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Abstract of the Dissertation

Incorporating Spatial Information into Density

Estimates and Street Gang Models

by

Laura Michelle Smith

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Andrea L. Bertozzi, Chair

The spatial features within a region influence many processes in human activity. Moun-

tains, lakes, oceans, rivers, freeways, population densities, housing densities, and road net-

works are examples of geographical factors that impact spatial behaviors. Separated into two

parts, the work presented here incorporates this information into both density estimation

methods and models of street gang rivalries and territories.

Part I discusses methods for producing a probability density estimate given a set of

discrete event data. Common methods of density estimation, such as Kernel Density Es-

timation, do not incorporate geographical information. Using these methods could result

in non-negligible portions of the support of the density in unrealistic geographic locations.

For example, crime density estimation models that do not take geographic information into

account may predict events in unlikely places such as oceans, mountains, etc. To obtain

more geographically accurate density estimates, a set of Maximum Penalized Likelihood Es-

timation methods based on Total Variation norm and H1 Sobolev semi-norm regularizers in

conjunction with a priori high resolution spatial data is proposed. These methods are ap-

plied to a residential burglary data set of the San Fernando Valley using geographic features

obtained from satellite images of the region and housing density information.

Part II addresses the behaviors and rivalries of street gangs and how the spatial char-

acteristics of the region affect the dynamics of the system. Gangs typically claim a specific
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territory as their own, and they tend to have a set space, a location they use as a center for

their activities within the territory. The spatial distribution of gangs influences the rivalries

that develop within the area. One stochastic model and one deterministic model are pro-

posed, providing different types of outputs. Both models incorporate important geographical

features from the region that would inhibit movement, such as rivers and large highways. In

the stochastic method, an agent-based model simulates the creation of street gang rivalries.

The movement dynamics of agents are coupled to an evolving network of gang rivalries,

which is determined by previous interactions among agents in the system. Basic gang data,

geographic information, and behavioral dynamics suggested by the criminology literature are

integrated into the model. The deterministic method, derived from a stochastic approach,

modifies a system of partial differential equations from a model for coyotes. Territorial an-

imals and street gangs often exhibit similar behavioral characteristics. Both groups have

a home base and mark their territories to distinguish claimed regions. To analyze the two

methods, the Hollenbeck policing division of the Los Angeles Police Department is used as

a case study.
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Density Estimates
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CHAPTER 1

Introduction to Density Estimation

Suppose n events are observed at the positions x1, x2, . . . ,xn ∈ Rd. These events are

assumed to be samples of a probability density function, f(x). A density estimate, u(x), is

a function that approximates f(x) from the set of events.

1.1 Existing Methods

A common method for creating a probability density estimate is Kernel Density Estimation

[117, 118], which approximates the true density by a sum of kernel functions,

u(x) =
1

nh

n∑
i=1

k

(
x− xi
h

)
,

where h is the bandwidth. A larger bandwidth will produce a smoother estimate. A popular

choice for the kernel is the Gaussian distribution, also known as the normal distribution.

This function is smooth, radially-symmetric, has non-compact support, and is given by

k(x) =
1

(2π)d/2
e
−|x|2

2 .

Another approach for producing a probability density estimate is through the variational

method Maximum Penalized Likelihood Estimation (MPLE) [35, 46, 118]. This appropri-

ately named method takes the estimate that maximizes the log-likelihood function, subject

to a roughness penalty. To further explain this approach, we first consider the log-likelihood

2



for a function u as the underlying probability density for the set of data,

n∑
i=1

log(u(xi)).

If we were to maximize this log-likelihood, then we would obtain a set of delta functions

at the locations of the observed points. To remedy this, a term that relates the roughness

of the density is included in the maximization through a penalty functional, P (u). With a

parameter η to indicate the amount of desired smoothing, we now maximize

n∑
i=1

log(u(xi))− ηP (u). (1.1)

Requiring that u also be a probability density, we obtain the two constraints,

∫
Ω

u dx = 1, 0 ≤ u(x). (1.2)

Thus, our final density estimate is obtained by finding the argument that maximizes Equa-

tion (1.1) subject to the constraints of Equation (1.2), given by

u(x) = argmax∫
Ω u dx=1, 0≤u(x)

{
n∑
i=1

log(u(xi))− ηP (u)

}
.

We change this to a minimization problem by rewriting it as

u(x) = argmin∫
Ω u dx=1, 0≤u(x)

{
P (u)− µ

n∑
i=1

log(u(xi))

}
.

The parameter µ determines how strongly weighted the maximum likelihood term is com-

pared to the penalty functional, replacing the 1
η

term. A range of penalty functionals have

been proposed, including P (u) =
∫

Ω
|∇
√
u|2 dx [46, 35] and P (u) =

∫
Ω
|∇3(log(u))|2 dx

[117, 35]. More recently, variants of the Total Variation (TV) functional [105], P (u) =∫
Ω
|∇u| dx, have been proposed for MPLE [65, 107, 78].

There are many other probability density estimation techniques, including the taut string
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and logspline methods [28, 66]. The authors of [107] demonstrated the Total Variation MPLE

provided better results for nonsmooth densities. In this thesis, we will be producing estimates

for nonsmooth densities, and so we will not discuss these models here.

1.2 Motivation for Incorporating External Spatial Data

High resolution and hyperspectral satellite images, city and county boundary maps, census

data, and other types of geographical data provide much information about a given region. It

is desirable to integrate this knowledge into models defining geographically dependent data.

Often, it is unreasonable for events to occur in certain regions. For example, residential

burglaries and other types of crimes are unlikely to occur in oceans, mountains, and other

areas. Such regions can be determined using aerial images or other external spatial data,

and we denote these improbable locations as the invalid region. Ideally, the support of the

density estimate should be contained in the valid region.

Section 1.1 introduced existing techniques for density estimation. These methods do

not explicitly incorporate the information that can be obtained from the external spatial

data, although some note the need to allow for various domains. Consequently, the density

estimate typically has some nonzero probability of events occurring in the invalid region.

Figure 1.1 demonstrates these problems with the current methods. Located in the middle

of the image are two disks where events cannot occur, depicted in Figure 1.1(a). From the

region outside the disks, events were sampled from a predefined probability density that is

provided in Figure 1.1(b). The 4,000 events chosen are shown in Figure 1.1(c). With a

variance of σ = 2.5, the Gaussian Kernel Density Estimation in Figure 1.1(d) predicts that

events may occur in our invalid region.

Figure 1.1(e) displays the density estimate for an MPLE method using the Total Variation

penalty functional (TV MPLE). Even though the TV functional can produce sharp gradients,

the boundaries of the constant regions do not necessarily agree with the boundaries within

the image. This is exemplified in Figure 1.1(e). This method predicts events in the invalid

region with non-negligible estimates. This method also performs poorly when the data is
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Figure 1.1: This is a motivating example that demonstrates the problem with existing methods. Figures

(a) and (b) give the valid region to be considered and the true density for the example. Figure (c) gives the

4000 events sampled from the true density. Figures (d) and (e) show two of the current methods used. The

color scale represents the relative probability of an event occurring in a given pixel. The images are 80 pixels

by 80 pixels.

too sparse, as the density is smoothed to have equal probability almost everywhere, which

will be demonstrated in Section 2.4.3.

1.2.1 Overview of Proposed Methods

In Chapter 2 we propose a novel set of non-parametric methods that restrict the support of

the density estimate to the valid region and ensure realistic behavior. The methods use the

Maximum Penalized Likelihood Estimation framework. The density estimate is calculated

as the minimizer of some predefined energy functional. The novelty of our approach is in the

way we define the energy functional with explicit dependence on the valid region such that

the density estimate obeys our assumptions of its support. The results from our methods

for the simple example of Figure 1.1 are illustrated in Figure 1.2.
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Figure 1.2: This continues the example in Figure 1.1, demonstrating how our methods will improve density

estimates. The figures give the estimates for the Modified TV MPLE (left), the Weighted H1 MPLE (center),

and the Weighted TV MPLE (right), which will be presented in Chapter 2.

1.3 Background on Bregman Iteration and Split Bregman

Solving a maximum penalized likelihood estimation (MPLE) formulation requires minimizing

a functional subject to constraints. One method to enforce the equality constraints is to

use Bregman Iteration, which we will discuss in Section 1.3.1. Additionally, if we have

a total variation functional present in the MPLE formulation, then it is useful to apply

Split Bregman [44, 78]. The Split Bregman approach is introduced in Section 1.3.2 for l1

minimization problems and applied to the total variation functional in Section 1.3.3.

1.3.1 Bregman Iteration for Constrained Optimization

To explain this approach, we consider a general formulation of the variational problem,

v = argmin
v
{H(v)} subject to Av = b, (1.3)

where A is a linear operator and H is a convex functional. We first change this to an

unconstrained optimization problem by adding the constraint in as the penalty λ
2
||Av−b||22.

This gives the unconstrained problem

v = argmin
v

{
H(v) +

λ

2
||Av− b||22

}
. (1.4)
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We then implement an iterative method that uses a modified version of this functional to

include the “Bregman distance,”[21]

Dp
H(u,v) := H(u)−H(v)− 〈p,u− v〉 .

Here, p ∈ ∂H(v), meaning that the vector p is in the set of subdifferentials of H at v. If H

is differentiable, then p = ∇H(v). Note that this is not a strict distance metric as

Dp
H(u,v) 6= Dp

H(v,u)

for all u and v.

To use this Bregman distance, we replace Dpk

H (v,vk) for H(v) in Equation (1.4), where

vk is the solution for the kth iteration. This results in the iterative procedure

vk+1 = argmin
v

{
Dpk

H (v,vk) +
λ

2
||Av− b||22

}
(1.5)

= argmin
v

{
H(v)−H(vk)−

〈
pk,v− vk

〉
+
λ

2
||Av− b||22

}
= argmin

v

{
H(v)−

〈
pk,v

〉
+
λ

2
||Av− b||22

}
,

where pk ∈ ∂H(vk). The optimality conditions indicate that

0 = pk+1 − pk + λAT
(
Avk+1 − b

)
.

This gives our iterative update formulation,

vk+1 = argmin
v

{
H(v)−

〈
pk,v

〉
+
λ

2
||Av− b||22

}
, (1.6)

pk+1 = pk − λAT
(
Avk+1 − b

)
.
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The authors of [144] have shown that this update is equivalent to the following scheme

vk+1 = argmin
v

{
H(v) +

λ

2
||Av− bk||22

}
, (1.7)

bk+1 = bk −
(
Avk+1 − b

)
.

A convergence proof is provided in [44], demonstrating that the iterates vk → v∗, where

v∗ is the solution to the original constrained problem of Equation (1.3). More theoretical

results can be found in [44, 97, 144].

1.3.2 Split Bregman for l1 Variational Methods

We now consider an unconstrained variational method with an l1 minimization,

v = argmin
v
{||J(v)||1 +H(v)} , (1.8)

whereH(v) is convex, and J is a linear operator. Following the splitting approach of [44, 144],

we make a substitution for J(v) and create an equality constraint, giving

(v,d) = argmin
v,d

{||d||1 +H(v)} , subject to J(v) = d. (1.9)

Now we have a constrained optimization problem similar to that of Equation (1.3). Thus,

we can apply Bregman iteration as detailed in Section 1.3.1, using (d− J(v)) in place of Av

and 0 for b. This results in the iterative scheme

(
vk+1,dk+1

)
= argmin

v,d

{
||d||1 +H(v) +

λ

2
|| (d− J(v))− bk||22

}
, (1.10)

bk+1 = bk −
(
dk+1 − J

(
vk+1

))
.

The advantage of using this splitting technique can be seen in the optimization of the d
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term. Keeping u constant, minimizing Equation (1.10) with respect to d gives

dk+1
i = shrink

(
J(vk+1)i + bki ,

1

λ

)
, (1.11)

where

shrink (x, α) := sign(x) max{|x| − α, 0} =


x− a if y < α

0 if − α ≤ y ≤ α

x+ a if y > −α

. (1.12)

The update for vk+1 is given by

vk+1 = argmin
v

{
H(v) +

λ

2
||
(
dk − J(v)

)
− bk||22

}
. (1.13)

1.3.3 Applying Split Bregman to Total Variation

Optimizing a functional that contains a Total Variation term can be quickly implemented

with the Split Bregman technique. More specifically, if we are solving the variational problem

v = argmin
v

{∫
Ω

|∇v|+H(v)

}
,

then we have

||J(v)||1 = ||∇v||1.

Using the iterative procedure of Section 1.3.2, we obtain

vk+1 = argmin
v

{
H(v) +

λ

2
||
(
dk −∇v

)
− bk||22

}
dk+1
i = shrink

(
∇vk+1

i + bki ,
1

λ

)
bk+1 = bk +∇vk+1 − dk+1.

9



The Bregman iteration and Split Bregman techniques will be applied to the methods devel-

oped in Chapter 2.

1.4 Background of Useful Image Processing Methods

Maximum penalized likelihood estimation (MPLE) methods are formulated by optimizing a

functional. The log-likelihood term, −µ
∑n

i=1 log(u(xi)), is a data fidelity term that encour-

ages the estimated density to match the locations of known events. The penalty functional

smooths the estimated density so that it does not just reproduce the original data. This

approach with data fidelity and penalty functionals is seen in variational image processing

techniques. There are many problems in image processing, including registration, segmen-

tation, denoising, deblurring, inpainting, pattern recognition, pan-sharpening, and so on. A

few are highlighted here to introduce the penalty functionals that will be incorporated into

the proposed MPLE methods of Chapter 2.

1.4.1 Mumford-Shah Functional

Segmentation is the process of partitioning the image into regions that correspond to objects

or divisions within the scene it represents. We consider an image f that attempts to cap-

ture a scene u. The image may have some degradation from transmission, blurring, aging,

noise, missing portions, or other issues. Mumford and Shah proposed the following energy

functional to minimize [86],

EMS(u,Γ) = α

∫ ∫
R

(u− f)2 dx dy +

∫ ∫
R−Γ

|∇u|2 dx dy + β|Γ|. (1.14)

Here, R is the domain of the image and Γ is the set of discontinuities. Thus, Γ is the edge

set that partitions the image into its respective parts. In this minimization problem, the

first term, α
∫ ∫

R
(u− f)2 dx dy is the data fidelity term that encourages u to approximate

f . The second term,
∫ ∫

R−Γ
|∇u|2 dx dy is a penalty functional that smooths u away from

the edges within the image. Finally, the β|Γ| term measures the length of the set of curves
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that makes up the edges, giving the shortest boundaries that could partition the regions.

The Mumford-Shah model has been modified for many other approaches and problems,

including inpainting. Image inpainting is the process of filling in missing or corrupted regions

of an image (R – D) based on information obtained from outside those regions (D). One

method that alters the functional of Equation (1.14) is Mumford-Shah-Euler image model

of [36]. This new method incorporates Euler’s elastica curve, replacing the third term of

Equation (1.14), giving

EMSE(u,Γ) = α

∫ ∫
D

(u− f)2 dx dy +

∫ ∫
R−Γ

|∇u|2 dx dy + e(Γ) (1.15)

e(Γ) =

∫
Γ

(
a+ bκ2

)
ds = alength(Γ) + b

∫
Γ

κ2ds,

where κ is the curvature. Without this curvature term, the inpainted region tends to use

straight lines to connect the level sets, creating unnatural edges. With the term, it produces

smoother level curves. The only other difference between this model and the Mumford-Shah

segmentation model is that u is encouraged to approximate f on D instead of R.

1.4.2 Total Variation Penalty Functional

While the Mumford-Shah penalty functional uses the L2 norm of ∇u, variational methods

using the total variation norm have also been used for many image processing applications

with much success. The ROF model is one such model applied to denoising problems [105].

Assuming that u is the true image and f is the noisy observed image, denoising attempts

to reconstruct u. This particular model is given by taking the minimizing argument of the

following functional,

EROF (u) =

∫ ∫
R

|∇u| dx dy +
λ

2

∫ ∫
R

(u− f)2 dx dy. (1.16)

Using this approach allows for the solution to have discontinuities. Additionally, the total

variation penalty discourages the optimal u from containing oscillations.
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1.4.3 Variational Pan-Sharpening Methods

Pan-sharpening is the process of making a high-resolution multispectral image by fusing a

low-resolution multispectral image and a high-resolution panchromatic grayscale image. We

let Mn be the nth band of the low-resolution multispectral image, and we let P be the

high-resolution panchromatic image. The nth band of the optimal solution will be denoted

as un. There are two variational approaches that will be highlighted here. The first is of [9]

called P+XS, which minimizes the functional

Ep+xs(u) =
N∑
n=1

γn

∫
Ω

(|∇un|+ divθ · ∇un) dx+ µ

N∑
n=1

∫
Ω

ΠS ((kn ∗ un)−Mn)2 dx

+λ

∫
Ω

(
N∑
n=1

αnun − P

)2

dx.

Without going into too much detail about this functional and all of the variables, we

briefly explain each term. Here, θ is the vector field of the unit normal vectors to the level

sets of the high-resolution panchromatic image, P . We would like our optimal image to have

the same edges as this high-resolution image, and so we want to align the level curves of un

with the level curves of P , i.e.

θ =
∇P
|∇P |

=
∇un
|∇un|

.

This geometry matching results in first term,
∑N

n=1 γn
∫

Ω
(|∇un|+ divθ · ∇un) dx.

The second term, µ
∑N

n=1

∫
Ω

ΠS ((kn ∗ un)−Mn)2 dx, is included from the fact that

the low-resolution multispectral bands are obtained by applying a low-pass filter to high-

resolution multispectral bands and then subsampled. The third term,

λ

∫
Ω

(
N∑
n=1

αnun − P

)2

dx,

comes from an assumption that the grayscale image equals a linear combination of the

spectral bands. This does not appear to be a true assumption, and the next method we

discuss proposes an alternate approach.
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The second pan-sharpening technique we introduce here comes from [77]. Refered to as

Variational Wavelet Pan-Sharpening (VWP), this method minimizes an energy composed of

the sum of four functionals,

Evwp(u) = Eg + Ew + Ec + Es.

The first of these, Eg, is a modified version of the geometry matching term from the P+XS

method above, namely

Eg =
N∑
n=1

[
γ

∫
Ω

|∇un| dx+ η

∫
Ω

divθ · ∇un dx
]
.

The second functional, Ew, transforms both the panchromatic image and the upsampled

multispectral images (↑Mn) into a wavelet decomposition. A new decomposition is created

by taking the approximation coefficients from the ↑ Mn and detail coefficients from P .

Then the wavelet decomposition of the optimal image u is assumed to approximate this new

decomposition, resulting in

Ew =
∑
n

c0

(
aiL[n]− αiL[n]

)2
φ2
j,n +

∑
n

L∑
j=1

3∑
k=1

cj
(
d{k,j}[n]− βi{k,j}[n]

)2
ψkj,n.

The third term is a color preserving term, matching the upsampled multispectral image

away from the edges within the region, denoted as Λ. This results in the functional

Ec = ν
∑
n

∫
Ω−Λ

(un− ↑Mn)2 dx.

The final term is designed to create a spectral angle of zero between the low-resolution mul-

tispectral image and the optimal high-resolution multispectral image. This is accomplished

by letting

Es = µ

N∑
i,j=1 i<j

∫
Ω

(ui· ↑Mj − uj· ↑Mi)
2 dx.

Combining all of these functionals together gives an energy that produces a reasonable
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high-resolution multispectral image. For more details on each of the terms and the wavelet

decomposition, see [77].

The functional Eg will be used in one of the maximum penalized likelihood estimation

methods proposed in the next chapter.

1.5 Part I Outline

The remainder of Part I is structured in the following way. In Sections 2.1 and 2.2, we

present our set of methods, which we name the Modified Total Variation MPLE method

and the Weighted H1 MPLE method, respectively. Here, we also introduce the Weighted

TV MPLE method to use for comparisons. In Section 2.3 we discuss the implementation

and numerical schemes that we use to solve for the solutions of the models. We provide

examples for validation of the methods and an example with actual residential burglary

data in Section 2.4. In this section, we also compare our results to the Kernel Density

Estimation method and the Total Variation MPLE methods. Finally, we give our conclusions

in Section 2.5.
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CHAPTER 2

Incorporating Spatial Information

Including additional information about a given region can improve density estimates. Using

the framework of Maximum Penalized Likelihood Estimation (MPLE), we propose a set

of models that incorporate a valid region determined from aerial images or other external

spatial data.

2.1 The Modified Total Variation MPLE Model

The first model we propose is an extension of the Maximum Penalized Likelihood Estimation

method given by Mohler, et al. [78],

u(x) = argmin∫
Ω udx=1, 0≤u

{∫
Ω

|∇u| dx− µ
n∑
i=1

log(u(xi))

}
,

where Ω is the domain. Once we have determined a valid region, we wish to align the level

curves of the density function u with the boundary of the valid region. The Total Variation

functional is well known to allow discontinuities in its minimizing solution [105]. By aligning

the level curves of the density function with the boundary, we encourage a discontinuity to

occur there to keep the density from smoothing into the invalid region.

Since ∇u
|∇u| gives the unit normal vectors to the level curves of u, we would like

∇(1D)

|∇(1D)|
=
∇u
|∇u|

,

where (1D) is the characteristic function of the valid region D. The region D ⊂ Ω is

obtained from external spatial data, such as aerial images. To avoid division by zero, we use
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θ := ∇(1D)
|∇(1D)|ε , where |∇v|ε =

√
v2
x + v2

y + ε2. To align the level curves of the density function

and the boundary, one would want to minimize |∇u| − θ · ∇u. Integrating this and applying

integration by parts, we obtain the term
∫

Ω
|∇u| + u∇ · θ dx. We propose the following

Modified Total Variation penalty functional, where we adopt the more general form of the

above functional

u(x) = argmin∫
Ω udx=1, 0≤u

{∫
Ω

|∇u| dx + λ

∫
Ω

u∇ · θ dx− µ
n∑
i=1

log(u(xi))

}
.

The parameter λ allows us to vary the strength of the alignment term. Two pan-sharpening

methods, P+XS and Variational Wavelet Pan-sharpening [77, 9], both include a similar term

in their energy functional to align the level curves of the optimal image with the level curves

of the high resolution pan-chromatic image.

2.2 The Weighted H1 MPLE Model

A Maximum Penalized Likelihood Estimation method with penalty functional
∫

Ω
1
2
|∇u|2 dx,

the H1 Sobolev semi-norm, gives results equivalent to those obtained using Kernel Density

Estimation [35]. We enforce the H1 regularizer term away from the boundary of the invalid

region. This results in the model

u(x) = argmin∫
Ω udx=1, 0≤u

{
1

2

∫
Ω\∂D

|∇u|2 dx− µ
n∑
i=1

log(u(xi))

}
.

This new term is essentially the smoothness term from the Mumford-Shah model [86]. We

approximate the H1 term by introducing the Ambrosio-Tortorelli approximating function

zε(x) [4], where zε → (1 − δ(∂D)) in the sense of distributions. More precisely, we use a

continuous function which has the property

zε(x) =


1 if d(x, ∂D) > ε,

0 if x ∈ ∂D.
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Thus, the minimization problem becomes

u(x) = argmin∫
Ω udx=1, 0≤u

{
1

2

∫
Ω

z2
ε |∇u|2 dx− µ

n∑
i=1

log(u(xi))

}
.

We will refer to this method as the Weighted H1 MPLE model. The weighting away from

the edges is used to control the diffusion into the invalid region. This method of weighting

away from the edges can also be used with the Total Variation functional in our first model,

and we will refer to this as our Weighted TV MPLE model.

2.3 Implementation

2.3.1 The Constraints

In the implementation for the Modified Total Variation MPLE method and Weighted H1

MPLE method, we must enforce the constraints 0 ≤ u(x) and
∫

Ω
u(x) dx = 1 to ensure

that u(x) is a probability density estimate. The u ≥ 0 constraint will be satisfied in our

numerical solution by solving quadratic equations that have at least one nonnegative root.

We enforce the second constraint by first adding it to the energy functional as an L2

penalty term. For the Weighted H1 MPLE method, this change results in the new mini-

mization problem

u(x) = argmin
u

{
1

2

∫
Ω

z2
ε |∇u|2 dx− µ

n∑
i=1

log(u(xi)) +
γ

2

(∫
Ω

u(x) dx− 1

)2
}
.

The constraint is then enforced by applying Bregman iteration [97]. Using this method, we

formulate our problem as

(u, b) = argmin
u, b

{
1

2

∫
Ω

z2
ε |∇u|2 dx− µ

n∑
i=1

log(u(xi)) +
γ

2

(∫
Ω

u(x) dx + b− 1

)2
}

where b is introduced as the Bregman variable of the sum to unity constraint. We solve this
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problem using alternating minimization, updating the u and the b iterates as

(H1)


u(k+1) = argminu {1

2

∫
Ω
z2
ε |∇u|2 dx− µ

∑n
i=1 log(u(xi))

+γ
2

(∫
Ω
u(x) dx + b(k) − 1

)2}

b(k+1) = b(k) +
∫

Ω
u(k+1) dx− 1,

with b(0) = 0. Similarly for the Modified TV MPLE method, we solve the alternating mini-

mization problem

(TV )


u(k+1) = argminu

{∫
Ω
|∇u| dx + λ

∫
Ω
u∇ · θ dx− µ

∑n
i=1 log(u(xi))

+γ
2

(∫
Ω
u(x) dx + b(k) − 1

)2
}

b(k+1) = b(k) +
∫

Ω
u(k+1) dx− 1

with b(0) = 0.

2.3.2 Weighted H1 MPLE Implementation

For the Weighted H1 MPLE model, the Euler-Lagrange equation for the u minimization is

given by

(H1) −∇ ·
(
z2
ε∇u

)
− µ

u(x)

n∑
i=1

δ(x− xi) + γ

(∫
Ω

u(x) dx + b(k) − 1

)
= 0.

We solve this using a Gauss-Seidel method with central differences for the ∇z2 and ∇u.

Once we have discretized the partial differential equation, solving this equation simplifies to

solving the quadratic (
4z2 + γ

)
u2
i,j − αi,jui,j − µwi,j = 0
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for the nonnegative root, where

αi,j = z2
i,j (ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

+

(
z2
i+1,j − z2

i−1,j

2

)(
ui+1,j − ui−1,j

2

)
+

(
z2
i,j+1 − z2

i,j−1

2

)(
ui,j+1 − ui,j−1

2

)

+ γ

1− b(k) −
∑

(i′,j′) 6=(i,j)

ui′,j′

 ,

and where wi,j is the given number of sampled events that occurred at the location (i, j). We

chose our parameters µ and γ so that the Gauss-Seidel solver will converge. In particular,

we have µ = O ((NM)−2) and γ = O (µ (NM)), where the image is N ×M .

2.3.3 Modified TV MPLE Implementation

There are many approaches for handling the minimization of the Total Variation penalty

functional. A fast and simple method for doing this is to use the Split Bregman technique

(see [44],[78] for an in depth discussion, see also [135]). In this approach, we substitute the

variable d for ∇u in the TV norm and then enforce the equality d = ∇u using Bregman

iteration. To apply Bregman iteration, we introduce the variable g as the Bregman vector of

the d = ∇u constraint. This results in a minimization problem in which we minimize with

respect to both d and u.

Beginning the iteration with g(0) = 0, the minimization is written as

(
u(k+1),d(k+1)

)
= argmin

u, d

{
||d||1 + λ

∫
Ω

u∇ · θdx− µ
n∑
i=1

log(u(xi))

+
γ

2

(∫
Ω

u(x)dx + b(k) − 1

)2

+
α

2
||d−∇u− g(k)||22

}

g(k) = g(k−1) +∇u(k) − d(k).
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Alternating the minimization of u(k+1) and d(k+1), we obtain our final formulation for the

TV model as

(TV )



u(k+1) = argminu

{
λ
∫

Ω
u∇ · θ dx− µ

∑n
i=1 log(u(xi))

+γ
2

(∫
Ω
u(x) dx + b(k) − 1

)2

+α
2
||d(k) −∇u− g(k)||22

}
d

(k+1)
j = shrink

(
(∇u(k+1))j + g

(k)
j , 1

α

)
g(k+1) = g(k) +∇u(k+1) − d(k+1)

b(k+1) = b(k) +
∫

Ω
u(k+1) dx− 1.

The shrink function is given by

shrink (z, η) = max {|z| − η, 0}
(
z

|z|

)
.

Solving for d(k+1) and g(k+1) we use forward difference discretizations, namely

∇u(k+1) = (ui+1,j − ui,j, ui,j+1 − ui,j)T .

The Euler-Lagrange equation for the variable u(k+1) is

0 = − µ

u(x)

n∑
i=1

δ(x− xi) + λdivθ − α
(
∆u+ div gk − div dk

)
+γ

(∫
Ω

u dx + bk − 1

)
.

Discretizing this simplifies to solving for the nonnegative root of

(4α + γ) u2
i,j − βi,jui,j − µwi,j = 0
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where

βi,j = α (ui+1,j + ui−1,j + ui,j+1 + ui,j−1) − λ div θ

− α
(
dkx,i,j − dkx,i−1,j + dky,i,j − dky,i,j−1

)
+ α

(
gkx,i,j − gkx,i−1,j + gky,i,j − gky,i,j−1

)
+ γ

1− b(k) −
∑

(i′,j′) 6=(i,j)

ui′,j′

 .

We solved for u(k+1) with a Gauss-Seidel solver. Heuristically, we found that using the

relationships α = 2µN2M2 and γ = 2µNM were sufficient for the solver to converge and

provide good results. We also set λ to have values between 1.0 and 1.2. The parameter µ

is the last remaining free parameter. This parameter can be chosen using V-cross validation

or other techniques, such as the sparsity l1 information criterion [107].

2.4 Results

In this section, we demonstrate the strengths of our models by providing several examples.

We first revisit the example from Chapter 1, providing an error comparison for both our

methods and the existing methods. Next, we consider a dense data set, sampled from a

piecewise-constant density. We then show our methods perform well for sparse data sets.

Next, we explore an example with an aerial image and randomly selected events to show how

these methods could be applied to geographic event data. Finally, we calculate probability

density estimates for residential burglaries.

2.4.1 Continuation of Introductory Example

Chapter 1 provided a motivating example, showing existing methods in Figure 1.1 and our

proposed methods in Figure 1.2. Visually, the methods we propose outperform the existing

methods by preventing density from smoothing into the invalid region and by producing

qualitatively similar densities in the valid region. To better understand how the methods
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perform, we examine the L2 error,

(∑
ij

|uij − u∗ij|2
)1/2

,

and the relative L2 error,

(∑
ij |uij − u∗ij|2

)1/2

(∑
ij |u∗ij|2

)1/2
,

where u∗ is the exact solution. The results for the introductory example are provided in

Table 2.1.

4,000 Events L2 Error Relative L2 Error

Kernel Density Estimate 2.7191e-3 0.19393
TV MPLE 2.7862e-3 0.19871

Modified TV MPLE 7.6155e-4 0.05431
Weighted H1 MPLE 1.4773e-3 0.10536
Weighted TV MPLE 1.9021e-3 0.13566

Table 2.1: These are the L2 error and relative error comparisons of the five methods for the introductory

example shown in Figure 1.1. Our proposed methods performed better than both the Kernel Density

Estimation method and the TV MPLE method.

The error values demonstrate that all our proposed methods perform better than the existing

Kernel Density Estimation and TV MPLE methods. Additionally, the Modified TV MPLE

method performs the best for this example.

2.4.2 Dense Data Set Example

To further validate the use of our methods, we took a predefined probability map with

sharp gradients, see Figure 2.1(a). The chosen valid region and the 8,000 selected events are

displayed in Figures 2.1(b) and 2.1(c), respectively. We performed density estimates with the

Gaussian Kernel Density Estimation and the Total Variation MPLE methods. The variance

used for the Kernel Density Estimation is σ = 2. The results are provided in Figures 2.1(d)

and 2.1(e). The density estimates obtained from our Modified TV MPLE method and
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Figure 2.1: This is a model validating example with dense data set of 8000 events. The piecewise-constant

true density is given in (a), and the valid region is provided in (b). The sampled events are shown in (c).

Figures (d) and (e) show the two current density estimation methods, Kernel Density Estimation and TV

MPLE. Figures (f), (g), and (h) show the density estimates from our methods. The color scale represents

the relative probability of an event occurring in a given pixel. The images are 80 pixels by 80 pixels.

Weighted H1 MPLE method are shown in Figures 2.1(f) and 2.1(g), respectively. We also

included our Weighted TV MPLE in Figure 2.1(h).

Our methods maintain the boundary of the invalid region and appear close to the true

solution. In addition, they keep the sharp gradient in the density estimate. The L2 errors

and relative L2 errors for these methods are located in Table 2.2.
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8,000 Events L2 Error Relative L2 Error

Kernel Density Estimate 2.8474e-3 0.1940
TV MPLE 2.5721e-3 0.1753

Modified TV MPLE 2.0301e-3 0.1383
Weighted H1 MPLE 1.9691e-3 0.1342
Weighted TV MPLE 2.0783e-3 0.1416

Table 2.2: These are the L2 error and relative error comparisons of the five methods shown in Figure 2.1.

Our proposed methods performed better than both the Kernel Density Estimation method and the TV

MPLE method.

2.4.3 Sparse Data Example

Crimes and other types of events may be quite sparse in a given geographical region. Con-

sequently, it becomes difficult to determine the probability that an event will occur in the

area. It is challenging for density estimation methods that do not incorporate the spatial

information to distinguish between invalid regions and areas that have not had any crimes

but are still likely to have events. Using the same predefined probability density from the

introduction section in Figure 1.1(b), we demonstrate how our methods maintain these in-

valid regions for sparse data. The 40 events selected are shown in Figure 2.2(b). The density

estimates for current methods and our methods are given in Figure 2.2. We used a variance

σ = 15 for the Gaussian Kernel Density Estimate.

40 Events L2 Error Relative L2 Error

Kernel Density Estimate 4.8021e-3 0.3425
TV MPLE 5.0346e-3 0.3591

Modified TV MPLE 3.7875e-3 0.2701
Weighted H1 MPLE 1.9608e-3 0.1398
Weighted TV MPLE 3.9983e-3 0.2852

Table 2.3: These are the L2 error and relative error comparisons of the five methods for the sparse example

shown in Figure 2.2. Our proposed methods performed better than both the Kernel Density Estimation

method and the TV MPLE method.

For this sparse problem, our Weighted H1 MPLE and Modified TV MPLE methods

maintain the boundary of the invalid region and appear close to the true solution. Table 2.3

contains the L2 errors and relative L2 errors for this example. Notice that the Weighted H1

MPLE was exceptionally better for the sparse data set. The Weighted TV MPLE method
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Figure 2.2: This is a sparse example with 40 events. The true density is given in (a), and it is the same

density from the example in the introduction. The sampled events are shown in (b). Figures (c) and (d) show

the two current density estimation methods, Kernel Density Estimation and TV MPLE. Figures (e), (f),

and (g) show the density estimates from our methods. The color scale represents the relative probability of

an event occurring in a given pixel. The images are 80 pixels by 80 pixels.

does not perform as well for sparse data sets and fails to keep the boundary of the valid

region. Since the rest of the examples contain sparse data sets, we will omit the Weighted

TV MPLE method from the remaining sections.
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2.4.4 Orange County Coastline Example

To test the models with external spatial data, we obtained from Google Earth TM a region of

the Orange County coastline with clear invalid regions (see Figure 2.3(a)). For the purposes

of this example, it was determined to be impossible for events to occur in the ocean, rivers, or

large parks located in the middle of the region. One may use various segmentation methods

for selecting the valid region. For this example, we only have data from the true color

aerial image, not multispectral data. To obtain the valid and invalid regions, we removed

the “texture” (i.e. fine detailed features) using a Total Variation based denoising algorithm

[105]. The resulting image, shown in Figure 2.3(b), still contains detailed regions obtained

from large features, such as large buildings. We wish to remove these and maintain prominent

regional boundaries. Therefore, we smooth away from regions of large discontinuities. This

is shown in Figure 2.3(c). Since oceans, rivers, parks, and other such areas have generally

lower intensity values than other regions, we threshold to find the boundary between the

valid and invalid regions. The final valid region is displayed in Figure 2.4(a).

Figure 2.3: This shows how we obtained our valid region for the Orange County Coastline example. Figure

(a) is the initial aerial image of the region to be considered. The region of interest is about 15.2 km by 10

km. Figure (b) is the denoised version of the initial image. We took this denoised image and smoothed away

from regions of large discontinuities to obtain Figure (c).

From the valid region, we constructed a toy density map to represent the probability

density for the example and to generate data. It is depicted in Figure 2.4(b). Regions with

colors farther to the right on the color scale are more likely to have events. Sampling from

this constructed density, we took distinct data sets of 200, 2,000 and 20,000 selected events

given in Figure 2.5. For each set of events, we included three probability density estimations

for comparison. We first give the Gaussian Kernel Density Estimate followed by our Modified
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Figure 2.4: After thresholding the intensity values of Figure 2.3(c), we obtain the valid region for the

Orange County Coastline. This valid region is shown in (a). We then constructed a probability density

shown in Figure (b). The color scale represents the relative probability of an event occurring per square

kilometer.

Figure 2.5: From the probability density in Figure 2.4, we sampled 200, 2,000, and 20,000 events. These

events are given in (a), (b), and (c), respectively.

Total Variation MPLE model and our Weighted H1 MPLE model. We provide all images

together to allow for visual comparisons of the methods.

Summing up Gaussian distributions gives a smooth density estimate. Figure 2.6 contains

the density estimates obtained using the Kernel Density Estimation model. The standard

deviation σ of the Gaussians are given with each image. In all of these images, a nonzero

density is estimated in the invalid region.

Taking the same set of events as the Kernel Density Estimation, the images in Figure

2.7 were obtained using our first model, the Modified Total Variation MPLE method with

the boundary edge aligning term. The parameter for λ must be sufficiently large in the TV

method in order to prevent the diffusion of the density into the invalid region. In doing so,

the boundary of the valid region may attain density values too large in comparison to the

rest of the image when the size of the image is very large. To remedy this, we may take

the resulting image from the algorithm and set the boundary of the valid region to zero and
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Figure 2.6: These images are the Gaussian Kernel Density estimates for 200, 2,000, and 20,000 sampled

events of the Orange County Coastline example. The color scale for these images are located in Figure 2.4.

Figure 2.7: These images are the Modified TV MPLE estimates for 200, 2,000, and 20,000 sampled events

of the Orange County Coastline example. The color scale for these images are located in Figure 2.4.

Figure 2.8: These images are the Weighted H1 MPLE estimates for 200, 2,000, and 20,000 sampled events

of the Orange County Coastline example. The color scale for these images are located in Figure 2.4.

rescale the image to have a sum of one. The invalid region in this case sometimes has a very

small non-zero estimate. For visualization purposes we have set this to zero. However, we

note that the method has the strength that density does not diffuse through small sections

of the invalid region back into the valid region on the opposite side. Events on one side of

an object, such as a lake or river, should not necessarily predict events on the other side.

The next set of images in Figure 2.8 estimate the density using the same sets of event

data but with our Weighted H1 MPLE model. Notice the difference for the invalid regions

with our models and the Kernel Density Estimation model. This method does very well for
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the sparse data sets of 200 and 2,000 events.

2.4.4.1 Model Comparisons

The density estimates obtained from using our methods have a clear improvement in main-

taining the boundary of the valid region. To determine how our models did in comparison

to one another and to the Kernel Density Estimate, we calculated the L2 errors and relative

errors located in Tables 2.4, 2.5, and 2.6.

200 Events L2 Error Relative L2 Error

Kernel Density Estimate 8.3868e-4 0.4646
Modified TV MPLE 5.5494e-4 0.3074
Weighted H1 MPLE 7.3931e-4 0.4095

Table 2.4: These are the L2 error and relative error comparisons of the three methods for
the Orange County Coastline example with 200 data points shown in Figures 2.6, 2.7, and
2.8. Our proposed methods performed better than the Kernel Density Estimation method.

2,000 Events L2 Error Relative L2 Error

Kernel Density Estimate 5.3709e-4 0.2975
Modified TV MPLE 5.1569e-4 0.2857
Weighted H1 MPLE 3.9985e-4 0.2215

Table 2.5: These are the L2 error and relative error comparisons of the three methods for
the Orange County Coastline example with 2,000 data points shown in Figures 2.6, 2.7, and
2.8. Our proposed methods performed better than the Kernel Density Estimation method.

20,000 Events L2 Error Relative L2 Error

Kernel Density Estimate 3.9781e-4 0.2204
Modified TV MPLE 2.9892e-4 0.1656
Weighted H1 MPLE 2.4091e-4 0.1335

Table 2.6: These are the L2 error and relative error comparisons of the three methods for the
Orange County Coastline example with 20,000 data points shown in Figures 2.6, 2.7, and
2.8. Our proposed methods performed better than the Kernel Density Estimation method.

Our models consistently outperform the Kernel Density Estimation model. The Weighted

H1 MPLE method performs the best for the 2,000 and 20,000 events and visually appears

closer to the true solution for the 200 events than the other methods. Qualitatively, we

have noticed that with sparse data, the TV penalty functional gives results which are near
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constant. Thus, it gives a good L2 error for the Orange County Coastline example, which

has piecewise-constant true density, but gives a worse result for the sparse data example of

Figure 2.2, where the true density has a nonzero gradient. Even though the Modified TV

MPLE method has a lower L2 error in the Orange County Coastline example, the density

estimation fails to give a good indication of regions of high and low likelihood.

2.4.5 Residential Burglary Example

The following example uses actual residential burglary information from the San Fernando

Valley in Los Angeles. In Figure 2.9 is the area of interest and the locations of 4,487

burglaries that occurred in the region during 2004 and 2005. The aerial image was obtained

using Google EarthTM . We assume that residential burglaries cannot occur in large parks,

lakes, mountainous areas without houses, at airports, and industrial areas. Using census or

other types of data, housing density information for a given region can be calculated. Figure

2.9(c) is the housing density for our region of interest. The housing density provides us

with the exact locations of where residential burglaries may occur. However, our methods

prohibit the density estimates from spreading through the boundaries of the valid region. If

we were to use this image directly as the valid region, then crimes on one side of a street

will not have an effect on the opposite side of the road. Therefore, we fill in small holes and

streets in the housing density image and use the image located in Figure 2.9(d) as our valid

region.

Using our Weighted H1 MPLE and Modified TV MPLE models, the Gaussian Kernel

Density Estimate with variance σ = 21, and the TV MPLE method, we obtained the density

estimations shown in Figure 2.10.

2.5 Conclusions

In this paper we have studied the problem of determining a more geographically accurate

probability density estimate. We demonstrate the importance of this problem by show-

ing how common density estimation techniques, such as Kernel Density Estimation, fail to
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Figure 2.9: These Figures are for the San Fernando Valley residential burglary data. In (a), we have

the aerial image of the region we are considering, which is about 16 km by 18 km. Figure (b) shows the

residential burglaries of the region. Figure (c) gives the housing density for the San Fernando Valley. We

show the valid region we obtained from the housing density in Figure (d).

restrict the support of the density in a set of realistic examples.

To handle this problem, we proposed a set of methods, based on Total Variation and H1-

regularized MPLE models, that demonstrates great improvements in accurately enforcing

the support of the density estimate when the valid region has been provided a priori. Unlike

the TV-regularized methods, our H1 model has the advantage that it performs well for very

sparse data sets.

The effectiveness of the methods is shown in a set of examples in which burglary prob-

ability densities are approximated from a set of crime events. Regions in which burglaries
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Figure 2.10: These images are the density estimates for the San Fernando Valley residential burglary data.

Figures (a) and (b) show the results of the current methods Kernel Density Estimation and TV MPLE,

respectively. The results from our Modified TV MPLE method and our Weighted H1 MPLE method are

shown in Figures (c) and (d), respectively. The color scale represents the number of residential burglaries

per year per square kilometer.

are impossible, such as oceans, mountains, and parks, are determined using aerial images

or other external spatial data. These regions are then used to define an invalid region in

which the density should be zero. Therefore, our methods are used to build geographically

accurate probability maps.
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Part II

Modeling Gang Rivalries and Spatial

Behaviors
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CHAPTER 3

Introduction to Modeling Street Gangs

Street gangs have a long history in Los Angeles [83, 128] and are major contributors to

violent acts in the region [41, 82, 85, 102, 134]. Gangs compete to secure both instrumental

(e.g., money, drugs, space) and expressive (e.g., reputation, power) resources, often causing

a partitioning of the city into gang territories [123]. Disputes over spatial resources may lead

to violence and acts of retribution, augmenting or creating a rivalry between gangs [29, 125].

With the prevalence of street gangs in some regions, police departments have developed

strategies for mitigating gang violence. These tactics may include gang injunctions, enforcing

gang territory boundaries, or interventions [128]. While these methods are important, they

may be costly or difficult to implement. Before making large scale changes in policing

strategies, it is beneficial to test theories through inexpensive models.

3.1 Existing Gang Models

Several models have recently been proposed for analyzing various gang behaviors. Retaliatory

behavior among gangs has been simulated via self-exciting point processes and an agent-

based method [34, 116]. These methods focus on the temporal aspect of gang violence.

Using this gang characteristic of retaliation, attempts have been made to fill in the missing

data of which gang is responsible for a crime [51, 122]. From a different perspective, the

authors of [7] use an approach from epidemiology to simulate membership in gangs.

The Lotka-Volterra competition model has been used to analyze the creation of territorial

boundaries between two gangs in [20]. Through this approach, the authors examined the

locations of violent interactions with respect to the theoretical boundary between the two
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gangs and concluded that violence typically clusters about this dividing curve. Another

model uses graffiti as the mechanism for interactions between gang members and analyzes

the circumstances under which territories are formed [11]. Both of these methods focus only

on situations with two gangs. However, many areas with gang violence contain more than

two gangs. Thus, we will need to consider another approach to fully examine a larger system

of active gangs.

3.2 Motivation for Proposed Models

The goal of the proposed models is to simulate the spatial behaviors of gangs to assist in

the understanding of violent interactions and the formation of rivalries and territories. If

achieved, these models could provide information of how the system may change given differ-

ent scenarios and intervention strategies. We aim to model gangs’ spatial dynamics through

one agent-based model and one approach with a system of partial differential equations.

Each method outputs different types of information for analysis.

3.2.1 The Agent-Based Approach

One approach to modeling complex systems is through the class of agent-based models

(ABM). These types of models create a number of individuals or groups, labeled agents,

and often have them interact, learn from the environment, and make decisions through

computational simulations. These methods use a “bottom-up approach,” attempting to

simulate behavioral dynamics for the system from the actions of the individual agents. This

allows for examination of the emergent patterns based on simple rules. These models are

flexible and allow complex dynamics, rules, and strategies to be incorporated into the system.

With a stochastic approach, a model can capture some randomness that is found in

human activity for which the underlying reasoning is unknown. We examine the formation

of rivalries through a stochastic agent-based model that is coupled to a rivalry network in

Chapter 4. A node of the network represents a geographic position that is the central location

to a gang’s activities known as a set space [102, 126]. An edge in the network is present
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if there is a rivalry between the two gangs. In this model, agents move about the city and

interact with members of other gangs. Additionally, geographic boundaries in the region are

incorporated into this model to restrict movement across rivers and large freeways.

3.2.2 The PDE Approach

Using a deterministic approach with a derivation based on a stochastic process, we can ex-

amine other information such as gang densities and territories. Gang territories are dynamic

and the boundaries change over time with the emergence of new gangs and collapsing of

other gangs. By creating a flexible model that can incorporate these fluctuations, theories

can be tested to investigate the system dynamics given certain changes [32, 47].

Chapter 5 proposes a deterministic model of a system of partial differential equations to

describe the equilibrium densities of gangs and gang graffiti. Gangs identify their territories

through the use of graffiti [3, 25, 69]. Gang graffiti marks the boundaries of contested regions

claimed by multiple gangs, which may make these areas more prone to violence. Our goal is

to model the spatial behaviors for gangs and their taggings.

One approach for modeling human behavior is through the framework of ecological mod-

els. The ecological models for optimal foraging have been applied to hunters and gather-

ers [50] and to people seeking information [106]. College drinking patterns have also been

modeled through an ecological approach [1]. Ecology has been essential to epidemiological

modeling of wildlife populations and diseases [61]. These models have in turn been applied

to humans for not only infectious diseases, but also to the social sciences through the spread

of ideas [15] and political affiliations [104]. Adapting ecological models created for territo-

rial animals, we model the spatial behaviors of street gangs, incorporating the geographic

features of the region that influence movement.

3.2.2.1 Existing Ecological Territorial Models

Many species exhibit territorial behavior, where individuals and/or groups are willing to de-

fend space they currently hold from incursions by members of the same species (intraspecific
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competition) or other species (interspecific competition). These territorial behaviors are also

exemplified by street gangs which use violence to control local drug markets or simply de-

fend their neighborhood from outsiders. We consider existing ecological territorial methods

to model these gang territorial behaviors. Several models have recently been proposed to

describe the territorial behavior of species as diverse as wolves [140, 23, 67, 68, 139], coyotes

[80, 81], killer wasps [31], chimpanzees [137], foxes [43], and birds [58].

The paper [55] provides a review of partial differential equation models proposed for

studying the spatial distributions of species. Some approaches include pure diffusion models

with Brownian random motion [94, 33, 87],

∂u(x, y, t)

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
,

diffusion with drift and convection models [53, 10],

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
− wx

∂u

∂x
− wy

∂u

∂y
,

biased random motion models [49],

∂u

∂t
= D

∂2u

∂x2
+

∂

∂x

(
ku
∂u

∂x

)
,

models with aggregation or repulsion that depends on the current organism density [6, 133],

∂u

∂t
= D

∂2u

∂x2
+
∂2ψ(u)

∂x2

and models that depend on environmental features [112, 111, 95, 22],

∂u

∂t
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∂
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[
u
d

dx
φ(E)

]
.
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Additionally, reaction-diffusion,

∂u

∂t
=

∂

∂x

[
D(u)

∂u

∂x

]
+

∂

∂y

[
D(u)

∂u

∂y

]
+ f(u),

and predator-prey models incorporate competition into the system.

Two competing groups might never physically meet, yet still have defined territories.

Coyotes and wolves are animals that exhibit territorial behavior by claiming spatial regions

via scent marking from raised leg urination or other means [99]. When an individual comes

in contact with a marking from a different pack, the animal increases its own urination and

moves towards its home den located on the interior of its territory [67]. This avoidance of

markings has been incorporated into wolf [140, 23, 67, 68, 139] and coyote models [80, 81]

through a coupled system of partial differential equations for both the pack densities and

the marking densities. These mechanistic home range models have recently been connected

to models of resource selection analysis (RSA) [79].

One of the models of [81] includes a mechanism to avoid areas where the terrain is steep.

It is this model that we will modify to examine the spatial behaviors of street gangs, using

gang graffiti as a proxy for scent marking. Figure 3.1 displays the results from this paper,

indicating the ability of this model to approximate the coyote densities in Yellowstone.

Here, the colored curves give the contours of the coyote densities produced by the “steep

terrain avoidance plus conspecific avoidance (STA+CA)” model. The colored dots depict

the locations where coyotes have been found and documented. The different colors represent

different packs of coyotes. The black curves show the elevation contours of the region,

demonstrating how the steep changes in the terrain influence the locations where coyotes are

found. The STA+CA model will be presented in Chapter 5, along with its derivation.

3.3 Case Study: Street Gangs in Hollenbeck

The city of Los Angeles is plagued by gang violence. Hollenbeck, the eastern most division

of the Los Angeles Police Department, is home to twenty-nine active Latino street gangs in
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Figure 3.1: This image was taken from P. R. Moorcroft, M. A. Lewis, and R. L. Crabtree, “Mech-

anistic home range models capture spatial patterns and dynamics of coyote territories in yellow-

stone,” Proceedings: Biological Sciences, 2006, 273(1594):1651–1659, by permission of the Royal

Society [81]. Here, the colored curves give the contours of the coyote densities produced by the

“steep terrain avoidance plus conspecific avoidance (STA+CA)” model. The colored dots depict the

locations where coyotes have been found and documented. The different colors represent different

packs of coyotes. The black curves show the elevation contours of the region.

only 15.2 square miles [102, 128]. Due to the geography of the area, the rivalries among the

gangs in this region are generally restricted to Hollenbeck. Most of the rivalries and disputes

among these gangs is linked to neighborhood-based territoriality rather than drugs or other

conflicts.

To examine the structure of the rivalries in Hollenbeck, we view a graph that is embedded

in space with nodes representing the set spaces of the gangs. If a rivalry exists between two

gangs, then an edge is present between the two respective nodes. Among the twenty-nine

gangs in Hollenbeck, there are sixty-nine observed rivalries. This observed network has

been examined in [102, 128]. The authors of these papers argue that the structure of this

network is highly dependent on the geography of the region and the highways and rivers

that pass through the area. Five major freeways, I-5, I-10, I-710, CA-60, and US-101, divide
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Hollenbeck into many sections. Figure 3.2 shows the spatially embedded rivalry network

and the features that partition the region. It is clear that these physical boundaries impact

the rivalry structure by limiting the number of rivalries between gangs in separate sections.

Thus, it is desirable to include these features into our models.

Figure 3.2: Set spaces embedded in Hollenbeck (Left) and the corresponding observed rivalry

network (Right). Each solid triangle on the left and solid circle on the right gives the location

of a gang’s set space. The faint curves (Left) show the major roads and rivers that pass through

the region, impacting the rivalry structure. The policing division boundary is also included as the

bottom and right boundaries. The observed network from [102] is displayed on the right, where an

edge between two gangs indicates an existing rivalry between the gangs.

3.4 Overview

The remainder of Part II contains the details of two approaches to modeling gangs’ spatial

behaviors and rivalries. Both methods use the Hollenbeck policing division as a case study

for evaluation. Chapter 4 is the published version of the article on the stochastic agent-based

approach [52]. Chapter 5 describes the proposed deterministic model based on an ecological

territorial model [120].

40



CHAPTER 4

Geographical Influences of an Emerging Network of

Gang Rivalries

This chapter is reprinted from Physica A: Statistical Mechanics and its Applications, volume

390, Rachel Hegemann, Laura Smith, Alethea Barbaro, Andrea Bertozzi, Shannon Reid, and

George Tita, “Geographical influences of an emerging network of gang rivalries,” pages 3894-

3914, 2011, with permission from Elsevier [52].

Abstract

We propose an agent-based model to simulate the creation of street gang rivalries. The

movement dynamics of agents are coupled to an evolving network of gang rivalries, which

is determined by previous interactions among agents in the system. Basic gang data, geo-

graphic information, and behavioral dynamics suggested by the criminology literature are

integrated into the model. The major highways, rivers, and the locations of gangs’ centers

of activity influence the agents’ motion. We use a policing division of the Los Angeles Police

Department as a case study to test our model. We apply common metrics from graph theory

to analyze our model, comparing networks produced by our simulations and an instance of

a Geographical Threshold Graph to the existing network from the criminology literature.

4.1 Introduction

Street gangs are a growing problem around the world [27, 64, 62]. In fact, recent statistics

from The National Gang Intelligence Center estimate there are 1 million active gang members
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in the United States alone [101]. Violence is intrinsic to street gangs, and rival gangs battle

to gain respect and street reputation [125, 29]. Criminal activities perpetrated by gang

members, including armed robbery, homicide, drug dealing, and auto theft, drain cities and

governments of tight resources and also pose safety threats to community members. Much

of the research on street gangs has been conducted within the United States, though there

have been some efforts to understand the phenomenon in Europe and other parts of the

world [27, 64, 62].

Violence perpetrated by gang members is frequently against members of a different gang.

In areas with numerous gangs, it is common for gangs to have multiple violent interactions

with many of the other gangs. Further, street gang members typically have locations, known

as set spaces, where they spend large quantities of time [126, 98]. It is therefore reasonable to

think of each gang as a node embedded in Euclidean space [102, 128]. Within this framework,

the existence of persistent violence between two gangs becomes an edge connecting two nodes.

From this construction, one can view a collection of gangs as a spatially embedded network

[127]. The Hollenbeck policing division of eastern Los Angeles is marked by a particularly

high degree of violent crimes involving gang members, including homicides and aggravated

assaults [102, 56]. It is for this reason and others listed in Section 4.1.4 that we consider

Hollenbeck as a case study for our model.

Statistical approaches are often used to analyze gang activities. For example, in their

recent paper, the authors of [102] used a network statistical approach called CONCOR to

partition the region of Hollenbeck into areas of similar violence activity and geographic

proximity. From this, they were able to conclude that a relationship exists between the

location of a gang and its rivals. Other authors have utilized various statistical approaches to

examine gang related data [128, 126]. The methodology of determining factors that correlate

with gang activity has been able to describe certain features of the observed system. This

approach has made important contributions in the field, but it cannot make solid causal

arguments or test theories [72, 131]. Though one could argue that creating an experiment

would help validate causal arguments, many of these experiments are not feasible due to

monetary and resource constraints and could be unethical and infringe on basic human
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rights. Even in circumstances where the resources are available, interventions may fail to be

implemented as planned. This is evident in the work of [128].

Obtaining complete and valid data sets are common issues in the field of criminology.

Data sets are many times unreliable through inaccuracies, underreporting, and potential bias

[32]. This provides a fundamental problem in the conclusions made from faulty data. In

[47], a strong case is made to move beyond statistical modeling and instead model social

phenomena using a mathematical approach. We use such an approach with the aim to

understand the plausible mechanisms for the formation of gang rivalries and to provide

social scientists a means by which to test social theories. For comparison, we propose two

different mathematical techniques: a pure network and an agent-based approach.

Our goal in this work is to understand how long-term rivalries among gangs develop by us-

ing a model including geography, social dynamics, and human mobility patterns. Because we

have only one observed rivalry network, this is a very difficult inverse problem. Furthermore,

statistical approaches are not able to determine causal effects. As a solution, we propose

an agent-based model that is coupled to a dynamically evolving network. This bottom-up

approach simulates the mobility of gang members by using the conclusions from current lit-

erature in human mobility patterns, see Section 4.2.1 for more details. These agents interact

to form a rivalry network. We compare the resulting simulated network to the gang rivalry

network observed in the eastern Los Angeles division of Hollenbeck [128, 102].

The outline of our paper is as follows: network and agent-based modeling approaches

are outlined in Sections 4.1.1 and 4.1.2, and previous work on crime models is discussed in

Section 4.1.3. Detailed information concerning the particulars of Hollenbeck are found in

Section 4.1.4. In Section 4.2, we outline the proposed model. In Section 4.3, we describe

two baseline models, one instance of a Geographical Threshold Graph and a network derived

from Brownian Motion. We contrast these simpler models with our model to demonstrate

the need for a more complex approach. In Section 4.4, we describe a series of metrics from

network theory, examine long term behavior of the model, and compare the networks against

the metrics. Section 4.5 provides a sensitivity analysis of our model. We conclude and give

future directions in Section 4.6.
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4.1.1 Network Models

General network models and the corresponding analysis are useful for describing the behavior

of complex systems and have played an increasingly active role [88, 89, 91]. One way networks

are treated in the literature is by analyzing the statistical properties of a given network.

Another approach is to consider the construction of a network. There are many instances

where the network of interest is not known, but there is some knowledge of the processes by

which the network is formed. One popular method to construct a network is to view it as

a random graph. Each edge is added with a predetermined probability, often dependent on

the weight of the nodes [2, 92, 93].

In some applications, including gang rivalry networks, the geographic location of the

nodes influences the structure of the network. In such cases, geographic features should be

considered as part of the random network model. For example, interstate highways have

been shown to be structurally different from scale-free networks such as Internet and airline

flight networks [42]. The importance of geography is also seen in friendship networks in

[138]. This work was descriptive by nature, and was therefore limited in the conclusions that

could be drawn. In their paper, Liben-Nowell et al. use the publicly accessible location of

495,836 bloggers in the Live Journal to investigate effects of spatial proximity on friendships

[70]. The study found that an estimated 69% of a person’s friends can be described by

geography. This paper constructed a simulation and was able to create plausible scenarios

and test theories of information spreading on a social network, again highlighting a strength

of a mathematical modeling approach.

In the scenario of gang rivalries, the geographic location of gangs play a role in the

observed gang rivalry structure [128]. Because of this, one of our approaches is to construct

a simple network model that incorporates the proximities between gang set spaces. One

method for incorporating geographical information into the random graph construction is

by using a Geographical Threshold Graph [74, 17, 18]. This is a random graph on a set of

randomly weighted nodes, where the nodes are located in a metric space and the connections

are determined by thresholding a function of the distance and the weights. This provides an

44



efficient way to construct a rivalry network while incorporating some geographic information.

We use an instance of a Geographical Threshold Graph as a baseline against which we

compare our model.

4.1.2 Agent-Based Models

Network models can provide a computationally inexpensive means to reproduce an observed

network, but these models do not lend themselves to describing phenomena of interest beyond

the structure of the network. An alternative modeling approach is to use agent-based models.

These models are generally used for complex systems, since they are able to capture details at

the level of an individual, or agent. In this class of models, agents often move through phase

space and interact amongst themselves, producing complex dynamics and patterns from

simple behavioral rules. Agent-based models can answer different questions from a network

approach since they focus on the way individuals actions can determine the behavior at the

system level.

This type of modeling approach is widely used in economics [132, 124, 141], epidemiology

[37], sociology [119], biology [54], and other situations in which complex systems are encoun-

tered. The strength of agent-based modeling is that it allows for responses at the individual

level to be directly incorporated into the model. For example, agent-based models have been

proposed in the context of searching and swarming [71], and much interesting mathematical

analysis has been done on the behavior of these systems [30, 26]. In this way, modelers can

include information and behavioral dynamics from scientists who study the complex system

of interest. Agent-based methods have been proposed to describe social systems and eco-

nomics since they can provide a means by which to test theories about individual dynamics

in cases where the dynamics are not precisely known [38, 72].

In our model, we are interested in the coupling between the network and the underlying

system. There has been some exploration of this in the literature. For example, Schweitzer

and Tilch provide one example of a model that uses an agent-based approach to form an

emerging network [108, 109]. They model the chemical trail formed by ants searching for
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food at an unknown location. As the ants search their environment, networks of chemical

trails form with which the ants interact. Another example is that of the EpiSims model

[130, 76]. Here, the contact networks of the populations are evolving over time and depend

on the internal attributes of the people in the population. In turn, as a disease is spread

through the contact network, the movements of the people change in response to the disease,

producing a non-trivial interaction between the system and the network.

One of the major strengths of this approach is the flexible framework available for these

models. For example, this method can easily incorporate environmental and spatial infor-

mation inherent to the system. One example of this is shown in [12], where the authors were

able to incorporate environmental information in the form of temperature and current, as

well as geography of landmasses, to accurately model and predict the migration patterns of a

species of pelagic fish. In our agent-based model, we use information about the environment

in the form of freeways, rivers, and road density. In a network context, coupling an agent-

based model to a network is a novel way to explore how changing dynamics of individual

agents can affect the evolution of the network, providing control parameters which would be

inaccessible in a graph-based model.

4.1.3 Previous Work on Crime Modeling

Many mathematical models have been created to study the patterns, mechanisms, and po-

tential interventions associated with crime. Research has been conducted to address various

aspects of burglaries such as hot spot formation [113, 115, 19], policing strategies [60, 100],

criminal cooperation [114], and geographical profiling [96]. Some attempts have also been

made to model gang behaviors. The study in [116] examines the short term retaliatory be-

havior of the rivalries based on between gang violence data from the LAPD. In this work,

each violent event between two gangs is considered an instance of a point process associ-

ated with that pair of gangs. The intensity of the rivalry depends directly on the network

of unidirectional violent interactions. This provides a top-down approach to understanding

immediate consequences of violence among gangs within a system.
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In the model proposed by [34], an agent-based approach was used to simulate the location

of violent interactions and gang retaliations in Hollenbeck. Embedded in the model was a

rivalry network. Though the model recreated similar features to the violence data, the model

made unrealistic assumptions about the mobility of the agents. For instance, the agents’

movements were influenced by the location of every rival gang member, an implausible

assumption. Further, agents only move towards rival gangs members, ignoring their own set

space, or center of activity. However, according to the criminology literature, this retaliatory

behavior is only seen on short time scales [116]. Furthermore, gang members tend to avoid

the territory of rival gangs and spend large quantities of time at their set spaces [5, 69].

Another concern is that the the agents ignore geographic features, such as highways and

rivers, known to correlate with the rivalry structure [102]. It has been shown in other

models simulating human movement that highways restrict movements [48].

We propose a bottom-up approach with an agent-based model that incorporates move-

ment rules from literature on human mobility in order to capture the long-term gang rivalry

structure. These rules consider geographical features known to relate to movement dynam-

ics. We also consider current literature on known gang behavior as a basis for directional

decisions. More details are seen in Subsection 4.2.1. We use Hollenbeck as a case study for

our model.

4.1.4 Hollenbeck

Hollenbeck is a policing division located in eastern Los Angeles, surrounded by downtown

Los Angeles to the west, Pasadena to the northeast, Vernon to the south, and to the east

the unincorporated area of East Los Angeles, see Figure 4.1. Hollenbeck provides a diverse

geography with many highways cutting through the region and is bounded by the Los Angeles

River. It encompasses an area of roughly 39.4 km2. Hollenbeck is home to approximately

twenty-nine active gangs with sixty-nine rivalries among them [102, 128]. The set spaces for

the gangs and the corresponding observed rivalry network are displayed in Figure 4.1, as

given in [102].
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Certain properties of Hollenbeck make it accessible to modeling the gang rivalry networks

outlined in [128, 102]. First, it is a closed system in that the gang activity within Hollenbeck

is generally isolated from gang activity outside of Hollenbeck. Further, the motivation for

violence between gangs is largely characterized by disputes over geographical gang territories,

as opposed to drug and racially motivated violence. Data on the geography of Hollenbeck is

easily accessible, and there has been explicit documentation of the observed rivalry network.

Figure 4.1: Google EarthTM Image of the Hollenbeck area (left). Map of the Hollenbeck area
with the location of the gang set spaces, or centers of a gang’s activity, and the corresponding
rivalry network approximated by [102], where a node of the network represents a set space,
and an edge represents a rivalry between two gangs (right). Major roads, highways, the Los
Angeles river, and division lines are also seen in both images.

4.2 Our Model

Our objective is to model the long-term gang rivalry structure and gang member mobility by

incorporating simple behavioral rules and geographical factors, such as road density, high-

ways, and locations of gangs’ set spaces (centers of activity). The movement of each agent

is not intended to model each detail involved in an individual’s mobility, but rather capture

the statistical behavior of people’s movements observed from the literature. Agents in the

model move based on their location with respect to their and other gangs’ set spaces and in-
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teract with agents of different gang affiliations. We count the number of interactions between

gangs, and when agents of different gangs move within a certain distance of each other, the

number of interactions between those gangs increases by one. As the simulation progresses,

a network structure emerges. The weighted network of interactions in turn influences the

directional decisions of the agents.

4.2.1 Motivation for Model Construction

The intent of this model is to capture the broad statistical features of human mobility with

an emphasis on gang members’ movements. Empirical data on the location and individual

movements of each gang member is inaccessible, so we characterize the movements of the

individual gang members in a statistical sense based on the literature on human mobility.

Several studies give compelling evidence that when people move unconstrained environment,

the jump lengths between movements is distributed like a power law [24, 103]. Further, in

the presence of obstacles such as roads and buildings, the jump lengths more accurately

follow a bounded power law distribution [45].

Determining the statistical properties of the jump length is only one aspect of movement

dynamics. In their paper, Rhee et al. discuss the need to incorporate geographical features

and the tendency for people to go home [103]. Gonzalez et al. confirmed in their data that

humans do tend to frequent a small number of locations often [45]. For these reasons, the

agents in our model pick their jump length from a Bounded Pareto distribution and have a

directional choice in movement.

In the case of gangs in Hollenbeck, it is reasonable to assume that the gang members have

a clear sense of the location of their home territory, or set space, as well as the location of

their rival gangs’ set spaces [126]. Literature on gang activity suggests that, in general, gang

members tend to stay away from their rival gangs’ set spaces [69]. Unlike other criminal

groups, such as organized crime syndicates and insurgency groups that strive for secrecy,

street gangs are social organizations that proudly demarcate their territory and announce

their enemies through the use of graffiti. Gangs create social boundaries and therefore
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areas of avoidance [5]. Our model incorporates this social geography into agents’ movement

dynamics.

One aspect of modeling human mobility that was touched on, but not fully explored,

by the previous literature is the role of physical features specific to urban areas that may

constrain agents’ movement. The first consideration is the ease with which an agent can

move through a city. We posit that in areas where there is a dense street network, the

likelihood of an agent to move long distances is small due to such obstacles as the high

density of people and cars, as well as traffic lights. On the other hand, areas where the

road density is lower, agents should be able to move longer distances. A second physical

consideration that affects human mobility in a city are the highway systems and rivers that

can cut across the region. These features are not impassible, in that there are underpasses

and bridges. Simulations have shown that they provide an obstacle to mobility [48]. It has

been posited that these features play a role in gang rivalry networks [102]. Therefore in our

model, we view major roads, highways, and rivers as semi-permeable boundaries that affect

the agents’ movements.

4.2.2 Model Details

4.2.2.1 Agents

The agents of this model are gang members in a city. Each agent is associated with exactly

one gang. For simplicity we assume agents’ directional choice is dictated only by the location

of the gang set spaces, or centers of activity. All agents know the location of their home

and rivals’ set spaces. We divide the city into regions based on geographical boundaries,

such as rivers and highways. An agent knows which region it is currently in as well as the

region of any prospective new locations. Embedded in the city is a rivalry network among

the gangs in the city. This network is encoded in the rivalry matrix R. Each element (i, j) of

R corresponds to the number of interactions between gang i and gang j. When two agents

are within interaction range, we consider them to have interacted and the corresponding

element of the rivalry matrix, R, is updated. Refer to Section 4.2.2.3 for details on R.
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4.2.2.2 Environment

The environment of interest is on the scale of a small city. Agents and gang set spaces, or

centers of gang activity, have a coordinate location in free space. The rest of the physical

features of the city are approximated by an NxM grid. Each point in free space is identified

with the nearest grid element. The size and number of grid elements are constant throughout

the simulation and are limited by the available data and the memory of the computer.

Two specific features encoded by this grid are the road density and semi-permeable

boundaries represented by a region map. Each grid element of the road density contains

a number between 0 and 1. A value of 0 implies a low road density whereas a value of 1

implies high road density. The semi-permeable boundaries, corresponding to such objects

as highways and rivers, are assumed to split the environment into distinct regions. We pair

this region grid with a transition matrix that stores the associated probability of an agent

to cross from one region to another. These probabilities are determined at the start and

remain constant throughout the simulation. This is implemented to discourage agents from

crossing freeway boundaries.

4.2.2.3 Rivalries

The network structure of the rivalries is encoded in a weighted adjacency matrix, R. Each

element Rij contains the current history of interactions between gang i and gang j. At the

end of a simulation, we construct a thresholded rivalry graph where an edge between gang i

and j exists if either ρi(j) or ρj(i) is larger than a given threshold T , where

ρi(j) =
Rij∑N
k=1Rik

and ρj(i) =
Rji∑N
k=1 Rjk

. (4.1)

The quantity ρi(j) represents the proportion of gang i’s interactions which have occurred

with gang j. Note that ρi(j) is not necessarily equal to ρj(i); however, this thresholding

yields a bidirectional network or, equivalently, a symmetric adjacency matrix. Although the

final rivalry network is symmetric, the influence of the rivalry matrix Rij on the agents’
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movements during the course of the simulations are not symmetric. The data available to

us was in the form of a symmetric network, and so we chose the thresholding rule to be

comparable with the data. Other thresholding rules that result in asymmetric networks

could be implemented. For example, if the thresholding rule for gang i solely depended on

the quantity ρi(j) > T , then the resulting network could be asymmetric.

4.2.3 Process Overview and Scheduling

At each iteration an agent is chosen from the set of all agents with equal probability. The

selected agent performs one step of a random walk by choosing a jump length and direction

from probability distributions for its new prospective location. Depending on the distribu-

tions for the jump length and direction, different random walks will occur. The literature on

human mobility suggests humans move according to a truncated Lévy walk, motivating our

model selection. Further, it is unreasonable to assume that an person’s direction of move-

ment is solely determined by set space locations. Therefore, we use a statistical distribution

to simulate an agent’s directional choice. See Section 4.2.1 for more motivational details.

The jump length, x, is chosen from the Bounded Pareto probability density function,

P (x; k, xm, xM) =
kxkmx

−k−1

1−
(
xm
xM

)k k > 0 , xM ≥ x ≥ xm > 0. (4.2)

The minimum and maximum jump lengths, xm and xM respectively, provide the bounds

for the jump length x. The scaling parameter, k, determines how quickly the probability

density function decays from the minimum jump length to the maximum jump length. For

all agents the minimum jump length, xm, and scale, k, are fixed parameters. To determine

the maximum jump length, xM , the agent uses the approximated road density of the agent’s

corresponding location from the environment grid, with xM ranging from a to A. These

values remain constant throughout the simulation. Here, A is called the largest maximum

jump length and a is the smallest maximum jump length. Then xM is calculated via

xM = (1− δ) · A+ a, (4.3)
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where the road density at the agent’s location, δ, is between 0 and 1.

The second quantity needed to move the agent to the next location is the new direction,

θ. This is obtained by constructing a deterministic direction of bias. This bias incorporates

the agent’s location with respect to its home set space and the location of its rival gangs’

set spaces. Agents have a higher probability of moving in this direction. However, with

lower probability, they have the ability to move any direction. To account for this mobility

pattern, the von Mises distribution is used to simulate the direction the agent will move, θ.

More specifically, given an agent in gang i, the bias direction, µi, is defined as

〈y, z〉 = Hi(||
−→
Gi||2)

−→
Gi

||
−→
Gi||2

+
∑
j 6=i

Dij(||
−→
Gj||2)

−→
Gj

||
−→
Gj||2

(4.4)

µi = tan−1

(
z

y

)
.

Here,
−→
Gl is the vector that points to the set space of gang l from the location of the agent.

When l = i, this vector points towards the agent’s home set space, and when l 6= i, it

points towards a different gang’s set space. This concept is shown in the cartoon example

in Figure 4.2.

In Equation 4.4, Hi gives the rules for weighting towards a gang member’s own home set

space. The weightings toward or away from different gangs’ set spaces are determined by

Dij. Our Hi and Dij take the following form:

Hi(||
−→
Gi||2) = hi ||

−→
Gi||2, (4.5)

Dij(||
−→
Gj||2) = wij(R)

1

||
−→
Gj||2

. (4.6)

One notable feature about these equations is that Hi(·) is large when an agent in gang i

is far from his or her gang’s set space, but the Dij(·) function is large when the agent is

close to a rival gang j’s set space. The factors hi and wij(R) of the weighting functions are
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chosen according to the rules for agent movement. In our implementation, the factor wij(R)

depends on the current state of the rivalry network. Negative values of these functions result

in repulsion and positive values result in attraction.

Figure 4.2: Cartoon example of the direction vectors incorporated in the direction of bias
formula, Equation 4.4. The agent in this example is located at the dot. Here G1, G2, G3,
and G4 show the vectors pointing toward the set spaces of gangs 1 through 4, respectively.
Depending on the choices of Hi and Dij, different movement dynamics are possible.

After determining the direction of bias from Equation 4.4, we must choose in which

direction the agent will move. The direction, θ, is drawn from a von Mises distribution (also

known as the Circular Normal distribution) [73, 57, 14]. For θ ∈ [−π, π], the von Mises

distribution is given by

f(θ|µ, κ) =
exp (κ cos(θ − µ))

2πI0(κ)
.

Here I0 is a modified Bessel function of order zero. The von Mises distribution requires two

parameters, one for the angle of bias, µ, and one for the strength of the bias, κ. We can think

of µ as being the mean of the distribution, and 1
κ

as being comparable to the variance. The

larger κ is, the stronger the bias is for the direction µ. If κ = 0, this is a uniform distribution

on a circle.

From the direction, θ, and jump length, x, a prospective location is calculated. The new

location is then checked to see if the result would move the agent into a different region.
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Within the same region movement is unrestricted. However, if its next move would result in

a region change, i.e. it is crossing a semi-permeable boundary, it has a given probability of

crossing into that region. If the agent moves, it searches the other agents to see if it is close

enough to interact with agents of other gangs. When an interaction does occur, the rivalry

matrix, R, is updated. The location of interactions is also recorded and could be of interest

to other applications, see discussion in Section 4.6 and Figure 4.14.

The model is run until limiting behavior is observed in all of the metrics. In the absence

of an observed network, it could be helpful to run simultaneous simulations with different

random seeds and calculate the variance of each metric over the course of the simulation

run. When the variances of each metric levels off, terminate the simulation. In the case

of Hollenbeck, the final network is taken after 20,000,000 iterations and then thresholded

to ignore infrequent interactions. For more details on long term behavior of the model, see

Section 4.4.2.

4.2.4 Initialization and Input Data

Before the simulation begins, the region map and an estimated density of the road networks

must be provided in matrix form on the same grid. The probability of crossing each boundary

must also be provided. Additionally, parameter values must be specified. Table 4.1 describes

the full list of parameters needed for implementation. At the start of the simulation all of

the agents are located at their gang’s set space. The size of each gang must also be specified.

4.2.5 Hollenbeck Parameters

The grid of environment features of Hollenbeck was approximated from the Google EarthTM

image in Figure 4.1. Hollenbeck is about 39.4 km2 [102, 128]. In our implementation, one

Hollenbeck city block corresponds to approximately six grid elements. The interaction ra-

dius between agents is 3 units, or roughly half a city block. The approximated road density

and region grids are show in Figure 4.3. The boundaries of the Hollenbeck region were ap-

proximated using points from the geographic features visible from Google EarthTM . These
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Parameters Acceptable Hollenbeck Tested
Values Values Range

Agent
xm 0 < xm < a 0.1
k 0 < k 1.1 [1, 1.9]
κ 0 ≤ κ 3.5 [1.5, 5]
hi −∞ < hi <∞ 1
wij(R) −∞ < wij(R) <∞ −ρi(j)
Environment
Ni Ni ∈ Z+ 14≤ Ni ≤ 598
Si Si ∈ R2 see Figure 4.1
A a < A 200 [100, 400]
a xm < a < A 100 [100, 200]
B 0 ≤ B ≤ 1 0.2 [0, .5]
Network
T 0 ≤ T 0.04 [0, 0.06]

Parameters Description

Agent
xm Minimum jump length
k Bounded Pareto scaling parameter
κ Von Mises scaling parameter
hi Home weighting
wij(R) Rival gang weighting
Environment
Ni Number of gang members in gang i
Si Location of gang i set space
A Largest maximum jump length
a Smallest maximum jump length
B Permeability of boundaries
Network
T Threshold for existence of an edge

Table 4.1: Parameters needed for model implementation are listed in the first column. The
second column lists theoretically acceptable parameter values. The values corresponding to
the SBLN are displayed in the Hollenbeck Values Column. The Tested Range column pro-
vides the range for each variable for simulations run. The second table provides a description
of each of the parameter values.

boundaries were used to construct the region grid. To approximate the road density, the

Weighted H1 Maximum Penalized Likelihood Estimation method was used [121]. Although
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the area of Hollenbeck does not have large invalid regions of agent movement, alternative

cities could have regions where human mobility is not expected to occur, such as in lakes,

mountains, and oceans. Other methods for density estimation, such as kernel density esti-

mation or other Maximum Penalized Likelihood Estimation (MPLE) methods, could also be

used to construct the road density [118, 35, 78, 46]. To extend the approximated road density

to the same sized grid as the region grid, the average value of the density over Hollenbeck

was computed and used for the extended regions. The number of agents in each gang reflects

historical information obtained from the LAPD.

Figure 4.3: The image on the left shows the location of Hollenbeck in the N ×M environment
grid. The semi-permeable boundaries encoded in the model are displayed in the center image.
The shades of gray of this image are used to distinguish among regions. On the right, we
used a Weighted H1 Maximum Penalized Likelihood Estimation method with a road map as
the initial data to approximate the road density of Hollenbeck [121]. The scale, seen on the
far right, gives the approximated road density intensity. Light shades of gray correspond to
high density values near one and dark shades correspond to low densities near zero.

The boundary crossing probability between the regions was calculated by the minimum

number of boundaries one must cross to get from one region to the next. For instance, if

region 1 and region 2 were separated by one boundary, the agent would have a probability,

B, of accepting a move from region 1 to region 2. If region 1 and 2 were separated by α

boundaries, then the agent would have a Bα probability accepting the move.
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4.3 Baseline Comparison Models

4.3.1 Geographical Threshold Graphs (GTG)

For comparison to the networks produced by our simulations, we constructed an instance of a

Geographical Threshold Graph (GTG). Geographical Threshold Graphs are random graphs

that use spatial proximity to assist in determining whether or not two nodes are connected

with an edge [74, 17, 18]. Geographical Threshold Graphs randomly assign weights ηi to the

N nodes. Then, using an interaction function F (ηi, ηj), an edge between nodes ni and nj

exists only if
F (ηi, ηj)

d(ni, nj)β
≥ Threshold,

where d(ni, nj) is the distance between nodes ni and nj. Constructing an instance of this

graph is fast and computationally inexpensive.

Geographical Threshold Graphs are not deterministic in general. However, we are using

this framework to construct one network in order obtain a reasonable comparison to our

proposed model. To this end, we provide deterministic weights, ηi, taken from data to be

the size of each gang. In our case, we take the multiplicative weight function F (ηi, ηj) = ηi·ηj,

since this is the number of possible pairings between members of gang i and gang j. We use

Euclidean distance for the d(ni, nj) function and choose β = 2. The threshold was chosen

to give the same number of rivalries as the observed rivalry network.

4.3.2 Brownian Motion Network (BMN)

Another model we use to compare with the simulated network is a simplified version of the

proposed model using Brownian Motion and unbiased movement rules. Experiments without

encoding the semi-permeable boundaries were conducted with unsatisfactory results. There-

fore, the semi-permeable boundaries of the model are incorporated. In this model, each agent

chooses the next prospective location from a standard normal distribution, ignoring any di-

rectional decisions. These simplifications reduce the number of variables to the threshold, T ,

and the permeability, B, while still incorporating the geographic boundaries. The parameter
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space around the Hollenbeck values was explored and run for 2 · 107 iterations. A priori, it

was unclear how many iterations to run the simulation. We observed that the accuracy of

the Brownian Motion networks peaked around 1.2 · 107 iterations and then decreased as the

simulations progressed. The parameters and number of iterations that produced the highest

accuracy were used for analysis. We will refer to the resulting network as the Brownian

Motion Network (BMN).

Inherent in the BMN is a level of stochasticity. To understand how this stochasticity

influences the final rivalry network and the resulting metrics, the BMN simulation was run

for 100 different seed values. The resulting collection of final networks will be called the

Ensemble BMN.

4.3.3 Baseline Network Graphs

Figure 4.4 displays the resulting GTG and BMN as compared to the observed rivalry network.

The lower portion of the GTG graph has similar shape to the observed network, but contains

more connections. The GTG does not make long connections. This is particularly evident

in the upper half of Hollenbeck. The BMN picks up many of the longer connections, but

includes far too many connections.

4.4 Results

The proposed model produces strong results when compared to the baseline models. For

analysis of the model, this section is divided into two parts, the internal properties of the

model and the comparison among models. Due to the stochastic nature of the movement

rules, the final network is not deterministic. Despite fluctuations among simulation runs,

within a single run the model exhibits long term stable behavior in the metrics used for

analysis. The stochasticity and long term behavior are the internal properties we examine

in detail in Subsection 4.4.1 and Subsection 4.4.2, respectively. The stochastic nature of the

model allows for a more realistic scenario, in the case where the observed network is just

one instance of a random process. Further, the existence of stable long term behavior in
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Figure 4.4: A visual comparison of the observed rivalry network (left), GTG (center), and
BMN (right). Here, a node of the network represents a set space, and an edge represents a
rivalry between two gangs.

our model is important to replicating the observed system, since research has demonstrated

that the rivalry networks among gangs tend to be stable over time [127, 102, 98]. A more

detailed discussion of this can be seen at the end of Subsection 4.4.2.

After an examination of the internal properties of the model, we subject the models to

a number of metrics in order to capture the features of the observed network as well as

the accuracy of model networks. Keeping in mind the potential for variants of an observed

network, the measures we chose to evaluate the performance of our model are fairly robust

to small perturbations to the observed network. The metrics used to assess the shape of the

network and the accuracy are defined in Subsection 4.4.3, and their corresponding results

are displayed in Subsection 4.4.4.

For analysis and comparison, we took one simulation run as a showcase of the model.

This network was obtained by searching the parameter space within the ranges specified in

the fourth column of Table 4.1, allowing for dependencies between parameters. The 34,128

simulated networks were then sorted according to accuracy, defined in Equation 4.7. Because

each of the gangs in Hollenbeck are active, the graph with the highest accuracy with all non-
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zero degree nodes was chosen. The parameter values for the optimal run are found in the

third column of Table 4.1. We will to refer to this as Simulated Biased Lévy walk Network

(SBLN). Figure 4.5 displays the network with our optimal parameters. The SBLN has a

shape and structure similar to the observed network, but does not capture all of the longer

edges. We also verified that all of the metrics we use to evaluate our model have reached a

statistical equilibrium for the SBLN.

Figure 4.5: Comparison of the observed rivalry network (left) and the SBLN (right). Here,
a node of the network represents a set space, and an edge represents a rivalry between two
gangs. The SBLN has a shape and structure similar to the observed network, but does not
capture many of the longer edges.

4.4.1 Stochastic Effects Observed in the Simulated Biased Lévy walk Network

(SBLN)

Implicit in the model is a degree of stochasticity intended to capture the gross features

of human movement. In particular, the jump length and direction choice are sampled from

probability distributions, and the directional bias is determined by the (inherently stochastic)

current rivalry structure. These elements affect the inclusion and exclusion of rivalry network

edges. To understand the effect of stochasticity on the network produced by the model,
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each simulation was run 100 times with different random seed values with the same SBLN

parameter values. We refer to the collection of runs as the Ensemble SBLN. Each simulation

was run independently and evaluated with several metrics. The resulting metrics were then

averaged for analysis.

We also recorded the persistence of each edge in the ensemble of networks, and this is

denoted as the percent edge agreement. For example, an ensemble network with 10% edge

agreement refers to a network consisting of all edges that appear in at least 10% of the

runs. Figure 4.6 displays the Ensemble SBLN with 100%, 50%, and 1% edge agreement

next to the observed rivalry network. As expected, increasing the percent edge agreement

decreases the number of edges present in the network. The network constructed with 100%

edge agreement does not give a close representation of the observed network, because there

are too few edges. However, allowing for 50% edge agreement produces a similar shape to the

observed network. The Ensemble SBLN 1% edge agreement network shows all possible edges

observed in the ensemble of simulation runs. Taken together, these images demonstrate the

stochastic effects inherent in the model.

Figure 4.6: Percent edge agreement for the ensemble of runs for the SBLN parameter values.
These four images give a comparison of, from left to right, the observed rivalry network,
the Ensemble SBLN 1% edge agreement, the Ensemble SBLN 50% edge agreement, and the
Ensemble SBLN 100% edge agreement. Here, a node of the network represents a set space,
and an edge represents a rivalry between two gangs.

For comparison, we simulated a random model that incorporates only the distance be-
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tween nodes. In particular, we constructed a collection of randomly weighted Geographical

Threshold Graphs by fixing the locations of the nodes and sampling the weights, ηi, indepen-

dently from a uniform distribution. We selected a threshold to yield a median of 69 edges.

Figure 4.7 displays the percent agreement of each possible edge for the Ensemble SBLN, a

collection of randomly weighted Geographical Threshold Graphs, and the Ensemble BMN.

For visualization, the edges for each ensemble were sorted separately in descending order

based on percent edge agreement. In the Ensemble SBLN, there is 100% edge agreement for

the existence of 39 of the edges (corresponding to the first 39 edges of the Ensemble SBLN

along the horizontal axis in Figure 4.7). The 100% edge agreement network in Figure 4.6

shows these edges. All runs in the Ensemble SBLN consistently agree on the nonexistence of

309 edges (corresponding to the last 309 edges of the Ensemble SBLN in Figure 4.7). These

are the edges not appearing in the 1% edge agreement network in Figure 4.6.
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Figure 4.7: Plot of the edge persistence for the Ensemble SBLN (solid), Ensemble BMN
(thin-dash), and an ensemble of random Geographical Threshold Graphs (thick-dash). The
randomly weighted Geographical Threshold Graphs were constructed with random weights
and have a median of 69 edges present. The edges were sorted in descending order according
to the proportion of simulation runs where the edge is present in the network. Each ensemble
of runs were sorted separately, yielding different edge numbers among ensembles.

The transition between edge existence and nonexistence in the Ensemble SBLN is marked
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by a steep drop over 58 edges. The collection of randomly weighted Geographical Threshold

Graphs displays a large degree of stochasticity indicated by fewer edges with 100% edge

agreement and the more gradual decline of edge agreement. The Ensemble BMN appears

to have a smaller degree of stochasticity with more edges with 100% edge agreement and

a steeper decline than the Ensemble SBLN and the collection of randomly weighted Geo-

graphical Threshold Graphs. Despite the stochasticity observed in these models, there is

agreement among the edges of the Ensemble BMN and Ensemble SBLN, maintaining some

structure within the simulated networks.

Further analysis was conducted on the stochastic nature of the proposed SBLN model

by looking at the metrics calculated on the network produced with varying levels of percent

edge agreement. Plots of the accuracy, density, and nodal degree variance for the collec-

tion of randomly weighted Geographical Threshold Graphs, the Ensemble SBLN, and the

Ensemble BMN are displayed in Figure 4.8. A definition of these metrics can be found in

Subsection 4.4.3. As the percent edge agreement increases, the accuracy metric generally

increases for the randomly weighted Geographical Threshold Graphs. However, the Ensem-

ble SBLN and Ensemble BMN do not show much variation, though it is notable that the

Ensemble SBLN consistently has higher accuracy across percent edge agreements. For the

density metric, as the percent edge agreement increases, the density decreases as expected.

The randomly weighted Geographical Threshold Graphs have the greatest variation in the

density metric and nodal degree variance metric. This implies that there is a greater degree of

stochasticity for this model. Alternatively, more structure is seen in the Ensemble SBLN and

Ensemble BMN. The two ensembles show small variations in the density and nodal degree

variance metrics for percent edge agreements between 15 and 75. Note that the Ensemble

BMN has little change in nodal degree variance across all percent edge agreements. This

indicates a lower degree of stochasticity in the model, which agrees with the steep decline in

Figure 4.7.
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Figure 4.8: Plots of the measured Accuracy (Top), Density (Middle), and Variance (Bot-
tom) of the networks constructed from a given percent edge agreement. The metric values
corresponding to the Ensemble SBLN (solid), Ensemble BMN (thin-dash), and an ensemble
of random Geographical Threshold Graphs (thick-dash) are plotted together. The randomly
weighted Geographical Threshold Graphs were constructed with random weights and have
a median of 69 edges present.
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4.4.2 Long Term Behavior of the SBLN

The simulated network, through the movements of each of the agents, evolves as the simu-

lation progresses. Because of this evolution, it is natural to ask if any sort of steady state is

achieved. Keeping in mind the stochasticity of the model and the interaction between the

network and the agents’ movements, an equilibrium in the strictest sense cannot be obtained.

Despite this, the results indicate there is limiting behavior of the observed metrics as the

simulation progresses. Figure 4.9 displays the density and accuracy over the progression of

the simulations for the Ensemble SBLN. In general, the accuracy metric we used is a measure

of how close the simulated network is to the observed network. The density of a graph is pro-

portional to the average number of rivals of all gangs; for further definitions of these metrics,

refer to Subsection 4.4.3. Each run is observed every 1,000 iterations, and the results of each

simulation are shown as a thin line. The average metric value at each iteration is calculated

and plotted as the thick line. For visual investigation, the vertical axis on the accuracy plot

has been refined to include only the area of interest. Accuracy values can range from 0 to 1.

Both of these plots suggest that after a short phase of initialization, the metrics of each run

seem to stabilize. For the average values of the density and accuracy of the last iteration,

refer to Tables 4.2 and 4.3. Further, we tracked the variance of the metrics over the course

of the simulation; plots of the variance for density and accuracy are shown in Figure 4.10.

We observe that the variance of the network metrics across simulations levels out, indicating

an appropriate time to terminate the simulation.

The Ensemble SBLN exhibits stable long term behavior the simulated rivalry network,

with some variation due to stochasticity. Despite this variation, the network emerging from

the model results in metrics with a small deviation from the average. Further, the stochas-

ticity observed may provide a more realistic model of the true rivalry structure. Research

has demonstrated that the rivalry networks that link gangs tend to be stable over time

[127, 102, 98], and that the activity spaces of gangs are anchored to specific places [126, 84].

However, over longer periods of times, the membership ranks of gangs may ebb and flow

due to incarceration, individuals “aging out” of active status, or other forms of incapaci-
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Figure 4.9: Plots of the accuracy (top) and the density (bottom) of the SBLN over the 2 ·107

iterations. Each of the 100 Ensemble SBLN runs are plotted by thin lines. The average over
all the runs at each sampled iteration is shown with the solid, thick line. The density of the
observed network is shown in the thick, dashed line. For visual investigation the vertical
axis on the accuracy plot has been refined to include the area of interest. Accuracy values
can range from 0 to 1.

tation [128]. Thus, gangs may lay dormant and, though identified in the rivalry network,

not actually participate in violence. In extreme cases, either through high levels of victim-

ization at the hands of rival gangs or through the focused enforcement of law enforcement

agencies, a gang may simply disappear altogether. As more data become available, inherent
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Figure 4.10: Plots of the variance of the accuracy (top) and the density (bottom) measures
of the Ensemble SBLN over the 2 · 107 iterations. The variances of the 100 Ensemble SBLN
runs were calculated at 1,000 iteration increments.

stochasticity in the model may allow for further understanding of the rivalry structure.

4.4.3 Metrics Used for Analysis

We analyze our model according to several common metrics of accuracy and shape. Since we

are examining a rivalry network, there are certain popular measures that are not applicable

here. For example, the clustering coefficient is often used in social and friendship networks,
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describing the proportion of a node’s neighbors who are also neighbors [2, 90, 136]. In the

analysis of gangs, the rival of a rival gang is not necessarily a rival. In addition, there may be

errors in an observed rivalry network. With these in mind, we carefully choose measures that

are applicable to gang rivalry networks and robust to small perturbations in the observed

data. One measure we consider, the degree distribution, is commonly used in social network

analysis [142, 129, 90, 92, 91, 2]. In the context of gangs, the degree distribution of the

network describes the number of rivalries of each gang. Knowing the distribution of rivalries

at the city level may be helpful to policy makers for determining how to allocate resources.

The measures used are motivated and defined in Sections 4.4.3.1 and 4.4.3.2.

4.4.3.1 Accuracy Metrics

The first measures of interest are the raw values for the number of correct and incorrect edges.

These values provide a means for evaluating the performance of the model. However, when

comparing the observed network with the constructed network, each edge can be correct in

two ways and incorrect in two ways. First, the constructed network can correctly identify an

edge, true positive (TP), and correctly identify the lack of an edge, true negative (TN). The

constructed network can also be wrong in two different ways. It can place an edge where

there is none, false positive (FP), and also fail to place an edge where there is one, false

negative (FN).

There are three quantities that are of particular interest that summarize the TP, TN,

FP, and FN values. First is the accuracy of the model. The accuracy in the context of edges

on a graph is defined by

ACC =
TP + TN

TP + TN + FP + FN
. (4.7)

The ACC ranges between 0 and 1, with 1 being a perfect reproduction of the observed

network. This measure is proportional to the Qα measure discussed in [8]. The F1 score

provides another measure to analyze the accuracy of the predicted network, [110, 143], and
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is defined as

F1 =
2TP

2TP + FP + FN
. (4.8)

An exact replication of the network would have an F1 score of 1. The other summary statistic

for the raw closeness to the network is the Matthews Correlation Coefficient (MCC) [75, 8].

This measurement varies between −1 and 1, where a value of 1 is a perfect prediction. The

MCC is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (4.9)

The ACC, F1 score, and MCC provide a summary of the TP, TN, FP, and FN. These

measures are fairly robust to changes in the observed data. For example if one edge were

added or removed in the observed network, at most the the ACC would change by 2
N(N−1)

,

where N is the number of nodes.

The measurements of the TP, TN, FP, and FN provide one means by which to determine

the success of the model. However, they do not describe how these correct or incorrect

measurements affect the overall network structure. A strong model would create a network

that is not only accurate but also, maintains the same network structure, even in the event

that the individual connections are the not same.

4.4.3.2 Shape Metrics

We would like to verify that the simulated network has a similar shape to that of the observed

network. To do this, we calculate the graph density, standard variance of nodal degree and

Freeman’s centrality measure of the graph [136, 40]. Given N nodes, the density of a graph

is defined by

N∑
i=1

degree(i)

N(N − 1)
. (4.10)
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In the context of gangs, the degree of a gang is equivalent to the number of rivals of the gang.

The density of the rivalry network is the average number of rivalries scaled by a normalization,

1
N−1

. Networks with the same number of edges and nodes have the same density measure.

Further, this metric is fairly robust to perturbations of the graph. For instance, if one edge

were added or removed, the density metric would only change by 2
N(N−1)

.

Two other metrics, the variance of nodal degree and centrality measure, give an indication

of the spread of degrees among the gangs. The variance of nodal degree for a graph is

N∑
i=1

(degree(i)− aveDegree)2

N
. (4.11)

The centrality measure of the graph is defined to be

N∑
i=1

maxDegree − degree(i)

(N − 1)(N − 2)
. (4.12)

These measures provide summary statistics with which to describe the general shape of the

graph. This becomes useful when comparing the output to multiple models. For instance, if

the observed network has a few gangs with high degrees and the rest of the gangs with low

degrees, then this will be reflected high values in the spread statistics. A good model should

capture this feature.

The degree distribution has been widely used to understand the overall network structure

[90, 92, 91, 2]. We compare the nodal degree cumulative distribution function (CDF) of our

simulations with the observed network.

4.4.4 Evaluating Models Using Graph Metrics

4.4.4.1 Accuracy Metric Results

Table 4.2 provides the accuracy measures for the GTG, BMN, Ensemble BMN, SBLN, and

Ensemble SBLN. The SBLN outperforms all of the other networks on all of the accuracy

metrics. Observe that the GTG also performs well on these metrics. The Ensemble SBLN
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metrics are comparable to the GTG and BMN metrics. In particular the average number

of true negatives (TN) and false positives (FP) perform slightly better for the Ensemble

SBLN than for the GTG, BMN, and Ensemble BMN. The Ensemble SBLN average of the

true positives (TP) and false negatives (FN) performs slightly worse than the GTG and

BMN. Only the GTG and SBLN have higher accuracy, F1 Score, and MCC values than the

Ensemble SBLN average.

TP TN FP FN

SBLN 50 320 17 19
Ensemble Average 45.50 316.1 20.90 23.50

SBLN ± σ ± 1.269 ± 2.424 ± 2.424 ± 1.269

GTG 48 316 21 21

BMN 47 313 24 22
Ensemble Average 43.61 309.2 27.76 25.39

BMN ± σ ± 1.380 ± 1.390 ± 1.390 ± 1.380

ACC F1 Score MCC

SBLN 0.9113 0.7353 0.6822
Ensemble Average 0.8906 0.6722 0.6069

SBLN ± σ ± 0.0077 ± 0.020 ± 0.025

GTG 0.8966 0.6957 0.6333

BMN 0.8867 0.6714 0.6031
Ensemble Average 0.8691 0.6213 0.5424

BMN ± σ ± 0.0051 ± 0.016 ± 0.019

Table 4.2: Accuracy measures for the SBLN, Ensemble SBLN, GTG, BMN, and Ensemble
BMN. The σ denotes the standard deviation of the ensemble metric values.

4.4.4.2 Shape Metric Results

Table 4.3 provides the shape measures for the observed network, GTG, BMN, Ensemble

BMN, SBLN, and Ensemble SBLN. Note that the density of the GTG is exactly the same

as the observed rivalry network by construction, but it does not perform well for the nodal

degree variance. The density for the BMN, Ensemble BMN, SBLN, and Ensemble SBLN

are all close to the observed network. The BMN and the Ensemble BMN average have the

closest nodal degree variance to the observed network’s nodal degree variance. The centrality
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measure for the SBLN is the closest to that of the observed network.

The cumulative distribution function (CDF) of nodal degree for the observed network,

GTG, BMN, normalized Ensemble BMN, SBLN, and the normalized Ensemble SBLN are

shown in Figure 4.11. A normalized ensemble CDF shows the CDF of the degree distribution

of all runs divided by the number of runs. The SBLN and the normalized Ensemble BMN

have the most similar distributions as the observed network. The normalized Ensemble SBLN

performs better than the GTG and the BMN. In the same figure, the normalized Ensemble

BMN and SBLN are plotted with two standard deviations above and below together with

the observed network distribution. Here we see that there is a smaller standard deviation

for the normalized BMN than the normalized SBLN. Even with the standard deviations,

the degree distributions of both classes of networks are close to that of the observed degree

distribution.

Density Variance of Centrality
Nodal Degree

Observed 0.16995 4.32105 0.20106

SBLN 0.16503 3.54578 0.16799
Ensemble Average 0.16355 3.66423 0.15040

SBLN ± σ ± 0.005593 ± 0.48395 ± 0.01883

GTG 0.16995 9.97622 0.27778

BMN 0.17488 3.88585 0.15741
Ensemble Average 0.17579 3.93926 0.16065

BMN ± σ ± 0.004546 ± 0.41351 ± 0.02635

Table 4.3: This table provides the shape measures for the observed network, SBLN, En-
semble SBLN, GTG, BMN, and Ensemble BMN. The σ denotes the standard deviation of
the ensemble metric values. Note that the density of the GTG is exactly the same as the
observed rivalry network by construction.

4.4.5 Summary of Results

In all metrics except the density, the SBLN performs better than the GTG (note that the

density measure of the GTG is exactly the same as the observed network by construction).
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Figure 4.11: The top figure plots together the cumulative distribution functions of the degree
distribution for the observed network (thick-solid), GTG (thick-dashed), BMN (dot-dash),
normalized Ensemble BMN (thin-dash), SBLN (thin-solid), and normalized Ensemble SBLN
(dot-solid). A normalized ensemble CDF shows the CDF of the degree distribution of all
runs divided by the number of runs. The normalized Ensemble BMN (bottom left) and
SBLN (bottom right) are plotted with two standard deviation above and below (thin-dash)
with the observed network distribution (thick-dash).

Although the GTG is unable to closely replicate the standard shape measures, it has fairly

high accuracy values. The Ensemble SBLN average performs similarly to the GTG in the

accuracy, but performs better with shape measures, even with the stochastic considerations.

On average, the Ensemble SBLN produces a slightly more accurate degree distribution than

the GTG. The BMN is able to reproduce the degree distribution fairly well, however, the

BMN and Ensemble BMN average have lower values for the accuracy (ACC), Matthews

Correlation Coefficient (MCC), and F1 Score when compared to the other models. Our

analysis demonstrates that the SBLN is the strongest model in reproducing the observed

rivalry network.
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4.5 Sensitivity Analysis

Our objective in this section is to understand the effects of the input parameters on the

system by comparing the different metrics of the resulting networks as the parameters change.

Due to computational constraints, we perform a local analysis of the parameter space around

the SBLN parameters specified in column 3 of Table 4.1.

In particular, we perturb one parameter at a time by 30% from the SBLN parameter

values in 10% increments. To account for the stochasticity inherent in the model, each

perturbation was run using the same 25 seed values for the random number generator. The

range of each parameter examined is listed in Table 4.4.

Bounded Pareto Scaling Parameter k ∈ [0.77 , 1.43]
Von Mises Scaling Parameter κ ∈ [2.45 , 4.55]

Largest Maximum Jump Length A ∈ [140 , 260]
Smallest Maximum Jump Length a ∈ [70 , 130]

Boundary Permeability B ∈ [0.14 , 0.26]
Network Threshold T ∈ [0.028 , 0.052]

Table 4.4: Ranges of the parameters used in the sensitivity analysis. Each parameter was
changed 30% from the SBLN parameters in 10% increments. For SBLN parameter values
refer to the Hollenbeck column of Table 4.1

For each simulation run, we compute the accuracy, Matthews Correlation Coefficient, F1

score, centrality measure, variance of nodal degree, and density for the resulting network.

Plots of each combination of metric versus parameter values were created for the general

analysis. Three examples of parameter and metric combinations with more dramatic results

are plotted in Figure 4.12. In this figure, we display the variance of nodal degree versus

the smallest maximum jump length, a, and the network threshold, T . We also display the

density versus the Bounded Pareto scaling parameter, k, where the vertical axis has been

rescaled for visualization. The dots represent the metric values of the simulation run at the

specified parameter. The solid curve indicates the average metric value over all runs at each

parameter value.

As seen in Figure 4.12, the plots varying the network threshold and Bounded Pareto
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Figure 4.12: Plots of the nodal degree variance versus the smallest maximum jump length
(top left), and the network threshold (top right). We also display the density versus the
Bounded Pareto scaling parameter (bottom), where the vertical axis has been rescaled for
visualization. The solid curve indicates the average metric value over all runs at each pa-
rameter value. The dots represent the metric values of the simulation run at the specified
parameter.

scaling parameters have a negative trend on average. The smallest maximum jump length,

however, shows a positive trend. The stochastic effects can also be observed by the range of

metric values associated with each parameter input, as illustrated by the dots in Figure 4.12.

These plots suggests that stochasticity may influence the metric values for a particular run,

and on average the resulting metric output is sensitive with respect to these parameters.

These plots give a view of how the particular metric and parameter value interact. We

changed all of the parameter values by the same 30% from the SBLN parameters, and so

we can compare plots with the same metric. For example in Figure 4.12, we can see that

in general nodal degree variance for the smallest maximum jump length has a steeper trend

than the nodal degree variance for the threshold, but we can not compare the trend of the

nodal degree variance plots directly to that of the density plot.

To compare the effects of all the parameters on all metrics, we rescale the data points

76



to percent deviation from the SBLN parameter values. For example, when considering the

affects of the Bounded Pareto scaling parameter, k, on the density metric, we rescaled the

observed data points

(ki, densityi) 7→
(
ki − k SBLN

k SBLN

,
densityi − density SBLN

density SBLN

)
,

where k SBLN is the SBLN Bounded Pareto scaling parameter. Here, density SBLN is the

average density at the k SBLN value for all 25 runs. A line was fitted to the rescaled data

points, and the slope of this line was recorded. This process was repeated for each parameter

and metric value combination.

The results are recorded in Table 4.5 and visualized in Figure 4.13. In Table 4.5, negative

values indicate a negative slope of the best fit line to the scaled data, and positive values

indicate a positive slope. Slopes with a greater magnitude indicate a stronger correlation

between the metric and parameter. To get a clearer impression of overall sensitivity of the

system, this information is displayed in Figure 4.13. The dark, and light, intensities of the

color map represent large positive, and negative, values of the best fit line slope.

k κ A a B T
Accuracy -0.0120 -0.0031 0.0011 0.0001 0.0031 0.0000

MCC -0.2066 -0.0161 0.0023 0.1458 0.0293 -0.0000
F1 Score -0.2149 -0.0146 0.0018 0.1562 0.0278 -0.0000

Centrality -0.1705 -0.0100 -0.0131 0.7119 0.0195 -0.1751
Nodal Degree Variance -0.4385 -0.0489 -0.0146 0.9456 0.0154 -0.5412

Density -0.7410 -0.0080 -0.0114 0.6131 0.0640 -0.2460

Table 4.5: Slope of the best fit to the rescaled data for each metric and parameter combina-
tion. For reference, coefficients that correspond to the images in Figure 4.12 are highlighted
in bold font. Figure 4.13 displays this information in a color map.

In general, the metrics are not very sensitive to the von Mises parameter, κ, the largest

maximum jump length, A, and the boundary permeability, B, within the parameter space

investigated. On the other hand, the Bounded Pareto scaling parameter, k, the smallest
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Figure 4.13: Slopes of the best fit line to the rescaled data for each of the parameter and
metric combinations depicted in a color map. The parameters varied include the Bounded
Pareto scaling parameter, k, the von Mises scaling parameter, Kappa, the largest maximum
jump length, A, the smallest maximum jump length, a, the boundary permeability, B, and
the network threshold, T . The scale to the right of the image gives the slope values. Tones
close to the center of the scale represent combinations where the metrics are not very sensitive
to the respective parameter. Combinations with tones at the ends of the spectrum (black
and white) represent metrics that are sensitive to the respective parameter. The numerical
values are also stored in Table 4.5.

maximum jump length, a, and the network threshold, T , have the most influence on the

metrics. As seen in the table and figure, the accuracy measures are fairly robust to changes

in all parameter values. Further, note that nodal degree variance and density measures

appear to be the most affected by the changes in these parameters.

The Bounded Pareto scaling parameter values result in negative slopes for all metrics.

This is to be expected because an increase in the Bounded Pareto scaling parameter will

decrease the likelihood of larger jumps and result in fewer edges. This phenomena is partic-

ularly evident in the density metric. Also this parameter appears to have the most effect on
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the accuracy measures, in particular the MCC and F1 score.

Increasing the network threshold parameter also has a negative effect on the shape met-

rics. By increasing the network threshold, the number of connections decreases. This in turn

decreases the density, nodal degree variance, and centrality. On the other hand, increasing

the smallest maximum jump length increases the connectivity of the network by allowing

for larger jumps in areas of high road density. The effect of changing this parameter is more

significant than changing the largest maximum jump length. Interestingly, as the largest

maximum jump length increases, the connectivity decreases. This could be where attempts

to cross boundaries are more likely to occur. The lower portion of Hollenbeck is approxi-

mately 300 units wide and has many boundaries. When varying the largest maximum jump

length between 140 to 260, it becomes very probable that at least one boundary cross would

be attempted. At this point, the boundary permeability is expected to play a stronger role

in the simulation.

Depending on the network, changes in the number of connections could be more or

less beneficial in terms of accuracy. Further, small changes in the connectivity, i.e. the

existence or non-existence of an edge, could have small effects on the accuracy measures and

large effects on the shape measures, as seen for our simulations in the case of the network

threshold parameter.

4.6 Discussion

Using biased truncated Lévy walks with semi-permeable boundaries, we have designed an

agent-based model for gang members in Hollenbeck that incorporates quasi-realistic move-

ment rules as well as physical geographic features existing in Hollenbeck. We have shown

that it is able to simulate a gang rivalry network similar to the one observed in [128, 102].

The Simulated Biased Lévy walk Network (SBLN), the Brownian Motion Network (BMN),

and an instance of a Geographical Threshold Graph (GTG) were compared to the observed

rivalry network using measures of accuracy and shape.

In choosing the metrics for the analysis of the models, we took into account that the
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observed network may not represent the actual set of rivalries in a given region. If the true

rivalry network was only a small perturbation from the observed network, then ideally, we

would like the metrics used for comparison to only vary slightly. For this reason, we evaluated

these models with the accuracy and shape metrics presented. The accuracy metrics provide

a means to determine whether the simulations are recreating the same rivalries that are

observed. The variance of nodal degree and centrality measures indicate the spread in

degrees for each gang. These measures could be used to help policy makers know how to

distribute resources. For example, if one gang has several rivals and the rest of the gangs

only have one, then the resources should be mainly directed towards the one gang that is

highly centralized within the network. Alternatively, if all gangs have the same number of

rivals, then resources should be spread more equally through the area. The density metric

gives an indication as to the connectivity of the network. In terms of gang rivalries, a higher

density indicates a larger number of rivalries are present in the system. Creating a model

that produces a network with similar shape metrics is desirable, since the connectivity and

degree distributions could be useful for determining intervention strategies and methods for

implementation.

The baseline models did not perform as well as the SBLN, but they did provide some

insight into the modeling of gang rivalry networks. The GTG is a simple model designed to

compare with the agent-based models. This method performs well on the accuracy metrics

and provides an alternative, computationally inexpensive method to construct the rivalry

network. One could extend this model to incorporate boundary information by increasing

the distance function d(ni, nj) if ni and nj are in distinct regions, see Section 4.3.1. The

GTG model indicates that geography and size of gangs matter for the rivalry structure.

However, the GTG is limited to reproducing only the rivalry network and does not lend itself

to understanding other phenomena, such as the gang member mobility and the locations of

interactions between gang members. It is not obvious how to extend the modeling framework

of a GTG to include policing strategies, the location of violence, retaliatory behavior, and

effects of injunctions, unlike agent-based models.

The BMN is a simplified version of the SBLN model. Although the BMN accuracy results
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were not as strong as the GTG and SBLN results, this method was able to reproduce a similar

shape as the observed rivalry network. This model was able to incorporate geographical

features, but ignored directional decisions of the agents. The presence of semi-permeable

boundaries in this model reduced the number of connections between regions, giving the

simulated network a more similar shape to the observed. This suggests that the incorporation

of boundaries plays an important role in the replication of the observed network. This is

corroborated in [102]. In the absence of the directional decisions of the agents, we see a

fundamental difference between the SBLN and the BMN. Without directional decisions the

BMN has too many high degree nodes. One major problem with the BMN model is that the

stopping criterion for the model was artificial, in that we chose to stop it at the observed peak

in accuracy. In general, there may not be an observed network, and so it would be difficult

to determine stopping criterion. Unlike the BMN, our proposed SBLN model exhibits long

term stabilization of the accuracy and density metrics. This is a direct consequence of the

directional decisions of the agents. The need for incorporating directional decisions into a

mobility model is consistent with the literature [45].

The SBLN is the best model in replicating the observed network. Further, it allows for

easy incorporation of geographic features and alternate movement dynamics, while maintain-

ing a high level of accuracy and allowing for evolution in the observed system. This model is

admittedly more complex than the other models, however, it provides better results in terms

of accuracy and shape of the networks. The stochasticity in the model is beneficial not only

to estimating the expected resulting network, but also potential networks that could arise

from the seemingly random movements of individuals. One important feature is that this

model produces stable long term behavior, meaning there is a reasonable point when to stop

the number of iterations. This has practical consequences when the true rivalry network is

not known. In the absence of an observed network, with which to calibrate the parameters

of the model, various parameters could be initialized using data when available. There has

been some work done on approximating the probability density function for jump lengths

in a given region. Using similar methodology as [59] one could approximate the parameters

associated with this region. In addition, an analysis of traffic flow under highways and within
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regions could be used to approximate the boundary cross probability. This would greatly

reduce the number of variables of the model.

This modeling framework allows for a variety of data output, depending on the questions

of interest. For example, this model is able track the location of the agents’ interactions

during the simulation. This can be compared to violence data for the Hollenbeck area, and

preliminary work has been done in this direction. Using this violence data would provide

an additional data set to use for testing the external validity of our model. The issues of

internal and external credibility are discussed in [13]. Figure 4.14 shows the locations of the

interactions among agents for one of the Ensemble SBLN simulation runs and the density

estimation of gang-related violent crimes in Hollenbeck from 1998 through 2000. The jux-

taposition of these two plots emphasizes the similarities between the two and illustrates the

potential predictive capabilities of this kind of approach. Though movement and interaction

rules may need to be slightly altered to provide a closer match to the data, the current model

provides a baseline model for further analysis and investigation of the gang rivalry violence

in Hollenbeck.

This highly flexible model provides a framework with which to test sociological theories

related to gang activities. One question of great interest to social scientists is the role of

territories in the motivation for gang violence [128]. One could encode territories into the

model by having each agent place a marker, associated with its gang, on the locations where it

has been. By leaving these markings, one can see that territories would begin to form. Once

these territories are established, the behavioral rules could be changed to avoid or attack the

territories of gangs, instead of one point in space. From this, social scientists would be able to

play out various scenarios and test hypotheses. Another interesting phenomenon observed

is the presence of alliances or truce between gangs, as has been observed in Chicago [16]

and Los Angeles [128, 85]. The current model does not account for the difference between

positive, negative, and neutral interactions. Instead the SBLN records interactions between

agents with the implicit assumption that these are negative interactions. A known truce

between two gangs could be incorporated into the model by assigning negative values to the

corresponding element of the gang rivalry matrix R. Then, all future interactions between
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gangs with an alliance will not influence the movement decisions for agents of these gangs.

Our model could also be used to examine this question.

Pursuing a model that accurately describes the violent behavior in Hollenbeck is of great

value, since Hollenbeck is one of the most violent areas in Los Angeles [128, 56]. There

are several advantages of approaching this serious problem using a mathematical model.

One major strength over a network or statistical approach is that once the model has been

sufficiently calibrated, it provides a powerful tool for social scientists to test theories and

hypotheses. The paper [47] highlights that correlation does not imply causality, and though

statistical analysis provides important contributions to social science as a field, it falls short

in terms of identifying underlying mechanisms and testing causation hypotheses. Though

one could argue that creating an experiment would help validate or reject causal arguments,

such experiments are expensive and may bring up ethical concerns. Finally, if the simulation

can accurately model the social phenomena of interest, then we might gain some insight

into how intervention strategies could alter the existing gang rivalry system. The costs of

implementing these changes in the simulation are relatively small compared to those costs

of public funds needed to implement experimental interventions. If the Hollenbeck area can

be well understood by this approach, there may be hope in understanding, and potentially

mitigating, other areas of intense violent behavior.
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Figure 4.14: Locations of all the interactions between agents for one of the Ensemble SBLN
runs (left). Density map of gang-related violent crimes in Hollenbeck between 1998 and 2000
(right).

84



CHAPTER 5

Adaptation of an Ecological Territorial Model to

Street Gang Spatial Patterns in Los Angeles

Traditional gangs and territorial animals have distinctly claimed areas that are well-estab-

lished [63]. They use markings to inform members of both their own group as well as other

groups of territorial boundaries. Individuals may respond to markings of other groups by

increasing their own marking density and by biasing their movement towards their respective

den site for animals or set space for gangs. A gang’s set space is the central location to the

gang’s activities [102, 126].

This chapter examines the formation of gang territories and territorial marking modifying

the approach given in [81] that is based on a system of partial differential equations. The

derivation of the PDEs is given in Section 5.1, and the adaptation for street gangs follows

in Section 5.2. The implementation details are given in Section 5.3, and a description of the

data sets are provided in Section 5.4. The results follow in Section 5.5. Section 5.6 concludes

the paper with a discussion of the model implications.

5.1 Derivation of the Ecological Territorial Model

The particular model of interest in [81] is called, “steep terrain avoidance plus conspecific

avoidance (STA+CA).” The supplement to [81] contains a derivation for the equations used,

which will be roughly followed in this section with additional details.

We first consider the probability density function u(x, t) for an individual member’s ex-

pected position at time t. Here, we have x = (x, y) ∈ R2. Let k∆t (w,x’) be the redistribution
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kernel that gives the probability of moving from location x’ with displacement w in a time

step ∆t. Thus,

∫
R2

k∆t (w,x’) dw = 1 for all x’. (5.1)

Then the density function u at time t+ ∆t can be described by the equation

u (x, t+ ∆t) =

∫
R2

u (x’, t) k∆t (x− x’,x’) dx’. (5.2)

Using a change of variables with q = x− x’ = (q1, q2), we have

u (x, t+ ∆t) =

∫
R2

u (x− q, t) k∆t (q,x− q) dq. (5.3)

Using the Taylor expansion for the integrand about x, we obtain

u (x, t+ ∆t) =

∫
R2

[u (x, t) k∆t (q,x) (5.4)

− (q1)
∂

∂x
(u (x, t) k∆t (q,x))

− (q2)
∂

∂y
(u (x, t) k∆t (q,x))

+

(
q2

1

2!

)
∂2

∂x2
(u (x, t) k∆t (q,x))

+
(q1q2

2!

) ∂2

∂x∂y
(u (x, t) k∆t (q,x))

+
(q1q2

2!

) ∂2

∂y∂x
(u (x, t) k∆t (q,x))

+

(
q2

2

2!

)
∂2

∂y2
(u (x, t) k∆t (q,x))

+ . . . ] dq.
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Rearraning the equation and changing the order of integration and differentiation, we find

u (x, t+ ∆t) = u (x, t)

∫
R2

k∆t (q,x) dq (5.5)

− ∂

∂x

(
u (x, t)

∫
R2

q1 k∆t (q,x) dq

)
− ∂

∂y

(
u (x, t)

∫
R2

q2 k∆t (q,x) dq

)
+

(
1

2!

)
∂2

∂x2

(
u (x, t)

∫
R2

(
q2

1

)
k∆t (q,x) dq

)
+

(
1

2!

)
∂2

∂x∂y

(
u (x, t)

∫
R2

(q1q2) k∆t (q,x) dq

)
+

(
1

2!

)
∂2

∂y∂x

(
u (x, t)

∫
R2

(q1q2) k∆t (q,x) dq

)
+

(
1

2!

)
∂2

∂y2

(
u (x, t)

∫
R2

(q2) k∆t (q,x) dq

)
+ . . . .

To further analyze Equation (5.5), we examine each of the integrals and notice that they are

the moments of k∆t(q,x). Equation (5.1) determines that the first integral,
∫
R2 k∆t (q,x) dq,

equals one. Since the probability of q being large is very small in a time step ∆t, we assume

that the first and second moments of k∆t dominate all of the higher moments as ∆t → 0.

Thus, we do not consider the higher order terms. Rearranging the equation and dividing by

∆t, we obtain

(
u (x, t+ ∆t)− u (x, t)

∆t

)
= − ∂

∂x

(
u (x, t)

1

∆t

∫
R2

q1 k∆t (q,x) dq

)
(5.6)

− ∂

∂y

(
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1

∆t
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)
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We now take the limit as ∆t→ 0, and use the following definitions:

c (x, t) = lim
∆t→0

1

∆t

∫
R2

q k∆t (q,x) dq (5.7)

dxx (x, t) = lim
∆t→0

1

∆t

∫
R2

(
1

2!

)(
q2

1

)
k∆t (q,x) dq

dxy (x, t) = lim
∆t→0

1

∆t

∫
R2

(
1

2!

)
(q1q2) k∆t (q,x) dq

dyx (x, t) = lim
∆t→0

1

∆t

∫
R2

(
1

2!

)
(q1q2) k∆t (q,x) dq

dyy (x, t) = lim
∆t→0

1

∆t

∫
R2

(
1

2!

)(
q2

2

)
k∆t (q,x) dq.

Thus, Equation (5.8) in the limit becomes

ut (x, t) = −∇ · (c (x, t)u (x, t)) (5.8)

+
∂2

∂x2
(u (x, t) dxx (x, t)) +

∂2

∂x∂y
(u (x, t) dxy (x, t))

+
∂2

∂y∂x
(u (x, t) dyx (x, t)) +

∂2

∂y2
(u (x, t) dyy (x, t)) .

Assuming isotropic diffusion, this indicates that the mixed partial terms are equal to zero,

and the terms dxx and dyy are equal. Letting d := dxx = dyy and dxy = dyx = 0, we obtain

the following differential equation,

ut (x, t) = −∇ · (c (x, t)u (x, t)) + ∆ (u (x, t) d (x, t)) . (5.9)

5.1.1 Evaluating the Coefficients from the Redistribution Kernel

In Equation (5.9), the functions c (x, t) and d (x, t) depend on the redistribution kernel,

k∆t (q,x) . The authors of [81] assume that this kernel depends on the jump length and

the direction of the coyote’s home den site and the change in elevation. They make the

definitions listed in Table 5.1. To help visualize these definitions, Figure 5.1 illustrates these

quanitities.
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Variable Description

x’ Starting Location
x Ending Location

xH Home Den Site Location

φ Angle of the Jump (angle of vector x− x’)
φH Angle of the Home Den Site from Ending Location (for vector xH − x)
θ φ− φH

ρ = |x− x’| Jump Length = Distance from Starting Location to Ending Location

Table 5.1: Variable definitions for starting location, ending location, jump length, and angles with

respect to the jump and the home den site.

Figure 5.1: This illustrates the definitions of Table 5.1.

The authors of [81] assume the redistribution kernel takes the form

k∆t (x− x’,x’) =
1

ρ
f∆t (ρ) ·K∆T (φ− φH) , (5.10)

giving the probability of starting at the location x’ and ending at x. The term f∆t(ρ) is the

probability density function for the jump length. The term K∆t(φ − φH) = K∆t(θ) gives
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the probability density for the direction of movement. This was chosen to be the von Mises

distribution,

K∆t(θ,x, t) =
1

2πI0(κ∆t)
· exp (κ∆t cos θ) . (5.11)

In this equation, the I0 is a modified Bessel function, and κ∆t gives the concentration of the

bias about θ. If κ∆t = 0, then this distribution is a uniform distribution on a circle.

We now rewrite Equation (5.7) in terms of the redistribution kernel of Equation (5.10)

using simplified notation (excluding t and x from the function arguments), giving

c = lim
∆t→0

1

∆t

∫ 2π

0

∫ ∞
0

(x− x’) f∆t (ρ) K∆t (θ) dρ dθ (5.12)

d = lim
∆t→0

1

2∆t

∫ 2π

0

∫ ∞
0

(x− x′)2
f∆t (ρ) K∆t (θ) dρ dθ. (5.13)

Consider the vector

−→x =
xH − x

|xH − x|
= (cosφH , sinφH)T ,

the vector that points in the direction of the den site from the ending location. We take the

inner product of c and −→x to give

c · −→x =

(
lim

∆t→0

1

∆t

∫ 2π

0

∫ ∞
0

(x− x’) f∆t (ρ) K∆t (θ) dρ dθ

)
· (cosφH , sinφH)

= lim
∆t→0

1

∆t

∫ 2π

0

∫ ∞
0

ρ (cosφ, sinφ) · (cosφH , sinφH) f∆t (ρ)K∆t (θ) dρ dθ

= lim
∆t→0

1

∆t

∫ 2π

0

∫ ∞
0

ρ (cosφ · cosφH + sinφ · sinφH) f∆t (ρ)K∆t (θ) dρ dθ

= lim
∆t→0

1

∆t

∫ 2π

0

∫ ∞
0

ρ cos (φH − φ) f∆t (ρ)K∆t (θ) dρ dθ

= lim
∆t→0

1

∆t

∫ 2π

0

∫ ∞
0

ρ cos (θ) f∆t (ρ)K∆t (θ) dρ dθ

= lim
∆t→0

1

∆t

∫ 2π

0

cos (θ)K∆t (θ)

[∫ ∞
0

ρf∆t (ρ) dρ

]
dθ

c · −→x = lim
∆t→0

1

∆t

[∫ 2π

0

cos (θ)K∆t (θ) dθ

] [∫ ∞
0

ρf∆t (ρ) dρ

]
. (5.14)
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We now consider a vector orthogonal to −→x ,which will be denoted as

x⊥ =
(

cos
(
φH −

π

2

)
, sin

(
φH −

π

2

))T
.

Taking the inner product of c and x⊥ and using a similar argument gives

c · x⊥ = lim
∆t→0

1

∆t

[∫ 2π

0

sin (θ)K∆t (θ) dθ

] [∫ ∞
0

ρf∆t (ρ) dρ

]
. (5.15)

Since K∆t(θ) is even and sin(θ) is odd, both with period 2π, we have that

c · x⊥ = 0.

We note that −→x and x⊥ form an orthogonal basis for R2. Then using Equations (5.14)

and (5.15), we have

c = |c|−→x , |c| = c · −→x .

We now do a similar analysis for d, noting that (x − x′)2 = ρ2 cos2 φ. We make this

substitution into Equation (5.13) and use several trigonometric identities to yield

d = lim
∆t→0

1

2∆t

∫ 2π

0

∫ ∞
0

ρ2 cos2 φ f∆t (ρ) K∆t (θ) dρ dθ

= lim
∆t→0

1

2∆t

∫ 2π

0

∫ ∞
0

ρ2

2
(1 + cos (2φ)) f∆t (ρ) K∆t (θ) dρ dθ

= lim
∆t→0

1

4∆t

∫ 2π

0

(1 + cos (2φ)) K∆t (θ)

[∫ ∞
0

ρ2 f∆t (ρ) dρ

]
dθ

= lim
∆t→0

1

4∆t

[∫ 2π

0

K∆t (θ) dθ +

∫ 2π

0

cos (2φ) K∆t (θ) dθ

] [∫ ∞
0

ρ2 f∆t (ρ) dρ

]
= lim

∆t→0

1

4∆t

[
1 +

∫ 2π

0

cos (2θ + 2φH) K∆t (θ) dθ

] [∫ ∞
0

ρ2 f∆t (ρ) dρ

]
(5.16)

Looking only at the first integral, we use multiple identites for sine and cosine to simplify
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the equations, giving

∫ 2π

0

cos(2θ + 2φH) K∆t (θ) dθ

=

∫ 2π

0

[cos (2θ) cos (2φH)− sin (2θ) sin (2φH)]K∆t (θ) dθ

= cos (2φH)

∫ 2π

0

cos (2θ) K∆t (θ) dθ − sin (2φH)

∫ 2π

0

sin (2θ) K∆t (θ) dθ

= cos (2φH)

∫ 2π

0

cos (2θ) K∆t (θ) dθ − sin (2φH)

∫ 2π

0

2 sin θ cos θ K∆t (θ) dθ

= cos (2φH)

∫ 2π

0

cos (2θ) K∆t (θ) dθ + 0.

The last equality comes from the fact that sin(θ) is odd, K∆t and cos(θ) are even, and all

have a period of 2π. Putting this together with Equation (5.16), we obtain

d = lim
∆t→0

1

4∆t

[
1 + cos (2φH)

∫ 2π

0

cos (2θ) K∆t (θ) dθ

] [∫ ∞
0

ρ2 f∆t (ρ) dρ

]
. (5.17)

The authors of [81] additionally assume that f∆t(ρ) and κ∆t (x, t) go to zero as ∆t→ 0.

We denote the first moment of f∆t as

¯ρ∆t =

∫ ∞
0

ρf∆t(ρ) dρ.

The ¯ρ∆t represents the average jump length in the time interval ∆t. We also define

¯ρ2
∆t =

∫ ∞
0

ρ2f∆t(ρ) dρ.

Using an identity for the von Mises distribution and an expansion for Bessel functions,

we will obtain c and d [57]. More specifically, we have the identity

∫ 2π

0

cos(nθ)K∆t(θ) dθ =
In(κ∆t)

I0(κ∆t)
. (5.18)
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Using the Bessel function series expansion for I0(κ) and I1(κ), we obtain

|c| = c · −→x

= lim
∆t→0

1

∆t

[∫ 2π

0

cos (θ)K∆t (θ) dθ

] [∫ ∞
0

ρf∆t (ρ) dρ

]
= lim

∆t→0

1

∆t

[
I1(κ∆t)

I0(κ∆t)

]
[ ¯ρ∆t]

= lim
∆t→0

1

∆t

[ 1
2
κ∆t +O (κ2

∆t)

1 + 1
4
κ2

∆t +O (κ3
∆t)

]
[ ¯ρ∆t] .

Keeping only the κ∆t of leading order, we have

|c| = lim
∆t→0

1

∆t

[
1

2
κ∆t

]
[ ¯ρ∆t] = lim

∆t→0

(κ∆t ¯ρ∆t

2∆t

)
(5.19)

c = |c|−→x = lim
∆t→0

( ¯ρ∆t

2∆t

)
(κ∆t)

−→x (5.20)

For d, a similar derivation is used with the Bessel function series expansions for both I2

and I0.

d = lim
∆t→0

1

4∆t

[
1 + cos (2φH)

(
I2(κ∆t)

I0(κ∆t)

)] [ ¯ρ2
∆t

]
= lim

∆t→0

¯ρ2
∆t

4∆t

[
1 + cos (2φH)

( 1
8
κ2

∆t +O (κ3
∆t)

1 + 1
4
κ2

∆t +O (κ3
∆t)

)]
= lim

∆t→0

¯ρ2
∆t

4∆t
[1 + 0]

d = lim
∆t→0

(
¯ρ2
∆t

4∆t

)
. (5.21)

These formulas are used in the following two subsections to derive the c and d for the

Conspecific Avoidance (CA) model and the Steep Terrain Avoidance plus Conspecific Avoid-

ance (STA+CA) Model [81]. The latter of these is the one that will be used for the street

gang model.
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5.1.2 Conspecific Avoidance (CA) Model

For specific models, the angle of bias κ∆t needs to be determined. For the Conspecific

Avoidance (CA) approach of [81], the choice for κ∆t was chosen to depend on the density of

the scent marks for different packs. If the individual is from pack i, then we take

κ∆t (x, t) = b ¯ρ∆t

n∑
i 6=j

p(j)(x, t). (5.22)

The p(j)(x, t) is the marking density for pack j, and n is the number of packs of coyotes.

Additionally, b gives the strength of the reaction to the scent markings. Thus, if the individ-

ual encounters a large amount of scent markings from different packs, it will have a stronger

desire to head back towards the den site. If no markings are present, then the individual

will have an equal probability of moving in any direction.

Using Equation (5.28) in the formula for c of Equation (5.20), we obtain

c = lim
∆t→0

( ¯ρ∆t

2∆t

)(
b ¯ρ∆t

n∑
i 6=j

p(j)(x, t)

)
−→x

= lim
∆t→0

(
b ¯ρ∆t

2

2∆t

)(
−→x

n∑
i 6=j

p(j)(x, t)

)
. (5.23)

Thus, the partial differential equation that models the pack density for pack i is given by

u
(i)
t (x, t) = −∇ ·

(
γu(i) (x, t)

(
−→x

n∑
i 6=j

p(j)(x, t)

))
+ d∆u(i) (x, t) (5.24)

γ = lim
∆t→0

(
b ¯ρ∆t

2

2∆t

)
. (5.25)

Next, we need to consider how the scent marking density changes over time. We first

assume that coyotes will produce markings even in the absense of other packs’ markings, and

will do so with a rate l. Additionally, when coming in contact with another pack’s markings,

an individual will increase the rate of markings proportionally to the amount encountered.

We let m be the parameter that gives the strength for the increase. We also assume that
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the markings will decay over time with a rate of µ. Then the model proposed in [81] gives

the equation for the changing of the marking densities over time as

p
(i)
t (x, t) = Nu(i) (x, t)

[
l +m

n∑
i 6=j

p(j) (x, t)

]
− µp(i) (x, t) . (5.26)

The Equations (5.30) and (5.26) are then solved to steady-state to obtain the expected

densities for the coyote packs under the conspecific avoidance model.

5.1.3 Steep Terrain Avoidance Plus Conspecific Avoidance (STA+CA) Model

In addition to avoiding the scent markings of other coyote packs, we wish to consider the

avoidance of steep terrain. To incorporate this into the model, we use a weighted sum of

two von Mises distributions for K∆t(θ) in the redistribution kernel to determine the angular

direction of motion. More specifically, [81] choose

k∆t (x− x’,x’) =
1

ρ
f∆t (ρ) ·

[
ψKCA

∆T (φ− φH ,x, t) + (1− ψ)KSTA
∆T (φ,−φz,x)

]
, (5.27)

where KCA
∆t denotes the von Mises distribution for the conspecific avoidance and KSTA

∆t for

the steep terrain avoidance. The strength of bias for KCA
∆t remains unchanged from the (CA)

model as

κCA∆t (x, t) = b ¯ρ∆t

n∑
i 6=j

p(j)(x, t). (5.28)

The direction of bias for KSTA
∆t depends on the elevation of the area, given by z(x). We are

concerned about regions where this changes quickly. Thus, the strength of the directional

bias depends on |∇z|. Therefore, we take

κSTA∆t (x) = a ¯ρ∆t|∇z(x)|. (5.29)
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Modifying Equation (5.12) to account for this new redistribution kernel, we have

c = lim
∆t→0

1

∆t

∫ 2π

0

∫ ∞
0

(x− x’) f∆t (ρ)
[
ψKCA

∆T (θ) + (1− ψ)KSTA
∆T (φ,−φz)

]
dρdθ

= lim
∆t→0

ψ

∆t

∫ 2π

0

∫ ∞
0

(x− x’) f∆t (ρ)KCA
∆T (θ)dρdθ

+ lim
∆t→0

1− ψ
∆t

∫ 2π

0

∫ ∞
0

(x− x’) f∆t (ρ)KSTA
∆T (φ,−φz)dρdθ.

In the first integral, the KCA
∆T (θ) has the same even properties as K∆T (θ) from the previous

sections. Thus, we can use the same arguments for the advection term that avoids scent-

markings of other packs. The second integral, however, contains KSTA
∆T (φ,−φz), which has a

direction of bias away from areas of steep terrain. Thus, instead of taking the inner product

with the vector pointing towards the home den site −→x , we use ∇z
|∇z| . Repeating a similar

argument, we obtain the model

u
(i)
t = d∆u(i) −∇ ·

(
γψu(i)

(
−→x

n∑
i 6=j

p(j)(x, t)

))
+∇ ·

(
(1− ψ)ηu(i)∇z

)
. (5.30)

We use Equation (5.26) for the time evolution of the marking densities. The authors of [81]

non-dimensionalize these equations, which are displayed in the following section. It is this

system of equations that will be used to model street gangs.

5.2 The Proposed Gang Behavioral Model

We will use the “steep terrain plus conspecific avoidance (STA+CA)” model of [81], derived

in Section 5.1.3. This approach solves the following non-dimensionalized system to steady-

state:

du(i)

dt
= ∆u(i) −∇ ·

[
β−→xiu(i)

n∑
j 6=i

p(j)

]
+∇ ·

[
αu(i)∇z

]
(5.31)

dp(i)

dt
= u(i)

[
1 +m

n∑
j 6=i

p(j)

]
− p(i), (5.32)
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where for a given pack i, u(i)(x, y) is the expected population density, p(i)(x, y) is the expected

marking density, and −→xi is the unit vector to the home den site from the current location.

The parameters β, m, and α represent the strengths to avoid markings, to increase one’s

own markings, and to avoid steep terrain, respectively. This system also has the boundary

conditions on ∂Ω

0 =

[
∇u(i) − β−→xiu(i)

n∑
j 6=i

p(j) + αu(i)∇z

]
· −→n , (5.33)

where −→n is the outward unit normal vector.

The system in Equations (5.31) and (5.32) models population densities and marking

densities for a set of coyote packs. We now modify the approach for street gangs by letting

u(i)(x, y) be the expected gang density, p(i)(x, y) be the expected graffiti density, and −→xi be

the unit vector to the set space of gang i from the current location. In this system, the term

∆u(i) describes random motion of individuals. Since gangs typically avoid the territories

of other gangs [5, 69] unless they are conducting a violent raid, they are more likely to

return towards their set space when confronted by another gang’s tags. This behavior is

represented by the term −∇ ·
[
β−→xiu(i)

∑n
j 6=i p

(j)
]
, where individuals that come in contact

with any markings that are not of their own gang move in the direction towards home,

−→xi . Equation (5.32) describes the process by which individuals increase their production of

markings after discovering another gang’s markings.

The z(x, y) in the model is the elevation of the terrain for coyotes, but we use this term

to incorporate other spatial features. We first determine geographical landmarks that could

inhibit movement across them, such as rivers, freeways, and major roads. These features are

not impassible, but there are limited bridges and underpasses available. Let Γ ⊂ R2 be the

set of points where there is a landmark. Consider the minimum Euclidean distance to the

set Γ,

g(x, y) = min
(x0,y0)∈Γ

{√
(x− x0)2 + (y − y0)2

}
.
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We then define z(x, y) to be

z(x, y) = 1− tanh
(
g(x, y)2

)
.

This gives a “steep terrain” that gang members will avoid. Geography is therefore incorpo-

rated into the movement dynamics through the final term in Equation (5.31), ∇·
[
αu(i)∇z

]
,

where each landmark is treated equally.

This partial differential equation approach has many similar features to the agent-based

model proposed in Chapter 4. Both models incorporate the geography as semi-permeable

boundaries. Additionally, individuals engage in random movement, but have a bias towards

their home set space. As seen in Section 5.1, the authors of [81] derive the model given in

Equations (5.31) and (5.32) by using a von Mises distribution for the advection term. Thus,

both models utilize the von Mises distribution to generate directionally biased motion. One

major difference between the two methods is that the agent-based approach is stochastic,

whereas the proposed model is deterministic with a derivation based on a stochastic process.

Due to the similarities in these models, we will also use Hollenbeck as the case study and

compare the results to those given in Chapter 4. We choose the same geographical features

used in the agent-based approach and is given in the middle image of Figure 4.3.

5.3 Implementation Details

For the G gangs, the model consists of a coupled system with 2G differential equations. We

implemented this system by using finite differences and solving until steady-state. For each

time step ∆t, we loop through all of the gangs, updating first the u(k) and then p(k). For

initialization, u(k) is set to be zero everywhere except at the location of the kth set space,

where it has the value one. Alternatively, p(k) is initialized to be 1
NM

everywhere, where the
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grid is N ×M . The discretized equation for the interior of u(k) at time n+ 1 is given by

u
(k),n+1
i,j − u(k),n

i,j

∆t
=

1

(∆x)2

(
u

(k),n
i+1,j − 2u

(k),n
i,j + u

(k),n
i−1,j

)
+

1

(∆y)2

(
u

(k),n
i,j+1 − 2u

(k),n
i,j + u

(k),n
i,j−1

)
− β

2∆x

(
u

(k),n
i+1,j x

(k)
i+1,j

∑
l 6=k

p
(l),n
i+1,j − u

(k),n
i−1,j x

(k)
i−1,j

∑
l 6=k

p
(l),n
i−1,j

)

− β

2∆y

(
u

(k),n
i,j+1 y

(k)
i,j+1

∑
l 6=k

p
(l),n
i,j+1 − u

(k),n
i,j−1 y

(k)
i,j−1

∑
l 6=k

p
(l),n
i,j−1

)
+
α

∆x

(
u

(k),n
i+1,j ∇x zi+1,j − u(k),n

i,j ∇x zi,j

)
+
α

∆y

(
u

(k),n
i,j+1 ∇y zi,j+1 − u(k),n

i,j ∇y zi,j

)
.

The boundary of u(k) is updated using first order Neumann boundary conditions. Given this

update of u(k), we then update both the interior and boundary of p(k) as

p
(k),n+1
i,j − p(k),n

i,j

∆t
= u

(k),n+1
i,j

(
1 +m

∑
l 6=k

p
(l),n
i,j

)
− p(k),n+1

i,j .

After this update, we ensure that p(k) is still a density that sums to one. After obtaining

our final estimates for the gang and marking densities, we determine that a rivalry exists

between two gangs if the regions where densities are non-negligible sufficiently overlap.

5.4 The Data Sets

In order to test the algorithm, we will use two different data sets. The first gives the locations

of violence between two gangs from 1999 to 2002. We only use the 340 events where both the

suspect and victim gang are known and both are also in the set of twenty-nine Hollenbeck

gangs. In [20], the authors compared the locations of events relative to the theoretical midline

boundary between gangs. They concluded that violent interactions frequently cluster about

this line. From this analysis, we should expect a higher density of violent events near the

boundaries of territories where there is an increase in graffiti. For our model, this is where
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the markings, p(i), have a high density. Thus, we will compare our marking densities to this

set of violence data.

The second set of data we have to evaluate our model gives the locations of where known

or suspected gang members were stopped by the police. In such encounters, the officer fills

out a Field Interview (FI) card, listing information about where the interaction took place

and all individuals involved. These encounters are not initiated by violent events, and so

we assume that these data are a sample of the gang densities, u(i). This data set of 1,079

events, covering the year of 2009, will be referred to as FI data. Both data sets can be seen

in Figure 5.2. Due to the large number of gangs, only the aggregated data will be displayed

here.

Figure 5.2: Violence and FI data in Hollenbeck. The set spaces are given by solid triangles in both

images. The gang violence data (Left) and FI data (Right) are given by solid circles.

There is a possibility of errors in any data set, including inaccuracies, incompleteness,

under-reporting of events, and bias [32]. Furthermore, for the data sets we are using, we

should be cautious in the expectation that p(i) fully approximates the violence data and
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u(i) fully approximates the FI data. The nature of the sampling frame for the FI data is

not perfectly understood, and there may be significant under-reporting of all but the most

serious violent crimes. It should be noted that while not every encounter may produce

an FI, law enforcement needs to continually document gang members activity with their

gang and fellow affiliates for prosecution in future crimes. Regularly documenting activity,

especially individuals loitering together, showcases this gang acuity to criminal justice actors.

Additionally, it is reasonable to assume that a large number of these events can be predicted

by the densities obtained by the model.

Another potential issue to consider is the difference in time frames for each set of data.

The locations of the set spaces were taken from [102] published in 2010. Some set spaces may

have moved during the eight years after the violence data was collected. As cities are ever

changing, gangs may have adapted to the altered environments. For example, one housing

area was redeveloped, forcing several Cuatro Flats, TMC, and Primera Flats gang members

to relocate. This caused these gangs to ultimately have new set spaces. For simplicity, we

will only use the original set space in our model implementation.

5.5 Results

With this implementation of the model for the Hollenbeck gangs, we optimize the parameters

with respect to the accuracy metric for the rivalry network, defined in Equation (4.7) of

Section 4.4.3.1. Additionally, we must ensure that the parameter m is large enough to

produce a marking density that is not nearly identical to the gang density. Listed in Table 5.2

are the parameters used for this analysis.

Parameter Value

m 100
β 1
α 1
∆t 0.001

Table 5.2: Parameter choices for the ecological territorial model.
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We first compare our simulated network with that of the agent-based approach of Chap-

ter 4 in Section 5.5.1. From here, we investigate the resulting gang and marking densities in

Section 5.5.2. Given these densities, Section 5.5.3 estimates gang territory locations. One

standard method for partitioning a region is through Voronoi diagrams, which we further

discuss in Section 5.5.4. We then use the estimated territories to investigate the relationship

with the two data sets in Section 5.5.5. Finally, we examine pairs of rival gangs and the

locations of events with respect to the theoretical territories in Sections 5.5.6 and 5.5.7.

5.5.1 Rivalry Networks

To create a rivalry network from the ecological territorial model, we must determine what

quantifies a rivalry. If the violence among gangs in Hollenbeck is primarily attributed to

territorial issues, then we would expect a rivalry to exist if the densities of two gangs suffi-

ciently overlap. We thus threshold the densities to produce an approximate territory, and

then find the overlapping area between pairs of territories. Since there are 69 empirically

known rivalries among the gangs in Hollenbeck, we select the top 69 area pairs to construct

a network. The resulting rivalry network obtained from the simulation is given in Figure 5.3,

together with the observed network and the Simulated Biased Lèvy walk Network (SBLN)

obtained in Chapter 4.

We notice that the ecological territorial model correctly identifies 45 of the 69 edges in

the observed network. Additionally, this simulated network has similar graph properties

with both of the other networks. To better quantify this similarity, we examine a few graph

metrics that were previously used in Chapter 4. We would first like to inspect the accuracy

of the simulated network. We calculate the number of true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN), as well as the accuracy score (ACC),

all defined in Section 4.4.3.1. These values are presented in Table 5.3.

While these accuracy measures are important, we would also like our rivalry network to

have similar graph properties as the observed network. For example, the number of rivals

that a gang has should be approximately the same in the simulation. Thus, we investigate
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Figure 5.3: Comparison of rivalry networks. Each node in the network represents a gang’s set

space. An edge in the graph exists if there is a rivalry between the two gangs. The observed

network (Left) is plotted with both the SBLN network from Chapter 4 (Middle) and the ecological

territorial model from this paper (Right).

TP TN FP FN ACC

SBLN 50 320 17 19 0.9113
Ecological Territorial Model 45 313 24 24 0.8818

Table 5.3: Accuracy measures for the SBLN model of Chapter 4 and the ecological territorial

model.

features of the network related to the degree of a node, representing the number of rivals

of a gang i. Three measures we use are the graph density, degree variance, and Freeman’s

centrality measure, all defined in Section 4.4.3.2. The density of the graph is a scalar multiple

of the average degree. Thus, if two graphs have the same number of edges, then they will have

the same density. The degree variance provides information on the spread of the degrees.

Thus, a larger degree variance indicates a wider range of degrees, which translates to a

larger spread in the number of rivals of each gang. The centrality measures whether there

are key gangs that are more connected than the rest, indicating they are more central to the

network. If all gangs have the same degree, i.e. no gang is more influential to the network,
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then the centrality measure would be zero. Alternatively, if one gang is connected to every

other gang, and these are the only edges in the graph, then the network would have a high

centrality measure.

These graph shape measures for the observed network, the SBLN network of Chapter 4,

and the ecological territorial model network are shown in Table 5.4. We note that the three

networks have close values for the three metrics.

Density Degree Variance Centrality

Observed Network 0.16995 4.32105 0.20106
SBLN 0.16503 3.54578 0.16799

Ecological Territorial Model 0.16995 5.70036 0.16270

Table 5.4: Graph metrics comparing the observed network with the SBLN model of Chapter 4

and the ecological territorial model.

While it is of interest to compare the rivalry network from the ecological territorial model

to the observed network and the ones existing in the literature, we must also recognize that

the method for obtaining the rivalry network from overlapping densities has limitations.

More specifically, the edges that cross boundaries in the upper portion of the region are

absent. This is expected since the model limits the smoothing of the gang densities across

these boundaries. Thus, we do not anticipate much overlap in the territories of gangs in

separate regions. Hence, we should examine other features of the model to determine the

validity of the model.

5.5.2 Gang and Marking Densities

Modeled gang and marking densities display some promising features. First, the gang densi-

ties u(i) remain centrally located about the known set spaces, with minimal overlap between

gangs. Geographic boundaries limit the spread of gang density. Marking densities are high-

est between adjacent gangs that have a relatively small distance between them. Otherwise,

the marking densities mimic the gang densities. This is expected as the steady-state solution
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of Equation (5.32) is given by

p(i) = u(i)

[
1 +m

n∑
j 6=i

p(j)

]

The plots of all gang and marking densities are provided together in Figure 5.4.

Figure 5.4: Simulated gang (Left) and marking (Right) densities in Hollenbeck. The densities

for all of the gangs are plotted together. Red indicates a higher density and blue a lower density.

The gang densities demonstrate the formation of territories and the impact of boundaries within

the region. The marking densities are the highest between two close set spaces. Otherwise, the

marking densities are similar to the gang densities.

To better demonstrate the impact of the semi-permeable boundaries that represent the

major roads and the river, the gang density for a central gang is shown in Figure 5.5. The

set space for this particular gang is situated between two major freeways. To illustrate the

impact of the southern boundary, we view the density facing East. Notice the dramatic drop

in density over the boundary. Additionally, we see that some density still flows beyond the

freeway as expected, since movement is not prohibited across boundaries, only discouraged.
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Figure 5.5: Impact of boundary on gang densities. The left figure shows the location of the set

space for the gang of interest, represented by the dot situated between major roads. The eye symbol

(Left) shows the lateral view for this gang’s approximated density (Right). To demonstrate the

impact of the southern boundary, the density is viewed facing East.

5.5.3 Territories

The ability to approximate gang territories is a desirable feature of this model. To do this,

we classify a point (x, y) in space as belonging to the territory of gang i if

u(i)(x, y) > u(j)(x, y) for all j 6= i

u(i)(x, y) > δ.

Using this thresholding with δ, we limit the size of the territories so they do not cover the

entire region. We took δ = 0.001. The case where δ = 0 is discussed in Section 5.5.4.

The resulting territories are shown together in Figure 5.6. Although the semi-permeable

boundaries highly influence the gang densities, some territory plots seem to extend beyond

these boundaries. This is particularly evident for the southern boundary of the gang plotted

in Figure 5.5.
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Figure 5.6: Estimated gang territories. The semi-permeable boundaries of the model and the

county line are plotted over the territories in white.

5.5.4 Voronoi Diagrams

Given a set of points, a Voronoi diagram partitions the area of interest into smaller regions

that each contain only one of the points [39]. For a point xA, we consider every pair (xA, xB)

where A 6= B. We then construct a line between them that is equidistant to both points.

After completing this for each point xB, we take the resulting polygon that contains xA.

This is repeated for all points, decomposing the space into smaller regions. We compare the

Voronoi diagram obtained from using the set spaces to the territories constructed with the

ecological territorial model. We obtain interesting results if we consider δ = 0 instead of

δ = 0.001 (i.e. no thresholding of the densities). Figure 5.7 overlays the partitioning line

segments of the Voronoi diagram on the constructed territories with no thresholding. We

notice that they align almost exactly.

For comparison, we do a simple approximation to the gang densities by using a Gaussian

distribution centered at the set space. We used the parameter σ = 3 for the standard

deviation of the distribution. Using the same technique for determining territories as above,

we created a territory plot with no thresholding and plotted the Voronoi diagram over it as
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Figure 5.7: Voronoi plots compared to simulated territories. In both images, the set spaces for the

gangs are represented by the solid circle. The solid lines give the Voronoi diagram for the region

with input of the set spaces. The shaded regions provide the estimated gang territories with a

Gaussian distribution for the gang densities (Right) and the u(k) gang densities obtained from the

ecological territorial model (Left). Notice that the Gaussian distribution territories line up directly

with the Voronoi plot, and the ecological territorial model only differs significantly on the far right

portion of the region.

well. This is also shown in Figure 5.7. The boundaries of the territories match up exactly

with the Voronoi diagram.

Both territory plots of Figure 5.7 and the Voronoi diagram produce a similar partitioning

of the region. This suggests that the territories created using the ecological territorial model

produces territories similar to using a standard normal distribution about the set space.

However, we note that the normal distributions of separate gangs has significantly more

overlap than the ecological territorial model gang densities. This does not show in these

images as we only indicate which gang has a higher density here.

5.5.5 Comparison of the Densities with the Data

As discussed in Section 5.4, we have two data sets with which we will compare our model

output. The FI data provides the locations of where individuals have been stopped by the
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police. We assume this to be a reasonable sample of the gang densities. Thus, we plot the FI

data over the gang densities in Figure 5.8. Additionally, we have violence data for interactions

between gangs. These events are most likely to occur in locations where the marking density

is high. Therefore, we plot this data over the marking densities in Figure 5.8.

Figure 5.8: Data points and the simulated densities. The gang densities and the FI data are

plotted together (Left), and the marking densities are given with the violence data (Right). Here,

the densities are provided as the background gray-scale image with whiter colors representing higher

values. In the FI data image (Left), the green dots are for individuals in their own territory, the

red dots are for individuals in their rival gang’s territory, and the blue dots are for the other cases.

To see how well the model fits the data, we examine the Akaike information criterion

(AIC), given by

AIC = 2k − 2 ln(L), (5.34)

where L is the likelihood function and k is the number of model parameters. The results

are given in Table 5.5. In addition to the AIC values for the ecological territorial model,

we examine the Gaussian distribution model. We find that the ecological territorial model

performs better than the Gaussian distribution model when σ = 3, the standard deviation

used in Figure 5.7. We optimized the σ to give the best AIC measure, resulting in a value

of σ = 11.5. However, theoretical territory plots for this value resulted in gangs having
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set spaces in other gangs’ theoretical territories. This is an undesirable property, which is

why the image is not included in the paper, but we include the AIC value in the table for

comparison.

Method Data Set AIC

Ecological Territorial Model FI Data 31150
Gaussian Distribution Model (σ = 3) FI Data 41512
Gaussian Distribution Model (σ = 11.5) FI Data 18207

Ecological Territorial Model Violence Data 10526

Table 5.5: Akaike information criterion values for the ecological territorial model and the Gaussian

distribution model. For the Gaussian distributions, we use σ = 3 as in Section 5.5.4 and σ = 11.5.

The latter value gives the best AIC value, but creates territories that does not contain the set

spaces for some gangs. Lower AIC values are desired.

Overall, we notice some interesting properties of the locations of the individuals in the

FI data. Figure 5.8 plotted these data in different colors to correspond to the various cases.

In particular, green dots represent gang members that are located in their own theoretical

territory as estimated in Figure 5.6. The red dots show gang members located in a rival

gang’s theoretical territory, and the blue dots represent individuals that are neither in their

own territory nor a rival gang’s territory. Here, we determine a rival gang from the observed

rivalry network. To help examine the individual cases, we plot them separately in Figure 5.9.

We notice that the data points corresponding to locations where the gang members are not in

their own theoretical territory are more likely to occur in areas near the boundaries of other

gangs’ theoretical territories. Perhaps these individuals were passing through the region by

slipping between territories.

We highlight the FI data for three individual gangs in Figure 5.10. We notice that the

densities visually indicate where to find the majority of the gang members. Instances where

the individuals are not in the general vicinity of the home territory often occur near the

major roads.

Next, we examine the violence data and how it compares to the theoretical marking

densities produced by the model. Table 5.5 provides the AIC value for the violence data.
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Figure 5.9: FI data plotted over the gang densities determined by the ecological territorial model.

The gang members in their own territories (Left), the gang members in their rival’s territory

(Middle), and the other cases (Right) are plotted here. A dot represents a location where a gang

member was found. The gray-scale image in the background shows the gang densities estimated

by the ecological territorial model.

Figure 5.10: FI data for three individual gangs. The red dots indicate the position of where a

gang member was located. The gray-scale image provides the gang’s density information estimated

by the ecological territorial model.

Since we do not have another model to compare this with, we instead flag a certain portion

of the city and find how many events occurred in this region. More specifically, we take all
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points such that for any i,

p(i)(x, y) > γ ·max
j,x,y

(
p(j)(x, y)

)
.

We took γ to be 0.2, 0.1, and 0.05. The flagged regions are shown in Figure 5.11, and more

information on the results are provided in Table 5.6. By flagging less than 14% of the cells,

we predict more than half of the data.

Figure 5.11: Violence data compared to flagged regions of the city. From left to right, we have

γ = 0.2, 0.1, 0.05. The red dots indicate locations of violence between two gangs. The white regions

are the flagged cells of the marking densities where we expect the events are more likely to occur.

γ Percent of City Flagged Percent of Violence Data Predicted

0.2 5.02% 20.61%
0.1 13.94% 50.91%
0.05 22.46% 71.21%

Table 5.6: Proportion of data predicted given a flagged region of the city.

5.5.6 Rival Gang Territories and Events

Given approximate territories for gangs, we can investigate the locations of events with

respect to these regions. Figure 5.12 gives the theoretical territories of three sets of rival

gangs and the locations of the known violent interactions between them. Since we have
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information about which gang is the suspect and which is the victim, we illustrate which

gang is the victim by matching the interior color of the marker with the territory color. In

these three rivalries, we notice that all events occur near the boundaries of the theoretical

territories. Events slightly to the interior of the theoretical territory boundary correspond

with victim gangs in their own territory.

Figure 5.12: Territories and events of rival gangs. The three plots represent three pairs of rival

gangs and the violent interactions between them. The interior color of the markers (circles and

squares) indicates which gang is the victim by matching the color of its territory. All events occur

near the boundaries of the territories.

Sometimes there exists a rivalry between gangs of varying sizes. One such pair is illus-

trated in Figure 5.13, with one gang significantly larger than the other. Counterintiuitively,

the gang with the black set space is the larger gang and has a much greater number of

events where it is the victim. We also notice that the smaller gang is only the victim on the

boundary of the larger gang’s theoretical territory or on the interior of its own theoretical

territory. Since this data was recorded, the smaller gang collapsed after a key gang member

was killed. Thus, the smaller number of attacks by the larger gang may have had more

impact than the larger number made by the smaller gang.

5.5.7 Suspect versus Victim

In the previous section, we noticed a pattern where the locations of events occur with respect

to theoretical territory boundaries. Figure 5.14 shows six pairs of rival gangs and where their

violent interactions occurred. We notice a trend where the events typically fall either near
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Figure 5.13: A rival pair of gangs with different sizes. The larger gang, whose theoretical territory

is in black, is significantly larger than the smaller gang. The smaller gang is only the victim on the

boundary of the larger gang’s territory or on the interior of its own territory.

the boundary of the approximated territories of either gang, on the interior of the victim’s

territory, or are far from either theoretical territory.

Figure 5.14: Rival gang territories and the events between them. The victim’s gang’s territory

color matches the interior of the marker. The majority of events occur near the approximate

territory boundaries, on the interior of the victim’s territory, or away from both territories.
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With this observation, we consider the location of events with respect to the boundaries

of the approximate territories for both the suspect and the victim gangs. Previously, the

authors of [20] investigated the positioning of the events with respect to a boundary line

between gangs, equidistant to both set spaces. With the theoretical boundaries from the

ecological territorial model, we are able to further analyze this data with respect to all

boundaries. Given the victim gang’s theoretical territory, we find the distance from an

event to the territory boundary. We let this value be negative if the event occurs in the

victim’s territory and positive if it is outside. A histogram of these distances is provided in

Figure 5.15, where one unit is equivalent to 0.1 km. We see that the events strongly cluster

Figure 5.15: Histogram of the distance of an event to the boundary of the victim’s territory.

Negative values indicate the event occurred on the interior of the victim’s territory, and positive

values are for events on the exterior of the region. The distance is the number of grid units to the

closest boundary point. 1 unit = 0.1 km.

near the boundary of the victim. We also note that the distribution is slightly skewed to

have a larger number of events just interior to the victim’s territory. This agrees with our

observation in Figure 5.14.

Since the rival gangs are not necessarily adjacent to each other, we also repeat this analysis

for the location of events with respect to the suspect’s theoretical territory. Again, negative
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values indicate the event occurs on the interior of the suspect’s territory, and positive values

for the outside. The histogram is included in Figure 5.16. From this figure, we observe that

Figure 5.16: Histogram of the distance of an event to the boundary of the suspect’s territory.

Negative values indicate the event occurred on the interior of the suspect’s territory, and positive

values are for events on the exterior of the region. The distance is the number of grid units to the

closest boundary point. 1 unit = 0.1 km.

the majority of events occur near the boundary of the suspect’s territory, but skewed to the

exterior of the region.

Quantitatively, we find 24.7% of the events occur within three grid units of the theoretical

boundaries of both suspect and victim gangs. Additionally, 66.8% of the events occur within

three grid units of either the suspect or victim gang’s territory boundary.

5.6 Discussion

Using the framework of the coyote model proposed in [81], we formulated a model for street

gang spatial behavior. This model was able to incorporate spatial features of the region that

limit the movement individuals across these semi-permeable boundaries. For each gang, the

model produced a gang density and marking density, indicating where gang members are
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expected to be and where their tags are most likely to be found.

As a first approach to evaluating this model, we compared the rivalry network from this

model to the observed network and the SBLN network of Chapter 4. While this model’s

network gave similar metric values, it did not outperform the SBLN network. This is due to

the fact that we constructed the rivalry network from overlapping gang densities, which are

discouraged from spreading beyond the semi-permeable boundaries encoded in the model.

Thus, rivalries that cross these boundaries are not likely to be captured by the method we

used to produce a network. However, this method is able to provide more information than

just a rivalry network. In particular, it can be used to approximate gang territories and the

locations of violent interactions.

From the gang densities produced by the model, we approximated gang territories by

classifying a point based on which gang has the highest density at that location. Without

any thresholding, the resulting territory plot closely approximates a Voronoi diagram. With

thresholding, the resulting territory plots give reasonable estimates for each gang’s turf.

By flagging the cells with the highest theoretical marking densities, we were able to

identify the majority of the violent events with a small portion of the city. Additionally, we

were able to identify interesting behaviors of rival gangs. Events were more likely to occur in

the interior of the victim gang’s theoretical territory or on the boundary of either the victim

or suspect gang’s theoretical territory.

While comparing the gang densities to the FI data, we found the gang members were

often not in the general vicinity of their approximated home territory. These individuals

were frequently traveling on the boundaries of other gang’s territories. Despite this, we

demonstrated with three gangs that we were still able to give a good density estimate to the

location of gang members.
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