-375% shear strain as will be explained in the next section.   

   

a b c 

 

5-3-4    Moat wall rebound effects 

In order to understand the anomaly of Figure 5-8c of the Bouc-Wen model displaying a 

nonzero third impact for CS of 375% shear strain, ground motion 7 is examined (Figure 5-9). For 

CS of 350% shear strain, the first impact changed the trajectory of the displacement when 

compared to the no moat wall case. The displacement time history for the no moat wall case and 

the case with CS of 375% shear strain, are essentially identical. The first impact from CS of 350% 

shear strain, delayed the time in which the second impact occurred when compared to the 375% 

shear strain case (from 5 seconds to 5.3 seconds). This delay for 375% shear strain case, causes 

Figure 5-8 Avg. Impact Velocity for 20 GMs vs Moat wall clearance: (a) 1st impact, (b) 2nd 

impact, (c) 3rd impact 
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the third impact (at 5.6 seconds) due to the inflection in demand causing impact against the same 

wall. The inflection in demand can be seen in the no moat wall case occurring at 5.6 seconds.    

 

Figure 5-9 Shear strain and velocity time histories for GM 7. 

Similar to the bilinear model, the LSLRB model exhibited rebound effects at a CS of 375% 

shear strain causing a more intense 3rd impacts compared to 350% shear strain CS (Figure 5-8c). 

These ground motions are 10 and 18, which as mentioned before, correspond to unrealistic 

characteristic ground motion and a long duration ground motion, respectively, but essentially result 

in similar behavior for the occurrence.   

5-3-5    Impact penetration  

ASCE 4-16 requires analysis of impact to the moat wall and design for impact loading if 

the CS is below the design displacement. The impact velocity for analysis may be calculated either 

by simulations for BDBE ground motions or by assuming harmonic response of the isolated 
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superstructure to the 95 percentile BDBE displacement at the calculated frequency for the isolation 

system (ASCE 2017a). Sarebanha et al. (2021) proposed a simplified method to estimate the 

amount of deformation of the moat wall based on the impact velocity and strength of the moat 

wall. The model and analysis conducted by Sarebanha et al. (2021) will be revisited here to 

enhance the modeling efforts by including soil springs and a coefficient of restitution at impact.  

The height and thickness of the moat wall considered is 20 m by 1.52 m. The height of the 

bottom, middle and top soil springs are placed at 3.96, 5.48, and 20 meters, respectively. Plastic 

analysis for the moat wall was conducted considering two failure scenarios shown in Figure 5-10. 

In Sarebanha (2018), a section of the moat wall was examined, and a pushover was conducted in 

SAP2000 to obtain the plastic moment given a unit width of the moat wall.  

 

Figure 5-10 Shear strength of the moat wall using plastic design (Sarebanha 2018) 

 Considering the moat wall as was proposed in a preliminary design for the NPP, the value 

of 𝐿1 is 3.96 meters and 𝐿2 is 5.48 meters, with the minimum shear capacity resulting from 

Scenario 1 of 7.09𝑥105 kN for the entire wall with a length of 98.75 meters. For Scenario 2, the 

shear capacity resulted in 10.3𝑥105 kN, thus Scenario 1 is the governing failure mechanism. 

Considering Scenario 1, the moat wall deformation prediction model was obtained by using 
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conservation of energy by equivalating the energy of the moat wall simplified elasto-plastic model 

with the kinetic energy of the NPP as demonstrated in the following equations: 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝐸𝑠𝑡𝑟𝑎𝑖𝑛 (5 − 1) 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2
𝑚𝑁𝐼𝑣𝑖𝑚𝑝

2 (5 − 2) 

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = ∫ 𝐹𝑚𝑜𝑎𝑡  ∙ 𝑑𝑥 (5 − 3) 

where the mass of the NPP, 𝑚𝑁𝑖, amounts to 4.82𝑥108𝑘𝑔 and 𝑣𝑖𝑚𝑝 is the relative velocity at 

impact. For Equation 5-3, an elastoplastic model is assumed and the corresponding energy of the 

moat wall is calculated by obtaining the area under the curve (Figure 5-11). The simplified elasto 

plastic model are based on the following equations:  

𝐹𝑚𝑜𝑎𝑡,𝑚𝑎𝑥 = 𝑉𝑝 = 7.09𝑥10
5 𝑘𝑁 (5 − 4) 

𝛿𝑦 = 𝜃𝑦𝑥𝐿1 = 0.012𝑥3.96𝑚 = 0.0475 𝑚 (5 − 5) 

where the maximum force of this equivalent system is assumed to be the shear strength of the wall 

and the yield displacement 𝛿𝑦 was calculated from yielding rotation of the moat wall section to 

form a plastic hinge from scenario 1. 

 

Figure 5-11 Shear strength of the moat wall using plastic design [from: (Sarebanha 2018)] 

The previously proposed impact model is revisited to consider the effect of soil 

contribution. When observing the impact simulations at BDBE under dynamic conditions and 

evaluating the maximum moat wall deformations, the mechanism of failure is governed by a 
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combination of Scenarios 1 and 2 (Figure 5-12). The effect of the soil springs in better predicting 

the actual failure mode of the wall is examined.  

 

Figure 5-12 Maximum moat wall deformation for first impacts at CS of 300% shear strain. 

Furthermore, when examining the impact force and moat wall deformation time history at 

the record level, more implications of the importance of the inclusion of the soil are deduced. The 

impact for ground motion 7 is shown for the east wall impact at 3.6-3.75 seconds (Figure 5-12). 

The moat wall experiences a larger impact force compared to the soil springs, however larger 

displacements are induced at the middle and top soil springs therefore preventing for full linear 

failure (or scenario 1). The reason Scenario 1 does not fully occur is because of the backfill soil 

springs absorb significant energy, especially at the middle and top springs where higher 

deformations are observed at 5.4m and 20m (Figure 5-10). Therefore, the inclusion of the backfill 

soil will be considered when applying conservation of energy as discussed in the next section.  
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Figure 5-13 Force and moat wall displacement time histories at bottom, middle, and top soil 

springs at impact for GM7. 

5-3-5-1   Moat wall deformation prediction 

A simplified approach is considered to predict the moat wall deformation considering the 

soil springs and their inclusion in the conservation of energy equations from Sarebanha (2018). 

Applying the equations of conservation of energy, the mass of the NPP, 𝑚𝑁𝑖, amounts to 

4.82𝑥108𝑘𝑔 and 𝑣𝑖𝑚𝑝 is the relative velocity at impact. Since a combination of both failure 

mechanisms occurred, both scenarios are considered for analysis. The kinetic energy, 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 at 

the short time of impact is transferred to strain and hysteretic energy, 𝐸𝑠𝑡𝑟𝑎𝑖𝑛, from the moat wall 

and soil springs that vary in deformation due to the various heights of 3.96 m, 5.48 m, and 20 m, 

thus changing depending on the scenario being examined. Each of the stiffness, 𝑘𝑠𝑜𝑖𝑙
𝑖 , of the soil 

springs along the height of the moat wall are set to be 492.40kN/cm/m of wall for all three springs 

as described in Sarebanha (2018). The strain energy is extended as follows: 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝐸𝑠𝑡𝑟𝑎𝑖𝑛 (5 − 6) 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2
𝑚𝑁𝐼𝑣𝑖𝑚𝑝

2 (5 − 7) 
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𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = ∫ 𝐹𝑚𝑜𝑎𝑡 ∙ 𝑑𝑥 +
1

2
∑𝑘𝑠𝑜𝑖𝑙

𝑖 Δ𝑖
2 (5 − 8) 

where Δ𝑖 dictates the amount of deformation at the soil springs. For the moat wall, the strain energy 

of the moat wall can simply be calculated as the area under the curve as shown (Figure 5-11) and 

described in Equations (5-4)-(5-5). Additionally, the soil spring strain energy is calculated using 

Equation 5-8, where the soil deformation varies depending on the scenario considered. 

Scenario 1: 

Δ𝑖 = ℎ𝑖 ∙ 𝜃 (5 − 9) 

The corresponding heights of the soil springs are denoted by ℎ𝑖. Given a moat wall rotation 𝜃, the 

deformation for the soil spring Δ𝑖 is linear due to the assumed failure of scenario 1. As for scenario 

2, the following deformation of soil springs and shear capacity are described as follows: 

Scenario 2:  

𝐹𝑚𝑜𝑎𝑡,𝑚𝑎𝑥 = 𝑉𝑝 = 1.03𝑥10
6 𝑘𝑁 (5 − 10) 

𝛿𝑦 = 𝜃𝑦𝑥𝐿2 = 0.012𝑥5.4𝑚 = 0.0648 𝑚 (5 − 11) 

Δ1 = 𝐿1 ∙ 𝜃 , Δ2 = 𝐿2 ∙ 𝜃 , Δ3 = 𝐿2 ∙ 𝜃 (5 − 12) 

Considering scenario 2 (Figure 5-10), the equivalent maximum shear force is larger than scenario 

1 due to the plastic analysis described earlier. However, due to the failure mechanism assumed 

(Equation 5-12), lower displacements for Δ3 will account for less energy (Equation 5-8) for this 

failure mechanism compared to scenario 1. Therefore, both scenarios need to be considered.  

The predicted values obtained from the plastic analysis are compared with the measured 

impact velocities and deformations obtained from the nonlinear time history analysis (Figure 

5-14). For the case considering soil springs, as the larger deformations are considered, the 

quadratic terms on both sides begin to develop linear relationship between deformation and impact 

velocity (Equation 5-8). As for the cases considering no soil springs, the quadratic term of Equation 
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(5-2) results in a continuous quadratic relationship. Since the initial impact as well as the restitution 

region of impact should be considered based on Jankowski (2005), it has been found that the 

restitution coefficient varies from 0.5 to 0.75 for concrete structures (Anagnostopoulos 1988). In 

Figure 5-14, the impact deformation is compared to the numerical simulations for BDBE ground 

motions for all three models only considering first impact. The reason subsequent impacts were 

ignored for this prediction is due to the plastic analysis considers the full capacity of the wall prior 

to any damage. The impact deformation is highly overestimated when considering a value of one 

for the coefficient of restitution or only considering the moat wall for both scenarios described in 

Figure 5-10. The numerical simulation data is shown for all three bearing models to include all 

available data, which show the velocity-deformation relationship is similar to that predicted by the 

energy approach. When the soil is included along with a restitution value of 0.5 for scenario 1, this 

resulted in a nonconservative prediction of the numerical simulations. As for scenario 2 with a 

coefficient of restitution of 0.5, a good agreement is observed with the numerical simulations. 

Since coefficient of restitution for concrete varies from 0.5 to 0.75, a coefficient of restitution of 

0.5 seems reasonable. However, a coefficient of restitution of 0.7 provides a conservative design 

recommendation for estimating moat wall deformation.  Therefore, it can provide designers the 

ability to account for the additional displacements the isolation systems may have to account for 

given an impact velocity. The proposed value for the coefficient of restitution for prediction of 

moat wall deformation should be a value of 0.7 in order to be reasonably conservative.  
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Figure 5-14 Impact velocity versus deformation for GMs compared to predicted. 

5-4    Summary and Conclusions 

Moat wall impact, which has the potential to amplify floor accelerations and interstory drifts 

in base-isolated building structures, is a relatively understudied phenomenon. Current approaches 

to mitigate the pounding effect is to extend the CS to achieve a low probability of exceedance by 

an earthquake-induced displacement at the isolation plane. For most structures, there are practical 

and cost constraints that limit the displacement capacity of the isolation system. In the case of 

nuclear power plants (NPPs), though risk precautions are taken to minimize the occurrence of 

impact, the avoidance of such phenomena cannot be guaranteed. As such, the consequences of 

impact need to be more thoroughly studied using advanced modeling tools as proposed here. A 

simplified macro element developed based on experimental observations and high-fidelity finite 

element models with a realistic model of a large NPP is revisited. 

Prediction of isolation displacements and velocities are critical to assess safety of isolation 

systems and potential effects of impact to moat walls.  Bearing models were compared including 

the LSLRB model, proposed in Chapter 4, that captures nonlinear behavior observed in 
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experimental data from testing of full-scale bearings. The use of improved models can be 

beneficial in better predicting the maximum displacements of the isolators and the potential for 

impact. Consideration of strain hardening in the rubber can be beneficial to reduce the effects of 

impact, especially when increasing CS to allow the bearing to achieve large strains to levels 

verified through experimental testing. When comparing the maximum displacements of the 

LeadRubberX model against the proposed LSLRB model, the LeadRubberX model highly 

overestimates the displacements by nearly 50%. The impact velocities for the LSLRB model were 

significantly lower than the LeadRubberX model for all impact velocities. The Bouc-Wen model 

resulted in the lowest impact velocities due to the fact that no lead core heating was accounted for.  

The impact penetration relationship proposed by Sarebanha (2018) was revisited and extended 

by accounting for soil springs and the coefficient of restitution of 0.7 was found to achieve a good 

agreement with numerical simulations and obtain a conservative prediction for the moat wall 

deformation. However, this was conducted with one configuration and one set of material 

parameters, more configurations should be investigated to further verify this model. Importantly, 

it was observed that the impact deformation did not differ when comparing the various LRB 

models. Furthermore, the LSLRB model proved to effectively reduce the average response spectra 

by nearly half, when extending the wall from 325% shear strain to 375% shear strain.   

 

Chapter 5, consists of only investigations conducted by the author of this dissertation, from 

material in “Considerations for modeling of base isolated nuclear power plants subjected to beyond 

design basis shaking.” Sarebanha, A., Marquez, J., Hughes, P., & Mosqueda, G., Nuclear 

Engineering and Design (2021). The dissertation author was the co-investigator and co-author of 

this paper. 
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Chapter 6 LSLRB MODEL FOR 2-D SYSTEM AT 

LARGE STRAINS 

6-1    Introduction 

Current bearing models (Grant et al. 2004; Kikuchi et al. 2010; Kumar et al. 2014; Ragni 

et al. 2018) are capable of capturing particular nonlinear behaviors exhibited by elastomeric 

bearings but have a shortcoming of capturing all observed behavior, especially for large strain 2-

D experimental data. In Chapter 4, a parallel model named Large Strain Lead Rubber Bearing 

(LSLRB) was developed consisting of a combination and modification of the aforementioned 

models. The LSLRB model can capture nonlinear behaviors such as initial lead hardening, lead 

heating, rubber hardening, and rubber softening ‘unloading’ effects. The model was verified with 

experimental data of a large LRB subjected to varying strain levels and appropriately captured the 

LRB behaviors with only one set of parameters over a wide range of strains. The LSLRB model 

was limited to one dimensional (1D) excitation due to the rubber softening ‘unloading’ effects that 

were modeled utilizing a hysteretic model causing issues for 2D excitation.  
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To extend the LSLRB model for 2D excitation, further examination of the commonalities 

between HDR and natural rubber (main component of LRBs) were necessary for appropriately 

capturing the various behaviors observed in LRBs. Tubaldi et al. (2017) developed an anisotropic 

model capable of capturing anisotropic damage behavior. Ragni et al. (2018) demonstrated that 

HDR bearings are, in fact, anisotropic by conducting shear tests on high damping rubber 

specimens. Subsequently developing an anisotropic damage model that was able to capture many 

of the rubber nonlinear behaviors observed experimentally. The material makeup is similar 

between HDR and natural rubber with the former having the addition of carbon black. This model 

was deemed a possible candidate for modeling LRBs at high strains since many of the 

characteristics of HDR are observed in natural rubber, simply, at higher strains (Harwood et al. 

1965). Furthermore, Harwood and Payne (1966a) noticed that a similar softening effect occurs 

when both HDR and natural rubber are stretched to the same stress levels. The examination of 

these experiments demonstrates that natural rubber and HDR mechanically behave similar, only 

at different strain levels. Accordingly, to capture the various behaviors observed in 2D 

experimental data, adoption of the anisotropic model was deemed important for capturing the 

various effects observed at large strains. The anisotropic model provided the necessary update of 

the previous LSLRB model from Chapter 4 of this dissertation.  

For design purposes, it is typically sufficient to model an LRB by utilizing the simple 

bilinear model for isolated structures. However, recent studies considering higher levels of demand 

due to low-frequency high-risk assessment on critical structures require accurate bearing modeling 

and require the space to achieve such displacement demands (i.e. surrounding moat). Moat walls 

may be placed to prevent high strains that may lead to failure of isolation systems. An et al. (2020) 

utilized an earlier version of the LSLRB model and followed the United States Nuclear Regulatory 
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Commission (USNRC 2014) guidelines to determine that the moat wall should be set at about 

385% shear strain for the same bearings considered here. To verify these levels of strain were 

feasible, experimental shearing of several LRBs with varying axials loads were sheared to failure 

resulting in all failures occurring consistently above 400% shear strain. Importantly, these levels 

of demand are achievable, however require appropriate modeling of LRBs to large strains to 

accurately capture the necessary moat wall placement and to potentially reduce the velocity at 

impact to moat walls. Since, recent investigations have observed that impact to moat walls may 

amplify the superstructure response causing damage to critical contents (Fukui et al. 2020; 

Masroor and Mosqueda 2012). Modeling of these nonlinear effects are conducted in this study, in 

addition to, comparing the proposed model against traditional models used in practice to evaluate 

significant discrepancies in maximum displacements and impact velocities.    

6-2    Experimental Bearing Behavior   

The experimental data utilized to characterize the behavior of LRB under bidirectional 

motion is from the same experimental program introduced in Chapter 4, with detailed information 

found in Eem and Hahm (2019). Large scale LRB experimental tests were conducted at the 

University of California San Diego Seismic Response Modification Device (SRMD) Facility. The 

testing data from two identical LRBs are examined for both unidirectional and bidirectional 

verification of the model proposed here. The bearings were subjected to various characterization 

tests, with only the tests considered in this study shown in Table 6-1. The test data utilized to 

capture the LRB behaviors are identical to the data used from Chapter 4 with the addition of 2D 

experimental data. The LRB was subjected to a constant axial load of 22,000 kN for all tests, 

corresponding to an average pressure of 13MPa (considering area of rubber). Although the 
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behavior of the bearing depends on the axial load and the bearing size (i.e. shape factor) these 

effects are not considered here (Sheridan 2012). The axial load corresponds to less than 20% of 

the undeformed bearing buckling load for which no stiffness degradation was observed. 

Insufficient varying vertical load tests prevented further insight of the horizontal-vertical coupling 

effects. Other studies have investigated the importance of axial load variation (Koh and Kelly 

1988; Ryan et al. 2005; Sanchez et al. 2013; Sarebanha et al. 2019; Vemuru et al. 2016; Warn et 

al. 2007). 

Table 6-1 Test log utilized for model verification in 1D and 2D 

The two test specimens underwent similar 1-D sinusoidal tests for Test Runs 1-9. For Test 

Runs 11 and 13, specimen 2 was subjected to a 2-D sinusoidal characterization tests while 

specimen 1 was subjected to 1-D sinusoidal characterization tests (Figure 6-1a). The noteworthy 

experimental data is Test Run 13 from specimen 2 exhibiting similar nonlinear behaviors in the 

longitudinal direction as in the unidirectional Test Run 13 from specimen 1 (Figure 6-1b). It is 

important to note that the hystereses are equivalent with similar nonlinear behaviors discussed in 

Chapter 4 such as initial lead hardening, lead heating, rubber hardening, and softening “unloading” 

effects considered to be from Mullins and scragging effects (causing the widening of the 

hysteresis). It is important to note the loading in the lateral direction (Figure 6-1c) is not at large 

SPECIMEN 1 Test (#) Strain (%) Max Strain Rate (1/s) Type Number of cycles  DOF 

3 100 1.3 Sine 10 1D 

4 100 3.1 Sine 3 1D 

11 300 3.8 Sine 1 1D 

13 400 5.0 Sine 1 1D 

14 100 1.3 Sine 3 1D 

15 500 6.3 Sine 1 1D 

SPECIMEN 2 Test (#)      

9 200 0.21 EQ N/A 2D 

11 300 3.8 Sine 1 2D 

13 400 5.0 Sine 1 2D 

15 500 6.3 Sine 1 2D 
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strains and the longitudinal direction demonstrates to be essentially unaffected and behaves similar 

to 1-D testing (Figure 6-1). Consequently, a similar approach to the previous LSLRB model along 

with modifications of the formulation were necessary to capture such behaviors.   

   
Figure 6-1 Test 13 1-D versus 2-D a.) Displacement orbital for 2-D test b.) Longitudinal 

hysteresis comparison for 1-D and 2-D tests c.) Lateral hysteresis for 2D test  

6-3    Numerical Modeling  

In order to accurately model the nonlinear behavior exhibited by LRBs at large strains, the 

sources of these behaviors should be well understood. As previously mentioned, the natural rubber 

in the LRB behaves similar to HDR when undertaken to similar levels of shear stress. Since the 

material makeup is the same with the difference being the addition of carbon black in HDR 

material, similar behaviors between natural rubber and HDR are expected, only at higher strains 

for natural rubber. Therefore, models developed for HDR bearings will be used and modified to 

appropriately capture behaviors found experimentally in LRB. The novel LSLRB (Large Strain 

Lead Rubber Bearing) model consists of a hyperelastic model with Mullins and scragging effects 

that includes anisotropic damage effects, along with a hysteretic model based on Dafalias and 

Popov (1975) that is modified to include lead core heating and initial lead hardening.  Here it will 

be extended to 2-D behavior. 

a.) b.) c.) 
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6-3-1    Hyperelastic Model 

In order to better capture the contribution of rubber to the overall behavior of LRB, a 

hyperelastic model similar to Grant et al. (2004a) is introduced. The formulation is modified by 

introducing the idea of representative directions (Freund and Ihlemann 2010) in order to capture 

2D experimental data.  

6-3-1-1   Representative directions with Mullins effect 

In order to model the deformation induced anisotropy inherent in Mullins effect, the idea of 

representative directions or the one-dimensional representation of 2D and 3D material behaviors 

is utilized. The basis of this model is that a homogenization of 1D material unit vectors capture the 

corresponding damage induced within that particular direction. For a particular displacement 

within the 2D plane space where the bearing may be displaced, the displacement can then be 

projected onto these representative directions that can accumulate damage. Let the unit vector 𝒏𝜽 

represent the direction corresponding to the angle of 𝜃, and the projection on this particular 

direction from a given shear displacement of 𝑼 produces the following: 

𝜀𝜃 = 𝑼 ∙ 𝒏𝜽 (6 − 1) 

For each direction, this represents the corresponding 1D deformation measure 𝜀𝜃 with its 

associated corresponding force, 𝑓𝜃. The internal variables for the damage dissipative phenomena 

can be accumulated by each representative direction since they may differ from direction to 

direction. These can be collected once the evolutions laws are established, the following integral 

can collect the accumulation of damage:  

𝑓𝑚(𝑈; 𝒗) =
1

𝜋
∫ 𝑓(𝜀𝜃, 𝒗𝜃)𝒏𝜽𝑑𝜃
𝜋

0
(6 − 2) 
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Since the directions are homogenous and there is typically a finite number of directions the damage 

can therefore be approximated by a summation of each individual direction. Since each 

representative direction accounts for both positive and negative direction, the summation can be 

done from zero to 𝜋 instead of 2𝜋. The transient response along with the material law are 

represented by the following equations:  

𝑓𝑚
𝜃 = 𝛼𝑒(1 − 𝑞𝑒

𝜃+)𝑓𝑒
𝜃    𝑓𝑜𝑟    𝜀𝜃 > 0 (6 − 3) 

𝑓𝑚
𝜃 = 𝛼𝑒(1 − 𝑞𝑒

𝜃−)𝑓𝑒
𝜃    𝑓𝑜𝑟    𝜀𝜃 < 0 (6 − 4) 

where 𝑓𝑒
𝜃 is the typical hyperelastic model:  

𝑓𝑒
𝜃 = [𝑎1 + 𝑎2‖𝜀

𝜃‖
2
+ 𝐾𝑆1𝑎3‖𝜀

𝜃‖
4
] 𝜀𝜃 (6 − 5) 

The hyperelastic model consists of the 𝑎1, 𝑎2, and 𝑎3 as material parameters and 𝐾𝑆1 denotes 

scragging damage or permanent damage in the rubber (further examined in the next section). The 

damage parameters 𝑞𝑒 
+ and 𝑞𝑒

− tend to limit values depending on the current value of deformation 

experienced along the corresponding direction. The evolution laws for 𝜀𝜃 > 0 are proposed in the 

following form:  

𝑞̇𝑒
− = 0 (6 − 6) 

𝑞̇𝑒
+ = ((

𝜀𝜃 

𝑈𝑚𝑜𝑑
)

𝛽

− 𝑞𝑒
+ )   𝑖𝑓 𝑞𝑒

+ < (
𝜀𝜃 

𝑈𝑚𝑜𝑑
)

𝛽

(6 − 7) 

 𝑞̇𝑒
+ = 0  𝑖𝑓 𝑞𝑒

+ ≥ (
𝜀𝜃 

𝑈𝑚𝑜𝑑
)

𝛽

(6 − 8) 

For 𝜀𝜃<0, similar evolution laws are used except roles for 𝑞̇𝑒
+ and 𝑞̇𝑒

− are interchanged in Equations 

6-6 to 6-8, and 𝜀𝜃  is replaced with |𝜀𝜃 |. It is important to note that the formulation is similar to 

the formulation presented in Tubaldi et al. (2017) and summarized in Section 2-2-5.  The velocity 

parameter 𝜁𝑒 , is not used for this calibration and is simplified (Equation 6-7) due to the fact that 
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natural rubber is not rate dependent for the rate of loading considered here (Diani et al. 2009; Ishida 

et al. 1991). A sensitivity study in the next section will demonstrate issues with the use of this 

parameter (Section 5-5-1). The maximum value that can be reached by 𝑞𝑒
+ and 𝑞𝑒

− for strain 

amplitudes not exceeding |𝑈| is given by the expression (𝜀𝜃/𝑈𝑚𝑜𝑑)
𝛽

, where 𝑈𝑚𝑜𝑑 is the 

maximum amplitude for which the model is deemed valid.  

6-3-1-2   Representative directions with scragging damage (extension of Grants model)  

Since scragging damage is a subset of Mullins effect, representing damage by individual 

directions and modifying the evolution of the scragging damage to be similar to Mullins damage 

(Grant et al. 2004) was necessary to capture behaviors observed experimentally. Alongside these 

modifications, the idea of having the scragging damage term applied to the 5th order term 𝑎3 in 

Equation 6-5, proved to be essential to obtain a proper calibration of the LRB. The rational for 

conducting this modification is two-fold. First, no experimental scragging ‘permanent’ damage 

was observed for the post-elastic stiffness, 𝑎1 (Equation 6-5). Second, the majority of the 

hardening and softening effects occur at larger strains for natural rubber when compared to high 

damping rubber (Harwood et al. 1965). Therefore, the scragging damage was applied to the higher 

order term, 𝑎3. For example, in Figure 6-2 the hysteresis is shown for Test Run 3 and Test Run 14 

for comparison. Importantly, the LRB prior to Test Run 3 underwent shear strains of up to 100%, 

whereas prior to Test Run 14 the bearing had undergone up to 400% shear strain. Interestingly, the 

scragging damage for the LRB showed no difference for the post elastic stiffness, demonstrating 

that scragging effects are negligible on the post-elastic stiffness.  
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Figure 6-2 Constant post-elastic stiffness after test sequence Test Run 3 versus 14 

 

Representing the scragging damage by individual directions similar to Mullins effect seemed 

intuitive. The representative directions given an arbitrary shear displacement, 𝑼, is projected to 

each individual direction in a magnitude sense: 

𝜀𝑖𝜃 = |𝑼 ∙ 𝒏𝒊𝜽| (6 − 9) 

where 𝑖 represents the representative direction and therefore 𝜀𝑖𝜃, represents the displacement 

projected onto that particular representative direction. The scragging evolution laws are 

represented by:  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑖𝑓 𝜀𝑖𝜃 ≥ 𝐷𝑆
𝑖+ 

                                   𝐷𝑆
𝑖+ = 𝜀𝑖𝜃

                                    𝐷̇𝑆
𝑖− = 𝐷̇𝑆

𝑖+

                             𝐷̇𝑆
𝑖 = 0

𝑖𝑓 𝜀𝑖𝜃 < 𝐷𝑆
𝑖+  𝑎𝑛𝑑  𝐷𝑆

𝑖− > 0

                                     𝐷̇𝑆
𝑖+ = 0

                                            𝐷̇𝑆
𝑖− = −𝜀𝑖𝜃

                                          𝐷̇𝑆
𝑖 = |𝐷̇𝑆

𝑖−|

𝑖𝑓 𝐷𝑆
𝑖− < 0

                                𝐷̇𝑆
𝑖− = 0

                                𝐷̇𝑆
𝑖+ = 0

                              𝐷̇𝑆
𝑖 = 0

(6 − 10) 
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Grant’s formulation for scragging effects captures the long-term damage that accumulates 

as a previous maximum displacement norm is exceeded. However, unlike Mullins effect, the 

damage parameter does not accrue at the reversal, instead, it accumulates when the displacement 

norm returns below the lower threshold (that represents the amount that the displacement norm 

has exceeded the previous maximum displacement). Since scragging is a subset of Mullins’ effect 

(Diani et al. 2009), with the former being the long term damage that was construed by Clark et al. 

(1997), the accumulation of damage should occur at the commencement of the reversal, similar to 

Mullins effect (Figure 6-3). The evolution of the scragging damage follows Equation 6-10, if the 

represented displacement 𝜀𝑖𝜃 exceeds a previous maximum displacement, the amount of 

exceedance is stored by, 𝐷𝑆
𝑖−, and the new maximum displacement is set by 𝐷𝑆

𝑖+. Once the reversal 

occurs, the scragging damage, 𝐷𝑆
𝑖 , increases by the amount that the displacement returns, with the 

maximum amount dictated by the lower threshold, 𝐷𝑆
𝑖−. In Figure 6-3, the scragging damage 

evolution parameter is shown for a sine wave with a previous permanent damage of value one. As 

the displacement exceeds the value of one, the amount of exceedance is captured by 𝐷𝑆
𝑖− and the 

new maximum is set by 𝐷𝑆
𝑖+, the damage parameter 𝐷𝑆

1 increases by 𝐷𝑆
−1 following the evolution 

from Equation 6-10. 
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Figure 6-3 Scragging damage evolution modification  

 

Once the scragging parameter 𝑐1 is determined, the scragging reduction can be calculated using 

the following formulation: 

𝐾𝑆1
𝑖 = exp (−𝑐1(𝐷𝑆

𝑖)
3
) (6 − 11) 

where 𝑐1 is a parameter that can be calibrated for experimentally.  

6-4    Sensitivity Study LSLRB model  

Modifications to the evolution laws of the anisotropic Mullins damage and the evolution 

of scragging damage were required to capture the nonlinear behaviors observed experimentally. 

These two significant modifications will therefore be examined to ensure the model is performing 

as expected and potentially reduce the number of parameters utilized for simplicity and practicality 

of the model. The following analysis will be done for 1-D sinusoidal inputs in order to better 

understand the effects the parameters have on the overall system.  
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6-4-1    Mullins damage effect 

The evolution of Mullins damage, as presented in Section 2-2-5, is modified for the damage 

model to become rate-independent (Equation 6-7), in addition to, eliminating the corresponding 

velocity parameter 𝜁 from Equation 2-46. The strain rate parameter 𝜁 from Equation 2-46 amplifies 

the input strain rate, 𝜖̇𝜃. Both the strain rate parameter 𝜁,  and the strain rate 𝜖̇𝜃 are extracted due 

to the sensitivity study conducted here. The strain rate parameter was set to 0.5, 1, and 1.5 in order 

scale the input strain rate levels and observe the effects on the damage evolution and excitation 

frequency (i.e. 2hz, 4hz, 8hz) (Figure 6-4a). In Figure 6-4b, it can be observed that as the strain 

rate is increased the less hardening or more damage is induced in the LSLRB model when 

considering Equation 6-7. Rate hardening effects are typically negligible, and even so, the effect 

occurs in an opposing manner, with higher strain rates inducing increasing hardening effects (Wei 

et al. 2020). The strain rate parameter caused many issues when undergoing a dynamic analysis 

invoking unrealistic hardening effects. As previously mentioned, the natural rubber found in LRBs 

is typically considered rate-independent further indicating that it is appropriate to extract the 

parameters. Recent studies imposing varying strain rates near ground motion levels 0.8hz to 4hz 

showed insignificant differences in the response for LRBs (Wei et al. 2020). 
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Figure 6-4 LSLRB model sensitivity at 400% shear strain at various strain rates due to  

parameter at: a.) 0.5, b.) 1 and c.)1.5  

 

 In order to further simplify the model, a sensitivity study was conducted on the 𝛼𝑒 

parameter from Equations 6-3 and 6-4, to demonstrate the effects it has on the damage evolution 

and hysteresis (Figure 6-5), and its potential for extraction. In the formulation described by Ragni 

et al. (2018) and Tubaldi et al. (2017), not many details were given for this parameter and the 

reason for its utilization. For the given calibrated parameter, the 𝛼𝑒 parameter is multiplied by a 

factor of 0.5, 1.0, and 1.5 as shown in Figure 6-5. The parameter tends to be an amplification of 

the hyperelastic model, the higher the factor the larger the restoring force as expected due to the 

formulation (Equations 6-3 and 6-4). A value of one is imposed instead of the 𝛼𝑒 parameter to 

a.) b.) c.) 
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simplify the model for practical use and to obtain continuity with the scragging reduction factor, 

𝐾𝑆1
𝑖  (Equation 6-11). 

   

   
Figure 6-5 LSLRB model sensitivity parameter factored by: a.) 0.5 b.) 1.0 and c.) 1.5. 

6-4-2    Scragging damage effect   

The contribution of the scragging damage was deemed important for higher strains, as 

previously mentioned, since the sequence of the tests demonstrated no permanent damage for the 

post-elastic stiffness. In Figure 6-6, the sensitivity of the parameter 𝑐1 is plotted at 0.5, 1.0, and 

1.5 of the calibrated parameter. For all cases, the previous maximum damage was set at one. As 

the displacement exceeded the value of one and began to have a reversal, the scragging damage 

𝐷𝑆
1 increases by the amount of exceedance of one until reaching the maximum displacement. This 

damage accumulates as the reversal occurs by the equivalent amount as the increase of damage 

from the previous maximum damage, following the evolution laws from Equation 6-10. The 

a.) b.) c.) 



128 

 

restoring force at the negative shear strains decreases as the value of 𝑐1 increases indicating more 

scragging damage. 

   

   
Figure 6-6 LSLRB model sensitivity parameter factored by a.) 0.5 b.) 1.0 and c.) 1.5 

6-4-3    Initial lead hardening effect 

As for the initial lead hardening, experimentally the characteristic strength due to the lead 

core has been observed to initially start at a fraction of the actual characteristic strength. Then, 

depending on the accumulated displacement, typically half a cycle, it begins to approach the actual 

characteristic strength. Considering Equation 4-10, 𝑐5 was not considered since the value can be 

clearly interpreted as the initial fraction of the characteristic strength. In Figure 6-7, the parameter 

𝑐6 is multiplied by a factor of 0.5, 1.0, and 1.5 to understand the sensitivity of this parameter on 

the plasticity component of the LSLRB model. The larger the 𝑐6 value, the more rapid the initial 

characteristic strength approaches the actual characteristic strength. As the displacement increases, 

the lead hardening fraction increases and begins to approach the value of one.   

a.) b.) c.) 
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Figure 6-7 LSLRB model sensitivity parameter multiplied by 0.5,1.0, and 1.5 

6-5    Bidirectional LSLRB Model 

The examined model components are utilized to extend the Large Strain Lead Rubber 

Bearing (LSLRB) to bidirectional excitation. The model is an extension of the model introduced 

in Chapter 4, with the addition of the anisotropic damage effects observed in the rubber. The 

addition of this model improved the ability to capture the nonlinear behaviors observed not only 

for bidirectional experimental data in addition to 1D experimental data discussed in Chapter 4 

(Table 6-1). The inclusion of 1D experimental data was to account for more data along with 

enforcing the behaviors discussed in Section 6-2 (Figure 6-1). The LSLRB model consists of a 

hysteretic model that accounts for both the initial lead hardening and the lead core heating 

(Kalpakidis and Constantinou 2009b), in conjunction with, a hyperelastic model that is able to 

account for anisotropic Mullins effects and scragging effects.  

In order to capture the various behaviors observed experimentally, a calibration of the 

various parameters shown in Table 6-2 was performed. To ensure convergence and computational 

efficiency, understanding of the parameters and setting bounds were essential. In Table 6-2, the 
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significance of each parameter is detailed along with the bounded values. It is important to note 

that for scragging (permanent damage), the damage parameter, 𝐷𝑆, is retained between test runs in 

order to accurately capture the rubber damage. For Mullins effect, since it represents the ‘short 

term’ damage, the damage parameter 𝐷𝑀 was set to zero for each experimental test run.   

Table 6-2 Description and calibration of parameters for the LSLRB model. 

 

In order to calibrate for one set of parameters, all experimental tests varying from low to 

large strains were utilized to minimize a multi-objective normalized root mean squared error 

(NRMSE). The downhill simplex algorithm (Lagarias et al. 1998) was performed in order to 

minimize the error function, represented as the following:  

Model Parameter Description Parameter Bounds Calibrated 

Parameter 

Hyperelastic 

model 

𝑎1 Post-elastic stiffness 
2950 ≤ 𝑎1 ≤ 3800 (

𝑘𝑁

𝑚
) 

3499.0 

𝑎2 Nonlinear (moderate 

strain softening)  
−50 ≤ 𝑎2 ≤ −10(

𝑘𝑁

𝑚3
) 

-4446.9 

 

𝑎3 Nonlinear (large 

strain hardening)  
5.0 ≤ 𝑎3 ≤ 30 (

𝑘𝑁

𝑚3
) 

30234.1 

Rubber 

damage 

𝑐1 Scragging damage  0 ≤ 𝑐1 ≤ 5 𝑚−3 0.60 

𝛾𝑚𝑜𝑑 Maximum amplitude  1 ≤  𝛾𝑚𝑜𝑑 ≤ 2 𝑚 1.3 

𝛽 Rate of damage  0 ≤ 𝛽 ≤ 5.0 1.1 

Hysteretic 

model 

𝑏1 Characteristic 

strength 
1000 ≤ 𝑏1 ≤ 1500 𝑘𝑁 1119.5 

 

𝑏2 N/A N/A N/A 

𝑏3 Sharpness of reversal  
0 ≤ 𝑏3 ≤ 200

1

𝑚
 

292.7 

 

Lead 

hardening 

𝑐5 Initial fraction of 

Characteristic 

strength  

0 ≤ 𝑐5 ≤ 1 0.9 

𝑐6 Rate of increase to 

‘true’ characteristic 

strength  

0 ≤ 𝑐6 ≤ 40 𝑚−1 11.1 
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∈=  ∑ (𝑤𝑖𝑁𝑅𝑀𝑆𝐸𝑖)

𝑛𝑜. 𝑡𝑒𝑠𝑡𝑠

𝑖=1

(6 − 12) 

by modifying the parameters presented in Table 6-2. The 𝑁𝑅𝑀𝑆𝐸𝑖 is calculated as the difference 

of the experimentally measured force and the force resulting from the model normalized by the 

range of the maximum and minimum forces observed experimentally. The tests considered for 

this calibration include both 1D and 2D experimental data shown in  

Table 6-1, with equal weights, 𝑤𝑖, summing to one.  

 The hysteresis for the obtained calibrated parameters (Table 6-2) can be observed in Figure 

6-8. The NRMSE for all 1-D tests resulted in less than 4% error showing a good agreement with 

experimental data capturing the initial lead core hardening, lead core heating, hardening effects, 

and softening ‘unloading’ effects. The LSLRB model due to the initial lead hardening enabled 

closer convergence to the actual characteristic strength.  

 

Figure 6-8 Calibrated LSLRB model to 1-D experimental data 
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 In Figure 6-9, the calibrated LSLRB model is compared against the 2D experimental data 

showing good agreement. For both Test Runs 11 and 13 for the lateral direction, the LSLRB model 

reaches a NRMSE of 7%. The larger NRMSE for the lateral direction is mainly due to the 

normalization of the maximum and minimum forces in the NRMSE formulation being small 

comparatively to the longitudinal direction. Additionally, the displacement orbital produced highly 

complex effects in the lateral direction. Considering the 2-D orbital loading (Figure 6-1a), the 

hysteretic model reduces in the lateral direction as the direction of the velocity is oriented in the 

longitudinal direction. Since the hyperelastic component is nonlinear and coupled, rather than only 

being composed of a constant post-elastic stiffness, the restoring force reduces as the strain 

magnitude decreases from large strains to moderate strains. Although the hyperelastic component 

of the LSLRB model attempts to produce inverse reversal effects at peak lateral strains due to the 

orbital (Figure 6-1), it is insignificant compared to the experimental results (Figure 6-9b-Figure 

6-9d). One speculation for this phenomena is that the rubber, especially, at these larger strains 

develops hardening effects followed by softening effects, after which, some recovery occurs as the 

bearing begins to cycle once again (Harwood and Payne 1966b). Therefore, the breakdown of 

forces from the orbital when recovery occurs causes these inverse reversal loops to occur in the 

lateral direction since the response of the rubber should be considered in a magnitude sense for 

displacement orbitals. Other experimental observations of two bearings, an LRB and natural 

rubber bearing (Yamamoto et al. 2009), were conducted and both bearings demonstrated these 

inverse reversals indicating that the behavior can be attributed to the rubber.  



133 

 

   

 
  

Figure 6-9 Calibrated LSLRB model to 2-D experimental data Test Run 13: a.) longitudinal b.) 

lateral direction, Test Run 11: c.) longitudinal d.) lateral direction 

 

 In order to evaluate the calibrated LSLRB model, a comparison is conducted with two other 

widely used models for LRBs. The two models used are the smooth Bouc-Wen bilinear model 

with constant parameters implemented in OpenSees as the LeadRubberX model (without lead 

heating) hereinafter referred to as a Bouc-Wen model, and the LeadRubberX model (with lead 

heating).  The calibration of these models is presented in Chapter 4 of this dissertation.  

 

a.) b.) 

c.) 
d.) 
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6-6    Earthquake Response of SDOF System 

In order to evaluate the LSLRB model, a nonlinear time history analysis is conducted on a 

SDOF system and compared against traditional models such as the Bouc-Wen model and the 

LeadRubberX model. The 20 ground motions used for the analysis were NRC spectrally matched 

utilizing the USNRC (2014) guidelines, where the response spectra can be seen in Figure 6-10 

(Schellenberg et al. 2014). To achieve BDBE, the ground motions are scaled by a factor of 1.67 

equating to a 100,000 year return period. The reason a factor of 1.67 is due to a factor of 2 caused 

exceedance of the capacity of the LSLRB model creating instabilities after 500% shear strain. 

Regardless, the LRB would physically experience failure at these levels of strain.  

  
Figure 6-10 NRC spectrally matched at DBE: a) Shear strain spectra b) Pseudo acceleration 

response spectra 

The BDBE ground motion Kocaeli, Turkey, Izmit is considered to observe the difference 

in each model at the record level. The ground motion is considered a near fault type ground motion 

(Figure 6-11) causing demand both in the first quadrant and the fourth quadrant of the x and y 

orbital displacement plot (Figure 6-11c). These two distinct excursions are identified on the plots 

with numbers. The first excursion indicated by a 1, occurs in the positive x and y direction 

simultaneously, with a higher demand in the x-direction compared to the y-direction. The 

a.) b.) 
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hysteresis for the y-direction at this particular excursion demonstrates an anomaly, indicated by a 

1 (Figure 6-11e), that can be explained by the hyperelastic formulation in Equation 6-5. The 

hyperelastic component is highly dependent on the magnitude of the displacement, and at which 

point it is decomposed into its components. Consequently, at this first high stain point, the 

magnitude of displacement is large mainly in the x-direction while the displacement in the y-

direction is relatively low. However, due to the large magnitude displacement the magnitude force 

is large and as the force magnitude is decomposed into the corresponding components, the 

resulting peak force in the y-direction occurs. For the second peak displacement, the shear strain 

demand occurs both in the negative x and y direction resulting in the hardening for both hysteresis 

plots (Figure 6-11e-Figure 6-11f). The hardening is more pronounced for the y-direction due to 

higher strain levels reached in that particular direction.  
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Figure 6-11 BDBE GM1 Kocaeli, Turkey, Izmit: a-b) Displacement time-histories c-d) 

displacement orbital and magnitude forces e-f) hystereses.  

1 

1 

1 

2 

2 2 

1 

 

2 

 

1 

 

2 

 

a.) b.) 

c.) d.) 

e.) f.) 
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6-6-1    Maximum displacement comparison 

In order to evaluate the placement of the moat wall, the 90th percentile displacements are 

compared for each model at BDBE level ground motions following the USNRC (2014) guidelines 

(DBE factored by 1.67). The maximum displacements for ground motions 9, 10, 18, and 19 can 

be considered statistical outliers. Since these ground motions were synthetically created, a few 

resulted in non-realistic characteristics that contained pulse-like demands at the end of the record 

Consistent with 1D findings in Chapter 3 and Section 4-6-1, the 2D long duration ground motions 

result in larger displacements for the LeadRubberX model due to heating causing a significant 

reduction in characteristic strength. Since ground motions 18 and 19 exceeded 500% shear strain 

for the LSLRB model and underwent instability (failed) then these ground motions are not 

considered. Considering all 18 ground motions (Figure 6-12), the 90th lognormal percentile 

displacements for each model were 496%, 716%, and 474% shear strain for the LSLRB model, 

LeadRubberX model, and the Bouc-Wen model, respectively. In comparison, when excluding 

ground motions 9 and 10, the 90th lognormal percentile displacements for each model were 489%, 

687%, and 482% shear strain for the LSLRB model, LeadRubberX model, and the Bouc-Wen 

model, respectively. Importantly, the lower 90th lognormal displacements in the LeadRubberX 

model and the LSLRB model have important implications for ground motions 9 and 10. These 

models, for ground motions 9 and 10 with the unrealistic pulse towards the end of the record, tend 

to be sensitive due to the heating effects causing significantly reduced characteristic strength after 

which undergoing high demands inducing excessive displacements.  Similar trend to 1D results 

from Chapter 4 and 5, provide some consistencies with previous LSLRB model and the updated 

LSLRB model introduced here. Importantly, considering USNRC guidelines on the moat wall 

placement or CS, the LeadRubberX model would highly overestimate the required CS.  
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Figure 6-12 BDBE GMs: Maximum displacement comparison for each model. 

 

Impact velocity is a key parameter that significantly amplifies the response of the 

superstructure and therefore it is an important parameter to accurately predict (Fukui et al. 2020; 

Masroor and Mosqueda 2012). In Figure 6-13, the average impact velocities for all models at 

BDBE for various CS are considered where the velocities are obtained in the direction that occurs 

first (x or y direction). The average impact velocities for lower strain levels tend to be relatively 

similar between the three models with the Bouc-Wen model obtaining, generally, lower average 

impact velocities. The LSLRB model tends to be bounded by the two models and only exceeds the 

impact velocities at 225% and 300% shear strain. The LSLRB model at shear strains of 325% or 

greater tends to reduce the impact velocities and begins to converge with the Bouc-Wen model. 

Consistencies with the conclusions of Chapter 4 can be inferred, since the hardening and softening 

effects occur in a magnitude sense, similar to 1D, extending the moat wall placement to 350-375% 

shear strain provides potential benefits and extends previous recommendations to 2D analysis. 

This analysis is useful in suggesting that the moat wall placement may potentially reduce impact 

velocities by extending the CS to 350-375% shear strain. Extending the moat wall to these levels 

of strain may be ideal to significantly reduce impact velocities or inducing hardening effects sooner 
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may be beneficial. Comparing the standard deviations (i.e. shown as error bars), the LSLRB model 

achieved lower standard deviations compared to the other models at almost all levels of shear strain 

showing less variability.  

 

Figure 6-13 BDBE average first impact velocities at various clear to stops (CS) 

 

 When excluding ground motions 9 and 10, important deviances in the average impact 

velocities are observed among the models (Figure 6-14). The exclusion of these ground motions 

is due to the unrealistic characteristics of these motions caused by these records being synthetically 

created. The impact velocities follow a similar trend to Figure 6-13, however, the exclusion of 

these ground motion tends to reduce impact velocities at strains levels of 300% and larger. 

Particularly, for clearance to stop of 375% shear strain, the impact velocity for the LSLRB model 

were reduced below the Bouc-Wen model, reaching an average impact velocity lower than 0.2m/s.  
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Figure 6-14 BDBE average first impact velocities at various clearance to stops (CS) excluding 

GMs 9 and 10 

6-6-2    Effectiveness of LSLRB model at various intensity levels 

 To understand the potential benefits of the nonlinear effects of the LSLRB model, the NRC 

spectrally matched at DBE is increasingly scaled to higher levels of intensity. The calibrated 

LSLRB model is compared with two other models: the LSLRB model without the rubber nonlinear 

behaviors (no rubber hardening or softening) and only considering initial lead core hardening and 

heating, and the LSLRB model with only lead heating (essentially LeadRubberX model). All 

models are given the same characteristic strength and post-elastic stiffness. This analysis is 

conducted to observe at which strain demands the LSLRB model engages the nonlinear behaviors 

that may potentially reduce displacement and impact velocities. In Figure 6-15, the previously 

NRC spectrally matched DBE ground motions are analyzed however scaled at 1.0, 1.25 and 1.5 in 

order to observe differences between the models at different intensity levels. The DBE spectra 

scaled at 1, 1.25 and 1.5 are considered to show the expected demand at each level and the 

individual ground motion spectra, given the isolation systems fundamental frequency is at ~0.3hz. 
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Figure 6-15 NRC spectrally matched DBE scaled at 1.25 and 1.5 scaled to shear strain given the 

height of rubber ℎ𝑟=224 mm. 

 

 The maximum displacements for the three models are considered at various levels of 

intensity to observe at which intensity levels the LSLRB model begins to fully engage and provide 

benefits in reducing displacements (Figure 6-16). For low levels of intensity (i.e. DBE and 

1.25xDBE), all the models obtain practically equal displacements (below 200% shear strain). 

However, for ground motions 4, 7, 8 and 11 which are considered near fault ground motions, the 

model without initial lead hardening nor rubber hardening obtained lower displacements. Not 

surprisingly, since all models have the same characteristic strength, the model without the initial 

lead hardening instantly obtains the actual characteristic strength (i.e. dissipating more energy) and 

therefore reduces maximum displacements. Meanwhile, the other models with initial lead 

hardening, commence at a fraction of the characteristic strength then begin to converge to its actual 

characteristic strength (Figure 6-7). The LSLRB model obtained similar displacements compared 

to the other models at these low levels of intensity demonstrating that the model is quite predictable 

and performs as expected. For the intensity level of 1.5, the maximum displacements deviate 

substantially for the LSRLB model with all nonlinear features, obtaining the lowest 90th lognormal 

percentile shear strain of 405%. The other models obtained 90th lognormal percentile shear strains 
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of ~460%, demonstrating that the rubber hardening effects become significantly more important 

to model at these higher levels of intensity. The LSLRB model significantly reduced shear strains 

compared to the other models, showing that capturing the various behaviors as previously 

described are critical, otherwise inappropriate CS will be obtained.   

 

 

 
Figure 6-16 Maximum displacement for all three models at three levels of intensity a.)1xDBE 

b.)1.25xDBE c.)1.5xDBE for the LSLRB model, the LSLRB model without rubber 

hardening(RH), and the LSLRB model without rubber hardening(RH) and without 

lead hardening (LH) 

a.) 

b.) 

c.) 
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 The impact velocity for the three models at three levels of intensity are evaluated to 

compare at which levels of intensity the LSLRB model may reduce impact velocities (Figure 6-17). 

For DBE, all models achieved impact at low levels of shear strain ranging from 100-175% and 

obtained identical impact velocities. For a scale factor of 1.25, the impacts occurred at intermediate 

shear strains ranging from 200-275%. Furthermore, similar to DBE level, the impact velocities are 

practically equivalent which demonstrates consistency between the models and that the hardening 

effects are essentially not engaged for the LSLRB model. For DBE scaled at 1.5, the demands 

begin to increase and hardening effects for the LSLRB model begin to engage at higher levels of 

shear strain. For shear strain levels of 300%, the LSLRB model begins to diverge and reduce 

impact velocities. At shear strain levels of 350%, the LSLRB model demonstrates significant 

benefits in reducing the impact velocities obtaining an average impact velocity of 0.02 m/sec. 

Comparatively, the other models that do not include rubber hardening effects and obtained impact 

velocities of ~0.24 m/sec. Thus, the LSLRB model clearly demonstrates its capability in reducing 

impact speeds, reducing by a factor of 10 for the CS of 350% shear strain.  
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Figure 6-17 Impact velocity for three levels of intensity DBE, 1.25DBE, and 1.5DBE 
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6-7    Conclusion 

The bidirectional large strain lead rubber bearing (LSLRB) model is proposed in this 

chapter and is examined in detail. The LSLRB model is able to capture the various nonlinear 

behaviors at varying strain levels exhibited in 1D and 2D experimental data at a given axial load 

with one set of parameters, however a change in size of the bearing or variance in the axial load 

will require recalibration of the model. The model is composed of a hyperelastic component and a 

hysteretic component. Commonalities between the natural rubber, found in LRBs, and the high 

damping rubber were drawn in order to accurately model the LSLRB model to experimental data. 

Previous work has shown that natural rubber and high damping rubber behave similarly only at 

different strain levels and that the former is, for earthquake purposes, rate independent. Thus, the 

previous LSLRB model was extended by using an anisotropic HDR damage model. The damage 

model was modified due to a sensitivity study conducted, identifying the need for strain rate 

independence and extracting unnecessary parameters for behaviors observed experimentally in the 

LRB.  

A NLRHA is performed on the LSLRB model and compared with other models used in 

practice such as the Bouc-Wen and LeadRubberX model. When comparing these three models at 

BDBE intensity levels, the LeadRubberX model tends to highly overestimate the impact velocities 

and maximum displacements compared to the LSLRB model. The placement of the moat wall 

when following NRC guidelines resulted in 496%, 716% and 474%, shear strain for the LSLRB, 

LeadRubberX, and the Bouc-Wen model, respectively. Therefore, the placement of the wall would 

either be significantly extended beyond or obtain an inadequate clearance, compared to LSRLB 

model. As for the average impact velocities, the LSLRB model tends to diverge from the other 



146 

 

models at shear strain levels of 325%, with the most significant reduction in average impact 

velocities occurring at 350-375% shear strain. The impact velocities for the LSLRB model began 

reducing at shear strain levels of 350%, implicating possible extensions of typical moat wall 

placements to these levels, demonstrating consistencies with 1D studies conducted in Chapter 4.  

 Different levels of intensity for NRC spectrally matched ground motions were conducted 

on the LSLRB model in order to observe when the model is deviates from the response compared 

to LeadRubberX and LSLRB model without rubber hardening. All models were set to an 

equivalent post-elastic stiffness and characteristic strength for comparison. For low levels of 

intensity (i.e. factor of 1.0 and 1.25), the LSLRB model was consistent with that of LeadRubberX 

and the LSLRB model without rubber hardening. Importantly, when comparing the highly 

nonlinear behavior of HDR bearings, at even low levels of strain the HDR exhibits nonlinear 

behaviors which can create some uncertainty and can be impractical for designers. Therefore, the 

consistency of LSLRB model at low to intermediate levels of shear strain compared to typical 

models, along with being able to capture the nonlinear effects for BDBE level ground motions 

may be desirable for use in practice. At higher levels of intensity (i.e. factor of 1.5) the model 

proved to reduce the 90th percentile maximum displacements based on USNRC guidelines. 

Reductions from 460% to 406% shear strain were obtained when comparing the LSLRB model 

without rubber hardening to the LSLRB model. The impact velocities at 300% shear strain began 

to significantly reduce impact velocities with the most significant reduction being at 350% shear 

strain reducing the impact velocities by a factor of 10 compared to the other models.  
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Chapter 7 SUPERSTRUCTURE RESPONSE WITH 2-D 

LSLRB MODEL  

7-1    Introduction 

The nonlinear bi-directional large strain lead rubber bearing (LSLRB) model examined in 

Chapter 6 is implemented in a full-scale nuclear power plant (NPP) model described in Chapter 5 

in order to investigate various LRB models and the effects it may have on the response of the 

superstructure. NPPs are critical structures that are required to account for a high-risk low 

frequency seismic occurrence in order to verify the response of the superstructure and the isolation 

system. Recent research has examined that the isolator capacity should be extended beyond current 

design code standards (Shao et al. 2017), along with other studies that also extended the capacity 

of bearings and observed stiffening effects and restraints reduced the probability of collapse 

(Kitayama and Constantinou 2019a). When considering 2-D, the moat wall clearance is typically 

measured perpendicular to the base-mat and therefore due to geometric constraints, such as 

corners, the geometric strain developed at the corners may develop nonlinear effects even for 

moderate strain levels of clearances. Whether new isolated structure systems explore extending 
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the clearance to stop (CS) to reduce the probability of collapse or unforeseen geometric strains in 

already existing isolated structures; the need for capable numerical models that capture the 

nonlinear behaviors at these large displacements are critical.  

To limit the occurrence of impact to moat walls, current design standards for NPPs specify 

for the minimum required CS to be placed at the 90th percentile horizontal displacement for 

Beyond Design Basis Earthquake (BDBE) shaking (ASCE 2017a). Bearings are required to be 

tested to the CS displacements under the expected axial load. The United States Nuclear 

Regulatory Commission (USNRC 2014) requires for isolation systems to model the shear forces 

developed at BDBE demands. In the previous chapters, it has been demonstrated that under BDBE 

ground motions the LRB models undergo large strain levels. The LSLRB model obtained reduced 

displacements and impact velocities due to rubber hardening, higher characteristic strength 

calibration, and softening ‘unloading’ effects when compared to other LRB models used in 

practice. In Chapter 6, the LSLRB model proved to be consistent with models used in practice at 

low levels of intensity, with addition to, being able to capture all nonlinear behaviors at larger 

levels of intensity.  

The velocity at impact to moat walls is the key parameter for impact forces and the 

amplification of the structure response, as found via experimental tests (Fukui et al. 2020; Masroor 

and Mosqueda 2012), therefore estimation of the impact velocity is critical for these analyses. 

ASCE 4 (2017) requires explicit analysis of the isolated structure system for impact loading if the 

provided clearance is less than the required CS, with little guidance provided for procedures to 

model or mitigate the effects of impact. The benefits of using the LSLRB model is demonstrated 

in terms of estimating isolator displacements and capturing the impact velocity as the isolation 
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system exceeds the CS. When the CS is exceeded, an extension to Sarebanha et al. (2021) moat 

wall impact model, proposed in Chapter 5,  is examined. 

7-2    Nonlinear Time-History Response of NPP  

The calibrated LSLRB model from Chapter 6 was implemented into the Archetype Nuclear 

Type (ANT) model, based on the APR 1400 NPP (Schellenberg et al. 2016), to evaluate various 

bearing models. A nonlinear response history analysis (NLRHA) of the LSLRB model is 

conducted to observe potential benefits of allowing hardening and softening effects to occur by 

extending the moat wall to higher levels of strain, in addition to, observing the effects it may have 

on the superstructure. The bidirectional behavior of the model is observed in these analyses to 

evaluate the coupled hardening effects that may be capable in mitigating base-mat rotations before 

impact. The NLRHA is conducted on the LSLRB model to observe any potential setbacks such as 

amplification of the superstructure accelerations or increases in base shear. The LSLRB model is 

compared against LRB models used in practice such as the Bouc-Wen smooth bilinear model and 

the recently proposed LeadRubberX model. The models were initially set to the same design 

parameters such as the post elastic stiffness and characteristic strength, after which calibration to 

experimental data were conducted (more details in Chapter 4). The ground motions used for 

analysis are NRC spectrally matched at DBE (Schellenberg et al. 2014) and factored by 1.67 to 

obtain beyond design basis earthquake (BDBE), having a return period of 100,000 years.  

7-2-1    Bearing response  

In order to understand the behavior of each model, the bearing response is observed in 

detail for one record. The response to 1999 Kocaeli, Turkey, Izmit or ground motion 1 (GM1) at 
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BDBE, is examined in order to compare the hysteresis and displacement trajectories for the three 

models (Figure 7-1). Considering that the response is bidirectional, it is important to note that the 

hyperelastic component of the LSLRB model is highly dependent on the displacement in a 

magnitude sense (see Section 6-3-2-1). Therefore, when considering hysteresis from a particular 

direction, the results may seem unfeasible, however after examining the response in a magnitude 

sense provides more interpretable results. The LSLRB model can be seen to obtain lower 

magnitude shear strains compared to the other models. The softening and hardening effects can be 

observed to take full effect for both the x and y directions. In the y-direction, the LSLRB model 

obtains a 50% softening effect of the hysteresis at the second cycle compared to the initial cycle. 

These softening effects, particularly for these strains, have been previously observed (Harwood 

and Payne 1966b). Importantly, initially the displacement orbitals are similar compared to the other 

models, however as hardening and softening occurs in the rubber, the trajectory of the LSLRB 

model begins to deviate from the other models.  
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Figure 7-1 Individual record response (GM 1: 1999 İzmit earthquake) 

 The maximum displacements for all three models are examined for all ground motions at 

BDBE (Figure 7-2).  Certain ground motions are unrealistic ground motions (i.e. 9, 10, 18 and 19), 

the ground motions are long duration and have unrealistic characteristics due to being synthetically 
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modified (Schellenberg et al. 2014), since similar results were found in Chapter 6 when comparing 

with and without unrealistic ground motions, they are extracted in this analysis. In Chapter 4 and 

5 of this dissertation, a similar analysis with the same ground motion set were conducted and 

similar conclusions are obtained here. When extending these results for 2D simulations, the models 

tend to obtain similar results to 1D further providing consistency among 1D and the updated 2D 

LSLRB model. When considering all the ground motions, the lognormal 90th percentile 

displacements based on Kumar et al. (2015) resulted in 647%, 461% and 399% shear strain for the 

LeadRubberX, LSLRB, and the Bouc-Wen model, respectively. When excluding the unrealistic 

ground motions, the lognormal 90th percentile displacements resulted in 565%, 414% and 409% 

for the LeadRubberX, LSLRB, and the Bouc-Wen model, respectively (Figure 7-2). For the 

LeadRubberX or Bouc-Wen model, the CS would either be extended far beyond required or less 

than required when compared to the LSLRB model.  

 

Figure 7-2 BDBE maximum displacements excluding unrealistic ground motions 
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7-2-2    Torsional effects  

Base isolation has been known to be an effective method to reduce the influence of 

asymmetry (i.e. eccentricity in the center of mass, stiffness, or strength) that may exist within a 

structure (Lee 1980). Torsional effects may be important to consider if these effects are excessive, 

especially for impact, as impact tends to excite torsional effects (Sarebanha 2018). The maximum 

base-mat rotations are compared between the three LRB models to observe any potential benefits 

the hardening effects of the LSLRB model may have in reducing base-mat rotational effects. The 

maximum rotations for each BDBE ground motion are examined by subtracting the difference 

between two adjacent corner displacements of the base mat divided by the distance, thereupon the 

maximum rotation from each record is plotted in Figure 7-3. Note, ground motion 18 is not 

considered since the LSLRB model underwent an excessive rotation due to exceeding the 

calibrated maximum 500% shear strain and failed obtaining a restoring force of zero. When 

comparing the ground motions, no significant benefits can be observed, however it can be deduced 

that the nonlinear effects in the LSLRB model do not amplify any torsional effects compared to 

the other models, and in fact, at some instances reduce torsion.    

 

Figure 7-3 Record-to-record maximum rotations comparison between LRB models 
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7-2-3    Base Shear comparison 

The hardening effects of the LSLRB model provide the need to analyze the potential 

increases in base shear forces that may develop compared to other LRB models. The base shear 

forces are transferred from the isolation system to the superstructure, and could have an effect on 

the accelerations experienced. The maximum normalized base shear forces for all three models are 

analyzed without a moat wall to first observe the pure bearing response (Figure 7-4). It can be 

observed that the LSLRB model does obtain larger normalized base shear values for 9 of 20 ground 

motions, with the maximum normalized base shear of 0.42 for ground motion 1. The LSLRB 

model obtained the largest maximum normalized base shear for ground motion 8, being about 

~40% greater than the other models. In some cases, the LeadRubberX model obtained larger shear 

forces due to the large displacements that result from the analysis. Nevertheless, it is important to 

consider whether accounting for these variations in base shear are more favorable than accounting 

for the amplification of base shear due to impact, which has been found to cause detrimental effects 

on the superstructure.   

 

Figure 7-4 Normalized base shear comparison between LRB models 
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7-2-4    Response of the superstructure considering no moat wall  

The average response spectra of the Reactor Containment Building (RCB) are considered 

for all three models with no moat wall in order to observe any differences between the models and 

the effects they may have on the superstructure (Figure 7-5). Two peaks can be observed for all 

models at the fundamental frequency of the isolation system (~0.3hz) and at the fundamental 

frequency of the RCB (~3.5hz). Importantly, although the LSLRB model accounts for hardening 

effects, the model does not amplify the acceleration of the RCB when compared to the other 

models. For the LeadRubberX model, the amplification at the fundamental frequency of the 

isolation system can be observed to reach about ~2g.  This amplification may be due to the heating 

effects and synthetic motions creating large demands on the LeadRubberX model causing large 

degradations, resulting in the model resembling a linear spring, thus creating a large narrow 

amplitude at the time period of the isolation system. The LSLRB model at the fundamental 

frequency of the RCB results in reduced floor spectral accelerations compared to the Bouc-Wen 

model.  

 

Figure 7-5  Average 2-D floor response spectra of RCB for 20 GMs with no moat wall. 
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7-2-5    Response of the superstructure considering moat walls 

 The average pseudo response spectra are considered for various CS for all three models in 

order to observe any potential benefits of the LSLRB model (Figure 7-6). Important implications 

can be observed at the fundamental frequency of the RCB as the CS increases from 325% to 375% 

shear strain, the LSLRB model significantly reduces the average pseudo response spectra from 

~4.3g to 2.8g resulting in a decrease of 35%. Comparatively, the other models experience far less 

reductions when the wall is extended, obtaining reductions of less than 15%. At 375% shear strain, 

the LSLRB model reduces acceleration levels equivalent to the Bouc-Wen model which has no 

reduction in lead core shear strength (i.e. no lead core heating). Importantly, considering extending 

the moat wall and modeling of the nonlinear behaviors exhibited by LRBs have benefits of 

reducing the response of the superstructure.  
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Figure 7-6 Average 2-D floor response spectra of RCB for 20 GMs at CS 325%, 350%, and 

375% shear strain.  
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7-2-6    Impact Evaluation 

As previously mentioned, impact can attribute to the amplification of the superstructure 

response. Therefore, examining the amount of impacts each model obtains is important to 

understand their ability in reducing the number of impacts. All ground motions, apart from the 

unrealistic ground motions, were considered when analyzing the total number of impacts 

(including subsequent impacts) with the moat wall placed at three levels of shear strain 325%, 

350%, and 375% (Figure 7-7). Important implications can be realized from this analysis, primarily, 

that the LeadRubberX resulted in excessive number of total impacts (i.e. 325% shear strain). The 

reason for the excessive impacts may be due to the sensitivity the LeadRubberX model has from 

the long duration ground motions, undergoing excessive strength degradation and consequently 

larger displacements resulting in excessive impacts. The LSLRB model which includes all 

nonlinear behaviors, in particular rubber hardening, produce evident reductions in the number of 

impacts especially for 350% shear strain and greater, at which point the rubber hardening is fully 

engaged. At a CS of 375% shear strain, the LSLRB model reduces the number of impacts 

comparable to the number of impacts obtained by the constant Bouc-Wen model.  
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Figure 7-7 Total number of impacts for each model at CS 325%, 350%, and 375% shear strain 

 

 To further elucidate the benefits of the LSLRB model, an average response of the three 

models considering the first three impacts are analyzed for BDBE ground motions (Figure 7-8a-

Figure 7-8e). Overall, for the LeadRubberX model, the average impact velocities are highly 

overestimated with comparison to the other LRB models. The LSLRB model tends to be bounded 

by the Bouc-Wen model and the LeadRubberX model. For moderate levels of shear strain (i.e. 

300-325%), the LSLRB model does not fully develop its hardening effects and therefore does not 

significantly reduce impact velocities lower than the Bouc-Wen model. However, the LSLRB 

model obtains a lower average impact velocity compared to the LeadRubberX model which can 

be mainly attributed to the LSLRB model capturing the initial lead hardening capturing the actual 

characteristic strength (Chapter 4). For large levels of shear strain (i.e. 350%- 400), the LSLRB 

model is bounded by both models and can be attributed to the hardening effects reducing the impact 

velocities. A comparison with and without the unrealistic ground motions are conducted to 

evaluate the effects these motions may have. For CS 350% shear strain, the LSLRB model tends 

to converge to the Bouc-Wen model, mainly for the exclusion of the unrealistic ground motions 

(Figure 7-8c). For CS of 350% shear strain (Figure 7-8b), the LSLRB model obtained lower 
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average impact velocities than the Bouc-Wen model with less deviation. Considering the first 

impact velocities for the exclusion of unrealistic ground motions at 375% shear strain (Figure 

7-8d), the LSLRB model reduced the average impact velocities lower than the Bouc-Wen model 

and obtained lower deviations. For the third impacts, the LSLRB model tends to quickly converge 

to the Bouc-Wen model, more so, for ground motions excluding the unrealistic ground motions 

(Figure 7-8e). Extending the CS to 350-375% shear strain results in achieving the lowest impact 

velocities.  

   
a b c 

   
c d e 

Figure 7-8 Avg. impact velocity for 20 GMs versus moat wall clearance, (a-c) all ground 

motions, (c-e) excluding unrealistic ground motions: (a,c) 1st impact, (b,d) 2nd impact, 

(c,e) 3rd impact 

7-2-6-1   Penetration impact velocity prediction  

The moat wall should be analyzed and designed for impact loading if the CS is smaller 

than specified as per ASCE 4-16 (2017). In this case, impact velocity may be calculated either by 

analysis for BDBE ground motions or by assuming cyclic response of the isolated superstructure 
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to the 95 percentile BDBE displacement at a calculated frequency for the isolation system (ASCE 

2017a). 

In Chapter 5, an extension of a moat wall deformation prediction model was proposed, the 

model obtained a relationship between the impact velocity and the amount of moat wall 

deformation. Therefore, accurate modeling of the LRB is critical to obtain a better estimate of the 

velocity at impact, and consequently obtain a better estimate of the amount of deformation that 

needs to be accounted for by the isolation system. In Figure 7-9, the recommended design moat 

wall deformation prediction model described in Chapter 5 is utilized and plotted against the 

OpenSees simulations considering the first impacts at different levels of CS for all three models. 

Scenario 2 failure mechanism is assumed for this particular moat wall, as described in Chapter 5, 

with the inclusion of the backfill soil along with the recommended restitution value of 0.7. The 

moat wall deformation prediction model resulted in a conservative prediction of the amount of 

deformation of the moat wall obtained by the OpenSees simulations. Importantly, in some 

instances, a detailed model with the inclusion of the moat wall may not be required since a SDOF 

system can be analyzed to obtain the impact velocity. This can potentially be utilized to predict 

the amount of moat wall deformation and obtain the maximum displacement the isolation system 

may need to account for. However, it is important for more analysis to be conducted since this is 

one configuration of a moat wall.  



165 

 

 

Figure 7-9 Recommendation for prediction of moat wall deformation compared with 1st impacts 

at different levels of CS for all three models 

7-3    Conclusion 

The large strain lead rubber bearing (LSLRB) model extended for 2-D simulations is 

evaluated and compared against other traditional models to determine the response of the archetype 

nuclear test (ANT) model. Simulations are conducted with and without the moat wall in order to 

understand the difference in the nonlinear model under both conditions. When comparing the 90th 

percentile maximum displacements for BDBE ground motions, the LSLRB model achieved 

displacements comparable to that of the Bouc-Wen (constant characteristic strength) model. The 

LeadRubberX model highly overestimated the displacements compared to the other models and 

demonstrated high sensitivity to long duration ground motions. The LSLRB model without the 

moat wall demonstrated no benefits in terms of the maximum rotations of the basemat, however it 

did not exacerbate the rotational effects. The LSRB model resulted in a base shear of roughly 40% 

larger compared to the other LRB models for one particular ground motion, and raises awareness 

of the potential effects of hardening.  However the average normalized base shear response for all 

ground motions are 0.322, 0.320, and 0.261 for the LeadRubberX, LSLRB and Bouc-Wen model, 
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respectively. The LSLRB model, in an average sense, does not amplify the maximum normalized 

base shear.  

Since impact to moat walls can amplify the forces on the superstructure, the LRB models 

were compared considering the moat wall at various clearance to stops (CS). The average velocity 

at impact for the first three impacts were considered. The CS of 300% shear strain resulted in the 

largest impact velocities for all models. As the CS was extended to larger shear strains of 350% 

and 375%, the LSLRB model developed hardening effects reducing velocity at impacts. For CS 

of 375% shear strain, for the first impact the LSLRB model obtained the lowest average impact 

velocities compared to that of the Bouc-Wen model demonstrating potential benefits of allowing 

strain hardening in the rubber prior to impact.  

Utilizing the moat wall model and impact deformation procedure from Chapter 5, the 

design recommendation of accounting for the soil springs and the restitution value 0.7 resulted in 

a conservative formulation when compared against the OpenSees simulations for all LRB models. 

The proposed prediction model can function as a design aid although more moat wall 

configurations should be considered to further verify the model. The average pseudo acceleration 

with no moat wall was considered, the LSLRB model achieved accelerations comparable to the 

Bouc-Wen model. When considering a moat wall, the LSLRB model achieved greater reductions 

in average pseudo acceleration of the superstructure as the CS was extended compared to the 

LeadRubberX and the Bouc-Wen model. Considering the moat wall for CS of 375% shear strain, 

the LSLRB model provided average response spectra comparable to that of the Bouc-Wen model. 

For BDBE level shaking, exploring and modeling for these larger levels of shear strain are 

important to consider for reducing the velocity at impacts and the amount of pseudo accelerations 

transmitted to the superstructure. These findings coincide with the studies conducted in Chapter 4 



167 

 

and 5 which considered an early version of the model for 1D, observing that the extension of the 

moat wall to shear strains of 350-375% provide significant reductions in impact velocity and 

maximum displacements. Furthermore, the extension of the wall not only provides the benefits of 

reducing impact velocities, provides these benefits without increasing base shear nor base mat 

rotations and therefore should be further explored.  
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Chapter 8 SUMMARY AND CONCLUSION 

8-1    Summary of Research Work  

Seismic isolation is a proven technology in separating the fundamental frequency of a 

structure from the damaging frequencies of an earthquake, at the expense of concentrated 

displacements at the isolation level. To accommodate for these concentrated displacements, 

seismic isolation bearings are designed and tested to sustain the large displacements under the 

weight of the supported structure.  In addition, a large horizontal clearance or a moat is introduced 

to provide the needed space for the isolation system. A moat wall is inserted around the perimeter 

and can function as a stop to limit displacements of the bearings to their tested capacity and prevent 

their failure. This dissertation explores the modeling and application of a common isolation 

system, the Lead Rubber Bearing (LRB), when subjected to large displacement demands. The LRB 

is composed of alternating steel and rubber shims with a central lead core insert. The composite 

rubber and lead exhibit complex behavior with contributions from both materials.   

Experiments of a LRB subjected to large cyclic strains demonstrate the complex behaviors 

of these bearings. Towards the development of more reliable models, a large strain lead rubber 
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bearing (LSLRB) model is proposed that is capable of capturing the observed experimental 

behavior under large cyclic strains in 1D. The model is then applied to a Nuclear Power Plant 

(NPP) model in order to identify the effects of the LRB model on the response of the 

superstructure.  The NPP models are considered with and without a moat wall, and the simulations 

verify that moat wall impact can have significant amplification on the structural response. To better 

predict the effects of impact, an existing moat wall deformation prediction model is revisited and 

modified to include the soil contribution and the coefficient of restitution providing a conservative 

design guideline.  

Current seismic isolation design guidelines for NPPs require analysis under high 

consequence low frequency seismic event, imposing high levels of displacement for the isolation 

system. The code requires for isolation systems to model the shear forces developed at BDBE 

demands, however current LRB models did not fully capture the nonlinear behaviors experienced 

at large strain levels for 2D excitation. The LSLRB model is extended to capture the nonlinear 

behaviors exhibited under 2D horizontal motion at small to large strains. Additionally, existing 

isolated buildings having a moat clearance at even moderate levels of strain, typically measured 

perpendicular to the side of the basemat, and may therefore need to model possible large geometric 

shear strains at corners, especially for critical structures. The LSLRB model showed to be 

consistent with other recently proposed models at lower levels of demand. At higher levels of 

demand, however, the LSLRB model reduced the maximum displacements and impact velocities 

without significantly increasing the base shear of the NPP model or the basemat torsion. The 

LSLRB model can more accurately capture the nonlinear effects and therefore provides a more 

reliable estimate of peak bearing displacements and the velocity at impact to moat walls.  
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8-2    Contribution to Research 

In order to develop a LRB model, various existing models and experimental data on LRBs 

are examined proving as state-of-art models for LRB. A recently proposed model named 

LeadRubberX utilizes and modifies the Bouc-Wen model to include the lead core strength 

degradation due to lead core heating. Property modification factors that are used to account for 

variation in bearing behavior by design codes are evaluated by applying these factors to the 

material properties of the smooth Bouc-Wen models creating lower and upper bounds (Chapter 3). 

The models undergo earthquake excitations, and it is found that the LeadRubberX model is not 

conservatively bounded by these modification factors, especially for long duration ground 

motions.  

A parallel model was developed to capture the nonlinear effects observed in LRBs, ranging 

from small to large shear strains. Experimental tests on large LRBs allowed to deconstrue the 

various nonlinear behaviors exhibited by the lead core and the rubber (Chapter 4). The lead core 

exhibited heating causing strength degradation, as well as initial lead hardening phenomenon. The 

rubber exhibited hardening effects along with softening ‘unloading’ effects which invoked 

widening of hysteresis at peak displacements. A SDOF system is considered and compared against 

typical LRB models demonstrating its effectiveness in reducing displacements and impact 

velocities.  

In Chapter 5, the parallel model is implemented in a full scale NPP model in OpenSees 

named the archetype nuclear test (ANT) model to observe potential benefits from the nonlinear 

effects in 1D excitation. The LSLRB model proved to reduce impact velocities along with 

subsequent impacts. The LSLRB model was able to reduce the average pseudo accelerations in the 
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superstructure as the CS was extended into larger shear strains compared to the other models, 

reducing by up to 40%. An extension of an existing moat wall deformation prediction model was 

examined by adding the soil contribution along with a coefficient of restitution. The updated moat 

wall deformation prediction model demonstrated to conservatively predict the amount of moat 

wall deformation given an impact velocity, providing a design recommendation.  

An extension of the LSLRB model was introduced, providing the ability to account for the 

various nonlinear behaviors observed in 2D experimental data (Chapter 6). A damage model based 

on work conducted with high damping rubber (HDR) was utilized and modified due to the 

commonalities between the natural rubber in LRBs and HDR. A sensitivity study was conducted 

in order to better understand the effects of model parameters, and to reduce the number of 

parameters for practicality. Since natural rubber is strain-rate independent compared to HDR, 

especially for typical strain rate demands of earthquakes, the damage model is modified to become 

strain-rate independent. The addition of this modified damage model to the LSLRB model, 

extended the capability of the model to capture the various nonlinear behaviors exhibited in 1D 

and 2D experimental data. The LSLRB model was examined under various intensity levels 

compared with current models. At low levels of intensity, the LSLRB model demonstrated to be 

consistent with the other current models utilized today. At higher levels of intensity, the LSLRB 

model was able to account for the various nonlinear behaviors developed at large levels of shear 

strain, demonstrating its versatility and range of applicability. In Chapter 6, the LSLRB model was 

implemented into the Archetype Nuclear Test (ANT) model in order to exemplify its benefits 

compared to existing models for 2D excitations at beyond design basis earthquakes. The LSLRB 

model demonstrated to provide reduced impact velocities and reduce maximum displacements 

without significant amplification of the maximum base mat rotations nor maximum base shear. 
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The model proved to reduce impact velocities, as well as, subsequent impacts compared to the 

other models, specifically, for higher shear strains of 350-375%. The superstructure observed 

significant benefits with the implementation of the LSLRB model as the moat wall was extended 

to larger levels of shear strain, achieving reductions in the average pseudo accelerations of about 

40% when extended from 325% to 375% shear strain. At 375% shear strain, the LSLRB model 

obtained an average pseudo acceleration comparable to the constant Bouc-Wen model. Therefore, 

since LRBs have been shown to withstand large shear strains without failure, extension of the CS 

to higher levels of shear strains may be beneficial. The LSLRB model has shown to be beneficial 

for the isolation system and superstructure in avoiding impact or reducing velocities before impact, 

while at lower levels of intensity performing as typical models perform today. Consistent with 1D, 

the extended moat wall impact prediction model can provide a conservative prediction for the 

deformation given an impact velocity.  

8-3    Recommendation for future research work 

With regards to the investigation of the response of seismically isolated NPP, considering 

modeling of Lead Rubber Bearings at large strains, this is one of the few studies on this topic. This 

study provided significant insights into this behavior of LRB and their effect on the superstructure 

response, however, also revealed several topics that need further study as described below. 

• There is limited experimental data on the behavior of LRB under large dynamic cyclic 

strains. Additional data, especially as related to realistic earthquake excitation could 

provide the necessary data to fully verify the LSLRB model.  
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• Due to limitation of experimental data including variable vertical excitation, further 

investigating into the axial load influence on the hardening effects at large strains is 

necessary. 

• As for the lead core contribution, accounting for the direct relationship between strain-rate 

and characteristic strength may be of importance in order to verify the lead core heating 

models. 

• Further testing may be needed to completely understand the initial lead core hardening and 

the core reason for its principal cause to further inform the phenomenological model 

introduced here.  

• Conducting experimental tests on identical LRBs and natural rubber bearings considering 

various orbital loading types could provide additional data to find the root cause of the 

inverse reversal loops observed in some tests.  

• More studies on various moat wall configurations should be explored in order to provide 

more confidence in the moat wall deformation prediction provided here.  

• Changes in the size of the bearing and shape factors will require recalibration of LSLRB 

parameters, therefore more LRB test data on various sizes of LRBs may provide a guidance 

or recommendation of parameters. 




