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Abstract Conventional statistical methods for interpreting

microarray data require large numbers of replicates in order

to provide sufficient levels of sensitivity. We recently

described a method for identifying differentially-expressed

genes in one-channel microarray data 1. Based on the idea

that the variance structure of microarray data can itself be a

reliable measure of noise, this method allows statistically

sound interpretation of as few as two replicates per treatment

condition. Unlike the one-channel array, the two-channel

platform simultaneously compares gene expression in two

RNA samples. This leads to covariation of the measured

signals. Hence, by accounting for covariation in the variance

model, we can significantly increase the power of the sta-

tistical test. We believe that this approach has the potential to

overcome limitations of existing methods. We present here a

novel approach for the analysis of microarray data that

involves modeling the variance structure of paired expres-

sion data in the context of a Bayesian framework. We also

describe a novel statistical test that can be used to identify

differentially-expressed genes. This method, bivariate

microarray analysis (BMA), demonstrates dramatically

improved sensitivity over existing approaches. We show that

with only two array replicates, it is possible to detect gene

expression changes that are at best detected with six array

replicates by other methods. Further, we show that com-

bining results from BMA with Gene Ontology annotation

yields biologically significant results in a ligand-treated

macrophage cell system.

Keywords Microarray � Statistical analysis � Bayesian �
Bivariate microarray analysis

Abbreviations

BMA Bivariate microarray analysis

VAMPIRE Variance-modeled posterior inference with

regional exponentials

FDR False discovery rate

RMSD Root mean square deviation

AfCS Alliance for cellular signaling

GO Gene ontology

KEGG Kyoto encyclopedia of genes and genomes

MHC Major histocompatibility complex

LPS Lipopolysaccharide

Introduction

Microarrays are invaluable tools for measuring transcrip-

tional responses of cells and tissues. The most common and

perhaps the most fundamental question that is asked is
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whether observed differences in gene expression are sta-

tistically significant. Traditionally, a fold-change cutoff has

been used as an indicator of significance. Although fold-

change can be a consistent measure at high signal inten-

sities, it is not very reliable when the signals are low. Low

intensities are therefore filtered out prior to applying a fold

change threshold, leaving these genes poorly interpreted.

More rigorous statistical techniques are therefore desired to

overcome these limitations.

The variance structure of microarray data has been

widely known and modeled by a number of groups (Ideker

et al. 2000; Li and Wong 2001; Rocke and Durbin 2001). It

is believed that this variance structure can be decomposed

into an expression-dependent and an expression-indepen-

dent component. The approaches generally taken however,

have been to ‘‘normalize’’ the microarray data to remove

this undesired behavior, and process the resultant data with

existing statistical tests (Sasik et al. 2002; Durbin and

Rocke 2004; Irizarry et al. 2003). We have taken a fun-

damentally different approach to this problem. Recogniz-

ing that the sample variance is itself a poor estimator of

noise at low replicate numbers (n = 2–3), we hypothesized

that the variance structure itself could be used as a more

precise estimator of variance (Hsiao et al. 2004). We

subsequently devised a modeling procedure to identify the

maximum likelihood estimates of expression-dependent

and expression-independent variance. This model was then

incorporated directly into a Bayesian statistical test.

In addition to normalization strategies, several statistical

methods have been described to interpret gene expression

data. Non-parametric methods such as Significance Anal-

ysis of Microarrays (SAM) (Tusher et al. 2001) are widely

applicable because they do not rely on explicit assumptions

about the error structure. These non-parametric methods,

however, lack sensitivity in the absence of high levels of

replication. On the other hand, parametric methods such as

the t-test and Bayesian variants like Cyber-T (Baldi and

Long 2001) can be powerful because of their ability to

extrapolate the behavior of variability based on prior

assumptions about the error structure. By parameterization,

these methods reduce the minimum number of array rep-

licates needed to identify significant changes in gene

expression. Despite these advances however, existing

methods still require many replicates to achieve sufficient

sensitivity for biological interpretation.

We present a novel statistical approach for the inter-

pretation of microarray functional genomics data that can

be performed on as few as one measurement per experi-

mental condition. Our method, the BMA (Bivariate

Microarray Analysis) is based on the Bayesian framework

developed in Hsiao et al. (2004) for the interpretation of

one-channel array data. In addition to modeling the rela-

tionship between signal intensity and variance, BMA also

models the covariation between the two color channels. We

demonstrate in simulated data the dramatically increased

sensitivity of BMA over other standard approaches, par-

ticularly at low replicate numbers (n = 2). This remains

true independent of whether we choose an array-wide

false-positive rate (aBonf) or a false discovery rate (FDR) as

a significance threshold. Lastly, we show that when BMA

is applied to a time course study of lipopolysaccharide

(LPS)-treated macrophages, the differential gene expres-

sion pattern found with a single dye-swapped pair is very

similar to that detected with three dye-swap pairs.

Statistics and modeling

Bayesian framework

The mean of intensity measurements is typically used as a

point estimate for gene expression and the variance from

that mean is used as an indicator of variability. Our method

relies on the notion that a model that fits the error structure

of microarray data will be a better estimator of variability.

By integrating this variance model into a Bayesian

framework, which is discussed more thoroughly in Sup-

porting Information Sect. I, we transform the mean inten-

sity into a probability density for gene expression. The

resulting probability density describes the likely values for

‘‘true expression level’’ (l). We can then apply statistical

tests on this density to determine which genes are differ-

entially-expressed between two experimental conditions.

The foundation of our approach, then, lies at accurately

modeling the amount of noise in microarray data.

The error structure of microarray data

Microarray gene expression data displays greater fractional

error at low signal intensities than at high intensities. When

the same RNA samples are analyzed on multiple arrays,

this relationship is still present, indicating that much of this

variation comes from the microarray platform itself. We

believe that platform-specific factors, such as the resolution

of the microscope and dye system, fundamentally limit the

reliability of low-intensity measurements. We refer to this

type of noise as expression-independent variance (B). At

greater signal intensities, this physical limit becomes less

and less important. Here, expression-dependent variance

(A) begins to dominate, but both kinds of error are small

compared to the signal. By itself, this simple model can

explain much of the variance behavior in a single channel.

In a two-channel microarray, measurements are

obtained from two RNA samples labeled with different

dyes. These samples are subsequently hybridized with the

microarray probes (Brown and Botstein 1999). Since these
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probes are spotted, rather than synthesized directly on the

array surface, there can be considerable variability between

the amounts of probe spotted between arrays. This varia-

tion in ‘‘probe intensity’’ alters the intensity measurements

for both color channels, and leads to covariation of the

paired signals. We therefore chose to model this covaria-

tion by introducing correlation coefficients for expression-

dependent and expression-independent variance. The final

variance model contains a total of six parameters. These

parameters are related to the treatment variances (r1, r2)

and correlation (q) through:

r2
1 ¼ l2

1A1 þ B1 ð1Þ

r2
2 ¼ l2

2A2 þ B2 ð2Þ

qr1r2 ¼ qAl1l2

ffiffiffiffiffiffiffiffiffiffi

A1A2

p

þ qB

ffiffiffiffiffiffiffiffiffiffi

B1B2

p
ð3Þ

where (A1, A2) are the expression-dependent variances, (B1,

B2) are the expression-independent variances, qA is the

expression-dependent correlation, qB is the expression-

independent correlation, and l1, l2 are the ‘‘true’’ expres-

sion level of each treatment condition.

Parameter estimation

Parameters for the variance model can be computed by

Markov Chain Monte Carlo (MCMC) simulation of the

bivariate normal density. This simulation computes the

maximum likelihood estimates for each of the six variance

parameters. Since the ‘‘true’’ gene expression is not known

prior to observing array measurements, the observed sam-

ple mean is used as a surrogate. This choice, although

necessary, can be problematic at low intensities. With the

sample mean as a surrogate for true expression, poor sig-

nal-to-noise ratios can cause underestimation of true vari-

ability. Therefore, we have devised an estimation technique

that identifies parameters which are stable against an

expression-level cutoff.

Model parameters should be the same regardless of how

much data is used to estimate them. Thus, we may pro-

gressively discard increasing numbers of low-intensity

features to avoid the downward bias caused by low signal-

to-noise. In Fig. 1, we demonstrate the effect of these

cutoffs on estimates of expression-independent error. This

parameter has two regions that are relatively stable against

successive quantile cutoffs. When smaller cutoffs are used,

expression-independent error tends to be underestimated.

When larger cutoffs are used, the parameters become

unstable. The details of the modeling procedure are dis-

cussed in Supporting Information Sect. II. It is also

important to note that the expression-level cutoff defined

here is only used to improve the quality of parameter

estimates. The resulting variance model is applied across

the entire array. By combining this model with the

Bayesian framework described earlier, we can then use a

statistical test to determine the significance of observed

differences in gene expression.

Statistical test

In order to make BMA compatible with conventional

concepts widely understood by the biological research

community, we devised a statistical test that computes a

P-value. This P-value may be used to control type I error,

which is the rate at which the null hypothesis is incorrectly

rejected. In BMA, we define the null hypothesis (H0) to be

that the ‘‘true’’ gene expression does not change across two

experimental conditions. The alternative hypothesis (H1) is

accepted when the null hypothesis is rejected. In other

words, we test

H0 : l2 � l1j j ¼ 0 against H1 : l2 � l1j j 6¼ 0 ð4Þ

where l1 and l2 represent the ‘‘true’’ expression of the two

treatment conditions.

The P-value of BMA is defined in a way similar to that

of a t-test. In a t-test, the P-value is defined as an integral of

a t-distribution. When the ‘‘tail area’’ of the t-distribution is

sufficiently small, we consider experimental results to be

statistically significant. In BMA, we define the P-value as a

two-dimensional integral of a bivariate normal density. In

other words, we determine whether the ‘‘tail volume’’ of

this distribution is sufficiently small. If so, we consider the

gene to be differentially-expressed. A depiction of the

bivariate integral is shown in Fig. 2. Explicitly,

Fig. 1 Estimation of expression-independent error in a sample data

set. The estimation procedure computes parameters for a series of

expression-level quantile cutoffs. Array features with average mea-

surements below the cutoffs are discarded, and the most likely

parameters for the remaining data are computed. In this figure, each

point on the colored surface describes the estimated value of

expression-independent error (
ffiffiffiffiffi

B̂2

p

) for a given pair of cutoffs.

There are two rectangular regions where expression-independent error

appears to be stable. These regions are identified by arrows
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pi ¼
R1
�1
R l2

�1 pi l1; l2ð Þdl1 � dl2; E l1½ �[ E l2½ �
R1
�1
R1

l2
pi l1; l2ð Þdl1 � dl2; E l2½ �[ E l1½ �

(

ð5Þ

where pi is the joint posterior density for the ‘‘true’’

expression levels of the ith feature.

A solution to the integration of the bivariate normal is

given in Supporting Information Sect. III. When the

P-value is less than the significance threshold, we reject the

null hypothesis that l1 = l2, and consider the difference in

gene expression to be statistically significant. The results of

this test, when applied to a LPS-treated macrophage data

set, are shown in Fig. 3.

Specifying a significance threshold

There are two commonly used methods for determining a

useful significance threshold (a) when analyzing micro-

array data. If we are interested in maintaining an array-

wide false positive rate, we may set a Bonferroni-corrected

threshold (aBonf). This is equivalent to the number of fea-

tures we expect to appear as significant by random chance

alone. If we set aBonf = 0.05, then we expect only one

feature to be significant when analyzing 20 batches of

microarray experiments. Needless to say, this is a tre-

mendously strict significance threshold. When the number

of features is large, the P-value threshold for a two-sided

test is

a ¼ aBonf=2n; ð6Þ

where n is the number of array features.

In some cases, the false discovery rate (FDR) may be

preferred. It is typically less stringent, but can still provide

meaningful results. Assuming that the P-value defined here

gives a reasonable estimate for the type I error, the false

discovery rate is related to the array-wide false positive

rate by

FDR ¼ 2n � a
i
¼ aBonf

i
; ð7Þ

where i is the number of significant features.

Fig. 2 Depiction of the significance integral. The statistical test

performed by BMA involves integration of a bivariate normal density.

The peak of the density appears on one side of the diagonal line. The

P-value is defined as the ‘‘tail volume’’ on the side opposite of the

peak. Statistical significance is achieved when the P-value is smaller

than a specified threshold. The bivariate normal density depicted in

(a) was sufficiently distant from the diagonal, and was considered a

‘‘significant’’ change (aBonf = 0.05). The density depicted in (b) was

too close to the diagonal, and therefore does not represent a

significant difference in gene expression

Fig. 3 A scatter plot demonstrating the results of BMA on macro-

phages treated with LPS for 1 h (aBonf = 0.05). Each point represents

the average signal measured from an array feature (n = 2). High-

lighted dots appear farthest from the diagonal, indicating statistical

significance
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Results

Simulated data

We tested the accuracy of several statistical methods on

simulated data sets derived from the estimated variance

structure of a two-color data set recently published by

Rome et al. (2003). The authors analyzed the RNA con-

tent of human skeletal muscle biopsies collected before

and after application of a hyperinsulinemic euglycemic

clamp. Sample measurements for our simulated set were

obtained from lognormal distributions centered on the

pre-clamp mean intensities. The second treatment condi-

tion was obtained by ‘‘spiking’’ 10% of the features. The

sample means of these randomly selected features were

multiplied or divided by a random number between 1 and

20. Since the signal-to-noise ratio (SNR) is much greater

at higher signal intensities, it is likely that subtle changes

are more readily picked up at high levels of gene

expression. This model problem therefore contains both

subtle and dramatic gene expression changes at a variety

of intensity levels.

Prior to identifying the ‘‘spiked’’ features, we tested the

accuracy of two different modeling procedures. An

equivalent model for the variance structure of two-color

microarray data was previously proposed by Ideker et al.

(2000). We applied their modeling approach, VERA

(Variability and Error Assessment) along with our own, to

compare parameter accuracy (Fig. 4). Even with two rep-

licates, BMA showed striking accuracy in its estimate of

expression-independent variance. VERA underestimated

this parameter even with large replicate numbers (n = 16).

We attribute the accuracy of BMA to the cutoff procedure,

which reduces the effect of poor-quality measurements at

low intensities. Since expression-independent variance

dominates at low intensities, this precision is essential for

interpreting faintly-expressed genes. In addition, both

approaches had a tendency to underestimate expression-

dependent variance when only two replicates were used,

but improved with more replicates.

With these variance parameters, we then compared the

accuracy of four different methods in identifying ‘‘differ-

entially-expressed’’ genes. This comparison was performed

using three different thresholds of statistical significance.

The quality of the predictions is displayed in Table 1. Each

of the statistical tests demonstrates improved sensitivity as

significance thresholds were loosened and as larger num-

bers of experimental replicates were used. As we would

expect, the FDR significance threshold was often predictive

of the true false-positive rate. There is only one clear case

where the false-positive rate substantially exceeded the

desired FDR. At n = 2 and FDR = 0.05, BMA shows a

loss in specificity. This results because expression-depen-

dent variance was underestimated at n = 2. When the

variance model derived from n = 6 data was used, the loss

of specificity was reversed. In all other cases, our method

appears to be much more sensitive than existing methods

without sacrificing specificity.

These results show that BMA can accurately predict

genes that are differentially-expressed. The variance-

modeled approach is particularly beneficial at low replicate

numbers where other statistical methods fail. In these

conditions, the variance model estimates variability more

accurately than traditional statistics. Applying this model

in a Bayesian framework translates into improved sensi-

tivity for subtle changes in gene expression.

Fig. 4 The variance structure estimated by BMA tightly fits the

RMSD (root mean square deviation) as well as the underlying

variance model. The simulated data set shown here was obtained by

sampling from a ‘true’ model derived from the Rome et al. (2003)

two-color data set. The quality of fit to RMSD is shown for a n = 2

and b n = 16 in non-transformed coordinates. The vertical dashed

line indicates the location of the quantile cutoff used to estimate the

variance parameters. The diagonal line labeled ‘‘Max RMSD’’ shows

the maximum possible value for RMSD at each expression level. The

variance model estimated by BMA tightly matches the ‘true’ model,

particularly at low intensities. This accuracy was not matched by

VERA and SAM, even when large numbers of replicates were used
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Time-course study of LPS-treated macrophages

We also examined the effectiveness of our method along

with several others on two-channel microarray data avail-

able from the Alliance for Cellular Signaling (AfCS).

[Reference: http://www.signaling-gateway.org]. In this

data set, three pairs of dye-swapped measurements were

obtained for each of six time points during lipopolysac-

charide (LPS) treatment of RAW 264.7 macrophages, for a

total of 36 arrays. Data sets such as this are valuable for

understanding the dynamics of gene expression in response

to ligand. In addition, much is already known about the

behavior of macrophages in the presence of LPS. This is an

ideal system then, to determine whether it is possible to

interpret gene expression responses while using fewer

microarray replicates.

When all three dye-swap replicates are available, similar

sets of differentially-expressed genes can be obtained by any

of the previously described methods. At the 8 h time point,

for example, 1,492 genes were detected as differentially-

expressed by BMA, SAM, and Cyber-T (FDR = 0.001). In

contrast, only 300 were detected solely by BMA, 279 solely

Table 1 Simulated data sets of 20,000 features, 2,000 spiked genes were analyzed with four different methods to determine the accuracy of

predictions of differential-expression

Threshold Method TP FP FPR FNR Sensitivity Specificity

n = 2

aBonf = 0.05 BMA 404 0 0.000 0.081 0.202 1.000

Cyber-T paired 78 0 0.000 0.096 0.039 1.000

kc = 23.8 VERA and SAM 274 9 0.032 0.088 0.137 1.000

FDR = 0.001 BMA 657 14 0.021 0.069 0.329 0.999

Cyber-T paired 139 0 0.000 0.094 0.070 1.000

SAM paired 0 0 N/A 0.100 0.000 1.000

FDR = 0.05 BMA 1,171 442 0.274 0.045 0.586 0.975

BMA (n = 6 model) 472 5 0.010 0.078 0.236 1.000

Cyber-T paired 542 3 0.006 0.075 0.271 1.000

SAM paired 130 1 0.008 0.094 0.065 1.000

n = 6

aBonf = 0.05 BMA 937 0 0.000 0.056 0.469 1.000

Cyber-T paired 269 0 0.000 0.088 0.135 1.000

kc = 23.8 VERA and SAM 1,155 4 0.003 0.045 0.578 1.000

FDR = 0.001 BMA 1,211 3 0.002 0.042 0.606 1.000

Cyber-T paired 387 0 0.000 0.082 0.194 1.000

SAM paired 0 0 N/A 0.100 0.000 1.000

FDR = 0.05 BMA 1,514 138 0.084 0.026 0.757 0.992

Cyber-T paired 925 2 0.002 0.056 0.463 1.000

SAM paired 266 8 0.029 0.088 0.133 1.000

n = 16

aBonf = 0.05 BMA 1,479 3 0.002 0.028 0.740 1.000

Cyber-T paired 829 0 0.000 0.061 0.415 1.000

kc = 23.8 VERA and SAM 1,554 34 0.021 0.024 0.777 0.998

FDR = 0.001 BMA 1,589 16 0.010 0.022 0.795 0.999

Cyber-T paired 1,096 0 0.000 0.048 0.548 1.000

SAM paired 930 0 0.000 0.056 0.465 1.000

FDR = 0.05 BMA 1,718 160 0.085 0.016 0.859 0.991

Cyber-T paired 1,441 6 0.004 0.030 0.721 1.000

SAM paired 1,601 61 0.037 0.022 0.801 0.997

The number of true-positives (TP), number of false-positives (FP), false-positive rate (FPR), false-negative rate (FNR), sensitivity, and

specificity are reported for each method when either the Bonferroni-corrected threshold (aBonf) or false discovery rate (FDR) are controlled.

BMA demonstrates substantial improvements in sensitivity across all significance thresholds investigated. A considerable loss of specificity was

only observed at low replicate numbers (n = 2) when the significance threshold is loose (FDR = 0.05)
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by SAM, and 105 solely by Cyber-T. The methods differ

tremendously with fewer array replicates, however. When

SAM is given fewer than three dye-swap pairs, no signifi-

cance threshold can be found that satisfies the desired false-

discovery rate. With Cyber-T, similar to what is observed in

simulated data, far fewer numbers of significant gene

expression changes are detected when either two dye-swap

pairs (n = 4) a single dye-swap pair (n = 2) are used

(Fig. 5). In contrast, our method detects similar numbers of

gene changes regardless of how many replicates are used in

analysis. This is further confirmed by comparing the sets of

differentially expressed features (Figs. 6, 7). Despite using

only the information contained in a single dye-swap pair,

BMA identifies equivalent sets of significant changes. Fur-

thermore, we found that similar Gene Ontology (GO) terms

were statistically enriched whether we used a single dye pair

or all of the available data (Table 2). In particular, genes

involved in cell death and proliferation were strongly reg-

ulated by LPS. Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways were also similarly enriched (Supporting

Information). Therefore, although increased sensitivity can

be gained by increasing replicate number, BMA allows us to

make meaningful biological interpretations of two-channel

functional genomics data with only a single dye-swap pair.

We further examined the 985 features that were

uniquely found by BMA with only two replicates at the 8 h

time point. Among these were 17 features associated with

components of the toll-like receptor signaling pathway as

defined by KEGG. This list includes prominent figures

such as toll-like receptor 2 (Tlr2) and toll-like receptor 4

(Tlr4). Tlr4 is believed to be required for LPS-induced

signaling (Ulevitch and Tobias 1999), while expression of

Tlr2 and Tlr4 have previously been confirmed to be

induced in murine alveolar macrophages by LPS (Oshik-

awa and Sugiyama 2003). Furthermore, it has long been

known that LPS stimulation induces macrophage expan-

sion in vivo (Yokochi et al. 1985). This effect on gene

expression is striking at the 8 h time point, as BMA found

115 additional features involved in cell proliferation. As

Fig. 5 BMA can use as little as a single pair of dye-swapped

measurements to identify an equivalent number of statistically

significant gene expression changes in the LPS-treated RAW 264.7

data set at all six time points. The quantity of significant gene changes

(aBonf = 0.05) stays relatively constant whether or not more repli-

cates are used. Cyber-T’s results approach BMAs as the number of

replicates increase
Fig. 6 The identity of genes identified by BMA and Cyber-T are very

similar at the 8 h when all replicate data is used (n = 6). BMA also

obtains similar results when fewer replicates are used (n = 2). A

significance threshold of aBonf = 0.05 was used for all methods

Fig. 7 The identity of genes identified by BMA, Cyber-T, and SAM

are similar at 8 h when all replicate data is used (n = 6). A

significance threshold of FDR = 0.001 was used for all methods
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macrophages play a major role in antigen presentation of

exogenous peptides, it is also interesting to note that seven

additional features involved in MHC class I and one

additional feature involved in MHC class II antigen pre-

sentation were also upregulated. This included several

HLA loci and b2-microglobulin. Class II MHCs are com-

monly thought to present exogenous antigens, but recent

evidence has shown that immunity against Mycobacterium

tuberculosis requires presentation on class I MHCs in a

‘detour’ pathway (Schaible et al. 2003). The consistency of

these results with known macrophage physiology is

strongly suggestive of the quality of genes detected by

BMA. Furthermore, these 985 features would have been

entirely missed by other methods if only two replicates

were used.

Discussion

In our analysis of the performance of BMA against present

statistical methods, BMA provides improved sensitivity at

all significance thresholds and replicate numbers tested.

A loss of specificity was only observed in a simulated data

set when both (a) the variance model was not sufficiently

accurate and (b) a loose false discovery rate was desired. In

the LPS-treated macrophage data set, the significant

features detected with three dye-swap replicates were not

substantially different from the features detected with a

single dye-swap replicate. Thus, a loss of specificity does

not appear be an issue when a stringent significance

threshold is applied. In addition, since no additional

experiments need to be performed to compute this thresh-

old, our method is immediately applicable to existing data

sets.

The scope of microarray expression profile studies has

been limited by the costs of producing sufficient numbers

of arrays to accommodate present statistical methods.

BMA approaches this fundamental limitation by modeling

the relationships between variability and gene expression,

and applying this array-wide model as a more accurate

indicator of error. Although some previous attempts at

modeling the sources of noise have been described (Ideker

et al. 2000; Li and Wong 2001; Rocke and Durbin 2001),

much of the literature is devoted to ‘‘normalizing’’ array

data to reduce variability. While these forms of normali-

zation are not necessarily incompatible with BMA, we

believe they may actually introduce additional artifacts,

particularly when their assumptions are too strong. For

example, quantile and lowess normalization fail to account

for the poor signal-to-noise ratios at low intensities. When

we modeled variance parameters for unnormalized data, we

found a dramatic decrease in expression-independent

Table 2 Statistically enriched

GO terms among differentially-

expressed features after 1 h of

LPS treatment (BMA,

aBonf = 0.05)

The number of features

annotated with the GO term and

the P-value are also displayed.

Only the 10 GO terms with the

lowest P-values are shown. All

displayed GO terms are

significantly enriched

(aBonf = 0.05). The complete

lists are provided in the

Supporting Information

GO ID GO term name Count P-value

n = 2

GO:0006952 Defense response 46 0.0000000000

GO:0006954 Inflammatory response 20 0.0000000000

GO:0006955 Immune response 41 0.0000000000

GO:0009607 Response to biotic stimulus 48 0.0000000000

GO:0045087 Innate immune response 20 0.0000000000

GO:0009605 Response to external stimulus 51 0.0000000001

GO:0009611 Response to wounding 22 0.0000000001

GO:0009613 Response to pest/pathogen/parasite 24 0.0000000041

GO:0050896 Response to stimulus 53 0.0000000047

GO:0005125 Cytokine activity 22 0.0000000060

n = 6

GO:0006952 Defense response 48 0.0000000000

GO:0006955 Immune response 44 0.0000000000

GO:0009607 Response to biotic stimulus 51 0.0000000000

GO:0009611 Response to wounding 25 0.0000000000

GO:0006954 Inflammatory response 21 0.0000000001

GO:0045087 Innate immune response 21 0.0000000001

GO:0006915 Apoptosis 30 0.0000000007

GO:0012501 Programmed cell death 30 0.0000000010

GO:0009613 Response to pest/pathogen/parasite 27 0.0000000021

GO:0009605 Response to external stimulus 54 0.0000000060
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variance (Supporting Information Sect. II). Expression-

dependent variance was slightly increased. More impor-

tantly though, we found that the expression-independent

correlation coefficient (qB) converged on a more realistic

value, and was vastly more stable against quantile cutoffs.

This suggests to us that the underlying variance structure at

low intensities is clouded by these forms of normalization,

and that caution should be exercised in using these pro-

cedures. With BMA, meaningful results can be obtained

from raw data with minimal manipulation.

Furthermore, we believe that the current approaches for

normalizing variability may ultimately be limited by the

use of conventional statistical tests, which rely on large

levels of replication to demonstrate significance. The levels

of replication demanded by these methods do not fre-

quently exist because of financial and labor constraints.

They are even less likely to exist in multiple-ligand and

time-course studies. BMA takes advantage of the parallel

nature of microarrays to reduce replicate number. Two

channel arrays have tremendous untapped potential for

large-scale studies of functional genomics. We anticipate

that because of BMAs improved sensitivity at low replicate

numbers, it will provide (1) more consistent interpretations

of array data and (2) an avenue for implementing more

sophisticated experimental designs.

Conclusions

We have demonstrated here the effectiveness of our vari-

ance-modeled Bayesian approach on paired microarray

data. BMA provides improved sensitivity at all significance

thresholds and replicate numbers tested. The present

method provides a reliable approach to identifying a set of

differentially-expressed features with an a priori-specified

significance threshold. Since existing statistical tests are

unable to produce comparable results at low replicate

numbers, this represents a substantial advance in micro-

array statistics.

Methods

In order to assess the effectiveness of several current sta-

tistical approaches, we created a simulated data set based

on the error structure of the previously published data set of

Rome et al. (2003). We computed variance parameters

from this data set and used this model to generate random

paired-samplings from a lognormal density centered on the

sample means. The simulated data set contains 20,000

features. 10% of these features were randomly chosen to be

spiked by multiplying the sample mean by es, where s is a

sampling from a uniform random variate with support on

[-loge(20), loge(20)].

In our analysis with VERA and SAM (Ideker et al.

2000), we used a likelihood ratio cutoff of kc = 23.8 for

statistical significance. For Cyber-T, we performed paired

analysis with m = 10, and detected significance in two

ways: using aBonf = 0.05 and manually adjusting aBonf to

achieve the desired false-discovery rates of 0.001 and 0.05.

False-discovery rates in SAM were adjusted by adjusting D
until the desired FDR were achieved. For both versions of

BMA, we implemented an automated procedure that

identifies the appropriate aBonf for the desired FDR, based

on golden section root finding. A lower bound for aBonf was

set at the minimum achievable FDR. The range of aBonf

was subsequently adjusted using Eq. 7 until aBonf could be

narrowed to within 10-5. To determine the minimum

achievable FDR, we similarly used a golden section min-

imization strategy.

To demonstrate the effectiveness of each method on real

data, the AfCS LPS-treated RAW 264.7 Agilent inkjet-

deposited oligo data set was obtained from the AfCS web

site at http://www.signaling-gateway.org/. The processed

signal intensities were normalized with intensity-dependent

lowess normalization to standardize signals between

arrays, although similar results were obtained by BMA

without normalization. In order to identify a stable set of

variance parameters, a single variance model was obtained

from a pooled data set containing all six time points. This

model was then applied to all six time points to determine

differential expression.

Statistical enrichment of Gene Ontology terms and

KEGG pathways was computed by comparing the number

of ‘‘significant’’ features annotated with a particular GO

term to the background. For the background, we used all of

the features on the Agilent array. Exact likelihoods

(P-values and q-values) were computed directly from the

hypergeometric distribution.

The modeling procedure and the bivariate microarray

analysis were implemented in a set of command-line JAVA

tools. These tools have been added to the VAMPIRE

(Variance-Modeled Posterior Inference with Regional

Exponentials) statistical package, and are available from

our website at http://genome.ucsd.edu/microarray. The

MCMC framework used in VAMPIRE and BMA is a

freely available JAVA package known as Hydra. The

CustomMetropolisHastingsSampler is used to carry out the

simulation, with a NormalMetropolisComponentProposal

generating potential states. In addition, we used the open

source library COLT for random number generation.
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