
UCLA
UCLA Electronic Theses and Dissertations

Title
Uncovering the molecular networks of metabolic diseases using systems biology

Permalink
https://escholarship.org/uc/item/0zd6b9t0

Author
Shu, Le

Publication Date
2018

Supplemental Material
https://escholarship.org/uc/item/0zd6b9t0#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0zd6b9t0
https://escholarship.org/uc/item/0zd6b9t0#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

Uncovering the Molecular Networks of  

Metabolic Diseases Using Systems Biology 

 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree of Doctor of Philosophy 

in Molecular, Cellular, and Integrative Physiology 

 

by  

 

Le Shu 

 

 

2018 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Le Shu 

2018 



 

 

ii 

 

ABSTRACT OF THE DISSERTATION 

 

Uncovering the Molecular Networks of  

Metabolic Diseases Using Systems Biology 

 

by 

 

Le Shu 

Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology 

University of California, Los Angeles, 2018 

Professor Xia Yang, Chair 

 

The past few decades have seen dramatic increase in the prevalence of metabolic diseases 

(MetDs) including obesity, type 2 diabetes (T2D) and cardiovascular disease (CVD), imposing 

unprecedented burden on public health worldwide. MetDs stem from a complex interplay of 

multiple genes and cumulative exposure to environmental risk factors, yet the exact etiology 

remains elusive. To address this challenge, I embarked interdisciplinary systems biology studies 

encompassing the development of a multi-omics integration tool, elucidation of genetically 

perturbed tissue networks shared by T2D and CVD, and examination of environmentally 

perturbed gene networks by a prevalent endocrine disrupting chemical (EDC).  First, I developed 

a multi-omics integration pipeline named Mergeomics, which consists of independent modules 
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that 1) leverage multi-omics association data to identify biological processes that are perturbed in 

disease, and 2) overlay the disease-associated processes onto molecular interaction networks to 

pinpoint hubs as potential key regulators. Unlike existing tools that are mostly dedicated to 

specific data type or settings, the Mergeomics pipeline accepts and integrates datasets across 

platforms, data types, and species. The performance of Mergeomics was demonstrated by both 

simulation and case studies that include genome-wide, epigenome-wide, and transcriptome-wide 

datasets of total cholesterol and fasting glucose. I then applied Mergeomics to identify the shared 

gene networks between CVD and T2D through a comprehensive integrative analysis driven by 

five multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression 

quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models from CVD 

and T2D relevant tissues. The shared networks captured both known and novel processes 

underlying CVD and T2D. I also predicted 15 key drivers for the shared gene networks and 

cross-validated the regulatory role of top key drivers using in vitro siRNA knockdown, in vivo 

gene knockout, and two Hybrid Mouse Diversity Panels each comprised of >100 strains. Lastly, 

I leveraged systems biology approaches to assess the target tissues, molecular pathways, and 

gene regulatory networks associated with a developmental exposure to the model EDC 

Bisphenol A (BPA). Prenatal BPA exposure was found to cause transcriptomic and methylomic 

alterations in the adipose, hypothalamus, and liver tissues in mouse offspring, with cross-tissue 

perturbations in lipid metabolism as well as tissue-specific alterations in histone subunits, 

glucose metabolism and extracellular matrix. Network modeling prioritized main molecular 

targets of BPA, including Pparg, Hnf4a, Esr1, and Fasn. Moreover, integrative analyses 
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identified the association of BPA molecular signatures with MetDs phenotypes in mouse and 

human. In summary, I presented the community a flexible and robust computational pipeline for 

multidimensional data integration, and offered mechanistic insights into the genetic and 

environmental underpinnings of MetDs by exploiting the power of systems biology through both 

computational and experimental approaches.
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Chapter 1.   Introduction 

MetDs such as type 2 diabetes (T2D) and cardiovascular diseases (CVD) are among the top 10 

leading causes of death, according to World Health Organization and Center of Disease Control 

and Prevention. The recent growing MetDs epidemic has caused the number of diabetic and pre-

diabetic persons in the U.S. to reach over 40% of the population [1] and the prevalence of CVD 

to be as high as 11.3% [2]. Although the exact etiology of MetDs remains elusive, mounting 

scientific evidence supports the role of genetic and environmental factors as well as the 

complicated interplay between the two [3]. A comprehensive understanding of the molecular 

mechanisms underlying the actions of genetic and environmental factors is, therefore, critical for 

our understanding of the molecular basis of MetDs and for the development of effective 

therapeutic and preventive strategies to reduce the prevalence of MetDs. 

It has become increasingly recognized that the tightly regulated coordination among genes 

through tissue-specific networks underlies higher level physiological processes, and the 

elucidation of interactions among genes has led to significant insights into biological processes 

and disease etiology [4-6]. Accompanied by the advent of high-throughput technologies, a large 

number of gene networks have been constructed based on different algorithms like coexpression 

networks or Bayesian networks [4, 7]. Building upon these resources, previous studies have 

shown that the disruption of the specific part of these networks, termed “subnetworks”, by 

genetic and environmental risk factors, could confer risks toward MetDs [6, 8-13]. Therefore, 

rather than focusing on the investigation of isolated genes or linear pathways, it is more 

appealing to elucidate the gene-gene interactions to dissect the molecular mechanisms of 
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complex diseases like MetDs. More importantly, gene networks could be seamlessly integrated 

into a larger and more comprehensive systems genetics framework that takes advantage of vast 

amount of omics data available [14]. The value of omics data is usually limited when individual 

types of data are used in isolation. For example, although genome-wide association study 

(GWAS) provides unbiased information about the genetic basis of diseases, it lacks 1) sufficient 

power to adequately explain heritability and gene-by-environment interaction and 2) mechanistic 

connection between the risk loci and downstream events. By integrating different layers of 

biological information, scientists are better enabled to bridge the gap between genetic 

predisposition and observed phenotypes and investigate molecular interactions in a clinically 

relevant context. Indeed, systems genetics has already proven to be effective in revealing novel 

biological process and gene interactions underlying complex diseases [15-18]. Moreover, 

systems level information can be further modeled into tissue-specific network topology, which 

will offer an unbiased holistic view of how individual molecular events coordinate their effects 

and interact within and between different tissues during pathogenesis. Different from 

conventional candidate gene-driven target selection, the network-driven approach makes it 

possible to pinpointing key regulatory hubs, or key drivers (KDs) of the disease related 

subnetworks. These key drivers shall have the potential to normalize the entire gene network 

spectrum and serve as novel therapeutic targets [19-21].  Despite these progresses, well-defined 

high-throughput systems biology tools that effectively convert large-scale biological data and 

network resources into meaningful outputs are still lacking. Additionally, applications of systems 

biology approaches to understand the genetic and environmental mechanisms of disease 

pathogenesis remain limited. 



 

3 

 

Aiming to address the aforementioned gaps, my work is centered on 1) the development of 

“Mergeomics”, a generic pipeline that integrates genetic associations, tissue-specific functional 

genomics resources, canonical pathways and gene-gene interaction networks, 2) applying 

Mergeomics to a large-scale systems biology analysis on MetDs using available GWAS data on 

both CVD and T2D in conjunction with a multitude of independent genomic datasets, to identify 

crucial shared subnetworks and key regulators for CVD/T2D, 3) investigating the health impact 

of bisphenol A, a recognized environmental endocrine disruptor, by evaluating the perturbation 

at transcriptome and methylome following prenatal BPA treatment, exploring their potential 

regulatory relationship, and further analyzing the molecular signatures using network modeling 

to identify key network regulators mediating the effect of BPA challenge. 

The methodological details and performance evaluation of Mergeomics is described in Chapter 

2. Unlike existing tools that are mostly dedicated to specific data type or settings, the 

Mergeomics pipeline accepts and integrates datasets across platforms, data types, and species. I 

optimized and evaluated the performance of Mergeomics using simulation and multiple 

independent datasets, and benchmarked the results against alternative methods. I also 

demonstrated the versatility of Mergeomics in two case studies that include genome-wide, 

epigenome-wide, and transcriptome-wide datasets from human and mouse studies of total 

cholesterol and fasting glucose. In both cases, the Mergeomics pipeline provided statistical and 

contextual evidence to prioritize further investigations in the wet lab. Moreover, the pipeline is 

disseminated to the scientific community as an open source R package as well as a user-friendly 

webserver to enable broad usage. 
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In Chapter 3, I applied Mergeomics to a multitude of multi-omics datasets to unravel the shared 

gene networks and their key regulatory genes for both CVD and T2D. The datasets included five 

multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression 

quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models (both co-

expression and graphical models) from CVD and T2D relevant tissues. I identified pathways 

regulating the metabolism of lipids, glucose, and branched-chain amino acids, along with those 

governing oxidation, extracellular matrix, immune response, and neuronal system as shared 

pathogenic processes for both diseases. Further, I uncovered 15 key drivers including HMGCR, 

CAV1, IGF1 and PCOLCE, whose network neighbors collectively account for approximately 

35% of known GWAS hits for CVD and 22% for T2D.  Finally, I cross-validated the regulatory 

role of the top key drivers using in vitro siRNA knockdown, in vivo gene knockout, and two 

Hybrid Mouse Diversity Panels each comprised of >100 strains. Findings from this in-depth 

assessment of genetic and functional data from multiple human cohorts provide strong support 

that common sets of tissue-specific molecular networks drive the pathogenesis of both CVD and 

T2D across ethnicities and help prioritize new therapeutic avenues for both CVD and T2D. 

In Chapter 4, I leveraged systems biology approaches to systemically assess the target tissues, 

molecular pathways, and gene regulatory networks associated with a developmental exposure to 

BPA. Prenatal BPA exposure led to tissue-specific transcriptomic and methylomic alterations in 

the adipose, hypothalamus, and liver tissues. I identified cross-tissue perturbations in lipid 

metabolism and oxidative phosphorylation pathways as well as tissue-specific alterations in 

histone subunits and glucose metabolism in adipose tissue, extracellular matrix in hypothalamus, 

and PPAR signaling in liver. Network analyses prioritized main molecular targets of BPA 
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effects, including Cyp51, Pparg, Hnf4a, estrogen receptors, Fasn, and Acss2. Lastly, the BPA 

molecular signatures were found to be significantly associated with cardiometabolic phenotypes 

or diseases in both the mouse model and human studies. The multi-omics systems biology 

investigation provides strong evidence that BPA perturbs diverse molecular networks in central 

and peripheral tissues, and offers insights into the tissue sensitivity and molecular targets that 

link BPA to cardiometabolic disorders. 

In summary, the bioinformatics tool and the systems-level mechanistic information derived from 

my work is critical to elucidate the gene regulatory circuits and their response upon genetic and 

environmental challenges that determine metabolic reprograming and disease susceptibility. The 

molecular insights obtained open new avenues for future in-depth experimental investigation, 

and provide promising candidates as novel drug targets or tissue-specific biomarkers for 

translational research in clinical settings. 
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Chapter 2.   Mergeomics: Multidimensional data integration to identify pathogenic 

perturbations to biological systems 

2.1   Introduction 

Most non-communicable diseases stem from a complex interplay between multiple genes, 

transcripts, proteins, metabolites and cumulative exposure to environmental risk factors [22].  In 

recent years, the advance of omics technologies has greatly enhanced our ability to measure the 

patterns of molecular entities and interactions at genome-scale. Public data repositories such as 

dbGaP for population-based genetic datasets [23] and Gene Expression Omnibus and 

ArrayExpress for gene expression and epigenomics datasets [24, 25] are continuously expanding 

with new experiments, and data acquisition projects such as ENCODE and GTEx are generating 

multidimensional datasets on the regulatory processes that link DNA variation with intermediate 

molecular traits and, ultimately, physiological or pathophysiological phenotypes [26-28]. 

Genome-wide association studies (GWAS), transcriptome-wise association studies (TWAS), 

epigenome-wide association studies (EWAS), and metabolome- and proteome-wide association 

studies have become commonplace in modern biomedical research. Therefore, data integration 

and interpretation has emerged as a new bottleneck on the road to discovery. 

The combination of multiple omics studies is appealing, since a single genomic dataset is 

unlikely to provide deep mechanistic insight. Instead of one obvious candidate, most omic-wide 

studies produce a pattern of univariate statistical signals without a clear indication of what would 

be a suitable target for interventions [29, 30]. However, by integrating different types of data, 

converging patterns usually emerge and the search space for possible mechanisms can be greatly 
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reduced. For instance, simultaneous measurement of DNA and RNA (genetics of gene 

expression) allows investigators to see if a particular genetic variant affects the downstream 

expression of a gene [31, 32], and functional data such as transcription factor binding, epigenetic 

modification, or protein regulation from the ENCODE project [33, 34] can be used to further 

focus on the most promising candidates. 

Multi-dimensional data integration has been previously addressed by pathway-based tools such 

as MAGENTA [35], iGSEA4GWAS [36], SSEA [15], and other network-based methods such as 

WGCNA [37], postgwas [38], dmGWAS and EW_dmGWAS [39], DAPPLE [40], NetWAS 

[41], and MetaOmics [42] have been developed to identify the biological processes (e.g. 

pathways) and specific genes or molecules that may be involved in pathogenesis. However, the 

available methods are typically tailored for a particular application area (e.g. human genetics 

with gene expression, protein-protein interactions, or metabolomics) and may not be suitable for 

cross-comparison of results across diverse data types. In addition, the majority of the network 

tools start from a limited set of known top loci or genes, but it may be necessary to include the 

complete genome-wide patterns of signals for maximum sensitivity. Commercial tools such as 

Ingenuity (http://www.ingenuity.com) have been available for pathway and network analysis of 

different types of omics data such as gene expression and genetic data. However, these tools are 

not open source, hence limiting the accessibility by individual users and lacking the availability 

of detailed underlying algorithms and proprietary information. Additionally, the commercial 

tools usually do not provide the flexibility to incorporate different types of networks and 

pathways. For example, Ingenuity networks are primarily based on gene-gene relationships 

derived from literature rather than data-driven, tissue-specific network patterns the users may 

http://www.ingenuity.com)/


 

8 

 

wish to use.  For these reasons, we developed Mergeomics, an open source software to deliver 

flexible multi-omics integration, to identify pathways and model molecular networks of diseases, 

and to pinpoint promising targets for further experiments in a streamlined, generic and high-

throughput manner. 

In this report, we describe the main features of Mergeomics, and present simulations and case 

studies to demonstrate its performance. Mergeomics is the first publicly available 

implementation of a proven integrative methodology [18]. It employs two broad areas of 

analysis: Marker Set Enrichment Analysis (MSEA) identifies disease-associated biological 

processes via integration of omics-disease association and functional genomics data, and Key 

Driver Analysis (wKDA) determines the key drivers that are suitable for targeted interventions to 

these processes. Here, we introduce new algorithms (hierarchical permutations and adaptive test 

statistics) and new concepts (co-hubs and weighted key drivers) to improve the applicability and 

performance over previous applications. We also report a case study on circulating cholesterol 

that shows how multiple human studies can be combined, and another case study on glucose 

regulation that demonstrates analysis across data types (genome, transcriptome, and epigenome) 

and species (human and mouse). The source code for Mergeomics is available in Bioconductor 

(https://www.bioconductor.org/packages/devel/bioc/html/Mergeomics.html). 

 

 

https://www.bioconductor.org/packages/devel/bioc/html/Mergeomics.html
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2.2   Results and discussions 

Overview of Mergeomics 

Figure 2.1 shows the information flow within the Mergeomics pipeline. The Marker Set 

Enrichment Analysis (MSEA), combines disease association data (e.g., GWAS, EWAS, TWAS) 

of molecular markers (e.g., genetic, epigenetic, and transcript variants), functional genomics data 

from projects such as GTEx and ENCODE, and pre-defined sets of connected genes. The output 

from MSEA is a ranked list of gene sets. We collectively denote these gene sets – which can be 

metabolic and signalling pathways, co-expression modules or gene signatures – as ‘disease-

associated gene sets’.  When multiple datasets of the same data type or different data types are 

available for a given disease or phenotype, the meta-MSEA component that is based on the same 

principles as MSEA but performs meta-analysis at the gene set level can be utilized. The 

Weighted Key Driver Analysis (wKDA, on the left in Figure 2.1 and detailed in Figure 2.2) was 

developed to identify local hubs in a gene network whose neighbours are enriched for genes in 

the disease-associated gene sets. Henceforth these hubs are referred to as key drivers. 

Marker Set Enrichment Analysis 

Rationale and design: MSEA is based on the idea that a collection of multiple associations is 

likely to contain true causal variants even if causality cannot be reliably established by univariate 

analysis. For instance, if multiple genes in a pathway are implicated, then the pathway as a whole 

is likely to be causal even if some of the gene signals were false positives. The primary inputs for 

MSEA include 1) marker to disease association statistics, where markers can be SNPs from 
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GWAS, genes or transcripts from microarrays or RNA sequencing, epigenetic markers from 

DNA methylation profiling, metabolites from metabolomics, or proteins from proteomics; 2) 

assignment of markers to their functional downstream target and 3) sets of functional units of 

genes that co-operate or interact to perform a biological function or process. 

MSEA starts with the conversion of a gene set representing a functional unit into a marker set. 

The corresponding disease association value for each marker is then collected for analysis. In 

most cases, the association P-values are used. If there are a large number of small P-values in the 

marker set compared to what can be expected by chance, we conclude that the gene set we have 

started from is enriched for disease associations (technical details in Methods). Each step in 

MSEA is fully customizable: it allows 1) association studies of different types or species; 2) 

different methods of marker-gene assignments, including expression quantitative trait loci 

(eQTL), transcription factor binding or sequence-proximity to regulatory or coding sequences; 3) 

filtering based on user-supplied confounding dependencies such as linkage disequilibrium 

between genetic markers; and it also utilizes 4) a non-parametric test statistic with multiple user-

definable quantile thresholds to automatically adapt to a diverse range of association study 

datasets with different sample sizes and statistical power. For added applicability, MSEA runs a 

hierarchical gene-based permutation strategy to estimate null distributions that adjusts for shared 

markers between genes and gene size. 

Parameter optimization: To test the performance and identify optimal parameters of MSEA, we 

performed simulation tests based on three cholesterol GWAS of varying sample sizes (a Finnish 

study of 8,330 individuals [43], the Framingham Heart Study with 7,572 participants [44], and 
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GLGC with 100,184 people [45]) and a set of known causal lipid homeostasis genes from the 

Reactome pathway R-HSA-556833, “Metabolism of lipids and lipoproteins”. We resampled 

genes from this pathway into positive control signals of different magnitudes, and generated 

negative control signals from the gene pool excluding known cholesterol genes. This procedure 

was repeated 100 times, and performance was evaluated as sensitivity, specificity and positive 

likelihood ratio, as described in Methods. 

We identified two important parameters, the percentage of top markers included and the 

threshold for confounding marker dependencies, that affect the performance of MSEA (Table 

S2.1). The signal to noise ratio typically improved when genetic loci with relatively stronger 

associations (e.g., top 50% markers) rather than the full association sets were used (Figure 2.3). 

This confirms previous findings for complex traits that variants in the extremely weak 

association spectrum add noise and contribute little to disease biology [46]. For GWAS, linkage 

disequilibrium is a source of confounding marker dependencies. MSEA was less sensitive to LD 

thresholds for better powered studies such as the GLGC GWAS but smaller studies benefited 

from less stringent LD cutoffs, presumably due to improved statistical power (Figure 2.3). 

Overall, we chose to use the top 50% of GWAS loci, and an LD cutoff of r2 < 0.5 as the default 

setting for GWAS studies. Of note, differences due to datasets were typically larger than those 

due to parameters (Figure 2.4) or variations in marker to gene assignment criteria (Table S2.1). 

Performance comparison with previous methods: We compared the performance of MSEA to 

MAGENTA [35] and i-GSEA4GWAS [36], two widely used implementations of gene 

enrichment analysis [47]. Compared to these methods, MSEA differs in test statistics, 
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confounder adjustment, and flexibility in data input. The same simulated positive and negative 

control pathways that were used for calibrating MSEA were also used to compare the three 

different methods (Figure 2.5). The results are similar across all three total cholesterol GWAS: i-

GSEA4GWAS lacked specificity and MAGENTA lacked sensitivity, whereas MSEA provided 

the best balance and receiver operator characteristics. The results remain robust when different 

false discovery rate (FDR) cutoffs were used (Figure 2.6). Notably, the superior performance of 

MSEA over the other two established methods is more obvious when the GWAS involved 

smaller sample size (the Finnish and Framingham studies compared to GLGC) or heterogeneous 

population (the Framingham study compared to the more homogenous Finnish cohort), making 

MSEA useful for all types of studies including the underpowered ones. As the above 

performance comparison based on simulated positive and negative controls may give an unfair 

advantage to MSEA due to optimized calibration towards the positive controls, we performed 

additional tests with 1,346 canonical pathways curated by Reactome [48], BioCarta 

(http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and KEGG [49] (Table 2.1). Consistent 

with results from the simulation approach, MSEA captured the largest number of true positive 

signals (calculated as the number of overlapped significant pathways among all three GWAS, 

minus the expected number of overlapped pathways from random gene sets). 

Meta-MSEA: gene-set level meta-analysis of multiple association studies 

Rationale and design: For a disease phenotype, it is typical that multiple association studies of 

either the same data type (e.g., multiple GWAS) or different data types (e.g., an EWAS plus a 

TWAS) are available. Aggregating multiple studies of the same disease is an appealing strategy 



 

13 

 

to increase signal-to-noise ratio, but marker-level integration is usually complicated by technical 

challenges. Therefore, we developed Meta-MSEA, which performs gene set-level meta-analysis 

of multiple association studies to avoid the need to match data platforms, species, or ethnicity, an 

advantage not present in previous methods. 

Performance evaluation: Mergeomics was specifically designed to produce output that is 

suitable for gene set-level meta-analysis (detailed in Methods). In particular, the reported P-

values from permutation analysis are always greater than zero, and can be converted to Z-scores 

by using the inverse Gaussian density function. To demonstrate the practical benefits of Meta-

MSEA, we applied Meta-MSEA to the three cholesterol GWAS used in the calibration analysis, 

and then compared the results with those from the marker-level meta-analysis of the GWAS 

(denoted as meta-GWAS). While retaining the same-level of specificity, Meta-MSEA showed 

better sensitivity, positive likelihood ratio and larger area under the ROC curve (Figure 2.7). 

These results suggest that the gene set-level meta-analysis is more powerful than the traditional 

marker-centric approach to meta-analysis when investigating perturbations to biological 

processes. 

Weighted key driver analysis (wKDA) to detect disease regulators  

Rationale and design: The MSEA and meta-MSEA components of Mergeomics identify 

pathways or co-regulated gene sets that are perturbed in a disease. However, these analyses do 

not provide information on the detailed interactions between disease genes or help choose which 

gene to pursue in further mechanistic studies.  To provide the answers, the key driver analysis 

(KDA) was previously developed to detect important hub genes, or key drivers, whose network 
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neighbourhoods are over-represented with disease associated genes [11, 18]. The key driver 

concept is based on the projection of the disease-associated gene sets onto a network model of 

gene regulation that represents molecular interactions in the full system (Figure 2.2a). However, 

the original KDA ignored the edge weight information generated by most network inference 

algorithms. As edge weight typically represents association strength or reliability of the 

connection between genes, this data carries valuable topological information. Here, we introduce 

wKDA, a new algorithm that takes into account edge weights to increase accuracy (Figure 2.2). 

Briefly, the edge weights are encoded as local node strengths in the neighbourhood of a hub, and 

then aggregated to estimate an effective membership score for a disease-associated pathway 

(technical details in Methods). This approach serves two purposes: firstly, the key driver scores 

can be quickly recalculated after permuting the node labels thus enabling the empirical 

estimation of the null distribution and, secondly, the key driver score takes the local connectivity 

into account when evaluating the impact of a node membership. wKDA starts by searching a 

network for candidate hub genes and ignores genes with few connections. It then collects the 

neighbouring genes for each candidate hub, and estimates the contribution of the disease-

associated genes within the neighbourhood of the hub. If the contribution is stronger than what 

would be expected by chance, we conclude that the hub is a key driver of the disease-associated 

gene sets (Figure 2.2a). 

If a subnetwork of genes has multiple highly interconnected genes at the center, it is critical to 

consider them collectively due to the inherent topological redundancy. For practical purposes, we 

developed the co-hub concept for wKDA (Figure 2.2b) by selecting one of the central genes as 

the independent hub, and the rest as co-hubs. The rationale is two-fold: first, the statistical power 
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is increased by only considering the independent hubs when adjusting P-values, as they also 

capture the signals from their respective co-hubs. Second, the co-hub concept is a useful 

qualitative measure when selecting the most promising subnetworks and key drivers for 

experimental validation.  For instance, if a key driver has co-hubs with known functions, these 

can give clues as to the role of poorly understood genes. On the other hand, if a key driver is to 

be perturbed in an experiment, it may be important to incorporate the co-hubs as integral parts of 

the experimental design. 

Performance evaluation of wKDA and comparison with KDA: To evaluate the performance of 

wKDA in comparison to the unweighted KDA, we used the reproducibility of KDs of a given 

gene set mapped to independently constructed gene networks as the performance measure.  We 

first set up three disease-associated gene sets as the test gene sets. These included two lipid 

subnetworks (denoted as Lipid I and Lipid II) derived from a previous study [18] and the R-

HSA-556833 (Metabolism of lipids and lipoproteins) pathway from Reactome. To identify KDs 

of these test gene sets, we also set up four gene regulatory networks of two tissues (2 

independent networks per tissue). The gene-gene interaction network models were probabilistic 

Bayesian gene regulatory networks constructed from multiple adipose and liver datasets (Table 

S2.2). We organized these networks into two independent weighted adipose networks and two 

independent weighted liver networks using non-overlapping datasets, where edge weight 

represents the estimated reliability of an edge between genes. 

We used the Jaccard overlap index of the identified KD genes between the two independent 

networks of the same tissue to assess the prediction accuracy of wKDA and KDA (detailed in 
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Methods). The higher the proportion of KDs replicated between independent networks using a 

method, the higher the Jaccard overlap index and the higher the reliability and performance of 

the method. As shown in Figure 2.8, the new wKDA outperformed the unweighted KDA for all 

three test gene sets against independent networks in both tissues. To test the sensitivity of the key 

driver approach, we also partially randomized the adipose and liver networks as a model of 

topological noise. As expected, when some of the edges were randomly rewired, the number of 

consistent key drivers between two independent networks of the same tissue declined, and when 

all edges were rewired, no consistent key drivers were detected (Figure 2.8). Notably, wKDA 

was able to detect consistent signals even when half the network was rewired, thus 

demonstrating the inherent robustness of the wKDA concept compared to the unweighted 

version. Importantly, because wKDA was specifically designed for weighted networks whereas 

the unweighted KDA mainly focuses on the network topology without considering weight 

information, key drivers with high-weight (i.e., high reliability) edges between subnetwork genes 

were preferred by wKDA. This difference likely explains the better reproducibility of wKDA 

compared to the unweighted KDA. 

Case study 1: Application of Mergeomics to multiple cholesterol datasets from different 

cohorts  

In the first case study, we applied the entire Mergeomics pipeline (MSEA, Meta-MSEA, wKDA) 

to integrate multiple association studies of the same data type with functional genomics and gene 

networks. We utilized the three cholesterol GWAS from the Finnish, Framingham and GLGC 

studies described in previous sections, and performed MSEA on individual studies followed by 
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Meta-MSEA across studies. Table 2.2 lists the top pathways from Meta-MSEA, and the full 

results are available in Table S2.3. Meta-MSEA yielded more significant P-values than those 

obtained from the pathway analysis of conventional SNP-level meta-GWAS, which was 

consistent with the simulated signals in the calibration tests. Importantly, when we only included 

the Finnish and Framingham studies, the two smaller GWAS in Meta-MSEA, the signals for the 

top pathways were comparable to GLGC, which has 6 times larger samples size than Finnish and 

Framingham combined.  

We observed 82 significant pathways with a Meta-MSEA P-value < 0.05. The top hits included 

major lipoprotein and lipid transport pathways and the receptors that mediate lipid transfer to and 

from lipoprotein particles. Interestingly, we also found ‘Cytosolic tRNA aminoacylation’ and 

'PPAR-alpha activates gene expression', suggesting that these transcriptional regulatory 

processes are intrinsically intertwined with the traditional concepts of enzyme-driven metabolic 

pathways in cholesterol biosynthesis and transport. Because of the presence of overlaps in gene 

memberships between certain curated pathways, we merged the 82 significant pathways into 43 

non-overlapping gene “subnetworks” at a Jaccard index cutoff of 20%, and performed a second 

run of Meta-MSEA using these merged subnetworks to retrieve the top six subnetworks (Table 

S2.4). The strongest signal was observed for Subnetwork 1 (P < 10−16) that contained genes 

encoding key apolipoproteins and lipid transport proteins (such as LDLR, CETP and PLTP). 

Subnetwork 2 (P < 10−8) included genes related to lipid biosynthesis and catabolism (including 

the statin target HMGCR), oxidoreductive enzymes, metalloproteins and mitochondria. 

Subnetwork 3 represents a biologically intriguing connection between circulating cholesterol and 

the immune system: it contained proteins that are involved in the transport of fatty acids and 
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lipids in blood (Albumin and apolipoproteins A1, B, A and L1), collagen genes, and the 

immunoglobulin family. Subnetwork 4 mainly contained the ATP-binding cassette family of 

transmembrane transporters responsible for lipid and cholesterol transfer across cell membranes. 

Subnetwork 5 included genes for metabolizing retinoid, an important mediator of cholesterol 

transport and Subnetwork 6 may reflect the connection between transcriptional regulation with 

fatty acid metabolism. 

Next, we investigated if specific genes could be the key drivers for the aforementioned 

processes. We applied wKDA to overlay the six cholesterol-associated subnetworks onto gene 

regulatory networks in liver and adipose tissue. The top five key drivers and their co-hubs are 

listed in Table 2.3 with examples of visualization in Figure 2.9, and the full results are available 

in Table S2.5. The top adipose key driver for Subnetwork 2 was ACADVL (very long chain acyl-

CoA dehydrogenase), which catalyzes the first step in mitochondrial beta-oxidation (Figure 

2.9a). Notably, the two co-hubs for ACADVL (PPARA and CIDEA) are also highly relevant 

genes for maintaining lipid homeostasis: PPARA is one of the master regulators of lipid 

metabolism with clinically approved class of drugs (fibrates) already in use; CIDEA has been 

linked to apoptosis, and mouse knock-outs have demonstrated significant effects on the 

metabolic rate and lipolysis [50]. In the liver (Figure 2.9b), the top key driver of Subnetwork 2 

was FASN (fatty acid synthase), which was a key driver in adipose tissue as well. The second top 

key driver SQLE (squalene epoxidase) and its co-hubs FDFT1, IDI1, MSMO1, NSDHL, 

HMGCS1 and ALDOC either catalyze or regulate cholesterol biosynthesis. HMGCR, although 

not listed as top five key drivers, was a highly significant key driver (P < 10-14). Subnetwork 2 

and Subnetwork 6 shared multiple common key drivers in the adipose network (Figure 2.9a). 
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These included ACO2 (aconitase 2), an enzyme that catalyzes citrate to isocitrate in 

mitochondria, and ACADVL and its co-hubs. Perturbations to most of the top key drivers, 

including ACADVL, FASN, SCD, ACO2, COL1A2, POSTN, EHHADH, DHCR7, HSD17B7, GC, 

AQP8, INSIG1, cause abnormal cholesterol and lipid homeostasis according to the Mouse Gene 

Informatics database and the International Mouse Phenotyping Consortium [51, 52]. In 

summary, both literature and experiments support the fundamental role of the key drivers in 

regulating cholesterol metabolism. 

Case study 2: Application of Mergeomics to glucose datasets of various data types and species 

The second case study demonstrates the integrated use of human and mouse resources with 

diverse data types, and it provides insights into the genes involved in glucose metabolism. The 

human data came from a GWAS of fasting glucose that included 46,186 non-diabetic 

participants [53]. The mouse data came from the Hybrid Mouse Diversity Panel (HMDP), and 

comprised a GWAS [54], TWAS [54] and EWAS [55] of glucose. The HMDP datasets were 

derived from genotyping, gene expression profiling, epigenome profiling and clinical 

phenotyping of one hundred mouse strains. 

The Meta-MSEA approach was applied to all the human and mouse association studies. The top 

hits captured important glucose homeostasis pathways including glycolysis/gluconeogenesis, 

beta-cell regulation, incretin homeostasis, adipocytokine signalling and glucose transport (Table 

2.4, full results in Table S2.6). The results also implicated mechanistic connections between 

lipid metabolism and glucose level based on the findings of carbohydrate-responsive element-

binding protein (ChREBP), steroid biosynthesis and lipid transport. Moreover, we highlighted 
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alpha-linolenic acids, an essential fatty acid, whose role in glucose control and metabolic health 

is under active investigation [56]. When comparing the pathway signals across datasets, it is 

noticeable that the mouse studies yield relatively weaker association strength. This could be 

partly explained by the tissue-specificity of HMDP data, as gene expression, methylation and 

eQTLs used in our analysis were all from the liver tissue, which could have missed pathways in 

non-hepatic tissues. Despite the weak power of the mouse datasets, 8 out the 13 top pathways 

demonstrated stronger significance across studies than in the human GWAS alone (Table 2.4). 

These results (and the earlier example of circulating cholesterol) demonstrate how Mergeomics 

was able to identify important biological signals that are subtle in any isolated omics dataset, but 

consistent across multiple data types and species. 

2.3   Conclusions 

The explosion of genomics data has shifted the technical challenge from data acquisition to data 

analysis and interpretation. To respond to the challenge, we developed Mergeomics, a generic 

pipeline that helps to leverage combined statistical patterns of univariate associations of diverse 

data types and molecular networks to identify important pathways and key drivers in biological 

systems. We demonstrated how to use Mergeomics in multi-omics projects with human and 

animal datasets, and also tested the technical robustness with simulated examples. Through the 

case studies of cholesterol and glucose regulation, we found that gene networks orchestrated by 

existing drug targets (such as PPARA and HMGCR) and less known genes (such as ACADVL 

and collagen genes) potentially regulate circulating cholesterol level, and that both known and 

novel biological processes likely participate in the genetic and epigenetic regulation of glucose 
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levels. This evidence supports the biological relevance of Mergeomics output. With simulated 

and real data we demonstrated the robustness of the algorithms in a wide variety of settings and 

how Mergeomics outperformed other popular tools. Importantly, the inputs to Mergeomics are 

fully customizable, and accommodate any source dataset that can be represented by i) univariate 

associations, ii) hierarchical relationships between markers, genes or gene-sets or iii) weighted 

(gene) networks. Therefore, Mergeomics can guide hypothesis generation across a wide variety 

of applications. 

We acknowledge the following limitations of Mergenomics. First, the current pipeline only takes 

disease association strength and static information but not directionality and temporal 

information into consideration, which fortunately covers the majority of available genomics data, 

but may limit the detection of additional biological signals. Second, although genetic 

information, when available, can help infer causal relationships, the bioinformatics analyses from 

Mergeomics mainly serve to generate testable biological hypotheses rather than directly 

implicating causality. Therefore, the causal roles of the key driver genes, pathways, and 

networks inferred by Mergeomics require explicit experimental validation. Despite the 

limitations, Mergeomics provides the scientific community with the first open source 

implementation of a methodology that has a proven track record of successful biomedical 

applications. Future development of Mergeomics will focus on addressing the limitations and 

improve its flexibility and performance by incorporating directional information, dynamic time-

course data, and prediction of potential therapeutic agents.
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2.4   Methods 

Market set enrichment analysis 

The default setting of MSEA takes as input 1) summary statistics from global marker association 

studies (e.g., GWAS, EWAS, TWAS), 2) measurement of relatedness or dependency between 

genomic markers, 3) mapping between markers and genes, and 4) functionally defined gene sets 

(e.g., biological pathways or co-regulated genes). For GWAS, SNPs are first filtered based on 

the linkage disequilibrium (LD) structure to select for only SNPs that are relatively independent 

given an LD threshold [18] (See Appendix). For other types of association studies, correlations 

between co-localized markers may be used. For a given gene set, gene members are first mapped 

to markers based on the mapping file and then the disease association p values of the 

corresponding markers are extracted to test for enrichment of association signals based on the 

following null hypothesis: 

Given the set of all distinct markers from a set of N genes, these markers contain an equal 

proportion of positive association study findings when compared to all the distinct markers from 

a set of N random genes 

We only focus on distinct markers to reduce the effect of shared markers among gene families 

that are both close in the genome and belong to the same pathway (and presumably have 

overlapping functionality). Furthermore, our software has a feature that merges genes with 

shared markers before analysis to further reduce artefacts from shared markers. MSEA uniquely 

adopts a hierarchical gene-based permutation which estimates the expected distribution of the 
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test statistic under the null hypothesis by randomly shuffling the gene labels while retaining the 

assignment of mapped markers to genes, preserving the hierarchical marker-gene-pathway 

cascade (Figure 2.10). As an alternative option, the marker labels can also be shuffled to form 

the null distribution. Both options are offered in the R package. 

To avoid assessing enrichment based on any pre-defined association study p-value threshold 

(e.g., p<0.05) which can mean different association strengths in studies of varying sample size 

and power, we developed a test statistic with multiple quantile thresholds to automatically adapt 

to any dataset: 

𝜒 =∑
𝑂𝑖 − 𝐸𝑖

√𝐸𝑖 + 𝜅

𝑛

𝑖=1

 

In the formula, n denotes the number of quantile points, O and E denote the observed and 

expected counts of positive findings (i.e. signals above the quantile point), and κ = 1 is a stability 

parameter to reduce artefacts from low expected counts for small gene sets. The frequency of 

permuted signals that exceed the observation is determined as the enrichment P-value. For highly 

significant signals where the frequency-based value is zero (i.e. no permuted signal exceeds the 

observation), we fit a parametric model to the simulated null distribution to approximate the 

corresponding Z-score (See Appendix). For meta-MSEA of multiple association studies, 

pathway enrichment Z-scores from each dataset are first estimated with MSEA. The meta P 

value is then estimated by integrating individual Z-scores using the Stouffer’s method [57]. 

Weighted key driver analysis 
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wKDA utilizes both the network topology information and the edge weight information of a 

molecular network when available (illustrated in Figure 2.11). In wKDA, a network is first 

screened for suitable hub genes whose degree (number of genes connected to the hub) is in the 

top 25% of all network nodes (Figure 2.11, middle box on the left). We further classify these 

genes as either independent hubs or co-hubs, where a co-hub is defined as a gene that shares a 

large proportion of its neighbours with an independent hub (Details in Figure 2.11). Once the 

hubs and co-hubs have been defined, the disease-associated gene sets that were discovered by 

MSEA or meta-MSEA are overlaid onto the molecular network to see if a particular part of the 

network is enriched for the disease genes. First, the edges that connect a hub to its neighbours are 

simplified into node strengths (strength = sum of adjacent edge weights) within the 

neighbourhood (Plots B-D in Figure 2.11), except for the hub itself. For example, the top-most 

node in Plot C has three edges that connect it with the other neighbours with weights that add up 

to 7 in Plot D. By definition, the hub at the center will have a high strength which will skew the 

results, so we use the average strength over the neighbourhood for the hub itself. The reduction 

of the hub neighbourhood into locally defined node strengths improves the speed of the 

algorithm and makes it easier to define an enrichment statistic that takes into account the local 

interconnectivity. In particular, the weighting of the statistic with the node strengths emphasizes 

signals that involve locally important genes over isolated peripheral nodes. In Plot D of Figure 

2.11, the overlap between the hub neighbourhood and a hypothetical disease-associated gene set 

is indicated by the circles around the top three nodes. The sum of the strengths of the disease 

genes is 15, which represents 57% of the total sum of 26.4 in the neighbourhood (pie chart in 

Plot D). The final enrichment score is estimated as described below. 
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The null hypothesis for the enrichment of disease genes within a subnetwork can be expressed as 

Weighted key driver H0 : Given the set of nodes adjacent to a key driver, and with each node 

having a local strength as estimated by the mutual connectivity, the ratio of the sum of  strengths 

of disease genes to the total sum of strengths of all genes in the key driver subnetwork is equal to 

the ratio for a randomly selected gene set that matches the number of disease genes. 

The test statistic for the wKDA is analogous to the one used for MSEA 

𝜒 =
𝑂 − 𝐸

√𝐸 − 𝜅
 

except that the values O and E represent the observed and expected ratios of disease genes in a 

hub neighbourhood. In particular, 

𝐸 =
𝑁𝑘𝑁𝑝

𝑁
 

is estimated based on the hub degree Nk, disease gene set size Np and the order of the full 

network N, with the implicit assumption that the weight distribution is isotropic across the 

network. 

Statistical significance of the disease-enriched hubs, henceforth key drivers, is estimated by 

permuting the gene labels in the network and estimating the P-value based on the simulated null 

distribution. To control for multiple testing, we perform adjustments in two tiers. First, the P-

values for a single subnetwork are multiplied by the number of independent hubs (Bonferroni 

adjustment). All hubs with adjusted P > 1 are discarded. For random data, the truncated results 

will be uniformly distributed between 0 and 1, and hence they can be treated as regular P-values. 
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In the second stage, all the P-values for the subnetworks are pooled and the final FDRs are 

estimated by the Benjamini-Hochberg method [58]. 

MSEA performance evaluation 

MSEA can be reconfigured depending on the type of dataset and study design. We identified 

several parameters that could affect the performance of the pipeline such as marker filtering by 

including top disease/trait associated markers based on a percentage cutoff, marker dependency 

or relatedness (such as LD) cutoff for pruning redundant markers, and the mapping between 

genes and markers. Here we focus on the marker filtering percentage and marker dependency 

cutoff as they represent the two key technical challenges. Of note, the mapping between genes 

and markers can be defined empirically [31, 33], but we used a chromosomal distance-based 

approach for testing to make Mergeomics consistent with most of the existing pathway 

enrichment tools. In fact, for GWAS, the assignment of SNPs to their target genes based on their 

chromosomal location is the commonly adopted approach in other methods, whereas 

Mergeomics allows users to apply any available assignment method, including the data from 

tissue-specific eQTL studies and ENCODE. 

To evaluate the performance of MSEA in independent datasets, we collected GWAS summary 

data for circulating cholesterol from 7,572 individuals in the Framingham Study [44], 8,330 

Finnish individuals [43], and 100,184 participants from the Global Lipid Genetics Consortium 

[45]. Cholesterol metabolism and transport is one of the most studied and understood areas of 

human biology, which makes cholesterol GWAS [45] an informative dataset for method 

assessment. The Framingham and Finnish studies are completely independent. The GLGC 
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dataset is the largest meta study for cholesterol traits and contains the two smaller studies, but the 

total overlap was less than 10% between the datasets. All participants were predominantly 

Caucasian descent, and we used the corresponding LD data from HapMap [59] and 1000 

genomes project [60] in our analyses to remove redundant SNPs in LD. To determine a suitable 

combination of parameters and to compare performance of different methods, we simulated true 

positives and true negatives. True positive signals related to cholesterol and lipid metabolism 

were collected from the Reactome pathway R-HSA-556833, “the metabolism of lipids and 

lipoproteins”. These genes were grouped into 300 positive control pathways, including 100 with 

size 25, 100 with size 100, 100 with size 250, respectively. Simultaneously, 300 negative control 

pathways with the same size distribution as the positive control pathways were generated by 

randomly selecting genes from the non-cholesterol gene pool consists of 8633 genes from the 

pathway database of Reactome [48], BioCarta 

(http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and KEGG [49]. These manually 

generated control pathways were combined with 1,346 original canonical pathways for 

benchmarking. 

The control and canonical pathways were analysed by MSEA and two widely-used existing tools 

MAGENTA and i-GSEA4GWAS. The latter two tools estimate the genetic associations for each 

gene, and then test if the aggregate gene score for a pathway is higher than expected. 

MAGENTA identifies the peak disease-associated SNP for each gene, and then adjusts the 

statistical significance of the peak SNP according to the size of the gene, LD and other potential 

confounders to produce the gene score. i-GSEA4GWAS uses a similar approach where a gene is 

considered significant if it contains any of the top 5% SNPs, and the pathway score is estimated 
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by comparing the observed ratio of significant genes within the pathway against the expected 

ratio in the full set of genes that were covered by the GWAS. The performance was evaluated as 

sensitivity (number of positive control pathways at FDR < 25% divided by total number of 

positive control pathways), specificity (number of negative control pathways at FDR < 25% 

divided by total number of negative control pathways) and the likelihood to pick up true positive 

pathways (Positive Likelihood Ratio), calculated as sensitivity / (1 − specificity). 

Integrated analysis of diverse data types across species was tested in the second case study. The 

datasets included a human GWAS for fasting glucose on 46,186 non diabetic subjects  [53], and 

mouse GWAS, EWAS and TWAS for fasting glucose from the HMDP, which consists of 100 

different mouse strains [54, 55]. The epigenome and transcriptome data were generated from the 

liver tissues from the mouse strains on standard chow diet, and mouse liver eQTLs were used in 

gene-SNP assignment for the HMDP GWAS data for consistency. For EWAS data, DNA 

methylation sites were mapped to adjacent genes based on a chromosomal distance of 50kb. All 

other MSEA parameters were the same as those applied in the cholesterol analysis (see the 

descriptions of the case studies for more information). 

wKDA performance evaluation 

We assessed the performance of wKDA based on the robustness of the key driver signals in 

independent gene networks. We collected Bayesian networks that were constructed from 

published genomic studies where both DNA and RNA were extracted from adipose and liver 

tissue samples [61, 62]. The collection of Bayesian networks was split into two independent sets 

of weighted adipose networks and weighted liver networks from non-overlapping datasets 



 

29 

 

(Table S2.2). Edge weights were quantified based on the consistency of the edge between 

datasets. Using these networks and three test gene sets related to lipid metabolism as inputs, we 

ran wKDA to identify liver and adipose key drivers of the lipid gene sets. To benchmark the 

wKDA performance, we compared wKDA with the previously developed unweighted KDA [11, 

18]. The prediction accuracy of wKDA and KDA was evaluated by the Jaccard overlap index 

between the top key driver genes from the two independent networks of each tissue, which 

represents the proportion of KDs that can be replicated between independent networks. Jaccard 

overlap index measures the overlap between two KD sets X and Y each containing lists of KD 

genes, and is calculated based on the following formula: overlap(X, Y) =
|X∩Y|

min⁡(|X|,|Y|)
. The higher 

the overlap or replication rates of KDs detected between two independent network using a KDA 

method, the higher the Jaccard overlap index and the higher the performance of the 

corresponding method.
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2.5   Tables 

Table 2.1 Performance comparison of MSEA, MAGENTA and i-GSEA4GWAS across three GWAS datasets using real gene sets. 

Method 
Marker 

Incla 

LD 

cutoffb 
Finnishc Framinghamd GLGCe Obsf Expg 

True 

Posh 

False 

Posi 
Alphaj 

MSEA 50% 50% 84 61 77 13.00 0.22 12.78 0.13 0.046 

MAGENTA n/a n/a 114 81 144 6.00 0.73 5.27 0.70 0.080 

i-GSEA4GWAS n/a n/a 426 503 32 17.00 3.80 13.20 16.31 0.230 
a Proportion of top markers included 

 
b Linkage disequilibrium r2 cutoff 
 

c Number of pathways with P < 0.05 from Finnish cohorts 

 
d Number of pathways with P < 0.05 from the Framingham Study 

 
e Number of pathways with P < 0.05 from the Global Lipid Genetics Consortium 

 
f Observed overlap between the top pathways from the three datasets 

 
g Expected overlap for size-matched randomly picked pathways for the three datasets 
 

h Estimated number of true positive signals 

 
i Estimated number of false positives based on the alpha level (see next) 

 
j Estimated actual significance threshold based on the average number of signals across each dataset, and the number of consistent signals 
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Table 2.2 Top 15 pathways associated with cholesterol levels out of 1,346 canonical pathways 

tested in three GWAS datasets. 

Pathway 

MSEA  Meta-MSEA 
Meta-

GWAS 
Finnish 

(n=8330) 

Framingham 

(n=7572) 

GLGC 

(n=100184) 

 Without 

GLGC 

With 

GLGC 

Lipid digestion, 

mobilization, and 

transport 

4.16 5.46 6.15 

 

8.67 13.76 5.00 

Lipoprotein 

metabolism 
4.67 4.82 5.94 

 
8.59 13.49 5.41 

Chylomicron-

mediated lipid 

transport 

4.88 4.87 4.72 

 

8.85 12.61 5.03 

Metabolism of lipids 

and lipoproteins 
3.15 1.71 6.15 

 
4.00 8.53 3.56 

Cytosolic tRNA 

aminoacylation 
3.58 2.09 1.92 

 
4.77 5.86 2.70 

Binding and Uptake 

of Ligands by 

Scavenger Receptors 

1.88 2.29 3.36 

 

3.46 5.86 2.92 

Scavenging by Class 

A Receptors 
1.83 2.22 3.22 

 
3.33 5.62 3.47 

Metabolism 1.83 1.48 3.94  2.65 5.36 2.98 

PPARA Activates 

Gene Expression 
1.66 2.22 2.83 

 
3.17 5.13 1.33 

Retinoid metabolism 

and transport 
1.01 2.75 3.04 

 
2.84 4.94 1.42 

Regulation of Lipid 

Metabolism by 

Peroxisome 

proliferator-activated 

receptor alpha 

(PPARalpha) 

1.32 2.02 2.79 

 

2.64 4.52 1.60 

Fatty acid, 

triacylglycerol, and 

ketone body 

metabolism 

1.48 1.65 2.49 

 

2.49 4.13 1.56 

Clathrin derived 

vesicle budding 
1.91 1.27 2.36 

 
2.50 4.05 1.30 

Diseases associated 

with visual 

transduction 

1.41 1.89 2.18 

 

2.62 4.03 2.34 

ABC transporters 1.77 0.89 3.16  1.97 4.01 2.75 

*The results are listed as −log10P-values, and the full table is available in Additional file 3. MSEA was 

run with top 50% of markers and LD cutoff r2 < 50%.  The column 'Meta-GWAS' was estimated 

according inverse-variance meta-analysis of the cohort specific P-values. The Bonferroni-adjusted 5% 

significance level for 1,346 independent tests is at −log10P = 4.43. 
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Table 2.3 Key drivers for cholesterol-associated gene subnetworks. Initially, canonical pathways were evaluated for the enrichment of 

genetic perturbations to circulating cholesterol.  

Subnetworks −log10 P 
Functional 

annotation 

Top adipose KDs  Top liver KDs 

Key driver −log10 P Co-hubs  Key driver −log10 P Co-hubs 

Subnetwork 1 

Lipoprotein 
16.0 

Lipid 

transport; 

cholesterol 

metabolism; 

lipoprotein; 

blood plasma 

- - - 

 SPRY4 9.5 ABCG8 

 

S100A10 4.5 - 

Subnetwork 2 

Lipid 

metabolism 

8.1 

Lipid 

metabolism; 

metalloprotei

n; 

oxidoreducta

se; 

endoplasmic 

reticulum 

ACADVL 33.7 
PPARA, 

CIDEA 

 
FASN 49.0 GPAM, ACLY 

FASN 26.8 

ME1, 

ACSS2, 

ACLY, 

ELOVL6 

 

SQLE 37.4 

FDFT1, IDI1, MSMO1, 

NSDHL, HMGCS1, 

ALDOC 

SCD 24.0 DNMT3L 
 

DHCR7 26.9 
PMVK, MUM1, FDPS, 

LSS, RDH11, MVD 

CCBL2 23.3 -  HSD17B7 23.9 - 

ACO2 23.0 

AV075202, 

GPD2, 

NDUFV1 

 

MMT00007490 18.8 
HMGCR, LSS, FDFT1, 

MVD, ACSL3 

 

Subnetwork 3 

Immunoglobul

in 

 

6.1 

 

Immunoglob

ulin V-set 

COL1A1 12.4 -  COL6A3 21.4 - 

COL1A2 9.4 

COL3A1,C

OL2A1, 

MFAP2 

 

VIM 11.0 - 

OLFML3 8.8 -  CCDC3 10.4 OLFML3 

POSTN 8.3 COL2A1  CXCR7 9.9 - 

FN1 7.2 -  FBLN2 9.0 - 

Subnetwork 4 

ABC transport 
5.0 

ATP-binding 

cassette 

genes 

- - - 

 SPRY4 12.0 ABCG8 

 MMT00062095 4.3 - 

 S100A10 3.2 - 

Subnetwork 5 4.5 Retinoid - - -  GC 11.2 RBP4,APOH 
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Retinoid 

metabolism 

metabolism; 

Visual 

transduction 

 TFPI2 3.2 - 

 
AQP8 2.9 - 

Subnetwork 6 

Transcription 
3.8 

Transcription 

regulation; 

fatty acid 

metabolism; 

acyltransferas

e 

SLC2A5 18.2 - 
 

PKLR 23.6 
MMT00060232, 

ELOVL6 

ACADVL 17.7 
PPARA, 

CIDEA 

 
PNPLA5 19.0 

ACLY, ACACA, 

PNPLA3 

CPT2 15.9 -  PGD 12.2 - 

EHHADH 15.1 -  FASN 11.6 GPAM,ACLY 

ACO2 13.7 

AV075202, 

GPD2, 

NDUFV1 

 

INSIG1 10.7 - 

* As these pathways overlap with each other, non-redundant “subnetworks” were constructed that represent the most shared core genes between 

overlapping pathways. To verify the association with cholester, enrichment was re-evaluated for the subnetworks (second column in the table). 

Statistical significance was estimated as described in Table 1. Functional annotations were determined with the DAVID Bioinformatics Tool [63]. 

Key drivers and co-hubs were determined with the wKDA module within Mergeomics. Bayesian networks from multiple mouse studies were 

combined to create weighted adipose and liver consensus networks [61, 62]. Gene symbols were translated to human when available.
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Table 2.4 Pathways associated with fasting glucose across human and mouse association datasets.  

Pathway 

MSEA 
Meta-MSEA 

Human Mouse Mouse Mouse 

GWAS GWAS TWAS EWAS Value FDR 

Glycolysis / Gluconeogenesis 2.56 0.88 3.84 0.63 4.73 2.22% 

Starch and sucrose metabolism 3.67 1.37 3.29 0.17 4.57 2.22% 

Regulation And Function Of ChREBP in 

Liver 
3.10 0.93 2.74 0.41 4.08 3.60% 

Nuclear Receptors in Lipid Metabolism and 

Toxicity 
5.58 0.48 1.99 0.35 4.00 3.60% 

Regulation of gene expression in beta cells 4.16 1.75 1.48 0.19 3.97 3.60% 

Type II diabetes mellitus 2.11 1.09 1.48 1.08 3.66 6.00% 

Integration of energy metabolism 2.42 0.33 2.17 1.09 3.34 10.82% 

Steroid biosynthesis 1.10 2.04 1.27 0.76 3.10 14.34% 

alpha-linolenic acid (ALA) metabolism 3.40 0.32 1.72 0.69 3.09 14.34% 

Incretin Synthesis, Secretion, and Inactivation 3.24 1.14 0.09 2.06 3.02 14.34% 

Adipocytokine signaling pathway 2.55 0.41 1.13 1.26 2.94 14.34% 

Chylomicron-mediated lipid transport 0.43 0.89 2.89 1.26 2.92 14.34% 

Glucose transport 5.57 1.31 0.27 0.29 2.92 14.34% 

* The results are listed as −log10P-values, and the full table is available in Additional file 5. MSEA was run with top 50% of markers, and an LD 

cutoff r2 < 50% was applied to the GWAS. The column 'Meta-GWAS' was estimated according inverse-variance meta-analysis of the dataset-

specific P-values. For the human GWAS, SNPs were assigned to genes based on a 20kb window in the genome sequence. For the mouse GWAS, 

liver eQTL data were used for gene assignment. The Bonferroni-adjusted 5% significance level for 1,346 independent tests is at −log10P = 4.43.
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2.6   Figures 

 

Figure 2.1 Main modules, data flow between them, and examples of data types that can be integrated by Mergeomics.
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Figure 2.2 Schematic illustration of the concept of a key driver gene (a) and local hubs with overlapping neighborhoods (b).
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Figure 2.3 Sensitivity, specificity and positive likelihood ratios of MSEA in capturing simulated 

lipid genesets across combinations of GWAS datasets, top markers included and LD cutoffs.  

 

a) Results from GLGC GWAS. b) Results from Finnish GWAS. c) Results from Framingham 

GWAS. 20kb window distance mapping is used for all analyses.
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Figure 2.4 MSEA signals of lipid homeostasis genes for combinations of linkage disequilibrium pruning parameter and marker 

filtering (top markers included).  

 

Results are from 20kb window distance mapping. Z-scores of dots with the same color in the LD cutoff plot (a) represent the values 

from different marker filtering settings, and vice versa in (b).  
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Figure 2.5 Comparison of three pathway enrichment methods across three GWAS.  

 

Performance is evaluated by sensitivity (a), specificity (b), positive likelihood ratio (sensitivity/(1-specificity)) (c) and receiver 

operating characteristic curve (d-f). Sensitivity was defined as the proportion of positive control pathways detected at FDR < 25%. 

Specificity was defined as the proportion of negative controls rejected at FDR ≥ 25%. Error bars denote the standard error of 

simulation results. 
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Figure 2.6 Performance comparison of MSEA, iGSEA and MAGENTA at FDR 5% (a) and FDR 10% (b). 
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Figure 2.7 Comparison of performance of SNP-level meta-analysis and pathway-level meta-

analysis using simulated gene-sets.  

 

Results are produced in the same workflow as stated in Table 2.2. a) Sensitivity. b) Specificity. 

c) Positive likelihood ratio (Sensitivity/(1-Specificity)). d) Receiver operating characteristic 

curve. Error bars denote the standard error of simulation results.
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Figure 2.8 Performance comparison between wKDA and the unweighted key driver analysis. 

 

Two empirical subnetworks (Lipid I & II) were obtained from a previous publication [18], and a canonical metabolism of lipids and 

lipoproteins pathway was obtained from the Reactome database (R-HSA-556833). The methods were tested by projecting the three 

functional subnetworks onto two independent adipose networks (a-c) and two independent liver regulatory networks (d-f). The 

adipose and liver networks were constructed from a collection of Bayesian tissue-specific network models (Table S2.2). Overlap 

between the tissue-specific key driver signals across two independent regulatory networks was defined according to the Jaccard index. 

Overlap ratio was calculated for both original networks and networks with 25%, 50%, 75% or 100% rewiring of edges.
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Figure 2.9 Visualization of adipose (a) and liver (b) networks around top key drivers that were 

identified for cholesterol-associated subnetworks.  

 

Top key drivers (nodes with the largest size) are selected as the top five independent key 

regulatory genes (genes whose neighbourhood has less than 25% overlap with the 

neighbourhood of other independent hubs) for subnetwork 2 and subnetwork 6. Subnetwork 

member genes are denoted as medium size nodes and non-member genes as small size nodes. 

Top co-hubs (co-hubs with FDR < 10−10 in wKDA) are highlighted by yellow circles. Only edges 

that were supported by at least two studies are drawn.
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Figure 2.10 Schematic illustration of the hierarchical structure in genetic datasets (a) and the 

randomization procedure that was used in the gene-permuted MSEA (b-c).
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Figure 2.11 Schematic illustration of the weighted key driver analysis (a) and the key driver 

enrichment statistic (b-d). 
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2.7   Appendix 

Linkage disequilibrium filtering 

The LD filtering algorithm comprises two phases: first, the SNPs are sorted by the disease 

associations (GWAS data) to prioritize the most important loci. The second phase starts by the 

selection of the top SNP. The next highest ranked SNP is then compared against the first one to 

see if LD is acceptable. If not, the SNP is discarded. The same step is then repeated for the 

remaining list while always checking if the next SNP is in LD with any of the already accepted 

ones. Subsequently, all accepted SNPs are guaranteed not to be in LD with each other above a 

designated LD threshold. 

Definition of co-hubs in wKDA 

The candidate independent hubs are first sorted according to the node degree, from low to high. 

This is to ensure that we capture local structures rather than one master hub that covers the 

majority of the network (e.g. housekeeping genes would make poor drug targets due to global 

side-effects). Next, the sorted hubs are tested one by one for neighbourhood overlaps with the 

already accepted hubs. If sufficient overlap (as defined under section “definition of overlap 

between two gene sets” below, default value is 33%) is detected, the current hub is assigned as a 

co-hub for the previously accepted overlapping hub.  

Adaptive Gaussian approximation for estimating P-values in MSEA and wKDA 
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The exact shape of the null distribution is dependent on the size of the gene set and on the 

mapping between the genes and the markers (MSEA) or on the size and topology of the gene 

network (wKDA). To estimate the P-value from these various permutation approaches, we 

created a generic algorithm for a parametric approximation using the Gaussian function. In the 

range where a direct frequency-based P-value is accurate (i.e. with 10,000 permutations it is 

possible to accurately estimate P-values above ~0.001), we found that the Gaussian 

approximation was highly concordant. For P < 0.001, we found that the Gaussian model 

produced biologically plausible rankings of statistical significance. We tested other models, but 

found that the potential benefit from using more long-tailed distributions was outweighed by the 

difficulties in applying them in practice. For instance, the t-distribution was more conservative 

than the Gaussian estimate, but assigning an appropriate degree of freedom was problematic 

given the diverse nature of the null hypotheses. 

Let X denote the series of simulated test statistics (as defined in the previous section) from the 

permutation analysis. Then the transformation algorithm can be expressed as 

1) α = min(X0), X1 = X0 - α 

2) β = median(X1), X2 = X1 / β 

3) X3 = log(γX2 + 1) 

4) μ = mean(X3), σ = sd(X3) 

5) Evaluate how well X3 approximates N(μ, σ) 

6) If necessary, try a different γ and go back to Step 3. 
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The parameters from Steps 1-4 can be saved and reapplied to new data, which makes it possible 

to determine the transformation exclusively based on simulated statistics, and then apply it to the 

observed test statistic to yield the parametric enrichment score 

Ζ𝑁 =
log(𝛾(𝑋 − 𝛼)𝛽−1 + 1) − 𝜇

𝜎
 

The rationale for Gaussian approximation is based on the attractive analytical properties of 

Gaussian distributions. Nevertheless, if the approximation is inaccurate, the results can be biased 

and lead to erroneous conclusion. In particular, any dependencies between markers tend to 

elongate the tails of the “true” distribution when using marker permutations for the MSEA. For 

this reason, we also report the raw frequency of false positive findings from the permutation 

analysis for each gene set. 
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Chapter 3.   Shared Genetic Regulatory Networks for Cardiovascular Disease and Type 2 

Diabetes in Multiple Populations of Diverse Ethnicities in the United States 

3.1   Introduction 

Cardiovascular disease (CVD) and type 2 diabetes (T2D) are two leading causes of death in the 

United States [64]. Patients with T2D are at two to six times higher risk of developing CVD 

compared to those without T2D [65], indicating the importance of targeting common pathogenic 

pathways to improve the prevention, diagnosis, and treatment for these two diseases.  While 

decades of work has revealed dyslipidemia, dysglycemia, inflammation, and hemodynamic 

disturbances as common pathophysiological intermediates for both CVD and T2D [66-68], very 

few studies have directly investigated the genomic architectures shared by the two diseases.  

While genetic factors are known to play a fundamental role in the pathogenesis of both CVD and 

T2D [69], a direct comparison of the top risk variants between these diseases has revealed few 

overlapping loci in genome-wide association studies (GWAS) from multiple large consortia.  

Aside from the speculation that the strongest genetic risks may be disease-specific, the agnostic 

approach requiring the application of strict statistical adjustment for multiple comparisons also 

increases false negative rate because of the lack of “genome-wide significance”.  

To meet these challenges, we and others have previously shown that hidden disease mechanisms 

can be unraveled through the assessment of the combined activities of genetic loci with weak to 

moderate effects on disease susceptibility by integrating GWAS with functional genomics and 

regulatory gene networks [17, 18, 70-72]. Importantly, such high-level integration approaches 

are able to overcome substantial heterogeneity between independent datasets and extract robust 
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biological signals across molecular layers, tissue types, and even species [70, 73-75].  This 

advantage is mainly conferred by the aggregation of genetic signals from individual studies onto 

a comparable ground – molecular pathways and gene networks, before conducting meta-analysis 

across studies [75, 76].  In other words, even if the genetic variants and linkage architecture can 

be different between studies, the biological processes implicated are more reproducible and 

comparable across studies [77]. In the current investigation, we employed a systematic data-

driven approach that leveraged multi-dimensional omics datasets including GWAS, tissue-

specific expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene networks 

(Figure 3.1). GWAS datasets were from three well-characterized and high-quality prospective 

cohorts of African Americans (AA), European Americans (EA), and Hispanic Americans (HA) - 

the national Women’s Health Initiative (WHI) [70], the Framingham Heart Study (FHS) [78], 

and the Jackson Heart Study (JHS) [79]. To maximize the reproducibility of our findings across 

different populations, we also incorporated meta-analyses of CVD and T2D genetics from 

CARDIoGRAMplusC4D [80] and DIAGRAM [81].  Further, we comprehensively curated 

functional genomics and gene networks derived from 25 tissue or cell types relevant to CVD and 

T2D. A streamlined integration of these rich data sources using our Mergeomics pipeline [75, 

76] enabled the identification of shared pathways, gene subnetworks, and key regulators for both 

CVD and T2D across cohorts and ethnicities. Finally, we validated the subnetworks using 

adipocyte and knockout mouse models, and confirmed their associations with cardiometabolic 

traits in the Hybrid Mouse Diversity Panel (HMDP) comprised of >100 mouse strains [54, 82, 

83].  
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3.2   Results  

Identification of Co-expression Modules Genetically Associated with CVD and T2D across 

Cohorts 

We first investigated whether genetic risk variants of CVD and T2D from GWAS of each 

cohort/ethnicity were aggregated in a functionally coherent manner by integrating GWAS with 

tissue-specific eQTLs or ENCODE information and gene co-expression networks that define 

functional units of genes (Figure 3.1A). Briefly, co-expression networks were constructed from 

an array of transcriptomic datasets of various tissues relevant to CVD and T2D (details in 

Methods). These modules were mainly used to define sets of functionally related genes in a 

data-driven manner. Genes within the co-expression modules (a module captures functionally 

related genes) were mapped to single nucleotide polymorphisms (SNPs) that most likely regulate 

gene functions via tissue-specific eQTLs or ENCODE information.  SNPs were filtered by 

linkage disequilibrium (LD) and then a chi-square like statistic was used to assess whether a co-

expression module shows enrichment of potential functional disease SNPs compared to random 

chance using the marker set enrichment analysis (MSEA) implemented in our Mergeomics 

pipeline (details in Methods) [75]. Subsequently, meta-analyses across individual MSEA results 

at the co-expression module level were conducted using the Meta-MSEA function in 

Mergeomics to retrieve robust signals across studies. Among the 2,672 co-expression modules 

tested, 131 were found to be significant as defined by false discovery rate (FDR) < 5% in Meta-

MSEA across studies (Table 3.1, Table S3.1). Moreover, the majority of the disease relevant 

tissues or cell types included in our analysis yielded informative signal, supporting the systemic 
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pathogenic perturbations known for CVD and T2D (Figure 3.2). Of the significant modules 

identified, 79 were associated with CVD and 54 with T2D. Two modules were associated with 

both diseases, with one enriched for “carbohydrate metabolism” genes and the other over-

represented with “other glycan degradation; known T2D genes” (Figure 3.3A, Table S3.1). 

Examination of these two shared modules showed that the genetic signals driving the module 

significance were largely different between CVD and T2D, with 14.8% lead SNPs overlapping 

for the carbohydrate metabolism module and 5.8% lead SNPs overlapping for the glycan 

degradation module between diseases. These results indicate that the GWAS signals for the two 

diseases in each module do not necessarily overlap, but the CVD and T2D genes are likely 

functionally connected since they are co-expressed in the same modules and annotated with 

coherent functions. Additionally, the majority of the CVD modules and T2D modules were 

identified in more than one ethnic group based on MSEA analysis of individual studies, 

supporting consistency across ethnicities (Figure 3.3B).  

Shared Biological Processes among the CVD/T2D-associated Co-expression Modules  

Apart from the two directly overlapping modules, between the CVD- and T2D-associated 

modules there were many overlapping genes, indicating additional shared functions that 

contribute to both diseases (Figure 3.4). Upon annotating the disease-associated modules using 

functional categories curated in Kyoto Encyclopedia of Genes and Genomes (KEGG) and 

Reactome while correcting for the overlaps between pathways (method details in Appendix; 

Figure 3.5; Table S3.2), we found significant functional overlaps between the CVD and T2D 

modules (overlap p = 3.1e-15 by Fisher’s exact test, Figure 3.3C). We further ranked all the 
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enriched functional categories by the number of CVD/T2D modules that were annotated with 

each functional term (Figure 3.6), which showed a wide spectrum of biological processes shared 

by both CVD and T2D across ethnicities and cohorts. Of the top ranked processes for the 

significant co-expression modules identified, we observed well-established pathogenic processes 

such as lipid and fatty acid metabolism [84], glucose metabolism [85], oxidation [86], and 

cytokine signaling [87]. Pathways previously implicated mainly for T2D such as beta-cell 

function were also found to be shared for both CVD and T2D. Interestingly, our completely data-

driven approach also identified extracellular matrix (ECM) and branched chain amino acids 

(BCAA) metabolism as top functional categories whose roles in the development of 

cardiometabolic disorders have only been implicated in recent experimental work [88-90]. 

Furthermore, our analysis also revealed under-appreciated processes involving the neuronal 

system and transport of small molecules.  

Identification and Prioritization of Key Drivers (KDs) and Subnetworks for the CVD/T2D-

associated Modules 

The coexpression networks used above mainly served to capture coexpression patterns between 

genes and to define data-driven gene sets that contain functionally related genes, but they do not 

carry detailed topology information on gene-gene regulatory relationships.  To dissect the gene-

gene interactions within and between the 131 disease-associated modules, and to identify key 

perturbation points shared for both CVD and T2D modules, we used the GIANT networks [41] 

and Bayesian networks (BNs) from 25 CVD and T2D relevant tissue and cell types, which 

provide detailed topological information on gene-gene regulatory relationships necessary for the 
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wKDA analysis. The BNs used in our study were generated using similar sets of mouse and 

human gene expression datasets as used for the co-expression networks, but additionally 

incorporated genetic data to model causal gene regulatory networks, whereas the GIANT 

networks were derived based on independent gene expression datasets and protein interaction 

information. We included both types of gene regulatory networks to increase the coverage of 

functional connections between genes and only considered KDs identified in both to enhance the 

robustness of KD prediction. 

Specifically, all genes in each of the co-expression modules genetically associated with CVD or 

T2D as identified in our study were mapped onto the GIANT and BN graphical networks to 

identify KDs using the weighted key driver analysis (wKDA) implemented in Mergeomics [75], 

where KDs were defined as genes whose local network neighborhoods demonstrate significant 

enrichment of genes from disease-associated modules (details in Methods; concept depicted in 

Figure 3.7). Of note, wKDA gives higher weight to network edges that are consistent across 

network models constructed from independent studies, therefore alleviating potential bias caused 

by dataset heterogeneity. We identified 226 KDs that were consistently captured in Bayesian and 

GIANT network at Bonferroni-corrected p-value < 0.05 (Figure 3.1B), among which 162 were 

KDs for both CVD and T2D associated modules. Bonferroni-correction was used here to focus 

on the strongest KDs for prioritization purposes. To further prioritize these 162 shared KDs, 

tissue-specific subnetworks of these KDs were evaluated using Meta-MSEA to rank the 

magnitude of their genetic association with CVD and T2D across cohorts, yielding 15 top-ranked 

KDs at FDR<10% in Meta-MSEA for CVD and T2D separately (combined FDR<1% for both 

diseases simultaneously) (Figure 3.1B, Table 3.2). The top KD subnetworks were related to 
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similar pathogenic processes highlighted in the previous section, including cholesterol 

biosynthesis, respiratory electron transport, immune system and ECM. We further inferred the 

directionality of the effects of each specific KD on both diseases using GWAS signals mapped to 

each KD based on eQTLs or chromosomal distance (details in Methods; results in Figure 3.8). 

This analysis differentiated the KDs into those showing consistent direction of association for 

both CVD and T2D (ACLY, CAV1, SPARC, COL6A2, IGF1), inverse directions with CVD and 

T2D (HMGCR, IDI1), and uncertain directions (Table 3.2). Therefore, the shared KDs do not 

necessarily affect the risks for the two diseases in the same direction. 

Shared KDs and Subnetworks Orchestrate Known CVD and T2D Genes 

The KDs and subnetworks were identified based on the full spectrum of genetic evidence (from 

strong to moderate and subtle) from the various GWAS datasets examined in the current study. 

To assess whether the top KD subnetworks were enriched for previously known disease genes 

that mostly represent the strong and replicated genes as a means of cross-validation, we manually 

curated previously reported genes associated with CVD, T2D, and intermediate metabolic traits 

related to CVD, T2D (glucose, insulin, lipids, obesity) from DisGeNET [91] and the NHGRI 

GWAS Catalog [69] (Figure 3.1C, genes listed in Table S3.3). The connection between the top 

15 KDs and known genes for CVD, T2D and relevant cardiometabolic traits was confirmed by 

the significant over-representation of the known disease genes in KD subnetworks, with fold 

enrichment as large as 8, confirming the strong biological importance of these KDs (Figure 

3.9A). Further, the top 15 KDs showed direct connections to 28 GWAS hits reaching genome-

wide significance (p < 5e-8) for CVD and 16 for T2D, which account for 35% (fold = 3.35, p = 
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7.18e-10) and 22% (fold = 2.16, p = 8.08e-4) of all reported significant GWAS signals for CVD 

and T2D in GWAS catalog, respectively. Two of the 15 top KDs, namely HMGCR and IGF1, 

were previously identified as signals of genome-wide significance for obesity, lipids and T2D, 

all risk factors of CVD. Additionally, network visualization revealed tissue-specific KDs and 

interactions of CVD and T2D genes in many disease-relevant tissues including adipose, adrenal 

gland, artery, blood, digestive tract (small intestine, colon), hypothalamus, islet, liver, 

lymphocyte, skeletal muscle, thyroid, and vascular endothelium (Figure 3.9B). PCOLCE 

represents an intriguing hypothalamus-specific KD that interacts with important energy 

homeostasis genes like leptin receptor LEPR, suggesting a role of neurohormonal control in 

CVD and T2D pathogenesis. In contrast, CAV1 appeared to interact extensively with other KDs 

in peripheral tissues, especially in the adipose tissue. 

Experimental Validation of CAV1 Subnetworks using an in vitro Adipocyte Model and in vivo 

Knockout Mouse Model 

CAV1 is a robust KD for CVD- and T2D-associated modules across multiple tissues, with the 

adipose tissue subnetwork of CAV1 containing the largest number of neighboring genes (Figure 

3.9B). In addition, adipose tissue is the only tissue where CAV1 is a KD in both the Bayesian 

networks and GIANT networks. These lines of evidence implicate the potential importance of 

CAV1 adipose subnetwork in the shared pathogenesis for both diseases. Indeed, Cav1-/- mice 

have been shown to alter the lipid profile, susceptibility to atherosclerosis, and insulin resistance 

[92, 93]. To assess whether perturbation of this potential KD induces changes in the subnetwork 

genes as predicted by our network modeling, we performed validation by conducting siRNA-
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mediated knock down of Cav1 in differentiating mouse 3T3-L1 adipocytes and by evaluating the 

whole transcriptome alteration in mouse gonadal adipose tissue between wild type and Cav1-/- 

mice [92] (Figure 3.1C; details in Methods). Of the 12 adipose network neighbors of Cav1 that 

were tested in vitro, 6 exhibited significant changes in expression level on day 2 after ~60% 

Cav1 knockdown using two siRNAs against Cav1. In contrast, none of the 5 negative controls, 

which were randomly selected among adipocyte genes that are not connected to Cav1 or its first 

level neighbors in the adipose network, were affected after Cav1 perturbation (Figure 3.10A). 

Cav1 knockdown also led to decreased expression of Pparg, a major adipocyte differentiation 

regulator (Figure 3.11), supporting a role of Cav1 in adipocyte differentiation as previously 

observed [94].  

In 3-month-old Cav1-/- mice which showed perturbed lipid and insulin sensitivity profiles, we 

observed 1,474 differentially expressed genes (DEGs) at FDR<1%. We found that the first and 

second level neighbors of CAV1 in our predicted subnetwork showed significant enrichment for 

DEGs in adipose tissue induced by Cav1 knockout, with the degree of fold enrichment 

increasing as the statistical cutoff used to define DEGs became more stringent (Figure 3.10B; 

subnetwork view with DEGs in Figure 3.12). On the contrary, the third and fourth level 

neighbors of CAV1 in our predicted subnetwork did not exhibit such enrichment of DEGs 

(Figure 3.10B). These experimental findings support that CAV1 is a key regulator of the 

subnetwork and the network structure predicted by our network modeling is reliable, although it 

is difficult to discern whether the network changes are related to alterations in adipocyte 

differentiation status. We also observed strong enrichment for the focal adhesion pathway in both 
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the predicted Cav1 adipose subnetwork (p=9.6e-14 by Fisher’s exact test, fold enrichment = 6.0) 

and the differential adipose genes in Cav1-/- mice (p = 6.9e-9, fold enrichment = 3.5). 

Shared KDs Are Associated with CVD and T2D Traits in Experimental Mouse Models 

We further assessed the transcriptomic profiling in adipose (relevant to T2D and CVD) and aorta 

tissue (main site of CVD) in relation to 7 cardiometabolic phenotypes including adiposity, lipid 

levels (Triglyceride, LDL, HDL), fasting glucose, fasting insulin and HOMA-IR, across >100 

mouse strains in two HMDP panels [54, 82, 83]. HMDP is a systems genetics resource that 

comprises more than 100 commercially available mouse strains differing in genetic composition, 

and has emerged as a power tool to study complex human diseases [82, 95]. The biological 

relevance of HMDP to human pathophysiology has been reproducibly demonstrated [96-98].  

Moreover, HMDP data was completely independent of the human-focused genetic datasets and 

the network datasets used in our primary integrative analysis (Figure 3.1C). Here we selected 

two specific HMDP panels, high-fat (HF) and atherogenic (ATH), in which mice were either fed 

with a high-fat high-sucrose diet or underwent transgenic expression of human APOE-Leiden 

and CETP gene as a pro-atherogenic background, respectively. These two panels were chosen 

for their representativeness of human T2D (the HF panel) and CVD (the ATH panel) pathology. 

First, we investigated the correlation between the expression of 14 top KDs (no probe for KD 

MSMO1 in HMDP) and cardiometabolic traits in the adipose and aorta tissues assessed in 

HMDP. All 14 KDs displayed significant trait association in HMDP, with the association for 11 

KDs replicated in both the HF and ATH HMDP panels (Figure 3.13A). Next, we retrieved the 

adipose and aorta gene-trait correlation statistics for the top KD subnetwork genes, and used 
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MSEA to test whether genes in the KD subnetworks displayed an overall overrepresentation of 

strong trait association in HMDP. Again, the 14 KD subnetworks showed significant trait 

association after Bonferroni correction (Figure 3.13B). These findings support that the close 

involvement of the KDs in cardiometabolic trait perturbation we predicted based on human 

datasets can be cross-validated in mouse models. 

Causal Implication of the Shared KD Subnetworks in Experimental Mouse Models 

Cav1 knockout in mice led to dysreuglation of the predicted subnetwork (Figure 3.10B) and 

significant alterations in cardiometabolic phenotypes [92, 93], supporting the causal role of 

CAV1 in both CVD and T2D. To further investigate the potential causal role of the top KDs and 

their subnetworks in CVD and T2D, we conducted integrative analysis of the KD subnetworks to 

assess their disease association using GWAS results for the 7 cardiometabolic traits from HMDP 

and tissue-specific cis-eQTLs (Figure 3.1C). By mapping GWAS signals to genes using adipose 

or aorta eQTLs and testing for enrichment of genetic association with cardiometabolic traits 

within the KD subnetwork genes using MSEA, we found consistent and significant association 

between cardiometabolic traits and the subnetworks of KDs ACAT2, CAV1, COL6A2, IGF1, 

PCOLCE, and SPARC across adipose and aorta (Figure 3.13C). These results informed by 

mouse GWAS support a potential causal role of these top KDs in perturbing gene networks in 

multiple tissues to trigger CVD and T2D.  
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3.3   Discussion 

CVD and T2D are highly correlated complex diseases and share many common risk factors. 

Multiple genetic variants may individually exert subtle to strong effects on disease pathogenesis, 

and in aggregate perturb diverse pathogenic pathways [18, 70, 74, 80, 81, 99].  In this systems-

level, data-driven analysis of GWAS from several large and high-quality cohorts of diverse 

ethnicities, integrated with functional data (from ENCODE, eQTLs, tissue-specific co-expression 

and regulatory networks constructed from human and mouse experiments), we identified both 

known and novel pathways and gene subnetworks that were genetically linked to both CVD and 

T2D across cohorts and ethnicities. Further, KDs in tissue-specific subnetworks appear to 

regulate many known disease genes for increased risk of CVD and T2D.  Lastly, we 

experimentally validated the network topology using in vitro adipocyte and data from in vivo 

gene knockout models, and confirmed the role of the top KDs and subnetworks in both CVD and 

T2D traits in independent sets of mouse studies. 

The data-driven nature of the current study offers several strengths. First, we incorporated the 

full-scale of genetic variant-disease association from multiple cohorts, ethnicities and disease 

endpoints, allowing for the detection of subtle to moderate signals, as well as comparison and 

replication of results across diseases and populations. More importantly, by focusing on results 

that demonstrate consistent significance at pathway and network level, we overcome the 

difficulties in harmonizing independent datasets that are complicated by substantial 

heterogeneity due to platform differences and population substructure. This is because disease 

signals across populations are more conserved at pathway level than at individual variant and 
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gene levels [73, 75, 77]. Second, the comprehensive incorporation of tissue-specific eQTLs, 

coupled with the use of tissue-specific networks, enhances our ability to achieve better functional 

mapping between genetic variants and genes, and uncover systems-level regulatory circuits for 

CVD and T2D in a tissue-specific fashion. Third, data-driven modules and networks used in this 

study increase the potential for novel discovery as gene-gene interactions are defined by data 

rather than prior knowledge. As the network models were from many independent studies 

reflecting diverse physiological conditions, leveraging these datasets and network models offers 

more comprehensive coverage of biological interactions than any given dataset can provide and 

has proven a valuable approach to unveil novel biological insights [11, 18, 74].  While some of 

our findings confirmed those from previous canonical pathway-based analysis on disease 

processes including ECM-receptor interaction and cell-adhesion, and KDs such as SPARC [70], 

our data-driven approach in the current study uncovered numerous novel genes, pathways, and 

gene subnetworks. A likely reason for the enhanced discovery potential of co-expression 

modules is that several interacting pathways could be co-regulated in a single module, or a 

pathway could interact with other poorly annotated processes in a module to together confer 

disease risk. The use of modules capturing such interactions improves the statistical power, in 

contrast to testing the pathways individually. Lastly, we conducted cross-validation studies in 

support of the functional roles of specific KDs and subnetworks in CVD and T2D using 

independent experimental models.  

We acknowledge the following limitations in our study. First, our analyses were constrained by 

the coverage of functional datasets that are currently available, which causes uneven tissue 

coverage between data types and statistical bias towards more commonly profiled tissues such as 
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adipose and liver, making it difficult to achieve precise inference for all relevant tissues. 

Although we believe this does not necessarily undermine the validity of the main findings from 

our study, we acknowledge that we likely have missed relevant biology from tissues with fewer 

studies and smaller sample sizes. Further investigation is needed when additional relevant 

datasets become available. Secondly, our FDR estimates in MSEA do not take into consideration 

the gene overlap structure among co-expression modules, due to the challenge in accurately 

adjusting for the various degrees of overlaps between module pairs. To alleviate this limitation, 

we focus on modules and pathways demonstrating consistency across datasets and merge 

overlapping modules subsequently. Thirdly, although we conducted validation experiments on 

the CAV1 subnetwork in both in vitro and in vivo models and cross-validated the importance of 

the predicted top key drivers and subnetworks in two independent large-scale mouse population 

studies, further experiments are warranted to thoroughly test the causality of the predicted KDs 

and elucidate the detailed tissue-specific mechanisms of the KDs on CVD and T2D. This is 

particularly important considering the limited overlaps in the modules and KDs identified from 

our study and the ones identified in two recent multi-tissue network analysis of cardiometabolic 

diseases [71, 72]. Only 7 KDs overlapped including APOA1, CD2, CEBPD, CENPF, CSF1R, 

CTSS, UBE2S. Methodological differences in network inference and key driver analysis and 

differences in the pathophysiological conditions of the study populations could explain the 

discrepancies. Lastly, ethnic-specific and sex-specific mechanisms await future exploration.  

There are several direct implications that can be drawn from the results of our integrative 

analyses of both observational and experimental data. First, it appears that pathogenic pathways 

for CVD and T2D are indeed common in ethnically diverse populations. These shared pathways 
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capture most of the critical processes that have been previously implicated in the development of 

either T2D or CVD, including metabolism of lipids and lipoproteins, glucose, fatty acids, bile 

acids metabolism, biological oxidation, coagulation, immune response, cytokine signaling, and 

PDGF signaling. Second, BCAA metabolism and ECM are among the top and common 

pathways identified. Our finding on BCAA is consistent with recent work relating serum levels 

of BCAA to risk of CVD and T2D in large prospective cohorts [100, 101], although whether 

BCAA is a “pathophenotype” or strong pathogenic factor has been debated [88, 102].  Our 

findings support a causal role of BCAA because 1) both CVD and T2D risk variants were 

enriched in the co-expression modules related to BCAA degradation, and 2) 15 genes in the 

BCAA pathway were part of the top KD subnetworks, representing a significant enrichment of 

BCAA genes (fold enrichment = 3.02, Fisher’s exact test p = 1.4e-5). Of note, BCAA genes 

themselves carry few genetic risk variants for CVD and T2D, albeit their network neighboring 

genes are highly enriched for disease variants, which may result from negative evolutionary 

pressure due to the critical role of BCAA. More recently, Jang and colleagues have shown 

BCAA catabolism can cause insulin resistance, providing further support for the causal role of 

BCAA for both CVD and T2D [103].  Our finding on the role of ECM in both CVD and T2D is 

also in line with recent reports [70, 74, 89, 90, 104].  In the top enriched subnetworks, ECM 

genes appear to exert strong effect (Figure 3.9B) coordinating other processes such as 

cholesterol metabolism, energy homeostasis, and immune response across a wide range of 

peripheral tissues and endocrine axis.  This substantiates the importance of ECM modeling as a 

mechanistic driver for CVD and T2D.  
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Secondly, our comprehensive network modeling identified critical disease modulators and key 

targets whose functional roles were subsequently supported by multiple cross-validation efforts. 

This supports the use of network modeling to unravel and prioritize promising top targets that 

may have high pathogenic potential for both CVD and T2D. The KDs we identified can be 

considered as “highly confident” for the following reasons: 1) they are KDs for both CVD and 

T2D associated modules, 2) the tissue-specific subnetworks of these KDs show significant and 

replicable association with both diseases, 3) their subnetworks are highly enriched with known 

CVD and T2D genes, 4) in vitro siRNA knockdown and in vivo knockout mouse experiments 

confirm the role of a central KD CAV1 in regulating the downstream genes as predicted in our 

network model, and 5) both the expression levels of KDs and the genetic variants mapped to the 

KD subnetworks are significantly associated with CVD and T2D relevant traits in independent 

mouse populations with naturally occurring genetic variations.  

Thirdly, most KDs are not GWAS signals reaching genome-wide significance, nor are they rare-

variant carrying genes, indicating that standard genetic studies miss important genes that 

orchestrate known CVD and T2D genes.  The phenomenon may reflect a negative evolutionary 

pressure experienced by the KDs due to their crucial functions. In support of this hypothesis, we 

found a significant enrichment of human essential genes lacking functional variations among the 

162 KDs identified in our study [105] (Fold = 1.41, p = 9.02e-3). This is consistent with previous 

findings [18, 70, 74] reaffirming the power and reliability of our approach in uncovering hidden 

biological insights particularly in a systematic integrative manner.  
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The connections between KDs and other disease genes revealed by our study warrant future 

investigation into the potential gene-gene interactions. Indeed, a closer examination of the 

biological functions from the top shared KDs further corroborates their disease relevance. For 

instance, our network modeling identified HMGCR as a top KD, consistent with its primary role 

as the target for cholesterol-lowering HMG-CoA inhibitors, namely statins.  Our directionality 

inference analysis indicates that HMGCR is associated with CVD and T2D in opposite 

directions. This is consistent with the recent findings that genetic variations in HMGCR that 

decrease CVD risk cause slightly increased T2D risk, and statin drugs targeting HMGCR reduces 

CVD risk but increases T2D risk [106-108]. CAV1 and IGF1 represent two tightly connected 

multi-functional KDs. CAV1 null mice were found to have abnormal lipid levels, hyperglycemia, 

insulin resistance and atherosclerosis [92, 93]. Consistent with these observations, we found 

strong association of CAV1 expression levels as well as CAV1 network with diverse 

cardiometabolic traits in both human studies and mouse HMDP panels. Our data-driven 

approach also revealed the central role of CAV1 in adipose tissue by elucidating its connection to 

a large number of CVD and T2D GWAS genes and to genes involved in focal adhesion and 

inflammation (Figure 3.9), which  could drive adipocyte insulin resistance [109, 110]. The 

regulatory effect of CAV1 on neighboring genes was subsequently validated using in vitro 

adipocyte and in vivo mouse models. Moreover, our network modeling also captured the central 

role of CAV1 in muscle and artery tissues, suggesting multi-tissue functions of CAV1 in the 

pathogenic crossroads for CVD and T2D. The other multi-functional KD, IGF1, is itself a 

GWAS hit for fasting insulin and HOMA-IR. Despite being primarily secreted in liver, in our 

study IGF1 demonstrated an adrenal gland and muscle specific regulatory circuit with CVD and 
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T2D genes, suggesting that it may confer risk to these diseases through the adrenal endocrine 

function and muscle insulin sensitivity. The three ECM KDs we identified, SPARC, PCOLCE 

and COL6A2, were especially interesting due to their consistent and strong impact on diverse 

cardiometabolic traits shown in our cross-validation analyses in HMDP (Figure 3.9, Figure 

3.13). SPARC encodes osteonectin, which is primarily circulated by adipocytes. It inhibits 

adipogenesis and promotes adipose tissue fibrosis50. SPARC is also associated with insulin 

resistance and coronary artery lesions51, 52. PCOLCE (procollagen C-endopeptidase enhancer) 

represents a novel regulator for hypothalamus ECM that could potentially disrupt the 

neuroendocrine system. COL6A2, on the other hand, provides new insights into how collagen 

may affect cardiometabolic disorders: in adrenal tissue COL6A2 is connected to IGF1R, the 

direct downstream effector for KD IGF1. Importantly, our directionality analysis suggests that 

while some KDs such as CAV1 may have similar directional effects on CVD and T2D, cases like 

HMGCR that show opposite effects on these diseases are also present. Therefore, it is important 

to test the directional predictions to prioritize targets that have the potential to ameliorate both 

diseases and deprioritize targets with opposite effects on the two diseases.   

 

3.4   Conclusions 

In summary, through integration and modeling of a multitude of genetics and genomics datasets, 

we identified key molecular drivers, pathways, and gene subnetworks that are shared in the 

pathogenesis of CVD and T2D. Our findings offer a systems-level understanding of these highly 

clustered diseases and provide guidance on further basic mechanistic work and intervention 
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studies. The shared key drivers and networks identified may serve as more effective therapeutic 

targets to help achieve systems-wide alleviation of pathogenic stress for cardiometabolic 

diseases, due to their central and systemic role in regulating scores of disease genes. Such 

network-based approach represents a new avenue for therapeutic intervention targeting common 

complex diseases. 
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3.5   Methods  

Identification of qualified SNPs from GWAS of CVD and T2D  

Detailed GWAS information including sample size, ethnicity and genotyping platform was 

described in Table 3.3 and Appendix. Briefly, p-values of qualified single nucleotide 

polymorphisms (SNPs) at minor allele frequency > 0.05 and imputation quality > 0.3 for CVD 

and T2D were collected for all available GWAS datasets (WHI-SHARe, WHI-GARNET, JHS, 

FHS, CARDIoGRAMplusC4D [80], and DIAGRAM [81]). SNPs meeting the following criteria 

were further filtered out: 1) ranked in the bottom 50% (weaker association) based on disease 

association p-values and 2) in strong linkage disequilibrium (LD) (r2 > 0.5) according to 

ethnicity-specific LD data from Hapmap V3 [111] and 1000 Genomes[112]. For each GWAS 

dataset, LD filtering was conducted by first ranking SNPs based on the association p values and 

then checking if the next highest ranked SNP was in LD with the top SNP. If the r2 was above 

0.5, the SNP with lower rank was removed. The step was repeated by always checking if the next 

SNP was in LD with any of the already accepted ones.  

Curation of Data-driven Gene Co-expression Network Modules 

Using the Weighted Gene Co-expression Network Analysis (WGCNA)[113], we constructed 

gene co-expression modules capturing significant co-regulation patterns and functional 

relatedness among groups of genes in multiple CVD- or T2D-related tissues (including aortic 

endothelial cells, adipose, blood, liver, heart, islet, kidney, muscle and brain) obtained from nine 

human and mouse studies (Table S3.4). Modules with size smaller than 10 genes were excluded 
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to avoid statistical artifacts, yielding 2,672 co-expression modules. These coexpression modules 

were used as a collection of data-driven sets of functionally connected genes for downstream 

analysis. The potential biological functions of each module were annotated using pathway 

databases Reactome and KEGG, and statistical significance was determined by Fisher’s exact 

test with Bonferroni-corrected p< 0.05.  

Curation of Functional Genomics from eQTLs and ENCODE 

eQTLs establish biologically meaningful connections between genetic variants and gene 

expression, and could serve as functional evidence in support of the potential causal role of 

candidate genes in pathogenic processes[15, 31]. We therefore conducted comprehensive 

curation for significant eQTLs in a total of 19 tissues that have been identified by various 

consortia (including the Genotype-Tissue Expression (GTEx) [27], Muther [114] and 

Cardiogenics [115], and additional independent studies; Table S3.5). Additional functional 

genomics resources from ENCODE were also curated to complement the eQTLs for SNP-gene 

mapping (See Appendix).  

Identification of Genetically-driven CVD and T2D Modules using Marker Set Enrichment 

Analysis (MSEA) 

MSEA was used to identify co-expression modules with over-representation of CVD- or T2D-

associated genetic signals for each disease GWAS in each cohort/ethnicity in a study specific 

manner.  MSEA takes into three input: 1) Summary-level results of individual GWAS (WHI, 

FHS, JHS, CARDIoGRAM+C4D, DIAGRAM) for the LD-filtered SNPs; 2) SNP-gene mapping 



 

70 

 

information, which could be determined by tissue-specific cis-eQTLs, ENCODE based 

functional annotation and chromosome distance based annotation. Cis-eQTLs is defined as 

eQTLs within 1MB of the transcription starting sites of genes. For ENCODE, we accessed the 

Regulome database and used the reported functional interactions to map SNPs to genes by 

chromosomal distance. Only SNPs within 50kb of the gene region and have functional evidence 

in Regulome database were kept; 3) Data-driven co-expression modules from multiple human 

and mouse studies as described above. Tissue-specificity was determined by the tissue origins of 

eQTLs and ethnic specificity was determined by the ethnicity of each GWAS cohort, since the 

human disease genetic signals and human eQTL mapping were the main driving factors to 

determine the significance of the modules. MSEA employs a chi-square like statistic with 

multiple quantile thresholds to assess whether a co-expression module shows enrichment of 

functional disease SNPs compared to random chance [75]. The varying quantile thresholds 

allows the statistic to be adoptable to studies of varying sample size and statistical power. For the 

list of SNPs mapped to each gene-set, MSEA tested whether the SNP list exhibited significant 

enrichment of SNPs with stronger association with disease using a chi-square like statistic:⁡𝜒 =

∑
𝑂𝑖−𝐸𝑖

√𝐸𝑖+𝜅

𝑛
𝑖=1 , where n denotes the number of quantile points (we used ten quantile points ranging 

from the top 50% to the top 99.9% based on the rank of GWAS p values), O and E denote the 

observed and expected counts of positive findings (i.e. signals above the quantile point), and κ = 

1 is a stability parameter to reduce artefacts from low expected counts for small SNP sets. The 

null background was estimated by permuting gene labels to generate random gene sets matching 

the gene number of each co-expression module, while preserving the assignment of SNPs to 

genes, accounting for confounding factors such as gene size, LD block size and SNPs per loci.  
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For each co-expression module, 10000 permuted gene sets were generated and enrichment P-

values were determined from a Gaussian distribution approximated using the enrichment 

statistics from the 10000 permutations and the statistics of the co-expression module. Finally, 

Benjami-Hochberg FDR was estimated across all modules tested for each GWAS. 

To evaluate a module across multiple GWAS studies, we employed the Meta-MSEA analysis in 

Mergeomics, which conducts module-level meta-analysis to retrieve robust signals across 

studies. Meta-MSEA takes advantage of the parametric estimation of p-values in MSEA by 

applying Stouffer’s Z score method to determine the meta-Z score, then converts it back to a 

meta P-value. The meta-FDR was calculated using Benjamini-Hochberg method. Co-expression 

modules with meta-FDR < 5% were considered significant and included in subsequent analyses. 

Identification of Key Drivers and Disease Subnetworks 

We used graphical gene-gene interaction networks including the GIANT networks [41] and 

Bayesian networks (BN) from 25 CVD and T2D relevant tissue and cell types (Table S3.6, See 

Appendix) to identify KDs. If more than one dataset was available for a given tissue, a network 

was constructed for each dataset and all networks for the same tissue were combined as a union 

to represent the network of that tissue, with the consistency of each network edge across datasets 

coded as edge weight. The co-expression modules genetically associated with CVD or T2D 

identified by Meta-MSEA were mapped onto these graphical networks to identify KDs using the 

weighted key driver analysis (wKDA) implemented in Mergeomics [75].  wKDA uniquely 

consider the edge weight information, either in the form of edge consistency score in the case of 

BNs or edge confidence score in the case of GIANT networks. Specifically, a network was first 
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screened for suitable hub genes whose degree (number of genes connected to the hub) is in the 

top 25% of all network nodes. Once the hubs have been defined, their local one-edge 

neighborhoods, or “subnetworks” were extracted. All genes in each of the CVD and T2D-

associated gene sets that were discovered by meta-MSEA were overlaid onto the hub 

subnetworks to see if a particular subnetwork was enriched for the genes in CVD/T2D associated 

gene sets. The edges that connect a hub to its neighbors are simplified into node strengths 

(strength = sum of adjacent edge weights) within the neighborhood, except for the hub itself. The 

test statistic for the wKDA is analogous to the one used for MSEA:⁡𝜒 =
𝑂−𝐸

√𝐸−𝜅
, except that the 

values O and E represent the observed and expected ratios of genes from CVD/T2D gene sets in 

a hub subnetwork. In particular,⁡𝐸 =
𝑁𝑘𝑁𝑝

𝑁
 is estimated based on the hub degree Nk, disease gene 

set size Np and the order of the full network N, with the implicit assumption that the weight 

distribution is isotropic across the network. Statistical significance of the disease-enriched hubs, 

henceforth KDs, is estimated by permuting the gene labels in the network for 10000 times and 

estimating the P-value based on the null distribution. To control for multiple testing, stringent 

Bonferroni adjustment was used to focus on the top robust KDs. KDs shared by CVD and T2D 

modules are prioritized based on the following criteria: i) Bonferroni-corrected p< 0.05 in 

wKDA, ii) replicated by both GIANT networks and Bayesian networks, and iii) the genetic 

association strength between the KD subnetworks (immediate network neighbors of the KDs) 

and CVD/T2D in Meta-MSEA. Finally, Cytoscape 3.3.0 [116] was used for disease subnetwork 

visualization.  

Inference of the Direction of Genetic Effects of KD subnetworks 
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We used the genetic effect direction of KDs as a proxy for probable effect direction of the KD 

subnetworks. For each KD, we retrieved their tissue-specific eQTLs as well as variants within 

50kb of the gene region, whose genetic association information was available in both 

CARDIoGRAMplusC4D and DIAGRAM, the two large meta-consortia of GWAS for CVD and 

T2D. CVD/T2D association beta-values of mapped variants of KDs were then extracted, and the 

signs of beta-values were examined to ensure they were based on the same reference alleles 

between GWAS. Lastly, for all mapped variants on each KD, the signs of the beta-value for 

CVD and T2D were compared and statistical significance of the proportion of variants with 

similar or opposite effect direction between diseases was determined by z-test.  

Validation of KD Subnetwork Topology Using siRNA Knockdown in Adipocytes 

We chose to validate the predicted adipose subnetwork of a top ranked KD of both CVD and 

T2D, Cav1, in 3T3-L1 adipocytes. Cells were cultured to confluence and adipocyte 

differentiation was induced using MDI differentiation medium (See Appendix). Two days after 

the initiation of differentiation, cells were transfected with 50 nM Cav1 siRNAs (3 distinct 

siRNAs were tested and two of the strongest ones were chosen) or a scrambled control siRNA. 

For each siRNA, two separate sets of transfection experiments were conducted, with three 

biological replicates in each experiment. Two days after transfection, cells were collected for 

total RNA extraction, reverse transcription and quantitative PCR measurement of 12 predicted 

Cav1 subnetwork genes and 5 random genes not within the subnetwork as negative controls (See 

Appendix). β-actin was used to normalize the expression level of target genes. 
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Validation of KD Subnetwork Topology Using Cav1 null mice 

We accessed the gonadal white tissue gene expression data of 3-month-old wild type and Cav1-/- 

male mice (N=3/group) from Gene Expression Omnibus (GEO accession: GSE35431). Detailed 

description of the data collection procedures has been described previously [92]. Gene 

expression was profiled using Illumina MouseWG-6 v2.0 expression beadchip and normalized 

using robust spline. Differentially expressed genes (DEGs) between genotype groups were 

identified using linear model implemented in the R package Limma and false discovery rate was 

estimated using the Benjamini-Hochberg procedure [58]. DEGs at different statistical cutoffs 

were compared to CAV1 subnetwork genes at different levels (i.e., 1, 2, 3, or 4 edges away from 

CAV1) to assess overlap and significance of overlap was evaluated using Fisher’s exact test. 

Validation of KD Subnetworks Using Mouse HMDP Studies 

To further validate the role of KD subnetworks in CVD and T2D, we incorporated genetic, 

genomic and transcriptomic data from HMDP (comprised of >100 mouse strains differing by 

genetic composition) [54, 82, 83]. HMDP data was from two panels, one with mice fed with a 

high-fat diet (HF-HMDP)[82], and the other with hyperlipidemic mice made by transgenic 

expression of human APOE-Leiden and CETP gene (ATH-HMDP)[83]. For HF-HMDP, we 

retrieved gene-trait correlation data for adipose tissue (due to its relevance to both CVD and 

T2D) and 7 core cardiometabolic traits including adiposity, fasting glucose level, fasting insulin 

level, LDL, HDL, triglycerides and homeostatic model assessment-insulin resistance (HOMA-

IR). For ATH-HMDP, we retrieved aorta gene-trait correlation (aorta tissue is the main site for 

CVD in mice) for all 7 traits. In addition to assessing the trait association strengths of individual 
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KDs, we also used MSEA to evaluate the aggregate association strength of the top CVD/T2D 

KD subnetworks with the traits at both transcription and genetic levels through transcriptome-

wide association (TWAS) and GWAS in HF-HMDP and ATH-HMDP (See Appendix). 
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3.6   Tables 

Table 3.1 Summary of top co-expression modules associated with CVD or T2D (FDR < 1% in Meta-MSEA, in column FDRmeta) 

Disease 
Module 

ID 
Annotation 

CAR+C4D/ 

DIAGRAM 
JHS FHS WHI WHI WHI 

Pmeta FDRmeta 

Mixed AA EA EA AA HA 

CVD 

 

4406 NA 3.32E-10 NS - 2.83E-02 4.41E-03 NS 5.73E-09 <0.01% 

4522 
Signaling by FGFR 

mutants 
1.03E-04 1.62E-02 - 3.80E-02 5.53E-03 2.86E-02 3.39E-08 <0.01% 

4540 NA 9.72E-04 NS - NS 1.50E-02 5.52E-04 5.07E-07 0.06% 

5242 
Cholesterol 

Biosynthesis 
4.19E-06 4.71E-02 - NS 2.31E-02 NS 2.64E-06 0.08% 

4087 
Carboxylic acid 

metabolic process 
2.34E-06 NS - NS 8.63E-03 2.17E-02 4.24E-06 0.09% 

4019 

Transmembrane 

transport of small 

molecules 

1.89E-03 4.46E-02 - NS NS 6.85E-04 7.91E-06 0.20% 

4941 
Establishment of 

localization 
8.97E-06 1.52E-02 - NS NS 3.94E-02 2.72E-06 0.21% 

5023 

TCA cycle and 

respiratory electron 

transport 

NS 6.37E-05 - 1.53E-03 NS 1.50E-02 1.15E-05 0.22% 

blue Cell cycle 1.08E-02 NS - NS NS 1.77E-04 3.85E-06 0.30% 

5329 
Biological 

oxidations 
NS 2.32E-02 - 5.01E-03 3.26E-02 2.26E-02 2.21E-05 0.35% 
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124 NA NS 1.48E-03 - NS 7.05E-07 NS 4.86E-06 0.55% 

4656 
Cellular protein 

complex assembly 
NS NS - NS 3.64E-03 2.27E-04 8.85E-06 0.67% 

4147 NA 1.55E-02 2.06E-04 - NS 8.85E-03 NS 5.72E-06 0.68% 

4989 

Metabolism of 

amino acids and 

derivatives 

1.86E-03 7.41E-03 - NS 3.71E-04 NS 7.81E-05 0.82% 

 
 

 

  

  

    

T2D 

5323 NA 8.68E-04 NS NS 2.25E-04 1.05E-03 NS 1.58E-07 0.02% 

5250 NA 4.78E-05 NS NS 3.01E-02 3.46E-07 NS 4.32E-07 0.03% 

4880 NA 8.96E-03 NS 1.18E-02 5.06E-04 NS NS 1.61E-06 0.06% 

6872 NA NS 1.26E-03 7.44E-03 7.79E-03 NS NS 1.26E-06 0.06% 

4879 NA 3.18E-02 NS 5.88E-04 NS 2.66E-03 2.20E-03 1.19E-06 0.14% 

6533 
Cholesterol 

biosynthesis 
NS 5.02E-03 NS NS NS 1.26E-06 1.06E-05 0.25% 

6977 NA 3.66E-02 NS 4.01E-05 NS 1.81E-02 4.05E-02 1.71E-06 0.39% 

6675 
Cholesterol 

biosynthesis 
3.72E-03 3.35E-02 NS NS NS 2.06E-05 2.56E-05 0.52% 

37 NA 1.94E-03 5.53E-03 NS NS 9.38E-04 NS 4.95E-06 0.57% 

4302 NA 2.07E-03 NS NS 4.80E-03 4.05E-06 NS 9.89E-06 0.71% 

6690 

Complement and 

coagulation 

cascades 

1.93E-02 1.01E-04 NS 2.24E-02 NS NS 1.36E-05 0.86% 

4059 
SLC mediated 

transmembrane 
NS 3.05E-02 5.80E-03 NS 1.50E-02 NS 1.29E-05 0.86% 
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transport 

4937 
Amino acid 

metabolic process 
9.21E-03 NS 5.88E-03 NS 1.37E-03 NS 2.11E-05 0.89% 

5059 

TCA cycle and 

respiratory electron 

transport 

7.31E-04 NS 2.74E-02 8.66E-04 NS NS 6.64E-06 0.95% 

*Module IDs were randomly assigned IDs to co-expression modules. The annotation refers to the top functional category enriched in the co-

expression modules (Bonferroni-corrected p< 0.05 based on Fisher’s exact test, number of direct overlapping genes > 5). Numbers in scientific 

format were p-values from MSEA or Meta-MSEA analysis, and those reaching FDR < 20% in individual cohort analysis via MSEA (not the 

FDRmeta in Meta-MSEA) are highlighted in bold. CAR+C4D: CARDIoGRAMplusC4D; Mixed: mixed ethnicities; JHS: Jackson Heart Study; 

FHS: Framingham Heart Study; WHI: Women’s Health Initiative; AA: African Americans; HA: Hispanic Americans; EA: European Americans; 

Pmeta and FDRmeta: p and FDR values from Meta-MSEA analysis across cohorts. 
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Table 3.2 Summary of the 15 key drivers and their corresponding subnetworks shared by CVD and T2D 

Key 

drivers 

Gene 

name 

Sub

-net 

size 

Tissues 𝑭𝑫𝑹𝑪𝑽𝑫 𝑭𝑫𝑹𝑻𝟐𝑫 

No. of 

CVD 

module 

No. of 

T2D 

module 

Suggestive 

genetic 

effect 

direction 

(CVD/T2D) 

Subnetwork function 

ACAT2 
Acetyl-CoA 

Acetyltransferase 2 
192 

Adp, Dg, 

Lv, Ms, 

T 

5.32% 4.35% 6 7 uncertain 
Cell cycle; Cholesterol 

biosynthesis 

ACLY ATP Citrate Lyase 129 

Adp, Dg, 

Lv, Ms 6.17% 0.47% 5 6 consistent 

Cholesterol 

biosynthesis; Steroid 

biosynthesis 

CAV1 Caveolin 1 954 

Adp, 

Adr, Art, 

Dg, Ms, 

T, Ve 

0.20% 0.32% 7 4 consistent 
Immune system; Focal 

adhesion 

COL6A2 
Collagen Type VI 

Alpha 2 Chain 
294 

Adp, 

Adr, Dg, 

Ms, T 

4.45% 0.40% 2 1 consistent Extracellular matrix 

COX7A2 

Cytochrome C 

Oxidase Subunit 

7A2 

152 

Adp, 

Adr, Art, 

Bld, Dg, 

Lv, Ly 

3.79% 1.85% 1 4 uncertain 
Respiratory electron 

transport 

DBI 
Diazepam Binding 

Inhibitor 
181 

Adp, Art, 

Bld, Dg, 

Is, Lv, 

Ly, Ms 

7.70% 6.75% 5 5 uncertain 
Respiratory electron 

transport 

HMGCR 
3-Hydroxy-3-

Methylglutaryl-
75 

Art, Dg, 

Lv, Ms 
9.09% 4.87% 1 5 opposite 

Cholesterol 

biosynthesis; Steroid 
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CoA Reductase biosynthesis 

IDI1 

isopentenyl-

diphosphate delta 

isomerase 1 

89 

Adp, Art, 

Dg, Is, 

Lv, Ms, 

T 

8.95% 3.46% 3 4 opposite 

Cholesterol 

biosynthesis; Steroid 

biosynthesis 

IGF1 
insulin like growth 

factor 1 
993 

Adr, Ms 
5.37% 1.20% 7 2 consistent 

Immune system; Focal 

adhesion 

MCAM 
melanoma cell 

adhesion molecule 
183 

Adp, 

Adr, Art, 

Ms, T 

7.16% 5.22% 4 2 

uncertain 

Extracellular matrix 

MEST 
mesoderm specific 

transcript 
132 

Adp, 

Adr, Lv, 

Ms 

3.36% 1.58% 4 2 

uncertain 
Fibroblast growth factor 

signaling 

MSMO1 
methylsterol 

monooxygenase 1 
133 

Adp, Art, 

Dg, Lv, 

Ms, T,  

7.70% 0.63% 1 4 

uncertain Cholesterol 

biosynthesis; Steroid 

biosynthesis 

PCOLCE 

procollagen C-

endopeptidase 

enhancer 

307 

Adp, 

Adr, Art, 

Hy, Lv, 

Ms 

6.17% 0.03% 2 2 uncertain Extracellular matrix 

SPARC 

secreted protein 

acidic and cysteine 

rich 

482 

Adp, 

Adr, Art, 

Dg, Lv, 

Ms, Ve  

9.63% 8.18% 5 3 consistent Extracellular matrix 

ZFP36 
ZFP36 ring finger 

protein 
176 

Adp, 

Adr, Art, 

Lv, Ly, 

Ms 

8.45% 7.69% 3 3 uncertain 
Hypoxia-inducible 

factors; CD40 signaling 
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*FDR values were based on Meta-MSEA analysis of the KD subnetworks for enrichment of CVD or T2D GWAS signals across cohorts. The 

subnetwork size indicates the number of neighboring genes directly connected to a KD when all the tissue-specific networks where the KD was 

found are combined. No. of module columns indicate the number of CVD or T2D–associated co-expression modules from which each KD was 

identified. Suggestive genetic effect direction was designated “consistent” or “opposite” if the proportion of variants having consistent or opposite 

effect direction in CVD or T2D was statistically significant in either eQTL mapping or chromosomal distance mapping. Otherwise, “uncertain” 

was called. Subnetwork function was annotated based on KEGG and Reactome databases. Adp – adipose tissue; Adr - adrenal gland; Art – artery.
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Table 3.3 Summary information of genome-wide association studies 

Study 
WHI-

GARNET 

WHI-

SHARe 

WHI-

SHARe 

Jackson 

Heart Study 

Framingham 

Heart Study 

CARDIoGRAM 

plusC4D 
DIAGRAM 

Origin Caucasian 
African 

American 

Hispanic 

American 

African 

American 
Caucasian Mostly Caucasian 

Caucasian and 

Asian 

Imputation Hapmap3 Hapmap3 Hapmap3 1000G 1000G 1000G Hapmap3 

CVD 

Cases/Controls 
545/2130 483/5880 131/2893 240/1908 471/5443 60801/123504 - 

T2D 

Cases/Controls 
1022/2130 1381/5739 581/2681 683/847 287/4657 - 26488/83964 

Platform Illuminia  Affymetrix Affymetrix Affymetrix Affymetrix - - 

N of SNPs 868609 836045 836060 8041765 5668200 6104813 2915012 
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3.7   Figures 

 

Figure 3.1 Framework of network-driven integrative genomics analyses.  

 

A) Integration of genetics and functional genomics datasets to identify CVD and T2D associated 

co-expression modules. The GWAS studies for CVD and T2D were derived from three 

independent cohorts representing three ethnic populations: WHI (AA, EA, HA), FHS (EA), and 
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JHS (AA). These independent datasets were supplemented with GWAS of coronary artery 

disease from CARDIoGRAMplusC4D and T2D from DIAGRAM to increase power. We also 

curated a comprehensive list of tissue-specific functional genomics datasets, including 2672 co-

expression modules, human eQTLs of various tissues, and ENCODE based variants annotation. 

The significant modules were identified by MSEA and Meta-MSEA, and then annotated to 

reveal shared pathways for CVD and T2D. In MSEA, the co-expression modules were used to 

define data-driven gene sets each containing functionally related genes, tissue-specificity was 

determined based on the tissue-origins of the human eQTLs, and ethnic specificity was 

determined based on the ethnicity of each GWAS cohort. B) Identification of disease key drivers 

and subnetworks. We utilized multi-tissue graphical networks to capture key drivers for disease 

associated co-expression modules using wKDA, then prioritized KDs based on consistency and 

disease relevance of the subnetworks. C) Validation of the top key drivers and their subnetworks 

via intersection with known human CVD and T2D genes from DisGeNET and GWAS catalog, 

in vitro adipocyte siRNA experiments, and cross-validation at both transcriptomic and genomic 

levels in the hybrid mouse diversity panels (HMDP). 



 

85 

 

 
Figure 3.2 Number of significant co-expression modules found by different gene-SNP mapping types.
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Figure 3.3 Venn Diagrams of overlap in significant co-expression modules and functional 

categories between diseases and ethnicities. 

 

A) Count of module overlaps by disease based on Meta-MSEA; B) Count of module overlaps for 

each disease by ethnicity based on MSEA of individual studies. Co-expression modules captured 

in CARDIoGRAMplusC4D and DIAGRAM were not counted due to uncertain ethnic origin; C) 

Count of independent functional category overlaps by disease based on results from Meta-MSEA 

in panel A.
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Figure 3.4 Heatmap of pair-wise overlapping ratio (Jaccard index) between the 79 co-expression 

modules associated with CVD (y-axis) and 54 modules (x-axis) associated with T2D.
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Figure 3.5 Overlap ratio plots between co-expression modules and the annotated functional 

terms. 

 

All the annotated pathways reach >5% overlap ratio either on the pathway side or on the module 

side. Specifically, a majority (251 out of 278, 90.3%) of the annotated pathways had >=5% of 

genes overlapping with the modules to which they were assigned. For the 27 annotated pathways 

where <5% pathway genes were represented, these were the cases where the co-expression 

modules were small and the pathways were large, but all of them showed overlap of >5% 

module genes. The minimum, maximum, mean and median numbers of the overlapping genes 

for the annotations are 5, 170, 19 and 13, respectively. 
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Figure 3.6 Summary of 41 independent functional categories enriched in both CVD and T2D co-

expression modules (Bonferroni-corrected p< 0.05 based on Fisher’s exact test, number of direct 

overlapping genes > 5). 

 

Independent functional categories were defined as the categories with pair-wise overlapping ratio 

< 10%. Red and blue block indicates that the significant CVD or T2D co-expression modules 

identified from the study and ethnicity origin are enriched for the particular functional category 
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term. CAR+C4D:  CARDIoGRAMplusC4D; M: mixed ethnicities; AA: African Americans; HA: 

Hispanic Americans; EA: European Americans. 



 

91 

 

 
Figure 3.7 Concept of key driver analysis (KDA).  

 

KDA requires gene regulatory networks capturing gene-gene interactions. Hub genes that show 

high degrees of connections to other networks genes are first identified, and their adjacent 

network neighbors (subnetworks) were extracted. All genes in each CVD/T2D associated 

module are used as input and mapped onto each hub subnetwork to assess whether a hub 

subnetwork was enriched for the genes in the input modules. The hubs whose subnetworks show 

significant enrichment of CVD/T2D module genes are defined as potential key drivers.
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Figure 3.8 Scatter plots of the GWAS beta-values of variants mapped to the top 15 KDs. 

 

A) Gene-variant mapping based on eQTLs only; B) Gene-variant mapping based on eQTLs and 

chromosomal distance. Percentage indicates the proportion of mapped variants with the same 

effect direction between CVD and T2D. Statistical significance of the difference of the 

proportion from random expectation is determined by z-test.
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Figure 3.9 Subnetworks of the top 15 shared KDs orchestrate known genes for CVD, T2D, obesity and lipids. 

 

A) Fold enrichment of KD subnetwork genes for known genes related to cardiometabolic traits reported in DisGeNET. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. B) Top KD subnetworks with GWAS hits (p < 1e-5 as reported in GWAS Catalog) for 

cardiometabolic traits. KDs are large nodes. Edge color denotes tissue-origin. Only high-confidence edges (those with weight score in 

the top 20%) are visualized.
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Figure 3.10 Validation of CAV1 subnetwork using in vitro siRNA knockdown (A) and in vivo 

knockout mouse model (B). 

 

A) Fold change of expression level for CAV1 subnetwork and negative control genes 2 days after 

Cav1 knockdown using two siRNAs separately. Twelve CAV1 neighbors were randomly selected 

from the first and second level neighboring genes of CAV1 in adipose network. Five negative 

controls were randomly selected from the genes not connected to CAV1 or its first level networks 

in adipose network. Statistical significance of genes was determined by linear model, adjusting 

for batch effect and siRNA differences. N=12/group, mean ± SEM, *p < 0.05, **p < 0.01, 

***p<0.001. B) Overlap of CAV1 neighboring genes in the adipose tissue subnetwork at various 

distance levels with the differentially expressed genes in the gonadal adipose tissue in Cav1 

knockout mice (N=3/group). Overlap p-value is determined by Fisher’s exact test. *Overlap p < 

0.05 after Bonferroni correction.
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Figure 3.11 Expression changes in adipocyte differentiation state markers 3 days after the in 

vitro siRNA knockdown of Cav1. 

 

Statistical significance of genes was determined by Student’s t-test. N=3/group, mean ± SEM, 

**p < 0.01.
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Figure 3.12 Visualization of CAV1 adipose subnetwork. 

 

Red color indicates significantly up-regulated genes (FDR < 1%) in Cav1-/- mice, and blue color 

indicates significantly down-regulated genes (FDR < 1%) in Cav1-/- mice.
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99 

 

Figure 3.13 Associations of KDs and subnetworks with cardiometabolic traits in mice. 

 

A) Association between KD expression and cardiometabolic traits in adipose tissue from HF-HMDP (HF) and aorta tissue from 

atherogenic-HMDP (ATH) as determined by Pearson correlation. *p< 0.05; **p< 0.05 after Bonferroni correction for the KD number; 

***p< 0.05 after Bonferroni correction for the number of KDs and traits. B) Transcriptomic-wide association of KD subnetworks and 

cardiometabolic traits in adipose tissue from HF-HMDP, and aorta tissue from atherogenic-HMDP, as evaluated by MSEA. C) 

Genome-wide association of KD subnetworks and cardiometabolic traits based on adipose eQTL mapping in HF-HMDP, and aorta 

eQTL mapping in Atherogenic-HMDP, as determined by MSEA. p<0.05, p<3.3-3, and p<4.8e-4 correspond to uncorrected and 

Bonferroni-corrected p-values (correcting for the number of KDs or for the number of KD and trait combinations). 
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3.8   Appendix 

Genome-wide Association Studies of CVD and T2D 

A total of five GWAS were incorporated in the study, including WHI, JHS, FHS, 

CARDIoGRAMplusC4D and DIAGRAM. All studies were approved by institutional review 

committees and acquired informed consent from participants. WHI, JHS, and FHS are 

independent studies. Although FHS was included as a part of CARDIoGRAMplusC4D and 

DIAGRAM, the sample size of FHS (n=4461 for CVD, n=8338 for T2D) was only 2-7% of 

CARDIoGRAMplusC4D (n=184305) and DIAGRAM (n=110452). Thus, we consider all five 

GWAS as independent with each other. Individual summary level GWAS data used in the study 

was first pruned to only keep the SNPs in the top 50% range ranked by p-values to reduce noise 

from weak signals[75]. Remaining SNPs were further filtered for linkage disequilibrium using r2 

> 0.5 as the cutoff. Ethnicity-specific pairwise r2 values of SNPs were retrieved from Hapmap v3 

[111] and 1000 Genomes data [112]. 

Gene-SNP Mapping Resources 

In additional to eQTL data, we included five additional gene-SNP mapping resources, 1) 

combining all tissue-specific eSNPs into a single multi-tissue eSNP set, 2) chromosomal distance 

mapping based on a 50kb window, 3) ENCODE project based Regulome SNPs[117], where only 

SNPs supported by at least two different kinds of RegulomeDB functional evidences are mapped 

to genes based on a 50kb window, 4) merging eSNP sets with Regulome data, 5) combining all 
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available mapping resources. As a result, a total of 21 sets of SNP-gene mapping were used for 

each co-expression module.  

Mergeomics Package 

“Mergeomics” is an open-source bioconductor package 

(https://bioconductor.org/packages/devel/bioc/html/Mergeomics.html) used to capture systems-level 

pathological perturbation from multiple layers of biological data such as genetics, genomics, 

transcriptomics, epigenomics, canonical pathways and gene networks.  

Functional Annotation of Canonical Pathways 

We collected 186 KEGG pathways and 674 Reactome pathways from MsigDB [118]. Functional 

categories were assigned to modules if Bonferroni-corrected enrichment reached P < 0.05 and 

there are more than five overlapping genes. For the over-represented functional categories, we 

considered those that had > 10% overlap ratio as redundant and only kept the categories with the 

highest number of associated disease modules. This was achieved by first ranking the 

annotations according to the number of linked modules, and then recursively removing the terms 

that have ≥ 10% overlapping ratio with the higher ranked annotation terms. The designation of 

trait, study and ethnicity to each of the functional categories was determined by the assigned 

modules. 

 

 

https://bioconductor.org/packages/devel/bioc/html/Mergeomics.html
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Bayesian Networks of Gene-Gene Interactions 

We utilized Bayesian network models of gene-gene interactions that take into account both the 

genotypes that affect gene expression (causal direction known), and the statistical relationships 

between gene expression levels (causal direction uncertain), using the established method by Zhu 

et al. [61, 62]. Bayesian network models from human and mouse studies were constructed based 

on genetics and gene expression data generated from multiple tissues from previously published 

studies, each involving hundreds of individuals (details and references in Table S3.6).  

Bayesian networks are directed acyclic graphs in which the edges of the graph are defined by 

conditional probabilities that characterize the distribution of states of each gene given the state of 

its parents [119]. The network topology defines a partitioned joint probability distribution over 

all genes in a network. The likelihood of a Bayesian network model given observed genomic 

data is determined using Bayes formula. For each dataset, 1000 Bayesian networks, each using 

different random seeds, were reconstructed using Monte Carlo Markov Chain simulation [120]. 

Bayesian Information Criteria was used to determine the model with the best fit for each 

network. From the resulting set of 1000 networks, edges that appeared in greater than 30% of the 

networks were used to define a consensus network for a given dataset. To infer causal directions 

between genes in a network, genetic information was used as priors by allowing genes with cis-

eSNPs to be parent nodes of genes without cis-eSNPs and preventing genes without cis-eSNPs to 

be parents of genes with cis-eSNPs [121]. Bayesian network provides a natural framework for 

integrating diverse data and reconstruct biological causal networks.  

GIANT Networks of Gene-Gene Interactions 
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We downloaded the raw networks of relevant tissues from GIANT database [41]. The original 

connectivity of the GIANT networks was too high, which breaks the scale-free assumption of 

biological network topology and may lead to increased number of spurious results in subsequent 

key driver analysis. Thus we performed a filtering algorithm that step-wisely removed the 

networks edges with low confidence score and recursively evaluated the scale-freeness of the 

network. The removal process terminated as soon as the network reached boundary scale-

freeness as defined by the criterion that at least 25% nodes has a degree (number of genes 

connected to the node] of 1. 

Extraction of Disease/trait Associated Genes from DisGeNET and GWAS Catalog 

Only genes with disease association score > 0.01 were extracted from DisGeNET [91] 

(accounting for ~ top 10% of genes reported in DisGeNET). The reported traits in DisGeNET 

were categorized into major groups as follows, 1) CVD: "Atherosclerosis", "Cardiovascular 

Diseases", "Acute myocardial infarction", "Myocardial Infarction", "Myocardial Ischemia", 

"Brain Ischemia", "Ischemia"; 2) T2D: "Insulin Resistance", "Impaired glucose tolerance", 

"Diabetes Mellitus, Non-Insulin-Dependent"; 3) Obesity: "Obesity", "Obesity, Abdominal", 

"Obesity, Visceral", "Obesity, Morbid", "Adult-onset obesity", "Moderate obesity", "Familial 

obesity", "Hypothalamic obesity", "Overweight and obesity", "Overweight", "Body Weight", 

"Moderate obesity", "Familial obesity", "Hypothalamic obesity", "Overweight and obesity", 

"Overweight", "Body Weight"; 4) Lipid: "Dyslipidemias", "Hyperlipidemia", 

"Hypercholesterolemia", "Hypercholesterolemia, Familial".  
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The reported traits in GWAS catalog [69] were categorized into major groups as follows, 1) 

CVD: "Coronary heart disease", "Coronary artery disease", "Coronary artery disease or ischemic 

stroke", "Coronary artery disease or large artery stroke", "Myocardial infarction", "Ischemic 

stroke", "Large artery stroke", "Stroke (ischemic)"; 2) T2D: Type 2 diabetes; 3) Obesity: "Body 

mass index", "Obesity", "Obesity (early onset extreme)", "Obesity (extreme)"; 4) Lipid: "HDL 

cholesterol", "Cholesterol, total", "Triglycerides", "LDL cholesterol". The latest results from 

CARDIoGRAM were not yet included in GWAS catalog and were manually added into the 

GWAS gene list for CVD. 

The full list of CVD/T2D associated genes are shown in the Table S3.3. 

Cell Culture of 3T3-L1 Cells and Differentiation 

3T3-L1 cells were obtained from ATCC and cultured to confluence in high glucose and pyruvate 

DMEM containing 10% calf serum by changing every 2 days according to the manufacturer’s 

instructions. Two days after confluence, the medium was changed to MDI differentiation 

medium (0.5 mM methylisobutylxanthine, 1.0 μM dexamethasone, 1.0 μg/ml bovine insulin in 

DMEM containing 10% fetal bovine serum). Two days later, the MDI was replaced with 

adipocyte maintenance medium containing 1.0 μg/ml bovine insulin and 10% fetal bovine serum 

in DMEM. The medium was replaced with fresh adipocyte maintenance medium every two to 

three days. 
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RNA Interference 

Three siRNAs against CAV1 were purchased from Sigma (siRNA ID: SASI_Mm01_00141141, 

St. Louis, MO) and two were chosen for further use based on the knockdown efficiency. A 

random sequence siRNA purchased from Sigma was used as negative control (siRNA ID: 

SIC001). Two days after induction with MDI, cells were transfected with 50 nM siRNA using 

Lipofectamine® RNAiMAX Reagent (ThermoFisher Scientific, Waltham, MA) according to the 

recommended manufacturer’s protocol. For each siRNA, a total of six biological replicates (2 

separate sets of transfection experiments, each with 3 replicates) were used and cells were 

collected two days after transfection to extract RNA for quantitative PCR analysis. 

Reverse Transcription and Quantitative PCR 

Total RNA was purified from 3T3-L1 cells using Direct-zol RNA MiniPrep Kit with DNase I 

(Zymo Research, Irvine, CA) according to the manufacturer’s instructions. The first-strand 

cDNA were synthesized from 2 μg of total RNA with High-Capacity cDNA Reverse 

Transcription Kit (ThermoFisher Scientific, Waltham, MA). Amplification of each cDNA was 

performed with iTaq™ Universal SYBR® Green Supermix (Bio-Rad, Hercules, CA) and 

quantified by CFX96 qPCR System according to the protocol provided by manufacturer (Bio-

Rad, Hercules, CA). The expression of the target genes was normalized to that of β-actin, which 

was selected as the housekeeping gene based on it stable expression during adipocyte 

differentiation. Linear regression was used to test for the statistical significance of each gene 

between control siRNA and Cav1 siRNAs while adjusting for batch effect and siRNA 

differences.  
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Validation of KDs and Subnetworks using TWAS and GWAS Data from HMDP 

To determine whether the subnetwork genes exhibited a global trend of having elevated 

association with cardiometabolic traits in HMDP, we performed enrichment test on the 

subnetworks of the top 15 KDs, using the MSEA module. In specific, the tissue and trait-specific 

TWAS data in HMDP was extracted. Genes were sorted by their association p-value and only 

genes with top 50% association were kept. The determination of enrichment statistics was the 

same as the one used for the SNPs, other than genes were used as markers directly without 

mapping SNPs to them. 

We also took advantage of the HMDP GWAS and eQTL data in the aim of drawing causal 

relationship between the subnetworks and cardiometabolic traits. ~21000 mouse SNPs were 

reported in both the HF-HMDP and atherogenic-HMDP. The top 50% SNPs were retrieved and 

filtered by linkage disequilibrium threshold at 0.5. In addition, we collected eQTLs of adipose 

and aorta tissues from the two HMDP panels with p < 1e-5. eQTLs within the 1MB region of the 

transcription staring site of genes were categorized as “cis-eQTLs”, and were used to map SNPs 

to mouse genes. Lastly, MSEA was used to test for enrichment of association with 

cardiometabolic traits within the eQTLs mapped to the subnetwork genes. 
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Chapter 4.   Prenatal Bisphenol A Exposure in Mice Induces Multi-tissue Multi-omics 

Disruptions Linking to Cardiometabolic Disorders 

4.1   Introduction 

A central concept in the Developmental Origin of Adult Health and Disease (DOHAD) states 

that adverse environmental exposure during early developmental stages is an important 

determinant for later onset adverse health outcomes, even in the absence of continuous exposure 

in adulthood [122-124]. BPA is one of the most influential environmental metabolic disruptors 

identified to date with widespread exposure in human populations and likely plays a role in 

DOHAD. BPA is used in the production of synthetic polymers, including epoxy resins and 

polycarbonates [125]. The advantageous mechanical properties of BPA have resulted in its 

ubiquitous use in everyday goods such as plastic bottles and inner coating of canned foods [126, 

127]. BPA exposure has been confirmed in the majority of human populations [128] and has 

been linked to body weight, obesity, insulin resistance, diabetes, metabolic syndrome (MetS), 

and cardiovascular diseases in both human epidemiologic and animal studies [129-136]. 

Importantly, it has been suggested that the developing fetus is particularly vulnerable to BPA 

exposure [129, 137]. Intrauterine growth retardation (IUGR) has been consistently observed after 

developmental BPA exposure at intake doses below the suggested human safety level and has 

been associated with low birth weight, elevated adult fat weight and altered glucose homeostasis 

[129, 138-141]. As a result, BPA has been banned from baby products in Europe, Canada, and 

the US. However, BPA is still in use in non-baby products, posing continuous exposure to adults. 

Additionally, BPA has been associated with a transgenerational influence on obesity and MetS 

[142-144], contributing to a lingering effect of BPA exposure on future generations even under 
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usage restriction. Together these lines of evidence support an intriguing hypothesis that BPA 

may have been playing an important role in the rise of MetS and cardiometabolic diseases 

worldwide in the past decades [145-147]. 

Despite numerous findings connecting BPA with adverse health outcomes, there remain ample 

conflicting data, as summarized by the European Food Safety Agency [148] and the BPA Joint 

Emerging Science Working Group of the US FDA. Although inconsistencies across studies 

might be attributable to non-monotonic dose response, exposure window difference, and varying 

susceptibility between testing models [134, 149], there are also several additional layers of 

complexity and challenges hindering the full dissection of the biological effects of BPA. First, 

previous studies examining BPA in various cell types and tissues suggest a broad impact on 

biological systems [144, 150-152]. Second, BPA has been found to modulate multidimensional 

molecular events, such as gene expression and epigenetic changes, that are functionally 

important for processes such as metabolism and immune response [153-158]. However, due to 

most studies being designed to focus on one factor at a time as well as non-comparable study 

designs, it is difficult to directly compare effects across tissues or types of molecular data to 

derive the molecular rules of sensitivity to BPA exposures. In a recent NTP report, CLARITY-

BPA, where multiple organs were examined, evidence of weight gain and cardiac dysfunctions 

were observed, however, the study was designed to be solely descriptive and no mechanism of 

action was proposed. These research gaps in our understanding of the pleiotropy of EDCs and 

toxicant biological actions necessitated the establishment of the NIEHS TaRGET consortium and 

a more recent call for the research community to systemically interrogate multiple omics in 
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multiple tissues to accelerate the discovery of key biological fingerprints of environmental 

exposure [159].  

Here we present a multi-tissue, multi-omics systems biology study to examine the systems level 

influence of prenatal BPA exposure using advanced integrative genomics and network modeling 

approaches in a mouse model. We first utilized next-generation sequencing technologies to 

characterize perturbations in both the transcriptome and the epigenome across three tissues 

(gonadal white adipose tissue, hypothalamus, liver) in mouse offspring who had experienced in 

utero exposure to BPA. Based on mounting evidence that genes operate in highly complex 

tissue-specific regulatory networks, we hypothesized that prenatal BPA exposure induces 

genomic and epigenomic reprogramming in the offspring by affecting the organization and 

function of tissue-specific gene networks [18, 160-162]. Using both transcription factor (TF) 

networks and Bayesian networks, we modeled the dynamics of transcriptomic and epigenomic 

signatures and predicted potential regulators that govern the actions of BPA. Furthermore, the 

transcriptome, epigenome, and network information was layered upon metabolic phenotypes 

such as body weight, adiposity, circulating lipids, and glucose levels in the mouse offspring to 

evaluate disease association. Lastly, to assess the relevance of the BPA molecular targets 

identified in our mouse model for human diseases, we applied integrative genomics to bridge the 

mouse molecular signatures and genetic disease association data from human studies. Our study 

represents a comprehensive systems-level investigation of the molecular and health impact of 

BPA. 
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4.2   Results 

Overall study design 

As shown in Figure 4.1A, pregnant C57BL/6 mice were exposed to BPA during gestation via 

oral gavage at the dosage of 5mg/kg/day, situated below most reported no-observed-adverse-

effect-level (NOAEL) according to toxicity testing 

(https://comptox.epa.gov/dashboard/dsstoxdb/results?search=Bisphenol+A). This dosage was 

typically used in previous studies [144, 163-165], and was chosen as a proof-of-concept for our 

systems biology study design and to facilitate comparison with previous studies. Male offspring 

(n = 9 for control, n = 11 for BPA) of weaning age (3-weeks) were examined for a spectrum of 

metabolic phenotypes (detailed below) and euthanized to collect key metabolic tissues including 

white adipose tissue, hypothalamus, and liver. We focused on examining males because we 

found stronger phenotypic changes in males at weaning age. We chose the weaning age in order 

to investigate early molecular and phenotypic changes in the offspring, which may predispose 

the offspring to late onset diseases. At the molecular level, we conducted RNA sequencing 

(RNA-seq) to evaluate transcriptomic alterations, and investigated perturbed biological 

pathways. We also used reduced representation bisulfite sequencing (RRBS) to uncover the 

epigenomic impact of prenatal BPA exposure at millions of methylation sites and analyzed the 

connection of the epigenomic alterations to changes in the transcriptome. We then integrated the 

transcriptomic and epigenomic signatures with two types of regulatory networks, namely, 

transcription factor networks to identify perturbed TF hotspots, and gene regulatory networks to 

identify non-TF regulatory genes. Finally, we interrogated the associations of the transcriptomic 

and epigenomic signatures of BPA obtained from our study with metabolic phenotypes in our 
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mouse offspring by correlative analysis, and with human diseases by querying top reported genes 

and full summary statistics from all publicly available genome-wide association studies 

(GWAS). 

Prenatal BPA exposure induces tissue-specific transcriptomic alterations in male weaning 

offspring 

We exposed pregnant C57BL/6 mice to BPA during gestation (day 1 to day 20 post-conception) 

at the dosage of 5mg/kg/day, and collected core tissues important for metabolism from male 

offspring at 3 weeks. Hypothalamus is the central regulator of endocrine and metabolic systems, 

whereas liver and white adipose tissues are critical for energy and metabolic homeostasis. To 

explore the molecular basis underlying the potential health impact of prenatal BPA exposure, we 

used RNA-seq to profile the transcriptome, and identified 86, 93, and 855 differentially 

expressed genes (DEGs) in the adipose tissue, hypothalamus, and liver tissue respectively, at 

FDR < 0.05 (Figure 4.1B, Table S4.1). This supports the ability of prenatal BPA exposure to 

induce large-scale transcriptomic disruptions in offspring, with the impact appearing to be more 

prominent in liver. Interestingly, the hypothalamic DEGs are predominantly up-regulated in the 

BPA group whereas the other two tissues did not show such direction bias (Table 4.1). The 

DEGs were highly tissue-specific, with only 12 out of the 86 adipose DEGs and 16 out of the 93 

hypothalamus DEGs being found in liver. Only one gene, Cyp51 (Sterol 14-Alpha Demethylase), 

was shared across all three tissues but with different directional changes (upregulated in 

hypothalamus and liver, downregulated in adipose) (Figure 4.1C). The Cyp51 protein catalyzes 

metabolic reactions including cholesterol and steroid biosynthesis and biological oxidation [166]. 

Previously, this gene was also found to be critical regulator for testicular spermatogenesis [167]. 
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The consistent alteration of Cyp51 across tissues suggests that this gene is a general target of 

BPA, with the potential to alter functions related to cholesterol, hormone, and energy 

metabolism.  

Functional annotation of DEGs in adipose, hypothalamus, and liver tissues 

To better understand the biological implications of the BPA exposure related DEGs in individual 

tissues, we evaluated the enrichment of DEGs for known biological pathways and functional 

categories (Figure 4.1D-F, full results in Table S4.2). We observed strong enrichment for 

pathways related to lipid metabolism (lipid transport, fatty acid metabolism, cholesterol 

biosynthesis) and energy metabolism (biological oxidation, TCA cycle) across all three tissues. 

Most of these pathways appeared to be upregulated in all three tissues, with the exception of 

downregulation of genes involved in biological oxidation in adipose tissue (Figure 4.1D-F). 

Individual tissues also showed perturbations of unique pathways: PPAR signaling and 

arachidonic acid pathways were altered in liver; extracellular matrix related processes were 

enriched among hypothalamic DEGs; core histone genes were upregulated in adipose DEGs 

(Figure 4.1D-F). In addition, triglyceride biosynthesis and glucose metabolism pathways were 

also moderately enriched among adipose DEGs, whereas few changes were seen for genes 

involved in adipocyte differentiation (Figure 4.2). 

Prenatal BPA exposure induces tissue-specific epigenetic alterations in male weaning 

offspring 

Consistent with the observed gene expression disruptions at the transcriptomic level, we 

observed numerous methylomic alterations using RRBS, which characterizes DNA methylation 
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states of millions of potential epigenetic sites at single base resolution. At FDR < 5%, 5136, 104, 

and 476 differentially methylated CpGs (DMCs) were found in adipose, hypothalamus, and liver 

tissues, respectively (Figure 4.3A, Table 4.2). Interestingly, BPA induced local methylation 

changes in Gm26917 and Yam1, two lncRNAs with no previously known link to BPA, 

consistently across three tissues (Figure 4.3B). The majority of the DMCs are located in 

intergenic regions (32% - 38%), followed by introns (31% - 37%) and exons (13% - 15%), but 

there is a paucity of DMCs in the promoter region (3% - 5%) (Figure 4.4). Contrary to 

predictions that promoter regions may be more prone to epigenetic changes, we found that 

within-gene and intergenic methylation alterations in DNA methylation are more prevalent, a 

pattern consistently observed in previous epigenomic studies [160, 168]. In addition, 5.0%, 

8.6%, and 8.1% DMCs overlap with repetitive DNA elements in adipose, hypothalamus, and 

liver, respectively, recapitulating previous report of the interaction between BPA and repetitive 

DNA [169]. 

For DMCs that are located within or adjacent to genes, we further tested whether the local genes 

adjacent to those DMCs show enrichment for known functional categories. Unlike DEGs, top 

processes enriched for DMCs concentrated on intra- and extra-cellular communication and 

signaling related pathways such as axon guidance, extracellular matrix organization and NGF 

signaling (Figure 4.3C, full results in Table S4.3). The affected genes in these processes are 

related to cellular structure, cell adhesion, and cell migration, indicating that these functions may 

be particularly vulnerable to BPA induced epigenetic modulation. 
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Potential regulatory role of DMCs in transcriptional regulation of BPA induced DEGs 

To explore the role of DMCs in regulating DEGs, we evaluated the connection between 

transcriptome and methylome by correlating the expression level of DEGs with the methylation 

ratio of their local DMCs. For the DEGs in adipose, hypothalamus and liver tissue, we identified 

42, 36, and 278 local DMCs whose methylation ratios were significantly correlated with the gene 

expression. At a global level, compared to non-DEGs, DEGs are more likely to contain local 

correlated DMCs (Figure 4.5). A closer look into the expression-methylation correlation by 

different chromosomal regions further revealed a context dependent correlation pattern (Figure 

4.3D). In adipose and liver, the 3-5% of DMCs in promoter regions tend to show significant 

enrichment for negative correlation with DEGs, whereas gene body methylations for DEGs are 

more likely to show significant enrichment for positive correlation with gene expression. In 

hypothalamus, however, positive correlations between DEGs and DMCs are more prevalent 

across different gene regions. In addition, liver DMCs within lncRNAs were uniquely enriched 

for negative correlation with lncRNA expression, although the lack of a reliable mouse lncRNA 

target database prevented us from further investigating whether downstream targets of the 

lncRNAs were enriched in the DEGs. Specific examples of DEGs showing significant 

correlation with local DMCs include adipose DEG Slc25a1 (Solute Carrier Family 25 Member 1, 

involved in triglyceride biosynthesis), hypothalamic DEG Mvk (Mevalonate Kinase, involved in 

cholesterol biosynthesis), and liver DEG Gm20319 (a lncRNA with unknown function) (Figure 

4.6 and Table S4.4). These results support a role of BPA-induced differential methylation in 

altering the expression levels of adjacent genes. 
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Pervasive influence of prenatal BPA exposure on the liver transcription factor network 

BPA is known to bind to diverse types of nuclear receptors such as estrogen receptors and 

peroxisome proliferator-activated (PPAR) receptors that function as transcription factors (TFs), 

thus influencing the action of downstream genes [170, 171]. PPARg in particular has been shown 

to be a target of BPA in mouse and human and mechanistically linking BPA exposure with its 

associated effect on weight gain and increased adipogenesis [172-174]. To explore the TF 

regulatory landscape underlying BPA exposure based on our genome-wide data, we leveraged 

tissue-specific TF regulatory networks from the FANTOM5 project [175] and integrated it with 

our BPA transcriptome profiling data. No TF was found to be differentially expressed in adipose 

tissue, whereas 1 TF (Pou3f1) and 14 TFs (such as Esrra, Hnf1a, Pparg, Tcf21, Srebf1) were 

found to be differentially expressed in hypothalamus and liver, respectively. Due to the temporal 

nature of TF action, changes in TF levels may precede the downstream target genes and not be 

reflected in the transcriptomic profiles measured at the time of sacrifice. Therefore, we further 

curated the target genes of TFs from FANTOM5 networks and tested the enrichment for the 

target genes of each TF among our tissue-specific DEGs (Table S4.5). This analysis confirmed 

that BPA perturbs the activity of the downstream targets for estrogen receptors Esrrg (p = 1.4e-3, 

FDR = 1.9%) and Esrra (p = 0.03, FDR = 13%) in liver, as well as Esr1 in both adipose (p = 

7.2e-3, FDR = 10.6%) and liver (p = 7.2e-3, FDR = 4.7%). Targets of Pparg were also perturbed 

in liver (p = 4.1e-3, FDR = 3.8%). Therefore, we demonstrated that our data-driven network 

modeling is able to not only recapitulate results from previous in-vitro and in-vivo studies 

showing that BPA influences estrogen signaling and PPAR signaling [171], but also uniquely 

point to the tissue specificity of these BPA target TFs. 
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In addition to these expected TFs, we identified 14 adipose TFs and 61 liver TFs whose target 

genes were significantly enriched for BPA DEGs at FDR < 5%. Many of these TFs showed 

much stronger enrichment for BPA DEGs among their downstream targets than the estrogen 

receptors (Table S4.5). The liver TFs include multiple genes from the hepatocyte nuclear factors 

(HNF) family and the CCAAT-enhancer-binding proteins (CEBP) family, which are critical for 

liver development and function, suggesting a pervasive influence of BPA on liver TF regulation.  

We further extracted the subnetwork containing 89 unique downstream targets of the significant 

liver TFs that are also liver DEGs. This subnetwork showed significant enrichment for genes 

involved in metabolic pathways such as steroid hormone biosynthesis and fatty acid metabolism. 

The regulatory subnetwork for the top liver TFs (FDR < 5%) revealed a highly interconnected 

TF subnetwork that potentially senses BPA exposure and in turn governs the expression levels of 

their targets (Figure 4.7A), with Pparg and Hnf4 among the core TFs. Some of the TFs in this 

network, including Esr1, Esrrg, Foxp1, and Tcf7l1, also had local DMCs identified in our study, 

indicating that BPA may perturb this liver TF subnetwork via local modification of DNA 

methylation of key TFs.  

Identification of potential non-TF regulators governing BPA induced molecular perturbations 

To further identify regulatory genes that mediate the action of BPA on downstream targets 

through non-TF mechanisms, we leveraged data-driven tissue-specific Bayesian networks (BNs) 

generated from multiple independent human and mouse studies (Table S4.1). These data-driven 

networks are complementary to the TF networks used above and have proven valuable for 

accurately predicting gene-gene regulatory relationships and novel key drivers (KDs) [6, 18, 
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160-162]. KDs were defined as network nodes whose surrounding subnetworks are significantly 

enriched for BPA exposure related DEGs. At FDR < 1%, we identified 21, 1, and 100 KDs in 

adipose, hypothalamus, and liver, respectively (Table S4.6). The top KDs in adipose (top 5 KDs 

Acss2, Pc, Agpat2, Slc25a1, Acly), hypothalamus (Fa2h) and liver (top 5 KDs Dhcr7, Aldh3a2, 

Fdft1, Mtmr11, Hmgcr) were involved in cholesterol, fatty acid and glucose metabolism 

processes. In addition, three KDs, Acss2 (Acetyl-Coenzyme A Synthetase 2), Acat2 (Acetyl-CoA 

Acetyltransferase 2), and Fasn (Fatty Acid Synthase), were involved in the upregulation of 

DEGs in both adipose and liver, despite the fact that few DEG signatures overlap across tissues 

(Figure 4.7B). These KDs are consistent with the observed increased expression of several genes 

implicated in lipogenesis, including Fasn, and help explain the liver accumulation of 

triglycerides when mice are exposed to BPA [176].  Together, these results indicate that BPA 

may engage certain common regulators which have tissue-specific targets. The distinct 

upregulatory pattern within the subnetworks of individual KDs supports the potential functional 

importance of KDs in orchestrating the action of downstream genes. These KDs, along with the 

newly identified TFs from the above analysis, may represent novel regulatory targets which 

transmit the in vivo biological effects of BPA. 

BPA transcriptomic and methylomic signatures are related to metabolic traits in mice 

Aligning with the enrichment for metabolic genes in the above pathway and network analyses, 

we observed alterations in various metabolic phenotypes in the male offspring with prenatal BPA 

exposure. Compared with the control group (n = 9), offspring from the BPA group (n = 11) 

showed significantly lower body weight at weaning, indicative of post-natal growth retardation, a 

trait that is strongly associated with later life insulin resistance and obesity risk [177] (Figure 
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4.8A). There were also significant decreases in serum lipid parameters and an increase in serum 

glucose level at weaning age (Figure 4.8B). The decreases in the lipid parameters at this early 

developmental stage likely reflect the growth retardation phenotype observed and may provide 

feedback signals to increase the expression of Fasn and other lipid genes, which likely 

predispose the exposed offspring to increased triglyceride accumulation and other lipid 

dysregulation later in life.  

To further assess the relationship between the BPA molecular signatures and metabolic traits in 

the mouse model, the DEGs and DMCs from individual tissues were tested for correlation with 

the measured metabolic traits: body weight, free fatty acids, total cholesterol, high density 

lipoprotein cholesterol, triglycerides and blood glucose. At p < 0.05, over two thirds of tissue-

specific DEGs and over 60% DMCs were identified to be correlated with at least one metabolic 

trait (Figure 4.8C, D). Notably, liver DEGs exhibited stronger correlation with free fatty acid 

and triglycerides, whereas adipose DEGs were uniquely associated with glucose level, which is 

consistent with the pathway annotation results for these tissues. On the other hand, liver DMCs 

showed stronger correlations with metabolic traits than those from adipose and hypothalamus 

tissues. 

Cross-examination of correlation across gene expression, DNA methylation, and metabolic traits 

revealed 35 consistent DEG-DMC-trait associations (3 in adipose, 4 in hypothalamus, and 28 in 

liver) (Table S4.7). For example, in adipose tissue, Fasn (also a shared KD in adipose and liver) 

was correlated with its exonic DMC at chr11:120816457, and both were correlated with 

triglyceride level; in hypothalamus, Igf1r (Insulin Like Growth Factor 1 Receptor) was 

correlated with its intronic DMC at chr7:68072768, and both were correlated with blood glucose 
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level; in liver, Adh1 (Alcohol Dehydrogenase 1A) was correlated with its intronic DMC at 

chr3:138287690, and both were correlated with body weight (Figure 4.9). These results suggest 

that BPA alters local DMCs of certain genes to regulate gene expression, which may in turn 

regulate distinct metabolic traits. 

Relevance of BPA signature to human complex traits/diseases  

Human observational studies have associated developmental BPA exposure with a wide variety 

of human diseases ranging from cardiometabolic diseases to neuropsychiatric disorders [135, 

136, 178]. Large-scale human genome-wide association studies offer an unbiased view of the 

genetic architecture for various human traits/diseases, and intersections of the molecular 

footprints of BPA in our mouse study with human disease risk genes can help infer the potential 

disease-causing properties of BPA in humans. From the GWAS Catalog [69], we collected 

associated genes for 161 human traits/diseases (traits with fewer than 50 associated genes were 

excluded), and evaluated the enrichment for the trait associated genes among DEG and DMC 

signatures. At FDR < 5%, no trait was found to be significantly enriched for BPA DEGs. 

Surprisingly, despite the difference between tissue-specific DMCs (Figure 4.3B), 19 out the 161 

traits showed consistently strong enrichment for DMCs across all three tissues at FDR < 1%. The 

top traits include body mass index (BMI) and type 2 diabetes (Table 4.3). As DNA methylation 

status is known to determine long-term gene expression pattern instead of immediate dynamic 

gene regulation, the BMI and diabetes associated genes may be under long-term programming by 

BPA-induced differential methylation, thereby affecting later disease risks. 
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The above analysis involving the GWAS catalog focused only on small sets of the top candidate 

genes for various diseases and may have limited statistical power. To improve the statistical 

power, we curated the full summary statistics from 61 human GWAS that are publicly available 

(covering millions of SNP-trait associations in each GWAS), which enabled us to extend the 

assessment of disease association by considering additional human disease genes with moderate 

to low effect sizes (See Methods). This analysis showed that DEGs from all three tissues 

exhibited consistent enrichment for genes associated with lipid traits such as triglycerides, LDL, 

and HDL (Figure 4.10A-C). Interestingly, enrichment for birth weight and birth length was also 

observed for hypothalamus and liver signatures, respectively. Liver DEGs were also significantly 

associated with coronary artery disease, inflammatory bowel disease, Alzheimer’s disease, and 

schizophrenia. Top DEGs driving the inflammatory bowel disease association involve immune 

and inflammatory response genes (PSMB9, TAP1, TNF), whereas association with Alzheimer’s 

disease and schizophrenia involve genes related to cholesterol homeostasis (APOA4, ABCG8, 

SOAT2) and mitochondrial function (GCDH, PDPR, SHMT2), respectively. These results 

suggest that tissue-specific targets of BPA are connected to diverse human complex diseases 

through both the central nervous system and peripheral tissues. 

4.3   Discussion 

This multi-tissue, multi-omics integrative study represents one of the first systems biology 

investigations of prenatal BPA exposure. By integrating systematic profiling of the transcriptome 

and methylome of multiple metabolic tissues with phenotypic trait measurements, large-scale 

human association datasets, and network analysis, we uncovered insights into the molecular 

regulatory mechanisms underlying the health effect of prenatal BPA exposure. Specifically, we 
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identified tens to hundreds of tissue-specific DEGs and DMCs involved in diverse biological 

functions such as metabolic pathways (oxidative phosphorylation/TCA cycle, fatty acid, 

cholesterol, glucose metabolism, and PPAR signaling), extracellular matrix, focal adhesion, and 

inflammation (arachidonic acid), with DMCs partially explaining the regulation of DEGs. 

Network analysis helped reveal potential regulatory circuits post BPA exposure and pinpointed 

both tissue-specific and cross-tissue regulators of BPA activities, including TFs such as estrogen 

receptors, PPARg, and HNF1A, and non-TF key drivers such as FASN. Furthermore, the BPA 

gene signatures and the predicted regulators were found to be linked to a wide spectrum of 

disease-related traits in both mouse and human. 

The large-scale disruption we observed in the transcriptome and methylome in adipose and liver 

was consistent with previous reports [153, 156, 179, 180]. However, our unique study design of 

examining multi-omics in multiple tissues in parallel yields higher comparability when 

integrating the results between data types and across tissues, as they were from the same set of 

animals and were profiled in the same conditions. Furthermore, our advanced multidimensional 

integrative approach provides deeper insights into the regulatory cascades within and across 

tissues. Across all three tissues at the transcriptome level, we found that lipid metabolism and 

energy homeostasis related processes were consistently perturbed, with the scale of perturbation 

being strongest in liver. This aligns well with the significant changes in the plasma lipid profiles 

we observed in the offspring, the reported perturbation of lipid metabolism in fetal murine liver 

[180], and the reported susceptibility for nonalcoholic fatty liver diseases following BPA 

exposure [181-183]. The only shared gene across tissues, CYP51, is involved in cholesterol and 

sterol biosynthesis and beta oxidation, again supporting that metabolism is a central target of 
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BPA. At the methylome level, we are able to replicate 5 out of 7 peak hypomethylated genes, 

and 6 out of 9 peak hypermethylated genes from a study focusing on the gonadal adipose tissue 

[156]. We also revealed an intriguing link between BPA and lncRNAs across tissues, whose 

functional importance in developmental processes, disease progression, and response to BPA 

exposure was increasingly recognized yet underexplored [184]. Our molecular data provides 

intriguing lncRNA candidates such as Gm20319, Gm26917, and Yam1 for future in-depth 

functional analyses.  

For adipose tissue, clusters of genes responsible for core histones were found to be uniquely 

altered. Along with the strong adipose-specific differential methylation status, our results 

revealed gonadal adipose tissues as an especially vulnerable site for BPA induced epigenetic 

reprogramming. Besides, developmental BPA exposure has been previously suggested to 

influence white adipocyte differentiation [185-187]. However, the adipocyte differentiation 

pathway was not significantly enriched in our study. This is consistent with the report by Angel 

et al. [187], where increased adipocyte number is only found in mouse offspring with prenatal 

BPA exposure at 5ug/kg/day and 500ug/kg/day, but not 5mg/kg/day. Additionally, we found 

significant changes in triglyceride biosynthesis and glucose metabolism genes, suggesting that 

prenatal BPA exposure affects fat storage and glucose homeostasis in the adipose tissue. 

Although here we mainly investigate gonadal adipose tissue as a surrogate for abdominal fat in 

the context of metabolic disorders, the information may be useful for exploring the relationship 

between this fat depot and the gonad. 

With regards to the hypothalamus, our study is the first to investigate the effect of BPA on the 

hypothalamic transcriptome and DNA methylome. Hypothalamus is an essential brain region 
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that regulates the endocrine system, peripheral metabolism, and numerous brain functions. We 

identified BPA-induced DEGs and DMCs that were enriched for extracellular matrix related 

processes such as axon guidance, focal adhesion, and various metabolic processes. These 

hypothalamic pathways have been previously associated with metabolic [160, 161] and 

neurodegenerative diseases [160, 188], and they could underlie the reported disruption of 

hypothalamic melanocortin circuitry after BPA exposure [189]. Our study highlights the 

hypothalamus as another critical yet under-recognized target for BPA. 

By interrogating both the transcriptome and DNA methylome in matching tissues, we were able 

to directly assess both global and specific correlative relationships between DEGs and DMCs 

(Figure 4.3D). Specifically, we found that DEGs are more likely to have correlated DMCs in the 

matching tissue, a trend that persists in non-promoter regions. Our results corroborate previous 

findings regarding the importance of gene body methylation in disease etiology [190, 191]. 

Given that over 90% of DMCs were found in non-promoter regions, closer investigation of the 

regulatory circuits involving these regions may unveil new insights into BPA response [168]. 

Known as an endocrine disrupting chemical, BPA has been speculated to exert its primary 

biological action by modifying the activity of hormone receptors, including estrogen receptors, 

PPARg and glucocorticoid receptors [171]. Indeed, the activity for the downstream targets of 

Pparg and three estrogen and estrogen-related receptors were found to be disrupted in liver by 

prenatal BPA exposure. Nevertheless, our unbiased data-driven analysis revealed many novel 

transcription factors and non-TF regulatory genes that also potentially mediate BPA effects. In 

fact, many of the newly identified TF targets of BPA, such as several hepatic nuclear factors, 

showed much higher ranking in our regulator prediction analyses. In liver, a tightly inter-
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connected TF subnetwork was highly concentrated with BPA affected genes involved in 

metabolic processes such as cytochrome P450 system (CYP3A4, CYP2A6, CYP1A2), lipid 

(APOA4, ABCG5, SOAT2) and glucose (HNF1A, ADRA1B, GCK) regulation, with extensive 

footprints of altered methylation status in the TFs and other subnetwork genes (Figure 4.7A). 

Therefore, our results support a widespread impact of BPA on liver transcriptional regulation, 

and the convergence of differential methylation and gene expression in this TF subnetwork 

implies that BPA perturbs this subnetwork via epigenetic regulation of the TFs, which in turn 

trigger transcriptomic alterations in downstream genes. Of the non-TF regulators identified in 

our study, the cross-tissue KDs Acss2, Acat2, and Fasn, are of special interest. Based on our 

network prediction, these three KDs appeared to up-regulate distinct groups of lipid metabolism 

genes in adipose and liver post-BPA exposure (Figure 4.7B), supporting their role in mediating 

the BPA-induced lipid dysregulation at the systemic level. The significant correlation of gene 

expression and methylation for Fasn with triglyceride level furthers implicates its role as a 

network-level biomarker for BPA induced lipid dysregulation. Our observation of Fasn is 

consistent with evidences suggesting its susceptibility to methylation perturbation under 

obesogenic feeding [192] and its functional importance for fatty liver diseases [162, 193]. 

One unique aspect of this study is the linking of the molecular landscape of prenatal BPA 

exposure to traits/diseases in both mouse and human. In our mouse study, the observed changes 

in body weight, lipid profiles, and glucose level are highly concordant with the functions of the 

molecular targets. For instance, prenatal BPA exposure perturbs both the expression levels and 

the local DNA methylation status of Fasn, Igf1r, and Adh1. These DEGs and their local DMCs 

also significantly correlate with phenotypic outcomes, thus serving as examples of how DNA 
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methylation and gene expression bridge the gap between BPA exposure and phenotypic 

manifestation.  To further enhance the translatability of our findings from mouse to human, we 

searched for human diseases linked to the BPA-affected genes. An intriguing discovery is the 

prominent overrepresentation of differential methylation signals in adipose, hypothalamus, and 

liver within known genes related to obesity and type 2 diabetes, supporting that BPA may impact 

obesity and diabetes risk through systemic reprogramming of DNA methylation. More 

sophisticated analysis incorporating the BPA differential gene expression and the full statistics of 

human genome-wide association studies corroborated the potential of prenatal BPA exposure to 

affect lipid homeostasis [194], birth weight [195], and coronary artery disease [135] reported in 

observational studies. Moreover, our findings suggest a potential involvement of prenatal BPA 

exposure in the development of inflammatory bowel syndrome, schizophrenia, and Alzheimer’s 

disease. These associations warrant future investigations.  

One limitation of our work is the restriction of study scope to weaning age male mice with in 

utero BPA exposure below the NOAEL (5mg/kg/d) as a proof-of-concept for our systems 

biology framework. Considering that the effects of early-life exposure to BPA is highly variable 

and dependent on factors such as the dose, window, route, and frequency of exposure as well as 

genetic background, age, and sex [134], future studies testing these additional variables are 

necessary to generate a comprehensive understandings of BPA risks under various exposure 

conditions. 
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4.4   Conclusions 

Our study represents the first multi-tissue, multi-omics integrative investigation of prenatal BPA 

exposure. The systems biology framework we applied revealed how BPA triggers cascades of 

regulatory circuits involving numerous transcription factors and non-TF regulators that 

coordinate diverse molecular processes within and across core metabolic tissues, thereby 

highlighting that BPA exerts its biological functions via much more diverse targets than 

previously thought. As such, our findings offer a comprehensive systems-level understanding of 

tissue sensitivity and molecular perturbations elicited by prenatal BPA exposure and offer 

promising novel candidates for targeted mechanistic investigation as well as much-needed 

network-level biomarkers of prior BPA exposure. The strong influence of BPA on metabolic 

pathways and cardiometabolic phenotypes merits it characterization as a general metabolic 

disruptor posing systemic health risks. 

4.5   Methods 

Mouse model of prenatal BPA exposure  

Inbred C57BL/6 mice were maintained on a special diet 5V01 (LabDiet), certified to contain less 

than 150ppm estrogenic isoflavones, and housed under standard housing conditions (room 

temperature 22–24°C) with 12:12 hr light:dark cycle before mating at 8-10 weeks of age. From 

1-day post-conception (dpc) to 20 dpc, BPA (Sigma-Aldrich, St. Louis, MO) dissolved in corn 

oil was administered to pregnant female mice via oral gavage (mimicking common exposure 

route in humans) at 5mg/kg/day on a daily basis. Control mice were fed the same amount of 

empty vehicle. BPA exposure was restricted to experimental manipulation through the use of 
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polycarbonate-free water bottles and cages. Offspring from each treatment were maintained on a 

standard chow diet (Newco Distributors Inc, Rancho Cucamonga, CA).  

Characterization of cardiometabolic phenotypes and tissue collection 

Body weight of offspring was measured daily from postnatal day 5 up to the weaning age of 3 

weeks. Mice were fasted overnight before sacrifice, and plasma samples were collected through 

retro-orbital bleeding. Serum lipid and glucose traits including total cholesterol, high density 

lipoprotein cholesterol (HDL), un-esterified cholesterol (UC), triglyceride (TG), free fatty acid 

(FFA), and glucose were measured by enzymatic colorimetric assays at UCLA GTM Mouse 

Transfer Core as previously described [160]. Gonadal white adipose tissue, hypothalamus, and 

liver tissues were collected from each animal, flash frozen in liquid nitrogen, and stored at –

80°C. For white adipose tissue, we chose the gonadal depot mainly due to its similarity to 

abdominal fat, established relevance to cardiometabolic risks, tissue abundance, and the fact that 

it is the most well-studied adipose tissue in mouse models. All mouse experiments were 

conducted in accordance with and approved by the Institutional Animal Care and Use Committee 

at University of California, Los Angeles.  

RNA sequencing (RNA-seq) and data analysis 

A total of 18 RNA samples were isolated from gonadal adipose, hypothalamus and liver tissues 

(n = 3 per group per tissue) from male offspring using the AllPrep DNA/RNA Mini Kit 

(QIAGEN GmbH, Hilden, Germany). Samples were processed for library preparation using 

TruSeq RNA Library Preparation Kit (Illumina, San Diego, CA) for poly-A selection, 

fragmentation, and reverse transcription using random hexamer-primers to generate first-strand 
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cDNA. Second-strand cDNA was generated using RNase H and DNA polymerases, and 

sequencing adapters were ligated using the Illumina Paired-End sample prep kit. Library 

products of 250-400bp fragments were isolated, amplified, and sequenced with Illumina 

Hiseq2500 System. After quality control using FastQC [196], the HISAT-StringTie pipeline 

[197] was used for sequence alignment and transcript assembly. Identification of differentially 

expressed genes (DEGs) were conducted using DEseq2 [198]. To account for multiple testing, 

we used the q-value method [199]. After excluding genes with extremely low expression levels 

(FPKM < 1), only DEGs demonstrating differential expression comparing the BPA and control 

groups per tissue at a false discovery rate (FDR) < 5% were used for biological pathway 

analysis, network analysis, and phenotypic data integration, as described below. 

Reduced representation bisulfite sequencing (RRBS) and data analysis 

We constructed RRBS libraries for 18 DNA samples from adipose, hypothalamus and liver 

tissues (n = 3 per group per tissue). The DNA samples were quantified using the dsDNA BR 

assay (Qubit, Waltham, MA) and 100ng of DNA was used for library preparation. After 

digestion of the DNA with the MspI enzyme, samples underwent an end-repair and adenylation 

process, followed by adapter ligation using the Truseq barcode adapter (Illumina, San Diego, 

CA), size selection using AMPure Beads (Beckman Coulter, Brea, CA), and bisulfite treatment 

using the Epitect Kit (Qiagen, Germantown, MD). Bisulfite-treated DNA was then amplified 

using the Truseq Library Prep Kit (Illumina, San Diego, CA) and sequenced with the Illumina 

Hiseq2500 System. Bisulfite-converted reads were processed and aligned to the reference mouse 

genome (GRCm38/mm10 build) using the bisulfite aligner BSMAP [200]. We then used MOAB 

[201] for methylation ratio calling and identification of differentially methylated CpGs (DMCs). 
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FDR was estimated using the q-value approach. Loci with methylation level changes of > 5% 

between BPA and control groups and FDR < 0.05 for each tissue were considered statistically 

significant DMCs. To annotate the locations of the identified DMCs in relation to gene regions 

and repetitive DNA elements accessed from UCSC genome browser, we used the Bioconductor 

package “annotatr” [202]. Specifically, gene regions were categorized into 1) 1-5kb upstream of 

the transcription start site (TSS), 2) promoter (< 1kb upstream of the TSS), 3) 5’ untranslated 

region (UTR), 4) exons, 5) introns, and 6) 3’UTR. The “annotatr” package was also used to 

annotate DMCs for known long non-coding RNAs (lncRNAs) based on GENCODE Release 

M16. Over-representation of DMCs within each category was calculated using Fisher’s exact 

test. We further evaluated the link between DEGs and their local DMCs (DMCs annotated as any 

of the 6 above mentioned gene regions) by correlating the methylation ratio of DMCs with the 

expression level of DEGs. 

Pathway, network, and disease association analyses of DEGs and DMCs using the 

Mergeomics R package 

To investigate the functional connections among the BPA-associated DEGs or DMCs 

(collectively referred to as molecular signatures of BPAs) and to assess the potential association 

of BPA affected genes with diseases in human populations, we utilized the Mergeomics package 

[75], an open-source bioconductor package 

(https://bioconductor.org/packages/devel/bioc/html/Mergeomics.html) designed to perform 

various integrative analyses in multi-omics studies. Mergeomics consists of two main libraries, 

Marker Set Enrichment Analysis (MSEA) and Weighted Key Driver Analysis (wKDA). In the 

current study, we used MSEA to assess 1) whether known biological processes, pathways or 

https://bioconductor.org/packages/devel/bioc/html/Mergeomics.html
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transcription factor targets were enriched for BPA molecular signatures as a means to annotate 

the potential functions or regulators of the molecular signatures, and 2) whether the BPA 

signatures demonstrate enrichment for disease associations identified in human genome-wide 

association studies (GWAS) of various complex diseases (Figure 4.11). wKDA leverages gene 

network topology (interactions or regulatory relations among genes) and edge weight (strength or 

reliability of interactions and regulatory relations) information of graphical gene networks to 

predict potential key regulators of a given group of genes, in this case, the BPA-associated 

DEGs. Both MSEA and wKDA were built around a chi-square like statistics (See Appendix) 

that yields robust findings that have been experimentally validated [75, 161, 162]. Details of 

each usage of the Mergeomics package are discussed below. 

Functional annotation of DEGs and DMCs 

To infer the functions of the DEGs and DMCs affected by BPA, we used MSEA to annotate the 

DEGs or local genes adjacent to the DMCs with known biological pathways curated from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [49] and Reactome [48]. In brief, we 

extracted the differential expression p-values of genes in each pathway from the differential 

expression or methylation analyses and compared these p-values against the null distribution of 

p-values from random gene sets with matching gene numbers. If genes in a given pathway 

collectively show more significant differential expression or differential methylation p-values 

compared to random genes based on a chi-square like statistic, we annotate the DEGs or DMCs 

using that pathway (See Appendix). DEGs and DMCs can have multiple over-represented 

pathways. 
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Identification of transcription factor (TF) hotspots perturbed by BPA 

To dissect the regulatory cascades of BPA, we first assessed whether BPA-associated DEGs 

were downstream targets of specific transcription factors. The hypothesis behind this analysis is 

that BPA first affects TFs which in turn regulate the expression of downstream genes. We used 

TF regulatory networks for adipose, brain, and liver tissue retrieved from the FANTOM5 

database [175]. Note that only a whole brain (instead of hypothalamus) TF network was 

available, which may only partially represent hypothalamic gene regulation. Each TF network 

was processed to keep the edges with high confidence (See Appendix). To identify TFs whose 

targets were perturbed by BPA, the downstream nodes of each TF in the network were pooled as 

the target genes for that TF. We then assessed the enrichment for BPA exposure related DEGs 

among the target genes of each TF using MSEA. TFs with FDR < 5% were considered 

statistically significant. Cytoscape software was used for TF network visualization [116]. 

Bayesian network and Weighted Key Driver Analysis (wKDA) to identify potential non-TF 

regulators 

To further identify non-TF regulators that sense BPA and then perturb downstream genes, we 

used Bayesian networks (BN) of adipose, hypothalamus and liver tissues constructed from 

genetic and transcriptomic data from several large-scale mouse and human studies (Table S4.1, 

See Appendix). wKDA was used to identify network key drivers (KDs), which are defined as 

network nodes whose neighboring subnetworks are significantly enriched for BPA-associated 

DEGs. Briefly, wKDA takes gene set G (i.e. BPA DEGs) and directional gene network N (i.e. 

BNs) as inputs. For every gene K in network N, neighboring genes within 1-edge distance were 
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tested for enrichment of genes in G using a chi-square like statistics followed by FDR 

assessment by permutation (See Appendix). Network genes that reached FDR < 0.05 were 

reported as potential KDs.  

Association of BPA DEGs and DMCs with mouse phenotypes and human diseases/traits 

To assess whether the BPA molecular signatures were related to phenotypes examined in the 

mouse offspring, we calculated the Pearson correlation coefficient among expression level of 

DEGs, methylation ratio of DMCs, and the measurement of metabolic traits. For human diseases 

or traits, we accessed the GWAS catalog database [69] and collected the lists of candidate genes 

reported to be associated with 161 human traits/diseases (P < 1e-5). These genes were tested for 

enrichment of the BPA DEGs and DMCs in our mouse study using MSEA. We further curated 

all publicly available full summary statistics for 61 human traits/diseases from various public 

repositories (Table S4.2, See Appendix). This allowed us to apply MSEA to comprehensively 

assess the enrichment for human disease association among BPA transcriptomic signatures using 

the full-spectrum of large-scale human GWAS. For each tissue-specific gene signature, we used 

the SNPs within a 50kb chromosomal distance as the representing SNPs for that gene. The 

trait/disease association p-values of the SNPs were then extracted from each GWAS and 

compared to the p-values of SNPs of random sets of genes to assess whether the BPA signatures 

were more likely to show stronger disease association in human GWAS (Figure 4.11, See 

Appendix). This strategy has been successfully used in our previous animal model studies to 

assess the connection of genes affected by environmental perturbations such as diets and trauma 

to various human diseases [160, 203]. 
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4.6   Tables 

Table 4.1 Count of differentially expressed genes in adipose, hypothalamus and liver tissue 

following prenatal exposure to BPA (n = 3). 
 FDR < 5% P < 0.01 

 All Up-regulated Down-regulated All Up-regulated Down-regulated 

Adipose 86 46 40 213 123 90 

Hypothalamus 93 65 28 375 234 141 

Liver 855 439 416 980 493 487 
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Table 4.2 Count of differentially methylated regions in hypothalamus and liver tissue following 

prenatal exposure to BPA (n = 3). 
 FDR < 5% P < 0.01 

 All 
Hyper 

methylated 

Hypo 

methylated 
All 

Hyper 

methylated 

Hypo 

methylated 

Adipose 5136 2413 2723 38771 17928 20846 

Hypothalamus 104 49 55 8321 3862 4459 

Liver 476 326 150 14025 7413 6612 
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Table 4.3 Top 5 human traits whose associated genes in genome-wide association studies are 

enriched for differentially methylated CpGs (DMCs) across adipose, hypothalamus and liver at 

FDR < 1% in MSEA. 

Human trait 
Adipose Hypothalamus Liver 

P FDR P FDR P FDR 

Obesity-related traits 1.28E-16 0.00% 3.03E-15 0.00% 2.71E-19 0.00% 

Body mass index 1.30E-13 0.00% 3.74E-07 0.00% 9.66E-12 0.00% 

Post bronchodilator 

FEV1/FVC ratio 
8.17E-09 0.00% 1.45E-08 0.00% 3.67E-07 0.00% 

Type 2 diabetes 1.21E-05 0.03% 8.97E-09 0.00% 0.001243 0.92% 

Platelet distribution width 8.16E-08 0.00% 7.62E-05 0.16% 5.20E-05 0.12% 
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4.7   Figures 
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Figure 4.1 Overall study design and transcriptomic alterations in adipose, hypothalamus and 

liver. 

 

A) Framework of multi-omics approaches to investigate the impact of prenatal BPA exposure. B) 

Heatmap of expression changes in adipose, hypothalamus and liver for the top 100 differentially 

expressed genes (DEGs) affected by BPA. Color indicates fold change of expression, with red 

and blue indicating upregulation and downregulation by BPA. C) Venn Diagram demonstrating 

tissue-specific and shared DEGs between tissues. D-F) Significantly enriched pathways (FDR < 

5%) among DEGs from each tissue. Enrichment p-value (shown in parenthesis following the 

name of functional annotation) is determined by MSEA. The fold change and statistical 

significance for the top 5 differentially expressed genes in each pathway are shown. *, p < 0.05; 

**, FDR < 5% in differential expression analysis using DEseq2.
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Figure 4.2 Prenatal BPA exposure induced expression change for genes from the adipocyte 

differentiation (A), triglyceride biosynthesis (B) and glucose metabolism (C) in the adipose 

tissue. 

 

P-values for enrichment of pathway genes among DEGs (shown in parenthesis in each panel 

heading) were determined by MSEA. *p < 0.05 in differential expression tests for individual 

genes by DEseq2; **FDR < 5% in differential expression tests for individual genes by DEseq2.
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Figure 4.3 Prenatal BPA exposure induced methylomic level alteration in adipose, 

hypothalamus and liver. 

 

A) Heatmap of methylation level changes for the top 100 differentially methylated CpGs 

(DMCs). Color indicates change in methylation ratio, with red and blue indicating upregulation 

and downregulation by BPA. B) Venn Diagram of genes with local DMCs between tissues 

shows tissue-specific and shared genes mapped to DMCs. C) Significantly enriched pathways 

that satisfied FDR < 1% across DMCs from adipose, hypothalamus, and liver tissues. 
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Enrichment p-value is determined by MSEA. D) Fold enrichment for positive correlations (red 

bars) or negatively correlations (blue bars) between DMCs and local DEGs, assessed by different 

gene regions. *, p < 0.05; **, p < 0.01; ***, p < 0.0001; enrichment p-values were determined 

using Fisher’s exact test.
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Figure 4.4 Gene body location distribution for hyper- and hypo- methylated DMC s in adipose 

(A), hypothalamus (B), and liver (C).
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Figure 4.5 Quantile-quantile plots for the absolute Pearson correlation with local DMC for 

DEGs and Non DEGs in adipose, hypothalamus, and liver tissue.  

 

Statistical difference of the distribution of correlation value between DEGs (FDR < 5%) and non 

DEGs is determined by the Kolmogorov–Smirnov test.
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Figure 4.6 Scatter plots of correlations between DEG expression levels and DMC methylation 

ratios for Slc25a1 in adipose, Mvk in hypothalamus, and Gm20319 in liver.
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Figure 4.7 Transcription factors and key drivers orchestrate BPA induced gene expression level changes. 

 

A) Liver transcription factor regulatory networks for the top ranked transcription factors (FDR < 5%) based on enrichment of liver 

DEGs among TF downstream targets. Network topology was based on FANTOM5. For TFs with > 20% overlapping downstream 

targets, only the TF with the lowest FDR is shown. B) Gene-gene regulatory subnetworks (Bayesian networks) for cross-tissue key 

drivers. Network topology was based on Bayesian network modeling of each tissue using genetic and transcriptome datasets from 

mouse and human populations. For each tissue, if >= 2 datasets were available for a given tissue, a network for each dataset was 

constructed and a consensus network was derived by keeping only the high confidence network edges between genes (edges appearing 

in >= 2 studies).
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Figure 4.8 Measurements of metabolic traits in male offspring and the correlation between gene 

expression, methylation and metabolic traits. 

 

A) Body weight for male offspring with prenatal exposure to corn oil (n = 9) or BPA (n = 11). B) 

Lipid and glucose profiles for male offspring with prenatal exposure to corn oil (n = 9) or BPA 

(n = 11) measured at 3 weeks of age. C) Percentage of tissue-specific DEGs that are correlated 

with metabolic traits (p < 0.05). D) Percentage of tissue-specific DMCs that are correlated with 

metabolic traits (p < 0.05). (A-B) p-values were determined using Student’s t-test. (C-D) p-

values were determined using Pearson correlation test.
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Figure 4.9 Pair-wise correlation between expression level, methylation ratio and metabolic 

profiles (triglyceride, glucose level, body weight) for Fasn, Igf1r and Adh1. 

 

P_cor, p-value was determined using Pearson correction test; P_DEG was determined using 

differential expression test; P_DMC was determined using differential methylation test.
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Figure 4.10 Association of differential expression signatures from adipose (A), hypothalamus 

(B) and liver (C) with 61 human traits/diseases, color coded into nine primary categories. 

 

P-values are determined using MSEA. Red dashed line indicates the cutoff for Bonferroni-

corrected p = 0.05. Names of traits/diseases whose p-values didn’t pass Bonferroni-corrected 

cutoff were not shown.
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Figure 4.11 Schematic illustration of MSEA.
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4.8   Appendix 

Marker-set Enrichment Analysis (MSEA) 

MSEA assesses whether a defined group of genes (members of canonical pathways, TF target 

genes, DEGs, etc.) shows enrichment of molecular markers (DEGs, DMCs, disease-associated 

SNPs, etc.) compared to random chance [75]. For the list of markers mapped to each gene-set, 

MSEA tested whether the marker list exhibited significant enrichment of markers with stronger 

biologically relevant signatures (differential expression, differential methylation, disease 

association, etc.) using a chi-square like statistic:⁡𝜒 = ∑
𝑂𝑖−𝐸𝑖

√𝐸𝑖+𝜅

𝑛
𝑖=1 , where n denotes the number of 

quantile points (we used ten quantile points ranging from the top 50% to the top 99.9% based on 

the rank of p-values), O and E denote the observed and expected counts of positive findings (i.e. 

signals above the quantile point), and κ = 1 is a stability parameter to reduce artefacts from low 

expected counts for small gene sets. The varying quantile thresholds allow the statistic to be 

adoptable to studies of varying sample size and statistical power. The null background was 

estimated by permuting gene labels to generate random gene sets matching the gene number of 

each gene set, while preserving the assignment of markers to genes.  For each gene set, 10000 

permuted gene sets were generated and enrichment p-values were determined from a Gaussian 

distribution approximated using the enrichment statistics from the 10000 permutations and the 

statistics of the gene sets. Finally, Benjami-Hochberg FDR was estimated across all modules 

tested for each GWAS. 
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In the study, MSEA was used in two analytical scenarios (Figure 4.11), 1) to assess the 

enrichment for differential expression/methylation signals among gene members of canonical 

pathways and TF downstream targets, and 2) to assess the enrichment for association signals 

from 61 human GWAS (Table S4.2) among tissue-specific BPA DEGs. In the second scenario, 

GWAS reported SNPs within the 50kb up/down-stream chromosomal distance of a gene were 

mapped to the corresponding gene.  

FANTOM5 transcription factor network 

We accessed the transcription factor networks for “adipose_tissue_adult”, “brain_adult” and 

“liver_adult” from the FANTOM5 database [175]. The original connectivity of the FANTOM5 

networks was too high, which violates the scale-free assumption of biological network topology 

and may lead to spurious results in subsequent analysis. Thus, we performed step-wise filtering 

by removing the networks edges with the lowest confidence score and recursively evaluated the 

scale-freeness of the resulting network. The removal process terminated as soon as the network 

reached boundary scale-freeness as defined by the criterion that at least 25% nodes has a degree 

(number of genes connected to the node) of 1. The downstream genes of each TF in the filtered 

network were pooled as the target genes for that TF. 

Bayesian networks 

BNs were constructed using a previously established method [61, 62]. BN are directed acyclic 

graphs with edges defined by conditional probabilities characterized by the distribution of states 

of each gene given the state of its parents. A joint probability distribution over all network genes 

can be defined based on network topology, and the likelihood of a BN network model can be 
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determined with given observed transcriptomic data (Table S4.1) using Bayes’ formula [204]. 

For each data set, 1000 BN with different random seeds were reconstructed using Monte Carlo 

Markov Chain simulation, and the model with the best fit for each network was determined. In 

the resulting set of 1000 networks, edges appearing in over 30% of the networks were included 

in a consensus network. Causal direction was inferred between genes with genetic information as 

priors for the network [205]. For each tissue, the union of nodes and edges from BNs of multiple 

mouse and human studies were used as tissue-specific networks. 

Weighted Key Driver Analysis (wKDA) 

BPA induced DEGs were mapped onto constructed BNs to identify key drivers (KDs) using the 

weighted key driver analysis (wKDA) implemented in Mergeomics [75].  wKDA uniquely 

considers the edge weight information in the form of edge consistency score for BNs. 

Specifically, a network was first screened for suitable hub genes whose degree (number of genes 

connected to the hub) is in the top 25% of all network nodes. Once the hubs have been defined, 

their local one-edge neighborhoods, or “subnetworks” were extracted. All genes in each of the 

tissue-specific DEG sets were overlaid onto the hub subnetworks to see if a particular 

subnetwork was enriched for the genes from the DEG sets. The edges that connect a hub to its 

neighbors are simplified into node strengths (strength = sum of adjacent edge weights) within the 

neighborhood, except for the hub itself. The test statistic for the wKDA is analogous to the one 

used for MSEA:⁡𝜒 =
𝑂−𝐸

√𝐸−𝜅
, except that the values O and E represent the observed and expected 

ratios of genes from DEG sets in a hub subnetwork. In particular,⁡𝐸 =
𝑁𝑘𝑁𝑝

𝑁
 is estimated based on 

the hub degree Nk, disease gene set size Np and the order of the full network N, with the implicit 
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assumption that the weight distribution is isotropic across the network. Statistical significance of 

the disease-enriched hubs, henceforth KDs, is estimated by permuting the gene labels in the 

network for 10000 times and estimating the p-value based on the null distribution. To control for 

multiple testing, stringent Bonferroni adjustment was used to focus on the top robust KDs. 

Human GWAS summary statistics 

We accessed and curated full summary statistics of 61 different human GWAS from diverse 

public data repositories (Table S4.2). For each GWAS, we removed SNPs with a minor allele 

frequency < 0.05. For SNPs that are in linkage disequilibrium with r2 > 0.5, only the SNP with 

the strongest disease association was kept. The 61 GWAS traits/diseases were further 

categorized in nine categories, namely adult anthropometric traits, behavior disorders, 

cardiometabolic diseases, early growth traits, glucose and insulin traits, inflammatory bowel 

diseases, lipid traits, neurodegenerative diseases and psychiatric disorders. 
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