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Abstract

While genome-wide association studies (GWAS) are increasingly successful in discovering 

genomic loci associated with complex human traits and disorders, the biological interpretation 

of these findings remains challenging. We developed the GSA-MiXeR analytical tool for gene-set 

analysis (GSA), which fits a model for the heritability of individual genes, accounting for linkage 

disequilibrium across variants, and allowing the quantification of partitioned heritability and 
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fold enrichment for small gene-sets. We validated the method using extensive simulations and 

sensitivity analyses. When applied to a diverse selection of complex traits and disorders, including 

schizophrenia, GSA-MiXeR prioritizes gene-sets with greater biological specificity compared to 

standard GSA approaches, implicating voltage-gated calcium channel function and dopaminergic 

signaling for schizophrenia. Such biologically relevant gene-sets, often with less than ten genes, 

are more likely to provide insights into the pathobiology of complex diseases and highlight 

potential drug targets.

Introduction

Genome-wide association studies (GWAS) have discovered thousands of genomic loci 

associated with complex human traits and disorders, highlighting their polygenic nature and 

the predominance of small individual effects of common genetic variants1. Gene-set analysis 

(GSA) has become a powerful tool for understanding the biological implications of GWAS 

findings2. Building upon large databases of gene-sets such as the Molecular Signatures 

Database (MSigDB)3, Gene Ontology (GO)4, Synaptic Gene Ontologies (SynGO)5 and 

others, GSA has provided many prominent findings6–8, implicating the role of biological 

pathways and yielding relevant tissue- and cell type-specific insights into complex human 

traits and disorders.

Some of the popular analytical tools for GSA analysis of GWAS data are MAGMA9, 

Fisher’s exact (hypergeometric) test10, and the stratified linkage disequilibrium (LD) score 

regression (sLDSC)11. MAGMA implements a two-stage approach, where GWAS p-values 

of single nucleotide polymorphisms (SNPs) are first aggregated into gene-level p-values, 

which are further tested for association with predefined gene-sets. The hypergeometric test 

evaluates whether the genes implicated in GWAS are over-represented within predefined 

gene-sets. Both tools implement competitive GSA12, testing the null hypothesis that the 

genes in question are no more strongly associated with the phenotype than other genes. A 

limitation to both approaches is that they only provide a measure of statistical significance 

(“enrichment p-value”), which largely depends on the sample size of the GWAS and on the 

size of a gene-set. Such enrichment p-values do not constitute a biologically meaningful 

measure of enrichment magnitude, limiting our ability to compare the relative strength of 

enrichment across or within traits. Importantly, enrichment p-values correlate with gene-set 

size, tending to be more significant for larger gene-sets, thus limiting our ability to discover 

more informative biological pathways, with greater specificity to a given phenotype.

The sLDSC method quantifies enrichment by partitioning heritability across genomic 

regions. Specifically, such partitioning allows one to compute a trait’s “fold enrichment” 

score for a genomic region. This is given by the ratio of the trait’s heritability attributed 

to the region (as estimated by the model) to the heritability of the region estimated 

from a baseline model which assumes that heritability is uniformly distributed across the 

genome. The sLDSC method uses GWAS summary statistics to quantify fold enrichments in 

functional categories. For example, regions conserved in mammals have a disproportionately 

large contribution to heritability for many traits and disorders11. However, for smaller 

annotations, it has been shown that block jackknife-based significance testing used in 
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sLDSC does not always control type 1 error for annotations with approximately 0.5% of 

SNPs or less13. Furthermore, sLDSC is based on an infinitesimal model with additional 

simplifying assumptions about the distribution of genetic effects with respect to minor 

allele frequency (MAF) and LD14, which in certain cases has been shown to bias fold 

enrichment estimates15. Finally, the sLDSC method has so far been applied only to tissue- 

and cell-type-specific annotations, but not to gene ontologies, both due to computational 

challenges (such as excessive memory usage and runtime) and algorithmic failures (such as 

non-invertible matrices arising in block jackknife-based significance testing).

Here, building on a previously developed MiXeR framework16–19, we introduce GSA-

MiXeR, a method for competitive GSA which quantifies fold enrichment of partitioned 

heritability attributed to each gene-set. Its efficient design and implementation, enabled by 

stochastic gradient-based log-likelihood optimization20, allow GSA-MiXeR to jointly model 

more than 18,000 genes in a single model, while accounting simultaneously for the trait’s 

polygenicity, MAF- and LD-dependency of genetic effects, and differential enrichment 

of functional categories, thus taking into account the unique genetic architecture of each 

trait. We evaluated the accuracy of GSA-MiXeR’s fold enrichment estimates in extensive 

simulations using real UK Biobank genotypes. We also performed replication analysis using 

independent GWAS for discovery and replication, which confirmed that ranking gene-sets 

according to fold enrichment (GSA-MiXeR estimate) often results in a more stable order of 

gene-sets compared to ranking based on enrichment p-values from MAGMA, even though 

GSA-MiXeR promoted smaller gene-sets of potentially higher biological relevance. We also 

performed extensive sensitivity analyses, testing the robustness of the GSA-MiXeR method 

against a misspecified model of the genetic architecture and out-of-sample LD information.

To demonstrate GSA-MiXeR’s performance with real phenotypic data, we applied it to 

the latest GWAS for schizophrenia8, as well as to a selection of diverse human traits and 

disorders21–35. In our main analysis, we report GSA-MiXeR results for significant gene-sets 

first identified by MAGMA. This shows how the addition of fold enrichments enhances the 

biological interpretation of GSA results, allowing comparisons of gene-set effect size within 

and across phenotypes. In schizophrenia, GSA-MiXeR reveals that gene-sets related to 

calcium channel function have greater fold enrichment than larger gene-sets related to post-

synaptic functioning. In a subsequent exploratory analysis of schizophrenia without filtering 

on significant MAGMA associations, we demonstrate that GSA-MiXeR implicates other 

highly enriched and biologically plausible gene-sets, including biological processes related 

to dopaminergic neurotransmission, pointing to potential key biological pathways perturbed 

in schizophrenia, and supporting prior hypotheses of schizophrenia pathogenesis36. When 

applied to 20 additional phenotypes, GSA-MiXeR tended to prioritize small, biologically 

relevant gene-sets.

Results

Overview of the methods

GSA-MiXeR implements two heritability models: a full model, where an individual 

contribution of each gene to the heritability of a complex trait is estimated from GWAS 

summary statistics; and a baseline model of heritability distribution that is irrespective of 
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individual genes. Fold enrichment attributed to a gene-set is then computed as the ratio 

of its heritability from the full over the baseline models. The parameters of both models 

and their respective standard errors (SEs) are estimated from the trait’s GWAS summary 

statistics (z-scores and p-values) plugged into a comprehensive likelihood function which 

accounts for LD correlations between SNPs. The likelihood function is also used to compute 

Akaike information criterion (AIC) values quantifying available evidence for the enrichment 

of individual genes and gene-sets. Further details are presented in Methods.

Simulation studies

To evaluate the accuracy of the GSA-MiXeR’s fold enrichment estimates and SEs, we 

conducted simulations by synthesizing a quantitative trait and its respective GWAS summary 

statistics using real UK Biobank genotypes (N=337,145 subjects and M=12,926,669 variants 

after quality control). We simulated 9 distinct scenarios (see Methods and Supplementary 

Table 1 for an overview) of genetic architectures to validate the sensitivity of the 

fold enrichment estimates to the underlying assumptions of the GSA-MiXeR model. In 

simulations without enrichment, total heritability (h2=0.1, 0.4, or 0.7) of the trait was 

uniformly distributed across the genic regions. To simulate enrichment, a certain number of 

genes (1, 3, 10, 30, or 100) received a 3-, 10- or 30-fold enrichment in heritability attributed 

to those genes. We used boundaries of real protein-coding genes in these simulations and 

selected an enriched subset of genes at random. Then we fitted two models: the baseline 

model with two variance parameters, allowing for different effect size variance in genic 

regions versus non-genic regions; and the full model, where, in addition to the baseline 

model, each gene was modelled with its own effect size variance parameter. The estimated 

fold enrichment of a gene-set was calculated as a ratio of its heritability estimate from the 

full model versus the baseline model (see Methods).

The results (Fig. 1a–d, Supplementary Fig. 1, and Supplementary Tables 1–2) show 

that GSA-MiXeR clearly differentiated between scenarios with 1-, 3-, 10-, and 30-fold 

enrichment, with estimated fold enrichment of 1.04, 2.67, 8.61, and 23.88, respectively, 

as measured by an average estimate across all simulated scenarios with a given true fold 

enrichment. This indicates that GSA-MiXeR estimates are somewhat conservative (biased 

downwards). However, for the least challenging simulated scenarios, the estimates were 

more accurate. For example, in six simulated scenarios with sufficiently large gene-sets 

(10, 30, 100), sufficiently powered GWAS summary statistics (corresponding to h2=0.4 

and 0.7 in simulations performed with N=337,145 subjects), and the “base” genetic 

architecture (causal variants uniformly distributed across protein-coding genes), the average 

fold enrichment estimate from GSA-MiXeR was 1.00, 2.90, 10.75, and 29.35, compared 

to the expected enrichment of 1, 3, 10, and 30, respectively. These results show that GSA-

MiXeR gives accurate results if the underlying assumptions of its model are met, and if the 

region that is being tested for enrichment has a sufficiently powered signal in the GWAS 

summary statistics. The SEs generally matched the standard deviation across simulations 

(Supplementary Table 3); however, for genes with close to zero heritability estimate the 

hessian-based SE of the σg
2 parameter was insufficiently robust and was truncated at 5 

times the respective point estimate. For further sensitivity analysis using simulated data see 

Supplementary Information.
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We performed additional simulations to compare GSA-MiXeR and MAGMA’s ability to 

rank enriched gene-sets (Fig. 1e–g, Supplementary Fig. 2, Supplementary Table 4). For each 

of the previously conducted simulations, we generated 999 additional gene-sets, each with 

the same number of genes as the enriched gene-set. We then computed the position of the 

truly enriched gene-set on the list, sorted either according to GSA-MiXeR fold enrichment 

or according to MAGMA p-values. Both methods correctly rank the most enriched gene-sets 

at the 1st position if there was sufficient signal in the data, e.g., in a scenario with 100 

genes and h2=0.7. For the “base” genetic architecture, GSA-MiXeR outperforms MAGMA 

in the less-powered scenarios. For instance, in simulations with 10x fold enrichment, 10 

genes, and h2=0.4, the average rank of the truly enriched gene-set was 1.1 for GSA-MiXeR, 

and 22.7 for MAGMA. Simulations with other scenarios of genetic architecture show 

that GSA-MiXeR’s advantage in ranking accuracy over MAGMA depends on how well 

the underlying assumptions about the trait’s genetic architecture are met (Supplementary 

Information). The individual genes were generally ranked at approximately the 100-th 

position or higher by both MiXeR and MAGMA, indicating that the error of estimating 

gene-level fold enrichment currently appears to be too large to make reliable inferences at 

the level of individual genes.

Application to real phenotypic data

We applied GSA-MiXeR to the latest GWAS of schizophrenia37, as well as a selection of 20 

traits and disorders representing a variety of different human phenotypes (Table 1), including 

somatic disorders, quantitative biophysical and biochemical measures, and mental traits. In 

our main analysis, we first identified all enriched gene-sets with MAGMA p-values below 

0.05 after Bonferroni correction. Next, we re-ranked gene-sets based on GSA-MiXeR fold 

enrichment and compared them to the original MAGMA p-value-based ranking. We also 

compared fold enrichment and partitioned heritability estimated by GSA-MiXeR within and 

across phenotypes.

When applied to schizophrenia (Fig. 2a–b, Supplementary Table 5), the top ten GSA-MiXeR 

gene-sets had on average 236 genes, with an average fold enrichment of 2.49 (root mean 

square error (RMSE) 0.50) (Supplementary Table 5), versus an average of 620 genes and 

fold enrichment of 1.53 (RMSE 0.22) for the top ten MAGMA gene-sets. Interestingly, 

among the significant MAGMA gene-sets, the top four gene-sets after ordering based on 

GSA-MiXeR enrichment for schizophrenia were related to voltage-gated calcium channels 

and membrane depolarization (Fig. 2a), which are more specific biological processes 

compared to the larger synaptic and post-synaptic gene-sets prioritized by MAGMA. 

Furthermore, voltage-gated calcium channels gene-sets were approximately ten times more 

fold enriched than other MAGMA identified gene-sets (mean fold enrichment = 4.05 

(RMSE 0.78) vs 1.33 (RMSE 0.09), respectively), with a marked drop in fold enrichment 

to the next most fold enriched gene-set (intrinsic component of post-synaptic membrane, 

fold enrichment 1.58 (SE 0.16). The larger enrichment was partly attributable to the 

CACNA1C gene which was the most enriched gene in all related gene-sets. To evaluate 

heterogeneity of gene fold enrichments within implicated gene-sets, we performed a leave-

one-gene-out analysis, showing that the average fold enrichment across voltage-gated 

calcium channels gene sets reduced from 4.05 (RMSE 0.78) to 2.89 (RMSE 0.85) after 

Frei et al. Page 5

Nat Genet. Author manuscript; available in PMC 2025 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exclusion of the CACNA1C gene (Supplementary Table 5), but the gene-sets remained 

enriched. The purpose of the leave-one-gene-out analysis is to evaluate heterogeneity of 

gene fold enrichments within implicated gene-sets, rather than to estimate uncertainty of the 

enrichment estimates.

In an exploratory analysis we considered all gene-sets with a positive value of GSA 

MiXeR’s Akaike Information Criterion (AIC) (see Methods). For schizophrenia this 

implicated 36 gene-sets (Fig. 3, Supplementary Table 7), with an average size of approx. 

8 genes and fold enrichment of 7.28 (RMSE 3.41). These included several gene-sets related 

to dopaminergic neurotransmission, such as “dopamine neurotransmitter receptor activity” 

and “dopamine binding”38, as well as “interneuron migration”39 and “forebrain neuron fate 

commitment”, none of which were identified by MAGMA. However, the enrichment in all 

of the top ten gene-sets besides “forebrain neuron fate commitment” was largely driven by 

the DRD2 gene, rather than by the joint effect of the entire gene-set. After exclusion of 

DRD2, the average enrichment of these nine gene-sets reduced from 14.9 (RMSE 6.59) 

to 0.91 (RMSE 0.83) as opposed to 8.53 (SE 2.66) to 6.22 (2.26) for “forebrain neuron 

commitment” after exclusion of its most enriched gene “SATB” (Supplementary Table 7). 

This suggests large heterogeneity in enrichment across genes within highly enriched gene-

sets, further demonstrated by QQ plots constrained to genetic variants within 10 kilobases 

(KB) up/down of each gene (Supplementary Fig. 3). This revealed “null” QQ plots for a 

subset of genes, while other genes – particularly DRD2 and CACNA1C – showed strong 

enrichment. Further, despite the high fold enrichments of the gene-sets discussed here, it 

is important to note that they individually contribute to less than 0.5% of schizophrenia’s 

heritability, further emphasizing its broad polygenic architecture.

Among the 20 other phenotypes that were analyzed, thirteen were associated with 

significantly enriched gene-sets as estimated by MAGMA (Table 1, Supplementary Table 

6), while all phenotypes had at least one gene-set with a positive GSA-MiXeR AIC value 

(Table 1, Supplementary Table 8; see also Supplementary Information for more extended 

description of the results). Overall, the gene-sets identified by MAGMA had a mean size 

of 400 genes, versus a mean size of 9 genes for gene-sets implicated by GSA-MiXeR. 

The average fold-enrichments were 3.5 (RMSE 1.42) and 10.3 (RSME 4.83), respectively. 

Additionally, GSA-MiXeR enabled cross-trait comparisons of gene-set enrichments. Across 

all 21 phenotypes there was large variation in the mean fold enrichment, ranging from 2.85 

(RMSE 0.80) for educational attainment to 31.27 (RMSE 11.55) for heart failure. This 

was to some extent influenced by the number of gene-sets implicated by GSA-MiXeR for 

each phenotype, varying from a single gene-set for alcohol consumption, heart failure and 

hospitalized COVID, to 161 gene-sets for type 2 diabetes, 202 for systolic blood pressure, 

and 405 for height (Table 1, Supplementary Table 8). Differences in the number of gene-sets 

identified likely reflect the statistical power of the input GWAS as well as the extent to 

which the current set of Gene Ontology gene-sets corresponds to the biological mechanisms 

underlying each phenotype. Nevertheless, there was a trend for biochemical measures and 

somatic disorders, such as glycated haemoglobin and ulcerative colitis, to exhibit higher fold 

enrichments than complex mental phenotypes such as educational attainment and cognition.
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We also compared GSA-MiXeR and LDAK-GBAT40 estimates of heritability for individual 

genes (Supplementary Table 9–10 and Supplementary Fig. 9). For a subset of 36 gene-sets 

implicated in the exploratory GSA-MiXeR analysis of schizophrenia, we also estimated fold 

enrichment with the stratified LDSC41 method (Supplementary Table 11 and Supplementary 

Fig. 10). The results from the different methods generally correlate well. There are certain 

discrepancies in the estimates for individual genes and gene-sets, which likely can be 

attributed to the differing methodology compounded by large uncertainty in the estimates. 

For example, LDAK-GBAT analyses all genes independently from each other, while 

GSA-MiXeR applies a joint model. Similarly, sLDSC uses an additive model across all 

categories (in this case 75 functional annotations plus additional categories for the gene-set 

and its genes), while GSA-MiXeR’s heritability model separately accounts for functional 

annotations and genes, joining them as two factors in a multiplicative model.

Replication analysis

In our analysis of real GWAS data, we first used MAGMA to filter on significantly 

associated gene-sets, followed by GSA-MiXeR to re-rank these gene-sets. Here, we present 

the results of an independent replication analysis using either MAGMA p-values or GSA-

MiXeR fold enrichments to rank gene-sets. As a discovery sample, we used half of the UK 

Biobank panel for the height phenotype and half of the Psychiatric Genomics Consortium 

(PGC) schizophrenia sub-studies. The remaining subjects or studies were used as replication 

data sets. Using independently obtained results for MAGMA and GSA-MiXeR from the 

discovery and replication samples, we computed the fraction of top-N gene-sets in the 

discovery samples that also appeared within the top-N gene-sets in the replication samples, 

allowing N to be 10, 20, 50 or 100 gene-sets. Further, we investigated how the replication 

rate depended on gene-set size, by computing the replication rate for a stratum of gene-sets 

with up to 25 genes per set, and a second stratum of gene-sets with more than 25 genes per 

set.

The results are presented in Fig. 4 (for schizophrenia) and in Supplementary Fig. 7 (for 

height). GSA-MiXeR and MAGMA methods had a comparable replication rate when 

evaluated on all gene-sets, or in a stratum with more than 25 genes. The biggest differences 

were observed in the stratum of up to 25 genes, where we consistently observed better 

replication rates for GSA MiXeR ranking, compared to MAGMA ranking, both for 

schizophrenia and for height. Overall, the results indicate that replication of GSA-MiXeR-

based ranking is equivalent to MAGMA-based ranking for all gene-sets and outperforms 

MAGMA-based ranking for smaller gene-sets. We also demonstrated that GSA-MiXeR may 

potentially improve the accuracy of polygenic risk scores in terms of Nagelkerke pseudo-R2 

(Supplementary Fig. 8, also Supplementary Information), however further evaluation of this 

approach is a subject of future work.

Discussion

Here, we present GSA-MiXeR, a method for competitive gene-set enrichment analysis 

that applies stochastic gradient-based optimization for maximum likelihood estimation 

from GWAS summary statistics. We show that GSA-MiXeR can accurately model the 
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contribution of more than 18,000 genes to SNP-heritability of complex polygenic traits, 

while controlling for polygenicity, MAF- and LD-dependent genetic architecture, and 

functional categories. This enables the robust estimation of gene-set fold enrichment 

alongside partitioned heritability, thus estimating the magnitude of the enrichment, which 

was previously unfeasible due to computational and methodological limitations. While 

future work improving the validity of current gene-set definitions is required to fully exploit 

the power of GSA-MiXeR and GSA more generally, we show through real data from 

schizophrenia and 20 other traits how GSA-MiXeR, building on current GO gene-sets, 

enhances the biological interpretation of GWAS findings.

Applying GSA-MiXeR to simulated and real data, we show its capability to reorder gene-

sets in a way that promotes smaller gene-sets while yielding an equivalent or higher 

replication rate compared to current standards in the field. When applied to sufficiently 

powered GWAS, GSA-MiXeR provides an unbiased estimate of fold enrichments even for 

small gene-sets with 10 genes or less. GSA-MiXeR’s ability to estimate fold enrichment of 

a gene-set, rather than its statistical significance (p-value), represents a key advance in GSA, 

allowing direct comparison of the relative biological effect of implicated gene-sets. This 

facilitates the promotion of smaller gene-sets with more specific and well-defined functions 

that can be more readily interrogated in downstream experimental analysis.

When applied to schizophrenia, we demonstrate how the estimation of gene-set fold 

enrichments can enhance MAGMA-based GSA. GSA-MiXeR showed that gene-sets related 

to voltage-gated calcium channels were approximately ten times more fold-enriched 

than other larger gene-sets identified by MAGMA. This supports previous evidence 

indicating a role for voltage-gated calcium channels in schizophrenia, which has been 

hypothesized to affect schizophrenia risk through neurodevelopmental processes including 

hippocampal neurogenesis42. GSA-MiXeR’s potential for novel mechanistic insights was 

further illustrated in our exploratory analysis without filtering on significant MAGMA 

associations. Further, despite recent advances in schizophrenia GWAS8,43, results from GSA 

analyses have not yet mapped closely onto the primary clinical theories of schizophrenia 

pathoetiology36. It is therefore striking that the top two most fold-enriched gene-sets 

were related to dopaminergic neurotransmission, the leading theory of schizophrenia 

pathogenesis44–46. In addition, GSA-MiXeR implicated several other relevant gene-sets 

including “interneuron migration” which may affect parvalbumin-positive GABAergic 

interneurons that have been implicated in schizophrenia pathogenesis47, and “forebrain 

neuron fate commitment”48. It is also worth noting that enrichment in the dopamine-related 

gene-sets appears to be driven largely by a single gene, DRD2. By contrast, the high 

enrichment of the gene-sets related to voltage-gated calcium channels and “forebrain neuron 

fate commitment” appears to be a property of multiple genes in each gene-set. When applied 

to 20 diverse human phenotypes, GSA-MiXeR also tended to prioritize smaller gene-sets of 

high biological relevance.

Previous methods, such as LDAK-GBAT40 and h2gene49, have estimated heritability 

attributed to individual genes, identifying individual genes that significantly contribute to 

trait’s heritability, but without considering gene-set and without computing fold enrichment 

over a baseline. Existing methods also estimate disease heritability mediated by the cis 
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genetic component of gene expression levels and its enrichment across gene-sets (MESC50 

and GCSC51 methods), leveraging expression imputation from genetic data52. While these 

methods found both overall evidence of expression-mediated heritability and specific gene-

sets showing disease-relevant enrichment, they have only accounted for a small fraction 

of estimated SNP-heritability. This can be either due to insufficient accuracy of gene 

expression imputation potentially related to low sample size of expression quantitative trait 

loci datasets for trait-relevant tissues and cell types, or due to other causal pathways beyond 

gene expression contributing to shaping genotype-phenotype associations. GSA-MiXeR 

complements these methods by estimating the fraction of the total SNP-based heritability 

attributed to a gene-sets without relying on gene expression data. Other methods, such as 

AI-MiXeR18, RSS-E53, and RSS-NET54 have also computed enrichment in certain regions 

of the genome. However, they do not build a comprehensive model including all known 

human genes, a key advantage of GSA-MiXeR. To achieve this, the GSA-MiXeR model 

incorporates several parameters describing the distribution of additive genetic effects, fitting 

those parameters from the GWAS summary statistics. Furthermore, GSA-MiXeR evaluates 

fold enrichment of a gene-set versus a comprehensive baseline model, which accounts 

for differential enrichment of functional categories yet without gene-specific effects – an 

enrichment model which cannot be implemented using a fixed-effects approach55.

The GSA-MiXeR tool has some limitations. First, it was not feasible to provide formal 

p-values due to technical reasons and difficulties in defining the null-hypothesis (see 

Supplementary Information), thus GSA-MiXeR relies on the MAGMA tool to pre-filter 

the set of gene-sets for the most conservative analysis. Our exploratory analysis (without 

pre-filtering by MAGMA) selects gene-sets based on AIC criteria, which does not allow 

for multiple testing correction; we however confirmed that ranking gene-sets according to 

GSA-MiXeR fold enrichment is at least as stable as ranking according to conservatively 

defined MAGMA p-values; additionally, all estimates have SEs to evaluate their uncertainty. 

Second, SEs are derived from the likelihood function, and may in some cases be not 

well calibrated, particularly for genes with close to zero heritability estimate. Real-data 

analysis with GSA-MiXeR is unlikely to be affected by this due to filtering genes on a 

positive AIC value, which implies sufficient curvature of the log-likelihood around the 

MLE point and justifies hessian-based SEs estimation. Applying resampling approaches, 

such as bootstrap of jackknife, may further improve robustness of the SEs, however for 

GSA-MiXeR setting these techniques should resample individual subjects rather than SNPs, 

i.e. resampling should be implemented as an integral part of the GWAS analysis, leading to 

multiple instances of the GWAS summary statistics which can be later used to assess the 

uncertainty of model parameters. Third, GSA-MiXeR is based on certain assumptions, such 

as modeling enrichment through varying the effect sizes rather than varying the density of 

causal variants; we validated through sensitivity analysis that violation of these assumptions 

does not lead to significant biases. Finally, GSA-MiXeR does not handle continuous-valued 

genomic annotations as implemented in extended sLDSC41. In the future we are planning 

to extend GSA-MiXeR analysis to cover genes located on non-autosomes (including sex 

chromosomes and mitochondrial DNA), and provide a reference panel for GSA-MiXeR 

analysis for non-European populations.
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To conclude, GSA-MiXeR estimates fold enrichment and implicates gene-sets with higher 

biological specificity than current standards. The gene-sets promoted by GSA-MiXeR can 

provide insights into the pathobiology of complex diseases, with the potential for identifying 

new drug targets and the development of pathway-specific polygenic risk scores. This may 

help to advance the classification, diagnosis, and treatment of complex polygenic disorders.

Methods

Individual level data from the UK Biobank, Haplotype Reference Consortium (HRC), and 

the Thematically Organized Psychosis (TOP) study were analyzed under ethical approvals 

from Norwegian Regional Committees for Medical and Health Research Ethics (REC; ref. 

2009/2485), Data Inspectorate (ref. 03/02051), and The Norwegian Directorate of Health 

(ref. 05/5821). The use of summary statistics for genetic analysis was evaluated by REC 

South-East Norway and found that no additional ethical approval was required because no 

individual data were used (REC #2011/1980).

GSA-MiXeR’s full and baseline models

Under the assumptions of a simple additive genetic model, the contribution of the 

genotype to the phenotype is modeled as a sum of contributions across genetic variants: 

yk = ∑i = 1
M− gikβi + ek, where yk is a quantitative phenotype or disease liability of the k-th 

individual; gik is the number of reference alleles for the i-th variant (centered to zero 

mean, but not variance standardized), where the index i runs over the M−  variants in the 

reference panel; βi is per-allele effect size (known also as an additive genetic effect of allele 

substitution). The parameters βi and ek are scaled so that phenotype y has zero mean and unit 

variance.

Following previous work16–19, GSA-MiXeR builds on a causal mixture model56 with a 

spike-and-slab prior distribution βi 1 − π1 δ0 + π1N 0, σi
2 , where δ0 is the probability mass at 

zero (Dirac delta function), N μ, σ2  is a normal distribution with mean μ and variance σ2, π1

gives the prior probability of a variant having a non-zero effect size, and the corresponding 

effect size variance σi
2 is allowed to vary across genetic variants. To reduce the number of 

effective parameters being optimized, the full GSA-MiXeR model parametrizes σi
2 based on 

functional categories, genes, allele frequency, and LD score as follows:

σi, full
2 = (σA, 0

2 + ∑
p = 1

NA
[i ∈ Ap]σA, p

2 )(σG, 0
2 + ∑

q = 1

NG
[i ∈ Gq]σG, q

2 )Hi
SLi

ℓ .

(1)

Here, the Hi
S term allows the modeling of architectures dependent on allele frequency, 

the term Hi = 2fi 1 − fi  denotes heterozygosity of the i-th variant (fi denotes minor allele 

frequency of the i-th variant), and the S parameter controls the effect size distribution 

along the allele frequency spectrum. Similarly, the Li
ℓ term allows the modeling of LD-

dependent genetic architectures, where Li denotes the LD score of the i-th variant and 
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the ℓ parameter controls the effect size distribution with respect to LD score. Each of 

the other two multiplicative factors in equation (1) controls the differential enrichment 

across functional categories and across genes, respectively. Index p runs across functional 

categories A1, A2, …, ANA , where parameter σA, p
2  represents the contribution of the p-th 

functional category to the variance of the i-th genetic variant (if that variant belongs to the 

category, as indicated by i ∈ Ap  term in equation (1), where square brackets maps true or 

false predicate to 1 or 0 – a notation known as Iverson Bracket). If genetic variant i belongs 

to multiple categories, the variances of those categories are added together. Similarly, index 

q runs across genes G1, G2, …, GNG , each contributing its own effect size variance σG, q
2  for 

genetic variants that belong to Gq. Parameters σA, 0
2  and σG, 0

2  allow for non-zero variance σi
2 for 

genetic variants that do not belong to any functional category or genes.

For the baseline GSA-MiXeR model, we used a single effect size variance parameter, σG
2 , for 

all SNPs that belong to any gene, regardless of which gene they belong to:

σi, base
2 = σA, 0

2 + ∑
p = 1

NA
[i ∈ Ap]σA, p

2 σG, 0
2 + i ∈ G σG

2 Hi
SLi

ℓ ,

where G = ⋃q = 1
NG Gq is a union of all genes. The main results were reported with full and 

baseline models based on NA = 75 functional annotations and NG = 18,201 protein-coding 

genes. However, for the sensitivity analysis (Supplementary Figure 4) we allowed a full 

model where variance parameters σG, q
2  were modeled at the level of gene-sets, rather than at 

the level of individual genes. In this scenario heritability model σi, full
2 is still defined by the 

equation (1), however, each Gq corresponded to one of NG = 10,475 gene-sets.

Heritability enrichment

The following expression defines SNP-based heritability for a phenotype standardized to a 

unit variance:

ℎSNP
2 = V ar ∑i giβi = ∑i V ar giβi + 2 ∑i < j Cov giβi, gjβj .

Following the h2gene approach49, we employ the assumption that there is zero covariance 

between causal effects of different variants. This enables the partitioning of heritability 

across variants and, thereby, the definition of heritability of a gene-set G as

ℎfull
2 G = ∑i ∈ G π1Hiσi, full

2 and ℎbase
2 G = ∑i ∈ G π1Hiσi, base

2 ,

where heterozygosity factor Hi converts variance σi
2 defined in the units of per-allele 

effects into variance expressed in the units of standardized genotypes. Fold enrichment of 

heritability can be computed as a ratio of ℎfull
2 G /ℎbase

2 G . However, we observed that fitting 

one parameter for each gene may lead to a slight inflation of heritability estimates, an issue 

that did not manifest itself when fitting the baseline model. To account for this, we define 

fold enrichment based on the fraction of total heritability attributed to the gene-set as:

Frei et al. Page 11

Nat Genet. Author manuscript; available in PMC 2025 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enricℎ G = ℎ2 G full/ℎfull
2

ℎ2 G base/ℎbase
2

.

(2)

Log-likelihood computation and its gradients

Let zj be the GWAS z-score of j-th variant out of in total M variants tested for association. 

We assume that association is driven by the underlying additive effects βi, however, 

the set of GWAS variants does not need to be the same as the set of the underlying 

variants (hence we use different subscripts i and j to distinguish between them, and 

assume that all M variants tested for association are present among the M−  variants of 

the reference panel). Inference of GSA-MiXeR parameters is based on optimizing log-

likelihood function logL(z1, …, zMθ) max
θ

 of observing a set of GWAS summary statistics 

given model parameters, while controlling for the LD structure among variants and 

their allele frequencies. The log-likelihood computation is based on previously derived 

methodology16–18, which established the following additive relationship between genetic 

effects (βi) and GWAS z-scores (zj), highlighting that zj depends on βi of all i-th variants 

tagged by j-th variant due to LD:

zj = δj + ϵj = ∑i NjHirijβi + ϵj ,

(3)

where Nj is sample size at the j-th variant, rij is the LD allele correlation between i-th 

underlying and j-th GWAS variants, and ϵj is the normally distributed residual ϵj ∼ N 0, σ0
2

with variance σ0
2 that accounts for potential inflation in GWAS summary statistics. Our 

two approaches for computing the log likelihood using “fast” and “full” models are 

described in the Supplementary Information. The “fast” model is based on the method of 

moments, approximating p zj  is a way that preserves the second and fourth moments of the 

distribution, thus preserving variance and kurtosis; the third moment (skewness) is irrelevant 

because of symmetry of the p zj  distribution. The “full” model performs more accurate 

sampling from the prior distribution p βi  at the expense of longer computation times. 

Based on these methods of evaluating log-likelihood, we found an efficient computation 

procedure for computing the gradients ∂L z1, …, zM θ
∂π1

 and ∂L z1, …, zM θ
∂σi

2  in the context of 

“fast” and “full” models. Finally, from equation (1) one can compute the Jacobian matrixes 
∂σi

2

∂σA, p
2

ip
, ∂σi

2

∂σG, q
2

iq
, ∂σi

2

∂S i
 and ∂σi

2

∂ ℓ i
, thus allowing the computation of log-likelihood gradients 

with respect to the parameters of the final model: ∂L z1, …, zM θ
∂σA, p

2 = ∑i
∂L z1, …, zM θ

∂σi
2

∂σi
2

∂σA, p
2 , and 

similarly for all other parameters (σG, q
2 , S, ℓ and π1). This can be seen as an equivalent to 

error backpropagation in a neural network, with σi
2 representing the first layer of the network, 

and σA, p
2 , σG, q

2  representing the second layer. The total amount of computations needed to 

calculate the entire gradient vector (for π1 and σi
2 across all variants) is similar to that needed 
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for computing the value of the likelihood function itself. This made it feasible to apply 

first-order optimization methods while avoiding computational burden despite adding tens of 

thousands of parameters to the model. For comparison, previous applications of the MiXeR 

model16–19 had a fixed number of 3, 5, 9, and 12 parameters, respectively, and were fitted 

with zero-order methods including Differential evolution57, Nelder-Mead58, and Brent’s 

method59.

Log-likelihood optimization

The log-likelihood function logL(z1, …, zMθ) = ∑j wjlogp zj θ  is weighted across variants 

using inverse LD score11 to avoid over-counting evidence from large LD blocks, in a way 

that is similar to --w-ld option in sLDSC. The fit is first performed for the baseline model, 

using the Adam algorithm20 with parameters β1 = 0.9, β2 = 0.99, ϵ = 10−8 in order to jointly 

fit parameters of the baseline GSA-MiXeR model. Optimization utilizes N=100 epochs, 

each of which passes over 22 batches (one batch per chromosome, re-shuffled in a random 

order for each epoch). The step-size parameter was gradually reduced from α = 0.064 down 

to α = 0.0001, reducing the value by a factor of 2 after every 10 epochs. Optimization of 

the full model constrains σA, 0
2 , σA, p

2 , σG, 0
2 , σ0

2, S and ℓ parameters to their respective values 

from the baseline model. The optimization of the remaining parameters (σG, q
2 , effect size 

variances for each gene) is initiated from the σG
2  value from the baseline model and is 

done separately for each chromosome using β1 = 0.1 and β2 = 0.8 in Adam algorithm. While 

GSA-MiXeR implementation allows fitting all parameters including π1 and S from the data, 

the main results were obtained constraining the model to an infinitesimal model (π1 = 1), and 

S = − 0.25 parameter chosen in line with the LDAK recommendation14.

After fitting baseline and full GSA-MiXeR models, we apply Akaike Information Criterion 

(AIC) to identify genes and gene-sets that are improving the fit of the full model compared 

to the baseline model. More specifically, to assess whether in a certain genomic region (i.e. 

for a gene, or for a gene-set) our full model, θfull, has a better likelihood than the baseline 

model, θbase, we constructed a partial model, θpart, which is equivalent to the full model θfull

except for the genomic region being tested, and in that region θpart is equivalent to the 

baseline model θbase (“equivalent” means that gene-level variance parameters σi
2 in θpart are 

set to their respective values from either from full or baseline models). AIC was computed 

as 2 log L θfull
L θpart

− 2k, where k represents the number of model parameters fitted for the 

genomic region being tested. In the case of non-overlapping genes, the k parameter equals 

to the number of genes in a gene-set being tested; in a more general case, this accounts 

for an overlap among adjacent genes occurring largely due to 10-kb up- and down-stream 

expansion.

SEs of fitted parameters were estimated from the observed Fisher’s information matrix 

−ΔΔT logL θ* (the negative Hessian matrix of the log-likelihood function). For compound 

functions of multiple parameters, such as fold enrichment of heritability in a region, 

we sample N=100 realizations of the parameters vector θ from the posterior distribution 

θ ∼ N(θ*, [−ΔΔT logL θ*]
−1), calculate the compound function (e.g., fold enrichment) for 
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each realization of θ, and report the standard deviations across realization. If the Hessian 

matrix was not positive definite, we use marginal errors of fitted parameters. The Fisher’s 

information matrix was computed efficiently using sparse matrices (see Supplementary 

Information for further details). We validated SEs in simulations by comparing them to 

standard deviations of point estimates across simulation runs (Supplementary Table 3); for 

individual genes we also compared GSA-MiXeR SEs to SEs estimated by LDAK-GBAT, 

leading to satisfactory results (Supplementary Figure 9, Supplementary Table 9–10).

HRC and UKB references (LD structure)

We prepared two reference panels available for GSA-MiXeR analysis using Haplotype 

Reference Consortia (HRC) and UK Biobank (UKB) datasets.

Our HRC reference has 11,980,511 variants and 23,152 samples after basic quality control 

(QC) procedure. During sample QC, we select individuals with EUR ancestry (including 

Finnish population) defined from the first two principal components of 1000 genomes 

Phase3 data. Further, we prune related individuals using KING software (“king --unrelated 

–degree 2”). For variant QC, we use “plink --maf 0.001 --hwe 1e-10 --geno 0.1” parameters, 

and further exclude markers without RS IDs and excluding duplicated RS IDs.

Our UKB reference has 12,926,669 variants and 337,145 subjects, derived from the UK 

Biobank imputed v3 dataset. During sample QC, we select unrelated individuals with 

white British ancestry, remove sex chromosome aneuploidy, and exclude participants who 

withdrew their consent. Variant QC was applied as follows: “plink --maf 0.001 --hwe 1e-10 

--geno 0.1”, in addition to filtering variants with imputation INFO score below 0.8 and 

excluding variants with duplicated RS IDs.

In both references, the calculation of allelic correlation (LD r2) was done from hard calls, 

separately for each chromosome, with a window size of 10 MB, and using a minimum LD r2 

threshold of 0.01.

Functional categories and gene-sets

For functional categories, we used the set of 75 binary annotations designed for stratified LD 

score regression (baselineLD_v2.2).

To define gene boundaries, we used NCBI Entrez database, starting from a set of protein-

coding (N=19,608 genes). After keeping only genes with known coordinates in the primary 

assembly of GRC37 human reference (annotation release 105.20201022), excluding genes 

on non-autosomes, and excluding genes without variants in MiXeR’s UKB or HRC 

references, we obtained a final list of N=18,201 protein-coding genes. The boundaries of 

each gene were extended by 10 KB up- and downstream, both for the GSA-MiXeR and for 

the MAGMA analyses.

To define gene-sets, we used GO terms from MsigDB v7.5 (biological processes - c5.bp; 

cellular component - c5.cc; and molecular function - c5.mf; resulting in 10,402 gene-sets in 

total). This set was extended using the SynGO database (https://syngoportal.org/), which 

added 73 gene-sets after excluding those comprising 5 genes or less. Among 10,475 
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resulting gene-sets there were 19,366 unique genes present, of which 16,787 were present 

among the list of 18,201 genes available for analysis. To avoid reporting results for highly 

overlapping gene-sets, we pruned gene-sets that overlapped with a Dice coefficient of 0.8 

or above, retaining smaller gene sets from each overlapping pair. This procedure excluded 

1,771 gene-sets from the analysis, and the final list used in the analysis contained 8,704 

gene-sets.

To validate whether gene-set enrichment was largely driven by a single gene, we performed 

additional leave-one-out analysis for all gene-sets with up to 25 genes, where enrichment 

was computed after removing one gene at a time and reporting the gene whose exclusion led 

to lowest enrichment.

GWAS Summary Statistics

Table 1 gives an overview of publicly available GWAS summary statistics used for 

this analysis. Summary statistics were converted to common format using cleansumstats 

pipeline. SNPs with MAF below 5% in the reference panel, strand-ambiguous SNPs, indels, 

and SNPs without an RS ID were excluded prior to the analysis. SNPs in the extended 

region around major histocompatibility complex (chr6:25–35 MB in GRCh37 genomic 

build) were also excluded due to long-range LD. In the replication analysis of schizophrenia, 

we used sub-study data to perform a variance-based meta-analysis on a randomly selected 

half of the cohorts. In our replication analysis of height, we performed GWAS on UK 

Biobank standing height (field 50), following the GWAS protocol from the Neale Lab. 

More specifically, we used PLINK for linear association analysis after standardizing height 

measures through an inverse rank-based normal transform done separately in males and 

in females, and controlling for age, sex, and the first twenty principal components of the 

genotype matrix.

Simulations

Simulations used a panel of N=337,145 subjects and M=12,926,669 variants from UK 

Biobank. For each run, we used PLINK to obtain GWAS summary statistics of a 

quantitative phenotype yk = ∑i gikβi + ek, where βi were drawn from a specific model 

(depending on simulation scenario, as described below), and ek residual was drawn from 

a normal distribution with zero mean and variance chosen in a way that sets heritability 

ℎ2 = var G β / var y  to a predefined level (h2=0.1, 0.4 or 0.7).

A subset of causal variants in simulations was selected by randomly pruning all reference 

variants at LD r2=0.1 threshold so that causal variants were in weak LD with each other. 

This ensured that each genomic region had a well-defined heritability, as for a quantitative 

phenotype y = ∑i giβi + ϵ the variance of the genetic component under a fixed effects model is 

given by V ar(∑i giβi) = ∑i βi
2 V ar gi + 2∑i ∑j > i βiβjCov(gi, gj), where the second component 

is negligible if causal variants are not in LD with each other. The remaining component 

allows the definition of genetic variance in a specific region g as ∑i ∈ g βi
2V ar(gi).

After selecting the set of causal variants, their effect sizes βi were selected to ensure 

pre-defined fold enrichment for a selected set of genes. We consider two regions in a 
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genome: G (representing the set of all genes) and g ⊂ G, representing the subset of N=1, 

3, 10, 30, or 100 enriched genes. Let HG and Hg be total heterozygosity for variants 

in G and g, respectively. To generate a trait with pre-defined fold enrichments, f(g), we 

draw βi from a normal distribution N 0, ℎ2f(g)
HG

 for variants in enriched gene-set g, and 

from N 0, ℎ2 HG − f g Hg
HG HG − Hg

 for the remaining variants in G\g. As shown in Supplementary 

Information, this translates to a true fold enrichment equal to the pre-selected f(g) value.

We chose to keep the sample size constant throughout all simulations as the power of 

GWAS depends on z-scores, which in turn depend on the product of the sample size and 

heritability (as long as polygenicity is kept constant). Thus, our simulations using QCed 

UKB genotypes (N=337,145 subjects) and h2=0.1 yield results that are expected to be 

equivalent to simulations with N=1,000,000 for a trait with SNP heritability of h2=0.03, or 

to N=100,000 for a trait a with h2=0.3. Polygenicity in the “base” scenario is defined to 

match the polygenicity of schizophrenia, with its estimated 30,000 causal variants17 (one of 

the highest estimates across complex traits).

Statistics and Reproducibility

Statistical methods for all analyses, including estimation of GSA-MiXeR and LDAK-GBAT 

standard errors, MAGMA gene-set enrichment p-values, and the design of simulation 

experiments are detailed in the corresponding Methods section. In simulations, n is the 

number of independent experiments. No statistical method was used to predetermine the 

sample size. No data were excluded from the analyses. We use previously collected datasets; 

thus, the experiments were not randomized, and the investigators were not blinded to 

allocation during experiments and outcome assessment. All codes to replicate the analysis 

are available as part of code availability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The datasets analyzed in this study are available for download from the following 

URLs: Schizophrenia GWAS60 from PGC, https://pgc.unc.edu/for-researchers/download-

results/; Molecular Signatures Database v7.5, https://www.gsea-msigdb.org/gsea/msigdb/; 

Synaptic Gene Ontologies 20210225 release, https://syngoportal.org/; functional categories 

(baselineLD_v2.2), https://alkesgroup.broadinstitute.org/LDSCORE/; 1000 Genomes 

Phase3 data, http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. UK Biobank, 

https://ams.ukbiobank.ac.uk/ams/; HRC Release 1.1, https://ega-archive.org/datasets/

EGAD00001002729; TOP cohort, https://app.cristin.no/projects/show.jsf?id=2505365, and 

country-level GWAS summary statistics for PGC SCZ, https://pgc.unc.edu/for-researchers/

data-access-committee/data-access-information/, have controlled data access. These data are 

not publicly available due to national data privacy regulations as they contain information 

that could compromise research participant privacy and/or consent. Statistical Source Data 

is provided for Fig. 1–4. Minimum dataset61 of this study is made publicly available, and 

contains reference data formatted to GSA-MiXeR format, including definitions of genes, 

gene-sets, functional categories, and sharable non-sensitive data derived from UK Biobank 

and HRC references.
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Fig. 1. 
Selected results from simulations a-d, comparison of GSA-MiXeR fold enrichment 

estimates versus ground truth; e-g, accuracy of sorting gene-sets according to the MAGMA 

enrichment p-values versus GSA-MiXeR fold enrichment. The simulations cover four levels 

of enrichment: 1 - null enrichment (a), 3-fold (b, e), 10-fold (c, f), and 30-fold (d, g); and 

vary in terms of the size of the enriched gene-set: 1, 3, 10, 30, and 100 genes (shown 

on the horizontal axis); ground truth is shown by the horizontal dashed line. Panels e-g 

show the position of the truly enriched gene-set among 1000 randomly generated gene-sets 

in simulations (expected rank is 1, lower values are better). In all simulations, the trait 

was simulated with the “base” scenario of genetic architecture (causal variants uniformly 

distributed across protein-coding genes), and total heritability of 0.4. Data are presented as 

mean values, with error bars showing standard deviation of the model estimate across twenty 

simulation runs. Individual simulation runs are shown as dot points. Additional simulations 

are presented in Supplementary Fig. 1–2.
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Fig. 2. 
Main GSA-MiXeR results for schizophrenia a-b, gene-sets implicated by MAGMA analysis, 

ordered by GSA-MiXeR fold enrichment. (a) GSA-MiXeR fold enrichment estimates, with 

error bars showing hessian-based standard error of the model estimates; vertical dashed 

line indicates no enrichment. (b) log10 of MAGMA’s gene-set enrichment p-value resulting 

from a test on the regression coefficient β, testing the null hypothesis H0: β = 0 against 

the one-sided alternative β > 0; vertical dashed line indicates significance threshold after 

Bonferroni correction for multiple comparisons across N=10475 gene-sets. The number 

of genes per gene-set is indicated in parenthesis after gene-set name. GOMF – Gene 

Ontology Molecular Function; GOBP – Gene Ontology Biological Processes; GOCC – 

Gene Ontology Cellular Component; SYNGO – Synaptic Gene Ontologies.
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Fig. 3. 
Exploratory GSA-MiXeR results for schizophrenia GSA-MiXeR fold enrichment estimates 

for gene-sets with a positive AIC (Akaike information criterion) value. Positive AIC 

indicates a better fit of the GSA-MiXeR full model compared to the baseline model for 

each of the implicated gene-sets. Error bars show hessian-based standard error of the model 

estimates. The number of genes per gene-set is indicated in parentheses after each gene-set 

name. GOMF – Gene Ontology Molecular Function; GOBP – Gene Ontology Biological 

Processes; GOCC – Gene Ontology Cellular Component.
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Fig. 4. 
Replication analysis for schizophrenia a-c, replication analysis for schizophrenia using sub-

studies from Psychiatric Genomic Consortia, using (a) gene-sets with up to 25 genes; (b) 

gene-sets with more than 25 genes, and (c) all gene-sets. Replication rate is computed 

for GSA-MiXeR and MAGMA analyses using two-fold cross-validation, after applying 

both methods to two independent and equally sized GWAS sub-samples. After ranking 

gene-sets according to fold enrichment of heritability (GSA-MiXeR) or enrichment p-value 

(MAGMA) obtained in the discovery sample, the replication rate (shown on the vertical 

axis) was then defined as the fraction of gene-sets that remain within top N gene-sets (N= 

10, 20, 50, and 100, shown on the horizontal axis) in the replication half of the dataset. Data 

are presented as mean values, with error bars showing standard deviation of the replication 

rate across ten simulation runs. Individual simulation runs are shown as dot points.
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Table 1.

Summary of main and exploratory GSA-MiXeR results for schizophrenia and 20 other diverse human traits 

and disorders.

Traits Sample size Main results Exploratory results

Count of 
gene-sets

Fold 
enrichment 

average 
(RMSE)

Average 
size of 

gene-sets 
(#genes)

Count of 
gene-sets

Fold enrichment 
average (RMSE)

Average 
size of 

gene-sets 
(#genes)

Alcohol 
consumption22 112117 0 1 21.12 (8.96) 7.0

Alzheimer’s 
disease33 86531/676386 13 10.30 (4.13) 65.5 51 9.36 (4.56) 11.1

Body mass index35 795640 16 1.28 (0.11) 900.8 41 4.86 (1.81) 9.0

Chronic kidney 
disease34 41395/439303 0 5 6.42 (3.03) 7.8

Chronotype32 345148 1 1.47 (0.16) 427.0 3 11.45 (5.49) 6.7

Cognition29 269867 1 3.49 (0.91) 5.0 6 3.54 (1.64) 6.8

Crohns disease23 12194/34915 77 2.59 (0.63) 513.6 52 15.93 (4.63) 9.1

Educational 
attainment28 765283 10 1.32 (0.07) 549.7 34 2.85 (0.80) 7.8

Fasting glucose21 281416 9 3.94 (1.00) 195.7 71 6.87 (2.46) 8.8

Fasting insulin21 281416 0 6 7.17 (4.63) 6.2

Glycated 
hemoglobin21 281416 3 5.35 (1.76) 460.7 57 8.41 (2.73) 10.9

Heart failure30 47309/930014 0 1 31.27 (11.55) 5.0

Height32 385748 40 2.26 (0.33) 636.1 405 4.69 (1.52) 17.5

Hospitalized covid31 32519/2062805 0 1 18.56 (6.92) 5.0

Migraine25 48975/540381 0 8 7.39 (3.08) 7.8

Schizophrenia8 53386/77258 17 1.97 (0.39) 441.4 36 7.28 (3.41) 7.8

Sleep32 384225 2 6.55 (1.96) 11.5 9 9.03 (3.31) 9.7

Stroke27 110182/1503898 0 3 14.82 (6.42) 7.0

Systolic Blood 
Pressure24 745820 25 1.82 (0.44) 706.8 202 4.70 (1.75) 14.5

Type 2 diabetes26 74124/824006 7 3.89 (0.73) 320.3 161 7.99 (2.75) 13.8

Ulcerative colitis23 12366/34915 33 2.06 (1.01) 353.8 20 11.98 (4.36) 7.2

These main results are based on gene-sets selected through MAGMA analysis, annotated with fold enrichment estimates computed by GSA-
MiXeR. Exploratory results are based on GSA-MiXeR analysis, implicating gene-sets with positive AIC (Akaike Information Criterion). Sample 
size indicates the total number of participants in GWAS for quantitative traits and the number of cases and controls for binary traits, respectively; 
RMSE, root mean square error.
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