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Implications of admixture in the Americas for asthma and ancestry

Christopher Raymond Gignoux

ABSTRACT

Diverse forces have shaped the genomes of individuals throughout the world. It is crucial to
understand those historical processes to study the genetics of individuals alive today. Nowhere
else is this more important than in the study of admixed populations. A majority of individuals
across the Americas are admixed, having received ancestry from sub-Saharan Africans,
Europeans, and Indigenous Americans. However, to this day, admixed populations remain
understudied, particularly because harnessing all information from their genomes requires in-
depth population genetic analysis. This is not typically part of standard practice in genome-wide
association studies. In this work I focus on two important aspects of understanding the history of
admixed populations of the Americas to identify important associations with medical traits not

possible using standard genetic analysis techniques. This work consists of two primary parts:

1) I develop a framework for genome-wide admixture mapping meta-analysis from high density
SNP genotyping data. I use it to identify a novel, heritable risk factor for asthma in over 7,000
Latinos at the SMAD? locus that could not be discovered using standard genotype association
techniques. I then demonstrate the downstream use of blood-based expression of SMAD?2 as a
biomarker for both risk of exacerbation and poor response to bronchodilators in people with

asthma.

2) Along with collaborators I developed the first fine-scale genetic map of indigenous and
admixed populations across the country of Mexico, to determine how fine-scale differentiation of
indigenous populations impacts the local communities of mixed ancestry. Using novel extensions

Vii



of Principal Component Analysis we identify striking geographic correlations with the
indigenous component of ancestry in admixed individuals, and use this data to identify for the
first time a clinically meaningful association between indigenous American origins and lung

function.

This work also includes an Introduction and Best Practices recommendations on local ancestry
estimation and methods for admixture mapping, and an Appendix on generating ancestry
informative marker panels. Relevant code and important functions for running admixture

mapping and meta-analyzing output will be made publicly available online.
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Leveraging Mixed Ancestry in Complex Trait Genetics

Population structure is a common issue in genome-wide association studies (GWAS),
that, when ignored, can lead to false positives as well as decreased power. These
concerns have caused researchers to identify methods to adjust out the effects of
population structure or simply focus on populations with less structure. In either case
choosing to ignore population structure and genetic ancestry results in an incomplete
picture of underlying genetic variation important in the study of complex traits. Genetic
ancestry captures important aspects of the haplotype patterns observed in real data. In
this way ancestry provides important information that can be leveraged for novel
discoveries GWAS. Here, | present some background on how to harness the genetic
information from ancestry along the genome to map complex traits in populations of
mixed ancestry. This set of techniques, also known as admixture mapping, is known to
be powerful in situations where disease prevalence differs between racial/ethnic groups.
We also demonstrate other important aspects of admixture mapping: we can achieve
better coverage across the genome than genotyping and imputation alone since we can
estimate ancestry in admixed populations accurately across the entire genome. Finally,
as the field migrates from a focus on common variants to rare variants, we argue that
patterns of rare variation that contribute to complex traits are likely to be captured in the
ancestry of admixed individuals, making admixture mapping a particularly exciting tool

to identify regions for resequencing. We will also release a suite of scripts and tools to



assist in performing admixture mapping from genome-wide SNP genotype data, called

MIXOMATIC, available at: https://code.google.com/p/mixomatic/

Background

The past ten years have seen a revolution in genetics both in terms of new data and
new discoveries. In particular, the advent of genome-wide association studies (GWAS)
has led to a wealth of new discoveries in the field of complex trait genetics, uncovering
new pathways and unexpected biological drivers of human physiology. However, the
field has been plagued with the criticism of so-called “missing heritability”: variants
identified via GWAS do not explain the heritable portion of a complex trait. Fewer
genome-wide significant variants have been found than initially expected and these loci
have explained less of the variance in disease (however notable exceptions include
Crohn’s disease and age-related macular degeneration). Over the years, novel methods
to capture additional information from the genome-wide array data, including imputation
and CNV analysis, have continued to be popular methods for identifying additional

heritable associated genetic markers from array data.

An important additional source of variation derived from genotype data is ancestry: the
complex demographic and selective events that have affected our genes over the
course of human history have shaped the frequencies of variants across the genome,
thereby affecting the null distribution used in genetic association testing. This is known

to be an issue in genetic association studies, and multiple solutions are readily available



for accounting for potential confounding due to ancestry. Most of these methods involve
measuring ancestry-related genetic differences, whether using PCA’ or another
dimensional reduction technique such as clustering®*, or inferring an expected level of
confounding with summary measures of population differentiation such as Fs’. These
are then incorporated into tests of association in a way to adjust out the effects of
potential population stratification. This can work to reduce inflation but it can be
underpowered when ancestry is known to itself be associated with the trait of interest. In
addition, best practices to account for ancestry in resequencing studies and pooled
variant analyses remain open problems. This is especially a concern for populations of
mixed ancestry (referred to as “admixed” populations), who have segments of their

genome inherited from multiple ancestral populations.

Instead of summarizing ancestry to simply “correct” for its effects, here we discuss the
possibilities of harnessing direct measures of ancestry along the genome to discover
associations with complex traits. We will focus primarily on populations with recent
mixed ancestry (admixed, see Figure 1) as they are most likely to benefit from this kind
of analysis. Most individuals across the Americas are admixed, including African
Americans and Hispanic/Latinos. These populations are also understudied in genetic
epidemiology, since the vast majority of GWAS findings have been identified in
populations of European descent®. We will discuss the background on how current
algorithms estimate segments of ancestry in admixed populations (referred to as local

ancestry estimation, or admixture deconvolution) with genome-wide SNP array data,



several methods for using ancestry estimates in trait mapping studies, as well as
techniques required for combining admixture mapping findings across multiple studies in
a meta-analysis. At the end we will discuss briefly more sophisticated tests that
incorporate multiple lines of genetic evidence, such as joint ancestry and genotype

association tests.

This is designed to be an introduction to relevant algorithms and analyses for admixture
mapping for individuals interested in genome-wide association studies. Details of
available methods, particularly computational implementations, to estimate local
ancestry can be found in the original papers describing the algorithms. Here we will
focus on how each method can be applied to datasets commonly used in the human

genetic community. Scripts and tools will be available at the MIXOMATIC website.

Local Ancestry Estimation from Genome-wide Genotype Data

Human history spans tens of thousands of generations back to our origins in sub-
Saharan Africa. Most of this history takes place in limited regions of sub-Saharan Africa.
This long period of time has allowed for populations to differentiate from each other,
particular at the extremes of continents. This is due to the primary method of settlement
across the world known as the serial founder effect model® that approximates the initial
settlement of new habitats as an expansion from a subset of the population that existed

before. In this way, populations further along in the range expansion have a subset of



the genetic diversity of populations that are closer in proximity. While this is a very
simplistic model, if we ignore admixed populations the serial expansion model fits
patterns of genetic diversity across the world quite well, as supported both globally and
within multiple continents®'°. After time this results in a pattern of isolation-by-distance,
where subsequent migration has been geographically restricted, yielding more highly

differentiated populations at geographic extremes.

In admixed populations, recent migration has caused at least two previously isolated
populations to come into contact and interbreed. This process results in a sharing of
alleles from both ancestries in subsequent generations. These alleles are not inherited
at random but rather dictated by patterns of recombination, which introduce only a small
number of breakpoints between maternal and paternal chromosomes in each
generation. With a small number of generations of admixture compared to the previous
number of generations of continental population isolation, ancestry will tend to be
homogeneous across long tracts of the chromosome as there have not been enough
generations to homogenize alleles. In other words, ancestry LD in admixed
populations is much higher than genotypic LD. Population genetic theory
demonstrates that contiguous tracts of ancestry in an admixed population can get into
the tens of megabases''. This also implies that switchpoints between ancestries along a
chromosome will tend to be sparse, yielding an expectation of long, contiguous blocks
of ancestry along a chromosome. This is the primary assumption that algorithms to

estimate local ancestry use in order to estimate locus-specific ancestry. In Figure 2 we



plot the example output of local ancestry estimation for a Puerto Rican individual, for

context, showing the long tracts of ancestry.

Genome-wide Genotype Arrays and the Concept of Coverage in the Whole
Genome Sequence Era

Traditional genome-wide association studies involve SNP genotyping arrays containing
hundreds of thousands to millions of markers. These markers are enriched for common
variants with the hope of “tagging” unobserved variation based on underlying patterns of
linkage disequilibrium (LD) in the neighborhood of each SNP. Coverage is then typically
evaluated with a fixed pairwise R threshold from the array variants to a set of known
variants, whether from HapMap or the 1000 Genomes Project. Manufacturers can only
measure coverage for populations that are adequately sampled. In the case of
European-descent populations estimates of coverage are likely realistic, however for the
vast majority of populations these estimates are less accurate. In particular, moving
beyond populations covered or related to those in the 1000 Genomes Project our

knowledge of patterns of variation is far more limited.

On the other hand, by virtue of the high degree of ancestry LD in populations of mixed
ancestry, genome-wide local ancestry can be estimated from any high density SNP
genotyping array. Even if local ancestry estimation is less accurate than direct
genotyping of tag SNPs, ancestry can capture genetic variation in regions with even

limited genotype coverage or a high degree of ascertainment bias.



In addition, genotype coverage by virtue of correlation structure, is enriched for common
variation. On the other hand, there is a growing interest in identifying the contributions of
rare variation in disease risk. Traditionally these are identified through direct
resequencing. However, rare variants tend to be population specific, which is consistent
with population genetic theory and has been demonstrated in large sequencing studies
such as the 1000 Genomes Project’. Therefore, rare variants are likely better captured
through ancestry-LD as compared to genotype-LD, making admixture mapping the ideal
tool to identify rare variants that contribute to complex disease. In addition, admixture
mapping can combine heterogeneous effects at a single locus by virtue of capturing a
larger region. With accurate local ancestry estimation available, admixture mapping is a
complimentary approach to standard GWAS that will maximize the potential for novel

discoveries from genetic association studies.

Approaches to Local Ancestry Estimation with Genome-wide Data

A large amount of ancestry estimation was performed prior to the widespread availability
of genome-wide SNP genotype data. Earlier methods relied on a smaller set of unlinked
markers and weakly linked ancestry across sites. Typical algorithms include those found
in STRUCTURE'®, ANCESTRYMAP'®, and ADMIXMAP'. These have been successful
for performing admixture mapping with a small AIMs panels (sized in the hundreds to
thousands of SNPs), and typically use a Bayesian approach to integrate over the error

in local ancestry estimation and biases in reference data. This, then, allows for mapping



of traits even with imperfect local ancestry estimation given a small number of markers.
These algorithms were not designed to handle dense SNP genotype data and thus will
not be discussed here. Instead, we will discuss more recent methods designed for
similar marker densities as found in GWAS, and that provide higher levels of accuracy

(>95% for Latinos, and >99% for African Americans).

As ancestry is a more precise characteristic of haplotypes rather than diploid genotypes,
modern local ancestry methods either take as input pre-phased haplotypes or are
incorporated into diploid measures using phase-aware methods. Current methods are
typically supervised, requiring haplotypes representative of the ancestral populations fed
into the algorithm (although there are some exceptions). However with more and more
data becoming publicly available, identifying reference individuals for training local

ancestry algorithms will become less challenging over time.

Local ancestry algorithms tend to fall into two categories: those that are based on fixed
windows and those that are not. The fixed window heuristic uses the explicit assumption
of ancestry LD: window size is set such that ancestry can reliably assumed to be
constant across the window. By virtue of fixing the window size these models are
inherently simpler and more computationally efficient. The likelihood of ancestry coming
from one of K parental populations can be evaluated within each window. Transitions
between windows of ancestry then can be modeled using overlapping sliding windows

or a Hidden Markov Model (HMM). For example, the original version of



LAMP/WINPOP'>'® used an approximate joint likelihood of unlinked genotypes (with the
linked high-density SNP data thinned) across overlapping sliding windows of fixed
ancestry. This will generate a simple window-based estimator that can be aggregated
across multiple windows. A similar method was employed by Wall et al.’’, who used a
composite likelihood rather than explicit thinning. As an alternative method of likelihood
generation, PCADMIX'®'® uses loadings from a chromosome-wide PCA to project
individuals into PC space in fixed, non-overlapping windows, estimating likelihoods for
each window haplotype using Gaussian discriminant analysis fitted to the clusters of
reference individuals. For both LAMP and PCADMIX, an HMM is run after the

classification to evaluate the most probable ancestry path for each individual.

A recent addition to the fixed-windows approach can be found in RFMIX®, which
approximates a probability using the ensemble of bootstrapped classifiers known as
random forests. This method also can use random forests clustering to recruit ancestral
haplotypes within the admixed individuals to boost accuracy, particularly in situations
with imperfect reference data available. It also evaluates ancestry between switchpoints
as a conditional random field, modeling ancestry switches along the chromosome as a
discriminative process rather than the generative HMM. Another recent algorithm,
LAMP-LD?!, uses a phasing-like approach similar to fastPHASE? to evaluate the
likelihood of generating the observed haplotypes from ancestral haplotypes. A higher-
level HMM is used to estimate ancestry switches between windows. As a secondary

step some of these methods can identify novel switchpoints (for example, a local search



around a break in ancestry between windows for a switchpoint with a better fit to the

observed alleles). WINPOP and LAMP-LD both include this second step.

In contrast, other methods attempt to jointly model ancestry and switchpoints at each
site along the genome. These methods are based on HMMs estimating ancestry as a
hidden state from allele to allele generated from differences between ancestral groups,
using sequential Markovian processes designed to approximate population genetic
theory expectations under admixture. This genotype-level estimation has the potential to
localize real switchpoints more accurately, typically at the expense of computational
efficiency and robustness. The most commonly used method with this kind of approach
is HAPMIX,?® which uses a similar phasing-inspired approach as LAMP-LD but is limited
to two ancestral populations while still achieving high accuracy. Similarly, MULTIMIX?*
extended a similar approach to more complex admixtures and included more methods
for parameter estimation depending on the user’s interests.

The latest methods as tested by the Thousand Genomes Project® (e.g., LAMP-LD,
RFMIX, MULTIMIX, and a 3-way version of HAPMIX) all give robust estimates across
multiple admixture scenarios, allowing for highly accurate (e.g. >99%) estimation for 2-
way admixture as present in African Americans, and >95% accuracy for 3-way
admixture as present in Latinos as determined via simulation. Importantly for the user,
methods are consistently biased in the same genomic regions, suggesting the specific
choice of algorithm is unlikely to change local ancestry estimation much, nor greatly

affect admixture mapping results. In MIXOMATIC we provide utilities to translate data

10



to/from both LAMP-LD and RFMIX, but any of the newer generation of local ancestry
algorithms would be expected to give comparable results that can be used reliably for

admixture mapping.

Using Local Ancestry to Map Traits on the Genome

Under a neutral scenario, an admixed population will be expected to have admixture
proportions drawn from a multinomial distribution defined by the overall (or global)
ancestry proportions?®. In the scenario where ancestry at a locus is harboring causal
variants for a certain disease, ancestry at that locus only is expected to be enriched in
cases. This intuition brought up the simplest of admixture mapping tests, which does not
require the recruitment of any controls for analysis, reducing cost and simplifying
recruitment. By comparing the distribution of ancestry at any locus to the global ancestry
patterns, each individual can serve essentially as their own control (assuming that the
locus driving ancestry differences is small enough to negligibly affect the overall
average genomic ancestries). This locus-specific deviation is typically measured using a
z-score hypothesis test: measuring the standard deviation either empirically across the
genome or using the parametric estimation directly from the multinomial distribution.
This case-only test, while simplistic, has been shown to be the most powerful test for

admixture mapping, even when the study design includes controls (e.g. #*%’).

11



This may be true in ideal scenarios (and has shown some success in two-way
admixture scenarios as with African Americans) but this test can be difficult to
implement in practice. There are several reasons for this relating to both the
assumptions of the test and the imperfect nature of local ancestry estimation. We outline
some of the major reasons below:

1) Deviations in ancestry can be caused by other genomic forces, such as positive
selection®. In a case-only analysis any positively selected local ancestry would
appear to be associated.

2) Case-only analyses by definition ignore controls. Regions of the genome that
could harbor protective alleles will go unnoticed.

3) Case-only analyses cannot take into account any other known predictors, which
can lead to confounding, particularly with multiple correlated phenotypes.

4) Perhaps most important: local ancestry estimation is imperfect, and this process
is more accurate in certain parts of the genome than others #°. Regions with
biased local ancestry estimation, whether through inaccurate algorithms or

imperfect reference panels can appear to be significant loci 2",

Because of these reasons, | argue that it is important to incorporate evidence from both
cases and controls in our admixture mapping. Regions with ancestry deviation in all
individuals, whether from a history of positive selection or biased local ancestry
estimation, would no longer appear significant as the trend would be observed in both

cases and controls. Including controls at associated loci decreases power somewhat as

12



the control ancestry is also drawn from a distribution (one can think of this as an
analogous process as adding a degree of freedom), but including them dramatically

reduces false positives (see an example in figure 3).

A simple case-control test then can be formulated using a generalized linear model
(GLM), modeling the association between a trait and the number of chromosomes of
ancestry, incorporating known covariates where appropriate. These covariates can be
genetic (e.g., accounting for potential ancestry stratification via inclusion of global
ancestry), or environmental (e.g. fertility measures in the study of breast cancer®).
GLMs are flexible, interpretable and included in numerous statistical and genetic
analysis packages including PLINK. This can allow a geneticist to perform admixture

mapping and interpret the output similar to standard genetic analyses.

Other study designs lend themselves to admixture mapping as well. A trio-based design

with two parents and an affected proband is typically analyzed using a transmission-
disequilibrium test (TDT®?). This same TDT framework is applicable to admixture
mapping®*. Here it is crucial to phase the trios together to estimate the
transmitted/untransmitted haplotypes. This will remove any potential for Mendelian
errors that would bias the TDT®°. For more complicated family relationships, the GLM
framework can be extended to include variance components that can account for

kinship or family relationships. In this way admixture mapping can be performed in

13



complex pedigrees or populations with a high degree of endogamy using linear mixed

models such as EMMAX®® or GEMMA®’.

Note that the contrasts between case-only and case-control analyses are only
applicable to binary traits. Quantitative traits can be tested for association in a standard
linear correlation/regression framework similar to that performed with genotypes, or

categorized into a binary trait if appropriate.

Omnibus Admixture Mapping Tests

In the case of 2-way admixture (such as African-Americans), the results of admixture
mapping can be captured by only looking at one ancestry. The effect of the other
ancestry by definition must have the opposite effect. In contrast, populations with more
complex histories (such as Hispanic/Latinos) have multiple ancestries that must be
analyzed together to understand fully the patterns of ancestry at any given locus. This
requires the development of slightly more complicated omnibus tests that can
accommodate evidence from multiple ancestries.

To test for an association in the presence of K ancestries, a flexible approach for
admixture mapping is to use nested GLMs to perform a likelihood ratio test. With case-
control data, the likelihoods are calculated from a full model including K-1 local ancestry
terms plus all other relevant covariates, and the restricted model that omits the local

ancestry terms. The result then follows a »* distribution with K-1 degrees of freedom.
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The extra degrees of freedom are needed as one is combining evidence across all
observed ancestries, but the tradeoff is that the model can combine evidence from all
ancestries and can identify the regions with the most significant admixture mapping
values given any combination of ancestries. A similar method can be extended to linear
mixed models for admixture mapping.

In contrast to the other scenarios, the TDT itself does not calculate a likelihood, so to
create a multi-allelic TDT we model counts of transmitted/untransmitted ancestries via
another GLM in the form of Poisson regression. Here the full regression model counts of
the transmitted/untransmitted pairs of each set of K ancestries are used, stratified by
pairs of ancestry terms in the data. The resulting set of observations will be based on
the total evidence given by all K! pairs of transmitted/untransmitted ancestries. This
GLM is then compared to a null situation, where each of the counts is only modeled by
an intercept. By virtue of the a single ancestry in the regression being entirely
determined by the others, the result of the likelihood ratio test then again follows a
distribution with K-1 degrees of freedom. This is similar to a McNemar’s test of matrix
similarity with the removal of a degree of freedom. A more in-depth discussion of these

|.38

is available in Gignoux et al.”®, and can be seen in the omnibus admixture mapping

functions available in MIXOMATIC.

Estimating Local Ancestry at Untyped Sites

Typical GWAS meta-analyses require imputation to create a consensus set of

marker data even if samples are typed across various platforms. For admixture
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mapping, another form of imputation of missing data is required, but the approach is
much simpler than typical genotype imputation algorithms. Given the high level of
ancestry LD, local ancestry at an untyped site can be estimated via linear interpolation
between the neighboring sites. Essentially this is a distance-weighted average for
untyped sites, accounting for the possibility of recombination on either side of the
untyped site (Figure 4). Given the high levels of ancestry LD, most sites on the genome
will be within a block of ancestry, but the linear interpolation method captures some of
the uncertainty we observe around switchpoints. This way any data platform can
imputed up to a reference dataset such as HapMap or 1000 Genomes. In MIXOMATIC
we provide a function for generating imputed local ancestry calls.

Depending on the goal, it may be possible, particularly with dense imputation (such as
1000 Genomes Project data) to use linear interpolation to impute the test statistic
directly. This method has not been tested extensively but only requires one round of
imputation, rather than imputing each individual, and so could provide massive
computational efficiency. The scripts provided can easily be modified to do this if

appropriate for a researcher’s specific study.

Meta-analysis of Admixture Mapping

Admixture mapping results in a similar set of statistics used for GWAS meta-
analysis, including odds ratios and standard errors for single ancestry associations, and
z-scores. These can be combined using standard meta-analysis techniques. Many

programs exist for combining p-values; we include Fisher’s method in MIXOMATIC and
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encourage users to try meta-analysis with covariate testing using METAFOR®, as well

as some of the powerful random effects models available in METASOFT*.

Estimating the multiple testing burden

By virtue of ancestry LD extending across broader regions, the Bonferroni-based
GWAS threshold of p<5x1078, assuming one million independent tests across the
genome, is overly stringent. Yet with the observed level of correlation in admixture
mapping it can be difficult to evaluate what constitutes genome-wide significance. The
gold standard for this is to perform permutations, however these are extremely
computationally expensive, particularly for a meta-analysis. Approximations of the data
exist, but these still use correlations from the raw data rather than summary statistics
shared in a meta-analysis. However, multiple methods exist that attempt to estimate the
data directly from genotype correlations, including SLIDE*' and spectral methods*, but
these become difficult to consolidate across studies using multiple arrays.

An efficient approximation of the multiple testing threshold first proposed by

Shriner et al.*3

involves serial autoregression along the chromosome. Given that local
ancestry is typically modeled under Markovian assumptions, this method is well suited
to modeling correlation structure from site to site. Similar to the local ancestry
imputation, this measure of correlation can be done either on the local ancestry calls

themselves or the summary of the data. In our meta-analysis of admixture mapping for

asthma , we used autoregression of the effect size estimates across the meta-analysis
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resulting in empirical estimates of the multiple testing burden. These are very close to

estimates given from permutations'®**

, While remaining extremely efficient.
We provide a function using a similar method to Shriner et al.*® to calculate the multiple
testing burden, although we encourage readers to investigate multiple methods or try

permutations with a high performance computing cluster.

Joint Genotype/Ancestry Tests

In some situations, particularly given the indirect associations observed in GWAS™® | it is
advantageous to combine evidence from both traditional GWAS and admixture mapping
at a single locus. In its most basic form, this can also be captured by a likelihood ratio
test estimated by GLMs, where the difference between the full and restricted models
includes all the evidence at a locus: both local ancestry and genotype, while the
restricted model only includes the other covariates. While penalized by multiple degrees
of freedom, it should have appropriate false positive rates and is not based on heuristics
or modeling assumptions of associated regions. This method can also be approximated
by combining p-values from admixture mapping and a GWAS adjusting for local
ancestry, using a meta-analysis method (for example, Fisher’'s method included in

MIXOMATIC).

The inclusion of the high ancestry LD in the model should serve to decrease the multiple

testing burden compared to GWAS. For example, using permutations from the Galanter
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et al. data* we found that the joint admixture/genotype likelihood ratio in the GALA II
study of Latinos had a multiple testing burden of 3x10”" as compared to the standard
GWAS threshold of 5x10°8. Here the result of the likelihood ratio test would follow a x?
distribution with K degrees of freedom (including an extra degree of freedom for
genotype). This extra degree of freedom is a penalty however multiple groups have
demonstrated that for many realistic scenarios incorporating both lines of evidence has

more power than either GWAS or admixture mapping alone “°*’.

Several groups have published on ways of getting around the extra degree of freedom
penalty. Each has its benefits and disadvantages. Pasaniuc et al.?” used a model of a
causal allele driving associations in both admixture mapping and GWAS. Their MIX
statistic combines evidence from both a genotype association adjusting for local
ancestry and the expected admixture mapping value at that locus driven by the causal
allele frequencies in the ancestral populations. Because the likelihood is only driven by
the single variant’s contribution to both genotypic association and local ancestry
differences, this remains a 1 degree of freedom test, providing increased power in the
right scenario, particularly for markers with high Fs between ancestral populations.
However by design their model can only identify associations that fit the expectations of
their causal model. In practice this may not always fit the data, particularly if the
genotypic association is indirect. In addition, their standard admixture mapping values

are given by case-only analysis and can be sensitive to all the potential biases given
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previously, although case-control admixture mapping values can easily be integrated

into the MIX framework.

In contrast, Shriner et al.*® used a Bayesian framework called BMIX to combine
evidence from both association techniques in a two step process. First, admixture
mapping was performed assuming a uniform prior across the genome. The posterior
was then approximated using p-value-based likelihoods calculated from relevant central
and non-central »? distributions (with parameters estimated from multiple testing and
expected power values). That posterior was then used to update the prior for the
GWAS, stratifying out local ancestry, run as a separate GLM. A GWAS posterior is then
calculated that combines evidence from both admixture mapping in the form of the
locus-specific prior and the genotypic evidence beyond that from local ancestry. This
test then is assumed to be significant then when a posterior value (incorporating the
multiple testing burden) is above 50%, indicating that the model supports association.
The BMIX method is far more flexible than MIX as it places no restrictions on causality
or effect direction, however is more approximate than either the full-df methods or MIX.
Both MIX and BMIX represent novel breakthroughs to the field, and demonstrate
increased power by leveraging the rich population history of admixed populations to
discover new traits. Local ancestry functions in MIXOMATIC will dovetail with both,
particularly BMIX as it is coded in R and can be incorporated in standard MIXOMATIC

analysis.
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Fine Mapping

Unfortunately the downside of high coverage of Ancestry LD means significant ancestry
peaks tend to be broad, potentially on the order of megabases (similar to linkage
peaks). This can make it difficult to identify the gene driving the association. One must
resort to additional association techniques, whether genotypic or gene expression
association, to identify the specific variation driving the association with ancestry. First,
identifying the borders of the peaks can be a challenge. Researchers can use a fixed
threshold of 1 LOD score (or approximated by a change of 1 power term in the p-value),
a change in likelihood, or choose a fixed p-value threshold to define the bounds of an
admixture mapping peak around the significant maximum. Regardless of the approach it
is important to note that these are approximate boundaries. Certainly, identifying the
gene of interest within the genome-wide significant portion of the admixture mapping

peak is the ideal scenario, and therefore region deserves further focus.

| will focus on several strategies for genotype fine mapping as gene expression
validation is similar whether following up on GWAS or admixture mapping hits. With
genotype/imputation-based fine mapping, the goal is to identify the genotype driving the
association within the admixture mapping peak. This can happen one of two ways. The
first is by finding a genotype associated with the outcome. The idea is to identify a
genotype associated beyond the admixture mapping signal. Typically this will require

adjustment by local ancestry and not just global ancestry (to account for the known local
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ancestry effect). Here joint genotype and local ancestry testing can also be used to

boost results.

The other approach for fine mapping is based on the notion that the local ancestry
estimates are driven by the genotypes themselves, and so causal genotypes should
contribute to the local ancestry association. Intuitively markers with a high amount of
ancestry information should be driving the local ancestry association. An example of this

can be seen in Fejerman et al.*?

, Where the authors used a greedy search to identify the
subset of SNPs that best explained their admixture association (ie, when included in the
model, the local ancestry term went from being genome-wide significant to >0.05), as a

suggestive list of top variant candidates within the admixture mapping peak.
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A Pipeline for Admixture Mapping

Retrieving reference data: For African Americans primarily receiving ancestry from
western African and European ancestry?°, the CEU and YRI populations from
HapMap/1000 Genomes are publicly available. Native American samples from Mexico
and South America are publicly available either on the Affymetrix 6.0 platform®, or the

lllumina 650Y as part of the HGDP*.

Ensure you have high quality genotype data: low-quality genotypes can cause
ancestral misclassification'® and confound admixture mapping results. Ensure you
remove any sites with any high levels of missingness or extreme deviations from Hardy-
Weinberg equilibrium. Remove monomorphic sites if required by the local ancestry
algorithm. If possible, remove sites C/G and A/T SNPs as these can possibly have
ambiguous stranding. The find_cg_at.py script in MIXOMATIC will return a list of
markers for PLINK to filter out given a .bim file. Importantly, given the high levels of
ancestry LD you do not need the full complement of SNPs to perform accurate local
ancestry estimation. Certainly a greater number of SNPs should perform better, but as a
general rule several hundred thousand markers should suffice for accurate local
ancestry estimation from modern array data®>®°. This, then, allows for local ancestry
estimation utilizing disparate ancestral data from multiple platforms with varying overlap
in the SNPs genotyped. As an example, local ancestry tracts for 1000 Genomes CLM,
MXL, and PUR individuals were estimated using Native American reference haplotypes

from the Affymetrix 6.0 with <200,000 variants overlapping.
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Create a data freeze of high quality SNPs from your admixed population and then
intersect with your reference data. Ensure your data is internally consistent and free of
obvious QC problems using PCA or ADMIXTURE* to ensure that the reference

populations are identifying expected ancestry proportions without biases.

Phase and run local ancestry estimation: modern algorithms typically require
haplotypes, and will be more accurate when haplotypes are used as input'”'°. This will
require parsing scripts, and MIXOMATIC includes parsing scripts to format data both
into and out of beagle format. In contrast shapelT uses PLINK binary files as input, but a
parsing script is provided to send shapelT output to RFMix. Here if you have individuals
in trios you will need to ensure that your phaser of choice is expecting family data. Run
the data through your local ancestry algorithm. This step can be long and particularly
memory intensive. Once the program finishes, the output will be one value for each

ancestry per SNP or window, which can then be used for admixture mapping.

Admixture Mapping: Output will be one of K ancestries for each site in each haplotype.
The output can be used to calculate K ancestry-specific matrices. This will recapitulate a
biallelic SNP (e.g. whether the ancestry itself is major/minor, and its use in effect sizes).
Basic GLM functions in MIXOMATIC are provided for logistic and linear models
incorporating other covariates in R. In addition, we provide a TDT test for trio data

formatted from beagle including the transmitted/untransmitted haplotypes.
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Multi-way admixed populations such as Latinos have multiple ancestries at any given
locus, necessitating a more complex test of omnibus ancestry. Here we provide GLM-
based likelihood ratio tests for omnibus admixture mapping. Similarly we also provide

joint genotype/ancestry tests.

Ancestry Imputation: imputation of untyped sites via linear interpolation is needed to

consolidate results across multiple platforms as is common in meta-analyses. Here in

MIXOMATIC we provide a function in R for interpolation during admixture mapping and

a faster text-based interpolation using Python. These can interpolate up to Hapmap II,

1000 Genomes, or any other data set relevant to the researcher.

Results from this pipeline can then be used in standard meta-analysis frameworks.
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Figures

Gen. O:
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Gen. 2:

Gen. x:

Figure 1. The process of admixture. At generation 0 the two ancestral populations
remain distinct as given by the two distinct colors. After one generation, individuals have
heterozygous ancestry. From then recombination breaks down the ancestry into smaller
and smaller tracts, yielding the mosaics observed today from high density genotype or

sequence data.
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Figure 2. Ancestry karyogram for a Puerto Rican individual in GALA |, as estimated
using LAMP/WINPOP. The postcolonial process of admixture results in a mosaic of
ancestry, where individuals tend to have tracts of ancestry 0.5 cM-50cM long. These

ancestries can be estimated from high-density genotyping data to high accuracy.

27



Admixture Mapping - Native American Ancestry, case-only, Mexicans in GALAT
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Figure 3. Case-only analysis in Mexicans can lead to extreme inflation, primarily from

imperfect reference panels and biased local ancestry estimation. Data is from Mexican

asthma cases included in Torgerson et al.>®. For each ancestry there is a high degree of

inflation in contrast to the appropriate type 1 error rates in the case-control analyses

using the same data (see ).
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Figure 4. Description of ancestry interpolation/imputation scheme. Given observed
ancestries in red from local ancestry estimation, our best guess of ancestry at
unobserved sites is given from a linear interpolation of genetic position (in Morgans),
here shown as a gray line. Importantly, most interpolated ancestry estimates on the

genome will be identical to the flanking site.
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Chapter 2. An admixture mapping meta-analysis identifies an ancestry-specific risk factor

and potential biomarker for asthma

Abstract

Background

Asthma is a common but complex disease with significant racial/ethnic disparities in
prevalence, morbidity, and response to therapies. Analysis of genetic ancestry can help to
explain these differences.

Methods

We leveraged the mixed ancestry in 7,008 Latinos and African Americans in the EVE
Asthma Genetics Consortium to perform an admixture mapping meta-analysis for asthma.
We replicated associations in GALA II, an independent study of 3,774 Latinos. We
measured gene expression in the whole blood of 161 Puerto Ricans from our replication
sample to identify potential biomarkers for lung function, bronchodilator drug response,
and exacerbations.

Results

We identified a genome-wide significant admixture mapping peak centered on SMADZ in
Latinos (p=6.8 x 10-¢), where Native American ancestry was associated with increased risk
of asthma (OR=1.20, 95% CI=1.07-1.34, p=0.002) and European ancestry with decreased
risk (OR=0.86, 95% CI=0.77-0.96, p=0.008). Our findings replicated in GALA II (p=5.3x10-3,
overall meta-analysis p=2.6x10-7). Asthma cases had 28% lower whole blood expression of

SMADZ compared with controls (95% CI:12-37%, p<0.001), corresponding to a best-fit OR
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of 8.57 (95% CI=2.57-25.19, p<0.001). Lower SMADZ expression was also associated with
decreased albuterol response and increased numbers of exacerbations.

Conclusions

We identified a Latino-specific association between local ancestry at SMADZ2 and asthma,
and found that decreased SMADZ expression in the blood was strongly associated with
increased asthma risk and severity. Our findings may help explain differences in asthma
prevalence and morbidity between racial/ethnic groups, and identified SMADZ expression

in blood as a potential biomarker for asthma.

Word Count: 246
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Introduction (word count 587)

Asthma prevalence varies dramatically between racial and ethnic groups. In the United
States, childhood asthma prevalence is highest among Puerto Ricans (24.8%), intermediate
among African Americans (16.3%) and lowest among European Americans (7.8%) and
Mexican Americans (7.8%).! These racial/ethnic disparities extend to asthma mortality,
which is four-fold higher in Puerto Ricans and African Americans than in Mexican
Americans.? Substantial evidence supports a genetic basis for asthma, with estimates of
heritability as high as 75%.3 Genome-wide association studies (GWAS) have identified >25
novel genetic risk factors for asthma.* Nonetheless, known genetic associations account for
only a small proportion of the genetic basis of asthma, and have provided limited insight
into racial disparities in its prevalence and severity. This is partially due to the limited
number of GWAS studies in non-European populations.>7 Many asthma-associated variants
identified in European Americans demonstrate significant heterogeneity or simply have
failed to replicate in non-European groups.®? In addition, rare, population-specific genetic
risk factors are likely to play a role. These unexplored genetic factors may contribute to

disparities in asthma prevalence and severity across populations.

While exome and whole-genome sequencing may identify novel variants associated with
complex disease,!? such approaches are costly in large population samples and present

numerous analytic challenges. One alternative is to re-mine existing GWAS data through
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admixture mapping to identify novel disease-associated loci in diverse populations using a
less expensivell and more flexible!213 methodology. Latinos are primarily descendants of a
three-way admixture of Native American, European, and sub-Saharan African
ancestors,'41> and African Americans are primarily admixed descendants of sub-Saharan
African and European ancestors.1¢ This wide variation in genetic ancestry, along with
socioeconomic and environmental differences at both individual and population levels, can
be leveraged to explore the underpinnings of disparities in asthma prevalence and severity.1”
We previously demonstrated that variation in overall genetic ancestry was associated with
asthma,!8 lung function,!® and bronchodilator responsiveness.20 If the frequencies of
patterns of disease-causing genetic variation are different between the ancestral
populations of admixed individuals, the frequency of genetic ancestry at that locus will be
also be different: these loci can be identified through admixture mapping. We hypothesize
that the dramatic differences in prevalence between racial and ethnic groups make asthma
an ideal candidate for this technique. Indeed, we have previously demonstrated the utility
of locus-specific genetic ancestry estimated from genome-wide association data to identify

novel genetic risk factors in both African Americans and Latinos?1.22.

Although admixture mapping can identify a locus in the genome, further characterization is
needed to identify the relevant gene. In several instances, measures of gene expression
have augmented GWAS studies in the search for genes that contribute to complex
disease.?324 Evaluation of gene expression can provide insight as to the functional effect of
causal genetic variation driving the observed association, and characterize downstream

effects in relevant tissues. In the case of blood and other easily collected tissue, evaluating
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gene expression signals also permits identification of novel biomarkers for disease and

severity.

We hypothesized that admixture mapping could identify novel, potentially population-
specific risk factors for asthma in Latinos and/or African Americans. Our prior meta-
analysis using traditional GWAS methods for asthma in three racial/ethnic populations in
the U.S. replicated a number of known associated regions, and identified an African
American-specific association at PYHIN1.2> Here, we extend these studies by performing an
admixture mapping meta-analysis for 7,008 Latino and African American subjects included
in the EVE Asthma Genetics Consortium (www.eve.uchicago.edu), with the goal of
identifying novel, and potentially population-specific risk factors for asthma that are

captured by ancestry from existing genome-wide genotype data.

Methods: (word count 596)

We outline the study approach in brief in Figure 1.
Study Subjects

Discovery Population

We included data from self-identified Latino and African American subjects from nine
independent studies included in the EVE Asthma Consortium in our admixture mapping
meta-analysis. Detailed descriptions of all studies are published elsewhere.?> EVE is a large,
multi-ethnic assembly of asthma studies with existing genome-wide SNP genotypes from

nine different U.S. institutions. All autosomal genotypes passing quality control standards
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were included in the current study, including 3,902 Latinos and 3,106 African Americans

(Table 1).

Replication Population

We tested genome-wide significant associations from the discovery population in the
Genes-environments & Admixture in Latino Americans (GALA II) Study,?¢ a large, multi-
center case-control study of Latino children between the ages of 8-21 years with and
without asthma (Table 1 and Supplementary Material). Local institutional review boards
approved the studies and all subjects and legal guardians provided written informed
assent/consent. A total of 4,041 children (1,976 participants with asthma and 2,065
healthy controls) were recruited from five centers (Chicago, Bronx, Houston, San Francisco
Bay Area, and Puerto Rico) using a combination of community- and clinic-based
recruitment. Participants with asthma self-reported a physician diagnosis of asthma and
reported at least two symptoms (shortness of breath, wheezing, or cough not associated
with upper respiratory illness) or chronic use of controller medication (inhaled
corticosteroids, leukotriene modifying agents, theophylline or oral steroids) in the two

years preceding recruitment.

All individuals in GALA Il were subject to extensive phenotype characterization, including
pulmonary function testing in accordance with ATS criteria. Subjects with asthma were
evaluated for bronchodilator response. A subset of 3,774 GALA II subjects were genotyped
on the Affymetrix Axiom® Genome-Wide LAT1 Array?’ and passed manufacturer-

recommended standard quality control measures, yielding 747,129 SNPs.
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Gene Expression Analyses

Whole blood RNA was extracted from a random subset of 161 individuals (107 cases, 54
controls) of Puerto Ricans from our replication sample (GALA II). Gene expression levels
were measured using quantitative PCR and normalized using the housekeeping gene GUS.
Expression levels were calibrated using the delta Ct transformation. All samples had an

RNA integrity value > 7.

Statistical Analyses

Statistical analyses were performed using R, Python, and PLINK

(http://pngu.mgh.harvard.edu/~purcell /plink/). Local ancestry was estimated
individually for each study using one of two LAMP algorithms: LAMP?28 for case-control
studies, and LAMP-HAP?? for family-based studies to preserve transmitted /untransmitted

haplotype status.

We used a 2-degrees of freedom likelihood ratio test to jointly evaluate the local effect of
the three ancestral populations in Latinos (Supplementary Material). Case-control studies
were analyzed using a logistic regression model, while trio-based studies were analyzed
with a Poisson regression model of the counts of transmitted and untransmitted alleles. To
establish a study-specific significance criterion, we employed an empirical autoregression
framework, using the coda package in R.30 We combined the p-values of the likelihood ratio

test using custom Python scripts.
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Gene expression levels between cases and controls were compared using linear regression,
adjusting for age, sex, and recruitment center and ancestry as appropriate. We evaluated
the goodness-of-fit for varying cut points of high- versus low-expression as a predictor of
asthma status using Bayes Factors calculated from generalized linear models. We estimated
the prediction power of multiple models using self-reported exacerbation scores
(combining information on hospitalizations, emergency department visits, and oral steroid
usage), and performed model selection in generalized linear models by estimating the AUC
of ROC curves and the Aikake Information Criterion (AIC). We also compared estimates of

population attributable risk (PAR) across genetic and environmental factors.

Further details on methodology, including admixture mapping methods, imputation, and

predictive modeling are presented in the Supplementary Material.

Results (word count 774)

Admixture Mapping Meta-Analysis and Replication

We performed local ancestry estimation, ancestry interpolation, and admixture mapping
independently in five different studies, comprising a total of 3,902 Latino individuals from
the EVE Consortium. A meta-analysis using Fisher’s method produced highly concordant
results to Stouffer-Liptak weighted Z-scores; accordingly, we present only the results from

Fisher’s method and coefficients estimated from a fixed effects meta-analysis.

We identified a genome-wide significant admixture mapping peak that was specific to

Latinos at 18q21 (p=6.8x10-, Figure 2A and B, significance threshold p< 4.1x10-5, see
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Supplementary Material). The ancestry association in Latinos was primarily driven by
differences in European (OR=0.86, 95% CI=0.77-0.96, p=0.0084) and Native American
(OR=1.20,95% CI=1.07-1.34, p=0.0016) ancestry between cases and controls, whereas
African ancestry did not appear to play a significant role (p=0.42) (Figure 2C). The
admixture peak overlapped two genes: SMADZ and ZBTB7C (Figure 2B), with ancestry at

SMADZ having the strongest association with asthma.

We replicated the association between asthma and ancestry at 18q21 in an independent
sample of 3,774 Latinos from the GALA II Study (p=5.3x10-3, Table S2). The direction of the
effect in both the discovery and replication populations were homogeneous for both
European and Native American ancestries (OR=0.87, 95% CI 0.78-0.96, p<0.01 and
OR=1.09,95% CI 1.02-1.16, p<0.01 respectively, see Table S2). Applying the same
admixture mapping approach in the 3,106 African Americans in EVE, there was no ancestry
association at 18q21 (Figure S1, p=0.7). In addition we found no significant genotype

associations in the 4,531 European Americans in EVE.

Gene Expression Associations with Asthma and Secondary Phenotypes

We measured the expression of SMADZ2, SMAD3 (the cystolic hetero-dimeric partner of
SMAD?2), and ZBTB7C via rt-PCR from RNA isolated from whole blood in a random subset of
161 Puerto Ricans in the replication study (GALA II). SMADZ expression was significantly
negatively associated with asthma. Cases had 28% lower mean levels of SMADZ2 expression
than healthy controls (95% CI=12-37%, p<0.001, Figure 3A). Neither SMAD3 nor ZBTB7C

showed any difference in expression between asthma cases and controls (p= 0.8 and 0.9
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respectively), and neither gene showed a significant correlation with global or local
ancestry. We determined, via Bayes Factors, the best-fit cutpoint at 66% of mean
expression in controls for partitioning low-vs.-high expressors. We found that low SMADZ2
expression using this cutpoint was associated with an 8-fold increased odds of asthma (OR
8.05,95% CI 2.57-25.19, p<0.001). In addition, Puerto Rican cases recruited in Puerto Rico
had 39% lower SMADZ expression as compared with Puerto Rican cases recruited in
mainland U.S. (95% CI 22-56%, cutpoint OR 6.79 (1.99-23.19), p<0.001); we observed no
significant difference in controls. The association between SMADZ expression and asthma

remained significant adjusting for island-vs.-mainland or by study center.

After adjustment for known anthropometric predictors of lung function (e.g., age, sex, and
height?), SMADZ expression was not significantly associated with baseline lung function
across four standard measures (FEV1, FVC, FEF2s5.75, and PEFR). However, low SMADZ2
expression was significantly associated with decreased bronchodilator drug response and
increased asthma exacerbation. Specifically, we found that a 10% decrease in SMADZ2
expression corresponded to a 1.7% decrease in bronchodilator drug response (AFEF2s.7s,
95% CI -2.6- -0.7%, p<0.01, Table 2). SMADZ expression was also associated with AFVC,
however this was not significant after adjusting for AFEF2s5.75. The correlation between
AFEF2s5.75 and SMADZ expression remained significant after adjusting for AFVC, supporting
the primary association between SMADZ expression and AFEF2s5.75. Low SMADZ expression
was also associated with increased asthma exacerbation score (ordered logistic regression

per 10% decrease in expression, OR=1.16, 95% CI=1.01-1.35, p=0.02, Table 2).
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We then built logistic regression models to test the ability of SMADZ expression to explain
asthma exacerbations. Individuals were dichotomized into categories of low risk (score of
<1, i.e.,, no more than one exacerbation) and high risk (score =2, i.e., multiple or severe
exacerbations). We applied three prediction models: use of controller medication (any
long-term asthma medication), response to albuterol, and SMADZ expression. We limited
the analysis to 79 GALA II cases residing in Puerto Rico to minimize confounding.
Incorporating all three classes of predictors in the model had the highest ROC curve AUC
(81%, Figure 3B), while minimizing the AIC, thus providing good predictive power beyond

standard clinical measurements.

Transforming these observations to population attributable risks (PARs) in the context of
other genetic and environmental risk factors, low SMADZ expression has a PAR of 40%
(95% CI: 17-60). In contrast, established risk factors such as obesity, air pollution, and
well-replicated genotypic risk factors at 17q21 have a more limited role in asthma (Figure
2(), with the total PAR of these risk factors (38%, 95% CI 18-37) being lower than that of

SMADZ expression by itself.

Discussion (word count 835)

In this novel investigation of admixture mapping and asthma, we identified a genome-wide
significant association between ancestry at 18921, centered on the SMADZ gene, and
asthma in a meta-analysis including 3,902 Latinos from the EVE Asthma Genetics

Consortium. We replicated this finding among 3,774 individuals in the GALA II study.
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Further analysis revealed the clinically important finding that low SMADZ expression is
associated with reduced bronchodilator response and increased asthma exacerbations.
Absent our admixture mapping follow-up to a large, consortium-based traditional GWAS
meta-analysis,?® this locus would not have been discovered, as there were no individual
genotypic associations within the admixture peak with a p<10-4 (Figure S5). Notably, there
was no evidence for an ancestry or allelic association in African and European Americans,
reinforcing the population-specific nature of the association at 18q21. An important and
unique contribution offered by admixture mapping is its increased coverage of genetic
variation due to increased ancestry linkage disequilibrium (LD) as compared with
genotypic LD.3! Indeed, the top locus-wide significant imputed SNP in GALA II within the
peak (Figures S5&S6) appears to be at low frequency in Europe and Africa, but is common
on Native American haplotypes in Latinos, consistent with the admixture signal. This is
important because prior estimates of the coverage of commercial genotyping arrays have

proved overly optimistic in non-European and admixed populations.?7:32

However, increased ancestry LD results in larger blocks of the genome being associated
with the outcome, rendering identification of the specific gene more challenging than with
traditional GWAS. Here, the 674kb genome-wide significant peak overlapped SMADZ and
ZBTB7C. ZBTB7C has no known role in asthma pathophysiology and limited functional
characterization. In contrast SMADZ is a well-characterized cofactor involved in TGF-f3
signaling. In asthma, the TGF-f pathway has been implicated in negative regulation of
allergic airway inflammation,33 in airway remodeling,3* and in drug response.3> In the TGF-

p signaling pathway, ligation of TGF-f receptors activates the proximal transcription factors
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SMADZ and SMAD3; these associate with SMAD4 and translocate to the nucleus to regulate
transcription of several hundred target genes along with a complex of DNA binding
cofactors. Lower levels of SMADZ are correlated with lower levels of TGF-f -mediated

signaling effect.36

Although TGF-p pathway genes are known to play a functional role in asthma, they have
rarely been identified via GWAS, and to our knowledge SMADZ has not been previously
associated with asthma in any genetic association study. However, it has been associated
with several other immune system-mediated phenotypes, including a GWAS of placental
abruption3’. Two previous meta-analyses2>38 identified an association between SMAD3, the
cytosolic hetero-dimeric partner of SMADZ, and asthma in Europeans and European
Americans. Here, variation in SMAD3 was not significantly associated with asthma through
admixture mapping or traditional GWAS in either Latinos or African Americans, nor was

SMAD3 expression significantly associated with asthma in GALA IL

Our findings support the role of differential regulation of SMADZ in asthma cases, and
highlight its potential use as a biomarker to identify individuals with low bronchodilator
drug response and increased risk of exacerbation. In GALA II, the population attributable
risk of low SMADZ expression is a highly important component of asthma, with a higher
PAR than many known risk factors for asthma, including obesity, NO; exposure, 17q21

genotypes, and in utero smoking, or even all these risk factors combined (Figure 3C).
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Measuring SMADZ expression in whole blood is an attractive biomarker candidate due to
its relative ease of collection, as compared with lung tissue. Including SMADZ expression
levels improved the explanatory power of statistical models of asthma exacerbations
beyond the use of traditional variables collected in the clinic. In addition low SMADZ2
expression is associated with low bronchodilator response as measured by AFEF;5.7s.
Incidentally we found no association between SMADZ expression and AFEV}, the typical
spirometric measurement used for assessing drug response. Growing evidence suggests
that measures of FEV1 may underestimate asthma severity in children.3° FEF;s.75 better
measures small airway obstruction, and has demonstrated sensitivity as a measure of
airway obstruction among children and adolescents with asthma,*? even those with normal
FEV1. Prospective studies in diverse populations are required to definitively test whether
measuring SMADZ expression can identify children at high risk for asthma exacerbation,

and therefore those who will benefit from more intensive or targeted intervention.

Beyond investigation of asthma, admixture mapping is extensible to any genome-wide
analysis of disease prevalence and severity in an ancestrally mixed population. It offers
superior economic and analytic efficiencies by mining previously generated genomic data.
Furthermore, population-specific findings identified by admixture mapping can have
clinical relevance to disparities in disease prevalence and severity, as illustrated by the
associations of SMADZ expression patterns with asthma prevalence, poor bronchodilator
drug response, and increased risk of asthma exacerbations. Our findings reinforce that
alternative mapping strategies, such as admixture mapping, may capture novel and

population-specific findings that traditional GWAS approaches alone cannot uncover. As
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our appreciation increases for the heterogeneous genetic ancestry of numerous
populations world-wide, more nuanced understanding of disease burden and treatment

targets can be uncovered and developed by incorporating this technique.
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Tables

Table 1. Baseline characteristics of subjects in the meta-analysis. EVE Asthma Genetics

consortium Latino individuals were used for discovery, GALA Il was used for replication

51



along with the African American individuals in EVE for the initial admixture mapping.
Imputation-based fine mapping was performed in all studies shown. Other measures from
these studies can be found in Torgerson et al.25.

Table 2. Associations of SMADZ gene expression with asthma and morbidity outcomes.
Dichotomous outcomes use a best-fit cutpoint of 66% of healthy control SMADZ2 expression
to estimate the odds ratio. Measures of drug response and exacerbations are per 10%
increase in SMADZ expression. Static spirometric measures pre-/post-albuterol

administration were not significant on their own.

Figure Legends

Figure 1. Study Approach. We began with the Latino studies in the EVE Asthma Genetics
Consortium, along with reference individuals to perform local ancestry estimation. We
performed ancestry imputation via linear interpolation to create a consistent set of sites
across studies. We performed admixture mapping at these interpolated sites via likelihood
ratio tests, then combined values across studies at all sites via meta-analysis. Genome-wide
significance was measured empirically via autoregression.3? We replicated the genome-
wide signal at 18q21 in GALA II using similar methods. We then used gene expression to
characterize associations with genes in 18q21 and known interactors of those genes.
SMADZ expression was strongly associated with asthma (none of the others were), and so
we investigated associations with additional phenotypes including spirometry,
bronchodilator response, and exacerbations, as reported in the Results.

Figure 2. Admixture mapping meta-analysis results.
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2A: Manhattan plot of the genome-wide results of admixture mapping for asthma in 3,902
Latinos from the EVE asthma genetics consortium. Genome-wide significance threshold
accounting for ancestry correlation indicated via dashed line. The single genome-wide
significant peak in the 2-df likelihood ratio test is found on chromosome 18.

2B: Summary of the 18921 locus. LocusZoom*! plot for sites in the most significant
Hispanic/Latino admixture mapping association on 18921, showing the relative position of
the genes closest to the top of the peak. -logio p-values are shown for the 2-df likelihood
ratio test for differences across all three ancestral populations.

2C: Forest plots for admixture mapping across each of three ancestries at the top site in 2B
(African, European, and Native American ancestry, respectively). Each study’s odds ratio is
displayed as a square and corresponding confidence interval with size inversely
proportional to the standard error. Meta-analysis estimates via fixed effects models are
given as diamonds. No ancestry shows no evidence of significant study heterogeneity at
18q21, where European ancestry at SMADZ confers protection from asthma; Native
American ancestry confers increased risk, as presented in Table S1.

Figure 3. Whole blood SMADZ expression analyses.

3A:Scatterplots displaying SMADZ expression in whole blood measured by g-PCR in GALA
II Puerto Rican cases (n=107) and controls (n=54). Expression was calibrated to the
housekeeping gene GUS to create relative-fold values, including means and 95% confidence
intervals. On average, cases have 25% lower expression of SMADZ than do controls
(p=1.2x10-4). SMAD3, previously associated with asthma in Europeans, did not show
expression differences between GALA Il cases and controls (p=0.81, data not shown). 3B:

Prediction of self-reported exacerbations using clinical variables and SMADZ gene
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expression as measured with ROC curves from logistic regression. We only looked at
individuals from the island of Puerto Rico to minimize confounding. The AUCs for each
model are displayed in the legend. CM=Controller Medication, Spiro=4 Bronchodilator
Response variables discussed in the main text. The model incorporating SMADZ expression
predicts best according to the AIC.

3C: Population Attributable Risk of SMADZ expression and ancestry in context with other
genetic and environmental risk factors in GALA II, color-coded by type. Black is expression,

blue is genotype, green is ancestry, and red is environmental exposure.
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Table 1. Basic characteristics of studies used in meta-analysis.

Study Name Genotyping Study Type Cases/Controls/Probands | Average

platform Age of
Onset (s.d.)

EVE Hispanic/Latino Discovery

CARE Affymetrix 6.0 Trios 42 1.4 (1.6)

CHS [llumina 550K, Case/Control | 606/792 6.8 (4.8)
610K

GALA I Mexicans Affymetrix 6.0 Case/Control | 252/151 8.3 (7.7)

GALA I Puerto Ricans Affymetrix 6.0 Case/Control | 277/191 3.4 (4.8)

MCCAS [llumina 550K Trios 492 NA

GALA II Hispanic/Latino Replication

GALA Il Mexicans Affymetrix Case/Control | 596/661 5.3(3.7)
Axiom LAT1

GALA II Puerto Ricans Affymetrix Case/Control | 894/894 2.6 (2.9)
Axiom LAT1

GALA II Mixed/Other Affymetrix Case/Control | 403/326 4.4 (3.9)
Axiom LAT1

EVE African American and African Caribbeans

Barbados [llumina 650Y Pedigrees 382 8.2 (10.6)

CAG/CSGA/SARP [llumina 1Mv1 Case/Control | 541/451 9.8 (12.4)

GRAAD [llumina 650Y Case/Control | 464/471 11.9 (13.2)

SAPPHIRE Affymetrix 6.0 Case/Control | 149/132 10.5 (11.6)

EVE European Americans

CAG/CSGA/SARP [llumina 1Mv1 Case/Control | 742/381 13.1(13.7)

CARE Affymetrix 6.0 Trios 217 2.1(2.4)

CAMP [llumina 550K Trios 385 3.1(2.5)

CHS [llumina 550K, Case/Control | 643/959 7.0 (5.0)
610K
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Case-Control Phenotypes OR (95% CI) p-value
Asthma 8.05 (2.57-25.19) 4.7x10-5
Island vs Mainland®? 6.79 (1.99-23.19) 0.0022

Bronchodilator Response? b (95% CI) p-value
AFEF25.75 -1.7 (-2.6 - -0.7) 0.0013
AFEV; -0.1 (-0.2-0.4) 0.40
AFV(Ce -0.05 (-0.09--0.02) | 0.0068
APEFR -0.6 (-1.44 - 0.3) 0.22

Exacerbation Score OR (95% CI) p-value
Full Ordered Modeld 0.37 (0.13-1.03) 0.023
More than 1 0.22 (0.05-0.90) 0.022

a. adjusting for case-control status, age, gender and admixture proportions

b. measured as (post - pre) / pre for all variables, all adjusted for Center, age, sex

and height?

c. association not significant when D(FEF.25.75) included in the model

d. Levels 0-5, ordered logistic regression, p-value from likelihood ratio test
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Figure 1.

Discovery: 5 studies of asthma in Latinos from Reference data for local ancestry estimation:
the EVE Asthma Genetics Consortium Sub-Saharan African, European & Native
(3,902 in total) American genotypes
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Admixture mapping and meta-analysis of 5
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/ ~,
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Replication: Genes, Environments and Ancestry - g
in Latino Americans (GALA Il) study Americans from the EVE Asthma Genetics

. Consortium
(3,774 individuals) (3,106 in total)

GALA Il subset with RNA extracted
(Puerto Ricans: 107 with asthma, 54 controls)
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associations with asthma

( A
Associations of gene expression with secondary
phenotypes: spirometry, drug response, and
exacerbations

62



Figure 2.
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Figure 3.
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Chapter 3. Supplementary Material

Admixture mapping meta-analysis identifies an ancestry-specific risk factor and

potential biomarker for asthma

Supplementary Methods

Study Subjects

Discovery Population

Self-identified Latino and African American participants from nine independent study
populations were included in the initial meta-analysis of genome-wide data (discovery
population). The detailed methods for the EVE Asthma Consortium
(www.eve.uchicago.edu) meta-analysis were previously published and described in detail.l
EVE is a large, multi-ethnic assembly of asthma studies with existing genome-wide SNP
genotypes from nine different institutions in the U.S. We used the autosomal genotypes
passing the original quality control standards and incorporated in the original imputation.
3,902 Latinos and 3,106 African-Americans from EVE (Table 1) were included in the

present analysis.

Replication Population
We tested our most significant associations from the discovery population in the Genes-

environments & Admixture in Latino Americans (GALA II) Study population, a large, multi-

65



center case-control study of Latino children between the ages of 8-21 with and without
asthma (Table 1). A total of 4,041 children (1,976 participants with asthma and 2,065
healthy controls) were recruited from five centers (Chicago, Bronx, Houston, San Francisco
Bay Area, and Puerto Rico) using a combination of community and clinic-based
recruitment. Participants with asthma self-reported a physician diagnosis of asthma and
reported at least two symptoms (shortness of breath, wheezing, or cough not associated
with upper respiratory illness) or chronic use of controller medication (inhaled
corticosteroids, leukotriene modifying agents, theophylline or oral steroids) in the two
years preceding recruitment. The mean (+SD) age of these subjects was 12.5 (3.3) years,
55.3% were boys. Eligible controls had no reported history of asthma, lung disease or
chronic illness, and no reported symptoms of coughing, wheezing, or shortness of breath in
the past two years. Controls were 1:1 frequency matched within each region by catchment
area and age (within 1 year) and recruited from the same hospitals or community clinics as
the cases. The mean (*SD) age of control subjects was 13.7 (3.5), 43.7% were boys. All
participants who met criteria for enrollment completed in-person questionnaires related to
their medical, asthma, allergic, social, environmental and demographic histories. To be
eligible for participation, each participant or parent must have identified all four
grandparents as Latino. All participants with asthma underwent spirometry to measure
baseline lung function and maximal bronchodilator drug response to albuterol. Local
institutional review boards approved the studies and all subjects and legal guardians

provided written informed assent/consent.

Enrollment Criteria and Clinical Phenotyping
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From July 2006 through June 2011, when genotyping began, a total of 4,041 children
(1,976 participants with asthma and 2,065 healthy controls) were recruited from five
centers (Chicago, Bronx, Houston, San Francisco Bay Area, and Puerto Rico) using a

combination of community and clinic-based recruitment.

Asthma was defined as self-reported physician diagnosis, symptoms and medication use
within the last 2 years. Eligible controls had no reported history of asthma, lung disease or
chronic illness, and no reported symptoms of coughing, wheezing or shortness of breath in
the past two years. Controls were 1:1 frequency matched within each region by catchment
area and age (within 1 year) and recruited from the same hospitals or community clinics as
the cases. Participants were excluded if they reported any of the following: (1) 10 or more
pack-years of smoking; (2) any smoking within 1 year of recruitment date; (3) history of
lung diseases other than asthma (cases) or chronic illness (cases and controls); or (4)

pregnancy in the third trimester.

All participants who met criteria for enrollment completed in-person questionnaires
related to their medical, asthma, allergic, social, environmental and demographic histories.
Each participant or parent was also required to identify all four grandparents as Latino.
Based on four-grandparent information, we partitioned the study into three major
categories: Mexicans, Puerto Ricans, and Other (either individuals from other countries or
of mixed Latino ancestry). In addition, all participants provided blood for genetic analysis.
All participants with asthma underwent spirometry to measure baseline lung function and

maximal bronchodilator drug responsiveness to albuterol. Local institutional review
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boards approved the studies and all subjects and legal guardians provided written

informed assent/consent.

Medication Use

Subjects were asked to list their asthma prescriptions and responses were grouped into
five different treatment categories: (1) no medications, (2) rescue inhalers/short-acting
beta agonists (SABA) only, (3) controller monotherapy, (4) combination therapy, and (5)
oral corticosteroids (OCS). Monotherapy included subjects who were taking an inhaled
corticosteroid (ICS), leukotriene receptor antagonist (LTRA), or theophylline to control
their asthma. The combination therapy group included subjects using two or more

controller medications with or without long-acting beta agonists (LABA).

Exacerbations

Information regarding self-reported asthma-related hospitalizations, emergency
department visit, and oral steroid use over the 12 months prior to recruitment was
collected through the administered questionnaire. With these data, a self-reported
exacerbation score was assigned to each subject based on the American Thoracic Society
and European Respiratory Society consensus statement from 2009.2 One point was given
for each report of hospitalization or emergency department visit in the last 12 months. For
reported history of oral steroid use, one point was assigned for a report of any oral steroid
use in the last 12 months and two points were assigned if the subject reported greater than

two continuous weeks of oral steroid use over the 12 months prior to recruitment.
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Pulmonary Function Testing

Subjects with asthma were instructed to withhold their bronchodilator medications for at
least 8 hours before lung function testing. Spirometry was performed according to the
American Thoracic Society standards (1995). Standard measurements of airway
obstruction included Forced Expiratory Volume in one second (FEV1), Forced Expiratory
Flow between 25-75% of vital capacity (FEF2s.75) and Forced Vital Capacity (FVC).
FEV1/FVC, and FEF25_75 are all adjusted for age, sex and height? as covariates, as percent

predicted equations are not available for Puerto Ricans.

Maximal bronchodilator drug response (BDR) was calculated as the percent change in
baseline lung function (FEV: and FEF325.75) before and after administering albuterol, with a
15-minute waiting period following each dose. Albuterol was administered using an
extension tube connected to a standard metered dose inhaler. A total of six (if <16 years of

age) to eight (if 216 years of age) total puffs of albuterol were administered.

Genotyping

Participants were genotyped at 818,154 SNPs on the Affymetrix Axiom® Genome-Wide
LAT1 Array (World Array IV)3, an array optimized for imputation-based association studies
of Latinos. Details of individual and SNP quality control procedures are described in . We
employed standard quality control procedures as recommended by Affymetrix.

We removed single nucleotide polymorphisms (SNPs) with >5% missing data and failing
platform specific cluster quality criteria (n=63,328), along with those out of Hardy-

Weinberg equilibrium (n=1845; p<10-¢) within their respective populations (Puerto Rican,
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Mexican, and other Latino). Subjects were filtered based on 97% call rates and gender
discrepancies, and run through a pairwise identity by descent (IBD) scan to identify related
individuals to remove. The total number of subjects passing QC was 3,774 (1,893 cases,

1,881 controls), and the total number of SNPs passing QC was 747,129.

Admixture Mapping Methods

Admixture mapping required estimating local ancestry at every SNP in each study. Local
ancestry was estimated separately for each study via one of two LAMP algorithms: LAMP>
for case-control studies, and a family-based algorithm available in LAMP-HAP® for trio
studies that preserves transmitted /untransmitted haplotypes. For African-Americans we
used a 2-way admixture model in LAMP in an unsupervised fashion as accuracy does not
increase by adding ancestral populations’. For Latinos we ran LAMP assuming 3-way
admixture using the CEU and YRI from HapMap8, Indigenous Mexican individuals from
HGDP? that were genotyped on the [llumina 650Y, and Pima and Maya individuals kindly
provided by Drs. Mark Shriver and Abigail Bigham that were genotyped on the Affymetrix
6.01011 For each study we used the intersection of markers with available ancestral data:
ancestral allele frequencies for LAMP, and ancestral haplotypes for LAMP-HAP, phased

using Beagle!?.

Ancestry interpolation: As local ancestry estimation can be quite sensitive to genotyping
errors we did not want to estimate local ancestry from imputed genotypes. Therefore, to

create a consensus set of sites across different genotyping platforms we inferred ancestry
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at untyped sites using linear (genomic distance) interpolation. In this framework, an
untyped site is assigned the average of its neighboring genotyped sites, weighted by the
genetic distance in bp from each. We used this framework to interpolate local ancestry for
each study at 3,192,437 HapMap II SNPs. Given that admixture in the Americas is a recent
phenomenon we observed few ancestry switches per chromosome per individual, and thus

most of the untyped sites sat within blocks of contiguous ancestry.

Admixture mapping: The effect of ancestry at each locus was estimated in one of two ways.
For single ancestry testing, we coded ancestry at each position as a biallelic state (e.g.,
African vs non-African). We then used logistic regression for case-control studies R,!3 and
the transmission disequilibrium test (TDT)# for trio studies using custom Python15 scripts.
For the complex pedigrees in the Barbados study we used MQLS1® for association testing,
and estimated an odds ratio and standard errors from the ancestry counts in cases and

controls (as estimated by MQLS).

Importantly, in Latinos we wanted to perform admixture mapping combining evidence
across the three ancestries. To estimate the combined effect of all ancestries in Latinos, we
used a 2-degrees of freedom (df) likelihood ratio test comparing regression models with
and without local ancestry terms. We used logistic regression for case-control studies and
Poisson regression models of counts of transmitted /untransmitted ancestry states for trio
studies. All logistic regression models were adjusted for genomic ancestry as determined
using ADMIXTURE?? on the full autosomal data. Our likelihood ratio test for case-control

analyses consisted of comparing the likelihoods of two nested generalized linear models:
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full :log| L | ~ B, + Blocal, + B,local, + B.global, + B,global, +¢
1 _ p 0 1 1 2 2 3 1 4 2

restricted : log(li) ~ B, + B,global, + B,global, + ¢
4

likelihood ( full)

then follows a ) 2 distribution with 2df (equal to
likelihood(restricted)

The statistic 210g(

the number of additional terms in the full model).

Similarly, for the trio studies we compared likelihoods of two generalized linear models,
although the framework is more complicated. We modeled counts of

transmitted /untransmitted ancestry pairs at each locus using a mixture of Poisson
regression terms for each ancestry (e.g., transmitted African/untransmitted Native
American, six different combinations from three different ancestries in total). Each specific
ancestry contributes to the counts of the observed transmitted /untransmitted pairs using
an indicator function:

b, = {1 € transmitted,—1 € untransmitted,0 € otherwise}

local

Each @, , is then a six-term vector. To account for the investigation of multiple

transmitted /untransmitted ancestries at every locus, we adjusted our analyses using a 6-
term factor = that stratified counts into corresponding pairs of transmitted /untransmitted
ancestries. Then, the joint effects of incorporating multiple ancestry terms were modeled

by comparing the likelihoods of two nested generalized linear models:

full : log(counts) ~ ﬁ() + ﬁlq)African + ﬁ2(I)Eumpean + [)73(I)NativeAmerican + ﬁ4E +é

restricted :1og(counts) ~ B, + BE+¢
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likelihood( full)

The statistic 2log
likelihood(restricted)

then follows a y 2 distribution with 2df as the 3

ancestries are collinear (and one ancestry term is dropped). This approach is similar to a
McNemar’s test of symmetry, however our implementation saves a degree of freedom
given the inherent correlation structure of the 3 ancestries. Scripts and functions were

written in R and Python and are available upon request.

Multiple test correction: The traditional Bonferroni-based GWAS significance threshold
of 5x10-8 is overly stringent given the increased ancestry linkage disequilibrium (LD) in
admixture mapping studies. To determine a study-specific significance criterion we
employed an empirical autoregression framework. We determined the “effective” number
of tests on the genome by fitting an autoregressive model to the summary statistic data,
where overall correlation patterns were determined by estimating the correlation
sequentially along the chromosome. We implemented our autoregression using the coda
package in R, similar to Shriner et al. 18 for both odds ratios and p-values. While similar, p-
values were slightly more conservative, so we chose to use those. Our criterion for genome-
wide significance was then 0.05 divided by the total number of effective tests across the

genome.

Meta-analyses: Single ancestry tests were combined using fixed effects models in PLINK1?
to get combined estimates of significance, overall magnitude of effect and heterogeneity
level. Sites with an 12 value of heterogeneity > 50% were inspected to determine whether a

random effects model was warranted (to incorporate between-study heterogeneity). For
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the joint ancestry analyses, we combined p-values using both Fisher’s method and
combined Z-scores weighted by the square root of the number of cases as a proxy for the
variance, consistent with the prior GWAS. ! In the present study we report results from

Fisher’s method as the methods yielded highly concordant results.

Replication samples and genotyping: We tested our most significant associations in
GALA 11, a large, multi-center cross-sectional study of participants with and without
asthma??. All individuals in GALA II self-identified as “Hispanic” or “Latino,” and reported
ethnicity information for all four grandparents. Based on four-grandparent information, we
partitioned the study into three major categories: Mexicans, Puerto Ricans, and Other
Latino (including individuals from countries other than Mexico or Puerto Rico, and those of
mixed Latino ancestry). A total of 3,774 individuals passed quality control (QC) on
genotypes obtained from the Affymetrix Axiom® Genome-Wide LAT1 Array (World Array
IV, Affymetrix)3, an array optimized for imputation-based association studies of Latinos.
SNPs were filtered based on standard quality control procedures as recommended by
Affymetrix. After merging genotypes with available CEU/YRI genotype data from HapMap
and the 1000 Genomes?!, and Native Mexican individuals typed on the Axiom LAT1 array,
we ended up with 568,037 SNPs for reference. Local ancestry was estimated on
transmitted /untransmitted haplotypes in trios using LAMP-LD®¢. Admixture mapping was
performed using the same methods as used in the discovery studies, with an additional

correction for self-reported ethnicity (Puerto Rican, Mexican, or Other).
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Imputation and genotype association: We imputed candidate regions using IMPUTE222
using the phase 1 1000 Genomes haplotypes, after phasing our data using SHAPEIT.23 We
used the same criteria for source genotypes as the admixture mapping and previous meta-
analysis. Imputation was carried out using the default and recommended settings in
IMPUTEZ for prephased data across a ~5Mb region around SMADZ. Imputed genotypes
with information scores >0.3 were used for downstream analysis. We analyzed each study
using a similar framework as described above (i.e., logistic regression, TDT, and pedigree
association using EMMAX?4). A meta-analysis was them performed using a fixed effects

meta-analysis in PLINK, and a random effects meta-analysis using the R package metafor.2>

Gene Expression: We measured the expression of SMADZ, SMAD3, and ZBTB7C using
TagMan® RT-PCR assays in a total of 107 cases and 54 controls selected from the Puerto
Ricans in GALA II. Total RNA was isolated from PAXgene™ Blood RNA tubes, and RNA
integrity was assessed with Aligent’s BioAnalyzer. Samples with RNA integrity < 7 were
excluded from further analysis. We normalized gene expression of each target gene to the
housekeeping gene GUS. We transformed fluorescent values to estimate relative-fold
expression as 2”(-deltaCT) for downstream analyses and investigated associations with
linear, logistic, and ordered logistic regressions in R. We performed preliminary expression

associations using the Wilcoxon rank sum tests.

Gene Expression Model Selection: Given that gene expression is continuous, we wanted
to find a cutpoint that would best determine high-vs-low gene expression to evaluate its

association with asthma. We estimated the maximum a posteriori value for a cutpoint of
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gene expression by calculating Bayes Factors across the continuum of SMADZ gene
expression levels. We used a logistic regression model including relevant covariates as a
generative model for likelihoods, and then tested the hypothesis that expression affects the
odds of disease, vs. the null hypothesis of no expression effect. In modeling both
hypotheses, Bayes Factors provide an evidence-based rationale for determining the model
that best fits the model of association. For each percentage point in our scale of normalized
gene expression, we evaluated the odds ratio, confidence interval, and Bayes Factor. We
chose the best-fitting model to differentiate high vs low expression as the cutpoint with the
maximum Bayes Factor. Using the AIC or another likelihood-based statistic is expected to

give analogous results.

Population Attributable Risk (PAR): GALA Il includes a large number of genetic and
environmental measures, allowing for the comparison of multiple types of risk factors. In
this study we compared the PAR for SMADZ expression and ancestry to previously
identified significant risk factors that were also identified in GALA II. For ease of
comparison, we dichotomized all risk factors to estimate odds ratios, and converted these
into risk ratios based on a disease prevalence of 20%. While this is a single point estimate,
this represents a compromise between Mexican, Puerto Rican, and Other Latino prevalence
estimates. Varying prevalence would be expected to slightly change the overall estimates,
but less so the proportional differences. Prevalence of the risk factor was measured based
on the observed values in cases and controls in GALA II and the prevalence numbers.
Obesity was categorized based on BMI,2¢ and NO2 exposure was measured from monitoring

towers and residential history from the first three years of life (and given a cutpoint at the
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WHO level of acceptable exposure??). We also compared genotypes at the 17q21 locus,
which represents the strongest and best replicated GWAS hit for asthma. The region of
interest in 17q21 spans multiple genes, and the top genome-wide significant marker
changes by study, but often includes ORMDL3, GSDMA, GSDMB, or as in Galanter et al.,* a
marker in IKZF3. Plotted confidence intervals were derived from the confidence intervals in

the odds ratios, holding other measurements constant.

Supplementary Results.

Single ancestry admixture mapping: In addition to the likelihood ratio test (see Online
Methods), we performed a meta-analysis of single ancestry admixture mapping across
Latino individuals and identified two genome-wide significant peaks for European ancestry
(the ancestry with the most power across all Latino groups to identify associations) at 9q22
and 12p12 (see Supplementary Table 1). Both of these peaks failed to replicate in GALA II
(lowest p-value = 0.17 and 0.21, respectively). P-values for single ancestries approached

genome-wide significance at 18q12, particularly for Native American ancestry.

In Silico Fine Mapping: We imputed the full set of Phase [ 1000 Genomes within a 5Mb
region centered on the 18921 locus in all study populations separately (12,870 total
individuals: 7,606 Latino American, 3,102 African American, 2,088 European American)

using 1000 Genomes haplotypes?8 with IMPUTEZ2.2° There were no genome-wide
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significant SNP associations with asthma within the region, nor any locus-wide significant
variants in the EVE meta-analysis. However, rs59002988, a SNP 40Kb upstream of SMADZ2,
met locus-wide significance in our replication study (GALA II, OR 1.67,95% CI 1.32-2.1,
p=1x10-3). The T allele of this SNP is rare in Europeans (~2%), elevated in eastern Asians
(16%), and common (>10%) in GALA Il individuals who are homozygous for Native
American ancestry at this SNP. The variant appears to be more common on Native
American haplotypes of Puerto Ricans (minor allele frequency=15%, Supplementary Figure

7), and to have an increased effect size (OR 2.2, 95% CI 1.46-3.29, p=2x10-4).
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Table S1. Ancestry associations at 18q21, centered on SMADZ2. Summary characteristics of

admixture mapping findings at the top hit in the chr18q21 region. Meta-analysis of

discovery and replication panels was performed with fixed effects assumptions for effect

size estimates, and Fisher’s method was used for the overall likelihood ratio test meta-

analysis.
18q21 EVE GALA II (average) Combined
African p 0.42 0.16 0.27
African OR 0.91 (0.73-1.14) 1.05 (0.98-1.13) 1.04 (0.97-1.11)

European p

European OR

8.35x10-3
0.86 (0.77-0.96)

5.83x10-3
0.87 (0.78-0.96)

1.36X10-4
0.86 (0.80-0.93)

Native
American p
Native
American OR

1.63x10-3

1.20 (1.07-1.34)

6.26x10-3

1.09 (1.02-1.16)

9.15x10-5

1.11 (1.05-1.17)

Overall p

6.80x10-6

0.017 (min 0.0053)

2.6x107
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Table S2. Suggestive regions in the EVE Latino admixture mapping study, as defined by a

minimum p-value < 0.001, out to 0.01 on each side. Joint refers to the 2-df likelihood ratio

test for all ancestries. If a region was identified in multiple ancestry scans, the ancestry

with the smallest p-value was used and the other ancestry information is given in

parentheses. Coordinates are in hg18.

Associated
Ancestry

Chr

Start

End

minimum
P

Genes in Peak

Native

20716967

21885179

3.48x10-4

USP48, HP1BP3,
SH2D5, CDA, EIF4G3,
RAP1GAP, NBPF3,
KIF17, ECE1, ALPL,
PINK1,
LOC100506801,
DDOST, FAM43B

Joint

23046750

24398722

3.67x10-4

None

Native
(European)

218900613

219027538

8.97x10-4

MARC2, MARK1,
Clorfl15, MARC1

European

222843773

223116557

9.93x10-4

CNIH3

European

226684711

227897382

6.67x10-4

DUSP5P, ACTAL,
NUP133, RAB4A,
TAF5L, RNF187,
CCSAP, RHOU,
ABCB10,
HIST3HZ2BB, URB2,
MIR4666A4,
HIST3HZA, SPHAR

Joint

57596338

58186261

5.85x10-4

None

Native

4015247

4556887

5.48x10-4

ITPR1, SUMF1,
SETMAR

Joint

40060302

41086194

2.62x10-4

None

Joint

95606242

96292801

4.09x10-4

None

European

23534331

23968123

3.19x10-4

None

African

48077300

52634909

4.05x10-4

OCIADZ, OCIAD1,
SLC10A4, ZAR1,
SPATA18, SGCB,
CWH43, SLAINZ,
FRYL, DCUN1D4,
LRRC66

African

55678536

57344829

1.60x10-4

SETD9Y, GPBP1,
MAP3K1, ACTBL2,
MIER3

Native

60547184

61124131

1.94x10-4

ZSWIM6, C5o0rf64
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Native

62620986

63502012

6.70x10-4

HTRI1A, RNF180

Joint

73710967

74034961

7.35x10-4

None

Joint (Native)

80682142

81813860

3.57x10-4

ATG10,ACOT12,
SSBP2, RPS23,
ATP6AP1L (CKMT2,
LOC100131067,
RASGRF2, ZCCHC9)

African (Joint)

178998248

180340825

4.43x10-4

FLT4, CANX,
C5orf60, MAML1,
OR2Y1, LOC729678,
RNF130, LTC4S,
LOC100859930,
MAPK9, CNOTEé,
RASGEF1C, MGATI,
MIR1229, C50rf45,
CBY3, SQSTM1,
BTNL8, SCGB3A1,
ZFP62, TBC1D9B,
MGAT4B, MIR340,
GFPT2

Joint

90202813

90311362

8.35x10-4

None

Joint

55129505

55621885

9.39x10-4

None

Joint

117211513

117400523

3.64x10-4

None

Joint

118344280

118830576

7.12x10-4

None

Joint

VIN|IN|IN]|

28677088

29253448

4.64x10-4

None

African

56410052

56871124

7.63x10-4

XKR4, TGS1, SBF1P1,
TMEM68

Native

75215069

75733856

4.27x10-4

FLJ39080,
MIR56814,
MIR5681B, JPH1,
GDAP1

European

88694862

90508804

6.04x10-4

L0OC392364,
L0OC286238,
CTSL1PS,
LOC100506834,
FAM75C2,
LOC494127,
FAM75C1, C90rf170,
LOC440173, CTSL1,
CTSL3, CDK20, GAS1,
NXNL2, SPIN1,
FAM75E1, DAPK1
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European
(African, Joint)

96446960

100419073

1.67x10-6

LOC100507346,
LOC100499484,
TMOD1, NCBP1,
FOXE1, MIR27B,
HABP4, MIR23B,
C9orf3, MIR2278,
LOC158434,
LOC158435, TSTD2,
GABBR2, TRIM14,
HIATL2, ZNF782,
FANCC, LOC340508,
ZNF510, HSD17B3,
LOC286359,
C9orf174,
LINC00092, XPA,
TDRD7, ZNF367,
L0OC441454, HEMGN,
AAED1, LOC441455,
CORO2A, NANS,
ANP32B, MIR24,
LOC100132781,
FAM22G, CDC14B,
MIR3074, C9orf156,
ERCC6L2,
LINC00476, CTSL2,
SLC35D2, PTCHI,
TBC1D2 (ANKSS,
COL15A1, FBP1,
FBP2, GALNT12)

African

108352743

108738041

9.81x10-4

ZNF462

Joint

10

51824523

52200679

9.38x10-4

None

African

10

83972038

84362276

3.10x10-4

NRG3

Native

10

100396273

101144430

7.93x10-4

CNNM1, HPSE2

European
(Native)

10

102072780

102969197

7.40x10-4

MIR608, PDZD?7,
KAZALD1, NDUFBS,
SCD, PAX2, C10orf2,
WNTS8B, TLX1,
MRPL43,
LINC00263, SFXN3,
PKD2L1, HIF1AN,
TLXINB, LZTS2,
SEC31B, FAM178A,
SEMAA4G (ACTR1A,
ARL3, BTRC,
C100rf76, C100rf95,
CUEDC2, DPCD,
ELOVL3, FBXL15,
FBXW4, FGFS,
FLJ41350, GBF1,
HPS6, KCNIP2, LBX1,
LDB1,
LOC100289509,
LOC100505761,
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MGEAS5, MIR146B,
MIR3158, NFKB2,
NOLC1, NPM3,
PITX3, POLL, PPRC1,
PSD, SUFU,
TMEM180, TRIMS8)

MIR920, C120rf77,
BCAT1, ST8SIA1,

European CMAS, ABCC9,

(Native) 12 21952123 25112841 1.67x10-5 ETNKL, LINCO0477,
LRMP, KIAA0528,
SOX5

Joint 12 40400256 41129450 7.16x10-4 None

African 13 67676298 68122400 7.40x10-4 None

Joint 14 22233894 23109399 3.47x10-4 None

Joint 14 23958088 24164696 8.49x10-4 None
MYH11, KIAA0430,
MPV17L, NOMO3,

European NDE1, FOPNL,

N t'p 16 15398985 16537826 3.98x10-4 MIR484, C160rf45,

(Native) PKD1P1, ABCCS,
MIR3179, ABCC1,
MIR3180

Joint 17 69510566 71397400 7.96x10-4 None

Joint 18 6230094 6746661 7.96x10-4 None

Native 18 38783085 39434024 492x10-4 | SYT4 RIT2
C18orf25, SLC14A2,
SLC14A1, ATP5A1,
HAUS1, LOXHD1,
RNF165, MIR4319,
SIGLEC15, SETBP1,

Joint PSTPIP2, EPG5,

(European, 18 40530823 44316091 1.71x10-4 HDHDZ2, SMADZ,

Native)?! TCEB3C, TCEB3B,
ZBTB7C, TCEB3CL,
IER3IP1, KATNAL?Z,
ST8SIAS,
LOC100506888,
PIAS2

Joint 18 49677502 49903778 9.83x10-4 None

Joint 22 46376748 46640808 1.26x10-4 None
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1 Peak had a gap in joint analysis from chr18:42207149-42218476, where the p-values
were above 0.01 to a maximum of 0.0128. However given how close the two peaks were,
we combined them into a single entry in the table.
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Figure S1. Omnibus tests of admixture mapping in both the Latino (left, 2-df) and African-
American (right, 1-df) studies in the discovery sample in EVE at the top hit on 18q21. The

meta-analysis p-value in Latinos is 6.8x10-¢ while in African-Americans itis 0.7.
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Figure S2 (next page). Manhattan plots of single-ancestry admixture mapping for African,
European, and Native American ancestry, respectively. Peaks on chr9p31 and chr12p12
show up as genome-wide significant although they do not replicate in GALA II. Peaks
encompassing SMADZ approach genome-wide significance in both the European- and

Native American-specific admixture mapping meta-analyses.

86



African Ancestry

-logiop
3

o

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 2122

-logiop
3

12 13 14 15 16 17 18 19 20 21 22

n
w
IS
2
=)
~
©
©o
o

-logiop
3

]
£ B ‘
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure S2

87



Figure S3. Qqgplots of allelic association in the SMADZ region following imputation using
1000 Genomes Phase I haplotypes. Top panel shows the qqgplot for GALA II only, bottom
left shows GALA Il and EVE Latinos, and bottom right, shows the QQplot for all of EVE
(including the African American and European American studies). Associations were
performed using logistic regression, TDT, or mixed model analysis (EMMAX) depending on

study design. Association testing was done ignoring the effects of local ancestry.
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Figure S4. Comparisons of coefficients, standard errors, and p-values (respectively) from
imputed allelic associations in GALA II with and without local ancestry. In each comparison,
the estimates for variants including both local and global ancestry are plotted on the x-axis
and with only global ancestry on the y-axis. The most significant sites are ranked similarly

in either model.
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Figure S5. Locuszoom plot of GALA II fine mapping using 1000 Genomes haplotypes for
imputation in the neighborhood of the 18921 admixture mapping peak. Of all the study

types, only GALA Il provided a region-wide significant allelic association at rs59002988.
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Figure S6. Minor allele frequencies of our fine mapping top hit, rs59002988, as estimated
from all individuals in GALA II with homozygous ancestry at the locus. Lines represent 95%
confidence intervals. Consistent with observations that the SNP has elevated allele
frequencies in eastern Asians in 1000 Genomes, we observe significantly higher allele

frequencies in the Native American haplotypes than in the other two.
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Figure S7. qqplots from the original EVE allelic associations for the chr18 region around
SMADZ (+/- 1,000 SNPs, although may be missing) split by population. Unlike the
admixture results, there is limited evidence from the genotypes themselves for variants
associated with asthma, aside from some moderate inflation in African-Americans. No

allelic association in any of the populations has a p-value lower than 10-%.
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Figure S8. Distribution of self-reported exacerbation scores calculated in the individuals in

GALA Il with measured SMADZ expression.
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Figure S9. Evaluation of Odds Ratios and cutpoints along the spectrum of possible values

for SMADZ expression. Best-fit cutpoint as discussed in the main text corresponds to the

black line.
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Chapter 4: The Genetic History and Structure of Mexican Populations

(joint work with Dr. Andres Moreno-Estrada, Stanford University)
Abstract:

Mexico harbors one of the most culturally and ethnically diverse populations of the Americas,
yet fine-scale patterns of genome-wide variation remain understudied. Here we present genomic
data for 511 individuals from 20 indigenous populations, combined with 420 mestizo individuals
from 11 cosmopolitan populations throughout Mexico. We found three major genetic
components geographically restricted to Northern, Central/Southern, and Southeastern
populations, with gene flow from Mayans in the Yucatan peninsula to Central Mexico, likely
through a coastal route along the gulf. We implemented a novel ancestry-specific PCA analysis
(ASPCA) to investigate sub-continental ancestry for genomic segments of inferred European and
Native American origin derived from admixed genomes. We identified a hidden correlation with
geography revealed in the indigenous segments of admixed Mexicans resembling a map of
Mexico. We evaluate the biomedical implications of this hidden population structure on
measures of lung function in Mexican and Mexican American children with asthma. We
identified a significant association between ASPCA scores and lung function. Understanding
fine-scale ancestry patterns is critical for the next generation of medical and population genetic

studies.

One Sentence Summary:

Indigenous and cosmopolitan Mexican populations are highly structured and genomic patterns of

variation mirror geography within Mexico, informing future medical genomic studies.

98



Main Text:

Understanding local patterns of human population structure is crucial to evaluate the geographic
stratification of genetic variants. Recent studies have shown that the majority of human genomic
variable sites are rare and exhibit little sharing among diverged populations (/). Moreover,
because rare variants tend to be enriched for potentially functional mutations, their
characterization is likely to lead to novel disease associations affecting local populations.
Previous genome-wide surveys have provided insight into global (2, 3) and continental patterns
of population structure across Africa (4), Europe (5), and the Americas (6), among others.
However, regional and local genomic surveys are needed as a first step towards the discovery of
geographically restricted variation, especially in those regions where populations are likely to be
highly structured (7). In the Americas, the founding population size was likely very small
(perhaps as few as several hundred people (8)) and, therefore, indigenous Americans show very
low genetic diversity within groups (the lowest of any continental population) yet high
divergence among groups (9). As a result, present day indigenous populations (and individuals
with some indigenous ancestry) may harbor local private alleles rare or absent elsewhere,

including functional and medically relevant variants (10, 11).

Here we report local patterns of variation for 511 Native Mexican individuals from 20
indigenous groups covering most geographic regions across Mexico based on nearly 1 million
genome-wide autosomal SNPs. By combining with genotype data from 500 additional mestizo
individuals sampled in cosmopolitan areas of 11 different Mexican states as well as Mexican
Americans, we evaluate the impact of sub-continental ancestry into the admixed genomes of
cosmopolitan populations within Mexico and US-based Mexican communities. We also

demonstrate the biomedical implications of this fine-scale geographic structure by identifying an
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association between values of sub-continental ancestry and estimates of lung function in 456
Mexican child-parent trios from the Mexico City Childhood Asthma Study (MCCAS)(/2) and
see consistent effects in an independent study of 219 child-parent trios from Mexico City and the
San Francisco Bay Area, which were part of the Genetics of Asthma in Latino Americans

(GALA 1) Study (13).

Native Mexican Diversity

Recent continent-wide surveys of Native American genetic diversity have described a genetic
continuity from Mesoamerica southwards (6, /4, 15), pointing to present day Mexico as a
geographic area of transition where a major breakpoint of diversity likely took place during the
settlement of the Americas. Native Mexicans show closer genetic distances from the ancestral
population of indigenous Americans and larger effective population sizes compared to South
American natives (/4), suggesting that they hold one of the major sources of diversity at a
continental scale. Since the pioneering work by Lisker and others using classical markers (76,
17), significant efforts have been made to characterize native Mexican diversity, mostly
analyzing either single-locus markers of uniparental transmission(/J5, /8), or limited autosomal
loci (19, 20). By increasing both marker density across the genome and population sampling, we
are able to get a much finer resolution of population relationships across indigenous Mexican

groups.

We used principal components analysis (PCA) to summarize the major axes of genetic variation
in Mexicans after removing individuals with >10% of European admixture. As expected, PC1
and PC2 separate Africans and Europeans from Native Mexicans, but PC3 differentiates

indigenous populations within Mexico following a clear northwest-southeast cline (Fig. 1A). A
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total of 0.89% of the variation is explained by PC3, nearly 3 times as much as the variation
accounted by the north-south axis of differentiation within Europe (0.30%, according to (5)). The
northernmost (Seri) and southernmost (Lacandon) populations define the extremes of the
distribution within sampled Native Mexicans. Higher PCs show well-defined population clusters,

indicating high levels of divergence between groups (Fig. S1).

An important feature of Native American population history is the strong bottleneck associated
with the peopling of the continent, followed by population expansions. To evaluate whether this
translates into different signatures among contemporary Native Mexicans, we compared
observed cumulative runs of homozygosity (cCROH) along chromosome 1 against simulated data
using a rejection algorithm framework in REJECTOR (217) (see Methods), allowing us to
estimate effective population sizes during bottleneck and current Ne (Fig. S2 and S3). For
instance, we estimate that as few as 71 individuals accounted for the deme size of the Seri
population during the bottleneck, while its current Ne is about 1200 individuals. The Seri
constitute one of the most historically isolated groups in present day Mexico. In contrast, larger
ethnic groups, such as the Maya, have expanded from a couple of hundred to more than 3,500
individuals (Fig. 1B and S2). Interestingly, the estimated Ne during the bottleneck is comparable
across all studied populations and rather low: 178 on average, consistent with previous estimates

on the number of founders of the Americas (8).

To measure population differentiation among extant groups we computed overall pairwise Fsr
combining all autosomal sites (Fig. 1C). The highest value was observed between Seri and
Lacandon (0.14), followed by Tojolabal (0.12) and Triqui (0.10). Both Seri and Lacandon also
showed elevated Fsr values across all other populations, while lowest Fst values were observed

among groups from central Mexico and within the Yucatan peninsula (Fig. 1C). To evaluate the
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impact of population isolation in genetic similarity, we measured the total length of segments
inferred to be identical by descent (IBD) among all possible pairs of individuals using
GERMLINE (22) with a minimum threshold of 5¢cM (see Methods). We visualized both
between- and within-population connections binned into nine levels of relatedness (Figure S4).
Figure 1D shows the approximate location of sampled populations and their connections among
individuals sharing segments of total IBD above 20cM (corresponding to the genomic equivalent
of 3™ cousins or closer relatives). We observed high within-population IBD levels compared to
between-populations, indicating that after splitting, indigenous populations have largely
remained isolated. Some exceptions include either Nahua (e.g., NAJ, NXP, NAG) or Mayan
(e.g., MYA.C, MYA.Q, MYA.Y) populations, both of which are some of the most populous
indigenous groups in Mexico, resulting in a lower probability of observing within-population
connections in our sample. Two groups of closely related populations show higher number of
between-population connections: Totonac and Nahua from Puebla (NXP and NFM), and Tzotzil,

Tojolabal, and Lacandon from Chiapas (Fig. 1D).

In order to formally evaluate the probability of gene flow between populations after splitting, we
used TreeMix (23) to construct a maximum likelihood tree allowing for a fixed number of
migration events between populations. Figure 1E shows the splitting pattern without migration,
which recapitulates the north-south gradient of differentiation observed in our previous analyses
with Seri and Lacandon showing the highest levels of drift from the ancestral population,
followed by Tojolabal. Shared clades denote clear regional relationships, such as all northern
populations branching out from the same initial split at the root, followed by individual
population splits and two major clades: one grouping all populations from the southern states of

Guerrero and Oaxaca (Triqui, Zapotec south, Zapotec north, Mazatec, and Nahua Guerrero), and
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the other all six Mayan speaking populations from the state of Chiapas and the Yucatan
peninsula (Tzotzil, Tojolabal, Lacandon, Maya Campeche, Maya Quintana Roo, and Maya
Yucatan). When running TreeMix allowing for migration edges in the tree, the matrix of
residuals is used to infer pairs of populations with the poorest fit, thus becoming candidates for
testing a better fit involving migration between them. Recent admixture can bias these
estimations so we removed all indigenous samples with more than 2% of European ancestry as
inferred by ADMIXTURE (24). We focused on the maximum likelihood trees for the top three
events of migration (m=1 to 3) inferred from the data (Fig. S5). Interestingly, the first migration
inference (m=1) involves gene flow from the Maya in Yucatan (MYA.Y) to the node of the
Totonac (TOT), whose ancestors are believed to have built the large pre-Columbian city of El
Tajin, located near the coast of the Gulf of Mexico, revealing a possible coastal corridor of gene
flux between the Yucatan Peninsula and Central/Northern Mexico. The strongest migration rate
(consistently greater than 50%) was detected between two closely related Nahua populations
(NXP and NFM) both at m=2 and m=3. In the latter case an additional gene flow event was
inferred from the Totonac to the neighboring Nahua in Puebla (NXP), consistent with the IBD

patterns observed in Fig. 1D.

It is noteworthy that the different Nahua groups, while unified by historically speaking the same
language, stem from different nodes in the tree. For example, NAJ from Jalisco is separated from
the node giving rise to NXP and NFM (both from Puebla); and NAG from Guerrero is grouped
together with Zapotec and other groups from southern Mexico. This translates into a lack of a
single ancestry relating all the studied Nahua groups (as opposed to the Mayan groups, for

instance), suggesting that current groups identified as Nahua are likely the result of linguistic and
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cultural assimilation over genetically distinct groups, probably as a result of the extended

domination of the Nahua-speaking Aztec empire in pre-Columbian times.

To identify loci showing extreme allele frequency gradients given the geographic origin of the
individuals, we applied the SPA method(25) to the combined set of Native Mexican populations
using their known coordinates (see Methods). Incorporating a model to infer the logistic slope of
allele frequencies as a function of geographic positioning, SPA was used to scan the genome for
SNPs that show steep allele frequency changes, which can result from the impact of recent
positive selection. A total of 50 candidate regions were identified within the top 0.1% of the
SPA score distribution (Table S3). SNPs in the MHC region have the most extreme allele
frequency slopes, a region known to have been targeted by selection (26-28). Other immunity
genes outside the MHC region are also among the top regions, including PSMD9 and TNFAIP3,
followed by PEAK1 and PTPRD, involved in cell growth. Extreme values were also observed in
the MFN2 gene region, which may play a role in the pathophysiology of obesity (29), as well as
in HBS1L, which has been identified as a quantitative trait locus (QTL) controlling fetal
hemoglobin level(30). When looking at the geographic distribution of the genotypes from the
best SNP in the HBS1L region (rs1014021, see Fig. S6), we observed that the gradient is driven
by southern Mexican populations showing high derived allele frequencies (60% on average). The
full scan of SPA scores is available in Figure S7, where SNPs with extreme values correspond to

potential regions under selection.

Mexican population substructure

In order to characterize the structure of indigenous populations and its impact in the admixture

patterns of cosmopolitan Mexican samples we used ADMIXTURE, an unsupservised mixture
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model algorithm, to analyze the combined dataset of continental source populations (including
our 20 native Mexican populations, 16 European populations, and 50 West African Yorubas),
and 420 admixed individuals from 11 Mexican states as well as 49 Mexican Americans from the
Los Angeles area (Fig. 2A and 2B). At K=3, each set of reference parental groups gets its own
cluster, with the exception of some Native Mexican groups such as Nahua and Maya, previously
documented to have considerable proportions of European admixture (9, 37). Across the
Mexican cosmopolitan samples we observe a clear gradient of increase Native American, and
decreasing European, ancestry moving southwards, consistent with previous genome-wide
reports of Mexican admixture patterns (32). African ancestry proportions are low on average
(4.9%) and remain similar across most regions with the exception of the coastal states of
Veracruz and Guerrero. Both states are known to have had increased slave trade activity (33),
and some individuals from these states today show considerably higher proportions of African
ancestry (up to 34%), also consistent with previous analyses of a subset of these samples at K=3
(32). However more in-depth analyses of ancestry were not possible in such initial screening as a
single Native Mexican group, the Zapotec, was used as potential source population, precluding

any further detection of sub-continental ancestry.

With a larger reference panel of 20 native populations we observe more detailed substructure at
higher K values. We explored clustering patterns from K=2 through 20 (Fig. S8) and focus on
K=9 for showing the lowest cross-validation error across runs (Fig. S9). At this level the Native
cluster breaks down into six separate Native American components (Fig. 2B). Three of them are
restricted to isolated populations (Seri, Lacandon, and Tojolabal), showing little sharing with
neighboring indigenous groups. The other three show a wider but geographically well-defined

distribution. First, there is a northern component represented by Tarahumara, Tepehuano, and
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Huichol, which gradually decreases southwards until is virtually absent in Oaxaca and beyond.
The second one is represented by southern populations from Oaxaca including Triqui, Zapotec,
and Mazatec, reaching 99.9% in most Triqui individuals, and gradually decreasing northwards.
In contrast there is a sudden disruption moving towards the Yucatan peninsula, where this
southern component is limited to account for an average of 20% of the genome as it is mostly
replaced by a local Mayan component, the third major component observed (Fig. 2B, bottom
panel). Interestingly, this Mayan component is also present at ~10-20% in central native
populations, but not in southern Oaxaca, supporting the hypothesis of a coastal or maritime route
of gene flow between the Yucatan peninsula and central Mexico bypassing the mountain range

of the Tehuantepec isthmus.

When looking at the distribution of these native components in the admixed genomes of
cosmopolitan samples we observed a striking correlation with the patterns described before.
Sonora and neighboring northern states show the highest average proportions (15%) of the
northern native component (light blue in Fig 2B, bottom), while only traces are detected in
Oaxaca and the Yucatan peninsula. Conversely, the southern native component is the most
prevalent across states reaching maximum values in Oaxaca and decreasing northwards.
Cosmopolitan samples from the Yucatan peninsula are the only ones whose Native American
fraction of the genome is dominated by the Mayan component, while all other states show
smaller and decreasing proportions northwards. Likewise, Mayan-related local components,
Tojolabal and Lacandon, are detected above 1% exclusively among individuals from the
neighboring states of the Yucatan peninsula. In contrast to population samples from particular
states, Mexican Americans sampled in Los Angeles (MXL) do not share a homogeneous pattern,

denoting their diverse array of origins within Mexico. Additionally, we detected substructure
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within the European component at K=9 with a clear gradient of differentiation between northern
European and southern Mediterranean populations, in agreement with previous analyses (3, 34).
In all Mexican samples, the majority of its European ancestry comes from the southern
Mediterranean component, consistent with historical records about the admixture process
between Spanish Europeans and native Mexicans. The map in Figure 2A summarizes individual
admixture proportions into population averages for each continental ancestry at K=3 and each
native component at K=9. For instance, Oaxaca and Campeche share similar continental patterns,
showing the highest averages of native ancestry at K=3 (85% and 80%, respectively). However,
when broken down at K=9, we unveil that their native proportion is composed by completely

different profiles, dominated by their corresponding local native components.

In order to formally test whether a correlation exists between the admixture proportions of each
native component and geographic distance between samples, we ran a linear regression using
individual values against their sampling location along a 45° NW-SE axis along the length of the
country. Figure 2C shows the geographic distribution of the six Native American components
and the correlation with geographic location of cosmopolitan samples, all of which were highly
associated with geography (joint Kruskal-Wallis test for latitude and longitude, all components p
<10°°). Using Kriging interpolation we have also estimated the continuous geographic
distribution of each native component across the full set of cosmopolitan populations throughout

Mexico (Fig. S10).

Sub-continental origin of haplotypes measured from admixed genomes

The level of resolution that can be achieved in assessing admixed genomes’ ancestry is largely

dependent of the reference panel used to define potential source haplotypes. Most genomic
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studies involving Mexican admixed genomes have made use of continental-level ancestral
populations (32) while more recent ones have explored sub-continental ancestry to a limited
extent, such as (35), or (36), who used three Mexican and five South American indigenous
populations to evaluate a large cohort of Mexican samples. The Native components of the
Mexican individuals all clustered as a single group next to the native Mexican reference

populations.

We used our extensive reference panel of ancestral populations and novel statistical methods to
explore the ancestral components of admixed Mexican genomes at a finer scale. First, we
estimate local ancestry along the genome for each individual using PCADMIX, a PCA-based
method supporting phased haplotype data and three-way admixture deconvolution (37, 38). Then
we consider only those sites within genomic segments of inferred European, African or Native
American ancestry and mask the rest of the genome to perform PCA with sub-continental
reference panels (Fig. S11) In order to handle the large amount of missing data resulting from
masking ancestry-specific segments across the genome, we implemented a novel Ancestry-
Specific PCA (ASPCA) by adapting the subspace PCA algorithm introduced by (39) to handle
phased haplotype data (see Methods). Previous implementations have adapted the same
algorithm to genotype data (36), thus limiting the analysis to loci of homozygous ancestry. We
applied ASPCA to admixed individuals with more than 25% of Native American or European
ancestry (due to the lower amount of data from African segments we did not run ASPCA for the
African component). Figure 3A shows the ASPCA of each Mexican individual’s European
haplotypes in the context of source European populations (data from (40, 41)), where they
overlay over Southwest European samples, mostly from the Iberian Peninsula. The distribution

of ASPCA values extends to a few outliers closer to Central European and Italian samples.
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Notably, no European haplotypes from Mexican individuals fall within the Basque cluster, who
group separately from the rest of Iberian samples. The Mexican population as a whole primarily
has received ancestry then from Iberians, consistent with the primary Spanish colonization in
Mexico. Figure 3B in contrast shows Mexican individuals’ Native American haplotypes
analyzed together with the Native Mexican reference panel. PCA space is dominated by the
highly endogamous Native populations noted in prior analyses, but when plotting the ASPCA
values for the admixed individuals only, we discover a strong correlation between Native
ancestry and geography within Mexico (Fig. 3C). Here ASPC1 represents a geographic gradient
from west to east and ASPC2 one from north to south, where the distribution of haplotypes
highly resembles a geographic map of Mexico. Three main clusters are identified: that of
individuals sampled in northern states, the one from central/southern states, and the one
composed by individuals from the Yucatan peninsula. There is a gradual overlap between the
first and second cluster of haplotypes, while the separation between the second and the third is
much more abrupt, in agreement with the observed distribution of the Native components as
described above. These results demonstrate that the structure in the admixed individuals is
largely determined by fine-scale Native American ancestry. The correlation between ASPC
values and geography is striking and is remarkable that it is uncovered only from the Native

segments of cosmopolitan Mexican individuals.

To validate our results, we ran a supervised clustering analysis of Native segments from the
admixed Mexican genomes using FRAPPE (42) at K=6 (Fig. S12) and confirmed that, on
average, Mexicans sampled from different regions of Mexico derive differential ancestral

contributions from each of the Native American components (see Methods).
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Biomedical implications of sub-continental ancestry

We investigated whether the hidden population structure unveiled with ASPCA would also have
biomedical relevance via investigating associations with physiological phenotypes. We focused
on lung function testing via spirometry. Presently, lung function testing is one of the few clinical
applications where self-reported race/ethnicity is used in interpreting a “normal” range and

classifying disease and severity (43, 44).

We used physiologic measures of lung function among Mexican and Mexican American children
with asthma from two independent studies: The Genetics of Asthma in Latino Americans
(GALAI) study (13, 45) here comprising 68 probands from Mexico City (MX) and 120 Mexican
American probands from the San Francisco Bay Area (SF), genotyped on the Affymetrix 6.0
array. The Mexico City Children’s Asthma Study (/2, 46) (MCCAS) comprised 492 probands all
from Mexico City and was genotyped on the Illumina 550K. We focused on these two studies as
they are trio-based ensuring accurate long-range haplotypic inference. We performed ASPCA
separately for each study using our Native Mexican reference panel given the heterogeneity
between the two genotyping platforms and to minimize potential distortions in principal
components from unequal population sizes (47) (Fig S13). Given that ASPCA is unitless we then
normalized each set of ASPC scores for comparison across studies, and used fixed effects meta-
analysis where appropriate to estimate effect sizes and confidence intervals for the two studies

combined.

First, as GALA I included individuals from two sampling locations we tested for detectable
substructure in the ASPCA values to see if we could predict recruitment location merely from
ASPCA values. Figure S13 (bottom) shows the ROC curve for the logistic regression classifying

MX vs. SF cases based on their ASPCA values of Native American ancestry, with an AUC of
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80%. Incorporating these values into a fuller model adjusting for overall global ancestry
proportions (here both African and Native American), both ASPCs were significant: ASPC1 OR
per SD: 0.44 (95% CI 0.22-0.68), p=3.8x10, ASPC2 OR per SD: 0.52 (95% CI 1.03-2.75),
p=0.039. The ASPCs defined similar axes as in the population structure analyses (Fig. S13). We
observe that the region of Native ancestry most associated with immigration to the San Francisco
Bay Area is in the Northwest of Mexico (joint ASPC likelihood ratio test p=6.4x107), closest to

the border with the USA, and independent of overall continental ancestry proportions.

With only proband cases in both studies we looked for associations between ASPC values and
measures of lung function. We focused on forced expiratory volume in the first second (FEV)), a
standard measure of lung function used in clinical settings, as it is known to have ethnic
heterogeneity [Hankinson 1996] and has previously been associated with ancestry (43). We used
robust linear models (see Methods) to be less sensitive to outliers in our ASPC projections. We
stratified by study and looked for associations with percent predicted values (44) to account for
age, sex and height, while separately adjusting for overall ancestry proportions to minimize
confounding. However it is important to note that these values are specific to children with

asthma as neither study measured lung function in healthy controls.

We observed a significant association between FEV; and ASPC1, with a combined p-value of
0.0045 (-2.2% decrease per 1 SD, 95% CI (-3.74 - -0.69)), corresponding to the East-West
component observed previously. MCCAS was significant on its own, while GALA T had a
p=0.06, albeit with a much reduced sample size. The normalized association was remarkably
homogeneous between GALA I and MCCAS given the differences in genotype platform,
sampling locations, timing, and recruitment criteria (Fig. 4A). ASPC2, on the other hand, did not

have a significant association with FEV;. The combined results here indicate that sub-continental
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ancestry as measured by ASPCA is important for characterizing clinical measurements, even

independent of the overall admixture proportions.

To put the results in geographic context, we used the association with ASPC1 to infer expected
values of FEV, across the mestizo samples from different states to estimate the expected change
in lung function moving west to east across Mexico. Given the relationship with observed
ASPCA values in GALA I we used extrapolated normalized values by state to infer the expected
amount of change in FEV for children with asthma in each state. We plot the means by state and
predicted confidence intervals in Figure 4B based on the association observed in GALA I and
MCCAS. Consistent with studies involving children with asthma we see expected values slightly
below 100%. While each has fairly wide confidence intervals, the overall association results in
an expected 7.3% average decrease in lung function between Sonora to the west and Yucatan to
the east. This can have high downstream effects when diseases like asthma and chronic
obstructive pulmonary disease (COPD) are partially diagnosed based on specific spirometric

values.

A similar, significant association was previously demonstrated with African ancestry in African
Americans (43). Using that same model the observed decrease of 7.3% in FEV; would be
associated with a 33% increase in African ancestry in African Americans. In addition, lung
function and FEV, values are known to decline with age. The 7.3% change is similar to that of a
30 year old Mexican American individual of average height aging 10.3 years if male or 11.8
years if female (44). Given that specific percent predicted thresholds are used as part of the
diagnostic criteria of diseases such as asthma and COPD, individual sub-continental ancestry can

potentially influence diagnoses despite population-specific reference equations.
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Haplotype structure and haplotype sharing

Different population genetic profiles are known to influence the outcome of genetic association
studies and the replication of significant GWAS hits across worldwide populations. Part of that
variation is explained by the ancestry composition of each individual and the geographic
stratification of the population. Therefore, the use of catalogs of human genetic variation
ascertained in certain continental reference populations, may not be sufficient when the target
population’s ancestry is not fully represented in such panels. To assess to which extent
continental populations from publicly available panels are capturing the haplotype variation
found in cosmopolitan Mexican populations, we performed a genome-wide haplotype sharing
analysis based on 100 Kb sliding windows. Figure 4C shows the proportion of haplotypes shared
between the combined set of mestizo samples and different combinations of HapMap continental
populations before and after including a combined set of Native American samples (see
Methods). Any of the continental source populations alone (YRI, CEU, NAT) shares a limited
proportion of haplotypes with mestizo samples (21.6%, 59.3%, and 78.6%, respectively).
Although Mexican-American samples (MXL) were included in both the HapMap and 1000
Genomes catalogs, their average sharing only goes up to 81.2% and to 90.5% when combining
MXL with all continental HapMap populations. It is only after adding Native American samples
to this previous combination that nearly 100% of haplotypes are shared, maximizing the chances

of capturing most of the variation using our catalogue of Mexican-specific variation.

Continental ancestry also varies across the genome and the relative proportion of African,
European, and Native American ancestry at a given locus may affect the replication success of
associations reported in any of the ancestral populations. By providing a local ancestry map

averaging the proportions of European versus Native ancestry in the combined Mexican sample
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(Fig. S14) we scan the genome for local ancestry fluctuations that may affect power in genetic
studies. While we observed no genome-wide significant deviations in local ancestry patterns, the
natural fluctuations in local ancestry can impact medical studies. For instance, one of the genes
associated with age-related macular degeneration in populations of European descent (ARMS?2) is
located in one of the strongest peaks of Native American ancestry enrichment (Fig. S14-15),
where up to 66% of the sampled Mexican haplotypes occur in a Native American background.
Early age-related macular degeneration has been reported to have higher prevalence among
Hispanics (48), but its local ancestry profile may limit the possibility of replicating the associated
variants reported in European individuals while simultaneously increasing the possibility for

discovering new population-specific risk variants.

Much effort has been invested in detecting common genetic variants associated with complex
disease and replicating associations across populations. But functional and medically relevant
variation may be rare and, thus, population-specific so without detailed knowledge about the
geographic stratification of genetic variation, false-positive associations and lack of replication
are likely to dominate the outcome of genetic studies in uncharacterized populations. Population
structure as determined by cryptic relatedness is expected to be elevated in the populations
sampled here, potentially complicating genetic association studies. However it also suggests that
methods directly harnessing that structure, such as identity-by-descent mapping (22, 49, 50) may

prove fruitful.

Conclusions

Here we have reported hitherto undetected fine-scale patterns of population substructure within

Mexico and refined the genetic picture of relationships among indigenous groups. We
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demonstrate that such structure has been shaped by extreme isolation between ancestral
populations and that it directly impacts the genetic composition of admixed individuals from the
same regions. Furthermore, our work demonstrates that fine-scale population structure going
back centuries is not merely a property of isolated or rural indigenous communities. Rather,
individuals from large cosmopolitan cities reflect the underlying genetic ancestry of local native
populations, arguing for a strong relationship between the indigenous and the Mexican mestizo
population and, therefore, against any social segregation between them. Most importantly, this
has relevant biomedical implications both within Mexico and U.S.-based Mexican communities,
as the observed association between genes, geography, and physiological phenotypes indicates
the importance of understanding not just overall ethnicity but also the role of fine-scale patterns

of ancestry in complex traits and disease diagnosis.
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Fig. 1. Genetic structure of Native Mexican populations. (A) Principal component analysis of
Native Mexicans with HapMap YRI and CEU samples color coded by geographic regions.
Population labels as detailed in Table S1. (B) Simulated posterior distribution of effective
population sizes in the Seri and the Maya based on cumulative runs of homozygosity (cCROH),
generated by sampling from a uniform distribution of Ne and keeping simulated parameters
within 20% of the observed cROH with REJECTOR. Estimates are given for the contemporary
deme size and for that during the bottleneck of Native Americans. Parameters for the other
studied populations are available in Fig. S2 and S3. (C) Pairwise Fsr values among Native
Mexican populations ordered geographically. (D) Pairwise matches between individuals sharing

more than 20 cM of the genome as measured by the total of segments identical-by-descent
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(IBD). Each line denotes a connection between two individuals and each dot represents one
individual, with positions on the map indicating approximate sampling locations. The pattern
across different populations shows high within-population sharing compared to between-
populations. Results from the full range of IBD thresholds are shown in Fig. S4. (E) TreeMix
graph representing population splitting patterns of the 20 Native Mexican groups studied. The
length of the branch is proportional to the drift of each population. African, European, and Asian
samples were used as outgroups to root the tree (Fig. S5), but a maximum likelihood tree with

only Native Mexicans is shown in order to get a closer view at their drift parameter differences.
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Fig. 2. Mexican population structure. (A) Map showing geographic locations of sampled

populations and admixture average proportions. Population codes are detailed in Table S1. Dots

124



correspond to Native Mexican populations color-coded according to K=9 clusters identified in B
(bottom), and shaded areas are states in which cosmopolitan populations were sampled. Pie
charts summarize per-state average proportions of cosmopolitan samples at K=3 (European in
red, West African in green, and Native American in gray). For each state, bars show the total
Native American ancestry decomposed into average proportions of the native subcomponents
identified at K=9. (B) Global ancestry proportions at K=3 (top) and K=9 (bottom) estimated with
ADMIXTURE for the combined dataset of 1,282 individuals including African, European,
Native Mexican, and cosmopolitan Mexican samples (detailed in Table S1). From left to right
Mexican populations are displayed North-to-South. (C) Interpolation maps showing the spatial
distribution of the six native components identified at K=9. Contour intensities are proportional
to ADMIXTURE values observed in Native Mexican samples with crosses indicating sampling
locations. For each native cluster, scatter plots with linear fits show ADMIXTURE values
observed in cosmopolitan samples versus a distance metric summarizing latitude and longitude
(long axis) for the eleven sampled states. Within each plot from left to right: Yucatan,
Campeche, Oaxaca, Veracruz, Guerrero, Tamaulipas, Guanajuato, Zacatecas, Jalisco, Durango,
and Sonora. Values are adjusted relative to the total Native American ancestry of each individual

(see Methods for details).
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Fig. 3. Sub-continental ancestry of admixed Mexican genomes. (A) Ancestry-specific PCA
(ASPCA) of European segments from cosmopolitan Mexican samples (black circles) together
with our reference panel of 1,387 European individuals from POPRES (labeled by country code)
plus 55 additional samples from Spain (yellow labels). Each black circle represents the combined
set of Mexican haplotypes called European along the haploid genome of each sample with >25%
of European ancestry. Axes were rotated 16 degrees counterclockwise to approximate the
geographic orientation of population samples over Europe. Inset map shows POPRES countries
of origin color-coded by region (areas not sampled in gray and Switzerland in intermediate shade
of green to denote shared membership with EUR W, EUR C, and EUR S). Population codes and
regions within Europe are detailed in Table S1. (B) ASPCA analysis of Native American

segments from Mexican cosmopolitan samples (colored circles) together with our dataset of 20
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indigenous Mexican populations (labeled by population code). Samples with >10% of non-native
admixture were excluded from the reference panel as well as population outliers such as Seri,
Lacandon, and Tojolabal. (C) Zoomed detail of the distribution of the Native American fraction
of cosmopolitan samples throughout Mexico. Native ancestral populations were used to define
PCA space (prefixed by NAT) but removed from the background to highlight the sub-continental
origin of admixed genomes (prefixed by MEX). Each circle represents the combined set of
haplotypes called Native American along the haploid genome of each sample with >25% of
Native American ancestry. Inset map shows the geographic origin of cosmopolitan samples per
state color-coded by region. All participants were required to have 4 grandparents born in the

same state (see Methods for details).
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Fig. 4. Biomedical implications of the genetic substructure of Mexican populations. (A)
Coefficients and 95% confidence intervals for associations between ASPC1 and lung function
measures (FEV) from Mexican participants of the Genetics of Asthma in Latino Americans
(GALAI) study, and the Mexico City Childhood Asthma Study (MCCAS), as well as both
studies combined (see Methods for details). (B) Extrapolations based on normalized ASPC1
values of estimated FEV, values by state, using the regression model in Fig. S13 (C) Genome-
wide proportions of haplotypes shared between the combined sample of Mexican mestizo
populations and different continental populations in autosomal chromosomes. The “NatMex”
panel here consists of 71 individuals from 3 indigenous groups, one from each of the major
genetic components identified in Fig. 2. Haplotype sharing analysis was performed using the

subset of Mexican samples with the largest intersection of genotyped SNPs (785,663) with
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HapMap3 populations, which included 312 Mexican mestizos from diverse cosmopolitan

populations (see Methods for details).
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Chapter 5: Supplementary Materials for

The Genetic History and Structure of Mexican Populations

Materials and Methods

Sample collection and genotyping

Institutional review board (IRB) approval for this project was obtained from Stanford University
(File: NOT03HO02) for obtaining and analyzing de-identified DNA specimens from participating
institutions. Written informed consent was obtained from all participants and research/ethics
approval and permits were obtained from the following institutions: the University of
Guadalajara, the National Institute of Medical Sciences and Nutrition Salvador Zubiran
(INNSZ), and the National Institute of Genomic Medicine (INMEGEN). Samples were collected
over several years by researchers from these institutions under protocols consistent with
biomedical and/or population genetics studies aimed at characterizing the genetic diversity of
Mexican populations. Sampling locations and summary data for the populations included in the
study are detailed in Table S1. A total of 362 samples from 15 indigenous populations were
genotyped at the University of California, San Francisco (UCSF) by using Affymetrix 6.0 arrays

and 466 samples were genotyped at the National Institute of Genomic Medicine (INMEGEN) by
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using a combination of Affymetrix 500K and Illumina 550 arrays. Samples genotyped at
INMEGEN include 370 cosmopolitan samples from 10 different Mexican states and 96 samples
from three indigenous populations, which were collected as part of the Mexican Genomic
Diversity Project (MGDP)(/). All participants were required to have 4 grandparents born in the
same state. Overall, this combined genotyping effort generated SNP array data for 828 samples
from 28 different Mexican populations. All samples were genotyped from genomic DNA

extracted from blood.

Data curation

Curation of Native Mexican samples: a total of 458 samples were initially genotyped (362 by
using Affymetrix 6.0 arrays and 96 by using Affymetrix 500K arrays). The number of markers
included in the Affymetrix 6.0 SNP array determined our starting SNP density before
intersecting with data from additional arrays. A total of 909,622 SNPs were successfully
genotyped. We removed 2,919 SNPs with duplicate marker names, 1,217 SNPs with no physical
position in the NCBI Build 36.1 human reference sequence (hgl8 assembly), and 8,087 SNPs
failing Hardy-Weinberg equilibrium at 1x10™. We restricted to autosomal SNPs and samples
with more than 90% of genotyping rate. We removed 3 samples due to evidence of being
duplicates of another sample. As part of the recruiting strategy, 40 trios and 6 duos were included
to improve phasing accuracy of haplotype-based analyses and ancestral reference panels for
admixture deconvolution (see below). One trio showed an excess of Mendel errors and was thus
excluded from trio phasing. Subsequently, the 46 individuals constituting the offspring of all
trios and duos were removed from most of the analyses. We did not systematically filter for

second-degree or lower relatives as part of our initial curation given that some of the subsequent
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analyses make use of IBD information to describe within- and between-population connections
among pairs of individuals across Native Mexican populations (see sections below). We then
excluded 8 individuals due to a high proportion (>30%) of non-Native ancestry, as these are
likely to correspond to sampling exceptions rather than being part of the population’s admixture
pattern. This was confirmed by PCA analysis where these samples appeared to be outliers
relative to others from the same population. Since the scope of the study is to assess the
population structure, including the characterization of recent admixture events among Native
Mexicans, we did not initially filter genomic segments or individuals with some degree of non-
Native ancestry. However, more stringent filters were applied as needed for particular analyses
as detailed in the subsequent sections below. After data curation, the number of Native Mexican

samples genotyped for this study was 401 (Table S1).

Curation of Cosmopolitan Mexican samples: Out of the 370 cosmopolitan samples genotyped at
INMEGEN, 313 were genotyped by using both Affymetrix 500K arrays and Illumina 550K
arrays (covering 7 Mexican states), and 57 samples were genotyped by using Illumina 550K
arrays only (covering 3 additional Mexican states). For the subset of cosmopolitan samples

genotyped with both arrays, genotype data for nearly 1 Million SNPs were available for analyses.

Data integration

To combine our dataset with additional preexisting data and assembly continental reference
panels of potential ancestral populations relevant to the Mexican admixture process, our data
were integrated with previously genotyped datasets from various sources. Additional Mexican
data included Affymetrix 500K genotypes for 53 Native individuals from 2 Mexican indigenous

populations (2), Affymetrix 6.0 genotypes from 49 Mexican-Americans (MXL) sampled in Los
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Angeles, California as part of the International HapMap project phase 3, and Affymetrix 500K
genotypes for 50 Mexicans of admixed origin sampled in Guadalajara, Jalisco included in the
Population Reference Sample (POPRES) data set. European data were obtained from a selected
subset of 204 European samples from POPRES to be included as part of the reference panel of
ancestral populations. Inclusion criteria were based on maximizing geographic representation of
regions within Europe and equalizing sample sizes to those available for the Native Mexican
populations (i.e., around 20, see Table S1). The collections and methods for the POPRES
Sample are described by Nelson et al. (3). The datasets used for the analyses described in this
manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study id=phs000145.v1.p1 through dbGaP accession number phs000145.v1.pl.
Additional European populations from Spain (n=55) included Basque, Andalusian, and Galician
(4), and additional HapMap samples included 25 Tuscans (TSI) and 25 Utah residents of
Northern European descent (CEU). Finally, 50 Yorubans from Ibadan, Nigeria (YRI) from
HapMap were included as reference panel for West African ancestry. A total of 511 additional
samples were integrated from previously generated datasets. The dataset analyzed here is the
result of merging autosomal SNP array data from these different sources and consists of up to
1,282 samples, including 454 Native Mexicans from 20 indigenous populations, 469
cosmopolitan Mexican samples from 12 locations, and 359 ancestral European and West African

populations.

Three main working datasets with variable SNP densities were constructed after merging
multiple datasets and reapplying data quality control filters (now raised to 95% of call rate for
SNPs and samples and excluding SNPs with ambivalent strandedness). Namely, one dataset was

constructed considering the intersection of Affymetrix and [llumina data (71,581 SNPs), one
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consisting of Affymetrix data only (372, 692 SNPs), and one combining the union of both

Affymetrix and Illumina arrays (785,663 SNPs).

Table S2 describes the details of these three datasets. Most of the analyses presented here are
based on the Affymetrix dataset (including data from 500K and 6.0 arrays) as this combination
offered the best balance between SNP density and number of populations included (both
indigenous and cosmopolitan). Nonetheless, we also used the combined dataset of Affymetrix
and Illumina arrays in those analyses that were more robust to lower marker densities and where
maximizing the number of populations was essential. Likewise we used the union of these
platforms in those analyses requiring the densest dataset though across a limited number of

populations.

The steps described above correspond to our initial data curation and the resulting datasets (listed
in Table S2) constituted the base of all population structure analyses. However further filters
were applied to exclude additional samples or integrate additional data for particular analyses as

described below.

Population structure of Native Mexicans

We used the Affymetrix dataset (372, 692 SNPs) in all the analyses focused on Native Mexican
populations. We restricted to individuals having >90% of Native American ancestry (average
proportion of Native American ancestry among remaining individuals was 97.26%). Therefore,
in addition to the initial data curation steps described above, the following samples were

removed from the Affymetrix dataset:
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Samples filtered due to <90% NAT ancestry

Population N (pre-filter) 90% filter N (post-filter)
SER 21 2 19
TAR 24 6 18
TEP 23 3 20
HUI 24 0 24
NAJ 20 8 12
PUR 23 8 15
TOT 23 3 20
NXP 22 15 7
NFM 27 5 22
NAG 29 1 28
TRQ 24 0 24
ZAP.N 21 0 21
ZAP.S 23 0 23
MAZ 17 0 17
TZT 21 0 21
TOJ 21 1 20
LAC 22 1 21
MYA.Q 18 4 14
MYA.C 27 13 14
MYA.Y 24 8 16
TOTALS 454 78 376

Principal component analysis (PCA) and population differentiation: We used EIGENSOFT(5) to

perform PCA and R package was used to generate the plots. Pairwise Fsr values for each
population comparison were calculated using the estimator of Weir & Cockerham (6, 7), and

ggplot2(8) was used to create the plots.

Rejection algorithm and demographic estimation: To infer basic parameter estimates about each

Native Mexican population, in particular, bottleneck strength and current N, values, we
implemented a demographic estimation method using approximate Bayesian computation via
rejection algorithm as built into REJECTOR2 (9). We focused on a tract length statistic sensitive
to bottlenecks known as cumulative Runs Of Homozygosity (cCROH). We assigned ROH based
on sliding windows, a minimum of 50 SNPs in a tract, and allowing for no more than one

heterozygous SNP per 500kb window. This set of criteria similar to other researchers who

135



identified ROH in humans (see (/0-12)), except that we used imputed genotypes from BEAGLE
to avoid missing data issues. Given that these tracts are length-based and not dependent on the
site frequency spectrum these are unlikely to be highly affected by ascertainment bias. Indeed
previous simulations indicate accurate recovery of demographic parameters is possible using

cROH statistics calculated from array genotypes (12).

We generated a set of simulations similar to Henn et al.: moving forward in time, we begin with
a fixed large population size, then the population experiences a bottleneck and subsequent
recovery to modern day deme size, with demographic parameters drawn from uniform priors.
We used the computationally efficient approximate coalescent simulator MaCS (/3) for
simulation, and a tolerance (alpha level) of 20% between the observed and simulated sequences
to accept or reject simulations. To make simulations tractable, we only investigated ROH on
chromosome 1, and to use the maximum density of genotyped SNPs, we restricted to Native
Mexican populations for which Affymetrix 6.0 array data was available (see Table S1). For each
population we generated 100,000 simulated data sets. Acceptance rates varied between ~1-3%.
For estimating final parameters, we employed a density-based smoothing in R over each
histogram of accepted runs to estimate modes and 95% confidence intervals of each parameter of
interest based on the profile approximate likelihoods. We then created plots with both the real
histograms and the smoothed density values, plotting the informative portion of the accepted

runs, both in summary form (Fig. S2) and the individual profiles (Fig. S3).

Identity-by-descent (IBD) analysis: Genotype data were phased using BEAGLE (/4, 15) with

available duos and trios used as training sets. We estimate the amount of DNA shared identically

by descent (IBD) using the GERMLINE software (/6), with a 5 cM threshold to eliminate false
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positive IBD matches. All 5 ¢cM or greater segments shared IBD between pairs of individuals
were summed, and binned into 9 categories as detailed below. We then used the graph
visualization software ShareViz [http://www.cs.columbia.edu/~itsik/sharevizWeb/shareviz.html]
to visualize within- and between-population relationships of pairs of individuals (Fig. 1D and

S4).

Estimated degrees of relatedness and IBD binning

% shared cM Relation® IBD range (cM)  binning
100 3000 Self - -
50 1500 1° > 1300 9
25 750 2° 650 - 850 8
12.5 375 3° 325-425 7
6.75 188 4° 163 - 213 6
3.37 94 5° 80-110 5
1.69 47 6° 40-53 4
0.85 235 7° 20-27 3
0.42 11.75 8° 10-13 2
0.21 5.875 9° 5-7 1

Population Tree analysis: trees have been widely used in population genetics to visualize the

relationships among populations. While providing a valuable initial assessment of population
relationships, a bifurcation tree might be a simplistic representation of human population history
as it assumes population splits with no further gene flow between them. To overcome this
problem, new methods have been recently developed allowing for the inclusion of gene flow
between edges and representing population relationships by means of a reticulated graph rather
than a strict bifurcation tree. Here we used TreeMix v1.0 (/7) to infer patterns of population
splitting and mixing from genome-wide allele frequency data. It estimates the maximum

likelihood tree for a given set of populations given a Gaussian approximation to allele
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frequencies, and then attempts to infer a number of admixture events. Before adding migration,
we run TreeMix with our set of 20 Native Mexican populations and HapMap continental
populations (YRI, CEU, and ASN) as outliers to help us set the root of the tree in subsequent
runs (Fig. S5). Although not representing a perfect fit to the data, we used the maximum
likelihood tree without migration to evaluate the general topology and the extent of population
drift in terms of allele frequency shift from an ancestral population. We then used the residuals
matrix to identify pairs of populations showing poor fits in the initial tree. These are then
considered as candidates around which we add migration edges and try new rearrangements of
the tree now accounting for » number of migration events. As a test run, we first used our
previous panel (Native Mexicans plus CEU and YRI) adding MXL from HapMap as a
population with known recent admixture. The resulting graph with allowed migration events
showed that the strongest signal of gene flow comes from CEU to MXL, consistent with known
historical records of these populations. Given that recent admixture can bias the signals detected
by TreeMix, we restricted further runs with migrations to individuals with >98% of Native
American ancestry in order to infer historical admixture events among Native Mexican
populations. This filter removed the following samples in addition to the ones removed by the

90% filter:
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Samples filtered due to <98% NAT ancestry

Population N (pre-filter)  98% filter N (post-filter)
SER 19 0 19
TAR 18 7 11
TEP 20 10 10
HUI 24 2 22
NAJ 12 10 2
PUR 15 15 0
TOT 20 5 15
NXP 7 5 2
NFM 22 14 8
NAG 28 4 24
TRQ 24 0 24
ZAP.N 21 0 21
ZAP.S 23 2 21
MAZ 17 6 11
TZT 21 2 19
TOJ 20 6 14
LAC 21 4 17
MYA.Q 14 14 0
MYA.C 14 12 2
MYA.Y 16 12 4
TOTALS 376 130 246

Scan for extreme allele frequency gradients: We used the spatial ancestry analysis (SPA) method

(18) to identify SNPs with steep allele frequency gradients in Native Mexicans. A supervised
analysis was performed using known latitude and longitude coordinates of sampling locations for
the combined set of indigenous populations from our Affymetrix global dataset (see Table S2).
Seri and Lacandon were subsequently removed to avoid possible bias due to their extreme
isolation as revealed in previous analyses. Empirical p-values for each SNP were obtained by
rank transformation of the raw SPA scores. Candidate regions were then defined by selecting the
top 0.1% of SNPs of the empirical distribution, and subsequently merging SNPs separated by
less than 500 kB into a single region. In order to avoid spurious outliers, we required that
candidate regions spanned at least 1kB (i.e., a minimum of two outlier SNPs per region). A total
of 50 candidate regions were identified within the top 0.1% of the score distribution
(summarized in Table S3), and the genotypes for the most extreme SNP within each region are

plotted in Figure S6. The full genome scan of SPA scores is available in Figure S7.
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Population structure of cosmopolitan samples

We used the combined Affymetrix + [llumina dataset (71,581 SNPs) to run cluster-based
analysis and PCA on the full set of samples listed in Table S1. This allowed us to include the
maximum number of cosmopolitan samples to evaluate the impact of Native American

substructure in the composition of admixed Mexican genomes.

Structure analysis: We used the block relaxation algorithm implemented in ADMIXTURE (79)

to estimate individual ancestry proportions given K ancestral populations. We initially run from
k=2 through 20 using the global dataset with the maximum number of available individuals to
explore general clustering patterns. We then filtered first- and second-degree relatives and
selected subsets of HapMap and POPRES individuals to roughly equalize sample sizes to those
available for Native Mexican populations (Table S1). We found extensive substructure not only
among the ensemble of recently admixed cosmopolitan Mexican samples, but also among the
different ancestral populations. This was true not only for Native Mexican populations, but also
for Europeans showing varying proportions from different clusters within Europe (fig. S8).
Therefore, rather than using reference individuals as supervised training samples (which are
assumed to have 100% ancestry from some ancestral population), we ran an unsupervised
analysis to let ADMIXTURE estimate ancestry values across all samples. We used the default
setting (folds=5) to perform ADMIXTURE’s cross-validation procedure for evaluating fit of
different values of K. Figure S9 shows the cross-validation error for each run, where k=9 showed
the lowest error estimates (0.49798), indicating that sub-continental clustering levels are a
sensible modeling choice for Mexican populations rather limiting to the usual continental-level
structure of £=3. Additionally, we found constantly increasing Log likelihood values for all runs

from k=2 to k=10 (fig. S9), where k=9 showed the maximum number of population-level
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clusters among Mexicans. An additional European sub-continental component was detected at
k=10 and found to be restricted to the Basque population and shared to a limited extent with
other Iberian populations (fig. S8). At k=11, a group of 3 MXL samples clustered apart showing
full membership to their own component, reflecting possible cryptic relatedness among them.
Due to their shared ancestry with other Mexican cosmopolitan samples, residual proportions of
this “MXL component” were also assigned to most of the remaining individuals, which is
probably not the best description of their actual ancestral components given the observed
patterns at earlier ks. This is also reflected in the subtle drop of the Log likelihood increasing
curve when compared to all other runs. This component remained stable across higher ks, while
other population-specific components appeared among Native Mexicans from k=12 through 20,
but with less clear contribution into the admixed Mexican genomes (fig. S8). Likewise, all
clusters detected at k=9 remained constant throughout the rest of runs up to £=20. In conclusion,
as a result of the observations detailed above, we found £=9 to be the most informative run for
purposes of characterizing sub-continental ancestry of Mexican populations, and therefore,
several subsequent analyses described below were based on ADMXTURE proportions at £=9. In
order to check for possible convergence variation, we performed 10 additional runs using
different random seeds per run and the program converged after detecting the same clusters
previously observed in all cases. We also estimated parameter standard errors using 200
bootstrap replicates per run. In general, standard errors were lower for individuals showing
complete membership to highly divergent populations, such as Yoruba, Seri, Triqui, Tojolabal,
and Lacandon (average error <0.01). In contrast, the two components accounting for most of the
error at k=9 were Northern versus Southern European (standard error =0.029). The average error

across all individuals and components was 0.016. The number of markers used is also known to
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affect the performance of cluster-based algorithms. According to the ADMIXTURE guidelines
(19), 10,000 markers suffice for continental-level distinction, while numbers closer to 100,000
are recommended for within-continent separation, assuming for instance European populations
(i.e. Fst <0.01). Given that we are using more than 71,000 markers (using our global Affymetrix
+ Illumina dataset) and that all ancestral populations involved have Fst > 0.02, we expect our
ancestry estimates to be reasonably accurate. Nonetheless, we also ran k=2 through k=20 using
the global Affymetrix dataset (>370,000 markers) using the same settings described above and
there were no significant differences in parameter estimates for individuals represented in both

datasets.

Correlation of cluster membership and geographic coordinates: From the clustering patterns

observed across Mexican states in the ADMIXTURE analysis, a clear correlation can be
appreciated between the geographic location of samples and their membership to the six main
Native Mexican clusters. To formally test for significance with Latitude and Longitude we
performed a linear regression for each component. We transformed latitude and longitude to
create estimates across the “long axis” of Mexico, running NW-SE to better summarize the
geography of Mexico in a single distance rather than latitude or longitude alone. Because the
southern component decreases both northwards and towards the Yucatan peninsula, the

correlation is less pronounced when Campeche and Yucatan samples are included.

Admixture maps: We used Kriging methods to interpolate ADMIXTURE proportion values for
displaying the six native components identified at K=9 across both Native Mexican and
cosmopolitan samples (Fig. S10). ADMIXTURE values from cosmopolitan samples (which

usually show varying proportions of non-native admixture) were adjusted so that the sum of
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ancestry proportions coming from Native American components equals 1. Contour maps were

created using MapViewer (Golden Software).

Local ancestry estimation

We used a PCA-based admixture deconvolution method (PCAdmix, (20)) to estimate local
ancestry across the genome. This method uses phased genotype data to estimate posterior
probabilities of ancestry for windows along each chromosome. First, ancestral populations are
thinned for SNPs with r2<0.8 in order to remove highly linked alleles from different populations,
which can overfit and lead to spurious ancestry transitions. Second, chromosomes for each
individual in a population are artificially strung together to create two extended chromosomal
haplotypes; this step allows us to use the full genome for PCA, and it is of special relevance
when masking ancestry-specific portions of the genome (see below). Then, PCA on a number
k<3 of ancestral populations is performed and the admixed population is projected into the
determined k<3 PCA space. PC loadings are used as weights in a weighted average of the allele
values in a window of 40 SNPs. These haploid window scores are then used as observed values
in a Hidden Markov Model (HMM) to assign posterior probabilities to the ancestry in each
window (where chromosome were considered separately). Two complementary algorithms,
Viterbi and forward-backward are used to compute posterior probabilities for each window.
PCAdmix was implemented in C++ and is available at https://sites.google.com/site/pcadmix/.
Additional performance testing and details of the implementation for this approach are available

in (20-22).

The choice of k=3 ancestral populations for running PCAdmix was informed by ADMIXTURE

results and is consistent with other investigations of ancestry in Latinos (Fig. 2B). Although
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continental-level ancestral populations are a good model at k=3, we observed that PCAdmix
performance was improved when including reference panels representing a diverse set of
haplotypes. In Mexicans, we expect most of the ancestry variation to come from the Native
American (NAT) component rather than the European (EUR) or African (AFR) components. To
empirically test the performance of different NAT reference panels in our Mexican dataset, we
run PCAdmix in a subset of 30 random samples using separately the different populations for
which we had available trio data: Tepehuano (TEP), Nahua (NAH), and Maya (MYA). We
limited to available trio data as PCAdmix takes phased data as input. When comparing the 3
different possible NAT ancestral populations we observed that comparable results were obtained
when run separately. However, the proportion of windows called “unknown” was lower when
using all three NAT populations combined. Therefore we constructed our reference panel by
combining five trios from each NAT population (those five showing the highest proportions of
NAT global ancestry, 15 trios total), plus 15 CEU, and 15 YRI trios as continental reference
samples. We then separately run PCAdmix in two sets of admixed Mexican samples, the 23
complete MXL trios from HapMap3, and the 362 unrelated cosmopolitan samples from MGDP
(N=312) and POPRES (N=50). The former set was trio phased using BEAGLE whereas the
latter was population phased using phased MXL haplotypes as training set. Figure S11 shows a
schematic diagram of the workflow to assign local ancestry and further analyze ancestry-specific

fractions of the genome.

Local ancestry scan: We plotted Viterbi posterior probabilities per window against physical

distance along autosomal chromosomes to identify peaks of ancestry enrichment across the

genome. We limited to EUR and NAT ancestries since AFR ancestry values were based on much
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lower number of counts, making deviations from the mean incomparable. The R package ggplot2

was used to visualize normalized ancestry proportions (Fig. S14).

Ancestry-specific PCA (ASPCA)

We implemented a modified version of the subspace PCA (ssPCA) method originally described
by Raiko et al. (23) to handle the large amount of missing data resulting from masking ancestry-
specific segments across the genome of multiple individuals. Previous implementations have
adapted the same algorithm to genotype data (24). However, no method is currently available for
applying subspace PCA to haplotype data. To project ancestry-specific haplotypes derived from
the admixed genomes of Mexican cosmopolitan samples we restricted to individuals with more
than 25% of their genomes inferred from each continental ancestry. Continental reference panels
were constructed to project Native American and European blocks separately. Three populations
(Seri, Lacandon, and Tojolabal) were excluded from the Native American panel due to evidence
of extreme divergence compared to the rest of populations (and no NAT segments from admixed
genomes were projected onto those clusters). The final panel consisted of 17 Native American
parental populations. Our European reference panel included 1,387 POPRES individuals from
throughout Europe with 4 grandparents from the same country (3, 25) plus 55 additional samples
from Spain (4). We did not project AFR segments due to the low number of haplotypes across
the population sample. To validate the consistency of our ASPCA results we performed a
supervised structure analysis using frappe (26) and observed clustering patterns in agreement
with our ancestry-specific distribution in PCA space. Our implementation of the method is

described in what follows.
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Overview of the ASPCA method (subspace learning algorithm): The method we describe here is

a close adaptation of the subspace learning algorithm described in (23) to haplotype data. This
implementation can be found in the software PCAmask, and mathematical details of the

implementation can be found at http://arxiv.org/abs/1306.0558.

Ancestry-specific clustering analysis

We implemented a modified version of the frappe clustering algorithm (26) in order to
accommodate partial missing resulting from masking specific sites of the genome. Our
analyses of ancestry-specific segments of the genomes in the Mexican individuals rely on
haplotype data. This leads to the generation of heterozygous missing sites at SNPs inferred
to be heterozygous for the desired ancestry. Since the original frappe method developed by
Tang et al. cannot process partially missing genotypes, we adapted the algorithm to process
haplotype data. The algorithm relies on an EM algorithm to jointly infer overall ancestry
proportions in admixed individuals and the ancestral allele frequencies at all sites used in
the panel. While the standard frappe implementation integrates over the two observed
alleles at every genotype, this integration is eliminated for haplotype data. Specifically, in
the M step, an estimate for the ancestral allele frequencies is obtained from the best guess

for ancestry proportions using the modified equation:

N i Ey

n+l _ i€0

p mk E n
imk
€0

where pmk is the allele frequency for ancestral population k at marker m, him is the

observed allele on haplotype i (0/1-based), and O is the set of all haplotypes carrying the
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desired ancestry at marker m. Eink is a computational device indicating the expected
ancestral contribution of ancestor k at haplotype I on marker m. Similarly, an estimate for
the overall ancestral contribution qik of ancestral population k at haplotype i is obtained

from:

n
E imk

Y1
€0

where the denominator simply corresponds to the total number of unmasked sites across

(N5
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all haplotypes used in the analysis. Finally, in the E step of the EM algorithm the quantity
Eimkis updated based on the new estimates for overall ancestry proportion and estimated

allele frequencies:

n+l _n+l

En+l - pmk qik

imk K
n+l _n+l
E Pk Qi
k'=1

This step is identical to the original version of the algorithm.

Biomedical associations with ASPCA values

We leveraged two studies of childhood asthma in Mexicans and Mexican Americans to
determine important pulmonary associations with ancestry-specific PCA values. In particular, we
focused on lung function as measured via spirometry using standard clinical measurements as
ancestry has been shown previously to affect lung function (27). Both studies were trio-based
ensuring long-range phase determination in the probands and were all of affected children. For

continuous lung function measurements, we transformed raw spirometric values into percent

147



predicted values, which are already adjusted for typical anthropometric measurements (e.g. age,
sex, and height) (28). Informed consent was obtained from all individuals at the study sites prior
to sample collection. Both studies have been described in detail elsewhere. The genotypes
included the same thresholds for quality control filtering, as described in (29). We briefly

describe each study below.

The Genetics of Asthma in Latino Americans (GALA I) study is a trio-based study of Latinos
(30) that was genotyped on the Affymetrix 6.0 array (37, 32). For this study we filtered to
individuals sampled in Mexico City and the San Francisco Bay Area with 4 grandparents that all
identified as Mexican or Mexican American. We used PCAdmix for local ancestry estimation
with the same reference ancestral haplotypes as before, combined with global admixture
modeling via ADMIXTURE (33). After filtering for individuals with spirometry data and
adequate levels of Native American ancestry for use with ASPCA we were left with 68

individuals from Mexico City and 120 from the Bay Area.

The Mexico City Childhood Asthma Study (MCCAS) consists of trio-based sampling of
individuals with asthma along with their parents, genotyped on the Illumina 550 platform (34,
35). All sampling was performed at a single site within Mexico City. As these samples were
generated on an [llumina platform, we used the Native Mexican samples from the Human
Genome Diversity Panel (36) combined with CEU and YRI genotypes, for local ancestry
estimation using PCAdmix. We used global ancestry estimates from frappe (26) estimated
previously (34). After filtering for individuals with spirometry and adequate levels of Native

American ancestry we included 341 individuals in downstream analysis.

As the two datasets involved different numbers of SNPs and different numbers of individuals, we

applied ASPCA independently to each dataset to minimize distorting the ASPCA values of the
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reference individuals. To simplify comparisons across the two datasets, we used the normalized
values of ASPCs 1 and 2, along with global ancestry covariates, to test for associations with
population structure and lung function. As PCA, or ASPCA for that matter, is unitless,

normalizing provides a standard for comparing across multiple ASPCA runs.

First, as GALA I includes individuals both from Mexico City and the San Francisco Bay Area,
we wanted to investigate whether ASPCA values were associated with recruitment center. To do
this, we used a likelihood ratio test of two different logistic regression models: a full model with
ASPC1 & 2 along with global ancestry covariates; and a restricted model with simply the global
ancestry terms. The statistic 2*log (likelihood ratio) then follows a 2-degree of freedom chi-
squared distribution (one for each ASPC). We performed marginal tests for each ASPC using t-
tests. We also estimated the raw AUC for a ROC curve including the two ASPCs using the

epicalc package in R.

Next, for each study, we ran a separate robust linear model (rlm via MASS in R) to predict forced
expiratory volume in the first second (FEV), using the ASPC values and adjusting for global
ancestry covariates. We used robust linear models rather than OLS as PCA can have outliers that
can potentially bias OLS estimation. Given normalized ASPC1 & 2 values, the regressions took

the form:

%(predicted)FEV, ~ B, + B,z(ASPC1) + B,z(ASPC?2) + B,African + B,Native + ¢

Where age, sex and height are incorporated in the percent predicted values to be able to compare

effects across the entire growth curve. Global ancestry terms are used to adjust for any residual
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population stratification, and to ensure that overall levels of Native American ancestry do not

confound potential associations with ASPCs 1 and 2.

We performed these regressions separately for GALA I and MCCAS, then combined the effect
sizes for ASPC1 and 2 via fixed effects meta-analysis in the R package metafor. These values
were then used for p-value testing as they represented the largest combined sample and were
independent replication with different recruiters, study designs, and genotyping arrays. We
extrapolated based on the ASPCA values including GALA I to the data from 8 states to
determine the change in FEV| due to differences in the origin of Native American ancestry. For
context then we compared our observed results with that explained by change in lung function

due to age (28) and African ancestry levels in African Americans (27).

We repeated these same analyses for two other values of lung function: forced vital capacity
(FVC) and the FEV/FVC ratio, however, neither of these values were significantly associated
with either ASPC1 or ASPC2 in any marginal test or meta-analysis and were not investigated

further.

Haplotype sharing analysis

We used the densest dataset (785,663 SNPs) consisting of 674 unrelated samples genotyped on
both Affymetrix 500K and Illumina 550K SNP arrays. This included a combined group of 71
Native Mexicans (Tepehuano n=20, Zapotec n=21, and Maya n=30), as well as another
combined group of 312 Mexican cosmopolitan samples from the states of Guerrero (n=50),
Guanajuato (n=48), Sonora (n=48), Tamaulipas (n=17), Veracruz (n=50), Yucatan (n=49), and

Zacatecas (n=50). Sampling locations are reported in Table S1. To evaluate the level of
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haplotype sharing with diverse populations from other regions of the world we also included a
subset of HapMap continental reference samples. Namely, CEU (n=62), YRI (n=100), MXL
(n=44), and CHB+JPT (n=85). Merged and curated genotype data were phased using BEAGLE
software (14, 15). To phase the Mexican mestizo samples, we used the 22 MXL trios from
HapMap3 as training set, whereas the Tepehuano and Maya trios were used to improve phasing
of the Zapotec. Tepehuano (n=10 trios) and Maya (n=15 trios) were trio phased separately.
HapMap populations with available trio data (CEU n=31 trios, YRI n=50 trios, and MXL n=22
trios) were also trio phased, whereas for CHB+JPT (n=85 unrelated individuals) we performed

population phasing.

Genome-wide haplotype sharing (GWHS): To determine the potential use of Mestizo and Native

population data as reference for the genetic analysis of candidate regions and GWAS in
Mexicans, we performed GWHS analysis using all available SNP genotypes within 100Kb
fragments of the genome. We used BEAGLE phased genotype data and then estimated all
plausible haplotypes within each segment across populations using PHASE (37, 38). GWHS was
assessed by comparing the number of common haplotypes (with frequency >5% across
populations) shared between Mexican Mestizos and the different HapMap populations as well as

Native Mexicans (Fig. 4C).

The proportions shared between Mexicans and HapMap populations were comparable (SD from
1.4 to 3.0) across chromosomes. On average, Mexicans shared 21.6% with YRI, 54.8% with
CHB+JPT, 59.3% with CEU, 78.6% with Natives and 81.2% with MXL. The proportion of
shared haplotypes with CEU+CHB+JPT was 76.2%, and this was increased to 90.5% when the
MXL group was added, and finally to 98.8% when Mexican Natives were included as reference

(Fig. 4C). These results indicate more sharing than those previously reported (/) due to a higher
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density of markers included in the analysis capturing more LD, and the availability of data from

Native Mexicans.

Tag SNP selection efficiency in candidate regions: To determine the potential use of Mestizo and

Native Mexican tagSNPs for targeted studies, 10 gene candidate regions were selected for
containing SNPs previously associated to diseases or traits of clinical interest including, non-
alcoholic fatty acid disease (PNPLA3), dyslipidemias (ABCA1), age-related macular
degeneration (ARMS?2), response to hepatitis C treatment (DDRGK1), Crohn’s disease (NOD2),
asthma (PTGDR, NOTCH4 and GC), metabolic syndrome (ApoB) and systemic lupus
erythematosus (IKZF1). All genes are included in the Catalog of Published Genome-Wide
Association Studies (http://www.genome.gov/gwastudies), two of them, ABCA1 (39) and
PNPLA3 (40) house genetic variants that have been identified in Mexicans or Hispanic

populations.

Across all populations analyzed we identified tag SNPs in these 10 candidate gene regions using
Tagger, the tag SNP selection algorithm from Haploview software (417), with SNPs of frequency
>5%, considering pairwise tagging only and r2 threshold of 0.8. We evaluated the performance
of tag SNPs and their underlying coverage by estimating coverage from tagSNPs to the rest of
the SNPs available in each gene using a pairwise 2 approach. In a similar fashion to the GWHS
analysis, we evaluated the mean best 12 coverage based on the tag SNPs determined using
various reference panels. Out of the 10 candidate loci, 2 had fewer than 10 SNPs and were
dropped for this analysis, resulting in 8 genes evaluated using multiple reference ancestral
groups. While the individual results vary from gene to gene, using the whole reference panel of
Mexican Mestizos resulted in the best tagging performance overall, better than using the MXL

population from HapMap3 (Fig. S15). The results of this analysis underline the importance of
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using reference datasets of populations with the same LD structure for a better analysis of

genetic variation in recently admixed populations such as Mexicans.

To search for a potential relationship between the enrichment in a particular ancestral component
in the region with the haplotype sharing and tagging results, we analyzed the local ancestry
estimations for each of the 10 regions included in this analysis. We did not find any clear
relationship between local ancestry and proportion of shared haplotypes. Looking at more detail
in the haplotype diversity observed in these regions we could identify that in those regions with
the highest European or Native American ancestral contribution, corresponding respectively to
ABCAI and ARMS?, this differential ancestry is not related with differences in haplotype
diversity or tagging performance. In both cases, ancestral contribution differences are clearly
related to differences in the frequency of specific haplotypes, that even if shared with all other
populations, show distinct frequency differences in ancestral groups. The previous is shown in
ARMS?2 for which all common haplotypes (>1%) present in either Mestizo and Native Mexican
groups are shared in at least one HapMap group, but in which two of them are enriched in Native

Mexicans (87%) and Mestizo (72%), compared to CEU (50%).

The results of the genome-wide and candidate region haplotype diversity showed that Mexican
Native and Mestizo groups show a haplotype structure not fully represented in continental
groups of the HapMap3 reference population set, which is comparable to other publicly available
resources such as 1000 Genomes in terms of the Mexican diversity represented. Even including
the closely related MXL population as reference, does not achieve the same effect than using the
combined Mexican groups, the later most probably due to the fact that Mexican-Americans
included in the MXL sample have a heterogeneous origin and thus a genetic structure of limited

representation when compared to a comprehensive sample across the country. These results
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support the fact that a deep genetic characterization and inclusion in association studies of
recently admixed populations such as Mexicans represent a great opportunity to discover new

genetic variation of relevance for biological traits and disease.

The selection of tag SNPs in candidate regions is of critical relevance for the improvement of
genetic studies in Latin America, as this approach would enable the selection of small sets of
SNPs for cost-effective study designs in candidate regions derived from GWAS or WGAS in
other populations, with the aim of looking for new variants or haplotypes contributing to the
genetic structure of biological traits or disease risk. Our results show that using the Mexican
dataset generated here as reference population translates into a better haplotype capture than
using SNP sets based on the use of combinations of population groups from currently available

catalogs of variation.
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Figure S1: Principal component analyses based on the global dataset of ancestral and admixed

Mexican populations. (A) Left: Global dataset of Native Mexicans combined with HapMap3 YRI

African and CEU European samples. Right: Global dataset of Native Mexicans alone. (B)

Combined dataset of ancestral reference samples (African, European, and Native Mexican) and

admixed Mexican samples from cosmopolitan populations throughout Mexico and Mexican-

Americans in the Los Angeles area. Populations are color-coded by geographic regions as

follows: North (N), Central west (CW), Central east (CE), South (S), and Southeast (SE). Left:

we observe a continuous dispersion of admixed individuals between the European and native

Mexican cluster along PC1, reflecting their genome-wide average of native ancestry. PC2

separates a few individuals with higher African ancestry, predominantly from the coastal states

of Veracruz and Guerrero. Right: along PC3, cosmopolitan samples from different states tend to
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be separated by the different native clusters in a north-to-south direction. For example, Yucatan
and Campeche individuals form an elongated cluster that is clearly pulled in the direction of the
Mayan individuals. Likewise, those Sonora individuals with higher native proportions fall closer
to northern native clusters. However, the separation is much more subtle among states from
central Mexico, probably because standard PCA methods rely on genome-wide averaged signals

from diploid genomes, making it difficult to ascertain finer scale patterns of differentiation.
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Figure S2: Summary of parameter estimates for the effective population size in different Native
Mexican population samples. Estimated deme size during bottleneck and current Ne are given
per population showing 95% confidence intervals. Parameters were estimated from cumulative
runs of homozygosity (¢CROH) on chromosome 1 via a rejection algorithm comparing observed
and simulated data with REJECTOR (see Methods for details). In order to use the maximum
density of genotyped SNPs along chromosome 1, we restricted to Native Mexican populations

for which Affymetrix 6.0 array data was available (see Table S1).
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Figure S3: Individual population profiles of the simulated posterior distribution of effective
population sizes in different Native Mexican samples. For each population, contemporary Ne
(top histogram) and bottleneck strength (bottom histogram), were estimated by sampling from a
uniform distribution of Ne and keeping simulated parameters within 20% of the observed cROH
with REJECTOR (see Methods). Each histogram shows the frequency of accepted simulations

and the smoothed density values used for estimating the final parameters shown in Fig. S2.
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Figure S4: Patterns of relatedness within and between Native Mexican populations as measured
by the total amount of segments identical-by-descent (IBD) shared between pairs of individuals.
Each dot represents one individual and each line denotes a pairwise match between two
individuals sharing more than a given amount of total IBD. Values of total IBD (in cM) were
binned into consecutive categories corresponding to the following proportions of the genome:
50% and above, 25%, 12.5%, 6.75%, 3.37%, 1.69%, 0.85%, 0.42%, and 0.21%, which intend to
reflect the first 9 degrees of relatedness. Each plot shows the network of connections resulting
from each of these IBD thresholds. Specific bin ranges are indicated in cM next to each plot. In

order to provide geographic context, individuals were arbitrarily placed in positions that
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approximate the location of the sampled populations. The pattern across different populations

shows high within-population sharing compared to between-populations for bins above 20 cM.
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Figure S5: Maximum likelihood trees as inferred by TreeMix representing splitting patterns of
Native Mexican populations and inferred migration events. (A) Graph depicting the relationships
between Native Mexican populations along with three continental outgroups (HapMap YRI,
CEU, and CHB). The length of the branches is proportional to the drift of each population. The
resulting topology informed the position of the root in subsequent analyses (i.e., between all four
Northern native populations and the rest). (B) TreeMix graph of Native Mexican populations
alone without allowing for migration. The matrix next to each graph summarizes the residuals
from the fit of the model to the data, where extreme values indicate populations that could be

better modeled when adding migration to the model. (C) Models allowing for 1 to 3 events of
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migration (m = 1 through 3). Trees were constructed using the known topology from B and
including samples with more than 98% of Native American ancestry. Arrows indicate migration
edges and directionality of gene flow. Color intensity is proportional to the inferred amount of
gene flow according to the migration weight bar. Residuals for each model are presented in

pairwise matrices next to each graph.
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Figure S6: Genotype maps for the SNPs with the highest SPA score within each of the top 50
regions showing the most extreme allele frequency gradients across Native Mexican populations.
Each circle represents one sample color-coded by its genotype. Each cluster represents one

population with positions based on known latitude (y-axis) and longitude (x-axis) coordinates.
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Some scattering was added to the position of individuals within each cluster to avoid overlap of

samples sharing the same coordinates.
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Figure S7: Genome scan for SNPs with steep allele frequency changes given the known location
of Native Mexican populations. The y-axis represents the steepness of the slope for each SNP as
measured by SPA scores, with values > 2 highlighted in blue. Candidate regions (red blocks)
were identified by selecting the top 0.1% of SNPs of the empirical distribution, and subsequently
merging SNPs separated by less than 500 kB into a single region. In order to avoid spurious

outliers, we required that candidate regions have at least two outlier SNPs. The genomic

annotation of the 50 candidate regions identified is summarized in Table S3.
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Figure S8: Unsupervised ADMIXTURE results from K=2 through 20 based on the intersection
of Affymetrix and Illumina data (71,581 SNPs) from 1,282 samples (454 Native Mexicans, 469
Mexican mestizos, 309 Europeans, and 50 Yorubas). Each vertical bar represents an individual
and the y-axis the proportion of the genome assigned to each of the ancestral clusters. Substantial
substructure dominates the Native American component of both indigenous and cosmopolitan
Mexican samples. European substructure is mainly driven by two sub-continental components
following a North-South gradient, with the Basque clustering apart from the rest at K=10 and
higher. We limited the representation of West Africans to a subset of HapMap YRI samples due

to the study’s emphasis on Native American diversity (see Table S1 for details).

166



—81500000

Loglikelihood
-82500000

-83500000

Figure S9: ADMIXTURE metrics at increasing K values based on Log-likelihoods (A) and

T T T T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20

Kruns

Cross-validation error

0.502 0.506 0.510

0.498

T T
2 4

°
T
6

°
T
8

T T T T T T T T T
10 12 14 16 18 20

K runs

cross-validation errors (B) for results shown in Fig. S8. While increasing clustering levels were

associated with a continuous increase of likelihood values (/eft), K=9 showed the lowest error

after cross validation (right).
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populations. Interpolation maps are shown for ADMIXTURE values at K=9 observed among
indigenous (left column) and cosmopolitan (right column) samples. Black crosses on the maps of
each column indicate sampling locations of indigenous and cosmopolitan populations,
respectively. From top to bottom the six pairs of maps correspond to the six Native American
components identified at K=9 (shown at the bottom and in Fig. S8). Contour maps were
generated using Kriging interpolation methods, where intensities are proportional to
ADMIXTURE values. For the group of cosmopolitan samples (thus with higher non-native
admixture proportions), values were adjusted relative to the total Native American ancestry of

each individual (see Methods for details).
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Figure S11: Diagram of the analytical strategy used for inferring sub-continental ancestry in
admixed genomes. The starting point consists of genome-wide SNP data from admixed Mexican
individuals. Unrelated individuals and family trios are population phased and trio phased,
respectively, using BEAGLE. Next, phased haplotypes are used to estimate local ancestry along
the genome using PCAdmix and continental reference samples. Then, taking Viterbi calls at each
locus, ancestry-specific regions of the genome are masked to separately analyze European,
African, and Native American haplotypes in a PCA framework together with large sub-
continental reference panels of putative ancestral populations (see Methods for details). We refer
to this methodology as ancestry-specific PCA (ASPCA) and the code is packaged into the
software PCAmask. Additional details available at Moreno-Estrada et al.

(arxiv.org/abs/1306.0558).
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Figure S12: Supervised ancestry-specific clustering analysis of Native American haplotypes
derived from admixed cosmopolitan Mexican genomes. On the x-axis bars represent haploid
genomes for all admixed individuals with >25% of global Native American ancestry, that is, one
individual is usually represented by two bars. The y-axis indicate native ancestry proportions at
K=6 using our reference panel of Native Mexican populations (see Table S1). Given the low
overall contribution of isolated native components into the mestizo population (as identified in
Fig. 2), we excluded Seri, Lacandon, and Tojolabal from the reference panel. Since our ancestry-
specific approach relies on haplotype data, we used a modified version of the FRAPPE algorithm
to estimate admixture proportions in the presence of missing sites at SNPs inferred to be

heterozygous for the desired ancestry (see Methods). Individuals are grouped into regions as
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described in Table S1. Because we required more than 25% of Native American ancestry to be
included in the analysis, some regions are represented by less individuals that the actual sample
size, such as mestizo individuals from Northern states of Mexico, where overall proportions of
Native American ancestry are considerably lower than in the rest of the territory. The six clusters
identified to run the algorithm on supervised mode were: Northern Native Mexicans, Huichol
(which clustered on their own in previous analyses), Native Mexicans from Central West,
Central East, South, and Southeast Mexico (excluding Seri, Lacandon, and Tojolabal). Overall,
the results replicate the observations from our ASPCA analysis: on average, Mexicans sampled
from different regions of Mexico derive differential ancestral contributions from each of the

Native American components.
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Figure S13: ASPCA analysis of Native American segments from Mexican participants of the
GALA I study (left) sampled in Mexico City (GALA MX, gray circles) and the San Francisco
bay area (GALA SF, black circles), and participants of the MCCAS study (right) sampled in
Mexico City (black circles), analyzed together with our dataset of 20 indigenous Mexican
populations (labeled by population identifier and color-coded by region of origin). Samples with
>10% of non-native admixture were excluded from the reference panel as well as population
outliers such as Seri, Lacandon, and Tojolabal. Here, a total of 803 phased haploid genomes (280
MX and 523 SF) represent the GALA Mexican sample and 1900 the MCCAS cohort. Bottom:
ROC curve for the logistic regression of ASPCA values separating Mexico City (MX) versus

San Francisco (SF) cases from the GALA I study (see main text for details).
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Figure S14: Local ancestry scan in the combined set of cosmopolitan Mexican samples showing

normalized Z scores of Native American versus European ancestry proportions along autosomal

chromosomes. African ancestry not shown due to the small sample size of African haplotypes

across individuals. Local ancestry calls were estimated using PCAdmix and counts were scaled

to the total sample size. Dashed lines indicate two standard deviations away from the mean.

Results are based on 372,692 SNPs and 362 samples with available Affymetrix data (see Table

S1).
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Figure S15: Tagging efficiency using Mexican Mestizos or HapMap Populations as reference.
The mean best R2 coverage based on the tag SNPs determined using various reference panels
was evaluated in a subset of candidate gene regions of biomedical interest. While the individual
results vary from gene to gene, using the whole reference panel of Mexican Mestizos from
resulted in the best tagging performance overall, notably, better than using the MXL population

from HapMap3.
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Table S2. Three working datasets generated for this study

Name Samples SNPs Average call Notes
rate
global.illu.affy.unrel 1,282 71,581 98.93% All samples as reported in Table S1
global.affy.unrel 1,224 372,692 98.85% All samples with available
Affymetrix data
mex.hapmap.unrel 674 785,663 99.30% Samples with both Affymetrix and

[Nlumina data

Note: The unrel suffix denotes that all individuals being part of the offspring of trios or duos
have been removed.

Table S3. Top 0.1% values of the distribution of SPA scores from the combined dataset of
Native Mexican populations

Chr | Start2 End Width | Best SNP® | Min p-value | Genes Best gene® Dist. to
best gene

1 11872557 | 11968650 | 96094 | rs2336384 | 8.52E-05 KIAA2013, PLOD1, MFN2 0

MFN2
1 161201354 | 161675875 | 474522 | rs12035861 | 0.000296765 | RGS4, RGS5, NUF2 C1orf110 96125
2 40965587 | 41032954 | 67368 | rs17026994 | 0.000505381 SLC8A1 439875
2 67630022 | 67696704 | 66683 | rs6546319 | 0.00044074 ETAA1 205667
2 100567880 | 100688625 | 120746 | rs7594990 | 0.000102839 PDCL3 8468
2 186314170 | 186316584 | 2415 rs9646802 | 0.00072869 | FSIP2 FSIP2 0
3 57369806 | 57483052 | 113247 | rs7612786 | 0.000370221 | DNAH12 DNAH12 0
3 62970589 | 63023776 | 53188 | rs2367592 | 2.06E-05 LOC285401 92815
4 54185643 | 54240061 | 54419 | rs17083248 | 0.000781578 LNX1 60000
4 94741372 | 94769749 | 28378 | rs1435481 | 0.000658171 | GRID2 GRID2 0
4 182295342 | 182339600 | 44259 | rs10021323 | 7.64E-05 LINC00290 LINC00290 22304
4 188288936 | 188887227 | 598292 | rs10007836 | 0.000138098 | LOC339975 LOC339975 0
5 43106913 | 43208653 | 101741 | rs782978 6.76E-05 ZNF131 ZNF131 0
5 167854709 | 168124390 | 269682 | rs2305729 | 0.000634665 | RARS, FBLL1, PANKS, RARS 0

MIR103A1, MIR103B1,

SLIT3
6 29467091 | 30222934 | 755844 | rs757262 5.88E-06 OR12D2, OR11A1, TRIM40 0

OR10C1, OR2H1,

MAS1L, LOC100507362,

UBD, SNORD32B,

OR2H2, GABBR1, MOG,

ZFP57, HLA-F, HLA-F-

AS1, IFITM4P, HCG4,

LOC554223, HLA-G,

HLA-H, HCG4B, HLA-A,

HCG9, ZNRD1-AS1,

HLA-J, ZNRD1,

PPP1R11, RNF39,

TRIM31, TRIM40
6 87217610 | 87706172 | 488563 | rs33993504 | 0.000167481 | HTR1E MIR548AD 236583
6 135376293 | 135416925 | 40633 | rs1014021 | 0.000808023 | HBSIL HBS1L 0
6 138271512 | 138272800 | 1289 rs6570193 | 0.00020274 TNFAIP3 26658
7 144649450 | 144715640 | 66191 | rs700260 0.000564147 TPK1 551561
7 152649615 | 152947294 | 297680 | rs367566 3.23E-05 ACTR3B 466219
8 29469355 | 29592864 | 123510 | rs6558130 | 7.93E-05 C8orf75 109135
8 74233577 | 74249632 | 16056 | rs4415303 | 0.000232123 LOC100130301 | 66581
9 8256584 8323100 66517 | rs10815823 | 3.53E-05 PTPRD PTPRD 0
9 9716233 9741606 25374 | rs1768892 | 0.000937306 | PTPRD PTPRD 0

177




9 84954051 | 84977207 | 23157 | rs17086018 | 0.000252691 RASEF 86188

10 | 30395199 | 30537672 | 142474 | rs639390 0.000308518 MTPAP 120140

10 | 51939492 | 52023192 | 83701 | rs3011707 | 0.000611159 | SGMS1 SGMS1 0

10 | 70630454 | 70635003 | 4550 rs7091695 | 0.000664048 | SUPV3L1 SUPV3LA1 0

10 | 99194516 | 99269150 | 74635 | rs7081796 | 0.000475999 | EXOSC1, ZDHHC16, EXOSC1 0
MMS19, UBTD1

11 ] 91664434 | 91856736 | 192303 | rs922006 0.000528888 | FAT3 FAT3 59399

12| 5690939 6215341 524403 | rs3782652 | 0.000105778 | ANO2, VWF, CD9 ANO2 0

12| 95329431 | 95333800 | 4370 rs11108495 | 0.000467184 CDK17 13551

12 | 120774822 | 120869596 | 94775 | rs895960 1.76E-05 HPD, PSMD9, WDRG6 PSMD9 0

12 | 123332538 | 123356470 | 23933 | rs2342468 | 0.000402542 | ZNF664-FAM101A, ZNF664- 0
FAM101A FAM101A

13 | 24226680 | 24496118 | 269439 | rs12019525 | 0.000332024 | RNF17, CENPJ, RNF17 9621
TPTE2P1

14 | 76137790 | 76187720 | 49931 | rs1642822 | 0.000431925 ESRRB 99857

14 | 101526284 | 101565047 | 38764 | rs4906175 | 0.000775702 | DYNC1H1 DYNC1H1 0

14 | 102971177 | 103183235 | 212059 | rs11160756 | 0.000193925 | MARKS3, CKB, KLC1 0
TRMTG1A, BAGS,
APOPT1, KLC1

15 | 44942157 | 44943871 | 1715 rs7177307 | 0.000699307 | MIR548A3 MIR548A3 0

15 | 75444737 | 75457456 | 12720 | rs1565757 | 8.81E-06 PEAK1 PEAK1 0

16 | 21538199 | 21573398 | 35200 | rs16972765 | 0.000179234 | METTLY, IGSF6 METTL9 0

16 | 49909748 | 50235764 | 326017 | rs7204626 | 6.46E-05 LOC388276 382001

16 | 67284570 | 67372449 | 87880 | rs6499193 | 0.000356999 | CDH3, CDH1 CDH3 0

17 | 72212760 | 72229750 | 16991 | rs11868472 | 0.000628789 | MXRA7,JMJD6 MXRA7 0

18 | 18338350 | 18707615 | 369266 | rs607660 0.000546517 CTAGE1 131796

18 | 24563233 | 24611667 | 48435 | rs356925 0.000899109 CDH2 570163

19 | 52785167 | 52869070 | 83904 | rs2098718 | 0.000141037 | GLTSCR1 GLTSCR1 0

20 | 13911728 | 14073728 | 162001 | rs6105211 | 0.000223308 | SEL1L2,MACROD2 MACROD2 0

20 | 36944868 | 37107381 | 162514 | rs6129158 | 0.000376098 | PPP1R16B,FAM83D,DH | DHX35 5601
X35

20 | 37613066 | 37625204 | 12139 | rs6129366 | 0.000661109 LOC339568 338399

aDistances are given in base pairs (bp) and positions map to the human genome build hg18

bBest SNP is the SNP with the highest SPA score within each region
cBest gene is the closest gene to the SNP with the highest SPA score within each region
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Appendix 1

An Algorithm for Identifying Ancestrally Informative Markers (AIMs)

A common approach to low-cost ancestry estimation is to genotype a small number of
markers (approximately 50-500) that provide a high degree of ancestry information, rather
than go through the expense of genome-wide array genotyping. These ancestry estimates
can then be used for candidate gene analyses or overall characterizations of admixture
patterns for various geographic regions or medical studies, or can be incorporated in the
design of smaller custom arrays to adjust for potential population stratification and
thereby reduce confounding in genetic association testing. Several panels previously
existed (e.g. (1, 2)), but these panels typically were not based on a specific portable

algorithm and therefore are less extensible to novel situations.

In partnership with the Latin American Cancer Epidemiology Consortium(3), we were
tasked with developing a panel of markers that could be used for Latino populations across
the Americas (with ancestry primarily from Native Americans, Europeans, and sub-Saharan
Africans). These should be broadly applicable for ancestry estimation in all Northern,
Southern, and Caribbean populations identifying as Hispanic or Latino, therefore having
the goal of modeling the admixture process with consistently representative AIMs from all
three ancestral populations. Here I will present the basic algorithm used in Galanter et al.

and, following it, the Python code that is also available at https://code.google.com/p/aims-

project/.

184



Intuitively, we can think of an ideal AIM as being a SNP where ancestry is perfectly
correlated to allele state. With these markers there would be a one-to-one correspondence
between observed allele and ancestry at that locus. While rare, the marker for the Duffy
Null blood type (rs12075) approaches this level of ancestry information, and so do certain
markers on the Y chromosome and mitochondrial genome, for example, those that track
the Out-of-Africa migration. Alternatively, a SNP with poor ancestry information would
have similar allele frequencies in all populations studied, making ancestry impossible to
infer from that marker alone. Most markers on the genome fall along the spectrum

somewhere in the middle, with imperfect association between ancestry and genotype.

In AIMS_GENERATOR we use a statistic for capturing this spectrum of ancestry information
originally developed by Rosenberg et al. (4) called the I, statistic. By virtue of being
developed expressly to determine ancestry from information theoretic principles, this
statistic is ideal for use in identifying AIMs from genome-wide genotype data. The statistic
is related to the better-known F; across a wide range of minor allele frequencies for
pairwise comparisons of population allele frequencies. In our implementation, we calculate
pairwise I, values for all 3 pairwise comparisons of 3 ancestral groups, then use those
metrics to create an unrooted tree for each population at each SNP. This turns pairwise I
values into locus-specific branch lengths (LSBL, See Figure 1). SNPs with maximal ancestry
informativeness then have the longest branch lengths. The ideal AIMs panel then is one that

balances maximal ancestry informativeness for each population with independent
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inheritance (therby prioritizing markers that are unlinked), to ensure that each marker

chosen contributes novel ancestry information.

Pre-processing genotype data

The program uses summary files generated by plink(5) for the ancestral populations of
interest. In particular, we chose to calculate allele frequencies, Hardy-Weinberg
Equilibrium p-values, and linkage disequilibrium values as measured by R?. We begin with
high-quality genotypes using standard genotype QC methods typical for genome-wide
association studies (e.g. filtering for SNPs with low missingness, good genotype clustering,
etc.). We then prune markers that are highly divergent Hardy Weinberg in the ancestral
populations (as this is an assumption of typical ancestry estimation methods). After that,
we prune markers that show substantial heterogeneity within continents (via a chi-
squared test of allele frequencies) to ensure generalizability of findings for each ancestral
group. Populations representative of ancestry from the same region are then merged in
plink to calculate minor allele frequencies. Our version of the code checks for minor/major
allele flips (common in AIMs, given the large discrepancy in allele frequencies) between
reference populations. LD is calculated based on the sliding window in plink, and the user
has options for both a minimum physical distance and correlation level that is allowable in

the AIMs panel.

Running AIMS_GENERATOR
An outline of the algorithm is given in Figure 2. The program is written in Python and

should run on any platform after installing the Numpy/Scipy Python libraries. It will use its
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own interactive command prompt and will ask for the relevant paths to each set of relevant
files generated from plink. It will then calculate pairwise I, values and the branch lengths
for each population that correspond to each SNP, and store that output in a text file for later
use. The program uses a greedy approach to identify SNPs, beginning with the best AIM in
the data. After that first AIM is included, the population with the smallest total LSBL (the
least amount of ancestry information) is targeted and the best AIM left for that population
is found. Provided that this new AIM is independent of the first one (via the physical and
correlation buffers given by the user), it is included, the total LSBLs are recalculated, and
the algorithm cycles back to finding the population with the smallest total LSBL. By
checking at each step to the total LSBL, the program adapts to varying degrees of

population structure and does not give a fixed number of AIMs relevant to each population.

The output of AIMS_GENERATOR is a ranked list of AIMs identified in the genome. We
provide in Galanter et al. accuracy metrics for various sized AIMs panels as compared to
genome-wide array data as a gold standard, and certainly larger panels provide the most
accurate results. However, it is important to note that even small panels of AIMs (ie fewer
than 50 markers) still allow individuals to account for population stratification in their
data. While the ancestry estimates themselves may have increased noise, they still provide
enough information to be used as a covariate to capture potential population stratification

in genetic association studies.

AIMs panel developed by AIMS_GENERATOR
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The first version of the algorithm was used to develop a panel of 446 markers for
Sequenom assays. After filtering out variants that were poor candidates for the genotyping
platform, the resulting panel was able to estimate ancestry highly accurately: <0.1 RMSE
for all ancestries across diverse populations of mixed ancestry. By virtue of being broadly
relevant to the populations of mixed ancestry in the Americas, the AIMS_GENERATOR
results were used to pick AIMs in the design of both the [llumina and Affymetrix exome

arrays.

Multi-population extension to AIMS_GENERATOR

Our original implementation was specifically designed for 3 ancestral populations. As such
the calculation of LSBL is simple as the unrooted tree topology is fixed. With additional
ancestral populations, the values become more complicated as the tree topologies can
change, and root-tip branch lengths are less interpretable. Therefore as an extension to
AIMS_GENERATOR we have chosen to balance pairwise I, values, rather than branch
lengths, with K>3 ancestral populations. The algorithm iterates similarly to before in a
greedy fashion. Comparisons to genome-wide genotype data for an admixed population
with 5 ancestries (6) indicate that this forthcoming version of AIMS_GENERATOR provides
more accurate AIMs panels than other methods, including an algorithm based on PCA

correlations (7) and a genetic algorithm using allele frequency differentiation (8).
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Pop1i

Pop3 Pop2

In (2-3)
Figure 1. A diagram demonstrating the locus-specific branch length statistic. For each SNP,
pairwise I, values are calculated from allele frequencies. These are transformed into an
unrooted tree, where the distance from the centroid to each population is the LSBL, the

statistic used by AIMS_GENERATOR.
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Appendix 2

AIMS_GENERATOR python code

AIMs generator

Joshua Galanter and Chris Gignoux

This program will take genotype files and allele frequency files from plink as well
as a pairwise LD file and will generate sets of AIMs based on informativeness.

Also available at: https://code.google.com/p/aims-project

import sys

from sys import stdout
import os

from math import log
from numpy import *

from scipy import stats

def calc_sigma(afl, af2):

return afl + af2

def calc_delta(afl, af2):

return abs(afl - af2)

def calc_Fst(afl,af2):

Calculates pairwise Fst given allele frequencies'
if (afl == 0 and af2 == 0) or (afl == 1 and af2 == 1):

return 0
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return calc_delta(afl, af2) ** 2 / (calc_sigma(afl, af2) * (2 - calc_sigma(afl,

af2)))

def calc_In(afl, af2):

'calculate Rosenberg et al.'s In statistic for pairs of populations'''

if (afl == 0 and af2 == 0) or (afl == 1 and af2 == 1):
return 0

if afl == 1:
afl = 0

af2 =1 - af2

elif af2 == 1:

afl =1 - afl

af2 = 0
sigma = calc_sigma(afl, af2)
delta = calc_delta(afl, af2)
a_exp = -0.5 * log(sigma ** sigma * (2 - sigma) ** (2 - sigma))
b exp = 0.25 * log( (sigma + delta) ** (sigma + delta) * (2 - sigma - delta) **

(2 - sigma - delta) * (sigma - delta) ** (sigma - delta) * (2 - sigma + delta) ** (2 -
sigma + delta) )
# return sum

return a_exp + b_exp

def calc_lsbl(ab, ac, bc):

Calculates locus specific branch length given three pairwise statistics

(either In or Fst)'''
a = (ab + ac - bc)/2
b = (ab + bc - ac)/2
c = (ac + bc - ab)/2

return (a, b, c¢)
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def calculate_ld(ldfile, rsq threshold = 0.1):

"

window sizepassed as a parameter.'
lddict = {}
while True:
try:
for total, line in enumerate(file(ldfile)):
pass
for i, line in enumerate(file(ldfile)):
if i > 0:
if i % (total/20) == 0:
print '%sImporting LD file: [%s%s]'
$('\b'*50, '=' * (i * 20 / total), ' ' * (19 - (i * 20 / total))),
stdout.flush()
line = line.strip().split()
if float(line[-1]) > rsqg_threshold:
#print line

snpA = line[2]

snpB line[5]
if snpA in lddict:
lddict[snpA].append(snpB)
else:
lddict[snpA] = [snpB]
if snpB in lddict:
lddict[snpB].append(snpA)
else:
lddict[snpB] = [snpA]
print
return lddict

except:

'read in LD and position calculated in PLINK for all snps in LD, given a
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print 'File error; LD file is not in the correct format.'
ldfile = getFile(prompt, 'LD')

continue

def getFile(prompt, type, verbose = False):

This function will get a filename entered by the user.

print 'Please enter a filename for a %s file.' %(type.replace('_', ' '))

print 'You can also enter \'ls\' to list directory contents or \'pwd\' to print
the current directory.'
while True:
sys.stdout.write(prompt)
line = sys.stdin.readline()
filename = line.strip().split()[0]
if filename == 'pwd':
print os.getcwd()
elif filename == 'ls':
filelist = os.listdir(os.getcwd())

for i in filelist:

print i
else:
try:
f = open(filename)
f.close()
return filename
except:

print 'That was not a valid filename.'

return getFile(prompt, type, verbose)
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def get LD(prompt = '> '):
This function will read in a plink "1d" file to get pairwise LD between SNPs.
It will return a SNP - list of SNP's dictionary, where the list of SNPs
consists
of all the SNPs in LD above the LD threshold with the index SNP.
filename = getFile(prompt, 'LD')
while True:
print 'Enter LD threshold, between 0 and 1'
sys.stdout.write(prompt)
line = sys.stdin.readline()
try:
1d_threshold = float(line.strip().split()[0])
if 1d_threshold > 0 and 1ld_threshold < 1:
return calculate_ld(filename, 1d_threshold)
else:
print 'LD threshold must be a number between 0 and 1.'
continue
except:
print 'LD threshold must be a number between 0 and 1.'

continue

def get bim(prompt = '> ', filename = ''):
This function will read in a plink "bim" file to get the chromosomal positions.
It will output a SNP - (chromosome, position) dictionary, as well as a
dictionary of

alleles (minor, major).
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if filename ==
filename = getFile(prompt, 'plink bim (position)')
try:
print 'Reading in position data...'
posdict = dict([[line.strip().split()[1l],(line.strip().split()[0],
line.strip().split()[3])] for line in file(filename)])
alleledict = dict([[line.strip().split()[1l],(line.strip().split()[4],
line.strip().split()[5])] for line in file(filename)])
return (posdict, alleledict)
except:

print 'File error; bim file is not in the correct format.'

return get_bim(prompt)

def get freqg(population, nsnps = -1, prompt = '> ', filename = ''):

This function will read in a plink "frq" file to get minor allele frequencies.

if filename ==
filename = getFile(prompt, population + ' allele frequency')
try:
print 'Reading allele frequency data...'
freq = file(filename)
freq.readline()
if nsnps == -
return [line.strip().split() for line in freq.readlines()]
else:
snps = []
for i, line in enumerate(freq.readlines()):
if i > nsnps:
print 'Error, there are more SNPs in the frequency

file than in the bim file'
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return get_ freqg(population, nsnps, prompt)

if i % (nsnps/20) == 0:
print '$sImporting frequency file: [%s%s]'

$('\b'*50, '=' * (i * 20 / nsnps), ' ' * (19 - (i * 20 / nsnps))),

stdout.flush()

snps.append(line.strip().split())

return snps
except:
print 'File error; allele frequency file is not in the correct format.'

return get_ freqg(population, nsnps, prompt)

def correct_ freq(freq, mafdict):
n=20

for i, snp in enumerate(freq):

if snp[2] == '0':
if snp[3] == mafdict[snp[l]][1l]:

freq[i][2] = mafdict[snp[1l]]1[0]

else:
freq[i][4] = '1°
freq[i][3] = mafdict[snp[1]][1]
freq[i][2] = mafdict[snp[1]][0]
elif snp[2] == mafdict[snp[1]][1]:
n +=1

freq[i][4] = str(l-float(snp[4]))

freq[i][2]

mafdict[snp[1]1][0]

freq[i][3] = mafdict[snp[l]]1[1]

#if snp[l] == 'rs548824':
# print '\nIdentified the SNP'
# print freq[i], mafdict[snp[1]]1[0]

print '\nFixed %s out of %s minor allele frequency flips' %(n, i)
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return freq

def sort_snps(snps, positions):

print 'Sorting snps...'

return sorted(snps, key = lambda order: (positions[order[1]][0],

positions[order[1]][1]))

def calc_pairwise_aims(positions, popl_frq, pop2 frq):

Calculates the pairwise aims statistics for two populations given their allele

frequencies.

Returns a list of aims, that include SNP, chromosome, position,

allele frequency in population 1,

sigma (the sum of allele frequencies), delta (the difference in allele

frequencies),
pairwise Fst, and pairwise In
aims = []
ignored = 0

for i, snp in enumerate(popl_ frq)

allele frequency in population 2,

#if snp[l] == 'rs548824':

# print 'Identified the SNP'
# print snp

# print pop2 frq[i]

if int(snp[0]) > 22:

# ignore non-autosomal SNPs

ignored += 1
continue

else:

if i % (len(popl_frq)/20) == 0:
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print '%$sCalculating pairwise AIMs statistics: [%s%s]’
$('\b'*61, '=' * (i * 20 / len(popl_frqg)), ' ' * (19 - (i * 20 / len(popl frq)))),

stdout.flush()

afl = float(popl frq[i][4])

af2 = float(pop2_ frq[i][4])

#if snp[l] == 'rs548824':

# print '\nIdentified the SNP'
# print

"snp\tchr\tposition\t%s_allele freq\t%s_allele freqg\tsigma\tdelta\tFst\tIn\n'

# print snp[l], positions[snp[1]][0], positions[snp[l]][1l],
afl, af2, calc_sigma(afl, af2), calc_delta(afl, af2), calc_Fst(afl,af2),
calc_In(afl,af2)

# print

aims.append([snp[l], positions[snp[1l]][0], positions[snp[l]][1l],
afl, af2, calc_sigma(afl, af2), calc_delta(afl, af2), calc_Fst(afl,af2),
calc_In(afl,af2)])

return aims

def sort_pairwise_aims(unsorted_aims, stat = 'In'):
Sorts the pairwise aims statistics given a set of aims. It can sort on the
basis
of In or Fst. Defaults to In.
if stat == 'In':
print '\nsorting output...'
aims = sorted(unsorted_aims, key = lambda order: order[8])
aims.reverse()
return aims
elif stat == 'Fst':

print '\nsorting output...'
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aims = sorted(unsorted_aims, key = lambda order: order[7])

aims.reverse()

return aims

else:
print 'Invalid sort command, returning unsorted aims.'
return aims
def output_pairwise aims(aims, popl, pop2, outfilename, n = -1):

Writes the AIMs statistics to a file, given the filename. n is an optional
parameter that specifies how many AIMs to output. It defaults to -1 (all)
print 'Writing pairwise AIMs statistics for %s/%s populations to file %s'
% (popl, pop2, outfilename)
outfile = file(outfilename, 'w')
outfile.write('snp\tchr\tposition\t%s_allele freq\t%s_allele freg\tsigmaltdelta
\tFst\tIn\n' %(popl, pop2))
lines = 0
for line in aims:
if lines == n:
return
else:
outfile.write('%$s\n' % ('\t'.join([str(val) for val in line])))
lines += 1

return

def calc_pop_ aims(positions, popl frq, pop2_ frqg, pop3_frqg, AB pairwise_ aims,

AC_pairwise aims, BC_pairwise_aims, populations):
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Calculates the locus specific brach length statistics for three populations,

given the

pairwise AIMs statistics of three populations. It returns a tuple containing

three lists,
one for each of the three populations. The lists contain variables for:
rsID, chromosome, position, allele frequency, locus specific branch length

(LSBL) by Fst, and LSBL by In

popl_ aims

[]

pop2_aims

[]

pop3_aims [1]

#print 'The length of the NAM/AFR pairwise AIMS is', len(AB_pairwise_aims)
#print 'The length of the NAM/EUR pairwise AIMS is', len(BC_pairwise_aims)
#print 'The length of the EUR/AFR pairwise AIMS is', len(AC_pairwise_aims)

#print 'The length of the NAM pop frequency file is', len(popl_frq)

for i, snp in enumerate(popl_ frq):
if int(snp[0]) > 22:

# ignore non-autosomal SNPs

continue
else:
if i % (len(popl_frq)/20) == O0:
print '%$sCalculating branch length AIMs statistics:
[¢s%s]' %('\b'*66, '=' * (i * 20 / len(popl frq)), ' ' * (19 - (i * 20 /

len(popl_£frq)))),

stdout.flush()
threeway Fst = calc_lsbl(AB_pairwise_aims[n][7],
AC_pairwise_aims[n][7], BC_pairwise_aims[n][7])
threeway In = calc_lsbl(AB pairwise aims[n][8],
AC_pairwise_aims[n][8], BC_pairwise_aims[n][8])
popl aims.append([snp[l], positions[snp[1l]][0],
positions[snp[1]][1l], float(popl frq[i][4]), threeway Fst[0], threeway_ In[0],

populations[0]])

202



pop2_aims.append([snp[l], positions[snp[l1]][0],
positions[snp[1]][1l], float(pop2_ frq[i][4]), threeway Fst[l], threeway_In[1l],
populations[1l]])

pop3_aims.append([snp[l], positions[snp[1]1][0],
positions[snp[1]][1], float(pop3_frq[i][4]), threeway Fst[2], threeway_ In[2],

populations[2]])

print '\n'

return (popl_aims, pop2_ aims, pop3_aims)

def sort pop aims(unsorted aims, stat = 'In'):
Sorts the locus specific branch length aims statistics given a set of aims. It
can sort on the basis
of In or Fst. Defaults to In.
if stat == 'In':
print 'sorting output...'
aims = sorted(unsorted_aims, key = lambda order: order[5])
aims.reverse()
return aims
elif stat == 'Fst':
print 'sorting output...'
aims = sorted(unsorted_aims, key = lambda order: order[4])
aims.reverse()
return aims
else:
print 'Invalid sort command, returning unsorted aims.'

return aims
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def output pop aims(aims, population, outfilename, n = -1):
Writes the AIMs statistics to a file, given the filename. n is an optional
parameter that specifies how many AIMs to output. It defaults to -1 (all)
print 'Writing AIMs statistics for %s population to file %s' % (population,
outfilename)
outfile = file(outfilename, 'w')
outfile.write('snp\tchr\tposition\tallele_ frequency\tLSBL(Fst)\tLSBL(In)\n")
lines = 0
for line in aims:
if lines == n:
return
else:

outfile.write('%$s\n' % ('\t'.join([str(val) for val in

line[0:61])))
lines += 1
return
def calc_all aims(positions, popl frq, pop2 frqg, pop3_frqg, pops, n = -1, outstem =

'aimsfile'):
Calculates all aims statistics, given three lists of population frequencies.
It will calculate

and save to files all three pairwise aims statistics, as well as the population

specific locus
specific branch length statistics. It will return a tuple of LSBLs.
AB_aims = calc_pairwise_aims(positions, popl_ frq, pop2 frq)

sorted_AB_aims = sort_pairwise_aims(AB_aims)
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outfile = outstem + '_' + pops[0] + + pops[l] + '.aims'

output_pairwise_aims(sorted_AB_aims, pops[0], pops[l], outfile, n)

AC_aims = calc_pairwise_aims(positions, popl_frq, pop3_frq)
sorted_AC_aims = sort_pairwise_aims(AC_aims)
outfile = outstem + ' ' + pops[0] + '_' + pops[2] + '.aims'

output_pairwise_aims(sorted_AC_aims, pops[0], pops[2], outfile, n)

BC_aims = calc_pairwise_ aims(positions, pop2_ frq, pop3_frq)
sorted_BC_aims = sort_pairwise_aims(BC_aims)
outfile = outstem + ' ' + pops[l] + '_' + pops[2] + '.aims'

output_pairwise_aims(sorted_BC_aims, pops[l], pops[2], outfile, n)

popl aims, pop2_aims, pop3_aims = calc_pop_aims(positions, popl frq, pop2_ frq,

pop3_frqg, AB_aims, AC_aims, BC_aims, pops)

sorted_popl_aims = sort_pop_aims(popl_aims, 'In')

outfile = outstem + + pops[0] + '.aims'

output_pop_aims(sorted_popl_aims, pops[0], outfile, n)

sorted_pop2_aims = sort_pop_aims(pop2_aims, 'In')
outfile = outstem + ' ' + pops[l] + '.aims'

output_pop_aims(sorted_pop2_ aims, pops[l], outfile, n)

sorted_pop3_aims = sort_pop_aims(pop3_aims, 'In')

outfile = outstem + + pops[2] + '.aims'

output_pop_aims(sorted_pop3_aims, pops[2], outfile, n)

return (sorted popl aims, sorted_pop2 aims, sorted_pop3_aims)
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def too_close(index snp, snp list, positions, population, distance = 100000):
if snp _list == [None]:
print 'returning none'

return False

else:
for snp in snp_ list:

if snp == None:
print snp
print 'snp is empty'
return False

else:
if snp[6] == population:

if snp[l] == index_snp[l]:
if abs(int(snp[2]) - int(index_snp[2])) <=
distance:

# print snp[0:3], 'and',
index_snp[0:3], 'are too close'
return True

return False

def get aims(positions, lddict, alleles, populations, poplaims, pop2aims, pop3aims,
excluded = set(), distance = 100000, n = 500):
aimslist = []
print 'Generating informativeness dictionary for %s' % (populations[0])
poplstat = dict([[aims[0],aims[5]] for aims in poplaims])
print 'Generating informativeness dictionary for %s' % (populations[1])
pop2stat = dict([[aims[0],aims[5]] for aims in pop2aims])
print 'Generating informativeness dictionary for %s' % (populations[2])
pop3stat = dict([[aims[0],aims[5]] for aims in pop3aims])

print 'Initializing statistics'
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poplinfo = 0.
pop2info = 0.
pop3info = 0.
poplpos = 0
pop2pos = 0
pop3pos = 0

popl numaims = 0
pop2_numaims = 0
pop3_numaims = 0

ldex = set()
poplex = set()
pop2ex = set()
pop3ex = set()
n_aims = 0
n_het_excluded = 0
while n_aims < n:
found = False
if (poplinfo < pop2info) and (poplinfo < pop3info):
aim = poplaims[poplpos]
#print 'Selected aim %s for evaluation' %(aim[0])
poplpos += 1
if (aim[0] not in (ldex | excluded)) and not too_close(aim,
aimslist, positions, populations[0], distance):
print 'Found an AIM for %s, %s; %s AIMs found so far'
% (populations[0], aim[0], len(aimslist) + 1)
found = True
aimslist.append(aim)
popl numaims += 1
elif pop2info < pop3info:
aim = pop2aims[pop2pos]
pop2pos += 1

#print 'Selected aim %s for evaluation' %(aim[0])
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if (aim[0] not in (ldex | excluded)) and not too_close(aim,
aimslist, positions, populations[1l], distance):
print 'Found an AIM for %s, %s; %s AIMs found so far'
% (populations[1l], aim[0], len(aimslist) + 1)
found = True
aimslist.append(aim)
pop2_numaims += 1
else:
aim = pop3aims[pop3pos]
pop3pos += 1
#print 'Selected aim %s for evaluation' %(aim[0])
if (aim[0] not in (ldex | excluded)) and not too_close(aim,
aimslist, positions, populations[2], distance):
print 'Found an AIM for %s, %s; %s AIMs found so far'
% (populations[2], aim[0], len(aimslist) + 1)
found = True
aimslist.append(aim)
pop3_numaims += 1
if found:

n_aims += 1

#print 'Found %s aims so far.' %$(n_aims)
try:

ldex = ldex | set(lddict[aim[0]])
except:

print 'snp %s is not in the 1d dictionary.' %(aim[0])
poplinfo += poplstat[aim[0]]
pop2info += pop2stat[aim[0]]
pop3info += pop3stat[aim[0]]
else:
if aim[0] in excluded:
#print 'Excluded an AIM for heterogeneity'
n_het excluded += 1

print 'The total locus specific In for the three populations are:'
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print 'For population %s, found

of %s' %(populations[0], popl_numaims,
print 'For population %s, found
of %s' %(populations[1l], pop2_ numaims,
print 'For population %s, found
of %s' %(populations[2], pop3_numaims,

print 'A total of %s AIMs were excluded due to heterogeneity'

return aimslist

def print aims(aims, filename, poplfrq,

popldict = dict([[snp[l],snp[4]]
pop2dict = dict([[snp[l],snp[4]]
pop3dict = dict([[snp[l],snp[4]]
outfile = file(filename, 'w')

%s aims out of %s evaluated, for a total LSBL
poplpos, poplinfo)

%s aims out of %s evaluated, for a total LSBL
pop2pos, pop2info)

%s aims out of %s evaluated, for a total LSBL
pop3pos, pop3info)

%$(n_het_ excluded)

pop2frq, pop3frqg, populations):
for snp in poplfrq])
for snp in pop2frq])

for snp in pop3frq])

outfile.write('snp\tchr\tposition\t%s_ AF\t%s_AF\t%s_AF\tpopulation\tLSBL(Fst)\t

LSBL(In)\n'

for i, aim in enumerate(aims):

outfile.write('%s\t%s\t%s\tes\tes\t¥s\t%s\tes\tss\n'

aim[2], popldict[aim[0]], pop2dict[aim[

def chi(table):

observed = array(table)

rowsum = observed.sum(axis = 1)
colsum = observed.sum(axis = 0)
expected = (rowsum[:, newaxis] *

% (populations[0], populations[1l], populations[2]))

% (aim[0], aim[1l],

0]], pop3dict[aim[0]], aim[6], aim[4], aim[5]))

colsum) / sum(rowsum)

return stats.chisquare(expected.reshape(-1), observed.reshape(-1))
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def calc_het(populations, filenames, pop_ freq, mafdict, posdict, prompt = '>',

threshold = 0.01):
print 'Calculating heterogeneity for the following populations:',
for i in populations:
print i,
print
allele fregs = []
heterogeneity = []
for i, filename in enumerate(filenames):
allele fregs.append(sort_snps(correct freq(get freq(populations[i],
len(posdict), prompt, filename), mafdict), posdict))
for i, snp in enumerate(pop_freq):
table = []
for j, filename in enumerate(filenames):

minor_allele_count = float(allele_ freqgs[j][i][4]) *

float(allele freqs[j][i]1[51])

major_allele_count (1. - float(allele fregs[j]1[i][4])) *

float(allele freqs[j][i]1[51])
table.append([minor_allele count, major_allele count])
heterogeneity.append(chi(table))

return heterogeneity

def exclude_het(hetfile, frq, threshold = 0.01):

print 'Finding SNPs to exclude on the basis of heterogeneity...
exclude = set()
for i, snp in enumerate(frq):
if hetfile[i][1l] < threshold:
exclude.add(frq[i][1])

print 'Excluding %s SNPs on the basis of heterogeneity...' %(len(exclude))

return exclude
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if name

= main :

interactive = False

test

dev =

True

True

verbose = dev

prompt

= '>

if interactive:

groups. '

alleledict)

alleledict)

alleledict)

included)'’

print 'What are the ancestral groups? (enter them separated by enter)'

sys.stdout.write(prompt)
popl = sys.stdin.readline().strip().split()[0]
sys.stdout.write(prompt)
pop2 = sys.stdin.readline().strip().split()[0]
sys.stdout.write(prompt)

pop3 = sys.stdin.readline().strip().split()[0]

populations = (popl, pop2, pop3)

posdict, alleledict = get bim(prompt)

print 'Now we will need allele frequency files for the three ancestral

nam_freq = correct_freq(get_freg(populations[0], len(posdict), prompt),

afr freq = correct_freq(get_freg(populations[l], len(posdict), prompt),

eur_ freq = correct_freq(get_freg(populations[2], len(posdict), prompt),

print 'Now we will calculate all the AIMs stats.'

print 'Please enter a file prefix for the output files.'

sys.stdout.write(prompt)

outfile = sys.stdin.readline().strip().split()[0]

print 'How many AIMs do you want calculated? (-1 if you want all SNPs
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SNPs'

else:

sys.stdout.write(prompt)

try:
n_aims = int(sys.stdin.readline().strip().split()[0])

except:
print 'Sorry, you did not enter an integer, defaulting to all
n_aims = -1

lddict = get LD(prompt)

print 'What distance do you want between AIMS? (defaults to 100Kb)'
sys.stdout.write(prompt)
try:
distance = int(sys.stdin.readline().strip().split()[0])
except:
print 'Sorry, you did not enter an integer, defaulting to 100Kb'
distance = 100000

print 'How many AIMs do you want? (defaults to 500)'

sys.stdout.write(prompt)

try:
n = int(sys.stdin.readline().strip().split()[0])
except:
print 'Sorry, you did not enter an integer, defaulting to 500'
n = 500
populations = ('NAM', 'AFR', 'EUR')
ldfile = 'NAM.1d'
lddict = calculate_ld(1ldfile, 0.1)
posfile = 'pos.bim'
posdict, alleledict = get bim(prompt, posfile)
nam_ freq file = 'NAM.frq'
eur_freq file = 'EUR.frq'
afr freq file = 'AFR.frq'
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nam_freq = sort_snps(correct_ freq(get freqg(populations[0], len(posdict),
prompt, nam freq file), alleledict), posdict)

afr freq = sort_snps(correct freq(get freg(populations[l], len(posdict),
prompt, afr freq file), alleledict), posdict)

eur_ freq = sort_snps(correct_ freq(get freg(populations[2], len(posdict),

prompt, eur freq file), alleledict), posdict)

threshold = 0.01

eur_pops = ('SPA', 'TSI', 'CEU')

eur files = ('SPA.frq', 'TSI.frq', 'CEU.frq')

eur_het = calc_het(eur_pops, eur_files, eur_freq, alleledict, posdict,

prompt = '>")

afr pops = ('YRI', 'LWK')
afr files = ('YRI.frq', 'LWK.frq')
afr _het = calc_het(afr_pops, afr files, afr freq, alleledict, posdict,

prompt = '>")

nam pops = ('MAY', 'TEP', 'ZAP', 'NAH', 'QUE', 'AYM')

nam files = ('MAY.frq', 'TEP.frq', 'ZAP.frq', 'NAH.frq', 'QUE.frq',

'AYM.frq')
nam_het = calc_het(nam_pops, nam_ files, nam freq, alleledict, posdict,
prompt = '>")
exclude = exclude het(eur_het, eur freq, threshold) |
exclude het(afr het, afr freq, threshold) | exclude het(nam het, nam freq, threshold)
print 'A total of %s AIMs have significant heterogeneity' $%(len(exclude))
n_aims = -1
dist = ['100k', '250k', '500k', 'lm']
distances = [100000, 250000, 500000, 1000000]
number = ['500', '1000']
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for i, distance in enumerate(distances):

for j, n in enumerate([500, 1000]):

afr freq, eur_freq,

nam_aims, afr_aims,

outfile = 'LACE aims_' + dist[i] + '_' + number[]]

print outfile

nam_aims, afr_aims, eur aims = calc_all aims(posdict, nam freq,
populations, n_aims, outfile)

my_aims = get_aims(posdict, lddict, alleledict, populations,

eur_aims, exclude, distance, n)

print_aims(my_aims, outfile + '.aims', nam_ freq, afr_freq,

eur_ freq, populations)

214



Publishing Agreement

It is the policy of the University to encourage the distribution of all
theses, dissertations, and manuscripts. Copies of all UCSF theses,
dissertations, and manuscripts will be routed to the library via the
Graduate Division. The library will make all theses, dissertations, and
manuscripts accessible to the public and will preserve these to the best
of their abilities, in perpetuity.

I hereby grant permission to the Graduate Division of the University of
California, San Francisco to release copies of my thesis, dissertation, or
manuscript to the Campus Library to provide access and preservation, in

whole or in part, in perpetuity————

W s/

Author Slgnaturé/ Date

215





