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Characterization of Prototype Superconducting Magnetic
Quadrupoles for the High Current Transport Experiment

22 February 2001
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[GLSabbi@Ibl.gov, (510) 495-2250}, and Peter Seidl [(PASeidi@1bl.gov, (510) 486-7653]

l. Introduction

Later phases of the High Current Transport Experiment (HCX) at LBNL will employ
superconducting magnetic quadrupole lenses to focus an intense, heavy-ion beam over
approximately 50 lattice periods (100 quadrupoles). Here we present a characterization
of a baseline quadrupole design suitable for transporting a single, low-energy (~2 MeV),
high-current (~800 mA) heavy-ion (K} beam that will be provided from an existing
injector and beam matching section . For optimal performance in this application, a
compact quadrupole magnet providing high focusing strength and high field quality is
required. The reference parameters that we have chosen take into account magnet
development work by AML, LLNL, and MIT and result in a transport lattice well
matched to programmatic needs with a lattice period of approximately 50 cm. The goal
of this note is to introduce a common framework where the magnetic performance of
different designs can be compared. In that regard, we try to avoid the details of an earlier
parameter note [1] where provistons for tweaks in magnet excitation, cryostat assembly,
etc. were discussed in fairly general terms. This note is not intended to be a final
specification for the HCX quadrupoles to be constructed or to be the sole basis on which
competing magnet designs will be compared. Other aspects such as prototype test results,
economic considerations, and attractiveness within the context of ultimate applications in
multi-beam drivers for heavy-ion fusion (i.e., compatibility with magnet arrays, etc.) will
all factor in the selection of the appropriate design option.

This note is organized as follows. Magnet characterizations including geometric and
conductor parameters are given in Sec II. Performance parameters to be reported that
quantify the magnet properties are outlined in Sec IIL. Supporting information is included
in appendices. A reference coordinate system to be employed in field calculations is
defined in Appendix A. Detailed descriptions of the methods to be used to calculate the
integrated field gradient and field errors of the magnet are given in Appendix B. Finally,
in Appendix C, the magnet operating point is defined.



II. Design Parameters

We specify geometric parameters and conductor properties of the magnet and ask that the
integrated quadrupole gradient (i.e., the focusing strength) of the magnet be maximized
beyond a minimum acceptable value while achieving optimal integrated field quality.
Compact designs that achieve a high integrated gradient with good field quality will be
judged as having superior performance. To simplify comparisons and the application of
design results, we specify a reference coordinate system to be used in Appendix A and
methods to calculate field quantities in Appendix B.

Axial Geometry

Fixed axial length £_,; =125mm for the coil assembly. This will be measured from

the extreme axial excursions of the current carrying turns of the coil assembly,
excluding leads.

Minimize axial length £, <155mm of the magnet assembly. This will be measured
from the extreme axial excursions of the full magnet assembly including coil forms,

- the iton yoke, leads and splices and their mechanica! support elements.

Transverse Geomeiry

Fized clear bore radius r,,,, =35mm for the magnet assembly. This is the intrinsic
clear aperture of the magnet structure without anxiliary components (e.g. beam pipe

and insulation for the warm bore beam pipe) and corresponds to the closest radial
approach of materials to the axis of symmetry of the magnet.

Maximum outer half-width w_, of the magnet assembly subject to w_,, < 64 mm.

This width is measured along the axis of the magnetic pole as sketched in Figure 1 for
rectangular and cylindrical magnet cross-sections. The limiting value of
W, = 64mm does not include the iron yoke and applies to the coil axial section only

(l.e.,for |z| <!, 12 =62.5mm). No limit is presently set for the maximum outer

extent of the lead/splice section, but this section should be made as compact as
possible.
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Figure 1: The clear bore radivs r,,, and the maximum half-width w_, are illustrated in

cross-section for magnets with cylindrical shell and rectangular coil geometry.

Cylindrical

Rectangular

Conductor Properties

In the range of inferest (4-6 T), the dependence of the critical current density on field
for NbTi conductor at 4.5 K is well approximated by a linear function:

dr
T.(B.Ty) =1 (By,Ty) +—<(Bo,Ty) - (B~ By)

This characterization along with the following parameters (close to “SSC”

specifications) are to be assumed in calculating the minimum quench current of the
magnet:

B, = 5T (reference field)

T, =4.5 K (reference temperature)
J .(By,T,) =2.55 kA/mm’

dJ

[

dB

(B,.T,) = —0.6 kA/(mm’ Tesla)

* The copper to superconductor ratio should be adjusted to obtain a copper cuirent

density J_, <1.3 kA/mm” at the short sample current (see Appendix C).



Integrated Quadrupole Gradient

e Maximize the integrated quadrupole gradient f B;dz subject to f B;dz =8.5

Tesla. The gradient J'_w B; dz should be calculated as specified in Appendix B at a

nominal (operating) current excitation corresponding to 85% of the quench current
(e, I, =085 -1 ,where I isthe “short-sample” current as defined in Appendix
Q).

Field Quality

e Achieve the highest axially integrated field quality possible in terms of the fractional
total field error 6F defined in Appendix B subject to &F <50 (10" units) measured at

a good field radius of r, =25 mm=0.71-r, This field error should include
5 cl

Tear *
systematic contributions intrinsic to magnet, including leads, but not construction
errors. The criteria OF <50 should be taken as a maximum acceptable field error and
efforts should be made to make 6F as small as possible.

Note:

Neither of the AML/LLNL first prototypes are fully consistent with the design
-characterizations given here. We require that future design iterations comply with these
guidelines. However, the magnetic performance characterization proposed in Sec. IIT
should be applied to present prototype designs with minimal changes before proceeding
to a fully optimized design consistent with the requirements presented here. We believe
that despite differences in the prototypes, meaningful characterizations of the first
prototypes can be made with the information requested.

lll. Performance parameters

The following data should be presented to characterize the magnet design:

integrated Quadrupole Gradient fﬂB;dz:

s Provide the integrated quadrupole gradient J-B;dz of the magnet, calculated as

—c

defined in Appendix B at the operating point specified in Appendix C.



s The value of the short sample current I, and the cable parameters are also requested
for reference purposes.

If the designers feel that the reference conductor properties result in a conservative
estimate of the maximum quench current, an additional set of conductor properties (both

superconductor and J_, ) can be analyzed. The corresponding short sample current and
integrated gradient at the operating point should be provided.

Field Quality
a) Design Geometry:

s Tabulate both the fractional multipole errors b, and da,,, and the fractional total field
error OF at a reference radius r, =25mm =0.71-7,

- 1ear - 111ESE integrated field errors
are defined in Appendix B.

» Tabulate field errors at full and 50% coil excitation (I =0.5-1
I,=085-1).

with

ap ?

Multipole errors should be given up to high enough harmonic number n to demonstrate
clear convergence for harmonics allowed by quadrupole symmetry (n =2,6,10,---} and
any additional harmonics allowed by lead configurations, etc. We request field errors at
full and 50% coil excitation to evaluate possible changes due to iron saturation effects.
Data on fractional multipole errors db, and da, are requested for completeness, but the

fractional total field error OF is the relevant quantity that the magnet geometry should be
optimized with respect to. However, in most designs, it is reasonable to expect that the
cascade in multipole error terms should converge rapidly and the terms should bear a
clear relation on to the total field error OF .

The use of these integrated field errors allows the design of magnets with compensating
errors in the ends and axial mid-section of the coils to achieve high average field quality.
Simulations have determined that this should be sufficient for our purposes and any
design with sufficient parametric freedom in the placement of coils and surfaces should
be capable of achieving high integrated field quality. However, it is better if end errors
can be smaller so that large compensations are not necessary.

b) Construction Errors

o Tabulate integrated fractional multipole field errors b, and du, that result from

deviations from design geometry and design material properties, at the same good
field radius used for the intrinsic field quality at nominal coil excitation (I =1_).



Assumptions and methods used in the analysis must be carefully specified to allow
interpretation of results. Multipoles that are not allowed by the ideal magnet geometry
should be presented along with any appreciable changes in the allowed, intrinsic

harmonics. An example of methods to describe and report construction errors can be
found in Ref. {2].

Magnet Effective Length
* Magnst effective axial length as defined by £, =~ B; (z)dz/ B, (z=0).

B,(z=0)
-

=

» Half gradient axial length £,,, where B;[zz flo,z}:

« Calculate the effective lengths £, and £,,, at the magnet operating point
I =1, specified in Appendix C.

Here, B;(z) = 0B, (%)/9y|,

ey = 0B, (X)/ axl 0y 18 the quadrupole gradient of the
magnet (with the transverse x — and y —coordinate axes chosen along the principle axes
of the quadrupole field as specified in Appendix A). The parameters £,; and £,,,

together help better characterize the fringe field properties of the magnet and the resulting
optical properties. Smaller {,,, indicates a lesser extent of the axial fringe field.

Axial and Transverse Geometric Factors

= Axial geometric extent of the magnet assembly, £__,. Two values for £ _ are

requested, one measured from the axial ends of the coil forms excluding
splices and leads and their mechanical support structures, and the other for
the full axial length of the magnet including all splices, coil forms, leads,
mechanical supports, etc.

+ Radial geometric extents of the magnet assembly w__. Two values for w__
are requested, one for the coil axial section (i.e., for Iz <{,;/2=0625mm),
and the other including the outermost extent of the lead/splice sections.

Achieving large integrated gradient r B; dz with smaller radial build w__ demonstrates

more effective use of conductor and materials. Smaller axial build £, , demonstrates
more efficient termination of axial magnet support structures, splices, etc.
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Appendix A: Reference coordinate system

To simplify comparisons and the evaluation of design data in beam dynamics evaluations,
we require that the designers use the reference magnet orientation and coordinate system
illustrated in Figure 2 below. The z-coordinate is taken along the axial symmetry axis of
the magnet with z =0 corresponding to the center of the magnet straight section. The z-
axis 1s oriented from the magnet return end towards the lead end. The transverse x-axis is
horizontal and pointing to the right if an observer is facing the magnet from the lead end.
The transverse y-axis is vertical and pointing upwards (i.e., a right-handed system with
% ¥ = Z). The magnet is oriented such that the magnetic midplanes of the principal

quadrupole field component }_3',” lie along the x and y axes while the magnetic poles are

bisected by lines in the transverse x-y plane that are at angles of 7z/4 fromthe x and y
coordinate axes, as sketched. The magnet powering convention is such to provide a
current flow in the negative z direction in the octants which are next to the horizontal (x)
mid-plane, and in the positive z direction in the octants which are next to the vertical (y)
- mid-plane. With this choice of coordinates, note that the principal quadrupole field

B, satisfies dB_, /0x>0.

Figure 2. Ideal magnet geometry and reference coordinates.

y A
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Appendix B: Field calculation

For the axially short magnets of interest, 3D multipole field data must be calculated with
care to have meaning. Without proper resolution of field terms from pseudomoments
resulting from the axial variation of the intrinsic (2D) multipoles [4-6], little direct
meaning can be attached to the terms of an azimuthal harmonic decomposition of the
field in an axial plane. To avoid this confusion, we wish the field quality data to be
specified in terms of axial (z) integrals of the 3D magnetic field components. Denote

integrated x- and y-components of the 3D magnetic field B(x,y.2) by

B.(x,y) =] B.(xy0d

ﬁy (x,y)= .L.. B, (x,y,2)dz

These 2D field components have dimension Tesla-meters and can be combined into a
single complex 2D field ﬁy + iﬁx that is conveniently expanded within the clear magnet
aperture as

Here, over-bars denote complex quantities, 7 = V-1, z=x+ iy, ry is a (arbitrary for
purposes here) normalization radius, 7 is 2 harmonic index, and the C, = B, +i4, are
complex multipole coefficients with real “normal™ and “skew” components B, and A, .
Note that the n =1 harmonics describe the dipole field components, n =2 the
quadrupole field components, 7 =3 the sextupole components, etc. For a magnet
geometry with intrinsic quadrupole symmetry, only non-skew (e.g., allA, =0 and the B,
may be nonzero) harmenics with n = 2,6,10,:--exist and B, will be positive for the

choice of coordinates defined. To make physical connection with the integrated
quadrupole gradient, which is an important measure of the focusing strength of the
magnet, we denocte

| Bjdz=B,



_ 0B,
T oox

x=0,y=0

B
aa = is the local, z-varying quadrupole gradient
y x=0,y=0

of the magnet, which is directly related to the integrated moment B, as specified.

In this notation, B; =

Field quality should be measured in terms of fractional errors relative to the integrated
quadrupole moment within a cylindrical good field radius of r = 1/ Wy = r, contained

within the clear magnet aperture. Both multipole error terms and total field errors will be
requested at the good field radius as a fraction of the quadrupole field amplitude. First,
we request fractional multipole errors:

r n—2 - n-2
ébn=§i <1 .10 &a, R T
B,\ B, ny

These terms should be calculated till well converged for all multipoles intrinsic to
quadrupole geometry (n = 6,10,14,---) and for any additional multipoles (7 =1,3,5,7,---)
that may result from intrinsic geometric effects such as leads and coil imbalances and
from construction errors such as surface imperfections, winding errors, and materials
defects. Terms should be tabulated at each good field radius until clearly converged.

This will generally require more terms for larger good field radii. Since particles respond
to the total field and not individual multipoles, we also request a total field error

oy Max,|B* (r=r,,0)- B, (r, /r(,)eﬂ |
B,(r, 1)

4

Here, Max, denotes the maximum value in azimuthal angle. Note that the numerator of
this expression corresponds to the maximum of the integrated field error (desired
quadrupole term subtracted) around the azimuth of the circle defining the good field
radius and the denominator is the (constant in ) magnitude of the integrated quadrupole
field at the good field radius. This field error contains all multipole components and can
only decrease when moving further within the circle defined by the good field radius
since the integrated field components satisfy a 2D vacuum Laplace equation within the
magnet aperture. It should be demonstrated that this total field error occurs at a particular
angle rather than assuming it must occur at 8 = 45",

Some comments on the application of this formulation are in order. When calculating the
harmonic coefficients A, and B_, sufficient terms and data points (azimuthal nodes)

must be taken to ensure accuracy. Care must be taken for larger good field radii Tys
because as r, approaches the clear bore of the magnet, the series expansion becomes non-

convergent and more, higher-order harmonics become necessary. The use of the
normalization radius 7, in the 2D-field expansion is also arbitrary and is employed so that

10



all multipole terms C, = B, +iA, can be conveniently measured in the same units. The

quantities B_ /" and A /r,"" will be independent of the specific choice of ;.
Appendix C: Operating point

The value of the integrated gradient J. B; dz should be calculated with a coil excitation

1, corresponding to 15% less current than the so-called “short-sample” current
I, defined as follows (see Figure 3 below). Plot the quench current 7 of a sample of

cable as function of the magnetic field B applied to the sample. On the same axes, plot
the current excitation I of the 3D-magnet design versus the peak magnitude B of the 3D
magnetic field within the coil. The short sample current I is the current at the intercept

of these two curves. The magnet operating point is defined at a current excitation of
I=1,=0.85-1 . This margin is needed to ensure that production magnets can be

operated at nominal gradient with little or no training. The 15% design margin taken may
be adjusted based on prototype test results.

Figure 3. Short-sample current definition.

I, Current

I,» quench current of short sample conductor

Short Sample Current, I

-
B, Magnetic Field
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