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Abstract

Hypersurfaces of constant curvature in asymptotically hyperbolic spaces

by

David T. DeConde

The relationship between the geometry of a conformally compact manifold and

the conformal geometry of its conformal infinity is of particular interest due to its

association with the AdS/CFT correspondence of physics, a conjectured correlation

between a string theory on a negatively curved Einstein manifold and a conformal

field theory on its boundary at infinity. In the case of hyperbolic space Hn+1 with

conformal infinity the round sphere Sn, a very precise relationship has been estab-

lished between conformal invariants (the eigenvalues of the Schouten tensor) on Sn

and Weingarten curvatures of immersed hypersurfaces [8]. This same relationship

has been extended to hyperbolic Poincaré manifolds [3]. We establish a correspon-

dence between constant scalar curvature metrics on conformal infinity and families of

hypersurfaces of constant Weingarten curvature in a neighborhood of infinity. This

generalizes results of Mazzeo and Pacard [31] on existence of constant curvature foli-

ations of asymptotically hyperbolic spaces to more arbitrary Weingarten curvatures.
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Chapter 1

Introduction

Throughout history mathematics and physics have enjoyed a famously fruitful

and intimate interaction with geometry being the first and most frequent point of

contact. A relatively recent and remarkable case of this interplay between the two

disciplines is the AdS/CFT (Anti de Sitter/Conformal Field Theory) correspondence,

a conjectured equivalence between a string theory and gravity on one space, and a

quantum field theory without gravity on the conformal boundary of this space. The

notion of the AdS/CFT correspondence was originally proposed by Maldacena in

1997 [30], and important aspects of the theory were developed by Witten [48] and

others [17].

Activity on the mathematical side of this story began in 1985 with the introduc-

tion of the ambient construction by Fefferman and Graham [10]: the goal was to find

new conformal invariants by using a correspondence between asymptotically hyper-
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bolic Einstein metrics and their conformal boundaries. This construction provides a

ready mathematical manifestation of the physical model; the original statement of the

correspondence provides a duality between the partition function of an n-dimensional

conformal field theory (resident on a conformal manifold M) and the renormalized

Einstein-Hilbert action of an Einstein metric on an (n + 1)-dimensional manifold X

with conformal boundary at infinity M .

Anti de Sitter space is a maximally symmetric pseudo-Riemannian manifold with

Lorentzian metric and constant negative curvature; it is the Lorentzian analogue of

hyperbolic space. This suggests hyperbolic space as a conveniently simplified model

in which to study the relationship between the geometry of a bulk space and the

structure of its infinity. Indeed, a very precise such connection is already well known;

realizing hyperbolic space as the hyperboloid embedded in Minkowski space, and

the null cone as its conformal infinity, hyperbolic symmetries of the hyperboloid and

conformal transformations on the sphere at infinity are related by a natural bijection:

a hyperbolic symmetry and a conformal transformation are in correspondence when

they both result from restriction of the same Lorentz transformation on the ambient

Minkowski space.

In fact more is known; the conformal metrics on the sphere at infinity are in

correspondence with the compact immersed hypersurfaces of hyperbolic space with

regular hyperbolic Gauss map, furthermore the eigenvalues of the Schouten tensor

(basic conformal invariants) of metrics on the boundary are linked to the principal
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curvatures of these hypersurfaces by a surprisingly simple relationship [8]. These

same relationships hold also for spaces which are quotients of hyperbolic space un-

der discrete isometry groups [3]. One especially interesting use of this link in [8] is

to provide a translation procedure between the Cristoffel problem [11] in hyperbolic

space and the Nirenberg-Kazdan-Warner problem (there are extensive references for

this problem; see the survey [29]) on the conformal boundary. This renders a ge-

ometric partial differential equation into a conformally invariant one, and similarly

turns solutions to one of these problems into solutions of the other (à la Bäcklund

transformations).

When the bulk space under consideration is not so homogeneous as hyperbolic

space, then the recovery of such a precise connection to the conformal boundary

becomes difficult. However, for asymptotically hyperbolic spaces one might hope to at

least find some relationship between the bulk geometry and the conformal structure

on the boundary, at least in a neighborhood of infinity. In fact, the existence of

hypersurfaces in a neighborhood of the boundary with extrinsic curvature linked

to the conformal structure at infinity has been demonstrated and used to produce

constant mean curvature foliations of asymptotically hyperbolic manifolds [31]. It

is this route we wish to explore as it seems to hold potential for eventually yielding

some results analogous to those of [8] and [3] but in more general cases.

We begin with background, introducing the objects under study and the tools

used to study them: chapter 2 summarizes the ambient construction and chapter 3
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provides details about asymptotically hyperbolic manifolds, while chapter 4 is a brief

synopsis of the Yamabe problem including just the details necessary for the sequel. In

addition to their immediate relevance, it may be noted that all three of these topics

hold positions of significance in the history of conformal geometry. Chapter 5 is a

detailed examination of the existence of constant mean curvature hypersurfaces in

asymptotically hyperbolic spaces as done by Mazzeo and Pacard in [31], though we

exclude some of their results in favor of more detail on others. As will be seen in

that chapter, the results regarding curvature of hypersurfaces in the bulk space are

achieved via curvature prescription in the conformal structure on the boundary (cf.

[8] and [3]), thus keeping with the leitmotiv of the AdS/CFT correspondence. In

chapter 6 we extend these methods to hypersurfaces distinguished by other types of

curvature.

The presentation here assumes familiarity with the fundamentals of Riemannian

geometry and partial differential equations, which in turn require proficiency with

differentiable manifolds and real and functional analysis. There are numerous good

sources for this material, but we list a few recommended ones here: for analysis,

[39] and [40]; for manifolds, [26] and [47]; for differential equations, [9] and [13]; for

Riemannian geometry, [25] and [5].

The following conventions will be followed throughout:

1. Unless stated otherwise the Einstein summation convention will be employed,

i.e. repeated indices with one raised and one lowered are summed over.
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2. Tensor indices (whose position indicates valence) are raised and lowered freely

via the “musical isomorphism” provided by appropriate metric. Usually the

metric to be used is clear, However explicit mention is frequently provided or

included in notation.

3. The definition of the Riemann curvature tensor used will be R(X, Y )Z =

∇[X,Y ]Z − [∇X ,∇Y ]Z for vector fields X, Y, Z, and with [·, ·] denoting the Lie

bracket (this differs from the alternative definition only by sign).

4. The definition of the Laplace-Beltrami operator is simply the trace of the co-

variant Hessian. This operator has negative spectrum and differs from the other

common convention only by sign.
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Chapter 2

The Ambient Metric

In Riemannian geometry the objects of study are smooth manifolds equipped with

a metric which allows the measurement of both length and angle of tangent vectors:

given (M, g), v, w ∈ TpM , we have

|v|2 = g(v, v), cos θ =
g(v, w)

|v||w|
.

The maps which define equivalence in this category are isometries, diffeomorphisms

that preserve the metric, and hence lengths.

In conformal geometry only the angle information is retained, there is no unambiguous

length. This is the same as knowing a metric only up to scale at each point of a

manifold. Hence

Definition 2.0.1 (Conformal Manifold). A conformal manifold M is a smooth man-

ifold equipped with an equivalence class of (pseudo-)Riemannian metric tensors [g] =

6



{e2ωg : ω ∈ C∞(M)}, i.e. a collection of metrics on M , differing only by a factor of

scale determined by some smooth function on M .

In this context the maps of relevance are those that preserve angle; conformal

maps.

The Ambient Metric was originally introduced by Haantjes and Schouten in 1936-

37 ([42], [43]), and independently rediscovered in modern form by Fefferman and

Graham in 1985. The central idea is to apply the methods of pseudo-Riemannian

geometry to conformal manifolds by realizing them as submanifolds of a (uniquely

associated) pseudo-Riemannian space, with the motivating goal being to thus derive

from Riemannian local invariants (e.g. curvature) conformal invariants (cf. Weyl’s

Theorem).

We will outline the ambient metric construction in some detail here, in partic-

ular those parts which have bearing on the asymptotic expansion of asymptotically

hyperbolic metrics, and especially Poincaré and Poincaré-Einstein metrics, however

extensive proofs of the technical details will be omitted and the reader is referred to

[10] for the complete treatment of the subject. Note that the ambient metric con-

struction works equally well without any modification in the pseudo-Riemannian case

as there is never any use made of the positive-definite aspect of a Riemannian metric.

Because the construction adds a time-like dimension to whatever sort of manifold

we begin with we will simply find it convenient to assume that whenever a time-like

direction is mentioned it is that one.
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2.1 Motivation

Before addressing the technical details of the ambient construction it is instructive

to consider the concept from the perspective of the motivating case, the conformal

round sphere (Sn, [̊g]). Sn is (locally1) conformally flat, meaning that the standard

sphere metric is related to the (flat) Euclidean Rn metric by a conformal factor

((σ−1)∗g̊ =
(

4
(1+|u|2)2

)
ḡ) obtained via pullback of the metric along the stereographic

projection map σ Euclidean Rn metric by a conformal factor. This is the standard

conformally flat case in the following sense.

Conformal transformations of Rn are generated by Euclidean motions (transla-

tions and orthogonal transformations), dilations, and inversions (in n-spheres or hy-

perplanes)2. Inversion in a sphere is not a bijection on Rn (as the center point is sent

to infinity), so the more natural setting for studying conformal transformations is the

compactification of Rn via the addition of {∞} by stereographic projection.

On the conformal sphere there is no unambiguous sense of scale at any point.

Consider the following nice manner in which such a conformal sphere may be visu-

alized. (For concreteness, picture the n-sphere as a circle; we will need two more

dimensions for the ambient space.) Let N+ be the upper half of the standard cone in

Rn+2. Any horizontal plane will intersect the cone in a circle, and as the plane moves

up or down the size of the circle of intersection varies. If instead of intersecting the

1The distinction locally means that there is not a global chart that is conformally flat.
2This is Liouville’s Theorem for conformal mappings and applies in dimensions ≥ 3. When

dim = 2 there is much more freedom; the Riemann Mapping Theorem implies that all simply-
connected open domains are conformally equivalent.

8



cone with a plane, we use any smooth surface that might be realized as the graph of

a smooth function, the result is a point-wise scaling of the circle.

In fact, we can make this precise and recapture all of the standard conformal

structure on Sn from a pseudo-Riemannian metric on Rn+2. Give Rn+1 × R the

coordinates χ = (ξ1, . . . , ξn+1, τ) (the ξi are spacelike and τ is timelike) and the

Minkowski metric g̃ =
∑

i(dξ
i)2 − dτ 2. Let Q =

∑
i(ξ

i)2 − τ 2 be the quadratic form

associated to g̃. Then the null-cone is the quadric N = {χ ∈ Rn+2 : Q(χ) = 0} =

{|ξ| = τ}. Projectivization yields PN = P = {[χ] ∈ RP n+1 : χ ∈ N} ' Sn, and

if π : N → P is the projection χ 7→ [χ], then we will use smooth sections of π to

represent members of the conformal class on Sn. We want to realize the conformal

structure on Sn as invariantly determined by the Minkowski metric on Rn+2, but the

restriction g̃|TN is degenerate, i.e. if X = χi∂χi , (the positional vector field), then

g̃(X, V ) = 0 for all V ∈ TN . Clearly for χ ∈ N g̃χ(Xχ, Xχ) = Q(χ) = 0. Then

dQ(V ) = 0 if V ∈ TN , but Q = g̃ijχ
iχj so dQ = 2g̃ijχ

idχj. Thus

0 = dQ(V ) = 2g̃ijχ
iV j = 2g̃(X, V ).

So, X ⊥ TχN for any χ ∈ N and hence g̃|TχN is degenerate, but it does induce an

inner product gχ on T[χ]P as follows: For π∗ : TχN → T[χ]P ,

π∗(X) = 0 and π∗ : TχN / spanX
∼=−→ T[χ]Q

For v, w ∈ T[χ]P choose any V,W ∈ TχN such that π∗V = v, π∗W = w and define

gχ by gχ(v, w) = g̃(V,W ). This is well-defined because our choices of V and W are

9



unique up to addition of a multiple of X, i.e. if V, V ′ are such that π∗V = π∗V
′ = v.

Then V ′ = V +λX for λ ∈ R and thus the condition X ⊥ TχN makes gχ independent

of such choices. For a given point [χ] ∈ P ' Sn we can apply this definition for any

point χ ∈ Rn+2 in the line [χ]. Now, when 0 6= s ∈ R we wish to know how are gχ

and gsχ are related.

Name the map corresponding to multiplication by s, i.e. χ 7→ sχ, δs : Rn+2 →

Rn+2, called “dilation by s” for obvious reasons. Then (δs)∗ also just multiplies tangent

vectors by s and hence g̃ is homogenous of degree two with respect to dilations, i.e.

(δs)
∗g̃ = s2g̃. Dilations correspond precisely to “scaling by s,” and of course π(sχ) =

π(χ) = [χ]. Suppose v, w ∈ T[χ]P and choose V,W ∈ TχN so that π∗V = v, π∗W = w.

Then

gsχ(v, w) = g̃((δs)∗V, (δs)∗W ) = (δs)
∗g̃(V,W )

= s2g̃(V,W ) = s2gχ(v, w).

Therefore gsχ = s2gχ; at each point [χ] ∈ P we obtain an inner product on T[χ]P by

pushing down g̃χ for some χ ∈ [χ] and each such selection determines the conformal

scale based on the magnitude |χ|. Hence the Minkowski metric on Rn+2 invariantly

determines the conformal structure on Sn as wished.
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2.2 Coordinate Selection

Before we establish the general case definitions, we make an alternative selection

of coordinates in the flat case that will prove convenient for the abstract general

ambient construction. Choose coordinates:

xi = ξi/τ, t = τ and ρ =
1

2

Q

τ 2
=

1

2
(|x|2 − 1)

corresponding to scaling up of the spacial dimensions proportional to the time com-

ponent so that the upper-half of the null cone

N+ = {(ξ, τ) ∈ Rn+1 × R : |ξ| = τ, τ > 0}

looks like the cylinder

{|ξ| = 1, τ > 0}.

We disregard from now on points with τ ≤ 0; π(χ) = π(−χ) and hence g−χ = gχ

and thus we lose nothing by doing so. By substitution then the Minkowski metric

becomes

g̃ = 2ρdt2 + 2tdtdρ+ t2gρ

where g0 is the standard metric on Sn ⊂ Rn+1, and gρ in general is the standard

metric on the n-sphere of radius
√

2ρ+ 1. Note that g̃ is homogenous of degree two

in t, and g̃|ρ=0,t=1 = g0.
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2.3 The Ambient Metric Construction

The goal of the ambient construction is to produce such an ambient space and

metric g̃ for any conformal manifold (M, [g]). First we construct an analog of the

upper null cone N+.

Definition 2.3.1. For a conformal manifold (M, [g]) of dimension n ≥ 2, equipped

with conformal class [g], of signature (p, q), the metric bundle G = {(h, x) : h ∈

[g], x ∈M} ⊂ S2T ∗M is an R+-bundle over M with projection map

π : G →M, (h, x) 7→ x

and the maps comprising an R+-action on fibers, “dilation” by s for any s ∈ R+:

δs : G → G, (h, x) 7→ (s2h, x).

G is naturally equipped with a tautological symmetric 2-tensor g0 defined as fol-

lows. For X, Y ∈ T(h,x)G let

g0(X, Y ) = h(π∗X, π∗Y ).

Then g0 is

Homogenous of degree 2 with respect to the dilations δs, i.e. δ∗sg
0 = s2g0. For-

mally this can be seen by just unwinding the definitions, but note its geometric

significance: dilations on G act as conformal scalings on M . Thus the metric

bundle encodes the conformal structure on M .
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Degenerate: If T = d
ds
δs|s=1 is the vector field on G which is the infinitesimal gen-

erator of the dilations δs, then π∗T = 0 and g̃(T, ·) = 0; this is the generalized

version of the positional vector field in the flat model.

It can be easily verified that the objects defined above, G, π, δs, and g0 are all well-

defined based solely on the conformal class [g] and do not depend on the particular

representative g, however, once a choice of representative g is fixed, we obtain a

trivialization of the bundle G; identify

(t, x) ∈ R+ ×M with (t2gx, x) ∈ G.

In terms of this identification we then have

π : (t, x) 7→ x, δs : (t, x) 7→ (st, x), T = t∂t, g0 = t2π∗g.

Then the chosen representative metric g can be regarded as a section of the metric

bundle G; the image of this section is the submanifold of G given by t = 1.

So far we have constructed the general analog of the null cone N of the flat

case. Next we add a final dimension corresponding to the defining function of the

null cone to allow us to repair the degeneracy of g0 and fill out the space on which

the ambient metric g̃ will live. Let G̃ = G × R = R+ ×M × R. The dilations δs

extend to G̃ by acting on the first factor alone, while T may similarly be extended

by assuming constancy along the R factor. If g is a representative metric for the

conformal structure with associated R+-fiber coordinate t, and if (x1, . . . , xn) are

local coordinates on M , then (t, x1, . . . , xn, ρ) are local coordinates on G × R. The

13



indices 0 and ∞ will be used to refer to the t and ρ coordinates respectively, while

i, j, . . . refer to the other coordinates. Capital Roman letter indices may vary over all

coordinates.

The general definition is inspired by features that defined the flat model, plus

the fact that while the metric bundle arises quite immediately from the conformal

structure on M , the extension of the metric off of the “null cone” will require solving

an ordinary differential equation in the ρ coordinate.

Definition 2.3.2 (Ambient Space). An ambient space for a conformal manifold

(M, [g]) is a pair (G̃, g̃), where:

1. G̃ is a dilation-invariant open neighborhood of G × {0} in G × R and g̃ is a

smooth metric on G̃;

2. g̃ is homogenous of degree 2 on G̃ (i.e. δ∗s g̃ = s2g̃, for s ∈ R+);

3. The pullback ι∗g̃ is the tautological tensor g0 on G;

4. g̃ is Ricci-flat on G × {0}, i.e. Ric(g̃) = 0.

When [g] is a conformal class of signature (p, q), g̃ is a smooth metric of signature

(p+ 1, q + 1).

The reasoning behind the axioms can be seen most easily by considering the flat

model. As in the flat case, the space should be homogenous (in the geometric sense)

in the dimension corresponding the conformal scaling; movement in this direction

14



should not alter anything about the space but sense of scale. This also expresses

itself as (algebraic) homogeneity of the metric with respect to dilations. Restriction

of the ambient metric back to the metric bundle will be an initial condition for a

second-order differential equation in terms of the metric that we get from the Ricci-

flatness condition. The tautological 2-tensor on the metric bundle arises naturally,

but extending this to an ambient metric on G̃ requires imposing additional conditions

and vanishing Ricci tensor on G is strict enough to be useful but (mostly) solvable.

As is commonly the case in finding solutions to differential equations we do not in

general expect to find global solutions for our metric in the ρ dimension so we content

ourselves with a ρ-neighborhood around the metric bundle. Ambient metrics for the

same conformal manifold have an appropriate sense of equivalence:

Definition 2.3.3 (Ambient-Equivalence). Let (G̃1, g̃1) and (G̃2, g̃2) be two ambient

spaces for (M, [g]). We say that (G̃1, g̃1) and (G̃2, g̃2) are ambient equivalent if there

exist open sets U1 ⊂ G̃1, U2 ⊂ G̃2 and a diffeomorphism φ : U1 → U2 with the following

properties:

1. Both U1 and U2 contain G× {0};

2. U1 and U2 are dilation invariant and φ commutes with dilations;

3. The restriction of φ to G× {0} is the identity map;

4. g̃1 − φ∗g̃ vanishes to infinite order at every point of G× {0}.

15



In general when we say something like “up to diffeomorphism” about ambient

metrics, it usually refers to diffeomorphisms satisfying properties like φ above. Hav-

ing defined ambient-equivalence, we want to find a unique (up to such equivalence)

ambient metric associated to each conformal manifold. So far we have

1. the second-order differential equation Ric(g̃) = 0 and

2. the initial condition g̃|TG = g0.

We want to ensure that

1. this is an ordinary differential equation in terms of the ρ coordinate only, and

2. we have a first-order condition that yields a unique solution.

Ideally, we also make the actual problem easier to manage also. To this end we

stipulate:

Definition 2.3.4 (Straight, Normal Form Ambient Metrics). An ambient space is

said to be straight if

1. For each point p in a dilation-invariant neighborhood U ⊂ G, the parameterized

dilation orbit s 7→ δsp is a geodesic for g̃.

and in normal form relative to a representative metric g if the follow conditions hold:

2. For each z ∈ G, the parameterized curve (−ε, ε) 3 ρ 7→ (z, ρ) is a geodesic for g̃.

16



3. Writing (t, x, ρ) for a point in R+ ×M × R ∼ G under the association induced

by the fixing of a representative metric g, at each point (t, x, 0) ∈ G × {0}, the

metric tensor g̃ takes the form

g̃ = g0 + 2tdtdρ

A consequence of the existence proof of ambient metrics is that any ambient metric

will be equivalent to a straight one in normal form, so it suffices to consider only such

cases. Furthermore these conditions determine several of the Christoffel symbols Γ̃IJK

for g̃ and hence several of the components of g̃ itself. Hence by stipulating that g̃ is

straight and in normal form relative to a representative metric g, it can be written

nicely:

g̃IJ =


2ρ 0 t

0 t2gij 0

t 0 0


where

g̃IJ =

 t2gij


is determined by the condition ι∗g̃ = g0,

g̃IJ =


t

0

t 0 0


17



is determined by g̃ being in normal form, and

g̃IJ =


2ρ 0

0


is determined by g̃ being straight.

The metric gij in the above expression is a function gij(x, ρ) of both the point in

the manifold M and the ρ coordinate. In the formula

g̃ = 2ρdt2 + 2tdtdρ+ t2gρ

it is gρ, a 1-parameter family of metrics on M . In the sequel whenever a metric is

referred to as “in normal form” it will also be assumed straight and expressible in

the matrix form written above. This form puts our expression for the metric into a

configuration that nicely mimics the flat case.

As a result of the series analysis mentioned below, both existence and uniqueness of

ambient metrics is dependent on the parity of the dimension of the starting conformal

manifold. If we assume our ambient metric to be straight and in normal form relative

to g, then in

g̃IJ =


2ρ 0 t

0 t2gij 0

t 0 0


only the expansion of gij(x, ρ) remains undetermined. The components of the Ricci
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tensor form a system of equations; using the expression for Ricci curvature

R̃IJ =
1

2
g̃KL(∂2

ILg̃JK + ∂2
JK g̃IL − ∂2

IJ g̃KL − ∂2
KLg̃IJ)

+ g̃KLg̃PQ
(

Γ̃ILP Γ̃JKQ − Γ̃IJP Γ̃KLQ

)
we may compute the following components (the other two, involving the t-coordinate,

will not be needed here)

R̃ij = g′′ijρ− gklg′ikg′jlρ+
1

2
gklg′klg

′
ijρ−

(n
2
− 1
)
g′ij −

1

2
gklg′klgij +Rij, (2.3.1)

R̃i∞ =
1

2
gkl(∇kg

′
il −∇ig

′
kl), (2.3.2)

R̃∞∞ = −1

2
gklg′′kl +

1

4
gKLgpqg′kpg

′
lq. (2.3.3)

Here ′ denotes ∂ρ andRij and∇ denote the Ricci curvature and Levi-Civita connection

of gij(x, ρ) with ρ fixed.

The Taylor expansion of gij(x, ρ) can be determined by setting these expressions

equal to zero (the Ricci-flat condition) and successively differentiating and evaluating

at ρ = 0 (in some cases tracing the equations and then substituting the solved trace

part back into the original expression). In doing so one finds that

1. For n odd: Equation 2.3.1 above determines the derivatives ∂mρ gij for m < n

as well as the trace-free part of ∂nρ gij. (The trace-part of equation 2.3.1 is

automatically satisfied.) The value of the trace-part gij∂nρ gij is determined by

equation 2.3.3 and then all higher derivatives are determined by equation 2.3.1.
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2. For n even: Equation 2.3.1 determines the derivatives ∂mgij for m < n/2 and

also the trace part gij∂mgij. (Although calculating traces may be faster and

easier using equation 2.3.3.) When trying to solve for the m = n/2 term the

recurrence fails as one of the terms in the relation vanishes (it has a coefficient

including (n− 2m)).

The first few derivatives are

g′ij|ρ=0 = 2Pij

g′′ij|ρ=0 = − 2

(n− 4)
Bij + 2Pi

kPjk, n 6= 4

g′′′ij |ρ=0 =
2

(n− 4)(n− 6)
Bij,k

k − 4

(n− 4)(n− 6)
WkijlB

kl − 8

(n− 4
Pk(iBj)

k

− 8

(n− 4)(n− 6)
Pk

kBij +
2

(n− 2 = 6)
P klC(ij)k,l −

1

(n− 6)
Ck

i
lCljk

+
1

2(n− 6)
Ci

klCjkl +
1

(n− 6)
P k

k,lC(ij)
l − 1

(n− 6)
WkijlP

k
mP

ml,

n 6= 4, 6

and in general, at ρ = 0

(4− n)(6− n) · · · (2m− n)∂mρ gij = 2(∆m−1Pij −∆m−2Pk
k
,ij) + · · ·

where the tensors Pij,Wijkl, Cijk, Bij are defined as follows:

Schouten: Pij = 1
n−2

(
Rij − R

2(n−1)
gij

)
,

Weyl: Wijkl = Rijkl − (P � g)ijkl,

Cotton: Cijk = Pij,k − Pik,j,
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Bach: Bij = Cijk,
k − P klWkijl.

Recall, the definition of ambient-equivalence above. Uniqueness means only up to

such a diffeomorphism. Now, the summarized existence and uniqueness results for an

ambient metric of a conformal manifold (M, [g]) of dimension n are as follows:

n odd: There exists an ambient metric uniquely determined to infinite order. If

there is a real-analytic metric in the conformal class [g] then the expansion of

the ambient metric converges.

n even: 1. There is an ambient metric uniquely determined up to order n/2− 1.

2. In general there is a local obstruction to existence. This obstruction can

be realized as a conformally invariant 2-tensor on M which generalizes the

Bach tensor (they coincide in dimension 4).

3. In the case of special types of conformal manifolds there are infinite or-

der solutions for the even dimensional case. One example that will have

relevance to us is when the starting manifold is conformally flat.

4. Alternative manner to handle even dimensional case: generalized ambient

metrics. (due to Graham and Hirachi [15]) Basically, relax the smooth-

ness requirement and instead try to construct more general formal series,

potentially involving log terms. Introduce a choice of undetermined terms

to allow full expansion. This yields results, but uniqueness in particular

remains elusive outside of special cases.
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Accordingly we must revise our definition for ambient metrics to

Definition 2.3.5 (Ambient Space). An ambient space for a conformal manifold

(M, [g]) is a pair (G̃, g̃), where:

1. G̃ is a dilation-invariant open neighborhood of G × {0} in G × R and g̃ is a

smooth metric on G̃;

2. g̃ is homogenous of degree 2 on G̃ (i.e. δ∗s g̃ = s2g̃, for s ∈ R+);

3. The pullback ι∗g̃ is the tautological tensor g0 on G;

4. (a) If dimM = n is odd, or n = 2, then Ric(g̃) vanishes to infinite order at

every point of G × {0}.

(b) If n is even, then Ric(g̃) = O(ρn/2−1).

Briefly, in our previous definition of an ambient metric, we make the alterations:

Ric(g̃) = 0

becomes

n odd: Ric(g̃) vanishes to infinite order at every point of G × {0}.

n even: Ric(g̃) = O(ρn/2−1)
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The initial terms of the ambient metric expansion are:

gij(x, ρ) = gij(x, 0) + 2Pijρ+

(
− 1

(n− 4)
Bij + Pi

kPjk

)
ρ2+

+
1

3(n− 4)(n− 6)

(
Bij,k

k − 2WkijlB
kl − 4(n− 6)Pk(iBj)

k − 4Pk
kBij

+ 4(n− 4)P klC(ij)k,l − 2(n− 4)Ck
i
lCljk + (n− 4)Ci

klCjkl

+ 2(n− 4)P k
k,lC(ij)

l − 2(n− 4)WkijlP
k
mP

ml

)
ρ3 +O(ρ4)

Finally, though it is not (at least apparently) germane to the sequel, we remark

that the obstruction to finding ambient metrics in the even dimensional case can be

identified as a conformally invariant 2-tensor on M , which when n = 4 is the Bach

tensor. Recall that when g̃ is a straight ambient metric in normal form |T |g̃ = 2ρt2,

and in the case of the flat model 2ρt2 = |ξ|2 − |τ |2 = Q(χ), i.e. the standard defining

function of the null cone. In the general case Q = |T |g̃ = g̃(T, T ) is a defining

function for G × {0} ⊂ G̃ invariantly associated to g̃, which is homogenous of degree

2. (To verify that Q is a defining function, note that in normal form Q = 2ρt2

mod O(ρn/2+1)). As Ric(g̃) = O(ρn/2−1), Q1−n/2 Ric(g̃)|TG is a tensor field on G of

degree 2− n which annihilates T , and thus it defines a symmetric 2-tensor-density of

weight 2−n on M which is trace-free. Evaluating this tensor-density on the image of

the representative metric as a section of G defines a 2-tensor on M . Then the ambient

obstruction tensor is defined by

O = cn(Q1−n/2 Ric(g̃))|g
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where c(n) is a constant derived from the dimension equal to

cn = (−1)n/2−1 2n−2(n/2− 1)!2

n− 2
.

For g̃ in normal form this reduces to

Oij = 21−n/2cn(ρ1−n/2R̃ij)|ρ=0.

This tensor is conformally invariant, trace-free, divergence-free, and equal to the Bach

tensor when n = 4. For more about this tensor see [10], [14] and [15].

2.4 Conformal Curvature Tensors

Conformal curvature tensors are conformal invariants analogous to the curvature

tensors of Riemannian geometry; the search for such tensors provided the original

motivation for the producing the ambient construction. The general procedure for

constructing these invariants is to perform the ambient construction, then calculate

the Riemannian curvature of the resulting ambient metric, finally restricting this

curvature tensor back to the original manifold (a submanifold of the ambient space)

yields a conformally invariant tensor. Taking covariant derivatives of the ambient

curvature before the restriction produces additional invariants, and in the simplest

cases the well known conformally invariant tensors are recovered by this method. We

will use some of the calculations of this section to realize the expansion of Poincaré-

Einstein manifolds (these have conformally flat conformal infinity).
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Let g be a metric on a manifold M . Then there is an ambient metric in normal

form relative to g, which may be taken to be straight. Such metrics have the form:

g̃IJ =


2ρ 0 t

0 t2gij 0

t 0 0


on a neighborhood of R+ ×M × {0} in R+ ×M ×R. The condition of Ricci flatness

(the resulting second-order ODE in ρ) determines the 1-parameter family of metrics

gij(x, ρ) based on the initial metric to infinite order for n odd and modulo O(ρn/2) for

n even, with the trace term gij∂
n/2
ρ gij|ρ=0 also determined for n even. Each of these

determined (formal) Taylor coefficients is a natural invariant of the initial metric g.

The conformal curvature tensors will be defined in terms of the covariant deriva-

tives of the curvature tensor of an ambient metric in normal form relative to g. Denote

the curvature tensor of an ambient metric by R̃ with components R̃IJKL. The r-th

covariant derivative will be denote by R̃(r) with components R̃
(r)
IJKL,M1···Mr

. The cur-

vature tensor for g̃ can be computed directly from the explicit form of the metric

given above, and the result of such computation shows that R̃IJK0 = 0 and that

R̃ijkl = t2
[
Rijkl +

1

2
(gilg

′
jk + gjkg

′
il − gikg′jl − gjlg′ik) +

ρ

2
(g′ikg

′
jl − g′ilg′jk)

]
R̃∞jkl =

1

2
t2
[
∇lg

′
jk −∇kg

′
jl

]
R̃∞jk∞ =

1

2
t2
[
g′′jk −

1

2
gpqg′jpg

′
kq

]
(2.4.1)

where ′ denotes ∂ρ, and ∇ and Rijkl denote the Levi-Civita connection and curva-

ture tensor respectively of the metric gij(x, ρ) with ρ fixed. The symmetries of the
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curvature tensor imply that all other components look like one of these up to sign.

Components of the ambient covariant derivatives of the ambient curvature can then

be calculated by taking iterated derivatives of these formulae.

We will restrict our attention here to the case r = 0, as it is here that we recover

the known conformally invariant curvature tensors called the Weyl, Cotton, and Bach

tensors.

First recall that from the calculations involved in the formal analysis of the ex-

pansion of g̃ we have that

g′ij|ρ=0 = 2Pij, g′′ij|ρ=0 = − 2

(n− 4)
Bij + 2Pi

kPjk

where the second derivative is only unambiguously defined when n 6= 4.

Now evaluating the three components of R̃ listed above but restricted to the metric

bundle ρ = 0 yields:

R̃ijkl|ρ=0 = t2(Rijkl + gilPjk + gjkPil − gikPjl − gjlPik)

= t2(Rijkl − (P � g)ijkl)

= t2Wijkl

Where � denotes the Kulkarni-Nomizu product that combines two symmetric 2-

tensors to produce a 4-tensor with the symmetries of a curvature tensor. At t = 1 of

course we see the Weyl tensor of the representative metric, but also as t varies we see

precisely the expected conformal transformation of the Weyl tensor (when all indices
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are lowered). Next we have

R̃∞jkl|ρ=0 = t2(Pjk,l − Pjl,k)

= t2Cijk

the Cotton tensor, also transforming as expected with respect to change in t. And

finally

R̃∞jk∞|ρ=0 =
t2

(n− 4)

[
−Bjk + (n− 4)Pj

lPkl
]
− 2t2Pj

lPkl

= − t2

(n− 4)
Bjk

The fact that the Bach tensor is only obtained in this way when n 6= 4 is unfortunate,

but the invariant is recovered nonetheless.
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Chapter 3

Poincaré Metrics & Asymptotically

Hyperbolic Manifolds

3.1 Motivation & Analogy to Flat Model

There is another construction associated to a conformal manifold that carries

equivalent data to that of the ambient construction and actually arises naturally

on its own, particularly in the context of contemporary physical theories. While

the ambient space and associated metric fully translate conformal data into pseudo-

Riemannian structure through the addition of two extra dimensions, Poincaré metrics

arise through the addition of one extra (spacelike) dimension and realize a confor-

mal manifold as the boundary of a Riemannian bulk space. Such spaces form the

focus of our investigations; it is the interplay between the conformal structure of the
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boundary and the Riemannian geometry of the bulk space that produces the salient

characteristics of these objects.

The connection between the two constructions is easily described in the flat model:

restrict the Minkowski metric g̃ to the upper sheet of the hyperboloidQ = −1, this will

be the standard hyperbolic metric. The hyperboloid is complete but not compact, and

thus has no actual boundary, however it approaches the null-cone in every direction;

the null-cone looks like a boundary at infinity for this hyperbolic space. This can be

made precise by moving from the hyperboloid to the Poincaré disk model of hyperbolic

space. This is via a conformal map which is very much analogous to stereographic

projection. The result is a metric
(

4
(1+|u|2)2

)
ḡ on the unit disk in Rn+1, where ḡ is the

Euclidean metric there. Here the “boundary at infinity” is the unit n-sphere. This

inspires the definitions that follow.

Remark 3.1.1. In the ambient construction one begins with a conformal manifold

(M, [g]) and proceeds to construct an ambient space around it. While the construc-

tion of Poincaré metrics follows a rather similar plot, in subsequent sections our per-

spective will often be rather reversed, i.e. we will start with a Riemannian manifold

(X, g) and find that its conformal compactification has “conformal infinity” (M, [h]).

Anticipating the notation of those sections, we will use (M, [h]) to denote the con-

formal manifold that is the boundary of a Poincaré space, and (X, g) to refer to the

Riemannian bulk space we construct.

Let (M, [h]) be a smooth conformal manifold of dimension n ≥ 3 and X a manifold
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with boundary satisfying ∂X = M . Let r ∈ C∞(X) denote a defining function for

∂X = M , i.e. r > 0 on intX, r = 0 and dr 6= 0 on M . Most results are equally

true for n = 2, but the plentitude of conformal mappings in two dimensions, and

in particular the fact that all two dimensional manifolds are locally conformally flat,

makes n = 2 a relatively special (frequently easy) case in most circumstances.

Definition 3.1.2 (Conformally Compact). A smooth metric g on intX is said to be

conformally compact if for a defining function r,

1. the conformal metric r2g extends smoothly to a metric on X and

2. the restriction r2g|TM induces a metric on M (is nondegenerate on M).

The restriction r2g|TM , which we will call ĝ, rescales by a conformal factor upon a

change in the defining function r, and therefore defines a conformal structure (M, [ĝ])

on M called the conformal infinity of X.

The full condition of smoothness up to the boundary is frequently unnecessary,

but unless otherwise indicated, we assume conformal compactifications to have at

least C3,α regularity up to ∂X. Fix for convenience the notation ḡ = r2g.

Computing the change in curvature under a conformal transformation (see ap-

pendix B) by a factor of r−2 gives

Rm(g) = −|dr|2ḡ(gikgjl − gilgjk) + Rm(ḡ)r−2 + (∇2
r � ḡ)r−3 (3.1.1)

Implying that g has asymptotically constant sectional curvature of −|dr|2ḡ near M .
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(The symbol � above is the Kulkarni-Nomizu product on symmetric 2-tensors:

(u� v)ijkl = uikvjl + ujlvik − uilvjk − ujkvil.

Thus 1
2
g � g is the curvature tensor of constant sectional curvature +1. Recall that

the sectional curvature requires dividing Rm(g) by a normalization factor that will

be quadratic in g.) It can be seen by taking the trace of the expression 3.1.1 above,

that the Einstein condition Ric(g) = −ng can be satisfied (modulo O(r−1)) near the

boundary of X only if |dr|2ḡ = 1 on ∂X = M . Such metrics are named:

Definition 3.1.3 (Asymptotically Hyperbolic). A conformally compact metric g on

a manifold X is called asymptotically hyperbolic if |dr|2r2g = 1 on ∂X.

A choice of defining function r always determines a representative metric ĝ =

ḡ|TM = r2g|TM in the conformal class [g], however in the other direction a choice of

representative metric generally only determines a defining function r modulo O(r2).

(As a defining function must vanish to exactly first order at M , all higher orders of

r are unseen in a member of the conformal infinity.) Stipulating that |dr|2ḡ ≡ 1 not

only on M but in a neighborhood of M allows determination of a particular defining

function r:

Theorem 3.1.4 (Geodesic Boundary Defining Function). Let (X, g) be an asymp-

totically hyperbolic manifold. Then any representative h0 in the conformal infinity

(M, [ĝ]) of (X, g) determines a unique defining function r such that r2g extends to a

metric on ∂X = M , r2g|TM = h0, and |dr|2ḡ ≡ 1 in a neighborhood U of M in X.
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Proof. Fix any choice of defining function ρ and let ḡρ = ρ2g. Set r = eφρ so that

ḡ = e2φḡρ and dr = eφ(dρ+ rdω). Then

|dr|2ḡ = |dρ+ rdφ|2ḡρ = |dρ|2ḡρ + 2ρ(gradḡρ ρ)(φ) + ρ2|dφ|2ḡρ ,

so that the condition |dr|2ḡ = 1 is equivalent to

2(gradḡρ ρ)(φ) + ρ|dφ|2ḡρ =
1− |dρ|2ḡρ

ρ
. (3.1.2)

This is a non-characteristic first-order PDE for φ, so there is a solution near M with

φ|M = φ0 arbitrarily prescribed.

For future use we will consider the solution φ = φ(r, x) whose existence is guaran-

teed by the above theorem to be the result of an “extension operator” E : C2,α(M)→

C2,α(U), where U is a neighborhood of M in X. Thus, given h0 ∈ [ĝ], if h0 =

e2φ0 (ḡρ|TM), then E(φ0) = φ is the extension of the conformal factor from boundary

to neighborhood of the boundary that satisfies

r = eφρ, ḡ = r2g|TM = h0,

and M , |dr|2ḡ ≡ 1 in that neighborhood.

We will call such a function r the geodesic boundary defining function associated

with h. This defining function provides an identification of M × [0, ε), for some ε > 0,

with a neighborhood of M in X: the point (x, ε) corresponds to the point obtained

by following the integral curve of gradḡ r emanating from x ∈ M for ε units of time.

As |dr|2ḡ = 1 the ε-coordinate is just r, and gradḡ r is orthogonal to the slices M×{ε}.
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Identifying r with ε then, on M × [0, δ) the metric takes the form ḡ = dr2 + hr for a

1-parameter family of metrics hr on M , and therefore g can be written in a manner

described as:

Definition 3.1.5 (Normal Form). An asymptotically hyperbolic metric g is said to

be in normal form relative to a metric h in the conformal class of metrics on M if

g = r−2(dr2 + hr),

where hr is a 1-parameter family of metrics on M such that h0 = h.

We will frequently make use of the asymptotic expansion (in terms of a geodesic

boundary defining function r) of the boundary-tangential component of an asymp-

totically hyperbolic metric h in normal form, and the corresponding expansion of its

inverse:

hr = h0 + h1r + h2r
2 +O(r3) (3.1.3)

h−1
r = h−1

0 − (h−1
0 )2h1r +

[
(h−1

0 )3h2
1 − (h−1

0 )2h2

]
r2 +O(r3). (3.1.4)

In 3.1.4 indices have been suppressed in pursuit of simplicity but each factor of h−1
0

refers to the raising of an index by the metric h0. As all tensors involved are symmetric

2-tensors the omission of specific indices should cause no confusion.

Definition 3.1.6 (Poincaré Metric). A Poincaré metric for (M, [h]) is a conformally

compact metric g on X◦, where X is an open neighborhood of M×{0} in M× [0,∞),

such that:
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1. g has conformal infinity (M, [h]).

2. If n is odd or n = 2, then Ric(g) + ng vanishes to infinite order along M , and

if n ≥ 4 is even, then Ric(g) + ng ∈ O(rn−2).

A Poincaré metric which is also Einstein (not just at the boundary) is called a

Poincaré-Einstein metric. Just as in the case of ambient metrics there is an appropri-

ate sense of equivalence up to diffeomorphisms that are the identity on the conformal

infinity. Issues of existence, uniqueness, and construction can be handled directly (cf.

[16]), however here the equivalence described next allows results for ambient metrics

to be translated into results for Poincaré metrics (and vice versa).

Going in the other direction, that is conformally compactifying a given asymp-

totically hyperbolic manifold, there is also an equivalence up to diffeomorphism of

conformal compactifications, ensuring that the conformal infinity of these manifolds

is unique:

Theorem 3.1.7 (Cruściel-Herzlich [4]). Let (X, g) be a conformally compactifiable

asymptotically hyperbolic Riemannian manifold that admits two C∞-conformal com-

pactifications, (X1 = X∪∂∞X1, ḡ1, ψ1) and (X2 = X∪∂∞X2, ḡ2, ψ2), where the maps

ψi : X → X i, i = 1, 2, are the embeddings provided by the definition of compactifica-

tion. Then

ψ−1
2

∣∣
IntX1

◦ ψ1 : X1 → X2
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extends to a conformal diffeomorphism

Ψ : X1 → X2

so that X1 and X2 are diffeomorphic as manifolds with boundary, and ∂∞X1 and

∂∞X2 are conformally equivalent.

3.2 Equivalence with Ambient Metrics

Recall how in the flat model the hyperboloid is identified byH = {Q = −1, τ > 0}.

This quadratic form Q associated with g̃ provides an easy source for defining functions

for both the null-cone and the hyperboloid.

Having the metric g̃ and the “dilation vector field” T we can construct Q invari-

antly by |T |2g̃ = Q. This is verified by computation for the flat metric in normal

form: |T |2g̃ = 2ρt2 = |ξ|2− |τ |2 = Q(χ), but it should make sense intuitively since the

hyperboloid is part of the ”unit sphere” in a flat Lorentzian metric. (In fact, here

arises the importance of straightness in this context: when (G̃, g̃) is a straight ambient

space for (M, [g]), the function |T |g̃ vanishes to precisely first-order on G × {0} ⊂ G̃

and thus yields a defining function for the metric bundle.)

In the flat model then, H is the hyperboloid, in the general ambient space G̃ it is

an invariantly defined hypersurface (looking like the portion of the hyperboloid very

close to the null-cone); in both cases we will find a Poincaré metric associated to a

given ambient metric by restriction of the ambient metric to the hypersurface. Of
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note here is that the construction of the ambient metric described above had positive

ρ direction “outside the null-cone,” while now we look at the hyperboloid sheet on

the other side. This has little real effect as the equations defining an ambient metric

in normal form all possess a symmetry under reflection in ρ. The only artifact of this

issue will be a necessary sign-change. In the general case we define maps

projection: π : G̃ ⊂ G ×R→M ×R defined by extending the projection on G, and

sign & scale change: ψ : M × R→M × [0,∞) defined by ψ(x, ρ) =
(
x,
√

2|ρ|
)

.

Then (shrinking G̃ if necessary), there is an open set X ⊂ M × [0,∞) containing

M × {0} such that ψ ◦ π|H : H → X◦ is a diffeomorphism, and we have

Theorem 3.2.1. If (G̃, g̃) is a straight ambient space for (M, [h]) and H and X are

defined as above, then

1. the metric

g :=
(
(ψ ◦ π|H)−1

)∗
g̃

is an (even) asymptotically hyperbolic metric with conformal infinity (M, [h]);

2. if g̃ is in normal form relative to a metric h ∈ [h], then g is also in normal form

(as a Poincaré metric) relative to h;

3. Every (even) asymptotically hyperbolic metric g with conformal infinity M, [h])

is of this form for some straight ambient metric g̃ for (M, [h]). If g is in normal
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form relative to h then g̃ can be taken to be in normal form relative to h, and

in this case g̃ on {|T |2g̃ ≤ 0} is uniquely determined.

Note that in general there are many different ambient metrics that may give the

same Poincaré metric if the action of the diffeomorphism by which g̃ is pulled back

scales each R+-fiber by an appropriate amount depending on the base point. As

expected it is the insistence on both metrics being in normal form which yields the

desired one-to-one association. Straightness of the ambient metric is also important;

if the ambient metric is not assumed to be straight, then the Poincaré metric obtained

from this association may not be asymptotically hyperbolic.

In particular, when both ambient and Poincaré metrics are in normal form then

we have the following (c.f. flat model as described above): The ambient metric has

the form

g̃ = 2ρdt2 + 2tdtdρ+ t2gρ

where gρ is a 1-parameter family of metrics on M . Under the change of variables

−2ρ = r2,

s = rt on {ρ ≤ 0},

g̃ then takes the form

g̃ = s2r−2(dr2 + gρ)− ds2.

Recalling the definition of normal form for a Poincaré metric let us set

hr = g− 1
2
r2
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and then re-label g as

g = r−2
(
dr2 + hr

)
so that we see the ambient metric as a cone metric over g:

g̃ = s2g − ds2.

In these new variables, H is defined by {s = 1}, thus the restriction g̃|TH is precisely

the new metric g. The process may be reversed to obtain ambient metrics from

Poincaré metrics, often allowing results regarding one to be translated into similar

results for the other.

Now the relation between the curvature of a cone metric and that of its base (as

calculated from the general formula for conformal change of a metric) will elucidate

the stipulation of the Einstein condition on Poincaré metrics:

Theorem 3.2.2 (Cone Metric Curvature). Let g be a metric on a manifold X of

dimension n+ 1, and define a metric g̃ = s2g − ds2 on X × R+. Then

Rm(g̃) = s2

[
Rm(g) +

1

2
g � g

]
Ric(g̃) = Ric(g) + ng

R(g̃) = s−2[R(g) + n(n+ 1)]

where Rm denotes the Riemann curvature tensor as a covariant 4-tensor and � is

the Kulkarni-Nomizu product on symmetric 2-tensors:

(u� v)ijkl = uikvjl + ujlvik − uilvjk − ujkvil.
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(Thus 1
2
g�g is the curvature tensor of constant sectional curvature +1.) Here tensors

on X are implicitly pulled back to X × R+.

Proof. Let s = ey; then g̃ = e2y(g− dy2) is a conformal multiple of a product metric.

Under a conformal change g̃ = e2yh, the curvature tensor transforms by

Rm(g̃) = e2y[Rm(h) + Λ� h],

where Λ = −∇2
hy + dy2 − 1

2
|dy|2hh. When h = g − dy2 we have Rm(h) = Rm(g),

∇2
hy = 0, and |dy|2h = −1 so Λ = 1

2
(g+dy2). Thus Λ�h = (g+dy2)�(g−dy2) = g�g,

yielding the first equation above. The second and third equations then follow by

contraction on the first.

This implies that g̃ is flat if and only if g has constant sectional curvature −1,

g̃ is Ricci-flat if and only if Ric(g) = −ng, and g̃ is scalar-flat if and only if g

has constant scalar curvature −n(n + 1), making clear one significant feature of the

Einstein condition on Poincaré metrics: it is precisely the Ricci-flat condition on

ambient metrics.

3.3 Translation of Formal Theory

The equivalence outlined above implies that for metrics in normal form, the formal

asymptotics for Poincaré metrics are precisely equivalent to those for straight ambient

metrics under the change of variables ρ = −1
2
r2. In addition to this allowing us to
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translate several of the above theorems for ambient metrics into an equivalent form

for Poincaré metrics it also implies that after making the substitution ρ = −1
2
r2 into

the ambient metric expansion we get the following first few terms of the expansion

for a Poincaré metric g = r2(dr2 + hr) in normal form:

(hr)ij = (h0)ij − Pijr2 +

(
− 1

4(n− 4)
Bij +

1

4
Pi
kPjk

)
r4 + · · ·

3.4 Poincaré-Einstein Metric Expansion

The ambient metric for the conformal infinity of a Poincaré-Einstein space can

be used to quickly derive the metric expansion for the tangential component of the

bulk metric in normal form. In this case the ambient metric is flat and the conformal

boundary is locally conformally flat. These strong constraints ensure unique, smooth,

invariant ambient and Poinaré metrics for any dimension.

When g is conformally flat we may, by definition, select a flat metric γ ∈ [g]. Then

the expressions for the components of the ambient curvature above imply that the

normal-form ambient metric

g̃ = 2ρdt2 + 2tdtdρ+ t2γ

is flat (recall that γ will be independent of ρ, as it already satisfies Ric(γ) = 0 and

the above ambient metric will be completely flat for every ρ). Then, knowing that

R̃ = 0, we may use the above formulae (2.4.1) for the components of R̃ to deduce

R̃∞jk∞ =
1

2
t2
[
g′′jk −

1

2
gpqg′jpg

′
kq

]
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equal to zero implies

0 = g′′jk −
1

2
gpqg′jpg

′
kq.

Differentiating with respect to ρ and substituting the original expression for the re-

sulting second derivatives yields g′′′ij = 0. Plugging this into the expressions for the

Ric(g̃) components used in the original formal expansion of gij(x, ρ)) then shows that

this implies that all higher terms must consequently be zero. Thus the expansion of

gij (or g+) in the conformally flat case is only quadratic. We recall the first few terms

of the expansion in the general case:

gij(x, ρ) = gij(x, 0) + 2Pijρ+

(
− 1

(n− 4)
Bij + Pi

kPjk

)
ρ2 + · · ·

Now note that in the conformally flat case the Bach tensor is zero, and hence our

expansion is:

gij(x, ρ) = γij(x) + 2Pijρ+ Pi
kPjkρ

2

Theorem 3.4.1 (Ambient Metric Uniqueness for Conformally Flat Spaces). Let n ≥

3 and suppose that (M, [g]) is locally conformally flat. Then there exists an ambient

metric g̃ for (M, [g]) which is flat to infinite order, and such that g̃ is unique to infinite

order up to diffeomorphism.

Note that when n = 2 of course every manifold is locally conformally flat, but there

are many inequivalent ambient metrics for this dimension (these are parametrized by

choice of the first-order term of their expansions: tr (∂ρgij|ρ=0)). As conformally flat

is a much weaker condition on 2-dimensional manifolds this is not surprising.
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Translating the above expansion to the Poincaré Metric case via the substitution

−2ρ = r2 and the fact that flat ambient metrics are equivalent to hyperbolic Poincaré

metrics yields

Theorem 3.4.2. Let γ be a smooth flat metric on a manifold M , and let g be a

hyperbolic Poincaré metric defined on intX, where X is a neighborhood of M × {0}

in M × [0,∞), with conformal infinity (M, [γ]). Then there is a neighborhood U of

M ×{0} in M × [0,∞) and a diffeomorphism φ mapping U into X which restricts to

the identity on M × {0}, so that

φ∗g = r2(dr2 + gr)

where

(gr)ij = γij − Pijr2 +
1

4
PikP

k
jr

4

and

1. if n ≥ 3, the P is the Schouten tensor of γ, while

2. if n = 2, P is a symmetric 2-tensor on M satisfying

Pi
i =

1

2
R and Pij,

j =
1

2
R,i.

As mentioned before, the 2-dimensional case requires special treatment because

of the differing implications of the condition of conformal flatness.
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Chapter 4

The Yamabe Problem

A critical step in all methods we describe here is the selection of a metric within a

given conformal class for which the function we call κ2 is constant. In the Poincaré-

Einstein case, this means finding a metric in the conformal class of the boundary for

which the scalar curvature is constant. This turns out to be a natural and well known

generalization of the uniformization theorem of compact surfaces called the Yamabe

problem. In the case of surface theory, there is only the one sectional curvature and

hence a conformal adjustment of the metric can control this, in higher dimensions

however, controlling the Riemannian curvature 4-tensor via choice of a single function

is clearly implausible (compare degrees of freedom), and in fact even locally it does

not hold, for example in dimensions n ≥ 4 the Weyl tensor provides and obstruction

to a metric being locally conformal to a Euclidean metric. Given this constraint,

it seems natural to ask instead if conformal change can be used to make the scalar
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curvature (the completely contracted curvature tensor) constant, as this too is just a

function on the manifold. The result is

Theorem 4.0.3 (The Yamabe Problem). Given a compact Riemannian manifold

(M, g) of dimension n ≥ 3, there exists a function φ ∈ C∞(M) such that the metric

e2φg has constant scalar curvature.

Yamabe claimed this result in 1960 [49], but unfortunately an error in his proof

was discovered in 1968 by Trudinger [45]. The combined work of Trudinger, Aubin,

and Schoen provided a complete proof as of 1984 ([45], [2], [41]).

There are a few obvious directions in which to generalize the Yamabe problem.

One might ask for other curvatures to be made constant (although as we have already

suggested, not all such generalizations are especially plausible). Having established

the result for compact Riemannian manifolds, an immediate question is whether or

not it might also hold for non-compact cases. The answer, in the most general sense,

is negative, as demonstrated by counterexample in [20].

4.1 The Yamabe Invariant

Let ĝ = e2φg for φ ∈ C∞(M) and Rg, Rĝ be the scalar curvatures of g and ĝ

respectively. Then (simply calculating from the definition of scalar curvature) these

curvatures satisfy

Rĝ = e−2φ
(
Rg − 2(n− 1)∆gφ− (n− 1)(n− 2)‖∇gφ‖2

g

)
.
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Making the substitution e2φ = u
4

n−2 simplifies this expression:

Rĝ = u−
n+2
n−2

(
−4

n− 1

n− 2
∆gu+Rgu

)
. (4.1.1)

Labeling

Lg =

(
−4

n− 1

n− 2
∆g +Rg

)
, and λ = Rĝ,

lets us write 4.1.1 as a sort of “nonlinear eigenvalue problem:”

Lgu = λu
n+2
n−2 . (4.1.2)

Finding a positive solution u : M → R+ to this nonlinear partial differential equation

means finding a solution to the Yamabe problem for the manifold M ; the metric

u
4

n−2 g has constant scalar curvature λ.

Yamabe made the observation that 4.1.1 is the Euler-Lagrange equation for the

normalized total scalar curvature functional:

Q(ĝ) =

∫
M
Rĝ dVĝ(∫

M
dVĝ
)n−2

n

,

where ĝ is allowed to vary over metrics conformal to g. This may been seen as follows:

Let

E(u) =

∫
M

Rĝ dVĝ =

∫
M

u−
n+2
n−2

(
−4

n− 1

n− 2
∆gu+Rgu

)
dVĝ.

If x1, . . . , xn are coordinates, then

dVĝ =
√

det(ĝ)dx1 ∧ · · · ∧ dxn

=

√
det(u

4
n−2 g)dx1 ∧ · · · ∧ dxn

=

√
u

4n
n−2 det(g)dx1 ∧ · · · ∧ dxn = u

2n
n−2dVg
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and thus

E(u) =

∫
M

u

(
−4

n− 1

n− 2
∆gu+Rgu

)
dVg =

∫
M

uLgu dVg, (4.1.3)∫
M

dVĝ =

∫
M

u
2n
n−2 dVg.

Write Q(ĝ) = Q(u
4

n−2 g) = Qg(u) where

Qg(u) =
E(u)

‖u‖2
p

= ‖u‖−2
p

∫
M

−4
n− 1

n− 2
u∆gu+Rgu

2 dVg, p =
2n

n− 2
(4.1.4)

As M has no boundary, integration by parts turns 4.1.4 into

Qq(u) = ‖u‖−2
p

∫
M

4
n− 1

n− 2
‖∇gu‖2

g +Rgu
2 dVg, (4.1.5)

and now taking the first variation,

d

dt

∣∣∣∣
t=0

Qg(u+ tv) =
2

‖u‖2
p

∫
M

(
Lgu−

E(u)

‖u‖pp
u
n+2
n−2

)
v dVg,

and naming E(u)
‖u‖pp

= λ, it is clear that u is a critical point of Qg if and only if it satisfies

the equation 4.1.2.

Let q = p
p−2

, i.e. 1
q

+ 2
p

= 1. Then as the scalar curvature of a compact manifold

is bounded, by Hölder’s inequality∣∣∣∣∫
M

Rgu
2 dVg

∣∣∣∣ ≤ (∫
M

|Rg|q dVg
) 1

q
(∫

M

|u2|
p
2 dVg

) 2
p

= C‖u‖2
p

for some constant C ≥ 0. Thus the expression in 4.1.5 is bounded below and hence

I(M, g) = inf{Q(ĝ) : ĝ ∈ [g]} = inf{Qg(u) : u ∈ C∞(M), u > 0}, (4.1.6)

which is called the Yamabe invariant of (M, [g]), is a well-defined conformal invariant.

The Yamabe invariant divides conformal manifolds into three classes according to its

sign:
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Negative: When I(M, g) < 0 then solutions to the Yamabe problem have constant

negative scalar curvature and hence the Yamabe equation 4.1.2 is elliptic, this

allows application of the maximum principle to guarantee uniqueness of the

solution.

Zero: When I(M, g) = 0 the the manifold is confomally flat and 4.1.2 becomes linear;

the solution is unique up to a constant factor.

Positive: When I(M, g) > 0 the structure of the solution set can be very involved.

The simplest, most important and well known example is that of (Sn, [̊g]), the

standard sphere. Obviously the round metric is a solution, but the conformal

sphere is quite special because it is the only compact manifold with a noncom-

pact group of conformal transformations. Call this group Conf(Sn). Then the

set of all solutions to the Yamabe problem on (Sn, [̊g]) is given by (a result of

Obata [35]) {α(σ∗g̊) : α ∈ R+, σ ∈ Conf(Sn)}.

The Yamabe invariant played a central role in the solution of the Yamabe problem as

Trudinger’s modification of Yamabe’s original proof worked whenever I(M, g) ≤ 0,

and Aubin then extended this to yield solution whenever I(M, g) < I(Sn, g̊). After

this the problem shifted to showing that this condition on the Yamabe invariant is

met by conformal manifolds other than the standard sphere. Finally achieving this in

all cases involved the positive mass theorem of general relativity and the resulting so-

lution is notable both for its geometric importance and for the fact that the exponent
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n+2
n−2

in equation 4.1.2 is a critical exponent (where the Sobolev embedding is no longer

compact) and this was the first case in which a very satisfactory existence result was

obtained for a nonlinear PDE with such a critical exponent. The reader interested in

complete details is recommended to consult the review [27]. Finally, we remark that

the Yamabe invariant has also been used by to examine which Riemannian manifolds

have a conformal compactification [23].

4.2 The Generalized Yamabe Invariant

Multiplying Lg by n−2
4(n−1)

produces a scaled version of this operator called the

conformal Laplacian:

Lg = −
(

∆g −
n− 2

4(n− 1)
Rg

)
.

The name is due to the fact that (even in dimensions n > 2, unlike the Laplacian

itself) it behaves rather nicely under conformal change:

Lĝ = u−
n+2
n−2Lg.

Restricting the functional Qq(u) to functions such that ‖u‖p = 1 we can use 4.1.3 to

express the (scaled) Yamabe invariant as follows

inf

{∫
M

uLgu dVg : ‖u‖2
2n
n−2

= 1

}
. (4.2.1)

By analogy,
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Definition 4.2.1 (Generalized Conformal Laplacian). For an asymptotically hyper-

bolic manifold (X, g) with conformal infinity (M, [h0]), and metric in normal form

g = r−2(dr2 + h0 + h1r + h2r
2 + · · · ) for a geodesic boundary defining function r, let

κ2 =

(
trh0 h2 −

1

2
‖h1‖2

h0

)
,

and define the generalized conformal Laplacian on M to be

Lh0 = −
(

∆h0 +
n− 2

2
κ2

)
. (4.2.2)

Note that when X is weakly Poincaré-Einstein this is just the ordinary conformal

Laplcian. Then using this, define

Definition 4.2.2 (Generalized Boundary Yamabe Invariant). The generalized bound-

ary Yamabe invariant of X is

λ1 = inf

{∫
M

φ0Lhoφ0 dVh0 : φ0 ∈ C∞(M), ‖φ0‖2
2n
n−2

= 1

}
(4.2.3)

when for X of dimension n ≥ 3. When n = 2 this becomes

λ1 = −
∫
M

κ2 dVh0 .

By a variational principle (note that the definition is a Rayleigh quotient) this is

equivalent to the first eigenvalue of Lh0 .

The sign of λ1 is a conformal invariant of the class [h0]:

Theorem 4.2.3. The sign of the least eigenvalue λ1 of Lh0 is independent of the

choice of conformal representative h0.
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Proof. Let ĥ0 = u
4

n−2

0 h0, and Akij = Γ̂kij − Γkij where Γ̂kij and Γkij are the Christoffel

symbols corresponding to the metrics ĥ0 and h0 respectively. First we verify the

identity

u
n+2
n−2

0 ∆ĥ0
w = ∆h0(u0w)− w∆h0u0 (4.2.4)

via direct computation. On the left-hand side we have:

u
n+2
n−2

0 ∆ĥ0
w = u

n+2
n−2

0 u
4

n−2

0 hij0 ∇̂i∇̂jw

= u0h
ij
0 (∇i∇jw − Akij∇kw)

= u0∆h0w −
2

n− 2

(
hik0 ∇iu0 + hkj0 ∇ju0 − n∇ku0

)
∇kw

= u0∆h0w + 2∇ku0∇kw

While on the right:

∆h0(u0w)− w∆h0u0 = hij0 (∇iw∇ju0 + w∇i∇ju0

+∇iu0∇jw + u0∇i∇jw)− w∆h0u0

= ∇jw∇ju0 +∇ju0∇jw + u0∆w

= u0∆h0w + 2∇ku0∇kw.

Now we use 4.2.4 to compare Lĥ0
with Lh0 and see that the generalized conformal
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Laplacian shares the conformal covariance of the standard conformal Laplacian:

Lĥ0
w = −∆ĥ0

w − n− 2

2
κ̂2w

= −u−
n+2
n−2

0 (∆h0(u0w)− w∆h0u0)

− n− 2

2

(
u
− 4
n−2

0 κ2 +
2

n− 2
u
−n+2
n−2

0 ∆h0u0

)
w

= u
−n+2
n−2

0

(
∆h0(u0w)− n− 2

2
κ2(u0w)

)
= u

−n+2
n−2

0 Lh0(u0w).

Therefore ∫
M

wLĥ0
w dVĥ0

=

∫
M

(u0w)Lh0(u0w) dVh0 ,

implying that the sign of λ1(Lĥ0
) is the same as that of λ1(Lh0).
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Chapter 5

Constant Mean Curvature

Foliations

Spacelike foliations of Lorentzian manifolds of prescribed, and in particular con-

stant mean curvature arise frequently in general relativity as a manner of accommo-

dating the lack of a canonical time coordinate and finding “optimal” frames [1], [12].

In asymptotically flat manifolds constant mean curvature foliations in the exterior

regions have been used to supply a definition of center of mass [19], [18], in addition

to providing an intrinsic geometric structure near infinity. There are similar results

for the asymptotically anti de Sitter case too [37], [33], [32].

The normal form associated to a chosen representative h0 of the conformal infinity

of an asymptotically hyperbolic manifold X automatically yields one natural folia-

tion of X near ∂X, this is the collection of level sets of the corresponding geodesic
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boundary defining function. When X is sufficiently nice (e.g. hyperbolic) such levels

sets may exhibit particular geometric characteristics (e.g. constant mean curvature).

This search for geometric foliations can be generalized in several directions: far-

ther away from infinity, on more general asymptotically hyperbolic manifolds, and for

more general curvature conditions. In [31] Mazzeo and Pacard concentrate on con-

stant mean curvature foliations in a neighborhood of infinity in asymptotically (only)

hyperbolic manifolds. Their first result applies to a class of manifolds less general

than asymptotically hyperbolic, but more general than Poincaré-Einstein, namely

manifolds that are Poincaré-Einstein “up to quadratic order:”

Definition 5.0.4. An asymptotically hyperbolic manifold (X, g) is called weakly

Poincaré-Einstein if g has a normal form

g = r−2(dr2 + hr), hr = h0 + h1r + h2r
2 + · · ·

where h1 = 0 and h2 = −Ph0 = − 1
n−2

(
Ric(h0)− Rh0

2(n−1)
h0

)
.

In this context the level sets of the boundary defining function r have mean curva-

ture which is almost constant, and and in fact they can be perturbed to yield constant

mean curvature foliations near the boundary. Precisely:

Theorem 5.0.5 ([31]). Let (X, g) be an asymptotically hyperbolic manifold which is

weakly Poincaré-Einstein with conformal infinity (M, [ĝ]). Then

1. If the conformal class [ĝ] has non-positive Yamabe invariant, then there exists

a unique constant mean curvature foliation of X near M .
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2. If instead [ĝ] has positive Yamabe invariant, then to each constant scalar curva-

ture metric h0 ∈ [ĝ] which is non-degenerate for the linearized Yamabe equation

5.5.4, there exists an associated distinct foliation of constant mean curvature.

In fact the weakly Poincaré-Einstein condition can be relaxed even further: h1 = 0

is not needed for this to hold, only that trh0 h1 = 0, also while h2 = −Ph0 makes for a

particularly easy case, there is really no restriction required on h2. Thus an amended

version of the above theorem can assert the existence of constant mean curvature

foliations whenever h1 is trace free.

N.B. The non-degeneracy assumption required in the positive Yamabe invariant

case is not required in the negative case because in that case it can be shown that

DN = (∆h0 − 2κ2) must always be invertible.

5.1 Synopsis

The strategy for proving theorem 5.0.5 can be summarized as follows:

1. Calculate the second fundamental form of a level set of a boundary defining

function in terms of this defining function.

2. Take the trace of the second fundamental form to find the mean curvature of

such a level set.

3. Calculate how the mean curvature of such a level set behaves with respect to
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conformal change on the boundary (and hence subsequent change of defining

function).

4. Employ the implicit function theorem to say that as one moves a small amount

inward from the boundary (along a geodesic boundary defining function), the

deviation of the mean curvature of the level sets of such a function from constant

can be corrected by an appropriate conformal change on the boundary.

5.2 The Second Fundamental Form of Level Sets

Recall that ḡ = r2g = dr2 + h and let N = gradḡ r and N = r−1 gradg r, i.e. the

conformally scaled and unscaled gradients of the geodesic boundary defining function

r; these are vector fields normal to the level sets of r. We begin by calculating the

second fundamental form of such a hypersurface from the standard formula

II = −1

2
LNg.

To facilitate the calculation we first note that by definition N = rN , g = r−2ḡ, and

and LNdr2 = 0. Also,

Lemma 5.2.1. Let X be a vector field on a manifold, ω a tensor field, and f a

function. Then

LX(fω) = fLXω + (Xf)ω, (5.2.1)
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and if α� β = α⊗ β + β ⊗ α and ω is a 2-tensor, then

L(fX)ω = fLXω + df � ιXω. (5.2.2)

Proof. Let θ be the flow of X and recall that for any p ∈ X, if t is sufficiently close

to zero, then θt is a diffeomorphism from a neighborhood of p to a neighborhood of

θt(p), and thus θ∗t pulls back tensors at θt(p) to tensors at p.

The identity 5.2.1 is most easily seen as a particular case of the more general

product rule

LX(τ ⊗ ω) = τ ⊗ (LXω) + (LXτ)⊗ ω, (5.2.3)

where by the definition of Lie derivative, in the case of a function f , i.e. a 0-tensor

field, θ∗t f = f ◦ θt, so

LXf(p) =
d

dt

∣∣∣∣
t=0

f(θt(p)) = Xf(p).

The proof of 5.2.3 is as follows:

(LX(τ ⊗ ω))p = lim
t→0

θ∗t ((τ ⊗ ω)θt(p))− (τ ⊗ ω)p
t

= lim
t→0

θ∗t (τθt(p))⊗ θ∗t (ωθt(p))− τp ⊗ ωp
t

= lim
t→0

θ∗t (τθt(p))⊗ θ∗t (ωθt(p))− θ∗t (τθt(p))⊗ ωp
t

+ lim
t→0

θ∗t (τθt(p))⊗ ωp − τp ⊗ ωp
t

= lim
t→0

θ∗t (τωt(p))⊗
ω∗t (ωθt(p))− ωp

t

+ lim
t→0

θ∗t (τθt(p))− τp
t

⊗ ωp

= τp ⊗ (LXω)p + (LXτ)p ⊗ ωp
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Meanwhile 5.2.2 may be suitably generalized to symmetric or antisymmetric k-tensors

but the second term will take an appropriately altered form. For smooth vector fields

Y1, . . . , Yk and ω a symmetric k-tensor we have

(LfXω)(Y1, . . . , Yk) = fX(ω(Y1, . . . , Yk))− ω([fX, Y1], Y2, . . . , Yk)− · · ·

− ω(Y1, . . . , Yk−1, [fX, Yk])

= fX(ω(Y1, . . . , Yk))− fω([X, Y1], Y2, . . . , Yk)− · · ·

− fω(Y1, . . . , Yk−1, [X, Yk]) + (Y1f)ω(X, Y2, . . . , Yk) + · · ·

+ (Ykf)ω(Y1, . . . , Yk−1, X)

= f(LXω) +
∑
i

df(Yi)⊗ ω(X, Y1, · · · , Yi−1, Ŷi, Yi+1, . . . , Yk),

where Ŷi means to omit Yi. When k = 2 then this expression is precisely the identity

5.2.2.

The lemma makes calculation of the second fundamental form brief:

LNg = LrN(r−2ḡ) = rLN(r−2ḡ) + dr � ιN(r−2ḡ)

= r(r−2LN ḡ − 2r3ḡ) + 2r−2dr2

= r−2(rLN ḡ − 2ḡ + 2dr2)

= r−2(rLNh− 2h),

and for simplicity denoting LNh = ∂rh from now on, we find

II =
1

2
r−2(2h− r∂rh). (5.2.4)

57



Having obtained the second fundamental form of a level set of a geodesic boundary

defining function 5.2.4, the mean curvature of this hypersurface can be found by

taking the trace with respect to the induced metric, i.e. r−2h, so

H = trr
−2h

(
1

2
r−2(2h− r∂rh)

)
= n− 1

2
trh(r∂rh). (5.2.5)

Expressing 5.2.5 in terms of the expansion 3.1.3 then gives

H = n− 1

2

(
trh0 h1

)
r −

(
trh0 h2 −

1

2
‖h1‖2

h0

)
r2 +O(r3). (5.2.6)

Or by defining,

κ1 =
1

2
trh0 h1 ∈ C2,α(∂M) and κ2 = trh0 h2 −

1

2
‖h1‖2

h0
∈ C1,α(∂M)

we can write 5.2.6 as

H = n− κ1r − κ2r
2 +O(r3). (5.2.7)

5.3 Consequences of Conformal Change

The above expresses H for a level set of r in terms of r. Next we see what effect a

change of representative of the conformal class at the boundary, and hence a change

of associated geodesic boundary defining function, has on H:

Let ĥ0 = e2φ0h0. We then have a new geodesic boundary defining function r̂ = eφr

associated to ĥ0 and metric ĝ = r̂2g = e2φḡ. Also write

ĝ = dr̂2 + ĥr̂, ĥ = ĥ0 + ĥ1r̂ + ĥ2r̂
2 +O(r̂3),
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where

ĥ0 = ĝ|TM = e2φ0h0

and the expansion for ĥ is generated as explained before for Poincaré metrics. It will

be most convenient for us to parameterize this change in terms of the conformal factor

on the boundary, φ0 ∈ C2,α(M), which must then be extended to to a neighborhood

of M . We may use 3.1.2 to express this extension in a manner that facilitates the

following calculations. Using 3.1.2 but with the assumption that both the functions ρ

and r are geodesic boundary defining functions, corresponding to distinct conformal

representatives, we see that

−2∂rφ = r‖∇ḡφ‖2
ḡ (5.3.1)

and thus as φ0 ∈ C2,α(M),

φ(r, x) = φ0(x)− 1

4
‖∇h0φ0‖2

h0
r2 +O(r2+α). (5.3.2)

Having our new metric ĝ and geodesic boundary defining function r̂ we denote as

N̂ = r̂−1 gradg r̂ the rescaled boundary defining function gradient. As before we will
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employ the identities of theorem 5.2.1 but first note:

N̂ = r̂−1 gradg r̂

= r−1e−φ gradg(re
φ)

= re−φ gradḡ(re
φ)

= re−φ
(
(gradḡ r)e

φ + r gradḡ e
φ
)

= re−φ
(
eφ gradḡ r + eφr gradḡ φ

)
= r(gradḡ r + gradḡ φ)

= r(N + r gradḡ φ).

Then

LN̂g = Lr(N+r gradḡ φ)(r
−2ḡ)

= rL(N+r gradḡ φ)(r
−2ḡ) + dr � ι(N+r gradḡ φ)(r

−2ḡ)

= r−1L(N+r gradḡ φ)ḡ − 2r−2
[
(N + r gradḡ φ)r

]
ḡ + r−2dr � ι(N+r gradḡ φ)ḡ

= r−1LN ḡ + r−1Lr gradḡ φḡ − 2r−2 (1 + r∂rφ) ḡ

+ r−2dr �
(
ιN ḡ + rιgradḡ φḡ

)
= r−2

(
rLNh+ r2L(gradḡ φ)ḡ + rdr � dφ

)
− 2r−2ḡ − 2r−1∂rφḡ

+ r−2dr � dr + r−1dr � dφ

= r−2 (rLNh− 2h) + L(gradḡ φ)ḡ + 2r−1dr � dφ− r−1∂rφḡ
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Using 5.3.1 and the fact that L(gradḡ φ)ḡ = 2 Hessḡ(φ) we find

II(φ0, ε) =

(
1

2r2
(2h− r∂rh)− r−1(dr � dφ)− Hessḡ(φ)− 1

2
‖∇ḡφ‖2

ḡḡ

)∣∣∣∣
eφr=ε

.

(5.3.3)

As before, to obtain H we trace by the induced metric r̂−2ĥ on this hypersurface

(note that there is no dr̂2 component here so actually this trace can be just with

respect to g):

H(φ0, ε) = (trg II(φ0))|eφr=ε =
(

trr
−2ḡ II(φ0)

)∣∣∣
eφr=ε

=

(
1

2
trh(2h− r∂rh)− r2

(
∆ḡφ+

n− 1

2
‖∇ḡφ‖2

ḡ

))∣∣∣∣
eφr=ε

.

So that finally we have

H(φ0, ε) = n− ε2
(
e−2φ

(
1

2r
trh ∂rh+ ∆ḡφ+

n− 1

2
‖∇ḡφ‖2

ḡ

))∣∣∣∣
eφr=ε

. (5.3.4)

Using 5.3.2 we see that

∆ḡφ = ∆h0φ0 −
1

2
‖∇h0φ0‖2

h0
+O(rα), (5.3.5)

and this along with 3.1.3 and 3.1.4 let us expand 5.3.4 to obtain

H(φ0, ε) = n− 1

2
e−φ0 trh0 h1r̂

+ e−2φ0

(
trh0 h2 −

1

2
‖h1‖2

h0
+ ∆h0φ0 +

n− 2

2
‖∇h0φ0‖2

h0

)
r̂2 +O(r̂3).

Comparing this expansion with the original expansion for H, 5.2.7, we can see

how κ1 and κ2 are affected by conformal change:

κ̂1 = e−φ0κ1, (5.3.6)

κ̂2 = e−2φ0

(
κ2 + ∆h0φ0 +

n− 2

2
‖∇h0φ0‖2

h0

)
. (5.3.7)
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In particular, we will use 5.3.7 to reduce the general problem to the case when κ2 is

constant. That this apparently substantial restriction can be used to find constant

mean curvature foliations for general κ2 is predicated on finding solutions for equation

5.3.7 where we assume that κ̂2 is constant. For completely arbitrary smooth non-

constant κ2 this might not always be possible; sufficient conditions for reduction to

the constant κ2 case are the content of section 5.5 below. For now we assume κ2

constant and look to frame the existence question in a form amenable to the implicit

function theorem.

5.4 Linearization

When φ0 = 0 and r = ε, the assumption trh0 h1 ≡ 0 makes 5.2.7 into

H(0, ε) = n− κ2ε
2 +O(ε3),

where κ2 ∈ C1,α(M). Assume κ2 to be constant, we wish to find for each ε > 0 a

function φ0(ε) on M such that

H(φ0(ε), ε) = n− κ2ε
2 (5.4.1)

By 5.3.4 this is equivalent to

ε2
(
e−2φ

(
1

2r
trh ∂rh+ ∆ḡφ+

n− 1

2
‖∇ḡφ‖2

ḡ

))∣∣∣∣
eφr=ε

= κ2ε
2

Or letting

N (φ0, ε) =

(
e−2φ

(
1

2r
trh ∂rh+ ∆ḡφ+

n− 1

2
‖∇ḡφ‖2

ḡ

))∣∣∣∣
eφr=ε

,
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we are looking to solve

N (φ0, ε)− κ2 = 0 (5.4.2)

for φ0(ε). Note that when κ1 = 0, N (0, 0) = κ2, and because in this case we see

from 5.2.5 and 5.2.6 that trh ∂rh = 2κ2r + O(r2), it follows that N is C1 up to

the boundary (ε = 0). We are well poised to apply the implicit function theorem,

provided that the linearization of N is invertible at φ0 = 0, ε = 0. To this end,

we compute the linearization of N with respect to φ0, which we will denote Dφ0N .

First, express N as a composition N = R ◦ L ◦ E , where E is the extension operator

defined previously, R(φ, ε) is restriction of a function φ on X to the hypersurface

corresponding to {eφr = ε}, and

L : φ 7→
(
e−2φ

(
1

2r
trh ∂rh+ ∆ḡφ+

n− 1

2
‖∇ḡφ‖2

ḡ

))
. (5.4.3)

By the chain-rule we have Dφ0N (0, 0) = Dφ0R(0, 0) ◦Dφ0L(0, 0) ◦Dφ0E(0, 0). Let us

consider each piece:

Dφ0R(0, 0) This is simply restriction to M .

Dφ0E(0, 0) To see how this operator acts on functions ψ0 ∈ C2,α(M) we linearize the

equation used to derive E , 5.3.1 to get

∂rψ = 0, with ψ(0, x) = ψ0(x),

and thus

ψ(r, x) = ψ0(x),
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i.e. constant extension.

Dφ0L(0, 0) We linearize L at φ0 = 0:

d

dt

∣∣∣∣
t=0

L(tψ) =
d

dt

∣∣∣∣
t=0

e−2tψ

(
1

2r
trh ∂rh+ ∆ḡ(tψ) +

n− 1

2
‖∇ḡtψ‖2

ḡ

)
=

(
∆ḡ −

1

r
trh ∂rh

)
.

We have already seen above that trh ∂rh = 2κ2r+O(r2) and combining this with our

knowledge that Dφ0E(0, 0) is constant extension plus 5.3.2 and 5.3.5 yields:

Dφ0N (0, 0) = (∆h0 − 2κ2) . (5.4.4)

Now provided 5.4.4 is invertible the implicit function theorem (A.0.7) asserts exis-

tence of a unique smooth function ε 7→ φ0 such that φ0(0) = 0 andN (φ0(ε), ε)−κ2 = 0

for all sufficiently small 0 ≤ ε. Thus ε parameterizes collections of constant mean cur-

vature hypersurfaces near M .

When Dφ0N (0, 0) is non-degenerate the implicit function theorem may be em-

ployed. This provokes the questions: When does this non-degeneracy condition fail

to hold? Can the existence result of the original theorem be in any sense salvaged in

such an event?

So long as we assume κ2 to be constant, the first of these questions is in effect the

eigenvalue problem:

∆φ+ λφ = 0

but with the eigenvalue λ = −2κ2 specified. The question becomes: Is −2κ2 in the

spectrum of M? Perhaps in some circumstances we may exclude this possibility via
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some relations between the geometry of M and the bounds of Spec(M) without need-

ing to actually calculate the spectrum itself. Unfortunately, we already know a natu-

ral and quite common example of when this degeneracy occurs: when the conformal

boundary is the round sphere, then our linearized operator has eigenvalue −2κ2 = n

with associated eigenspace comprised by the first degree spherical harmonics. This

defect is an obvious target for future improvement.

5.5 Reduction to a Yamabe-type Problem

The method of proof employed above assumed κ2 to be constant. In the case of

weakly Poincaré-Einstein metrics, h1 = 0 and h2 = −Ph0 , so that

κ2 = trh0 h2 = − Rh0

2(n− 1)

and thus we will see below that equation 5.5.1 can be written as the Yamabe equation.

This suggests that the κ2 constant condition can be ensured via solution of a Yamabe-

type problem.

Recalling 5.3.7 we are seeking non-degenerate solutions to

e−2φ0

(
κ2 + ∆h0φ0 +

n− 2

2
‖∇h0φ0‖2

h0

)
− κ̂2 = 0 (5.5.1)

where κ̂2, corresponding to κ2 after a conformal change of metric ĥ0 = e2φ0h0, is

constant.
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Let n ≥ 3. Recalling the generalized conformal Laplacian

Lh0 = −
(

∆h0 +
n− 2

2
κ2

)
,

we can rewrite 5.5.1 so as to make it more clearly a Yamabe-type equation. To this

end set φ0 = 2
n−2

log u0 which transforms 5.5.1 into

Lh0u0 +
n− 2

2
κ̂2u

n+2
n−2

0 = 0 (5.5.2)

N.B. that in the weakly Poincaré-Einstein case, as just mentioned, this is precisely the

Yamabe equation, as then κ2 = − Rh0

2(n−2)
. This illustrates the opposite sign relationship

between κ2 and the generalized Yamabe invariant.

Lemma 5.5.1. The sign of λ1(Lh0) is opposite to the sign of κ̂2. That is,

1. if λ1(Lh0) < 0 then κ̂2 > 0,

2. if λ1(Lh0) > 0 then κ̂2 < 0, and

3. if λ1(Lh0) = 0 then κ̂2 = 0.

Proof. Suppose that ψ1 is the eigenfunction corresponding to λ1(Lh0) and that u0 > 0

is a solution to 5.5.2. Multiplying 5.5.2 by ψ1 and integrating yields∫
M

ψ1Lh0u0 dVh0 +
n− 2

2
κ̂2

∫
M

ψ1u
n+2
n−2

0 dVh0 = 0.

Integration by parts (M is compact and without boundary) then produces

λ1

∫
M

ψ1u0 dVh0 +
n− 2

2
κ̂2

∫
M

ψ1u
n+2
n−2

0 dVh0 = 0.

As ψ1 > 0 and u0 > 0, λ1 and κ̂2 must have opposite signs or both be zero.
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Theorem 5.5.2. Let (X, g) be an asymptotically hyperbolic manifold with κ1 = 0,

and the operator (∆h0 − 2κ2) invertible. Then if the generalized boundary Yamabe

invariant (equivalently, the least eigenvalue of the generalized conformal conformal

Laplacian) is non-positive there exists a constant mean curvature foliation of X within

a neighborhood of conformal infinity. If the generalized boundary Yamabe invariant

is negative then there is a unique monotone constant mean curvature foliation near

∂∞X.

Proof. Suppose that λ1(Lh0) < 0 and hence κ̂2 > 0. For each 1 < p < n+2
n−2

minimize

the functional

Ep(u) =
1

2

∫
M

(
|∇h0u|2h0

− n− 2

2
κ2u

2

)
dVh0 +

n− 2

2(p+ 1)
κ̂2

∫
M

|u|p+1 dVh0 . (5.5.3)

Existence of such minimizers up is a consequence of the compactness of the Sobolev

embedding H1(M) ↪→ Lp(M) when p < n+2
n−2

and they satisfy the Euler-Lagrange

equation of 5.5.3:

∆h0up +
n− 2

2
κ2up −

n− 2

2
κ̂2u

p
p = 0.

Smoothness of the up is ensured by elliptic regularity theory. To find a smooth

positive solution to 5.5.2 we wish to take a limit of a subsequence of {up} as p↗ n+2
n−2

.

To ensure uniform convergence we use the Arzela-Ascoli theorem after verifying its

hypotheses are met. Recalling that M is compact and without boundary, it will suffice

to find a uniform bound for {up}, as Schauder estimates will then yield a uniform

bound of the Hölder norms. Let xp ∈ M be a point where up attains its maximum,
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then

κ2(xp)up(xp) ≥ κ̂2u
p
p(xp),

and thus

κ̂2‖up‖p−1
L∞ ≤ ‖κ2‖L∞

yielding the required uniform bound.

To demonstrate uniqueness, assume u and v are both positive solutions of 5.5.2

(with the same value of κ̂2), and let ψ = v
u
. Using the calculations in theorem 4.2.3

we compute

∆ĥ0
ψ0 +

n− 2

2
κ̂2

(
ψ − ψ

n+2
n−2

)
where ĥ0 = u

4
n−2h0. Where ψ achieves its supremum ∆ĥ0

ψ ≤ 0, and so we have ψ ≤ 1

everywhere. Similarly, considering the point at which ψ reaches its infimum we find

ψ ≥ 1. Thus ψ ≡ 1, proving uniqueness.

This encompasses the case n ≥ 3. When n = 2 a similar argument produces

the result but the definition of the generalized boundary Yamabe invariant in that

case means that the appropriate assumption is
∫
M
κ2 dVh0 > 0. When λ1(Lh0) = 0,

equation 5.5.2 becomes linear elliptic and thus a solution exists.

Recall that in theorem 5.0.5 when the generalized boundary Yamabe invariant

is positive, the invertibility of the linearized Yamabe-type equation is sufficient for

existence of constant mean curvature foliations. It should be remarked that this is

because applying the extension and restriction operators to equation 5.4.3 to find the
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explicit form of N yields

φ0 7→ e−2φ0

(
κ2 + ∆h0φ0 +

n− 2

2
‖∇h0φ0‖2

h0

)
,

i.e. precisely the expression for the conformal transformation of κ2 (5.3.7). Thus it

seems that the conformal adjustment of the boundary on the boundary to produce

constant mean curvature level sets of the boundary defining function is quite directly

linked to the Yamabe-type problem for finding constant κ2. This has implications

for the handling of the degenerate situations, as it means that conformal adjustments

cannot be used to circumvent the degeneracy of the linearization of N .

The linearization of 5.5.2 at u is

∆ho +
n− 2

2
κ2 −

n+ 2

2
κ̂2u

4
n−2 = 0 (5.5.4)

and hence combining the calculations of theorem 4.2.3 with equation 5.5.2 yields

(
∆h0 +

n− 2

2
κ2 −

n+ 2

2
κ̂2u

4
n−2

)
(uw) = u

n+2
n−2 (∆ĥ0

− 2κ̂2)w.

Then the assumption that κ̂2 > 0 implies that (∆ĥ0
− 2κ̂2) and hence 5.5.4 must be

invertible.
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Chapter 6

Foliations of Constant Weingarten

Curvature

Finally, we extend the methods described in chapter 5 to functions of the principal

curvatures other than the mean curvature.

Let λ1, . . . , λn be the principal curvatures (eigenvalues of the second fundamental

form) of a hypersurface Σ and f(λ1, . . . , λn) a symmetric function of these curvatures.

Then f is called a Weingarten curvature of Σ. The most commonly studied of Wein-

garten conditions is f(λ1, . . . , λn) =
∑

i λi = c for some constant c, i.e. hypersurfaces

of constant mean curvature. Prescriptions of Weingarten curvature have been used in

sphere theorems for hypersurfaces in Euclidean spaces in [38], Euclidean and hyper-

bolic spaces in [38], and in spaces of constant curvature in [46] and [6]. In all but the

last of these cases, investigation is restricted to f = σk, the elementary symmetric
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polynomials σk(λ1, . . . , λn) =
∑
λi1 · · ·λik . In [31] foliations near infinity of constant

σk-curvature of asymptotically hyperbolic spaces are briefly considered and we will

continue that consideration here.

A similar sort of hypersurface curvature prescription in hyperbolic spaces is a topic

of [8]. In this case however the Weingarten functionals are applied to the principal

curvature radii, i.e. the reciprocals of the principal curvatures, and the existence of

hypersurfaces of specified curvature is sought. When f = σ1 this is a formulation of

the classical Christoffel problem but in hyperbolic space. Exploiting the duality of

hyperbolic (n+ 1)-space with de Sitter (n+ 1)-space provided by embedding both in

(n+2)-dimensional Minkowski space, they exhibit a very precise relationship between

the scalar curvature of metrics in the conformal structure at infinity and the mean

curvature of immersed hypersurfaces in Hn+1. In [3] this same relationship is obtained

through the methods and perspective of asymptotically hyperbolic geometry, while

the results are also extended to quotients of hyperbolic space by discrete groups of

isometries (even so the same duality between hyperbolic and de Sitter space is still

required).

A salient point of comparison between the results in [8] and [3], and those of this

section (besides the use of principal radii instead of curvatures) is that the curvature

interplay between hypersurfaces and conformal infinity seem to differ in a potentially

interesting way. In both cases a constant curvature metric on the conformal boundary

is tied to a constant curvature hypersurface in the bulk space. The equivalence
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provided in [8] and [3] relates differing Weingarten curvatures on hypersurfaces to

differing curvatures on metrics on the conformal boundary, in the case of constant

mean radial curvature hypersurfaces the boundary curvature in question is the scalar

curvature. Curvature conditions involving elementary symmetric functions of higher

order produce more complicated relationships, e.g. the hypersurfaces of constant∑
ciσi-curvature correspond to boundary metrics with constant σk of the eigenvalues

of the Schouten tensor. In contrast, the methods of this section produce constant f -

curvature hypersurfaces for most Weingarten functionals f , predicated on finding only

constant scalar curvature metrics on the conformal boundary of a Poincaré-Einstein

manifold.

6.1 Spectral Functions of the Second Fundamental

Form

In this section we will implicitly exploit the isomorphism between smooth sections

of the (1, 1)-tensor bundle T 1
1 (X) and smooth maps from a manifold Mn to the set

of (n× n)-matrices to refer interchangeably to (1, 1)-tensors and matrices.

Definition 6.1.1. A real-valued function F which takes as argument real-valued

symmetric matrices is called spectral if F (A) = F (UAUT ) for all A in the domain of

F and all orthogonal matrices U . Equivalently, F is a function on symmetric matrices

that depends only on the eigenvalues of its argument.
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The restriction of a spectral function F to the subspace of diagonal n×n matrices

defines a function on Rn, f(x) = F (Diag(x)) where Diag(x) is the diagonal matrix

with entries the components of x ∈ Rn. As permutation matrices are orthogonal, f is

by construction a symmetric function in the sense that f(Px) = f(x) for any permu-

tation P . Furthermore, we can write F (A) = (f ◦λ)(A) where λ(A) = (λ1, . . . , λn) is

the eigenvalue map which sends a symmetric matrix to the vector of it’s eigenvalues

(suppose the components of this vector to be in non-increasing order to make this a

single-valued function).

The question of precisely what degree of smoothness the function F inherits from

the map f is actually a delicate one in general because while the eigenvalue map λ is

always continuous, it is not necessarily differentiable with respect to A. A thorough

examination of the regularity of λ can be found in [22] and some implications for F

are explored in [44] and [28] for example. Since the classical statements of problems

of prescribed curvature (e.g. Christoffel, Minkowski) are made in terms of a sym-

metric function of principal curvatures, i.e. in terms of a function like f , we use F

primarily for conceptual and notational purposes and might simply assume that F

retains “enough” smoothness. In fact, when the argument A of λ depends on a single

real parameter t and all A(t) are symmetric, a result of Rellich [36] (outlined more

succinctly in [22]) ensures that λ will be as smooth as A(t), and this is precisely the

context of concern here.

As before we calculate the second fundamental form II(φ0) of level sets of the
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defining function r̂ associated to the boundary conformal representative ĥ0 = e2φh0.

Instead of taking the trace of II to find the mean curvature of level sets we instead

apply any function F with the following properties:

1. F is a spectral function,

2. F is C2.

Equivalently, we require that F (A) = (f ◦ λ)(A) for λ the eigenvalue map and f a

function on the n eigenvalues such that

1. f is symmetric,

2. f is C2.

Finally we will make one further assumption on f , the importance of which will

become clear in the course of our investigation:

3. f has non-vanishing first-derivative at (1, . . . , 1).

The σk provide simple and concrete examples of this class of function; σ1-curvature

is mean curvature and σn-curvature is Gaussian curvature.

As F is a function on symmetric matrices we first use the metric g to raise one

index of II to obtain a (1, 1)-tensor denoted g−1II. (N.B. that in this section occur-

rences of g−1, ḡ−1 and h−1 denote raised indices, not traces.) For convenience recall

the expression for II(φ0), 5.3.3:

II(φ0, ε) =

(
1

2r2
(2h− r∂rh)− r−1(dr � dφ)− Hessḡ(φ)− 1

2
‖∇ḡφ‖2

ḡḡ

)∣∣∣∣
eφr=ε

.
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Then g−1II = (r−2ḡ)−1II = ḡ−1(r2II) where

ḡ−1(r2II)(φ0, ε) = ḡ−1

(
(h− 1

2
r∂rh)

− r(dr � dφ)− r2

(
Hessḡ(φ)− 1

2
‖∇ḡφ‖2

ḡḡ

))∣∣∣∣∣
eφr=ε

,

and in particular

g−1II(0) = h−1(h− 1

2
r∂rh) (6.1.1)

= δi
j − 1

2
(h1)i

jr −
(

(h2)i
j − 1

2
(h1 · h1)i

j

)
r2 +O(r3), (6.1.2)

where the hi refer to the terms in our original expansion of h and (h1 · h1)i
j denotes

composition (natural pairing) of the (1, 1)-tensor (h1)i
j with itself.

Let Ai
j = g−1II(0) and λ0 = (1, . . . , 1) and note that the symmetry of f means

that taking partial derivatives and then evaluating at λ0 yields a value dependent

only on the order of the derivative; denote these values by

c0 = f(λ0), c1 =
∂f

∂λi
(λ0), c2 =

∂2f

∂λj∂λi
(λ0).

Finally note

Lemma 6.1.2. Let S ⊂ Rn be a symmetric set, g : S → R, Mn the set of symmetric

real n× n matrices A with n-tuple of eigenvalues λ(A) lying within S. For A ∈ Mn

let G(A) = g(λ(A)). Let A0 be diagonal, hence with diagonal entries λ(A0) = λ0.

Then

∂G

∂aji
(A0) = δij

∂g

∂λi
(λ0) (6.1.3)
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Proof. Note that G is spectral, i.e. G(A) = G(UAUT ) for U orthogonal, so it suffices

to consider diagonal A. The lemma is then an immediate consequence of the chain-

rule.

We calculate the expansion of F (A) in terms of r by taking derivatives:

d

dr
F (A)

∣∣∣∣
r=0

=
∑
i,j

∂F

∂aji
(A0)

d

dr
[Ai

j]r=0

=
n∑
i=1

∂f

∂λi
(λ0)

d

dr
[Ai

i]r=0

=
n∑
i=1

∂f

∂λi
(λ0)(−1

2
(h1)i

i)

= −c1

2
trh0 h1

= −c1κ1
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Where the second line follows from lemma 6.1.3 and the third from 6.1.2. Similarly,

d2

dr2
F (A)

∣∣∣∣
r=0

=
∑
i,j,k,l

∂F

∂alk∂a
j
i

(A0)

(
d

dr
[Ak

l]r=0

)(
d

dr
[Ai

j]r=0

)

+
∑
i,j

∂F

∂aji
(A0)

d2

dr2
[Ai

j]r=0

=
n∑

i,k=1

∂2f

∂λi∂λk
(λ0)

(
d

dr
[Ak

k]r=0

)(
d

dr
[Ai

i]r=0

)

+
n∑
i=1

∂f

∂λi
(A0)

d2

dr2
[Ai

i]r=0

=
n∑

i,k=1

∂2f

∂λi∂λk
(λ0)

[(
−1

2

)2

(h1)i
i(h1)k

k

]

− 2
n∑
i=1

∂f

∂λi

(
(h2)i

i − 1

2
(h1 · h1)i

i

)

=
c2

4

n∑
i,k=1

(h1)i
i(h1)k

k − 2c1

n∑
i=1

(
(h2)i

i − 1

2
(h1 · h1)i

i

)

= −2c1

(
trh0 h2 −

1

2
‖h1‖2

h0

)
+
c2

4
σ2(λ((h0)−1h1))

= −2c1κ2 +
c2

4
σ2(λ(h1)).

Where σ2(λ(h1)) =
∑n

j=1(λj((h0)−1h1))2 denotes the second order elementary sym-

metric polynomial in the eigenvalues of h1. Thus

F (0, ε) = F (g−1II(0)) = c0 − c1κ1ε−
(
c1κ2 −

c2

8
σ2(λ(h1))

)
ε2 +O(ε3),

and just as before we seek ε 7→ φ0 such that

F (φ0(ε), ε) = c0 − c1κ2ε
2,

or equivalently

1

ε2
(F (φ0, ε)− c0) + c1κ2 = 0. (6.1.4)
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6.2 Linearization & Result

Recalling that κ2 is assumed constant, we linearize

N (φ0, ε) =
1

ε2
(F (φ0, ε)− c0) (6.2.1)

with respect to φ0 at (0, 0). Just as in the mean curvature case we factorN = R◦L◦E

with R and E being extension and restriction as before, but this time with L being

φ 7→ r−2e−2φF

(
ḡ−1(h− 1

2
r∂rh)− ḡ−1r(dr � dφ)

− ḡ−1r2

(
Hessḡ(φ)− 1

2
‖∇ḡφ‖2

ḡḡ

))
− r−2e−2φc0,

so that again Dφ0N (0, 0) = Dφ0R(0, 0)◦Dφ0L(0, 0)◦Dφ0E(0, 0). Once again we have

that Dφ0R(0, 0) is restriction to M , and Dφ0E(0, 0) extends functions by ψ(r, x) =

ψ0(x) (i.e. ∂rψ = 0). The linearization of our new L at φ = 0, ε = 0 is:

d

dt

∣∣∣∣
t=0

L(tψ) =
d

dt

∣∣∣∣
t=0

r−2e−2tψF
(
g−1II(0)− ḡ−1r(dr � d(tψ))

− ḡ−1r2∇ḡ
i (∇ḡ)j(tψ)− r2

2
‖∇ḡtψ‖2

ḡδi
j
)
− r−2e−2tψc0

= −2r−2ψF (g−1II(0)) +
n∑
i=1

∂f

∂λi
(λ0)

d

dt
[g−1II(tψ)i

i]t=0 + 2r−2c0

= −2r−2ψF (g−1II(0)) + c1(−2r−1∂rψ −∆ḡψ) + 2r−2c0ψ

= −2r−2
(
c0 − c1κ2r

2 +O(r3)
)
ψ − c1∆ḡψ + 2r−2c0ψ.

Using 6.1.2 and 5.3.5, we have:

Dφ0N (0, 0) = −c1 (∆h0 − 2κ2) . (6.2.2)
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Now provided 6.2.2 is invertible the implicit function theorem yields a unique smooth

function ε 7→ φ0 satisfying 6.1.4 and thus ε parameterizes collections of constant

f -curvature hypersurfaces near M .

Comparing 6.2.2 with 5.4.4 it is clear that the only additional hypothesis needed

to make this generalization to the case of any f-curvature is that c1 6= 0. This is

expressed in

Theorem 6.2.1. Let (X, g) be an asymptotically hyperbolic manifold which is weakly

Poincaré-Einstein with conformal infinity (M, [ĝ]). Let f : Rn → R be a function

with the following properties:

1. f is symmetric,

2. f is C2,

3. f has non-vanishing first-derivative at (1, . . . , 1).

Then

1. If the conformal class [ĝ] has non-positive Yamabe invariant, then there exists

a unique constant f -curvature foliation of X near M .

2. If instead [ĝ] has positive Yamabe invariant, then to each constant scalar curva-

ture metric h0 ∈ [ĝ] for which the linear operator (∆h0 − 2κ2) is invertible there

exists an associated distinct foliation of constant f -curvature.
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Examining the weakly Poincaré-Einstein case, this linearization is

Dφ0N (0, 0) = −c1

(
∆h0 +

Rh0

n− 1

)
.

A minor issue to note is that while in the constant mean curvature case the condition

h1 = 0 is stronger than required (h1 being traceless is enough to use these methods,

and in fact with much more trouble even this can be made unnecessary [31]), it

becomes necessary (at least via these methods) for more arbitrary f -curvatures.

6.3 A Corollary

Let us briefly examine what may be said when the expansion hr is neither arbitrary,

nor necessarily so well characterized as weakly Poincaré-Einstein. Suppose that h1 =

0, but hp 6= 0 for some p > 1 (clearly h0 6= 0 is by definition always true as it is

a Riemannian metric). The methods of chapter 5 require only h1 = 0, not the full

strength of the prescribed quadratic term of the weakly Poincaré-Einstein condition.

Then we have the following corollary of theorem 6.2.1:

Theorem 6.3.1. Let (X, g) be an asymptotically hyperbolic manifold with conformal

infinity (M, [ĝ]) and geodesic boundary defining function r and metric g such that

g = r−2(dr2 + h0 + h1r + · · ·+ hpr
p + · · · )

where hi = 0 for i = 1, . . . p − 1, but hp 6= 0, and where p > 1. Let f : Rn → R be a

function with the following properties:
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1. f is symmetric,

2. f is Cp,

3. f has non-vanishing first-derivative at (1, . . . , 1).

Then when p = 2:

1. If the conformal class [ĝ] has non-positive generalized boundary Yamabe invari-

ant, then there exists a unique constant f -curvature foliation of X near M .

2. If instead [ĝ] has positive generalized boundary Yamabe invariant, then to each

constant scalar curvature metric h0 ∈ [ĝ] for which the operator (∆h0 − pκp) is

invertible there exists an associated distinct foliation of constant f -curvature.

When p > 2, if the operator (∆h0 − pκp) is invertible, there exists a unique constant

f -curvature foliation of X near M .

Proof. To begin, consider the case of p = 3 in detail, as the results of chapter 5

already cover p = 2. We can continue the expansion 6.1.2 of g−1II by one more term:

g−1II = δi
j − 1

2
(h1)i

jr −
(

(h2)i
j − 1

2
(h1 · h1)i

j

)
r2

− 3

2

(
(h3)i

i − (h1 · h2)i
i − (h1 · h1 · h1)i

i
)
r3 +O(r4),
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and then use this to extend the mean curvature expansion, finding κ3,

H = trh
(
h− 1

2
r∂rh

)∣∣∣∣
r=ε

= n−
(

1

2
trh0 h1

)
ε−

(
trh0 h2 − ‖h1‖2

h0

)
ε2

− 3

2

(
trh0 h3 − 〈h1, h2〉h0 − p3(λ(h1))

)
ε3 +O(ε4)

= n− κ1ε− κ2ε
2 − κ3ε

3 +O(ε4).

Then using this, the f -curvature expansion may also be continued:

d3

dr3
F (A)

∣∣∣∣
r=0

=
n∑

i,j,k=1

∂3f

∂λi∂λj∂λk
(λ0)

[(
−1

2

)3

(h1)i
i(h1)j

j(h1)k
k

]

+ 3
n∑

i,j=1

∂2f

∂λi∂λj
(λ0)(h1)i

i

(
(h2)j

j − 1

2
(h1 · h1)j

j

)

− 9

2

n∑
i=1

∂f

∂λi

(
(h3)i

i − (h1 · h2)i
i − (h1 · h1 · h1)i

i
)

=
c3

8
p3(λ(h1)) + 3c2ν(h1, h2)− 3c1κ3

where we have labeled the mixed terms ν(h1, h2), and p3(λ(h1)) refers to the degree-3

power sum in the eigenvalues of h1, and thus

F (0, ε) = F (g−1II(0)) = c0 − c1κ1ε−
(
c1κ2 −

c2

8
σ2(λ(h1))

)
ε2

−
(
c1κ3 − c2ν(h1, h2)− c3

24
p3(λ(h1))

)
ε3 +O(ε4),

By assumption κ1 = κ2 = 0. Employing the same methods as before, in this case we

are looking to solve

F (φ0(ε), ε) = c0 − c1κ3ε
3,
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or

1

ε3
(F (φ0(ε))− c0) + c1κ3 = 0.

As κ3 can be assume constant by lemma 6.3.2, we linearize

N (φ0, ε) =
1

ε3
(F (φ0(ε))− c0)

to obtain

Dφ0N (0, 0)(ψ0) =
(
−3r−3

(
c0 − c1κ3r

3 +O(r4)
)
ψ − c1∆ḡψ + 3r−3c0ψ

)∣∣
r=0

= −c1 (∆h0 − 3κ3)ψ0.

An appeal to Faà di Bruno’s formula ([7], [21]),

dn

drn
f(g(r)) =

∑ n!

m1!1!m1m2!2!m2 · · ·mn!n!mn
f (m1+···+mn)(g(r))

n∏
j=1

(g(j)(r))mj ,

(the sum is over all n-tuples of non-negative integers satisfying 1m1+2m2+· · ·+nmn =

n) demonstrates that whenever hi = 0 for i = 1, . . . p − 1, while hp 6= 0, we will be

solving

1

εp
(F (φ0(ε))− c0) + c1κp = 0

for ε 7→ φ0. Linearizing as in theorem 6.2.1 and employing the implicit function theo-

rem produces constant f -curvature foliations whenever the linear operator (∆h0 − pκp)

is invertible. Clearly in all cases the condition c1 = ∂f
∂λi

(λ0) 6= 0 is required.

Finally, as we have always employed the assumption that κp can be made constant

by a conformal change, let us verify that this assumption is a significant one only when

83



p = 2 (the case already addressed in chapter 5). The manner in which conformal

change affects H is quite simple away from order-2. Recall

H(φ0, ε) =

(
1

2
trh(2h− r∂rh)− r2

(
∆ḡφ+

n− 1

2
‖∇ḡφ‖2

ḡ

))∣∣∣∣
eφr=ε

. (6.3.1)

It is clear from this expression that all of the impact of conformal change is seen in

the r2-coefficient, i.e. κ2. Indeed, expanding 6.3.1 we see

H(φ0, ε) = n− 1

2
e−φ0 trh0 h1r̂

− e−2φ0

(
trh0 h2 −

1

2
‖h1‖2

h0
+ ∆h0φ0 +

n− 2

2
‖∇h0φ0‖2

h0

)
r̂2

− e−3φ0
(
trh0 h3 − 〈h1, h2〉h0 − p3(λ(h1))

)
r̂3 +O(r̂4),

implying that

κ̂1 = e−φ0κ1,

κ̂2 = e−2φ0

(
κ2 + ∆h0φ0 +

n− 2

2
‖∇h0φ0‖2

h0

)
,

κ̂3 = e−3φ0κ3,

...

κ̂p = e−pφ0κp

...

Therefore only when p = 2 does the stipulation that κp be made constant require

solving a Yamabe-type equation; even in that case, as we have seen (see chapter 5),

it may be done. This may be expressed as the
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Lemma 6.3.2. Let (X, g) be an asymptotically hyperbolic manifold with conformal

infinity (M, [ĝ]) and r a geodesic boundary defining function. For any fixed r let

H(r) = n− κ1r − κ2r
2 − · · · − κprp − · · ·

be the mean curvature of the hypersurface defined by a level set of r. For any p there

exists some metric h0 ∈ [ĝ] such that κp is constant. Furthermore, the sign of κp is

an invariant under conformal change.

6.4 Conclusion

The results of this section exhibit the fullest scope of Weingarten curvature func-

tionals to which this method of implicit function theorem applied to linearized Yamabe-

type equation appears to be applicable. Precisely, any Weingarten curvature func-

tional will by definition be a symmetric function of the principal curvatures, and it is

clear from the proofs above that the condition of non-zero first derivative is always

necessary in employing this method.

These results link the existence of hypersurfaces of constant f -curvature for a very

extensive class of Weingarten functionals f to constant scalar curvature metrics in

the conformal class at infinity. An intriguing application of this would be to use an

appropriate translation of the results in [8] and [3] to then tie such hypersurfaces

back to prescribed curvatures of other types on the boundary. Until those results can

be extended to more general spaces (beyond completely hyperbolic) this naturally
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restricts the setting for such applications, however, it provides the potential to link

Yamabe-like semilinear elliptic equations on the boundary at infinity with a potential

variety of other sorts of differential equations on this same manifold.
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[32] André Neves and Gang Tian. Existence and uniqueness of constant mean cur-

vature foliation of asymptotically hyperbolic 3-manifolds. Geom. Funct. Anal.,

19(3):910–942, 2009.
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Appendix A

Calculus in Banach Spaces

We collect here some essential elements of calculus on Banach spaces. Only needed

definitions and theorems will be included; the presentation here largely follows that of

[34] with the exception of the use of the uniform contraction principle. The primary

purpose of this appendix is to provide a precise statement and proof of the implicit

function theorem for Banach spaces. For a stunningly thorough examination of the

history, underlying concepts, and the many generalizations and applications of this

powerful tool, the reader is recommended to see [24].

Definition A.0.1 (Fréchet Derivative). LetX and Y be Banach spaces and L(X, Y ) ⊂

C(X, Y ) denote the set of bounded linear functions from X to Y (a subset of con-

tinuous functions from X to Y ). Let U be an open subset of X. Then a function

F : U → Y is called (Fréchet) differentiable at x ∈ U if there exists a linear function
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DF (x) ∈ L(X, Y ) such that

F (x+ u) = F (x) +DF (x)u+ o(u).

The map DF (x) is called the (Fréchet) derivative of F at x. If F is differentiable at

all x ∈ U then it is called (Fréchet) differentiable and

DF : U → L(X, Y ), x 7→ DF (x)

If DF is continuous we write F ∈ C1(U, Y )

(Note that the Landau symbols o and O will always be taken to include the

application of appropriate norms.) As with all derivatives there are many equivalent

notations. For convenience, we will often write the Fréchet derivative of the map F ,

at x, applied to u, as DxF (u) instead of DF (x) ·u. Establishing the implicit function

theorem in Banach spaces will require, as expected from the finite dimensional case,

a contraction mapping principle, but first we verify that the familiar chain rule still

holds in the infinite dimensional case. This wholly norm-based proof requires no

special ingredients different from those of introductory calculus.

Theorem A.0.2 (Chain Rule). Let F ∈ Cp(X, Y ) and G ∈ Cp(Y, Z) for Banach

spaces X, Y and Z, p ≥ 1. Then G ◦ F ∈ Cp(X,Z) and

D(G ◦ F ) = DG(F (x)) ◦DF (x), ∀x ∈ X.
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Proof. Let x, u ∈ X and y = F (x) ∈ Y . Then

(G ◦ F )(x+ u)− (G ◦ F )(x) = G(F (x+ u))−G(F (x))

= G(F (x+ u)− F (x) + F (x))−G(y)

= G(v + y)−G(y),

where v = F (x+ u)− F (x). Therefore

‖(G ◦ F )(x+ u)− (G ◦ F )(x)−DG(y) · v‖ = o(‖v‖).

As ‖v −DF (x)u‖ = o(‖u‖), we have

‖(G ◦ F )(x+ u)− (G ◦ F )(x)−DG(y) ·DF (x) · u‖

= ‖(G ◦ F )(x+ u)− (G ◦ F )(x)−DG(y) · v +DG(y) · v −DG(y) ·DF (x) · u‖

= o(‖v‖) + o(‖u‖).

Then as F is continuous at x, ‖v‖ = o(‖u‖), so

D(G ◦ F ) · u = DG(F (x)) ·DF (x) · u

as desired.

Definition A.0.3 (Contraction). A fixed point of a mapping F : C ⊂ X → C is an

elements x ∈ C such that F (x) = x. The mapping F is called a contraction if there

exists a (contraction) constant θ ∈ [0, 1) such that

|F (x)− F (x̄)| ≤ θ|x− x̄|, ∀x, x̄ ∈ C.
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Clearly a contraction is continuous. We denote repeated applications of the map-

ping F by: F n(x) = F (F n−1(x)), F 0(x) = x.

Theorem A.0.4 (Contraction Principle). Let X be a Banach space, C ⊂ X a closed

subset, and F : C → C be a contraction, then F has a unique fixed point x̄ ∈ C such

that

|F n(x)− x̄| ≤ θn

1− θ
|F (x)− x|, x ∈ C. (A.0.1)

Proof. Fix x0 ∈ C and let xn = F n(x0). Then

|xn+1 − nn| ≤ θ|xn − xn−1| ≤ · · · ≤ θn|x1 − x0|,

and thus by the triangle inequality (for n > m)

|xn − xm| ≤
n∑

i=M+1

|xi −Xi−1| ≤ θm
n−m−1∑
i=0

θi|x1 − x0| ≤
θm

1− θ
|x1 − x0|. (A.0.2)

Therefore xn is Cauchy and has limit x̄. Furthermore,

|F (x̄)− x̄| = lim
n→∞
|xx+1 − xn| = 0

implies that x̄ is a fixed point of F and A.0.1 follows after letting n→∞ in A.0.2.

The uniqueness argument goes as follows: if x = F (x) and x̄ = F (x̄), then

|x− x̄| = |F (x)− F (x̄)| ≤ θ|x− x̄|, but as θ < 1, |x− x̄| = 0.

To apply the contraction principle to proving an implicit function theorem for

Banach spaces we will need to verify that fixed points of parameterized contractions

vary with regularity. To this end we define
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Definition A.0.5 (Uniform Contraction). If U ⊂ X and V ⊂ Y are open subsets of

the Banach spaces X and Y and F : U × V → U a mapping such that

|F (x, y)− F (x̄, y)| ≤ θ|x− x̄|, ∀x, x̄ ∈ U, y ∈ V (A.0.3)

for some θ ∈ [0, 1), then F is called a uniform contraction.

Then we must extend the contraction principle to such maps:

Theorem A.0.6 (Uniform Contraction Principle). Let X, Y be Banach spaces, U ⊂

X, V ⊂ Y be open subsets, and F : U × V → U be a uniform contraction with

unique fixed point x̄(y) ∈ U of the mapping F (·, y). If F ∈ Cp(U × V, U), p ≥ 1, then

x̄(·) ∈ Cp(V, U).

Proof. We begin by showing that x̄(·) is continuous. Using A.0.3 we have

|x̄(y + v)− x̄(y)| = |F (x̄(y + v), y + v)− F (x̄(y), y + v)

+ F (x̄(y), y + v)− F (X̄(y), y)|

≤ θ|x̄(y + v)− x̄(y)|+ |F (x̄(y), y + v)− F (x̄(y), y)|

and thus

|x̄(y + v)− x̄(y)| ≤ 1

1− θ
|F (x̄(y), y + v)− F (x̄(y), y)|. (A.0.4)

Therefore x̄(·) ∈ C(V, U).

Now suppose that p = 1 and formally differentiate the fixed point equation x̄(y) =

F (x̄(y), y) with respect to y:

Dx̄(y) = DxF (x̄(y), y)Dx̄+DyF (x̄(y), y). (A.0.5)
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Then looking at A.0.5 as a fixed point equation of the form x′ = G(x′, y), with

G(·, y) : L(Y,X)→ L(Y,X),

x′ → DxF (x̄(y), y)x′ +DyF (x̄(y), y),

we see that G is a uniform contraction because |DxF (x̄(y), y)| ≤ θ by Theorem ??.

Therefore we have a unique continuous solution x̄′(y).

We still must verify that x̄′ is actually a Fréchet derivative, i.e.

x̄(y + v)− x̄(y)− x̄′(y)v = o(v).

Call u = x̄(y+ v)− x̄(y). Then using A.0.5 and the fact that x̄(y) is a fixed point we

get

(1−DxF (x̄(y), y))(u− x̄′(y))

= F (x̄(y) + u, y + v)− F (x̄(y), y)−DxF (x̄(y), y)u−DyF (x̄(y), y)v

= o(u) + o(v)

as F ∈ C1(U × V, U) by assumption. As we have just remarked, |DxF (x̄(y), y)| ≤ θ,

thus ∣∣∣∣ 1

1−DxF (x̄(y), y)

∣∣∣∣ ≤ ∣∣∣∣ 1

1− θ

∣∣∣∣
and by A.0.4 u = O(v). Therefore u− x̄′(y)v = o(v), so x̄′ is the derivative as desired.

Higher degrees of regularity result from induction: Suppose that Dx̄(y) ∈ Cp−1

holds for p − 1 ≥ 1 when F ∈ Cp, then x̄(y) ∈ Cp−1 and the fact that Dx̄ satisfies

A.0.5 means that actually x̄(y) ∈ Cp(V, U).
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Finally we can state and prove our goal, the

Theorem A.0.7 (Implicit Function Theorem). Let X, Y , Z be Banach spaces and

U ⊂ X, V ⊂ Y be open. Let F ∈ Cp(U × V, Z), p ≥ 1, and fix (x0, y0) ∈ U ×

V . Suppose DxF (x0, y0) ∈ L(X,Z) is an isomorphism. Then there exists an open

neighborhood U0 × V0 ⊂ U × V of (x0, y0) such that for each y ∈ V0 there exists a

unique point (u(y), y) ∈ U0 × V0 satisfying F (u(y), y) = F (x0, y0), and the map u is

in Cp(V0, Z). Furthermore, u fulfills

Du(y) = −(DxF (u(y), y))−1 ◦DyF (u(y), y). (A.0.6)

Proof. First note that the translation F −F (x0, y0)→ F means we may assume that

F (x0, y0) = 0. We construct a function with fixed points corresponding to solutions

of F (x, y) = 0; let

G(x, y) = x− (DxF (x0, y0))−1 ◦ F (x, y).

Now G has the same smoothness as F , and as ‖DxG(x0, y0)‖ = 0, we can find

neighborhoods U0 and V0 around x0 and y0 such that for (x, y) ∈ U0 × V0 we have

‖DxG(x, y)‖ ≤ θ < 1, that is G : U0 × V0 → U0 is a uniform contraction. The result

then follows from the uniform contraction principle A.0.6.

The formula A.0.6 follows from the chain rule by differentiating F (u(y), y) = 0.
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Appendix B

Formulas Associated with

Conformal Change

Let g be a Riemannian metric on a smooth manifold M and φ a smooth real-valued

function on M . Then

ĝ = e2φg

is also a Riemannian metric on M . We say that ĝ is conformal to g, and as

conformality is evidently an equivalence relation on metrics, a conformal structure

on a smooth manifold is an equivalence class of smooth metrics on this manifold

[g] = {e2φg : φ ∈ C∞(M)}. For convenience we list here equalities expressing the

manner in which several tensors associated with a metric transform under confor-

mal change, all are simply the result of calculation from the definitions. Quantities

associated to the metric ĝ are denoted by a ̂ above their symbol.

101



FIrst, the metric and its Christoffel symbols (N.B. the Christoffel symbols are not

actually proper tensors.):

ĝij = e2φgij

Γ̂kij = Γkij + δki ∂jφ+ δkj ∂iφ− gij∇kφ

The volume element and Laplacian:

dV̂ = enφdV

∆f = ∇i∂if

Note the sign of the Laplacian here.

∆̂f = e−2φ
(
∆f + (n− 2)∇kφ∇kf

)
The curvature tensors (Riemann, Ricci, and scalar):

R̂ijkl = e2φ

(
Rijkl −

[
g �

(
∇∂φ− ∂φ∂φ+

1

2
‖∇φ‖2g

)]
ijkl

)

R̂ij = Rij − (n− 2) [∇i∂jφ− (∂iφ)(∂jφ)] +
(
∆φ− (n− 2)‖∇φ‖2

)
gij

R̂ = e−2φ
(
R + 2(n− 1)∆φ− (n− 2)(n− 1)‖∇φ‖2

)
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