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Ablation of adult neurogenesis in mice has revealed that young adult-born granule

cells (abGCs) are required for some of the behavioral responses to antidepressants

(ADs), yet the mechanism by which abGCs contribute to AD action remains unknown.

During their maturation process, these immature neurons exhibit unique properties that

could underlie their ability to influence behavioral output. In particular, abGCs in the

DG exhibit a period of heightened plasticity 4–6 weeks after birth that is mediated

by GluN2B-expressing NMDA receptors. The functional contribution of this critical

window to AD responsiveness is unclear. Here, we determined the behavioral and

neurogenic responses to the AD fluoxetine (FLX) in mice lacking GluN2B-containing

NMDA receptors in abGCs. We found that these mice exhibited an attenuated

response to FLX in a neurogenesis-dependent behavioral assay of FLX action, while

neurogenesis-independent behaviors were unaffected by GluN2B deletion. In addition,

deletion of GluN2B attenuated FLX-induced increases in dendritic complexity of abGCs

suggesting that the blunted behavioral efficacy of FLX may be caused by impaired

differentiation of young abGCs.

Keywords: neurogenesis, dentate gyrus granule cells, GluN2B, synaptic plasticity, selective serotonin reuptake

inhibitor (SSRI), antidepressants

INTRODUCTION

Adult hippocampal neurogenesis is a process that results in the generation of new neurons in the
dentate gyrus (DG) throughout life (Gross, 2000; Kempermann et al., 2015). After their birth,
newborn cells progress through different developmental stages that are marked by unique gene
expression patterns, morphological features, and electrophysiological properties (Zhao et al., 2008;
Li et al., 2009; Drew et al., 2013, 2015; Piatti et al., 2013). Treatment with selective serotonin
reuptake inhibitors (SSRIs) such as fluoxetine (FLX) can stimulate all stages of adult hippocampal
neurogenesis. Increases in proliferation and survival have been observed leading to an overall
increase in the number of adult-born granule cells (abGCs) integrating into the hippocampal
circuit (Malberg et al., 2000; Santarelli et al., 2003; Encinas et al., 2006; Wang et al., 2008; David
et al., 2009). Maturation of these abGCs is enhanced, as is a neurogenesis-dependent form of
long-term potentiation (LTP) in the DG evoked by medial perforant path stimulation under intact

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00242
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00242&domain=pdf&date_stamp=2016-05-31
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:rh95@cumc.columbia.edu
mailto:mazen.kheirbek@ucsf.edu
http://dx.doi.org/10.3389/fnins.2016.00242
http://journal.frontiersin.org/article/10.3389/fnins.2016.00242/abstract
http://loop.frontiersin.org/people/143644/overview
http://loop.frontiersin.org/people/3651/overview
http://loop.frontiersin.org/people/104899/overview


Tannenholz et al. Neurogenesis, Plasticity, and SSRI Action

GABAergic tone (ACSF-LTP; Wang et al., 2008). The timeline of
neurogenesis effects match the drug’s delayed onset of therapeutic
action (Malberg et al., 2000; Santarelli et al., 2003; Wang et al.,
2008). Importantly, when adult hippocampal neurogenesis is
ablated, some of the behavioral effects of chronic FLX treatment
are lost, revealing that abGCs not only respond to this treatment
on a cellular level, but also contribute to the antidepressant
(AD) action of the drug (Santarelli et al., 2003; Airan et al.,
2007; Wang et al., 2008; David et al., 2009). While ablation
methods have demonstrated the necessity of abGCs in certain
AD-related behaviors, these techniques remove all abGCs from
the circuit and do not allow for further dissection of chronic
FLX’s numerous effects on adult hippocampal neurogenesis. An
alternative approach to studying this process would be to target
and alter specific properties of young abGCs without removing
these cells from the hippocampal circuit in order to determine
which of these properties are critical for their contribution to the
therapeutic action of FLX.

During the maturation process, abGCs exhibit distinct
properties that could underlie their ability to influence behavioral
output (Zhao et al., 2008; Li et al., 2009; Deng et al., 2010;
Denny et al., 2012; Drew et al., 2013, 2015; Piatti et al., 2013;
Danielson et al., 2016). In the period 4–6 weeks after birth, abGCs
are more plastic than their mature counterparts—they exhibit a
lower threshold for LTP induction and larger LTP amplitude (Ge
et al., 2007). GluN2B antagonists block this enhanced plasticity,
demonstrating that this unique electrophysiological property of
abGCs is mediated by GluN2B-containing NMDA receptors
(Snyder et al., 2001; Ge et al., 2007). This enhanced plasticity can
be seen on the population level as well, underlying ACSF-LTP in
the DG, which can be eliminated with ablation of neurogenesis
or GluN2B antagonists (Snyder et al., 2001; Saxe et al., 2006).
Conversely, increasing neurogenesis genetically or with chronic
AD treatment increases levels of ACSF-LTP (Wang et al., 2008;
Sahay et al., 2011a). Thus, a potential mechanism bywhich abGCs
may contribute to AD behavioral efficacy is by increasing the
number of highly plastic units in the DG circuit. Previously, we
showed that deletion of GluN2B from abGCs in the DG abolished
ACSF-LTP and impaired contextual fear discrimination, but had
no impact on anxiety or AD-like behaviors (Kheirbek et al., 2012).
Here, using the same approach, we tested whether GluN2B-
containing NMDA receptors impact the AD action of FLX. We
show that deletion of the GluN2B subunit significantly attenuates
a neurogenesis-dependent behavioral response to FLX, and
additionally may block FLX’s ability to enhance young abGCs’
maturation and subsequent integration into the hippocampal
network.

MATERIALS AND METHODS

Mice
Experimental mice were homozygous for a loxP-flanked Grin2b
allele (GluN2Bf/f; von Engelhardt et al., 2008), homozygous
for the ROSA26-STOP-floxed enhanced yellow fluorescent
protein (EYFP) transgene (ROSA26fstopEYFP/fstopEYFP; Srinivas
et al., 2001), and hemizygous for a NestinCreERT2 transgene
(NCreERT2; Dranovsky et al., 2011). Grin2b, the gene coding

for GluN2B, consists of 12 coding exons along with three
non-coding exons located in the 5′-untranslated region (Klein
et al., 1998). GluN2Bf/f mice have loxP sites surrounding exon
9 (the 6th coding exon) of Grin2b. In the presence of Cre,
exon 9 gets excised. Western blotting performed using an
antibody that targets the C-terminal domain downstream of
exon 9 has shown decreased GluN2B expression following Cre
recombination, demonstrating that excision of exon 9 results in
the complete absence of GluN2B, not merely a truncated protein
product (von Engelhardt et al., 2008). Ectopic expression has
been reported in the NestinCreERT2 line and the impact this
may have on our behavioral phenotype will be addressed in the
discussion (Sun et al., 2014). Eight- to twelve-week-old mice
were injected with tamoxifen (TMX, 3mg dissolved in a solution
of corn oil and 10% ethanol) or vehicle (corn oil/10% ethanol
solution) intraperitoneally (IP) once per day for 5 consecutive
days. Previous work with this NCreERT2 line did not reveal any
significant sustained toxic effects of CreERT2 translocation to the
nucleus in progenitor or daughter cells in the DG (Dranovsky
et al., 2011; Kheirbek et al., 2012). Additionally, it has been
shown that a brief pulse of TMX does not affect hippocampus-
dependent behavior 6 weeks after administration of the drug
(Sahay et al., 2011a). All experiments were approved by and
conducted in accordance to the guidelines of the Institutional
Animal Care and Use Committee at Columbia University and the
New York State Psychiatric Institute.

Drugs
For behavior and neurogenesis measures, AD treatment began
∼6 weeks after the last TMX injection. 5-bromo-2′-deoxyuridine
(BrdU) was injected (150 mg/kg, IP dissolved in saline) once
per day for 2 days just prior to the start of AD treatment. For
dendritic morphology analysis, AD treatment began ∼5 weeks
after TMX administration and BrdU (75 mg/kg, IP dissolved in
saline) was injected 4 times over 8 h the day before AD treatment
began. For all mice, FLX (18 mg/kg/day in water) or vehicle
(VEH, water) was delivered by oral gavage and in the drinking
water (160 mg/mL) at a schedule of 5 consecutive days gavage
followed by 2 consecutive days of water, then repeated for the
duration of treatment.

Behavioral Testing
All behavioral experiments were conducted in male mice 18–24
weeks of age.

Novelty-Suppressed Feeding
In the novelty suppressed feeding (NSF) test, chronic AD
treatment decreases latency to feed in the center of a novel arena
after overnight food deprivation (Samuels and Hen, 2011). In
mice with ablated neurogenesis, chronic AD treatment is no
longer effective at lowering the latency to feed; therefore, NSF
represents a neurogenesis-dependent behavioral assay of AD
response (Santarelli et al., 2003; David et al., 2009). Mice were
food restricted for 22–24 h and testing began when an animal
was placed in the corner of a brightly lit (∼1250 lux) plastic box
(50 cm long× 28 cm wide× 15 cm deep) covered with the same
type of bedding used in the animal’s homecage. A single pellet of
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food (regular chow) had been positioned on a platform in the
center of the box prior to the start of the test. The latency to
eat (defined as the mouse sitting on its haunches and biting the
pellet with the use of forepaws) was timed. Immediately after the
latency was recorded, the food pellet was removed from the arena.
Animals that did not eat within 10 min were censored during
the statistical analysis. At the end of the session, animals were
placed in their home cage and the amount of food consumed
in 5 min was measured (home cage consumption). Each mouse
was weighed before food deprivation and before testing to assess
the percentage of body weight lost. Percent body weight lost and
home cage consumption served as relative measures of animal
hunger.

Tail Suspension Test
The tail suspension test (TST) is a behavioral despair test during
which the mobility of mice suspended by their tail is measured. A
depressed-like state is characterized by greater immobility while
ADs are able to decrease immobility (Cryan et al., 2005). Sessions
lasted 5 min and were video recorded. Scoring was done by an
observer blind to induction and treatment.

Elevated Plus Maze
Mice were placed in the center of an elevated plus maze (EPM)
consisting of both open and closed arms and were given 5 min to
explore. The test was video recorded and activity was measured
using TopScan software. Their preference for open (anxiogenic)
or enclosed (anxiolytic) spaces was used to assess anxiety (Hogg,
1996).

Immunohistochemistry
For all experiments, mice were perfused (4% paraformaldehyde),
brains postfixed, cryoprotected, and sections (35 µm) of the
entire DG were labeled for BrdU, glial fibrillary acidic protein
(GFAP), neuronal nuclei (NeuN), doublecortin (DCX), Ki-
67, or green fluorescent protein (GFP) [rat-anti-BrdU, 1:100
(Serotec); rabbit-anti-GFAP, 1:1500 (DAKO); mouse-anti-NeuN,
1:500 (Millipore); goat-anti-DCX, 1:500 (Santa Cruz); rabbit-
anti-Ki67, 1:100 (Vector); chicken-anti-GFP, 1:500 (Abcam)], as
previously described (Scobie et al., 2009). An experimenter blind
to induction and treatment counted Ki67+, BrdU+, and DCX+
cells, as well as DCX+ cells exhibiting tertiary dendrites, in every
sixth section throughout the DG. For colabeling of BrdU with
NeuN or GFAP, confocal scans (FluoView1000; Olympus) at 40×
were taken of BrdU+ cells across the anteroposterior axis of the
DG. For the morphological analysis of immature neurons, z-
stack images of BrdU+/DCX+ cells were traced and imported
into Adobe Illustrator CS5 where neurons were reconstructed
using the tracing tool. Images of the reconstructed neurons
were opened in Fiji (http://fiji.sc/Fiji) where dendritic length
was measured using the freehand trace tool and Sholl analysis
was conducted using the Sholl analysis plug-in with parameters
previously described (Sahay et al., 2011a).

Statistical Analysis
Statistical significance was assessed by ANOVA or, in the case
of planned comparisons, by unpaired two-tailed Student’s t-test

using Statview Software. Results in figures are mean ± SEM.
Since many mice did not eat before the 10-min cutoff in the
NSF test, information about their latency to feed was incomplete
and these observations were censored. The Cox proportional
hazards model was used to analyze this data so that we could both
correctly account for the censored data points and evaluate the
effect of multiple variables on survival (Hosmer et al., 2008). SAS
Software was used to perform this analysis. A complete statistical
summary for all experiments is included in Tables 1, 2.

RESULTS

In order to examine the impact young abGCs’ enhanced plasticity
has on behavioral and neurogenic responses to chronic AD
treatment, we specifically deleted the GluN2B subunit from those
neurons. To both spatially and temporally control the deletion
of GluN2B, we employed a double-transgenic mouse model in
which mice express TMX-regulated Cre-recombinase under the
control of the Nestin promoter (NCreERT2), while an encoding
region immediately preceding the first transmembrane domain
of GluN2B is flanked by loxP sites (GluN2Bf/f, Figure 1A). To
label cells that underwent recombination, mice were further bred
to an inducible EYFP reporter line (ROSA26fstopEYFP/fstopEYFP).
TMX injection in adult mice leads to deletion of GluN2B
and expression of YFP in neural precursor cells (NPCs) and
their subsequent progeny (iGluN2BNes, Figure 1A). Littermates
injected with vehicle served as our controls (CTRL, Figure 1A).
We have previously characterized this mouse line and found
that 6 weeks after TMX treatment, ∼70% of immature, DCX+
granule cells in iGluN2BNes mice expressed EYFP and therefore
were born from NPCs that have undergone recombination
and presumably lack GluN2B (Kheirbek et al., 2012). This
was confirmed electrophysiologically as slices from iGluN2BNes

mice lack GluN2B-dependent ACSF-LTP (Kheirbek et al., 2012).
Chronic FLX treatment began 6 weeks after TMX or vehicle
administration in order to determine the effect of ADs in mice
whose young abGC population lacks GluN2B (Figure 1B).

Four weeks after beginning chronic FLX treatment,
iGluN2BNes mice were tested in anxiety and AD-like behavioral
assays. Mice were tested in the NSF test, in which AD efficacy
has been shown to require adult hippocampal neurogenesis
(Santarelli et al., 2003; David et al., 2009). Analysis of latency
to feed in this test revealed a significant interaction between
induction and treatment leading us to look at comparisons
across induction group (Table 1; see also Section Materials
and Methods for a more detailed description of the statistical
analysis used to analyze this data). FLX robustly lowered the
latency to feed in the novel arena in CTRL mice with mice
on FLX ∼11 times more likely to eat at a given time than
VEH mice (Figure 2A). For our iGluN2BNes group, FLX still
significantly lowered the latency to feed in the novel arena, but
the effect was more modest with mice receiving the drug only
∼ 2.5 times more likely to eat at a given time than VEH mice
(Figure 2B). For convenience we have also presented these data
in a bar graph format (see insets in Figure 2A and corresponding
legend). The observed differences in latency to feed were not
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TABLE 1 | Statistical analysis of the behavioral data.

Behavioral Test N Measurement Statistical test Factor Statistic p-value Figures

Novelty

suppressed

feeding

15–18

mice/group

Hazard ratio Cox proportional hazards model Induction χ2
(1)

= 1.4807 0.2237 Figure 2

Treatment χ2
(1)

= 21.7498 <0.0001

Interaction χ2
(1)

= 5.3018 0.0213

Subgroup

treatment effects

CTRL mice Treatment χ2
(1)

= 21.7498 <0.0001 Figure 2A

iGluN2BNes mice Treatment χ2
(1)

= 5.1273 0.0236 Figure 2A

Homecage

consumption

2-way ANOVA Induction F (1, 61) = 0.375 0.5424 Figure 2B

Treatment F (1, 61) = 1.305 0.2578

Interaction F (1, 61) = 0.115 0.7357

% Weight

change

2-way ANOVA Induction F (1, 61) = 0.196 0.6596 Figure 2B

Treatment F (1, 61) = 0.014 0.9047

Interaction F (1, 61) = 0.023 0.8811

Elevated plus

maze

15–18

mice/group

Open arm time 2-way ANOVA Induction F (1, 61) = 0.098 0.7555 Figure 3A

Treatment F (1, 61) = 0.643 0.4258

Interaction F (1, 61) = 0.031 0.8610

Open arm

entries

2-way ANOVA Induction F (1, 61) = 0.966 0.3295 Figure 3B

Treatment F (1, 61) = 0.575 0.4511

Interaction F (1, 61) = 0.082 0.7756

Open arm

distance

2-way ANOVA Induction F (1, 61) = 0.358 0.5518 Figure 3C

Treatment F (1, 61) = 0.214 0.6457

Interaction F (1, 61) < 0.0001 0.9989

Total Distance 2-way ANOVA Induction F (1, 61) = 0.437 0.5112 Figure 3D

Treatment F (1, 61) = 2.947 0.0911

Interaction F (1, 61) = 0.605 0.4398

Tail Suspension

Test

15–18

mice/group

Immobility 2-way repeated measures ANOVA Induction F (1, 60) = 0.346 0.5585 Figure 3E

Treatment F (1, 60) = 1.982 0.1644

Interaction F (1, 60) = 0.001 0.9706

Minute F (4, 240) = 114.851 <0.0001

Minute × induction F (4, 240) = 0.386 0.8187

Minute × treatment F (4, 240) = 4.136 0.0029

Minute × induction

× treatment

F (4, 240) = 0.124 0.9737

Immobility (last

2 min)

2-way ANOVA Induction F (1, 60) = 0.023 0.8809 Figure 3F

Treatment F (1, 60) = 10.402 0.0020

Interaction F (1, 60) = 0.027 0.8692

Planned

Comparison t-test

CTRL mice Treatment t(29) = 2.389 0.0236

iGluN2BNes mice Treatment t(31) = 2.174 0.0375

p < 0.05 are highlighted in bold.
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TABLE 2 | Statistical analysis of neurogenesis measures.

Immunos N Measurement Statistical test Factor Statistic p-value Figures

Ki-67 10–15

mice/group

Proliferation 2-way ANOVA Induction F (1,46) = 0.103 0.7492 Figure 4B

Treatment F (1, 46) = 0.250 0.6198

Interaction F (1, 46) = 0.127 0.7231

BrdU 14–16

mice/group

Survival 2-way ANOVA Induction F (1,54) = 7.897 0.0069 Figure 4C

Treatment F (1, 54) = 25.980 <0.0001

Interaction F (1, 54) = 0.002 0.9615

Planned

Comparison t-test

CTRL mice Treatment t(26) = −4.472 0.0001

iGluN2BNes mice Treatment t(28) = −3.143 0.0039

BrdU/NeuN/GFAP 3 mice/

group

19–39

cells/mouse

%BrdU+/NeuN+ 2-way ANOVA Induction F (1, 8) = 0.060 0.8133 Figure 4D

Treatment F (1, 8) = 7.332 0.0268

Interaction F (1, 8) = 0.439 0.5261

Planned

Comparison t-test

CTRLmice Treatment t(4) = −0.870 0.4334

iGluN2BNes mice Treatment t(4) = −2.770 0.0503

%BrdU+/GFAP+ 2-way ANOVA Induction F (1, 8) = 0.001 0.0775

Treatment F (1, 8) = 4.715 0.0617

Interaction F (1, 8) = 0.971 0.3534

Planned

Comparison t-test

CTRLmice Treatment t(4) = 1.226 0.2874

iGluN2BNes mice Treatment t(4) = 2.292 0.0837

DCX 8–16

mice/group

Immature

Neuron

Number

2-way ANOVA Induction F (1, 41) = 0.125 0.7253 Figure 4F

Treatment F (1, 41) = 6.851 0.0124

Interaction F (1, 41) = 0.578 0.4514

Planned

Comparison t-test

CTRLmice Treatment t(20) = −2.909 0.0087

iGluN2BNes mice Treatment t(21) = −1.141 0.2667

6

mice/group

Tertiary

Dendrites

2-way ANOVA Induction F (1, 20) = 0.532 0.4742 Figure 4G

Treatment F (1, 20) = 6.356 0.0203

Interaction F (1, 20) = 0.511 0.4832

Planned

Comparison t-test

CTRLmice Treatment t(10) = −2.022 0.0708

iGluN2BNes mice Treatment t(10) = −1.506 0.1629

(Continued)
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TABLE 2 | Continued

Immunos N Measurement Statistical test Factor Statistic p-value Figures

BrdU/DCX 3 mice/

group 2–5

cells/

mouse

Dendritic

length

2-way ANOVA Induction F (1,34) = 1.724 0.1980 Figure 4H

Treatment F (1, 34) = 2.222 0.1453

Interaction F (1, 34) = 0.995 0.3256

Planned

Comparison t-test

CTRLmice Treatment t(15) = −1.739 0.1025

iGluN2BNes mice Treatment t(19) = −0.358 0.7246

Sholl Analysis Repeated measures ANOVA—FLX treated mice Induction F (1, 18) = 2.152 0.1596 Figure 4I

Radius F (20, 360) = 24.446 <0.0001

Radius × Induction F (20, 360) = 1.174 0.2742

t-test radius 70 Induction t(18) = 3.760 0.0014

radius 80 Induction t(18) = 2.202 0.0410

Repeated measures ANOVA—VEH treated mice Induction F (1, 16) = 0.117 0.7363 Figure 4J

Radius F (20, 320) = 16.139 <0.0001

Radius × Induction F (20, 320) = 0.187 >0.9999

p < 0.05 are highlighted in bold.

due to changes in appetite as all groups exhibited similar levels
of home cage food consumption and weight loss during the
overnight food deprivation (Figure 2B). This indicates that loss
of GluN2B from abGCs causes a blunting of the FLX effect in a
neurogenesis-dependent behavioral assay of AD response.

We also determined whether FLX treatment or GluN2B
deletion altered anxiety-related behavior in the EPM. All groups
showed similar levels of open arm exploration as measured
by time spent in the open arms, open arm entries, and
distance traveled in the open arms (Figures 3A–C). Furthermore,
total exploration of the maze was similar for all the animals
(Figure 3D). Together this shows that neither AD treatment nor
GluN2B deletion altered anxiety-like behavior in this test.

Next, we tested the mice for FLX effects in the TST,
a neurogenesis-independent behavioral assay of AD response
(David et al., 2009). Mice on FLX were less immobile over
time than VEH-treated mice (Figure 3E) and spent significantly
less time immobile during the final 2 min of the test
compared to VEH-treated mice with no significant interaction
between induction and treatment (Figure 3F). This indicates
that iGluN2BNes and CTRL mice respond similarly to FLX in a
neurogenesis-independent assay of AD response.

We then assessed the neurogenic effects of FLX in iGluN2BNes

andCTRLmice. The number of proliferating Ki-67+ cells did not
significantly differ among groups, revealing that neither GluN2B
deletion nor FLX treatment altered the number of new cells being
produced at the time of sacrifice (Figure 4B). To assess the effect
of FLX on survival, mice were injected with BrdU just prior to the
start of AD treatment and surviving cells were counted 6 weeks
later. Here, we found that the overall number of BrdU+ cells

was lower after GluN2B deletion; however, FLX still increased
survival in both CTRL and iGluN2BNes mice (Figures 4A,C). To
determine the phenotype of BrdU+ cells, tissue sections were
triple labeled for BrdU, NeuN (a neuronal marker), and GFAP
(a glial marker). As expected, the majority of BrdU+ cells co-
labeled with NeuN, though FLX treatment slightly increased
the proportion of cells that were neuronal (Figure 4D). DCX,
which is transiently expressed in newly generated neurons, was
measured to quantify the number of immature neurons in theDG
(Brown et al., 2003; Couillard-Despres et al., 2005). While FLX
increased the number of DCX+ cells in CTRL mice, this effect
was blunted in iGluN2BNes mice (Figures 4E,F). DCX+ cells
undergo significant morphological changes as they mature. To
determine if our manipulations altered this maturation process
we counted the subset of DCX+ cells that had reached a
more mature stage of development as exhibited by the presence
of tertiary dendrites. FLX increased the number of DCX+
cells with tertiary dendrites in CTRL mice, but this effect was
less pronounced in iGluN2BNes mice (Figure 4G). Finally, we
measured the effect of FLX on dendritic structure by analyzing
the dendrites of 3-week-old DCX+ cells. Once again, we found
that FLX increased dendritic length and complexity in CTRL
mice, but not in iGluN2BNes mice (Figures 4H–K).

To determine if abGC maturation correlated with the
behavioral response to FLX, we compared the number of DCX+
cells with tertiary dendrites in FLX-treated mice to outcomes
in our FLX-responsive behavioral tests. We found a trend for
greater tertiary dendrite number to correlate with a lower latency
to feed in the NSF test (Figure 5A) in FLX-treated mice. When
looking at the TST, which has been suggested to be independent

Frontiers in Neuroscience | www.frontiersin.org 6 May 2016 | Volume 10 | Article 242

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Tannenholz et al. Neurogenesis, Plasticity, and SSRI Action

FIGURE 1 | Experimental Design. (A) Genetic design for the deletion of GluN2B from abGCs. TMX administration into NCreERT2 × GluN2Bf/f ×

ROSA26fstopEYFP/fstopEYFP mice eliminates the GluN2B subunit from NPCs and all of their progeny, while EYFP labels cells that underwent recombination thus acting

as a surrogate for GluN2B deletion. Representative 10X images show cells are restricted to the lower portion of the granule cell layer near the subgranular zone,

consistent with the expression pattern of immature abGCs (scale bar = 100 µm). (B) Experimental timeline: Adult NCreERT2 × GluN2Bf/f ×

ROSA26fstopEYFP/fstopEYFP mice were injected with either TMX (iGluN2BNes) or vehicle (CTRL). FLX or VEH treatment began 6 weeks later. Behavioral testing began

after 4 weeks of chronic AD treatment. For dendritic complexity analysis, FLX or VEH treatment began 5 weeks after induction and mice were sacrificed after 3 weeks

of AD treatment.

of levels of neurogenesis (David et al., 2009), higher tertiary
dendrite numbers were not predictive of a larger FLX response
(Figure 5B). Tertiary dendrites were not related to behavioral
outcomes in VEH-treated mice in either test (Figures 5A,B).

DISCUSSION

In this study, we have determined the consequence of altering
young neurons’ physiology on FLX efficacy without eliminating
the young neurons themselves. By conditionally deleting the
GluN2B subunit from abGCs of mice prior to the onset of AD
administration, we revealed a blunting of the behavioral response
to chronic FLX treatment. This suggests that eliminating abGCs’
enhanced plasticity decreases their ability to influence DG output
resulting in an AD response that is less robust than the response
seen in CTRL mice. Control experiments revealed the specificity
of this effect as GluN2B deletion did not impact the effect of FLX
in a neurogenesis-independent behavioral assay of AD response
(TST) or in an assay of anxiety that was insensitive to FLX in
this strain of mice (EPM). While some studies in rodents do find
that chronic AD treatment results in an anxiolytic phenotype
in the EPM (Kurt et al., 2000; Bondi et al., 2008; David et al.,

2009; Venzala et al., 2012; Samuels et al., 2015), this effect is not
consistently seen (Durand et al., 1999; File et al., 1999; Griebel
et al., 1999; Silva and Brandao, 2000; Borsini et al., 2002; Bondi
et al., 2008; Oh et al., 2009; Venzala et al., 2012; Baek et al., 2015).
This may be due to the manner in which different strains exhibit
anxiety behavior in this test (Ducottet and Belzung, 2005) or the
variability in testing conditions (Hogg, 1996).

The results presented here also revealed differences in
the neurogenic effects of FLX in mice lacking GluN2B in
abGCs. Interestingly, FLX effects on dendritic complexity
were attenuated in iGluN2BNes mice, which also lack the
full behavioral response to FLX. Our analysis indicated a
trend for FLX-induced increases in dendritic complexity to be
predictive of behavioral efficacy in the NSF test (Figure 5A).
These results suggest that manipulating young neurons’ plasticity
attenuates FLX’s ability to facilitate maturation thereby impacting
the behavioral response. This supports the hypothesis that
chronic FLX’s efficacy may be dependent on accelerating the
dendritic development of abGCs as they differentiate, which
would serve to increase the number of young abGCs that
are functionally integrated into the DG circuit (Wang et al.,
2008).
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FIGURE 2 | Deletion of GluN2B attenuates the decrease in latency to feed in the NSF test after chronic FLX treatment. (A) Cumulative survival plots

comparing CTRL mice (left) or iGluN2BNes mice (right) treated with VEH or FLX. FLX significantly lowered the latency to feed in each group, with the greatest effect

between treatment groups seen in CTRL mice. Insets show the average latency to feed in the novel arena, with those mice not feeding within the time limit of the test

assigned a latency of 600 s. (B) No significant difference was observed in home cage consumption (left) or % weight change (right). HR, Hazard Ratio. *p < 0.05,
#p < 0.0001.

The mechanism by which GluN2B deletion impairs the FLX-
induced dendritic changes in young abGCs is not yet known, but
one possibility is that it is through a brain-derived neurotrophic
factor (BDNF)-dependent mechanism. Chronic SSRIs have been
shown to increase BDNF in the DG (Nibuya et al., 1996; Samuels
et al., 2015) and this effect has been shown to be reduced in mice
that do not respond to SSRIs (Samuels et al., 2014, 2015). Mice
with reduced BDNF signaling show impaired behavioral and
neurogenic responses to AD treatment (Saarelainen et al., 2003;
Monteggia et al., 2004; Sairanen et al., 2005). In addition, mice
with abGCs lacking the BDNF receptor, tropomyosin receptor
kinase B (TrkB), show reduced dendritic maturation, impaired
ACSF-LTP, and lack behavioral and neurogenic responses to
chronic AD-treatment (Bergami et al., 2008; Donovan et al.,
2008; Li et al., 2008). These effects on survival, dendritic
complexity, LTP, and AD sensitivity are quite similar to the ones
observed in iGluN2BNes mice at baseline or following chronic
FLX treatment suggesting a link between our manipulation of
GluN2B expression and BDNF signaling. BDNF signaling can
upregulate the mRNA and protein expression of NMDA receptor
subunits, increase trafficking of NMDA receptors to the cell
membrane, and enhance the activity of NMDA receptors via
phosphorylation (Lin et al., 1998; Slack et al., 2004; Caldeira
et al., 2007). Through this enhancement of NMDA receptor
activity, BDNF may potentiate activity-dependent development,
while the elimination of GluN2B-containing NMDA receptors

would likely limit the extent to which BDNF could regulate
this process. An alternative possibility is that NMDA receptor
signaling can positively modulate the BDNF signaling cascade
(Zafra et al., 1991; Springer et al., 1994), which could then act
in an autocrine manner to activate TrkB receptors on abGCs and
impact dendritic complexity.

Our analysis of neurogenesis revealed two other surprising
results. First, we found that chronic FLX treatment did not
increase proliferation in either CTRL or iGluN2BNes mice. This is
in contrast to the many studies that have observed a link between
chronic AD treatment and increased proliferation (reviewed in
Hanson et al., 2011). This is likely due to the mixed background
of themice used in the present study, which includes the C57BL/6
strain. C57 mice have high levels of proliferation at baseline
(Kempermann et al., 1997a) and do not display an increase in
proliferation in response to FLX in the absence of prior stress
(David et al., 2009).

Second, we found that the survival of abGCs in iGluN2BNes

mice was lower than in CTRL mice, which was not seen in our
previous study (Kheirbek et al., 2012). The present study differed
in that the mice used here were subject to oral gavage 5 days of
every week, which leads to prolonged increases in corticosterone
levels (Dalm et al., 2008). One possibility is that the mice in this
study may have only become sensitive to the influence GluN2B
deletion has on survival with the addition of this chronic stressor.
Despite the overall lower survival seen in iGluN2BNes mice,
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FIGURE 3 | GluN2B deletion did not impact anxiety-related behavior in the EPM, nor did it affect FLX’s ability to lower immobility in the TST. In the EPM,

no difference among groups was observed in open arm exploration as measured by (A) time spent in the open arms, (B) number of open arm entries, or (C) distance

traveled in the open arms. (D) The total distance traveled in the maze did not differ among groups. (E) In the TST, VEH-treated mice display increasingly higher levels

of immobility as the test progresses, while FLX reduced immobility over time. (F) GluN2B deletion did not impact FLX’s ability to lower immobility during the last 2 min

of the test. *p < 0.05, **p < 0.01.

FLX was still effective at increasing survival relative to VEH-
treated animals. It is interesting that the stress from oral gavage
was sufficient to reveal the action of FLX on survival, but not
proliferation. However, survival and proliferation are regulated
by distinct mechanisms, and as such it is possible to affect
one and not the other. For example, environmental enrichment
and hippocampus-dependent learning tasks increase cell survival
without effecting proliferation (Kempermann et al., 1997b; Gould
et al., 1999). Also, an increase in survival with no effect on
proliferation was found in C57BL/6 mice that had received
chronic FLX treatment via daily IP injections and were thus

exposed to a comparable amount of stress as our mice (Couillard-
Despres et al., 2009). Examination of the fate of surviving BrdU+
cells showed that the percentage of BrdU+ cells that co-labeled
with NeuN increased with FLX treatment, mimicking effects on
cell fate seen after enrichment (Dranovsky et al., 2011).

It should be noted that the SGZ is not the only neurogenic
region in the adult mouse brain (Zhao et al., 2008). Using
this particular genetic approach means that GluN2B will also
be deleted form newborn neurons in the subventricular zone
(Grubb et al., 2008). However, ablation of adult-born olfactory
interneurons achieved using a NCreERT2 mouse line similar to
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FIGURE 4 | FLX increased dendritic complexity in CTRL but not iGluN2BNes mice. (A) Representative images of BrdU+ cells in the DG (scale bar = 100 µm)

(B) No effect on proliferation was observed as measured by number of Ki-67+ cells. (C) FLX increased survival of abGCs in both CTRL and iGluN2BNes mice, though

overall survival was lower in iGluN2BNes mice. (D) The majority of BrdU+ cells co-labeled with the neuronal marker, NeuN. FLX treatment increased the percentage of

BrdU+ cells that were neuronal. (E) Representative images of DCX expression in the DG (scale bar = 100 µm). (F) The number of immature neurons and (G)

immature neurons with tertiary dendrites increased following FLX treatment with the most robust effect seen in CTRL mice. (H) There was a trend for FLX to increase

total dendritic length of 3-week-old DCX+ abGCs in CTRL mice, but not iGluN2BNes mice. (I) Sholl analysis revealed FLX increased dendritic complexity in CTRL

mice, but not iGluN2BNes mice. (J) GluN2B deletion alone did not affect the dendritic complexity of 3-week-old DCX+ abGCs. (K) Representative tracings of

3-week-old abGCs (scale bar = 20 µm). *p < 0.05, **p < 0.01, #p < 0.0001.

the one used here did not significantly affect olfaction (Imayoshi
et al., 2008). Innate olfactory responses and odor discrimination
were intact as was the mouse’s ability to acquire and retain odor-
associated memory. Thus, it seems unlikely that the behavioral
paradigms used in this study would be affected by the deletion of
GluN2B from adult-born olfactory interneurons.

An additional caveat is that recombination also occurs
ectopically outside of the neurogenic areas with our NCreERT2

mouse line (Sun et al., 2014). The most prominent ectopic
recombination occurred in the cerebellum (where GluN2B
mRNA is not expressed in adult mice; Monyer et al., 1994).
The other areas with significant recombination were the CA1
and CA3 regions of hippocampus, thus some effects of GluN2B
deletion may be due to loss of the subunit in these areas.
However, our behavioral results in the NSF, EPM, and TST
tests, phenocopies mice with targeted ablation of hippocampal
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FIGURE 5 | Trend for dendritic complexity in FLX-treated mice to correlate with behavioral response in the neurogenesis-dependent NSF test. (A)

Higher numbers of immature neurons with tertiary dendrites tended to correlate with a lower latency to feed in NSF in FLX-treated mice (right) but not those mice that

received VEH (left). (B) Similar correlations were not evident in the neurogenesis-independent TST. Tertiary dendrite counts were obtained for 6 mice/group (see

Table 2). For the NSF correlations, any mouse that had been censored was excluded from the correlations. For the TST correlations, 1 VEH-treated iGluN2BNes

mouse was not included because he had to be removed from the TST for hanging onto his tail.

neurogenesis, further linking the behavioral phenotype we
observe to our manipulation of GluN2B in abGCs (Wu and
Hen, 2014). In the future, retroviral approaches or local delivery
of TMX will provide more targeted methods for localizing
behavioral effects to abGCs.

It is particularly interesting that eliminating young neurons’
enhanced plasticity does not completely block the FLX actions
that are considered to be neurogenesis-dependent. This may be
due to the fact that iGluN2BNes mice do not entirely lack FLX-
induced increases in levels of neurogenesis, only the ability to add
highly plastic units to the DG circuit. Alternatively, the remaining
effects of ADs may be independent of neurogenesis. FLX has
shown some residual behavioral effects following ablation similar
to the attenuation in FLX efficacy we see in our iGluN2BNes mice
(Wu and Hen, 2014). There is also accumulating evidence that
mature granule cells in the DG are involved in the effects of ADs
too (Samuels et al., 2015).

Possibly linking these two hypotheses, young abGCs have
been suggested to modulate the activity of mature GCs within

the DG. In the absence of neurogenesis, activity in the DG
increases (Burghardt et al., 2012; Lacefield et al., 2012; Ikrar et al.,
2013), whereas increasing levels of neurogenesis or stimulating
young abGCs decreases DG activity (Ikrar et al., 2013; Drew
et al., 2015). While the exact mechanism for this is unknown,
it has been hypothesized that young abGCs may differentially
modulate the local DG circuits (Sahay et al., 2011b; Lacefield
et al., 2012). Our immunohistochemical analysis indicates that
abGCs in iGluN2BNes mice still survive andmature into neurons,
and thus may still be capable of influencing the hippocampal
network in a manner that does not require enhanced plasticity.
Future experiments will be required to determine whether these
cells lacking GluN2B can impact local and downstream circuits
like control cells.

While we observe an effect of GluN2B deletion in our study,
it is possible that the same manipulation would not impact
behavior in middle-aged or aged mice given that they display
lower levels of neurogenesis than the young-adult mice used
here (Hamilton et al., 2013). This consideration highlights the
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impact different experimental parameters can have on the study
of neurogenesis. Differences in age, as well as strain, species,
and ablation or enhancement techniques used likely underlie
the conflicting reports in the literature in relation to adult
hippocampal neurogenesis’ function. For example, some studies
show that reducing neurogenesis enhances anxiety (Revest et al.,
2009; Snyder et al., 2011), while others find the opposite result
with lower levels of neurogenesis associated with less anxiety
(Fuss et al., 2010; Groves et al., 2013). Our behavioral results
are in line with findings indicating that neurogenesis does not
impact anxiety or antidepressant-like behavior at baseline, but
does contribute to the behavioral response to antidepressants
(Santarelli et al., 2003; Airan et al., 2007; Sahay and Hen, 2007;
Surget et al., 2008; David et al., 2009; Sahay et al., 2011a).

Considering neurogenesis’ impact on mood raises the
question of how changes within the DG can influence
downstream circuitry relevant for stress and anxiety. Recent
findings suggest the hippocampusmay be functionally segregated
along the dorsoventral axis as a result of regional variation in
anatomical connectivity (Fanselow and Dong, 2010; Kheirbek
et al., 2013; Tannenholz et al., 2014). Targeting ablation of
neurogenesis to the dorsal or ventral DG revealed that dorsal
abGCs are required for learning a contextual fear discrimination
task, whereas ventral abGCs were necessary for the anxiolytic/AD
effects of FLX in the NSF test (Wu and Hen, 2014). While our
manipulation targeted abGCs along the entire axis of the DG, it

would be interesting to further dissect the role of this unique form
of plasticity by specifically targeting ablation of GluN2B to either
the dorsal or ventral DG.

Our results reveal that adult neurogenesis, and in particular
the unique electrophysiological properties of young abGCs,
contributes to the efficacy of AD treatment. These experiments,
along with future studies aimed at further understanding the
ways in which abGCs participate in ADs’ mechanism of action,
may help uncover novel avenues for therapeutic interventions.
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