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Abstract: The delivery of biomolecules to target cells has been a longstanding challenge in
biotechnology. DNA viruses naturally evolved the ability to deliver genetic material to cells
and modulate cellular processes. As such, they inherently possess requisite characteristics
that have led to their extensive study, engineering, and development as biotechnological
tools. Here, we overview the application of DNA viruses to biotechnology, with specific
implications in basic research, health, biomanufacturing, and agriculture. For each applica-
tion, we review how an increasing understanding of virology and technological methods to
genetically manipulate DNA viruses has enabled advances in these fields. Additionally, we
highlight the remaining challenges to unlocking the full biotechnological potential of DNA
viral technologies. Finally, we discuss the importance of balancing continued technological
progress with ethical and biosafety considerations.

Keywords: gene therapy; oncolytic virotherapy; vaccine; agriculture; phage therapy;
microbiome editing; adeno-associated virus; vaccinia virus; adenovirus; herpesvirus

1. Introduction
The ability to deliver genetic cargoes into targeted cell types is central to the success

of many biotechnological approaches, and the past 15 years have brought remarkable
advances in genetically encodable biotechnologies [1–3]. Viruses evolved over millions of
years to deliver nucleic acids and proteins to cells. Accordingly, researchers have co-opted
some viral species for use in applications ranging from the vaccination against pathogenic
microbes, the treatment of genetic diseases, the selective elimination of cancer, protein
manufacturing, and pest control. Furthermore, applications to combat bacterial antibiotic
resistance, develop agricultural crops and livestock with improved health content and
resilience to changing climates, and engineer the human microbiome for health benefits
represent emerging uses of viral-based gene delivery systems. Here, the applied biotech-
nological uses of DNA genome-containing virus vectors are outlined. Common themes
among all applications, as well as limitations and remaining challenges, are discussed.
Finally, the importance of continued research and development of technologies to engineer
DNA viruses as delivery vectors to solve scientific, agricultural, environmental, manu-
facturing, and health problems is advocated, while ethical and biosafety considerations
are considered.
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2. Main
2.1. Vaccination

Vaccines that are based on attenuated DNA viruses have been historically instrumen-
tal in controlling dangerous human and animal pathogens (Table 1). For example, the
vaccinia virus (VACV) is attenuated in humans but shares significant antigenic overlap with
pathogenic members of the Orthopoxvirus genus, such as monkeypox virus (the causative
agent of mpox disease) and variola virus (the causative agent of smallpox disease) [4–6].
This quality led to the use of live, replication-competent VACV as a protective vaccine
against orthopoxviruses, resulting in smallpox being the first and only human pathogen to
be successfully eradicated to date [7,8]. As of January 2025, two VACV-based vaccines are
approved in the United States (US) by the Food and Drug Administration (FDA) for clinical
use: (1) ACAM2000, which is based on the replication-competent New York Board of Health
VACV strain [9,10] and (2) Jynneos, which is based on the non-replication-competent modi-
fied vaccinia Ankara (MVA) strain [11,12]. These live DNA virus vaccines were crucial to
containing the global mpox outbreak of 2022 and continue to protect laboratory, military,
and medical personnel who have occupational exposure to orthopoxviruses [13]. A second
example of clinically approved vaccines based on DNA viruses includes the use of a weak-
ened form of a herpesvirus known as varicella-zoster virus (VZV) to prevent chickenpox
and/or shingles, which are highly contagious diseases caused by wild-type VZV [14]. As of
January 2025, there are three FDA-approved vaccines utilizing live attenuated herpesviruses
that have been shown to safely and effectively prevent these conditions: (1) Varivax [15,16],
(2) Proquad [17,18], and (3) Zostavax [19–21]. As a result of the widespread use of these
vaccine products, Chickenpox, which was previously common in the US, is now rare [22].
A third example of a successful vaccine based on a DNA virus is the “Adenovirus Type 4
and Type 7 Vaccine, Live, Oral”, which is licensed for clinical use in the US but currently
administered only to military personnel [23].

Table 1. Clinically approved DNA virus-based vaccine products.

Name DNA Virus Indication(s) First Approval

VARIVAX
(Varicella Virus Vaccine,

Live)

7 VZV Chickenpox/shingles 17 March 1995
(2 US FDA)

PROQUAD
(Measles, Mumps, Rubella
and Varicella Virus Vaccine

Live)

7 VZV
(+RNA Viruses)

Chickenpox/shingles 6 September 2005
(2 US FDA)

ACAM2000
(Smallpox and Mpox

Vaccine, Live)

8 VACV Smallpox and mpox 31 August 2007
(2 US FDA)

ZOSTAVAX
(Zoster Vaccine, Live)

7 VZV Singles 25 May 2006
(2 US FDA)

Adenovirus Type 4 and
Type 7 Vaccine, Live, Oral

9 AdV

Febrile acute respiratory
disease caused by

Adenovirus Type 4 and
Type 7

16 March 2011
(2 US FDA)

PRUIORIX TETRA
(monovalent and

multivalent measles,
mumps, rubella and
varicella vaccines)

7 VZV Chickenpox/shingles 27 June 2013
(3 Germany PEI)
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Table 1. Cont.

Name DNA Virus Indication(s) First Approval

IMVANEX
(smallpox and monkeypox

vaccine)

10 MVA Smallpox and mpox 31 July 2013
(4 EMA)

JYNNEOS
(Smallpox and Mpox

Vaccine, Live,
Non-replicating)

10 MVA Smallpox and mpox 24 September 2019
(2 US FDA)

PROVARIX
(varicella vaccine, live)

7 VZV Chickenpox/shingles 18 December 2019
(5 China NMPA)

1 AstraZeneca COVID-19
Vaccine

(ChAdOx1
nCoV-19/AZD1222)

9 AdV 11 COVID-19
20 December 2020

(6 UK MHRA)

1 Janssen COVID-19
Vaccine (Ad26.COV2.S)

9 AdV 11 COVID-19
27 February 2021

(2 US FDA)
1 Approved under an emergency use scenario. 2 United States Food & Drug Administration. 3 Paul Ehrlic
Institut, also known as the Federal Institute for Vaccines and Biomedicines. 4 European Medicines Agency.
5 China National Medical Products Administration. 6 United Kingdom Medicines and Healthcare Products
Regulatory Agency. 7 Varicella zoster virus. 8 Vaccinia virus. 9 Adenovirus. 10 MVA = Modified vaccinia Ankara.
11 Coronavirus Disease 2019.

In addition to the use of attenuated DNA virus-based vaccines to elicit protective
immunity against antigenically similar pathogens, recombinant versions of DNA viruses
have been used as vectored vaccines to protect against antigenically distinct pathogens. For
example, a recombinant VACV expressing the Rabies glycoprotein is approved for use in
animals [24]. In addition, recombinant adenovirus (AdV) vaccines encoding the SARS-CoV-
2 spike protein received emergency authorization during the COVID-19 pandemic in the
United Kingdom (ChAdOx1 nCoV-19/AZD1222 developed by the University of Oxford
partnered with the private company AstraZeneca) [25,26], US (Ad26.COV2.S developed
by the private company Janssen Biotech, Inc., now named Johnson & Johnson Innovative
Medicine) [27,28], and dozens of other countries. Moreover, recombinant AdV and VACV
vaccine platforms are the subject of hundreds of recent pre-clinical studies [29–35] and
ongoing clinical trials [36–39]. Additional vaccination platforms based on recombinant
DNA viruses, including AAVs [40–44], insect viruses [45–51], and heterologous vaccines
consisting of two or more viral vectors delivered simultaneously [52–54], are also under
pre-clinical and clinical investigation.

There are several theoretical advantages of using DNA viral vectors over other ap-
proaches to deliver antigens. First, DNA viruses have generally shown higher in vivo
delivery efficiencies to target cells, leading to increased expression levels of antigens of
interest. Second, whole DNA viruses serve as adjuvants and are thus capable of more
realistically emulating natural infection compared, for example, to recombinant protein or
mRNA vaccines. Third, DNA viruses are more stable than mRNA and can be lyophilized
for transport, thus increasing accessibility [55,56]. On the other hand, whole DNA viruses
can be more challenging to manufacture than naked DNA, mRNA, or protein subunits.
Recombinant DNA virus platforms also may contain epitopes that possess immunodom-
inance (due to high affinities for MHC/HLA) over the heterologous antigen of interest,
potentially affecting immune tolerance for the heterologous antigen of interest [57–59].

Human health will continue to be threatened by both existing pathogens and future
pathogens emerging from natural spillover events or potential acts of bioterrorism. Aided
by further advances in virology, next-generation vaccines based on DNA viral vectors have
strong potential to help contain and eradicate pathogens.
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2.2. Gene Therapy

Gene therapy, defined as the delivery of nucleic acids to cells for the expression of
therapeutic molecules to treat disease, is a biotechnological application for which DNA viral
vectors are uniquely enabling. In the past several decades, gene therapy has moved from
a concept to a viable standard-of-care treatment for an increasing number of monogenic
diseases. Stable gene expression mediated by engineered versions of the single-stranded
DNA (ssDNA) parvovirus known as adeno-associated virus (AAV) has been central to the
clinical success of in vivo gene therapies to date. As of January 2025, seven AAV-based viral
vectors that facilitate the addition of genes for long-term expression of therapeutic proteins
have been approved by global regulators for clinical use in humans (Table 2): voretigene
neparvovec-rzyl (LUXTURNA), which delivers a functional copy of the normal RPE65 gene
to retinal cells to cure an inherited form of vision loss; onasemnogene abeparvovec-xioi
(ZOLGENSMA), which replaces the function of the SMN1 gene to treat spinal muscular
atrophy (SMA); etranacogene dezaparvovec-drlb (HEMGENIX), which delivers a gene
encoding Factor IX to treat hemophilia B; delandistrogene moxeparvovec-rokl (ELEVIDYS),
which delivers a gene encoding a shortened form of dystrophin to treat Duchene muscular
dystrophy (DMD); valoctocogene roxaparvovec-rvox (ROCTAVIAN), which delivers a
gene encoding factor VIII protein to treat hemophilia A; Fidanacogene elaparvovec-dzkt
(BEQVEZ), which delivers a functional copy of the Factor IX gene to treat hemophilia
B; and eladocagene exuparvovec-tneq (KEBILIDI), which treats aromatic L-amino acid
decarboxylase (AADC) deficiency in adults and pediatric patients [60]. In addition, over
110 active- or recruiting-status clinical trials utilizing AAV-based vectors are presently
underway [61,62].

Table 2. Clinically approved DNA virus-based gene therapy products.

Name Vector Indication(s) First Approval
1 alipogene tiparvovec

(GLYBERA)
4 AAV1

familial lipoprotein lipase
deficiency (LPLD)

2 November 2012
(3 EMA)

voretigene neparvovec-rzyl
(LUXTURNA)

4 AAV2
Biallelic RPE65

mutation-association
retinal dystrophy

18 December 2017
(2 US FDA)

onasemnogene
abeparvovec-xioi
(ZOLGENSMA)

4 AAV9 Spinal muscular atrophy 24 May 2019
(2 US FDA)

eladocagene
exuparvovec-tneq

(KEBILIDI/ UPSTAZA)

4 AAV2
Aromatic L amino acid
decarboxylase (AADC)

deficiency

18 July 2022
(3 EMA)

valoctocogene
roxaparvovec-rvox

(ROCTAVIAN)

4 AAV5 Hemophilia A 24 August 2022
(3 EMA)

etranacogene
dezaparvovec-drlb

(HEMGENIX)

4 AAV5 Hemophilia B 22 November 2022
(2 US FDA)

beremagene geperpavec
(VYJUVEK)

5 HSV-1
Dystrophic epidermolysis

bullosa
19 May 2023
(2 US FDA)

delandistrogene
moxeparvovec-rokl

(ELEVIDYS)

6 AAVRh74
Duchenne muscular

dystrophy
21 June 2023
(2 US FDA)

fidanacogene
elaparvovec-dzkt

(BEQVEZ)

7 AAVRh74var Hemophilia B 25 April 2024
(2 US FDA)

1 Subsequently withdrawn due to lack of demand. 2 United States Food & Drug Administration. 3 European
Union European Medicines Agency. 4 Adeno-associated virus. 5 Herpes simplex virus. 6 Adeno-associated virus
Rhesus serotype 74. 7 Adeno-associated virus Rhesus serotype 74 variant.
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The clinical implementation of more complex gene modifications, such as the deletion
of deleterious sequences or correction of disease-causing single nucleotide variants, is also
possible thanks to recent technological advances in genome editing approaches such as
CRISPR-Cas9. However, the high-efficiency delivery of gene editors to targeted cell types
in vivo remains a challenge. For example, most CRISPR fusion proteins (e.g., base editors)
exceed the limited (~4.7 kb) coding capacity of AAV prior to encoding the gRNA and
HDR template sequences. Accordingly, efforts to split cargoes onto multiple recombinant
AAV genomes or develop miniaturized promoters and functional gene editors have been
underway [63]. In addition to their coding capacity limitations, AAV gene therapy products
face manufacturing bottlenecks and immunogenicity challenges, which will need to be
addressed by future innovations.

Gene therapy applications that require significantly larger coding capacities [64] can
be delivered by nonviral platforms such as lipid nanoparticles (LNPs) or vectors based
on large DNA viruses. In general, gene therapy platforms based on LNPs are easier to
manufacture than viral gene therapies but suffer from poor biodistribution and insufficient
delivery efficiencies to tissues outside of the liver. On the other hand, some large DNA
viruses have sufficiently large coding capacities to incorporate HDR repair templates,
gRNAs, and proteinaceous components of most CRISPR editing platforms; achieve high
entry and nuclear trafficking efficiencies in human cells; and confer long-term expression
in targeted cell types. However, large DNA viral vectors are in general more immunogenic
than AAVs, which hinders their widespread use in applications that promote the health
and longevity of target cells. Despite these limitations, a herpes simplex virus 1 (HSV-1)-
based gene therapy called VYJUVEK was recently approved (19 May 2023) by the US FDA.
VYJUVEK delivers a functional copy of the COL7A1 gene to treat wounds of patients with
dystrophic epidermolysis bullosa [65,66]. With 22 recruiting- and 9 active-phase clinical
trials using HSV-based gene therapy approaches currently underway [61], development
efforts to deimmunize and improve delivery properties of large DNA viral vectors may
unlock the potential of large-cargo gene therapies.

2.3. Oncolytic Virotherapy

Despite significant scientific and medical efforts, cancer remains a leading cause of
death, killing nearly 10 million people worldwide each year [67]. In contrast to gene therapy
applications for which the objective is to promote the health and longevity of target cells,
cancer treatment seeks to eliminate target cells. Oncolytic virotherapy (OV) is a special type
of vaccine, gene therapy, and immunotherapy [68] that utilizes viruses whose tropism has
been directed exclusively to cancer cells. OVs have been widely tested in clinical trials for
their capacity to overcome immunosuppressive tumor microenvironments and promote
antitumor immunity [69,70].

Among the different OV platforms under consideration, large DNA viral vectors
such as those based on AdV, HSV-1, and VACV have shown particular promise due to
their clinical safety, genetic deletions resulting in selectivity for tumors, capability to be
engineered to enter nearly any human cancer cell type, large transgenic coding capacities,
potential to induce long-lasting, tumor-specific immunity, synergism with standard-of-
care treatments, and scalable manufacturing processes [71–73]. Several factors should
be considered when selecting the best OV for a given target tumor. For example, unlike
AdV, VACV (1) boasts a cargo coding capacity of >40 kbp, enabling opportunity to encode
additional mechanisms of stimulating anti-tumor immune responses within a single vector;
(2) utilizes broad entry mechanisms, eliminating the opportunity for cancer cells to evolve
resistance at the level of entry; (3) wraps some of its vectors in an outer, exosome-like
membrane that is resistant to pre-mature neutralization by complement and antibodies;
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and (4) undergoes an acute replication cycle in the cytoplasm, which eliminates the risk of
persistent expression following treatment.

The idea of using oncolytic viruses as anti-cancer agents dates back to as early as
the 19th century when a physician named George Dock noted the remission of tumors in
the context of a naturally acquired viral infection [74]. However, because viruses did not
evolve to be optimal anti-cancer agents, engineered improvements were needed to develop
them as safe and effective treatments. As of January 2025, only a handful of oncolytic
virotherapy products have been approved for clinical use in humans: H101 (Oncorine),
a replication-competent AdV approved by Chinese regulators in 2005 to treat head and
neck cancer; Talimogene laherparepvec (IMLYGIC), a replication-competent oncolytic HSV
expressing the granulocyte macrophage colony-stimulating factor (GM-CSF) approved by
the US FDA in 2015 to treat melanoma; Teserpaturev (DELYTACT), a G47∆ HSV approved
to treat glioblastoma in Japan; and nadofaragene firadenovec-vncg (ADSTILADRIN), a
non-replication competent AdV for treatment of high-risk Bacillus Calmette–Guérin (BCG)-
unresponsive non-muscle invasive bladder cancer (Table 3). As of January 2025, there
are active or recruiting-status clinical trials evaluating 68 AdV vectors, 85 HSV vectors,
and 29 VACV vectors to treat a variety of cancers [61]. One notable demonstration of
recent clinical momentum is a phase 2 clinical trial (NCT04387461) involving an oncolytic
AdV in combination with pembrolizumab to treat BCG-unresponsive non-muscle-invasive
bladder cancer, which showed a complete response (CR) rate of 51.4% at 24 months after
treatment, surpassing current standard-of-care treatment options [75]. Moreover, recent
results from a Ph I clinical trial (NCT03152318) showed that an oncolytic HSV product was
effective in treating patients with recurrent glioblastoma, a cancer unresponsive to current
immunotherapy [76]. In another example subsequently published by the same group, an
oncolytic AdV delivering HSV thymidine kinase, a cargo that serves as a “safety switch”
by causing cells to undergo apoptosis in the presence of the prodrug Ganciclovir, was
granted Orphan Drug Designation by the FDA to treat pancreatic ductal adenocarcinoma
(PDAC) [77]. Alternative large DNA viruses—such as baculoviruses, certain bacteriophages,
and myxoma virus—are also under pre-clinical investigation for their potential to deliver
therapeutic payloads to human tumors [78–81].

Table 3. Clinically approved DNA virus-based oncolytic virotherapy products.

Name Vector Indication(s) First Approval
1 rAd-p53

(GENDICINE)
5 AdV

Head and neck squamous
cell carcinoma (HNSCC)

October 2003
(China 2 SFDA)

H101
(ONCORINE)

5 AdV
Head and neck and
esophagus cancer,

Nasopharyngeal cancer

1 November 2005
(China 2 SFDA)

talimogene laherparepvec
(T-VEC, IMLYGIC)

6 HSV Melanoma 27 October 2015
(3 US FDA)

Teserpaturev
(DELYTACT)

6 HSV Malignant glioma June 2021
(Japan 4 PMDA)

1 nadofaragene
firadenovec-vncg
(ADSTILADRIN)

5 AdV

Bacillus Calmette-Guérin
(BCG)-unresponsive
non-muscle invasive

bladder cancer (NMIBC)
with carcinoma in situ

(CIS)

16 December 2022
(3 US FDA)

1 Replication-incompetent. 2 State Food and Drug Administration, subsequently renamed to National Medical
Products Administration. 3 United States Food and Drug Administration. 4 Pharmaceuticals and Medical Devices
Agency. 5 Adenovirus. 6 Herpes simplex virus.
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Despite generally strong safety records and examples of clinical success, OVs based on
large DNA viruses require further optimization to achieve their full clinical potential. For
example, delivery limitations—which include poor biodistribution to tumors, premature
vector neutralization by the immune system, limited intertumoral dissemination, and
insufficient intratumoral spread from primary to secondary tumors—have hindered the
ability of oncolytic viruses to overcome the exclusion of the adaptive immune system from
tumor microenvironments and generate durable immune surveillance against endogenous
tumor antigens following treatment. Commonly used immunostimulatory cargoes, such
as interferons (IFNs) and certain interleukins (e.g., IL-12), are potent antagonists of viral
replication and may thus prevent OVs from optimal amplification in tumors. In addition,
the presence of immunogenic viral epitopes and complex interactions between viral and
host immunological proteins likely affect the type of immune responses conferred by
oncolytic virotherapy treatments. Addressing these issues going forward will further
increase the utility of DNA viruses as powerful tools to overcome cancer.

2.4. Biomanufacturing

Proteins are manufactured for a variety of purposes, such as the use of enzymes in
small-scale molecular cloning to industrial-scale chemical reactions, therapeutic recon-
stitution of missing proteins into patients, vaccination using protein subunits to protect
against infectious diseases, and whole viral gene delivery vectors. Having evolved over
millions of years to express exogenous proteins in cells, large DNA viruses have been
harnessed to enable large-scale protein production. For example, baculoviruses—a group
of nuclear-replicating, large, double-stranded DNA (dsDNA) viruses that exclusively infect
insects as host organisms—have been adapted as protein expression systems in insect
cells [82–84], including commercial cell lines [85,86]. Baculovirus/insectile cell expression
systems can produce enormous protein outputs at 27 ◦C without CO2 incubation and
have a lower risk of contamination by human pathogens, rendering them advantageous
over mammalian expression systems due to increased production efficiency and decreased
costs. The baculovirus expression system has also been used to produce recombinant viral
gene therapy vectors [87–89] and virus-like particle-based vaccines [90,91]. Furthermore,
researchers have shown efficient expression of recombinant proteins in microalgae using a
geminiviral vector as a proof-of-concept method to produce recombinant proteins quickly
and at scale [92].

Despite the high efficiency and low cost of some non-mammalian expression systems,
there exist limitations. Notably, species-specific differences in glycosylation, protein-folding
processes that require special chaperones, and post-translational modifications can lead the
products of mammalian cell-based expression systems to have considerable advantages
for therapeutic applications over proteins produced in non-mammalian cell expression
systems [93,94]. Multiple studies have shown that therapeutic AAVs produced using
baculovirus and Sf9 cells can be physically distinct and transduce target cells at lower
efficiencies than AAVs produced in human embryonic kidney (HEK293) production sys-
tems [95–97].

In addition to using whole DNA viruses as protein expression vectors, promoters
originating from DNA viruses are routinely incorporated into plasmids or cellular genomes
to achieve strong expression of proteins. As a ubiquitous example, a promoter from the T7
bacteriophage is used with the T7 RNA polymerase to express proteins in a wide variety of
prokaryotic and even eukaryotic protein expression systems [98,99]. Likewise, promoters
from a type of herpesvirus known as cytomegalovirus (CMV) [100] and a polyomavirus
known as Simian Virus 40 (SV40) [101] are commonly used in both viral and nonviral vectors
to drive protein expression using mammalian gene expression machinery. To illustrate the
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widespread use of these promoters derived from DNA viruses, a search on www.addgene.
org on 12 July 2023 returned 25,525 plasmids for the keyword “CMV”, 8308 plasmids for the
keyword “T7”, and “2318” plasmids for the keyword “SV40”. Nonetheless, viral-derived
promoters such as CMV are prone to epigenetic silencing in mammalian cells. As such,
efforts to engineer promoters with more durable and controllable expression are underway.

Biomanufacturing proteins using molecular machinery derived from DNA viruses
has aided basic and translational research for over 50 years. With further discovery
and optimization, gene expression tools derived from DNA viruses will continue to
advance biomanufacturing.

2.5. Mitigating Antibiotic Resistance

Bacterial pathogens harboring resistance to multiple classes of antibiotic drugs pose a
serious and growing threat to public health [102]. DNA phage viruses show promise to treat
bacterial infections and slow the spread of drug resistance. As with the use of viruses to treat
cancer, the idea of “phage therapy” has been around for over 100 years. Shortly following
the discovery of phage viruses in the late 1910s by Frederik Twort and Félix d’Hérelle,
d’Hérelle recorded successful examples of using phage viruses to treat laboratory chickens
infected with Salmonella gallinarum and human dysentery patients naturally infected with
Shigella dysenteriae [103,104]. Nevertheless, phage therapy has faced multiple limitations,
including insufficient knowledge to match phage cultures with bacterial species underlying
infections, the tendency of bacteria to rapidly evolve resistance to phages with narrow host
ranges, and poor biodistribution following in vivo delivery. The discovery of Penicillin by
Alexander Fleming in 1928 resulted in widespread reliance on chemical-based antibiotics
accompanied by generally decreased interest in phage therapy [105]. However, the stalling
development of new chemical-based antibiotic drug classes has necessitated the discovery
and commercialization of mechanistically novel treatments for bacterial infections, leading
to a resurgence in phage therapy.

Phage therapy in the age of genetic engineering boasts numerous advantages, includ-
ing its engineerable tropism to specific pathogenic bacterial strains, lowered off-target
effects in human cells relative to chemical-based antibiotics, reduced off-target killing of
helpful bacterial populations in the microbiome, and potential synergy to boost the efficacy
and reduce the risk of bacterial resistance to conventional antibiotics. Accordingly, phage
therapy is a resurging area of research as evidenced by the 18 active or recruiting clinical
trials as of January 2025 [61], the publication of multiple clinical studies and review arti-
cles [106–114], an increasing number of institutional centers dedicated to phage therapy
research [115–119], and active funding initiatives by governmental agencies [119]. An
example of recent technological progress includes a method for continuous and multi-
plexable phage genome modifications using a modified bacterial recombitron that does
not require counterselection, which enables the concurrent editing of multiple distinct
phages and incorporation of five different mutations in phage lambda and thereby paves
the way for improved scalability of phage therapies [120]. In addition to their potential
use as therapeutic products, some DNA phage viruses have been used as engineering
platforms to create better complex proteins. For example, a phage virus was recently used
to optimize prime editors—an approach that can enable in vivo DNA editing without
generating double-stranded breaks [121].

As more is learned about the underlying mechanisms of phage replication cycles,
phage/bacteria interactions, and complex microbial ecosystems within the human body,
DNA phage viruses may rise as valuable treatments and preventative measures to promote
human health.

www.addgene.org
www.addgene.org
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2.6. Editing Microbiomes

The essential role of the microbiome in human health and disease has been increas-
ingly understood and appreciated in recent years. Compelling evidence (extensively
reviewed in the cited articles) now exists linking dysbiosis of microbial communities
with cancerous [122–124], autoimmune [125–128], infectious [129–131], metabolic [132,133],
cardiovascular [134,135], and neurological [136–140] diseases. Accordingly, the idea of
engineering the microbiome to restore health has gained traction in both academia and
the biotechnology industry. As of June 2023, dozens of research centers are dedicated to
understanding and modulating the microbiome, including the University of California’s
Berkeley Initiative for Optimized Microbiome Editing (BIOME), which seeks to precisely
edit microbial communities in their natural environments using CRISPR technology [141].

The microbiome consists of complex networks of remarkably diverse bacteria, ren-
dering the genetic engineering of microbiomes particularly challenging from a delivery
perspective. Though alternative delivery approaches have been reported [142–146], phage-
mediated delivery is currently ideal for applications that seek to target a specific species or
group of bacteria without affecting off-target species in complex microbial communities.
Pioneering studies have provided proof-of-concept for the use of temperate phages contain-
ing DNA genomes as useful tools in microbiome engineering. For example, an engineered
programmable dCas9-expressing bacteriophage λ to repress the stx2 gene encoding Shiga
toxin of E. coli in the gut [147] and reduce Shiga toxin production [148] in murine models
has been reported. Lam and colleagues demonstrated the capability of engineered bacterio-
phage M13 to deliver a programmable, exogenous CRISPR-Cas9 system for strain-specific
targeting in the murine gastrointestinal tract [149]. Another group utilized bacteriophages
T7 and λ to deliver CRISPR base editors to a synthetic soil microbial community [150].
In yet another example, cytolysin—a two-subunit endotoxin secreted by E. faecalis—was
shown to be implicated in alcohol hepatitis and successfully targeted human-derived E.
faecalis using strain-specific phage viruses in humanized mouse models [151]. Recently,
multiple genes of E. coli were edited in situ using phage-derived particles delivering a base
editor, achieving 93% editing efficiency with one dose of the phage particles [152]. These
data demonstrate the potential to directly edit the gut microbiome using phage particles
and expand the ability to design new microbiome-targeted therapies.

One historical limitation in the application of viral gene delivery vectors to microbiome
editing is the necessity to propagate phages in their target bacteria after using traditional
transformation techniques to synthesize them. Phages can potentially evolve altered host
range during scale-up, which could affect their efficiency in the clinic. To mitigate this
challenge, cell-free transcription-translation (TXTL) has been used to produce therapeutic
phages, which may help facilitate expanded phage production for clinical use in the
future [109,153]. Given the vast complexity of the microbiome, identifying which microbial
target species and cargoes will have a therapeutic effect is also a challenge. Advances
in artificial intelligence (AI), next-generation sequencing (NGS), and directed evolution
technologies will aid in decoding the complexity of microbiomes, identifying bacterial
species and gene-specific targets, and generating effective phage-based gene delivery
systems to promote human health.

2.7. Agriculture

The utility of DNA viruses as biotechnological tools transcends research and health;
DNA viruses have also been developed for agricultural and pest control applications. One
historical example of their use as a pest control agent was the release of myxoma virus
(MYXV) in 1950 to control the invasive European rabbit in Australia [154]. As a member
of the Poxviridae family and Leporipoxvirus genus, MYXV’s host range is tightly restricted
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to rabbits [14]. European rabbits had been brought to Australia by settlers from Europe
but subsequently multiplied in the absence of natural predators. Profound destruction
to Australia’s agricultural and natural ecological systems ensued. While MYXV is a nat-
ural virus endemic to new-world rabbits, European rabbits lacked prior immunological
exposure. Within several years of its release on the Australian continent, MYXV wiped out
nearly 100% of the European rabbits with no host spillover events outside of rabbits and
hares. While hailed as a success, a small number of rabbits harbored random mutations
that conferred resistance to MYXV. A host–pathogen evolutionary arms race ensued, with
the European rabbits evolving immunological mechanisms to overcome the virus while
the virus evolved strategies to antagonize the immune system of the host [155–157]. Seven
years following its introduction in Australia, the mortality rate of MYXV fell to less than
30% in field rabbits on the continent. That said, today MYXV is endemic in rabbit popula-
tions of Australia, and the populations of European rabbits in Australia have never reached
their pre-1950 levels [158].

DNA viruses are also utilized for insect pest control. In many ecosystems, DNA
viruses are known to naturally regulate insect populations [159–162]. Baculoviruses, for
example, are harmless to humans and ubiquitously found in many vegetables common
in the human diet. The host range of most baculoviruses is tightly restricted to individual
insect species or closely related groups of insects [163]. Thus, baculoviruses are in general
thought to be safer alternatives to chemical-based pest control from both environmental
and health standpoints. Observations of the role of baculoviruses in natural ecosystems
and their safety in humans led to their commercial application to protect agricultural
crops from insect pests. Wild-type and recombinant baculoviruses have shown success in
managing a number of harmful pest populations, including the larvae of Galleria mellonella,
which destroy honeybee hives; Phthorimaea operculella, which destroy potatoes, Spodoptera
littoralis, which destroy cotton; and Lepidopteran and Hymenopteran forest pests [164–168].
Additionally, densoviruses have shown potential as agents to control mosquito populations
and reduce the transmission of dengue viruses to humans [169–173]. As of January 2025,
there are 7 DNA virus-based biopesticide formulations registered for commercial use by the
US Environmental Protection Agency (EPA) [174] and others approved globally (Table 4).

DNA viruses have also shown potential as gene delivery vectors for genetically engi-
neered agricultural crops and livestock. Genetic engineering has great potential to improve
production yields; resistance to drought, heat, pathogens, and pests; and the nutritional
value of food. As with any genetic engineering approach, effective delivery of gene editing
machinery is crucial. AdVs, herpesviruses, and modified vaccinia Ankara (MVA) have been
used in food animals as vectored vaccines [175–180] or to deliver gene-editing machinery
to target cells [181,182]. Furthermore, a group of plant viruses containing circular ssDNA
genomes known as Geminiviruses have proven to be useful for genetically engineering
plants. For example, the bean yellow dwarf virus (BeYDV) and cabbage leaf curl virus
(CaLCuV) have delivered zinc finger nuclease (ZFN), transcription activator-like effec-
tor nucleases (TALEN), CRISPR-Cas9 machinery, and homology-directed repair (HDR)
templates to wheat, tobacco, tomato, or potato plants [183–189].

Nonetheless, hurdles remain for applying DNA viruses to agricultural applications.
These include (1) manufacturing large quantities of virus; (2) in the case of biopesticides,
administering virus suspensions in a manner that promotes ingestion by target pests;
(3) overcoming the tendency of pests to rapidly evolve resistance; and (4) achieving delivery
and cargo expression specificity in the target host species without spillover into native
and non-pest species. Further research to increase our understanding of the molecular
mechanisms involved in large DNA virus replication cycles, improve manufacturability,
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and develop cargoes that confer strong efficiency and specificity will enable large DNA
viruses to add immense value to sustainably feeding the growing human population.

Table 4. Recently approved 1 DNA virus-based biopesticides.

Name Active Ingredient First Approval

Multiple Products 6 AcMNPV
Unspecified

(3 EC)

Multiple Products 7 SeMNPV
17 May 2007

(3 EC)

Multiple Products 8 CpGV
1 May 2009

(3 EC)

VIROSOFT™CP4 8 CpGV
16 July 2010
(4 US EPA)

CYD-X® PLUS/CYD-X® HP 8 CpGV
21 July 2011
(4 US EPA)

Multiple Products
(e.g., HELICOVEX®)

9 HearNPV
22 April 2013

(3 EC)
Heligen/Armigen/

Armigen Vivus/Vivus Max
10 HzNPV strain ABA-NPV-U

5 March 2014
(4 US EPA)

SPEXIT® 7 SeMNPV strain BV-0004
2 December 2015

(4 US EPA)
SURTIVO®/
Surtivo Soy

10 HzNPV strain ABA-NPV-U
20 March 2020

(4 US EPA)
5 PD20230095 11 AfMNPV Kew1

23 March 2023
(2 China MARA)

Multiple Products
(e.g., PD20230100)

12 SfMNPV Hub1
23 March 2023

(2 China MARA)
5 PD20230093 11 AfMNPV Kew1

23 March 2023
(2 China MARA)

Multiple Products Betabaculovirus phoperculellae 22 January 2025
(3 EC)

1 List includes examples of products first approved between January 2005 and January 2025. 2 China Ministry
of Agricultural and Rural Affairs. 3 European Commission. 4 United States Environmental Protection Agency.
5 Indicates a governmental registration number. 6 Autographa californica nucleopolyhedrovirus. 7 Spodoptera
exigua nucleopolyhedrovirus. 8 Cydia pomonella granulovirus. 9 Helicoverpa armigera nucleopolyhedrovirus.
10 Helicoverpa zea Nucleopolyhedrovirus. 11 Anagrapha falcifera nucleopolyhedrovirus. 12 Spodoptera frugiperda
multiple nucleopolyhedrovirus.

3. Discussion
3.1. Biosafety

Advancing techniques to engineer viruses comes with the potential to do transfor-
mative good or catastrophic harm, depending on how the technology is applied. As
such, biosafety must be upheld as the highest priority in the application of viruses to
biotechnology, while at the same time ensuring that public policies do not prevent the
rapid advancement of virology knowledge, vaccines, and therapeutics, which are central
to society’s ability to fight and prevent genetic and infectious diseases. For example, the
robustness and accessibility of virology research enabled the rapid development of safe and
effective vaccines and antivirals during the COVID-19 pandemic [190,191]. At the same
time, questions about the origin of SARS-CoV-2 prompted pushes to strengthen regulations
on virology research [192]. Overly restrictive regulation of virology research could hinder
research and development on viral vectors that pose no reasonable risk to the public but
are instead crucial to the development of new vaccines and therapeutics for diseases of
unmet need. Accordingly, numerous experts have advocated for the oversight of pathogen
research to be carefully calibrated and clearly defined [193].
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3.2. Future Perspectives

DNA virus vectors have demonstrated the ability to bring immense environmental,
agricultural, and health benefits to humankind. While previously reported engineering
techniques have led to improved vectors for gene delivery and expression, new advances
in disease modeling, machine learning, NGS, gene modification, DNA synthesis, and DNA
diversification technologies will further unlock the powerful potential of DNA virus vectors
to deliver solutions to current and future challenges. As viral engineering technologies
progress, responsible measures must be taken in parallel to mitigate the risk of misuse
without stifling crucially needed scientific progress.
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