
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Cloud-Edge Hybrid Robotic Systems for Physical Human Robot Interactions

Permalink
https://escholarship.org/uc/item/0z34k8p3

Author
Tian, Nan

Publication Date
2020

Supplemental Material
https://escholarship.org/uc/item/0z34k8p3#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0z34k8p3
https://escholarship.org/uc/item/0z34k8p3#supplemental
https://escholarship.org
http://www.cdlib.org/

Cloud-Edge Hybrid Robotic Systems for Physical Human Robot Interactions

by

Nan Tian

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Assistant Professor Somayeh Sojoudi, Chair
Professor Javad Lavaeiyanesi
Professor Kenneth Goldberg

Summer 2020

Cloud-Edge Hybrid Robotic Systems for Physical Human Robot Interactions

Copyright 2020
by

Nan Tian

1

Abstract

Cloud-Edge Hybrid Robotic Systems for Physical Human Robot Interactions

by

Nan Tian

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Somayeh Sojoudi, Chair

Cloud Robotics is a new paradigm where distributed robots are connected to cloud services
via networks to access “unlimited” computation power. Combined with advanced network
technology, such as 5G and Wi-Fi 6, it can support service robots operating under unstruc-
tured, human rich environments on a global scale. Cloud Robotics has scalable servers that
host artificial intelligence, robotic vision, crowd-sourcing, and web-based human computer
interface (HCI). These modular Cloud Robotic infrastructures enable control and monitor-
ing of distributed service robots that require sophisticated physical human robot interactions
(pHRIs) and human guided tele-operations.

Cloud Robotics is also capable of scale up and down robotic service deployments based on
rapid changes in user demands. A similar feature in Cloud-based video conferencing services
has shown great value in scaling up and down based on user demands during the on-going
Covid-19 pandemic. The ability to match user demands will be an important advantage
of using Cloud Robotics to keep the operational cost down for service robots applications,
where mixed Cloud Robotic modules can be selected for different environments on demand.

Besides above advantages, Cloud Robotic systems pay the additional price of network com-
munication. There are three major network communication costs that hinder effective de-
ployment of cloud robotics: (1) network bandwidth, (2) privacy and security, (3) network
latency and variability. With the emerging high speed 5G and Wi-Fi 6 technology, the cost
of network speed and bandwidth are dropping significantly, hence the value of Cloud Robotic
services will eventually triumph the cost of network communication. However, if we want to
use Cloud Robotic services to control dynamic, compliant, service robots with feedbacks, un-
predictable variable delays caused by network routine protocols over long physical distances
presents a major obstacle.

In this thesis, we propose a Cloud-Edge hybrid robotic system to enable dynamic, com-
pliant, feedback controls for physical human robot interactions (pHRIs). Specifically, we

2

built a framework to (1) move centralized high-level controllers and computational inten-
sive perception services to the Cloud; (2) deploy low latency, agile, Edge Robotic con-
troller to handle dynamic and compliant motions; (3) implement a hybrid, two-level feed-
back controller leveraging both the Cloud and the Edge; (4) use robotic-learning algo-
rithms to perform motion segmentation and synthesis to mitigate network latencies within
the Cloud-Edge perception feedback loop. We demonstrate the robustness of the above
framework using different robots, including a dual arm robot (Yumi) from ABB, a dy-
namic self-balancing robot (Igor) and a compliant 5 degree-of-freedom (DoF) robot arm
both from Hebi Robotics, and a humanoid robot (Pepper) from Softbank Robotics. A
copy of the dissertation talk including video demonstrations can be found here: https:

//drive.google.com/drive/folders/1rh8gCydsXCpGJCI6n31mwgTdsJdjJfn-?usp=sharing

https://drive.google.com/drive/folders/1rh8gCydsXCpGJCI6n31mwgTdsJdjJfn-?usp=sharing
https://drive.google.com/drive/folders/1rh8gCydsXCpGJCI6n31mwgTdsJdjJfn-?usp=sharing

i

To my wife, Zhaoyu (Amy) Meng, the love of my life

To my parents, Ping Tao and Zeming Tian, for their kindness and courage

To all my teachers, for their wisdoms and guidances

And to my grandparents, for fond memories

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Cloud Robotics for Service Robots . 2
1.2 Values of the Cloud Services Triumph Communication Costs 2
1.3 Network Delays and Variability . 3
1.4 Physical Human Robot Interactions (pHRIs) 3
1.5 Cloud-Edge ‘Hybrid’ Dynamical Systems with Feedbacks 4
1.6 Shared Autonomy with Robotic Learning . 5
1.7 Thesis Goals and Contributions . 7
1.8 Thesis Outline . 8

2 Cloud Robotics as a Service 10
2.1 Introduction . 10
2.2 Related Work . 12
2.3 System Design . 14
2.4 Experiment and Result . 20
2.5 Discussion . 24
2.6 Additional Cloud Robotic Service Modules 25

3 A Fog Robotic System for Dynamic Visual Servoing 27
3.1 Introduction . 27
3.2 Contribution . 29
3.3 Related Work . 29
3.4 Self-Balancing Robot, Igor . 32
3.5 An Intelligent Fog Robotic Controller . 33
3.6 Dynamic Visual Servoing . 35
3.7 Experiments and Results . 37

iii

3.8 Discussion and Future Works . 39

4 A Cloud-Edge Hybrid System for Humanoid Gesture Imitation 41
4.1 Introduction . 41
4.2 Related Work . 43
4.3 System Design . 44
4.4 Experiments and Results . 49
4.5 Discussion and Future Work . 53

5 Mitigate Network Latency using Motion Segmentation and Synthesis 55
5.1 Introduction . 55
5.2 Contribution . 57
5.3 Related Work . 57
5.4 Problem Statement . 59
5.5 Latency Mitigation Protocol I . 60
5.6 Motion Segmentation with Stationary Point Heuristics 60
5.7 Probabilistic Motion Segmentation and Synthesis 61
5.8 Modified Latency Mitigation Protocol II . 64
5.9 Experiments and Results . 65
5.10 Discussion and Future Work . 67

6 Discussion and Conclusion 70
6.1 Overview . 70
6.2 Fluent Physical Human Robot Interactions 70
6.3 Recognition Delays and Delay Tolerance . 71
6.4 Perception in the Cloud or at the Edge . 72

Bibliography 73

iv

List of Figures

1.1 Fog Robotics, Intelligence vs. Speed: (Left) the Cloud provide high-level intelli-
gence, such as robotic learning, deep-learning based perception, and cloud based
human teleoperation; (Right) the Edge fastest closed-loops controls for highly
dynamic robotic tasks, but often lacks high performance computer; (Middle) the
Cloud-Edge Hybrid closed-loop control can support majority of the robotic ap-
plications. 4

1.2 Final Cloud-Edge ‘Hybrid’ System Flow Chart 6
1.3 Three Example Robotic Application Built with Cloud-Edge ‘Hybrid’ framework 8

2.1 Brass Block diagram: (Top) Dex-Net, Brass webserver, and collective learning
module on a remote server. (Center) TCP-IP Network such as the Cross-Border
Network that enables communication between server and robot systems. (Bot-
tom) Robots with robot command unit (RCU) that locally identifies objects and
queries BRASS for grasp configurations. 11

2.2 Dual-Arm YuMi Robot Playing Non-Standard Chess: (Top) The YuMi robot
replaying the classic 1997 chess game where IBM’s Deep Blue defeated world
champion Garry Kasparov with asymmetric “wizard” chess pieces (video: https:

//youtu.be/ LBBX oxtbA). (Middle) CAD model of standard chess pieces which
can be grasped with hard-coded configurations. (Bottom) CAD model renderings
of our non-standard asymmetric chess pieces. The YuMi requires Dex-Net grasp
recommendations to manipulate these pieces. The y-axis for each piece points
front-to-back, while the x-axis points right-to-left. 13

2.3 Grasping Recommendation Filtering Process: (Top) Parallel-jaw grasp config-
uration candidates generated by Dex-Net ranked by robustness (probability of
force closure). The left image shows the grasp axes for the 15 most robust grasps,
while the right image shows the 200 most robust grasps. (Bottom) The left image
shows the most robust grasp for the rook piece, while the right shows that grasp
being executed by the YuMi robot gripper. 17

2.4 Visualization of the Dex-Net grasps selected by Brass’s heuristic. When these
grasps are executed, the axis shown is projected onto a plane that contains its
center point and is parallel to the table. 19

https://youtu.be/_LBBX_oxtbA
https://youtu.be/_LBBX_oxtbA

v

2.5 Grasps Selection using Collected Learning Module (Left Top) The bishop chess
piece with 5 grasps proposed by Brass’s heuristic. (Left Bottom) One of the
best grasps was grasp 3, with a 100% probability of success as determined by
30 physical experiments with two independently controlled robot arms and the
collective learning module in the cloud. (Right) Block Diagram of the collective
learning system. 23

2.6 Additional Cloud Robotic Service Modules: (top left) Immersive VR/AR teleop-
eration module; (top right) web-based teleoperation interface with video interface;
(bottom) 3D Visual correction module using point clouds and surface matching
to track the centroid of the non-standard chess pieces. 25

3.1 The Fog Robotic system for dyanmic visual servoing: (Left) Architecture diagram
and information flow–visual perceptions (black arrows), control signals (green
arrows), human-robot interactions (red arrows). (Right) Illustrations of three
major contributions of this work, teleoperation, visual servoing, and auto box-
pickups from a human. They are positioned to their related functional blocks in
the Fog Robotic system . 28

3.2 Fog Robotics, Intelligence vs. Speed: (Left) the Cloud provide high-level intelli-
gence, such as robotic learning, deep-learning based perception, and cloud based
human teleoperation; (Right) the Edge fastest closed-loops controls for highly
dynamic robotic tasks, but often lacks high performance computer; (Middle) the
Cloud-Edge Hybrid can handle majority of the robotic applications. 30

3.3 Self-Balancing Robot Igor: (Top)14 Dof, dual-arm, dual-leg robot built with series
elastic servo modules. (Courtesy of Hebi Robotics) (Bottom) free body diagram
of the inverted pendulum balancing control . 34

3.4 “Heartbeat” Asynchronous Protocol and Image Based Visual Servoing: (Left)
“Heartbeat” Asynchronous Protocol: (Green) network delays from cloud tele-
operator to robot Edge controller; (Purple) sliding windows that turn ON the
“heartbeat”; (Red) sliding window that turn OFF the “heartbeat”; (Right) Im-
age Based Visual Servoing (IBVS): Igor automatically picks up a Box using Fog
Robotic IBVS. Videos: (1) Pickup from a table: https://youtu.be/b0mr5GHHjBg

(2) Pickup from a person: https://youtu.be/K9R4y2w1uPw 35
3.5 Igor Box-Pickup Reliability Tests: (A) Top down view: four starting positions in

respect to the standing desk; (B) Front view: The position of the box is generated
randomly from two uniformly distributed variables, horizontal coordinate X, in
range (-1, 1) meters, and vertical coordinate Y, in range (0.8, 1.4) meters. . . . 38

https://youtu.be/b0mr5GHHjBg
https://youtu.be/K9R4y2w1uPw

vi

4.1 Cloud-Edge ‘Hybrid’ System for Semaphore Imitation Block diagram: (Top) Ar-
chitecture diagram of the cloud-based semaphore mirroring system built on HARI,
which supports AI assisted teleoperation. We deploy semaphore recognition sys-
tem in the cloud, and used a discrete-continuous hybrid control system to control
Pepper, a humanoid robot, to imitate semaphore gestures. (Bottom) An example
of our system when the demonstrator performs semaphore ”R”, and the robot
imitate him . 42

4.2 Programming Single Side Semaphore: A. Semaphore positions (Top) Seven
different positions–cross up, cross down, top, up, flat, down, home–demonstrated
with cartons. (Bottom) Selected examples of single side semaphore positions
implemented on Pepper. B. Semaphore Motion Motion trajectories in between
different semaphore positons are generated first using MOVEIT! and OMPL in
ROS, and then stored on local RCU. 45

4.3 Selected Example of Semaphore Performed by both Arms of Pepper Combination
of the seven positions of each arm can be used to generate the full alphabet with
26 letters. The “HARI“ sequence was teleoperated via command line interface
on HARI, (video: https://youtu.be/XOeiDrG4sAQ) 46

4.4 Semaphore Recognition using Openpose: A. Single Side Position Recognition
Seven positions are recognized based on a unit circle centered at the shoulder
joint; the angle between the line formed by the hand and the shoulder and a
horizontal line is used to recognize the seven positions of a single arm. Light
zones indicate the detection zones, whereas dark zones are ”No Detect” zones. No
detect zones are used to avoid false detection between two neighboring positions.
We can reliably recognize the full semaphore alphabet in real-time (video: https:

//youtu.be/arC6OZGgkgE). B. the user spells out “POSE“ and the semaphore
recognition system recognizes the letters. C “Space“ is represented by both arms
rest in the “home“ position. D. “No Detect“ is recognized because the left arm
of the demonstrator is in the dark ”No Detect” zone. 48

4.5 A Hybrid System Hide the Network Latency: A. Timing Diagrams of the Hybrid
System The diagram shows that, starting from the actual human gesture in Japan,
the video latency and latency of sending in a command after recognition are
consecutive. The sum of the two forms of latencies is marked in red. The total
latency is hidden inside motion A, but occurs before the start of motion B. B.
Timing Comparison Robot semaphore execution time is much higher than either
the US-to-US network latency or the US-to-Japan network latency. 52

5.1 Intelligent Motion Segmentation and Synthesis System for Latency Mitigating:
(Top) The Cloud encodes GMM/HSMM models for handwritten letters. (Left)
The Remote tele-operator interface recognizes letters and motion segments based
on user’s partial demonstration, and send compact information to (Right) the
Edge robotic controller where segments of motion are executed in a way that
reduces effects of network latency. 56

https://youtu.be/XOeiDrG4sAQ
https://youtu.be/arC6OZGgkgE
https://youtu.be/arC6OZGgkgE

vii

5.2 Motion Segmentation based Latency Mitigation Protocol. (I) Circle vs. Square
This toy example shows the naive, undesired, and desired trajectories that can
be generated for our system. (II) Stationary Point Motion Segmentation Here
we show that we can perform motion segmentation by automatically detecting
and grouping stationary way-points from data. We can then execute these motion
segments in order to perform tele-operation in segments. (III) Latency Mitigation
Protocol One: This illustrate our first latency mitigation protocol where segments
of motion are transmitted to the Edge. The robot controller can in turn execute
them in an elevated speed to eliminate network delays. 58

5.3 Trajectory generation with HSMM: (I) HSMM mixtures overlay on data We learn
a HSMM for each letter from eight trajectory samples per letter. (II) HSMM State
Probabilities of a given trajectory inferred through forward-backward Viberbi
algorithm Generated Trajectories: (III) from the same start positions (circle)
as the original demon, and (IV) from different start positions (circle) to show
autonomy and robustness . 62

5.4 Interactive Recognition and Synthesis Trials: (Top) Uniformly Distributed Noise
Injected to position (left, σ = 2 cm) and velocity (left, σ = 20 cm/sample)
of trajectory “G” for benchmark trials. (Bottom) Synthesized Trajectory (red)
based on letter recognitions of partial noisy demonstrations with different length
(black with green noise). Shorter demonstration (left) cause more recognition
failures, in this case, recognize the trajectory as “E”. False recognition cause
higher synthesis error. Longer partial demonstrations (right) help reducing both
recognition and synthesis errors during tele-operation. See demo video https:

//youtu.be/fjlx5kXiMhc . 64
5.5 Recognize and Finish Latency Mitigation Protocol II: (I) Recognition (top) and

Synthesis (bottom) Errors vs. Length of Trajectory shows that both errors reduce
dramatically as demonstration progresses passing the 30% (red line) (II) Synthesis
Error is much lower when recognition is correct, suggesting that recognition error
is the main contributor to synthesis error. (III) Modified Latency Mitigation
Protocol Two for handwritten letter segmentation and regeneration, based on
findings in (I) and (II). See video for a demonstration when the Edge controller
finish executing the synthetic motion before the Remote tele-operator https://

youtu.be/fjlx5kXiMhc . 66
5.6 Possible Extension: A Behavior-based Hierarchical Latency Mitigation Protocol

III: (Left) Protocol Three that recognize both letters and motion segments (Right)
Proposing a future hierarchical GMM/HSMM that can recognize and generate
longer motion segments for the entire alphabet. 68

5.7 All Handwritten Letter Motion Segmentation using (I) Stationary Point Heuris-
tics and (II) Gaussian Mixture Models Clusters 69

https://youtu.be/fjlx5kXiMhc
https://youtu.be/fjlx5kXiMhc
https://youtu.be/fjlx5kXiMhc
https://youtu.be/fjlx5kXiMhc

viii

List of Tables

2.1 Grasp Success Rates (percentage) over 50 Attempts 20
2.2 Success Probabilities (Percentage) of the 5 Grasps based on 30 Physical Trials . 21
2.3 Round-trip Time to Receive Grasps from Dex-Net 24

3.1 Teleoperation vs. Automatic Box Pickups . 37
3.2 Successful Automatic Pickups of a Randomly Positioned Box 38

4.1 OpenPose Semaphore Recognition Accuracy (%) 51
4.2 Network Latency Breakouts (ms) . 52

ix

Acknowledgments

I would like to especially thank my PhD Advisor, Professor Somayeh Sojoudi, for her pa-
tience, diligence, and optimism when guiding me throughout my PhD; I would also like
to thank Professor Ken Goldberg, a committee member and a long time collaborator, who
started me on the work of Cloud Robotics and has provided valuable critiques on manuscripts
and presentations; and Professor Javad Lavaei, the other committee member, for his con-
tinuous support. I would also like to further express my gratitude to Jeff Mahler and Ajay
Tanwani for their help and guidance during this collaboration of Cloud Robotic project.

Over the years, I have been heavily influenced and supported by many brilliant professors
at UC Berkeley and from other academic institutes. Although it is hard to address all, I
will acknowledge those who directly contribute to the finish of this thesis. I would like to
thank Professor Ruzena Bajcsy who first got me interested in robotic research through her
Active Perception class, Professor Anca Dragan for her course on human robot interactions,
Professor Clair Tomlin for interesting discussions about stabilities in dynamic arm con-
trol, Professor Ron Fearing for his valuable inputs on visual servoing and feedback systems,
Professor Mark Muller on fast perceptions and dynamic control, Professor Jose Gonzales
for discussions about low latency synchronous and asynchronous communication protocols,
Professor Jack Gallant for interesting discussion about robotics and neuroscience, Professor
John Canny and Professor Travor Darrel on teaching me deep learnings, Professor Howie
Choset from CMU and Hebi Robotic for discussions about dynamic compliant robots for
human assistances, Professor Jitendra Malik who got me interested in visual perception
and machine learning in the first place through his famous Computer Vision and Machine
Learning courses, and Professor Philip (Flip) Sabes from neural science at UCSF who first
introduced me to the world of computational neuroscience via visuo-motor behaviors and
brain machine interface research at UCSF before UC Berkeley.

Further, this work would not have been possible without inputs and joint efforts from
peer graduate and under-graduate students. Matthew Matl, Chris Corea, Aashna Garg
(Stanford), Michael Yu, and Billy Zhu (CMU) for collaboration and joint efforts on the
Cloud Robotic as a service project; Ron Berenstein for the idea of visual servoing; Jim Ren,
Sequoia Beckman and Benjamin Kuo (CMU) for help on the humanoid semaphore project;
Sanjay Kristnan, Mike Laskey, Daniel Seita for helps on editing various manuscripts; Hao
Su (Stanford, now Professor at UCSD) for discussion about 3D robotic vision; Elizabeth
Glista for discussions on dynamic controls; Evan Shellhamer and Forest Iandola for getting
me involved in the Caffe auto-tuning project during the early years of Caffe and my PhD;
and lastly but not least Alex Rusiano, Yi (Will) Wu, Duo Zhang, Heng Chang for being
great friends.

I would also like to thank external industrial supports from Matthew Tesch, Bob Raida,
David Rollinson, Curtis Layton from Hebi Robotics; Qian Li, Mas Ma, Charles Castello,
Rockie Wang, Robert Zhang, and Bill Huang from Cloudminds Inc. Finally, I would like
to acknowledge fundings that supported this work: Office of Naval Research pHRI, NSF
EPCN, NSF ECDI Secure Fog Robotics.

1

Chapter 1

Introduction

The world has longed for service robots. Artists, writers, and even musicians from different
cultures have fantasized the idea of ‘service robot’–robots that assist human–for a long time.
For example, in Jacques Offenbach’s celebrated opera, the Tales of Hoffmann, the master
falls in love with his creation–an animatronical doll ‘Olympia’; a ‘robot venting machine’ that
was capable of interacting with human appeared in Jules Verne’s novel, the Floating Island ;
‘mechanical horses and cattles’, described in Romance of the Three Kingdoms, help Zhuge
Liang’s army carry supplies across mountains; and Isaac Asimov’s famous ‘Three Laws of
Robotics’ from I, Robot inspired us to truly think about service robots and human society.
There are also many fictional characters in movies who are service robots–‘Data’ in Star
Track, C-3PO and R2-D2 in Star Wars, and ‘the Terminator’ in Terminator 2: Judgment
Day who defended Sarah Conner.

Now, the world needs ‘non-fictional’ physical service robots, more than ever. With the
on going Shelter-in-Place order in the fight against the Covid-19 global pandemic, we are
restrained to study, work, and live at home. We can only communicate with non-family
members through tele-conferencing. We can only interact with others in respect to six-feet
‘social distancing’ guidelines. UC Berkeley even hosted their graduation, Blockeley virtually
online on Mine Craft.

Service robots are helping us under these unusual circumstances. They help medical
professionals monitor and interact with patients in isolation [117], especially elderlies in senior
homes who are at high risks of infections [70]. Cleaning robots help hospitals and nursing
homes to clean automatically without human contact [126]. Autonomous vehicles help deliver
medicine to patients within hospitals [24] or at home [49]. Automatic delivery drones provides
contact-less supply drop-offs to people who lives in remote areas [125]. Humanoid social
robots even help student in Japan to attend graduation ceremonies physically ‘in-person’
[107].

CHAPTER 1. INTRODUCTION 2

1.1 Cloud Robotics for Service Robots

Service robots are different from their counterparts–industrial robots. Industrial robots op-
erate under structured, well controlled environments. They perform repeated, quasi-static
tasks on an assembly line that has constant, predictable throughputs. Service robots, how-
ever, works in unstructured, human rich environments. They need to perform diverse, dy-
namic, human compliant, human safe tasks that require constant visual, force, and tactile
feedbacks. Further, like video conferencing and other Internet service systems, service robotic
systems have variable throughputs based on customer demands. Therefore, they need to be
able to scale up and down quickly.

This is where Cloud Robotics becomes useful. Cloud Robotics, introduced by Jeff Kuffner
et al [75, 66, 65], is a new paradigm based on traditional ‘networked robotics’[39]. It uses
cloud computing to provide intelligent services to robots with limited computational power.
The Cloud, with virtually ‘limitless’ computation power, connects to distributed robots via
Internet, enabling them to perform robotic tasks that they cannot perform before. A recent
variant of Cloud Robotics is Fog Robotics [45, 123, 74, 115], where we bring Cloud computing
closer to the Edge robotic controllers for more flexible resource placement and allocation.

Both Cloud Robotics and Fog Robotics can be modular [65, 124]. Their modularity
makes them easy to maintain, deploy, and propagate so that they can be scaled up and
down based on user demand. The Cloud can share data from sensor inputs across different
robots. It can share perception streams from the robot to remote tele-operators as well.
These streams of shared data over the Cloud can help robots to coordinate and learn from
each other. Further, the Cloud can serve as mediator to facilitate data collections from
crowd-sourced human demonstrations so that the robots can learn from human behaviors on
a global scale [79]. Finally, the Internet connection between the Cloud and the Robot now
supports consumer level WiFi or cellular networks [18] rather than traditional wireless RF
or satellites connections. These high speed high bandwidth WiFi 6 and 5G networks have
become more accessible in recent years for both indoor and outdoor coverages.

1.2 Values of the Cloud Services Triumph

Communication Costs

Historically, one major drawback when apply the precursors of Cloud Robotics,such as teler-
obots [38, 41, 114] and Networked Robotics [91], was the high cost in wireless communication.
RF and satellite communications had wide coverage, but they had high delays and limited
bandwidth; whereas first generation WiFi had heterogeneous indoor coverage, because their
communication protocol had trouble providing multiple devices with balanced bandwidths
[62]. Roboticists using Networked Robotics had to struggle with trade-offs between commu-
nication costs and limited capabilities in centralized computing resources.

The cost-benefit of Cloud Robotic has changes over time. In the last decade, since the
introduction of Cloud Robotics in 2010, high-speed high-bandwidth Internet with CDMA

CHAPTER 1. INTRODUCTION 3

technology and 4G has become mainstream thanks to popular demands in smart phone
usage. The communication costs will continue to drop when emerging 5G and WiFi 6 enter
consumer market starting in the year 2020.

Cloud services has also become extremely powerful, backed by hyper-scale data-centers
maintained by vendors such as Amazon Web Services, Microsoft Azure, and Google Cloud.
These data-center often hosts millions of server nodes, ranging from simple storage nodes to
advanced deep-learning servers with multi-core CPUs and multi-GPU. They are all main-
tained with container based desktop visualization and are publicly available on the market
for an affordable price. The Cloud, with ‘limitless’ compute power, can host sophisticated
recommendation systems, deep-learning based perception systems, and crowd-sourced large
scale data. With these powerful services, it has the potential to support distributed service
robots to perform tasks that was impossible before. As the value of Cloud services is grow-
ing and the cost of the communication is dropping, the potential values of Cloud Robotic
services will triumph the costs of communication in the near future.

1.3 Network Delays and Variability

Communication costs can be measured in (1) network bandwidth; (2) network security;
(3) network delays and variability. High bandwidth 5G and Wifi 6 will lower the network
bandwidth costs. Network security ensures privacy of the robotic service users, and are
important for the safe usage of Cloud Robotics for service robots. However, it is a complicated
problem that touches many fields, including encryption, privacy, system designs, and network
administration protocols. We assume it will be resolved by system designers and network
security experts as in this work [74].

Network delays and variability, on the other hand, is interesting. They are bounded by
physical distances and optimal network routing protocols. They can only be minimized, but
the boundary cannot be surpassed due to physical limits. Therefore, we can only mitigate
network delays and variabilities, but we can never eliminate them. Moreover, network delays
are often un-predictable under heterogeneous Cloud computing environments when they are
used to service distributed robots. How to mitigate such un-predictable network delays in
Cloud Robotics, particularly in a closed-loop control with perception feedbacks [38], is a
major focus of this thesis.

1.4 Physical Human Robot Interactions (pHRIs)

The goal of human robot interactions (HRIs) is to understand and shape the interactions
between people and robots [43]. Service robots require physical human robot interactions
(pHRIs) to collaborate with human safely and reliably [40] under human rich, dynamic,
unstructured environments. Sophisticated perception feedbacks, including visual and tactile
feedbacks, are needed for service robots to operate safely and reliably around human.

CHAPTER 1. INTRODUCTION 4

During the last decade, with the development of inductrial cobots [85] and back-drivable
torque controlled modular servos [51], robots have become safer and more compliant. At
the same time, robotic vision [136, 22, 50, 37, 60] and tactile perceptions [84, 144] has
also made strikes of progress. With both advances in controls and perceptions, we have the
fundamental pieces to build fluent pHRI controllers with Cloud Robotics. The key technology
that integrates control with perception is feedback control. Therefore, the primary goal
of this thesis is to investigate and explore feedback controls for fluent pHRIs under the
framework of our ‘hybrid’ Cloud-Edge system.

1.5 Cloud-Edge ‘Hybrid’ Dynamical Systems with

Feedbacks

There are two ways to use these perceptual feedbacks for robotic controls: (1) traditional
feedbacked controls where a real-time control loop uses continuous streams of feedbacks to
adjust dynamic robotic controls based on predefined control laws [138]; (2) behavior-based-
robotics, revolutionized by Brooks, Arkin, and others [5], where modes of behaviors extracted
from perception map directly to modes of actions so that the robot can be controlled by
discrete ‘behavior’ commands. The former is normally used to control dynamical systems.

Figure 1.1: Fog Robotics, Intelligence vs. Speed: (Left) the Cloud provide high-level intelli-
gence, such as robotic learning, deep-learning based perception, and cloud based human tele-
operation; (Right) the Edge fastest closed-loops controls for highly dynamic robotic tasks,
but often lacks high performance computer; (Middle) the Cloud-Edge Hybrid closed-loop
control can support majority of the robotic applications.

CHAPTER 1. INTRODUCTION 5

Since its feedback control loop requires minimum delay, its controller is often local to the
robot. However, its perception capabilities are limited due to both the real-time constraint
and the limited computational power on the robot. In the latter case of behavior-based-
robotics, the control loop is formed based on behaviors. It requires more sophisticated
perception to recognize modes of behavior to execute corresponding modes of controls. To
process these complex perceptions, more computation is needed, but the control loop can
tolerate some delays.

‘Hybrid’ systems combine the above two kinds of feedback controls so that discrete ‘be-
havior’ commands can control a dynamical system [87]. Two feedback loops are formed, a
minimum delay real-time inner loop controlled by a high level discrete command loop based
on behavior. However, computational power is still a problem if both loop stays local to
the robot. Therefore, we build a ‘hybrid’ Cloud-Edge robotic system to solve this prob-
lem. Robots can offload computation intensive perception pipelines, such as deep learning
based visual perception module, to the Cloud, while a local low-latency feedback loop is used
to execute dynamic motions on the robot. Finally, the Cloud based perception command
the Edge dynamic robotic controllers with high level commands to form a second, more
intelligent, control loop. Figure 1.2 illustrates two loops formed by behavior feedbacks and
real-time dynamic feedbacks in our Cloud-Edge ‘Hybrid’ system.

pHRIs has into two major areas–teleoperations and proximate interactions. Collabora-
tive, human compliant, and intelligent pHRI controllers that can facilitate fluent interac-
tions are desirable for both teleoperations and proximate physical interactions. Our ‘hybrid’
Cloud-Edge Robotic system can support fluent pHRI controls for both apllicationsas. Fur-
ther, as the hybrid system controls both discrete events and continuous real-time motions, its
feedback control loop satisfies nearly all service robot application requirements, ranging from
quasi-static to highly dynamic (Figure 1.1). We focus mainly on teleoperations throughout
in Chapters 2-5, as the Cloud Robotic framework was built to augment human teleoperators
under assisted teleoperation settings. We also investigate proximate pHRIs in Chapter 3 and
Chapter 4.Chapter 3-5 investigate various forms of such cloud-Edge ‘hybrid’ robotic systems
based on different applications.

1.6 Shared Autonomy with Robotic Learning

The notion of level of autonomy, or LOA, is important for ‘hybrid’ dynamic pHRI systems
[43]. In the case of teleoperation using Cloud Robotics, LOAs range from direct teleoperation,
to mediated teleoperation, to supervisory control, then to peer-to-peer control, starting from
most teleoperator controls with minimum autonomy to less controls with the most autonomy
[113]. Different types of shared autonomy defines the coordination between the Cloud and the
Edge. They are used to achieve different LOAs required by various robotic applications. How
to distribute and use shared autonomy across Cloud services and Edge robotic controllers is a
crucial design choice for roboticists to program real-life, pHRI applications. To accommodate
most, if not all, forms of shared autonomy, we design a Cloud-Edge Robotic system that

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Final Cloud-Edge ‘Hybrid’ System Flow Chart

contains power of Cloud services, responsive Edge robotic controllers, simple programming
interfaces and reliable network communication layer that connects the Cloud and the Edge,
and most importantly, a ‘hybrid’ robotic architecture to support various forms of shared
autonomy for pHRI systems.

Recent development of robotic learning has revolutionized the field of robotic controls.
It allows robots to learn skills or adapt to environments through machine learning. It has
improved the performance in the field of object recognition and tracking, dynamic controls,
locomotion, graspings, and hand manipulations. Robotic learning can also be used to build
advanced shared autonomy systems under our ‘hybrid’ Cloud-Edge framework. Moreover,
such system can help mitigate unpredictable network latencies from Cloud services to the
Edge controllers. In Chapter 5, we demonstrate how to use robotic learning to build a shared
autonomous hybrid system under the Cloud-Edge framework to mitigate network latencies
via motion segmentation and synthesis.

CHAPTER 1. INTRODUCTION 7

1.7 Thesis Goals and Contributions

The goal of this thesis is to answer below questions:

Can we build a fluent pHRI system using Cloud Robotics? If yes, how?

Hence, we developped a Cloud-Edge ‘Hybrid’ Robotic system progressively to show that
a fluent pHRI system is possible under such novel Cloud Robotic framework. Examples of
robotic tasks implemented using our framework are shown in Figure 1.3. Via the development
process, we made below contributions:

• Built a Cloud Robotic as a service framework to host a grasping recommendation
system, Dex-Net

• Performed multiple pick-and-place robotic task to play chess with non-standard pieces
using grasping recommendation served from Cloud grasp recommendation services

• Built a collective learning module in the Cloud to learn from shared empirical data
collected by independently controlled robot arms

• Introduced and built a Cloud-Edge robotic framework to control a dynamic self-
balancing robot through asynchronous ‘heartbeat’ protocol

• Achieved autonomous object pickup from random target positions using dynamic visual
servoing while hosting visual perception services in the Cloud

• Introduced a ‘hybrid’ Cloud-Edge framework that can host both intelligent and agile
Cloud Robotic applications for service robots

• Used deep learning based gesture recognition system in the Cloud to control a humanoid
robot to imitate ‘flag language’–Semaphore with pre-generated motion segments stored
and executed on the Edge controller

• Benchmarked network latencies across the globe using the Cloud-Edge framework to
quantify effects of network delays and variabilities on Cloud Robotic controls

• Identified unpredicted network latencies to be the primary problem in the ‘hybrid’
Cloud-Edge framework

• Discovered a way to hide network latencies within robot motion execution under the
‘hybrid’ Cloud-Edge Robotic framework

• Used Guassain Mixture models, Hidden Semi-Markov Models, and Linear Quadratic
Tracker to learn models for motion segmentations and synthesis

• Designed and proposed network mitigation protocols under the Cloud-Edge frame-
work using shared autonomy models based on motion segmentations and synthesis
techniques

CHAPTER 1. INTRODUCTION 8

Figure 1.3: Three Example Robotic Application Built with Cloud-Edge ‘Hybrid’ framework

1.8 Thesis Outline

This thesis contains four chapters of Cloud Robotic works in the progressive order, and a
final chapter for discussion.

• Chapter 2 Illustrated the power of Cloud Robotic services using a pick-and-place
robotic task–playing chess with non-standard ‘wizard’ pieces. The system leveraged a
Cloud-based grasping recommendation service, Dex-Net, combined with a ‘collective
learning module’ to serve a dual-arm ABB robot YuMi to play non-standard chess
reliably. This was a task would have been impossible without Cloud Robotics

• Chapter 3 Demonstrated the first Fog Robotic visual servoing system that could control
a dynamic self-balancing robot from the Cloud to pickup objects automatically from
a human. It showed that it was possible for the Cloud to control dynamic robots to
perform autonomous pHRI tasks, especially when visual detections were done in the
Cloud and feedbacked controls were deployed at the Edge robotic controller.

• Chapter 4 Extended the Fog Robotic framework into a ‘hybrid’ Cloud-Edge Robotic
system to support an interactive humanoid robotic tasks that required more sophisti-

CHAPTER 1. INTRODUCTION 9

cated motion recognition and execution capabilities. The end system could recognize
human gesture in the form of semaphore using a deep learning based gesture recogni-
tion system in the Cloud. The Cloud then commanded the humanoid robot to mirror
the semaphore motion using motions pre-stored at the Edge controller. The work also
discovered a latency hiding scheme through network benchmarks across the globe.

• Chapter 5 first identified the unpredicted network latencies are problematic imple-
menting a reliable ‘hybrid’ Cloud-Edge Robotic system. It then described a way to
use robotic learning and shared autonomy to mitigate network latencies. The chapter
used teleoperating handwirtten letter as an example to demonstrate how to use mo-
tion segmentation and synthesis model to mitigate unpredictable network latencies. It
further proposed network mitigation protocols for dynamic controls using the ‘hybrid’
Cloud-Edge Robotic system.

• Chapter 6 discussed key developments of above works and propose possible future
extensions

10

Chapter 2

Cloud Robotics as a Service

2.1 Introduction

“Cloud Robotics and Automation” describes robots and automation systems that share data,
re-use code, and perform necessary but expensive computation on remote cloud servers. It
builds on emerging research in Cloud Computing, Deep Learning, Big Data, and govern-
ment/industry initiatives such as the “Internet of Things”, “Industry 4.0”, and “Made in
China 2025”.

In earlier work [65], we proposed the concept of Robotics and Automation as a Service
(RAaaS), the robotics-equivalent of Software as a Service (SaaS) – a model in which software
components are hosted on central cloud servers and made available to end users and robots
over the internet. Under a RAaaS framework, developers of robotics software would be able
to access useful services like path planning, object recognition, and robust grasp planning
through web-based interfaces. This could reduce development time for robotics applications
substantially – instead of the need to install and integrate a variety of software packages,
engineers could learn a common web API. In addition, updates and improvements to cloud-
based services would immediately be available to all users, easing software maintenance and
providing on-going upgrades for end-users. Furthermore, data collected from each robot con-
nected to the RAaaS framework could be used in large-scale learning algorithms to improve
robotic performance across the board. Finally, using RAaaS frameworks would allow robots
to take advantage of the significant computational and data storage resources of the cloud.
However, network latency could hamper the execution of time-sensitive robotic tasks, and
network security becomes a much larger concern when physical robotic systems rely on the
internet for proper functionality.

This paper describes the architecture of Berkeley RAaaS (BRASS), a prototype RAaaS
system, and reports results from several experiments that explore the costs and benefits
of using such a system. In this initial prototype, we focus on providing a robust grasp
planning service to users. BRASS currently includes the Dexterity Network (Dex-Net 1.0),
a robust grasp planning package that has a database of over 10,000 3D object models and

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 11

Figure 2.1: Brass Block diagram: (Top) Dex-Net, Brass webserver, and collective learning
module on a remote server. (Center) TCP-IP Network such as the Cross-Border Network
that enables communication between server and robot systems. (Bottom) Robots with robot
command unit (RCU) that locally identifies objects and queries BRASS for grasp configu-
rations.

uses over 1500 cloud computing nodes to pre-compute stochastic robustness properties for
hundreds of parallel-jaw grasps per object [88]. Users can connect to BRASS via a standard
network or through a proprietary cross-border network provided by Cloudminds Technology,
which offers better security features and reduced latency. Once a connection is established,
a robot can retrieve hundreds of grasp candidates and their associated robustness metrics
from Dex-Net to use as a guide for planning manipulation tasks.

Because robust grasp configurations are pre-computed and stored in the cloud, Dex-Net
can empower robots with limited memory and computing power to manipulate complex
objects encountered in tasks such as warehouse order fulfillment and home decluttering.
Furthermore, users of BRASS do not have to install any software to take advantage of Dex-
Net’s services. A simple web API exposes all necessary Dex-Net functionality to BRASS
users, and updates to Dex-Net’s codebase are immediately and transparently available to
all usersds. BRASS also includes a collective learning system which stores success rates for

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 12

grasps executed by its clients, allowing multiple robots to share their experiences with the
goal of collectively learning better grasping configurations over time.

To evaluate the costs and benefits of using Dex-Net through BRASS, we performed three
physical experiments with an ABB YuMi bilateral human-safe robot and a set of six asym-
metric, non-standard chess pieces downloaded and 3D printed from Thingiverse [108] (see
Figure 2.2, bottom). In all experiments, the YuMi retrieves Dex-Net grasp recommenda-
tions for each piece through Brass, filters them, and then executes grasps to move each
piece. Our initial results suggest that accessing Dex-Net grasp recommendations via Brass
and using Brass’s collective learning system can increase manipulation success rates with a
minor trade-off in network latency.

2.2 Related Work

The concept of cloud robotics and automation can be traced back at least two decades to the
advent of “Networked Robotics” [39]. In 1997, Inaba et al. described the advantages of using
remote computing for robot control [56], and in 2001 the IEEE Robotics and Automation
Society established the Technical Committee on Networked Robotics [54]. Work continued
throughout the decade, and in 2009 the RoboEarth project envisioned the construction of “a
giant network and database repository where robots can share information and learn from
each other about their behaviour and environment” [141, 134]. This project developed cloud
computing resources for generating 3D models of environments, speech recognition, and face
recognition [127], and the idea of using the cloud for computation and data aggregation in
robotics continued to pick up traction. In 2010, James Kuffner first used the term “Cloud
Robotics” to describe the increasing number of robotics or automation systems that rely on
remote data or code for effective operation [75]. Since then, a wide variety of models for
connecting robots to the cloud have been developed, implemented, and tested [65]. Recent
work also used cloud computing and deep learning learn hand-eye coordination with up to
14 robot arms [82], along with more recent works in “Cloud Robotics“ [57] [61] [30] [119]
[109], just to cite a few to show the growing interest.

Some, like RoboEarth’s Rapyuta system [95], offer secure, optimized platforms in the
cloud for offloading robotic computational tasks. These Platform as a Service (PaaS) systems
do not offer robotic services explicitly, but instead make it easier for developers to push
existing code into the cloud for parallelization. Adoption of PaaS systems is made easier
by the ubiquity of ROS, the Robot Operating System [102], which is organized into nodes
that communicate via the ROS messaging protocol. However, these remote nodes are not
available as shared services for public users.

On the other hand, some systems have adopted a SaaS-like model for robot motion
planning. Vick et al. moved a robot motion controller into the cloud and used it for
manipulation planning [133], Zieliński et al. created a cloud system for planning tasks
for exploratory robots [147]. Bekris et. al explored the tradeoff between path quality
and computational efficiency for a cloud-based motion planner [7], and Ichnowski et. al

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 13

Figure 2.2: Dual-Arm YuMi Robot Playing Non-Standard Chess: (Top) The YuMi robot
replaying the classic 1997 chess game where IBM’s Deep Blue defeated world champion
Garry Kasparov with asymmetric “wizard” chess pieces (video: https://youtu.be/ LBBX

oxtbA). (Middle) CAD model of standard chess pieces which can be grasped with hard-
coded configurations. (Bottom) CAD model renderings of our non-standard asymmetric
chess pieces. The YuMi requires Dex-Net grasp recommendations to manipulate these pieces.
The y-axis for each piece points front-to-back, while the x-axis points right-to-left.

https://youtu.be/_LBBX_oxtbA
https://youtu.be/_LBBX_oxtbA

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 14

split the computation of robot motion plans between the robot’s embedded computer and
a cloud-based compute service [57]. The SaaS model has also been extended to robotic
mappping [6], grasping [14] [27], and cooperative and collective robot learning [119] [44],
with distributed partially observed sensor data [42].

Brass builds on ideas from these SaaS-style frameworks as well as related work on robotic
grasping systems. In particular, Brass directly uses Dex-Net 1.0 [88] as a service and draws
inspiration from Ben Kehoe’s work on cloud-based robotic grasping, which used a variety of
cloud-hosted services like the Google Object Recognition Engine, OpenRAVE, and the Point
Cloud Library in an integrated object manipulation pipeline [66, 64]. Additionally, Brass
is based on several ideas from Arjun Singh’s dissertation on benchmarks for cloud robotics
[112].

Our work is also closely related to robust grasp planning. For a review of grasping, see
Bicchi and Kumar [11]. Early research on grasp planning focused on maximizing analytic
quality metrics such as force closure [97] or the Ferrari-Canny metric (also known as epslion
metric) [32]. However, these metrics depend on precise knowledge of geometry, material
properties, contact locations, and surface normals, which may not be known due to impre-
cision in sensing and control. This motivated the development of robustness metrics, which
measure the expectation of quality metrics under uncertainty in variables such as object
pose and friction [66, 69, 140]. Since evaluating robustness may be computationally expen-
sive, recent research has studied reducing the number of samples required, for example by
using Multi-Armed Bandits (MAB) [78]. Recently, Mahler et al. [88] developed Dex-Net
1.0, a cloud-based dataset of over 10,000 3D models annotated with parallel-jaw grasps and
robustness metrics, and showed that this dataset could be used to accelerate robust grasp
planning with MAB. Another approach is learning a predictive model of grasp robustness
from featurizations such as heightmaps [61] or depth images [58]. In this this work we access
robust grasps computed by Dex-Net 1.0 over a network and study their success on a physical
system.

2.3 System Design

Our experimental setup consists of the six primary components listed below (Figure 2.1):

1. A local dual-arm ABB YuMi robot. This robot receives commands and manipu-
lates chess pieces.

2. A robot command unit (RCU). The RCU plans chess moves, makes requests to
Brass over the internet to retrieve grasp suggestions, and sends motion commands to
the robot.

3. The Cloudminds Cross-Border Network. This proprietary network is global,
secure, and low-latency, and it is used to connect the local RCU to Brass. It can be

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 15

exchanged with an ordinary network when security and reliability is less important to
the user.

4. Brass, a server that exposes a universal API to clients. Internally, Brass starts
up instances of the services it offers, performs queries to each of those services when a
web request arrives, and coordinates responses to clients.

5. An instance of Dex-Net 1.0, run within Brass. Dex-Net is a service for robust
grasp planning that samples parallel-jaw grasps on objects and ranks them by analytic
robustness metrics. It currently includes over 2 million grasps for 10,000 object models
[88].

6. A centralized collective learning system, run within Brass. This service sits
between Dex-Net and Brass’s external API. It tracks success rates for Dex-Net grasps
and modifies grasp recommendations over time.

These components are described in more detail below.

2.3.1 Dual-Arm YuMi Robot

In experiments, an ABB dual-arm YuMi was used as the local robot. This robot has a
pair of 7-DOF arms, each of which can move at a rate of 1500 mm s−1 with sub-millimeter
repeatability and can carry a payload of up to 250 g. Each arm is equipped with a parallel-
jaw gripper whose jaws are 5 cm in length and can open to 10 cm apart. The YuMi was
designed for manipulating small parts in collaboration with humans, which makes it a good
candidate for applications with human-robot interaction (HRI) [1] or humans in proximity.

In our experimental setup, we use the YuMi’s ethernet service port to stream RAPID
commands for controlling each of its arms independently, and we use YuMi’s built-in inverse
kinematic solver for planning joint angles.

2.3.2 Robot Command Unit (RCU)

The robot command unit, or RCU, is the mid-level software component that creates manip-
ulation plans, queries Brass to retrieve grasp recommendations, and commands the YuMi to
execute grasps on individual chess pieces. The RCU’s task planner parses a series of chess
moves from a PGN-format chess game file and then begins to execute them sequentially.
Throughout the game, the RCU keeps track of each piece’s position on the chess board.

When a move is processed, the RCU identifies the target piece and then queries Dex-Net
via Brass to retrieve candidate grasps for that piece. These grasps are parametrized by a
center point in R3 that lies halfway between the target locations of two gripper jaws and an
axis in S2 that points from one jaw tip to the other. Additionally, each grasp is returned with
its probability of force closure under uncertainty in object pose, gripper pose, and friction,

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 16

which serves as our primary quality metric for each grasp in our first set of experiments
(Figure 2.3).

To reduce the chance of colliding with other pieces, the RCU constrains the YuMi to grasp
pieces from directly above so that the gripper jaws are perpendicular to the table. These
grasps can be represented as a rotation of the jaws around the z-axis and a translation of
the gripper (see Figure 2.3). From this parametrization, the RCU can directly command the
YuMi’s built-in motion planner to execute the grasp, lift the piece, and place it in its target
location.

2.3.3 Cross-Border Network Service

To connect a local RCU to Brass and its services, we take advantage of Cloudminds’ pro-
prietary cross-border network. This network was designed to send files rapidly and securely
across great distances, and it differs from traditional networks in two primary ways.

First, this network has control over all routers and access points within its range of
service In practice, this results in fewer dropped packets, shorter round-trip times, and
reduced network latency when compared to public global networks. Reduced latency and
lower-variance round-trip times can make it possible to integrate RAaaS frameworks into
time-critical robotics applications.

Second, this network requires every user to authenticate before use and immediately drops
packets from unauthorized users. This protocol makes the network more secure and hardens
it against denial-of-service attacks, which could result in improved availability, better privacy
protection, and safer operation for robotic systems that depend on cloud services.

2.3.4 Brass

Brass is a prototype RAaaS webserver that presents a generic API for robotic services over the
internet. By presenting a uniform, well-defined API, Brass abstracts away the complexities of
its internal services and enables end-users to build code against a stable interface. Internally,
Brass starts an instance of each of its services and connects to them using their own built-in
communication protocols. When a request arrives, Brass queries these services, aggregates
results, and returns them to the client in a well-defined format. In our experimental setup,
Brass receives HTTP requests from the local RCU and sends responses (lists of parametrized
grasps) as JSON.

In our current prototype, Brass offers Dex-Net and a collective learning system as services
for robust grasp planning. Each request to Brass contains an object identifier, and Brass
can either return a raw list of Dex-Net’s grasp candidates for that object (sorted by one
of Dex-Net’s robustness metrics) or a set of grasps recommended by the collective learning
system. If the user desires, they can report the success or failure of a grasp by sending a
follow-up post to Brass, and that information is then fed back into the collective learning
system to improve grasp selections generated by that module in the future.

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 17

Figure 2.3: Grasping Recommendation Filtering Process: (Top) Parallel-jaw grasp configu-
ration candidates generated by Dex-Net ranked by robustness (probability of force closure).
The left image shows the grasp axes for the 15 most robust grasps, while the right image
shows the 200 most robust grasps. (Bottom) The left image shows the most robust grasp for
the rook piece, while the right shows that grasp being executed by the YuMi robot gripper.

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 18

In addition, Brass provides a sample hand-tailored custom heuristic that filters out grasps
that are likely to fail in table-top pick-and-place tasks, such as playing chess. In addition to
filtering out grasps with a low probability of force closure, this heuristic eliminates grasps
whose centers are far from the object’s center of mass. This ensures that the gravitational
torque on the piece is low when it is lifted. The filter also removes grasps which are too close
to the table to reduce the chances of an inadvertent collision and prioritizes grasps whose
axis is nearly parallel to the table (due to the vertical grasping constraint imposed by the
RCU).

The steps in this filtering process are as follows:

1. Filter out grasps whose probability of force closure is below 30% of the highest proba-
bility of force closure over all grasps.

2. Filter out grasps that are within 10 mm of the table to avoid collisions with the YuMi
gripper.

3. Filter out grasps whose center point is more than 5 mm from the line that runs through
the piece’s center of gravity perpendicular to the table.

4. Sort the remaining grasps to prioritize ones whose axes (the vectors in 2.3) are most
parallel to the table.

Application of these filtering steps led to the selection of grasps shown in Figure 2.4.

2.3.5 Dexterity Network

Dex-Net 1.0 is a robust cloud-based grasp-planning service [88]. Given a particular object’s
3D mesh model, Dex-Net computes all stable poses for the object on a planar worksurface
using static analysis [142]. Then, Dex-Net generates thousands of grasp candidates for
each registered gripper type using a multi-armed bandit model to leverage prior grasps for
increased sampling efficiency. Individual grasps are represented as a center point and a
3D vector that indicates the axis between the jaws. Finally, robustness metrics, such as
probability of force closure [139] and expected Ferrari-Canny quality [68] [31] are computed
for each grasp under uncertainty in object pose ξ, gripper pose ν, and friction coefficient γ,
and these metrics are stored with each grasp for later access.

The grasp sampling and metric calculation processes are computationally expensive, re-
quiring 10-15 minutes per object on a standard desktop, so Dex-Net takes advantage of
cluster computing and uses 1500 nodes to pre-compute grasps. Dex-Net currently stores
data for over 10,000 unique objects, which amounts to over 2.5 million grasp candidates.
Dex-Net can then serve these pre-computed grasps over the internet via Brass in small,
kilobyte-sized packages. This means that nearly any system – even ones constrained by both

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 19

Figure 2.4: Visualization of the Dex-Net grasps selected by Brass’s heuristic. When these
grasps are executed, the axis shown is projected onto a plane that contains its center point
and is parallel to the table.

memory and computational power – can use Dex-Net to plan robust grasps for thousands of
objects.

For these experiments, the 3D mesh model for each chess piece was added to Dex-Net
and grasps were pre-computed before the experiments were initiated.

2.3.6 Collective Learning System

Dex-Net uses perturbation sampling to estimate stochastic robustness metrics for each grasp.
These physical perturbations, such as minor deviations in positions and rotations of the
object, are modelled as Gaussian distributions. Prior work has shown that grasps generated
with this method perform well in practice [88], and our first major experiment supports these
results. However, this stochastic model may not fit every kind of disturbance that could
occur in practice. For example, systematic errors introduced by sensor bias or imperfect
calibration could violate Dex-Net’s assumptions about noise, and variable gripper surface

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 20

types could change the performance of individual grasps. Therefore, collecting large amounts
of empirical data can still be useful to further understand and improve the performance of
grasping systems. However, running large-scale physical experiments is difficult and time
consuming, especially if only a small number of robots are available.

RAaaS frameworks such as Brass have a potential solution to this problem – robots
connected to the framework can share their individual experiences so that all connected
robots can learn from them. This effectively amplifies the amount of empirical data available
to each robot, allowing for large-scale collective learning with low per-robot load. In Brass,
this idea is implemented in the collective learning module.

The collective learning module is initialized with a set of grasp candidates from Dex-Net.
When robots connected to Brass execute one of these grasp candidates, they can send a
report back to Brass that indicates whether the grasp succeeded or failed. These reports are
saved in the collective learning module, and after enough trials are collected for a particular
grasp, the module can start to provide recommendations from its set of candidates, favoring
those with the highest empirical rates of success.

In our experiments, we show that collecting empirical grasp data can help to find robust
grasps when high-quality metrics are not available. In addition, this module serves as a
proof-of-concept for other potential RAaaS modules that could leverage the experiences of
many robots to improve performance at scale.

2.4 Experiment and Result

In order to evaluate the costs and benefits of using Dex-Net through Brass, we performed
three sets of physical experiments with the ABB YuMi robot and our set of asymmetric chess
pieces. Each of these experiments is described in detail in this section.

Table 2.1: Grasp Success Rates (percentage) over 50 Attempts

Hardcoded x-axis Hardcoded y-axis Dex-Net

King 94 100 100

Queen 84 100 98

Rook 96 98 100

Bishop 98 72 98

Knight 100 100 100

Pawn 94 76 100

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 21

2.4.1 Individual and Sequential Grasp Success With and
Without Dex-Net

Our first experiment evaluated how using Dex-Net grasp recommendations affects grasp
reliability when compared against hard-coded grasps that do not take piece geometry into
account. This experiment was divided into two scenarios:

1. Dex-Net is not used. Instead, the tip of the gripper is positioned to grasp the center
of mass of each piece with the jaws placed parallel to either the x-axis (left to right)
or y-axis (front to back, see Figure 2.2).

2. Dex-Net is used via Brass to provide robust grasp candidates. Brass performs grasp
filtering using our custom heuristic with robust force closure to provide the RCU with
a single target grasp.

For each scenario, we attempted to grasp each piece 50 times and move it from a start
square to a target square. This experiment was designed to characterize the probability of
correctly manipulating each individual piece under each of the listed scenarios. An attempt
was considered successful if the piece was successfully lifted from its start square and placed
in the target square without being dropped or knocked over. After each test, the target
piece was re-registered in its start square. The results from these experiments are displayed
in Table 2.1.

2.4.2 Collective Learning Experiment

As a proof-of-concept for how robots can share empirical data to learn together through a
RAaaS system, we performed a test of Brass’s collective learning module.

Table 2.2: Success Probabilities (Percentage) of the 5 Grasps based on 30 Physical Trials

Grasp 1 2 3 4 5 Best

King 100 100 100 100 100 100

Queen 100 97 87 67 100 100

Rook 100 87 100 100 100 100

Bishop 57 87 100 60 100 100

Knight 87 63 100 100 27 100

Pawn 47 50 100 100 100 100

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 22

In this experiment, we initialized the collective learning module with five grasps from
Dex-Net for each chess piece. Ordinarily, Dex-Net would recommend grasps ranked by its
robustness metrics, which would produce a top set of grasps that would all work well in
practice. However, in order to showcase the improvements that empirical learning could
produce if Dex-Net’s assumptions were violated, we intentionally selected the five candidate
grasps from Dex-Net without considering any of Dex-Net’s robustness metrics.

Instead, these grasps were selected using steps 2, 3, and 4 from Brass’s hand-tuned
heuristic, which merely ensures that the selected grasps are near the center of the piece and
do not collide with the table. Such a selection results in enough variability in grasp quality
among the candidates for the collective learning system to be useful.

Once the collective learning module was initialized with candidate grasps, we connected
the left and right arms of the YuMi to Brass as separate robots. Then, we performed fifteen
individual attempts per grasp with each arm. After each trial, the arms each forwarded
their results back up to Brass’s collective learning module. After all candidate grasps had
been tried at least fifteen times per arm, the learning module began recommending the most
successful grasp for each piece upon future requests and continued to update its empirical
database dynamically.

Empirical success rates for each of the five candidate grasps for each piece are shown in
Table 2.2. As expected, some of the grasps selected by Brass’s imperfect heuristic performed
quite poorly. However, by working together and sharing data, the YuMi’s two arms were
able to converge to grasps with high success rates.

As an exmpale, Figure 2.5 top illustrates the visual demonstration of the 5 grasps selected
by Brass’s imperfect heuristic for the bishop piece, and table 2.2 row 4 shows the empirical
results collected via collective learning and physical experiments. The third-ranked grasp
had the highest empirical success rate, and the collective learning system enabled the YuMi’s
arms to jointly teach it to choose that grasp for future trials. While grasps 2-5 for the bishop
(Figure 2.5) all look similar, they had very different success rates. Grasp 2 failed frequently
because the bishop’s slanted surface slipped out of the grippers when pressure was applied,
and grasp 4 failed when the gripper collided with the piece’s shoulder above it. Grasps 3 and
5 worked well because the surfaces of contact were nearly parallel and admitted the gripper
without collisions.

As a side note, Dex-Net’s robustness metrics did, in fact, predict these differences in per-
formance, which illustrates the usefulness of having good analytic metrics for filtering grasp
candidates. In the absence of such metrics, a seemingly reasonable heuristic produced some
undesirable grasp candidates, but we were able to recover by using the collective learning
module to help both arms discover good grasping configurations. In practice, users could
use both Dex-Net’s robustness metrics and Brass’s collective learning module to maximize
success rates in manipulation tasks.

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 23

Figure 2.5: Grasps Selection using Collected Learning Module (Left Top) The bishop chess
piece with 5 grasps proposed by Brass’s heuristic. (Left Bottom) One of the best grasps was
grasp 3, with a 100% probability of success as determined by 30 physical experiments with
two independently controlled robot arms and the collective learning module in the cloud.
(Right) Block Diagram of the collective learning system.

2.4.3 Chess Movement Time vs. Network Latencies

In our final experiment, we benchmarked the network latency and variance for accessing
Brass servers in a variety of scenarios. Four primary configurations were considered:

1. Brass, Dex-Net, and the RCU are all deployed on a local machine directly connected
to the YuMi.

2. Brass and Dex-Net are deployed on an Amazon EC2 instance in Oregon, while the robot
is in San Francisco. An ordinary ISP’s network is used for packet transportation.

3. Brass and Dex-Net are deployed on a server in China, and the robot is in San Francisco.
An ordinary ISP’s network is used for packet transportation.

4. Brass and Dex-Net are deployed on a server in China, and the robot is in San Francisco.
Cloudminds’ proprietary network is used for packet transportation.

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 24

For each scenario, we bench-marked the round-trip time to perform a Brass query for
Dex-Net grasp candidates via TCP/IP. Each query contained the name of the target piece,
and each response contained a raw list of Dex-Net’s pre-computed grasps for that piece in
JSON format. Responses were generally around 33 kB in size. One hundred trials were
performed per scenario, and the results are shown in Table 2.3.

Table 2.3: Round-trip Time to Receive Grasps from Dex-Net

Mean (ms) Variance (ms)

Local 0.11 0.0011

Oregon, EC2 31.50 0.0018

China, normal net 303.10 54.2180

China, cross-border net 197.03 0.3239

2.5 Discussion

In the first experiment, grasp performance for three of the chess pieces was robust across all
methods, but grasp performance for the pawn, bishop, and the rook was better with Dex-
Net than without. These experiments suggest that utilizing Dex-Net via Brass can provide
substantial gains in grasp robustness at the cost of some network latency.

However, this cost must be explored, since network latency is an important consideration
for cloud-enabled robots. For time-sensitive on-line and real-time applications, large laten-
cies for critical services can render a system unresponsive or unstable. For example, if an
assembly-line robot needed to access Dex-Net grasps for objects moving on a conveyor belt,
a 200 ms network delay could significantly impede performance.

Fortunately, the Amazon EC2 configuration demonstrated 32 ms latency with relatively
low variance for domestic communication, and Cloudminds’ network showed 197 ms latency
and low variance communication between San Francisco and China (see Table 2.3). Thus,
a reliable 30 Hz control signal from a RAaaS system can be achieved if the server is in the
same geographic region as its clients, which is adequate for most on-line and some real-
time robotics applications. For servers that are far away, even with the state of the art
network technology, only a 5 Hz control signal is available, which likely rules out most real-
time applications. However, when the connection is reliable, RAaaS systems at such long
distances can still be useful for on-line applications with looser latency requirements. For
these types of applications, RAaaS systems can provide nearly global coverage.

In addition to showing the benefits of connecting robots to advanced services such as
Dex-Net, we also showed how RAaaS systems can enable the sharing of empirical data for
collective learning. In our experiment with Brass’s collective learning module, the two YuMi

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 25

arms worked together to discover a better grasp than the one suggested by Brass’ hand-tuned
heuristic for the Rook, Bishop, Knight, and Pawn pieces. This provided a proof-of-concept
for how robots could use RAaaS systems to share data in order to empower machine learning
algorithms, amplify the amount of empirical data available to individual robots, and reduce
the experimental load on each robot while improving performance.

Finally, we will examine ways to enrich Brass’s collective learning module in the future.
One idea is to use data cleaning techniques [71] [72] to detect systematic robotic failures
based on outliers from recorded experimental data.

2.6 Additional Cloud Robotic Service Modules

Since the original Brass paper, we have built more Cloud modules around the non-standard
chess playing system to demonstrate the power of modularity using Cloud Robotics. These
modules, demonstrated in Figure 2.6, include (1) immersive VR/AR teleoperation module in
the Cloud, (2) web-based teleoperation interface that stream videos for the user to play non-
standard chess remotely, (3) 3D visual correction system in the Cloud to use visual feedbacks
to further improve the reliability of the non-standard chess playing system. Video demonstra-
tions can be found at https://drive.google.com/drive/folders/1rh8gCydsXCpGJCI6n31mwgTdsJdjJfn-?

usp=sharing

Figure 2.6: Additional Cloud Robotic Service Modules: (top left) Immersive VR/AR teleop-
eration module; (top right) web-based teleoperation interface with video interface; (bottom)
3D Visual correction module using point clouds and surface matching to track the centroid
of the non-standard chess pieces.

https://drive.google.com/drive/folders/1rh8gCydsXCpGJCI6n31mwgTdsJdjJfn-?usp=sharing
https://drive.google.com/drive/folders/1rh8gCydsXCpGJCI6n31mwgTdsJdjJfn-?usp=sharing

CHAPTER 2. CLOUD ROBOTICS AS A SERVICE 26

Notes

Part of this chapter has appeared in a peer-reviewed conference paper:

Nan Tian, Matthew Matl, Jeffrey Mahler, Yu Xiang Zhou, Samantha Staszak, Christo-
pher Correa, Steven Zheng, Qiang Li, Robert Zhang, Ken Goldberg. A Cloud Robot System
Using the Dexterity Network and Berkeley Robotics and Automation as a Service (BRASS).
ICRA 2017.

27

Chapter 3

A Fog Robotic System for Dynamic
Visual Servoing

3.1 Introduction

Service robots operate semi- or fully autonomously to perform services useful to the well-
being of humans and equipments[104]. International Federation of Robotics (IFR) predicts
that 32 million service robots are to be deployed between 2018-2022 [103]. Some popular
service robot applications include elderly care, house cleaning, cooking, patrol robots, robot
receptionists, entertainment, and education. A few famous examples of service robots are
Roomba by iRobot, Pepper by Softbank Robotics, “the robotic chef” by Moley Robotics,
and Spotmini and Atlas by Boston Dynamics.

Different from industrial robots, service robots need to interact and cooperate with people
safely under dynamic unstructured environments. We believe there are two key requirements
for service robot operations: (1) accurate, general visual perceptions as feedbacks, and (2)
intelligent, dynamic, human compliant robotic controls.

With recent breakthroughs in deep neural networks and robotic learning, robot visual per-
ceptions [36][73][2][23] and intelligent controls [89][81][82][34][80], learning-based intelligent
service robot systems can start to operate under unstructured, dynamic, human compliant,
general environments. However, these learning-based technologies come with a high compu-
tation cost, yet, normal robotic controllers have limited computation power. It is hard to
deploy all of them directly on native robot controllers with such constrain.

One solution is to move these computation intensive learning systems into the cloud while
keeping the time sensitive dynamic controls on the robot (Fig. 3.1). An example is our
previous work on gesture based semaphore mirroring using a humanoid robot [128], where
we moved deep-learning-based gesture inferencing into the cloud while executing motion
segments locally on the robot.

Current Cloud Robotics systems, however, has high network communication costs, in the
form of privacy, security, bandwidth, latency, and variability. Specifically, network laten-

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 28

Figure 3.1: The Fog Robotic system for dyanmic visual servoing: (Left) Architecture dia-
gram and information flow–visual perceptions (black arrows), control signals (green arrows),
human-robot interactions (red arrows). (Right) Illustrations of three major contributions
of this work, teleoperation, visual servoing, and auto box-pickups from a human. They are
positioned to their related functional blocks in the Fog Robotic system

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 29

cies and variabilities, bounded by speed-of-light and inconsistent network routings, prevent
cloud-based robotic controller from controlling dynamic robots directly. Expeccially in hu-
man robot interaction applications where visual feedback is required to achieve interactive,
human-compliant robot tasks.

To solve this problem, we combine both powerful cloud services and agile edge devices
to build an intelligent Cloud-Edge hybrid control system under a Fog Robotic framework.
We want to demonstrate that, with this hybrid design, not only a Fog Robotics can expand
the robot’s general ”intelligence” with cloud based AI modules, but it can also effectively
control a dynamic robot at the Edge, even when network connections are not perfect.

Therefore, we choose to perform a robotic task that is commonly performed in ware-
house logistics, namely box pickups, using a dynamic, dual arm, dual leg, self-balancing
robot named Igor, made by HEBI robotics. We build an automatic box pickup module to
show: (1) cloud-based assisted teleoperation; (2) visual recognition in the Cloud; (3) dy-
namic self-balancing navigation controller at the Edge; (4) a closed-loop Cloud-Edge hybrid
controller for automatic box pickups using visual feedbacks (Fig. 3.1). This hybrid mod-
ule is implemented under Human Augmented Robotic Intelligence Platform, or HARI [128],
provided by Cloudminds Inc.

Further, we choose to implement this hybrid visual feedback controller with image based
visual servoing (IBVS) to eliminate the time-consuming but often necessary robot-camera
registration routine. With Fog Robotic IBVS, we make the box pickup system more practical,
so that Igor can perform efficient, reliable, automatic box pickups from a human carrier under
unstructured environments.

3.2 Contribution

1. A Cloud-Edge hybrid controller for reliable teleoperation of a dynamic self-balancing
robot.

2. An autonomous Fog Robotic IBVS module that assists cloud teleoperators for
efficient object pickups.

3. Automatic box-pickups from a moving human to demonstrate dynamic human
robot interactions (HRI).

3.3 Related Work

Cloud Robotics refer to any robot or automation system that relies on either data or code
from a network to support its operation [65]. The term was introduced by James Kuffner
in 2010. It was evolved from Networked Robotics [75]. Well-known Cloud Robotic Systems
includes: RoboEarth’s Rapyuta [95], motion planning for services at both cloud [133] and
edge [57], Berkeley robotics and automation as a service (Brass) [129], and Dex-Net as a

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 30

Figure 3.2: Fog Robotics, Intelligence vs. Speed: (Left) the Cloud provide high-level intelli-
gence, such as robotic learning, deep-learning based perception, and cloud based human tele-
operation; (Right) the Edge fastest closed-loops controls for highly dynamic robotic tasks,
but often lacks high performance computer; (Middle) the Cloud-Edge Hybrid can handle
majority of the robotic applications.

Service (DNaaS) [83, 90, 89], just to name a few. However, network costs in the form of
privacy, security latency, bandwidth, and reliability present a challenge in Cloud Robotics
[124].

Fog Robotics is a form of Cloud Robotics in which cloud computing resources is brought
closer to the robot to balance storage, compute and networking resources between the Cloud
and the Edge [124]. It is inspired by Fog Computing, originally introduced by Cisco Systems
in 2012 [15] [96], and it was recently introduced by Gudi et al [45]. A Fog Robotic system
was developed and evaluated in parallel at Berkeley by Tanwani et al for learning surface
grasps from nearby environments [124]. There are also other works on Fog Robotics that
focus on investigating optimal off-load strategies [63] [26].

Fog Robotics provides a general cloud framework to combine specialized yet complimen-
tary intelligent systems to work together, so that users can build a scalable HRI cloud service.
The Cloud can host advanced robotic learning systems, such as grasping and decluttering
[88], [89], [124], visual servoing [80], guided policy search [81], [82], visual foresight [34], and
domain randomization [131]. It can also host deep-learning based vision systems for object
detection [73] [36] [2] and human gesture recognition [23][22] in semi-realtime (5 - 10Hz)
to provide visual inputs to the Edge device. Such Cloud-Edge hybrid system, combining
both intelligence and speed, can cover a full spectrum of tasks for service robots (Fig. 3.2).
One example is our recent work on a cloud-based sempahore imitation system using a hu-

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 31

manoid robot [128], but we believe a more dynamic task like control a self-balancing robot
can demonstrate the power of this hybrid system even further.

Latency and Variability contributed by network imperfections and cloud computa-
tion [124] are the main caveats to control a dynamic robot with Cloud and Fog Robotics.
These imperfections distort the controllability of a dynamic system, especially with a real-
time close-loop feedback controller. While Cloud Robotics often include some capacity for
local/edge processing for low-latency, real-time responses [65], how to design a reliable cloud-
edge hybrid, dynamic feedback controller is still an interesting open problem. This problem
is similar to previous work on networked control systems (NCSs) [146][143] [137] which as-
sumes either centralized or distributed controllers, but different, because the Cloud and the
Edge host a closed-loop controller together in Fog Robotics.

Intelligent Visual Feedback Systems has been used for AI assisted teleoperation
to improve teleoperator’s efficiency under harsh environments [12], [48]. However, dynamic
visual feedback system under unstructured environment is challenging because traditional
industrial robotic vision approaches are developed for precision under highly controlled man-
ufacturing environments. Time consuming registration [10] and calibration [132] are often
required before performing a robotic task, not practical for many service robotic tasks with
HRIs. We choose to implement a Image Based Visual Servoings (IBVS) controller [53], [25],
[111] which uses dynamic feedback control policy to minimize relative distance between the
robot and the target in 2D image space. There are previous works on Jacobian estimation
for robust visual servoing [111] and NCSs based visual servoing systems [143][137]. We dif-
ferentiate our work by proposing a hybrid Cloud-Edge framework where the time sensitive,
dynamic servoing controller is deployed locally on the Edge.

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 32

3.4 Self-Balancing Robot, Igor

Igor is a 14 degrees of freedom (DoF), dual-arm, dual-leg, dynamic self-balancing robot, made
by HEBI robotics (shown in Fig. 3.3). Each DoF is built with a self-contained, series elastic
X-series servo modules. These servos can be controlled with position, velocity, and torque
commands simultaneously, and can provide accurate measurements of these three quantities
to a central computer at high speed (>1KHz) with minimum latency. These modules also
act as Ethernet switch, and rely sensor informations and commands to and from the native
on-board Intel Nuc computer on the robot.

The self-balancing is achieved by modeling the system as an inverted pendulum (see Fig.
3.3 bottom). To estimate the robot’s center of mass (CoM), the CoM of the two arms and two
legs are first measured in real-time using forward kinematics via HEBI’s API. The position
of the total CoM is then estimated as the average of the CoMs of the four extremities plus
the CoM of the control box weighted by the mass distribution:

xCoM =

∑
imixi∑
imi

i = arms, legs, box (3.1)

Igor also uses accelerometer measurements to estimate the direction of gravity (G) at all
times. With CoM of Igor, center of wheels (ow), and direction of gravity, we can calculate
the length and direction of the inverted pendulum:

L = xCoM − ow (3.2)

The lean angle (ψ), which is the angle between gravity and the inverted pendulum can then
be estimated in real-time:

ψ = cos−1
(L ·G
|L||G|

)
(3.3)

To keep the robot balancing, we assume that the lean angle (ψ) is small so that the
system can be linearized:

ψ u sin(ψ) (3.4)

torque (T) in the direction of falling is applied to the wheel with radius (R) and angular
velocity (ω) to counteract the effects of gravity on the robot’s center of mass:

T = Rω = v − ψ̇L (3.5)

where v is the velocity of the robot’s CoM. Furthermore, the derivative of the lean angle
(ψ̇) can be controlled by a proportional controller with coefficient (Kv), and is related to the
velocity of the robot as follows:

ψ̇ = Kvv (3.6)

Real-time measurements of both robot CoM and direction of gravity are important, be-
cause the Igor controller needs to compensate for dynamic movements of the four extremities
for robust self-balance control. We can also rotate the robot by applying different velocities

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 33

to the two wheels. Inertia measurement unit (IMU) readings can then be used to control
robot turning angles in real-time.

3.5 An Intelligent Fog Robotic Controller

3.5.1 Edge Controllers

There are two edge controllers in our system. The first is the native Igor robot controller on
the Intel Nuc computer. It collects all sensor information from the 14 modular servos and
controls them in real-time. It hosts a high-speed feedback control loop (200Hz or above) to
maintain robot posture and self-balancing. We refer to it as the low-level controller in Fig.
3.1.

The other edge controller is the robot command unit (RCU). It is a smart android phone
with a private LTE connection and a 2D camera (Fig. 3.1). RCU serves as the gateway
between the high-level cloud robotic platform and the low-level self-balancing controller. It
uses the private LTE connection to stream live videos to the cloud. It receives and forwards
high-level intelligent controls from the cloud to the low-level controller with minimum delay.
RCU works both indoors and outdoors with a good LTE reception.

3.5.2 Cloud Controller

A high-level intelligent robot controller is placed in the cloud to work with the edge controller
RCU (see Fig. 3.1). It operates at a lower speed (3-5Hz), yet it commands the robot based
on HARI’s Artificial Intelligence (AI) and Human Intelligence (HI) services, which is critical
for robots to operate under unstructured environments. Depending on the situation, it can
either extract commands based on the object recognition server or forward commands sent
from a cloud teleoperator. These high-level commands are sent to RCU. They are then
forwarded, transformed, and executed in the form of dynamic commands on the low-level
controller.

3.5.3 Hybrid Control with “Heartbeat”

When controlling Igor, commands sent from the high-level cloud controller act as perturba-
tions to a time-invariant, stable system maintained by the low-level self-balancing controller
at the edge. This is a form of hybrid control where discrete signals are sent from the cloud
to control a dynamical system at the edge.

To minimize network delays, we choose to use UDP, an asynchronous network protocol,
to implement the Cloud-Edge communication. However, with UDP, packages can be lost
during transmission. They can also arrive the designation out-of-order. Both problems can
cause unstable, unpredictiv dynamic hybrid controls at the Edge, which can lead to bad user
experiences and human safety issues during teleoperation.

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 34

Figure 3.3: Self-Balancing Robot Igor: (Top)14 Dof, dual-arm, dual-leg robot built with
series elastic servo modules. (Courtesy of Hebi Robotics) (Bottom) free body diagram of the
inverted pendulum balancing control

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 35

Figure 3.4: “Heartbeat” Asynchronous Protocol and Image Based Visual Servoing: (Left)
“Heartbeat” Asynchronous Protocol: (Green) network delays from cloud teleoperator to
robot Edge controller; (Purple) sliding windows that turn ON the “heartbeat”; (Red) sliding
window that turn OFF the “heartbeat”; (Right) Image Based Visual Servoing (IBVS): Igor
automatically picks up a Box using Fog Robotic IBVS. Videos: (1) Pickup from a table:
https://youtu.be/b0mr5GHHjBg (2) Pickup from a person: https://youtu.be/K9R4y2w1uPw

We use a “heartbeat” design to solve these problems (shown in Fig. 3.4). The “heartbeat”
is a switch signal that is turned on when the first control signal arrives at the Edge. It will
remain on for a period of time (t) and will only turn off if there is no package received
for the selected command during this time. We can view the “heartbeat” as performing a
“convolution” with a moving window on the signal received from RCU. Finally, we add a
ramping function at the beginning and the end of the “heartbeat” signal to ensure smooth
and stable start and stop transitions.

3.6 Dynamic Visual Servoing

To assist teleoperation with automation, we use Fog Robotics IBVS to control Igor for
automatic box pickups. We choose IBVS because it eliminates time consuming camera
robot registration, which is hard to execute on a dynamic robotic system in an unstructured,
human rich environment.

The goal of the IBVS is to navigate the robot to an optimal box pickup location where
the apriltag lay exactly within the green target box (Fig. 3.4, right). To do that, we need to
minimize the relative error between the measured target position and desired target position
e(t):

e(t) = s(m(t),a)− s∗ (3.7)

where m(t) is a set of image measurements and a is a set of parameters, such as camera
intrinsics, that represents additional knowledge about the system. s is the measured values

https://youtu.be/b0mr5GHHjBg
https://youtu.be/K9R4y2w1uPw

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 36

of image features/object locations, such as pixel coordinates in the picture frame, and s∗ is
the desired values of image features/object locations.

The change of feature error ė and camera velocity vc is related by interactive matrix L:

ė = Lvc (3.8)

For IBVS, which is done in 2D image space, 3D points X = (X, Y, Z) are projected onto
2-D images with coordinates x = (x, y):

x = X/Z (3.9)

y = Y/Z (3.10)

which creates an interactive matrix for 2D image based servoing:

L =

−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

With the interactive matrix, camera velocity can be estimated by:

vc = −λL+e = −λL+(s− s∗) (3.11)

where L+ is the Moore-Penrose pseudo-inverse of L:

L+ = (LTL)−1LT (3.12)

The final control law is set as a robot velocity effort vs opposite to the camera velocity
vc because the target moves in the opposite direction of the camera in the image frame:

vs = −vc (3.13)

Notice that the interactive matrix depends only on x and y, that is the 2D pixel coordinate
of the target, and Z which is the depth of the target. In our system, Z is measured as the size
of the apriltag. Therefore, the IBVS measurement is independent of the exact 3D position
of the target measurement. This is a attractive feature for our system design because the
exact 3D camera registration is not required for IBVS to complete the box pickups.

3.6.1 IBVS Implementations for Automatic Box Pickup

The automatic IBVS controller performs a box pickup in three phases. In phase one, the
controller move the robot to a position where the aprialtag has the same size as the green
box (Fig 3.4, right). The robot also need to position apriltag on the center purple line of
the video frame after phase one, but not exactly at the center due to height differences. In
phase two, the robot adjusts its own height by changing the joint angles of the two “knee”
joints so that the apriltag would lay at the center of the video frame where the green box
is. After the robot reaches the optimal picking position when apriltag is at the center of
the video, phase three begins. The robot controller commits to perform a box-pickup with
a pre-defined, hard-coded, dual arm, grasping motion.

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 37

3.6.2 Fog Robotic IBVS

Although we use simple apriltags for object recognition, we aim to anticipate the design of
a deep-learning-based Fog Robotic visual system for robotic pickups. Therefore, to emu-
late the latency effects under such system, we deploy apriltag recognition in the cloud and
use “heartbeat” protocol to stream apriltag’s geometric informations–size and location–to
low-level controller via RCU. Together, we build a robust, closed-loop Fog Robotic IBVS
controller for box pickups.

3.7 Experiments and Results

With the “heartbeat” design, we can teleoperate the self-balancing robot reliably through
the Cloud. To teleoperate the robot for box pickups, we hardcode a box pickup motion
with the two robot arms. We first attempt to pick up a box with a joystick via direct cloud
teleoperation. However, even with a reliable teleoperation module and pre-programmed
pickup motion, we find it extremely difficult to finish the task using cloud teleoperation.
We suspect that natural, immersive 3D visual perception is critical for a human to pickup
objects efficiently, but a human teleoperator loses these perceptions using our current cloud
teleoperation interface. In another word, our cloud teleoperation interface is not intuitive
for efficient object pickups.

Table 3.1: Teleoperation vs. Automatic Box Pickups

Average Duration (s) Success Rate

Local Teleop 43 9/10

Cloud Teleop 340 4/10

Auto Pickups 46 10/10

To quantify the observation, we perform two different teleoperation experiments with 10
trials each: (1) control Igor locally so that the operator is close-by and can see the robot and
the box; (2) control Igor remotely from the cloud to pickup the box through the teleoperation
interface (Fig. 3.4, right). In both cases, the box is positioned at the center of the table.
The robot is 2 meters from the object and faces the front of the box (see setups in video
https://youtu.be/b0mr5GHHjBg). We observe that local teleoperator can perform box pickups
much faster with a higher success rate than the cloud teleoperator (see table 3.1)

To assist the cloud teleoperator for improved intuition and efficiency, we implement the
automatic IBVS module. We benchmark the same experiments using the automatic module
with human in the loop. In these experiments, we allow the cloud teleoperator to first
teleoperate the robot as fast as possible to a location where apriltag is recognizable (up
to 20 degrees from the surface normal of the apriltag) and is about 2 meters away. The

https://youtu.be/b0mr5GHHjBg

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 38

Figure 3.5: Igor Box-Pickup Reliability Tests: (A) Top down view: four starting positions in
respect to the standing desk; (B) Front view: The position of the box is generated randomly
from two uniformly distributed variables, horizontal coordinate X, in range (-1, 1) meters,
and vertical coordinate Y, in range (0.8, 1.4) meters.

teleoperator then switch on the Fog Robotic IBVS module, allowing the robot to pick up the
box automatically. We observe that the speed of this approach is on-par with human local
teleoperation, but the reliability is even higher at 100% (see table 3.1)

Table 3.2: Successful Automatic Pickups of a Randomly Positioned Box

Start Location Point I Point II Point III Point IV

Success Rate 8/10 9/10 9/10 10/10

We further conduct 40 reliability trials. At each trial, Igor start from one of four starting
locations–Point I-IV (Fig. 3.5, A) to pickup a box that is put at a random position on a
standing desk. We perform 10 trials for each robot starting location, and the box position is
defined by two uniformly distributed random variables–horizontal X coordinate in the range

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 39

of -1 and 1 meters and vertical Y coordinates between 0.8 and 1.4 meters (Fig. 3.5, B).
We show high reliabilities of the automatic, IBVS box-pickup system through these trials in
table 3.2

Finally, we use the IBVS module assist a cloud teleoperator to pickup a box efficiently
from a box carrier. During this task, a moving human carrier is holding a box with an april-
tag. A cloud teleoperator operates Igor to a location where the apriltag can be recognized.
As soon as the robot recognizes it, the teleoperator would swtich the robot into IBVS mode
so that the robot can start automatic box pickups. We observe that as long as the robot can
track the apriltag, it will dynamically follow the human around; and if the human carrier
stops and holds the box at a static reachable position, the robot will eventually pick up the
box from the carrier.

3.8 Discussion and Future Works

In this work, we combine intelligent Cloud platforms and fast Edge devices to build a Cloud-
Edge hybrid Fog Robotic IBVS system that can perform dynamic, human-compliant, au-
tomatic box pickups. A “heartbeat” protocol with asynchronous communication is imple-
mented under this framework to mitigate network latencies and variabilities. However, the
current “heartbeat” protocol is not perfect. The “heartbeat” actually increases delay at the
end of the action, which would cause further delayed reaction after the last command signal.
This is a significant safety concern, because even if the “heartbeat” time window is short,
i.e. 250 ms in our case, the robot will continue to move until after the 250 ms window. To
compensate, we implement a sharper ramp function at the end-of-action, but 250 ms is the
hard limit for this kind of delay with the current “heartbeat” system (red arrow in Fig. 3.4).

In the future, we can further reduce such delay by modeling variabilities of time intervals
between package arrivals due to package loss. This way, the Edge controller can predict
when the last package would arrive, so that it can finish the action before the arrival of the
last command.

Like other service robots, Igor needs to interact and cooperate with human beings. We
demonstrate the advantages of visual servoing: (1) it requires no calibrations before each
robotic task; (2) it can handle dynamic human robot interaction, such as following a human
to pick up a box from that person. One failure case is when the human carrier tricks the
robot. It happens if the human carrier move the box after the robot commits to the final
phase of box picking, which is hard-coded. Instead, we can automate the pickup motion
based on visual servoing as well, and we will leave it as future work.

For Fog Robotic IBVS, we emulate a cloud-based deep-learning visual perception system
by deploying apriltag recognition in the cloud. As part of future work, we plan to deploy deep-
learning recognition pipelines such as mask-RCNN [50] together with intelligent grasping
systems such as dex-net [88][89][83], so that it can guide both dynamic robots such as Igor
and static robots such as YuMi[129] and HSR [77] to perform generalized, human compliant
object pickups and manipulations.

CHAPTER 3. A FOG ROBOTIC SYSTEM FOR DYNAMIC VISUAL SERVOING 40

Notes

This chapter has appeared in a peer-reviewed conference paper:

Nan Tian, Ajay Kumar Tanwani, Jinfa Chen, Mas Ma, Robert Zhang, Bill Huang, Ken
Goldberg and Somayeh Sojoudi. A Fog Robotic System for Dynamic Visual Servoing. ICRA
2019.

41

Chapter 4

A Cloud-Edge Hybrid System for
Humanoid Gesture Imitation

4.1 Introduction

Humanoid social robots are available commercially, including Softbank’s Pepper [106] and
Nao [105], AvatarMind’s iPal, and iCub from RobotCub [94]. These robots have similar
appearances as humans, and have potentials in professional services, such as retail, hospital-
ity, and educations. Pepper, a humanoid social robot designed by Soft-bank [106], is well
liked because it has a human voice, Astro boy liked body design, and generous full body
movements. It is also well equipped with cameras, LIDAR, ultrasound sensors, and a chest
input pad, integrated either through Pepper’s android SDK or ROS based system.

In this work, we focus on using Pepper to mirror a person performing semaphore, a hand-
held flag language. It is a system conveying information at a distance by visual signals with
hand-held flags. Alphabetical letters are encoded by the positions of the flags with respect
to the body. It is still used by lifeguards around the world.

To perform semaphore recognition, we use 2D video stream that is common in low-cost
humanoid robots. However, it is impossible to deploy a real-time gesture-based recognition
system locally on humanoid robots due to limited computation power. Deep learning based
gesture recognition systems such as OpenPose [23] can only achieve real-time performance
on state-of-the-art deep learning GPU servers. At the same time, compared to Microsoft
Kinect based gesture recognitions [13], OpenPose is preferable as it can work outdoors, can
track more people, and is camera agnostic. To use OpenPose for robot gesture mirroring in
real-time, one option is to stream videos from local robots to the cloud to perform OpenPose
gesture recognition and send control signals back to local robots.

To illustrate this concept, we use CloudMinds Inc. HARI, Human Augmented Robot
Intelligence, to support large-scale cloud service robot deployment. HARI is a hybrid system
that combines the power of artificial intelligence (AI) and human intelligence to control robots
from the cloud.

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 42

Figure 4.1: Cloud-Edge ‘Hybrid’ System for Semaphore Imitation Block diagram: (Top)
Architecture diagram of the cloud-based semaphore mirroring system built on HARI, which
supports AI assisted teleoperation. We deploy semaphore recognition system in the cloud,
and used a discrete-continuous hybrid control system to control Pepper, a humanoid robot,
to imitate semaphore gestures. (Bottom) An example of our system when the demonstrator
performs semaphore ”R”, and the robot imitate him

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 43

Mitigating network latency is essential to make cloud-based motion control robust, be-
cause network latency is unavoidable at times due to routing and physical distance even
with a reliable network. We pre-generate semaphore motion trajectories and store them in
the local robot command unit (RCU). We execute these trajectories based on commands
sent from the cloud. This way, the cloud AI only needs to use alphabetical letters to control
robots to perform semaphore, which hides the network latency while the robot moves from
one semaphore to another.

To test network speeds, we conducted cross-Pacific experiments to control a Pepper
robot in Japan from a HARI server located in the United States while the human subject
was standing in front of the robot in Japan. We further showed that one HARI server could
control two robots located in two different locations simultaneously, which demonstrates
scalability.

4.2 Related Work

An anthropomorphic robot, or humanoid robot, refers to a robot whose shape resembles the
human body. Many famous robots are humanoids, including Atlas from Boston Dynamics
[76], Honda research’s Asimo [52], and the first space humanoid robot–NASA’s Robonaut
2 [28], just to name a few.

Socially interactive robots [35], though not necessarily anthropomorphic, often take hu-
manoid forms, since many researchers believe humans must be able to interact with robots
naturally, or as human like as possible [55, 56]. Others find them easier to control by em-
ulating natural human robot interactions [35]. Therefore, many works have been dedicated
to imitating human gestures [20, 21, 19, 116, 101], human demonstrations [4, 19] and human
social interactions [17, 16] using humanoid robots.

Imitating full body human gesture requires a 3D positioning camera like Microsoft Kinect
and a gesture recognition system such as Kinect SDK [13] or deep neural network based
OpenPose [23]. The imitating controller maps position and orientation estimation of human
joints into a series of robot joint angles–trajectory. These generated gesture trojectories are
then used to control humanoids directly [13], indirectly after editing [135], or with a model
learned from machine learning [20, 19].

In Goodrich’s HRI survey [43], he separates HRI into two types: remote interaction
and proximate interaction. In either case, perception feedback–visual, audio, verbal, or even
tactile–is important to control and program robot for interaction. In this work, we focus
on large-scale cloud-based social human robot interaction using a humanoid robot, named
Pepper [106]. We enabled both remote interaction–teleoperation–and proximate interaction
by deploying both visual perception–gesture recognition, and high-level robot command–
semaphore–in the cloud. A similar cloud robotic system was built by Kehoe, et. al. before
[67] when an object recognition system was deployed in the cloud to support the PR2 robot
grasping system.

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 44

James Kuffner coined the term “Cloud Robotics” to describe the increasing number of
robotics or automation systems that rely on remote data or code for effective operation [75].
A wide variety of models for connecting robots to the cloud have been developed [65]. Some
studies have used an SaaS model that moves a robot motion controller entirely into the cloud
and used it for manipulation planning [133], while others, such as RoboEarth’s Rapyuta
system [95], follow a Platform as a Service (PaaS) such that others would easily program on
the platform. A third kind of cloud robotic system, aiming for a more energy efficient robot
system, distributes the computation of robot motion plannings to both robot’s embedded
computer and a cloud-based compute service [57]. HARI is a combination of the three and
aims at providing both AI and human intelligence control for large deployment of service
type robots.

4.3 System Design

We describe three basic components of our cloud-based semaphore mirroring system: hu-
manoid robot, robot command unit, and cloud intelligent HARI; and explain how cloud-
based semaphore system was implemented, including semaphore motion generation in ROS,
trajectory execution at RCU, command line interface on HARI, semaphore recognition, and
semaphore mirroring with hybrid control.

4.3.1 Humanoid Robot Pepper

We use Pepper, a humanoid social robot designed by Soft-bank, for all implementation.
Pepper has two arms. Each arm has five degrees of freedom (DoF), with one more degree of
freedom for hand closing and opening. Further, Pepper has two DoFs for head movements,
two DoFs for hip movements, and one additional DoF for knee movements.

The robot is natively controlled through an on-board Atom E3845 CPU card. This is
where robot sensors and motion commands are integrated. An experimental ROS node is
available to control Pepper directly via the CPU over a wireless network.

4.3.2 Robot Command Unit (RCU)

The Pepper robot has a smart input pad with an Android based system on its chest. We refer
to this smart device as robot command unit (RCU). The smart device communicates with the
CPU to integrate sensor information and send robot commands via hardwired connections.
It serves as the primary central control of the robot. The robot manufacturer allows the
user to program the RCU directly with Android API. The user can alternatively program
Pepper from another PC via WiFi using ROS, which can be convenient for roboticists.

However, we chose to directly program the robot semaphore execution on RCU rather
than over WiFi with ROS for the following reasons. First, a hardwired connection is fast,
reliable, and free from any interruption caused by poor WiFi connections. Further, the smart

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 45

Figure 4.2: Programming Single Side Semaphore: A. Semaphore positions (Top) Seven dif-
ferent positions–cross up, cross down, top, up, flat, down, home–demonstrated with cartons.
(Bottom) Selected examples of single side semaphore positions implemented on Pepper. B.
Semaphore Motion Motion trajectories in between different semaphore positons are gener-
ated first using MOVEIT! and OMPL in ROS, and then stored on local RCU.

device has wireless connectives, for both indoors or outdoors using WiFi or mobile LTE, and
it can act as a natural connection to the cloud services. Additionally, touch-screen-based
GUIs are easy to use for local users. Finally, onboard sensors, especially cameras, can be
used as perception inputs for the robot. Therefore, we position the RCU as a local robot
controller as well as the local network gateway from cloud robotic services. This is illustrated
in Figure 4.1.

4.3.3 Cloud Intelligence HARI

Currently, HARI has three major modules: (1) cloud-based AI engine and HI teleoperation
interface, (2) RCU in the form of smart devices as WiFi and mobile LTE gateway to cloud
services, and as mid-level controller for local robot, and (3) a high bandwidth, reliable, secure
private-LTE network connecting the cloud AI directly to local robot via RCU (see figure 1).

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 46

Figure 4.3: Selected Example of Semaphore Performed by both Arms of Pepper Combination
of the seven positions of each arm can be used to generate the full alphabet with 26 letters.
The “HARI“ sequence was teleoperated via command line interface on HARI, (video: https:

//youtu.be/XOeiDrG4sAQ)

As mentioned before, the key idea in building a real-time, scalable cloud application with
wide geological coverage is to maximize the cloud computation for valuable AI services and
minimize the communication costs for each robot via RCU. We use semaphore mirroring as
an example to demonstrate how use these ideas to build such cloud-based applications in real
life. First, we move the deep learning based gesture recognition system, OpenPose, entirely
to HARI’s cloud AI GPU servers. The GPU server includes four Nvidia Titan Xp graphics
cards. Second, to minimize the communication costs, we stream 320x320 videos with highly
efficient video compression standard H.264 from RCU to Cloud HARI through private LTE.

Third, mitigating the network latency is important to ensure a robust motion control
over long-range communication, because network latency is unavoidable at times due to
routing and physical distances even with a reliable LTE network. Therefore, we store pre-
generated semaphore motion trajectories in the local RCU, and execute these trajectories
based on commands sent from the cloud. This way, we hide the network latency caused by
video streaming and cloud control during the trajectory execution when the robot is moving
from one semaphore to another. (Fig. 4.2). Additionally, the cloud AI only needs to send
intermittent alphabetical letters to control robots to perform semaphore. Please refer to
Section IV and V for an exposition of these three design decisions.

https://youtu.be/XOeiDrG4sAQ
https://youtu.be/XOeiDrG4sAQ

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 47

4.3.4 Semaphore Motion Generation in ROS

Semaphore is the telegraphy system conveying information at a distance using visual signals
with hand-held flags. Flags encode alphabet information with positions of both arms. Each
of the two arms has the same set of different arm positions: home, down, flat, up, top, cross
down, and cross up (see Fig. 4.2A). The combination of these seven positions using two arms
forms 49 possible stationary positions. These positions are used to represent the alphabet
(Fig. 4.3A), and additional symbols such as home, space, etc. (Fig. 4.4C, 4.4D).

Based on the above definition, we first program the seven different positions of each arm
for the Pepper robot (fig. 4.2A). We then use the Pepper’s ROS interface to generate trajec-
tories that would move each of the Pepper’s arms between any two of these seven positions.
(fig. 4.2B) We use SBL, short for Single-Query Bi-Directional Probabilistic Roadmap Plan-
ner [110], to generate these trajectories in MOVEIT! using OMPL. We record the resulting
trajectories to ROS bags, and convert them into Android readable format.

4.3.5 Trajectory Execution at RCU

We store pre-generated trajectories in RCU. Upon receiving an alphabetical letter command,
RCU on Pepper would look up the trajectory that corresponds to the current hand position
as start and the received semaphore letter position as goal. It will then execute this trajectory
locally until the robot arms stop at the expected commanding positions. This is programmed
using Pepper’s Android API.

Note that the execution is a blocking function. The robot arm would not change its
execution trajectory or take any other command until the motion is finished. We later take
advantage of this feature to hide the network latency for responsive user experiences.

4.3.6 Command Line Interface on HARI

We test this local robot semaphore controller through a command line interface in HARI.
In this interface, a cloud operator would input a letter command via HARI. When RCU
receives the letter, it performs semaphore as described above.

We further modified this command line interface so that a word or a sequence of letters
can act as a command to Pepper. When a word is sent, Pepper will perform semaphore
for each of the letters in sequence. It would also spell out the letters as it moves and
pronounces the word at the end of the sequence. Fig. 4.3 illustrates Pepper performing
“HARI“ in sequence. This demonstrates a form of AI-assisted teleoperation in which a
cloud operator can communicate to the person in front of the robot in the form of combined
semaphore motion and spoken word by using Pepper as the media. (see supplemental video
for a demonstration: https://youtu.be/XOeiDrG4sAQ) This interface becomes a part of HARI
teleoperation module during the developments (Fig 4.1Top).

https://youtu.be/XOeiDrG4sAQ

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 48

Figure 4.4: Semaphore Recognition using Openpose: A. Single Side Position Recognition
Seven positions are recognized based on a unit circle centered at the shoulder joint; the
angle between the line formed by the hand and the shoulder and a horizontal line is used
to recognize the seven positions of a single arm. Light zones indicate the detection zones,
whereas dark zones are ”No Detect” zones. No detect zones are used to avoid false detection
between two neighboring positions. We can reliably recognize the full semaphore alphabet
in real-time (video: https://youtu.be/arC6OZGgkgE). B. the user spells out “POSE“ and
the semaphore recognition system recognizes the letters. C “Space“ is represented by both
arms rest in the “home“ position. D. “No Detect“ is recognized because the left arm of the
demonstrator is in the dark ”No Detect” zone.

4.3.7 Semaphore Recognition

Semaphore mirroring is built on top of the OpenPose based semaphore recognition system
and the command line teleoperation system mentioned above. To program semaphore recog-
nition, we use only the largest skeleton extracted from OpenPose. This skeleton corresponds
to the person standing in front of the robot. All other skeletons in the background are fil-
tered out. Based on this skeleton, we measure the relative angle from the left-hand position
to the horizontal line crossing the right shoulder. If this angle falls into the perspective gray
detection zone (Fig. 4.4A), then the left arm’s semaphore position is recognized. Note that
the black area indicates a “no-detect“ zone. We setup the no-detect zone to prevent false
detections between the two neighboring positions since the skeleton extracted by OpenPose
can be noisy and the detected hand position can easily cross the border at times.

The right-hand semaphore recognition is programmed the same way, except that the

https://youtu.be/arC6OZGgkgE

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 49

detection zone map was horizontally flipped from the one illustrated in figure 4.4A. Com-
bination of the detected left-and-right-hand position is used to infer semaphore based on
its alphabet. In Figure 4.4B, we show that the system could detect multiple letters of the
alphabet, and the subject spells out the word “POSE” using semaphore. Figure 4.4C shows
the home position which corresponds to a “space“ in the alphabet, and Figure 4.4D shows
a case of “no-detect” because the left hand of the subject is in the “no-detect” zone.

4.3.8 Semaphore Mirroring with Hybrid Control

When the cloud AI detects a change in the human gesture in semaphore, HARI will use the
command line interface to send a letter to Pepper’s RCU. RCU takes this letter command and
move the robot arms to that semaphore position. This completes the semaphore mirroring
pipeline. To minimize communications, HARI will not send in semaphore command at every
frame of semaphore detection. It only sends a command to RCU when it detects a change
in semaphore letter recognition, see fig. 4.5.

However, there is a problem if we use the raw command signal sequence sent from HARI.
The semaphore motion executed by RCU is a blocking function. The RCU would not process
the command buffer during the motion. If we choose to program the receiving buffer at
RCU using a stack, the original command sequence were to be reserved. So when multiple
semaphore changes are to be detected during the semaphore motion execution, then the letter
representing the ”first” detection are executed first, then followed by the other ones, until
the most ”current” semaphore command is detected. It surprises many users as the robot
executes several semaphores before it starts to execute the semaphore they are intended to
demonstrate.

An alternative is to program the receiving buffer as a queue, so that when a motion
was finished, RCU jumps to the most current semaphore gesture demonstrated by the user.
Users would feel more natural since they perceive the robot is mirroring them faithfully.
Therefore, the queue-based receiving buffer is chosen.

The semaphore mirroring pipeline is a form of hybrid control–Discrete, high level com-
mand is sent from the cloud intermittently to a local RCU where continuous motion is
executed. As we will discuss later, this technique helps hide latency between the cloud and
the robot. It makes the cloud-based real-time semaphore mirroring Pepper more natural to
interact with, even under extreme network conditions.

4.4 Experiments and Results

4.4.1 Cross Pacific Experiments

We conducted cross Pacific robot control experiments. We used a US HARI server located
in Oregon, United States to control a Pepper robot located in Tokyo, Japan, with a human
subject standing in front of Pepper as a demonstrator. We also performed the same test to

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 50

a Pepper robot located in Santa Clara, United States, with the same HARI server in the
United States (see video illustrates US-to-US test case: https://youtu.be/NXrdoSXXxqY).
Furthermore, to show scalability, we successfully used the US based HARI server to support
both Peppers at the same time, one in Japan and the other in the United States.

4.4.2 Reliability of the Cloud Semaphore Recognition System

We first performed reliability tests of semaphore recognition system in the United States. To
test reliability, we randomly showed a semaphore position for the demonstrator to perform,
and check the recognized semaphore results obtained from the cloud server. We conducted
two sets of experiments with two different demonstrators with thirty experiments each. We
positioned the robot camera in such a way that both shoulders of the subject were at the
center horizontal line of the image. Further, no arm, when fully stretched, should go out of
the camera’s frame. The background of the demonstrators were uniformly white, and the
experiments were conducted in a well-lit room.

During the first set of experiments, we hid the real-time recognition results from the
demonstrator. The recognition accuracy was 90.0% (27/30) for subject one, and 76.7%
(23/30) for subject two. (see the first row of table 4.1) The accuracy were high, but not
reliable, and not consistent across subjects.

However, we noticed that all of the failures were caused by “No Detect“ error, meaning
one or both of subject’s hand was in the no detect zone. None of these recognition errors was
due to confusion between two different semaphores. This made us think that the failed trails
were caused by habits of different person when performing semaphore rather than system
errors such as a high noises level of OpenPose’s recognized joints positions. The actual
recognition accuracy can be significantly higher if the demonstrators were trained, or if the
real-time results were shown to the demonstrators.

Therefore, we conducted a second set of experiments for the same subjects by allowing
them to look at the semaphore recognition screen to adjust their pose for a better recognition
result. However, they could not adjust their arm so that their arms moves outside the
quadrant they were in. A quadrant was defined as the uni-circle made by the vertical and
horizontal lines in these experiments.

We obtained perfect accuracy of 100% for both subjects in the second set of experiments.
(see the second row of table 4.1) Therefore, it can be concluded that the semaphore recog-
nition system is highly reliable for the purpose of remotely teleoperating a robot to perform
semaphore mirroring (see video demonstration: https://youtu.be/arC6OZGgkgE).

4.4.3 Real-Time performance of the Cloud Semaphore
Recognition System

We used semaphore mirroring as an example to demonstrate the benefit of using a cloud-
based AI platform. We measured the real-time performance of the cloud-based OpenPose

https://youtu.be/NXrdoSXXxqY
https://youtu.be/arC6OZGgkgE

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 51

Table 4.1: OpenPose Semaphore Recognition Accuracy (%)

Subject 1 Subject 2

Open Loop 27/30 23/30

with Feedback 30/30 30/30

system. We used a single Titan Xp GPU with a single thread to launch OpenPose in the
cloud. We fed a local video stream with resolutions of 640x480 to OpenPose. We observed 10-
12 fps (frames per second) inferencing framerate while using a pre-trained 320x320 network
provided by OpenPose.

We then measured the communication costs to stream video to HARI. To minimize
communication costs, we streamed in a 640x480 resolution with a highly efficient video
compression standard H.264 from RCU to Cloud HARI through private LTE. We measured
consistent 22-30 frames per second video stream both from the US-to-US test case and from
Japan-to-US test case. The difference between the two cases are video streaming latency.
There is around 100 ms latency for the the US-to-US case, and around 400 ms latency for
the Japan-to-US case (Table 1)

This suggests that semaphore recognition is the bottleneck for the cloud-based recognition
system, which still provides 10-12 fps real-time performances even if we stream video from
Japan to the US. The cloud-based OpenPose system has an order of magnitude better
performances compared to OpenPose on an iPad 2017, which can only process a little more
than one frame per second or less (cite swiftOpenPose).[23].

The results from these experiments support our claim that communication costs are lower
compared to the benefits gained from using a cloud robotic AI framework, in our semaphore
mirroring system.

4.4.4 Hybrid System Design Hides Network Latency

A hybrid system can hide the network latency in the robot motion in this cloud-based
system. The mechanism is illustrated in Fig. 5. The semaphore motion time average is 3.4
seconds. It is long compared to the total latency contributed by video streaming and robot
commanding (Fig. 5B). After the demonstrators are used to the system, they tend to start
the next semaphore demonstration before the robot finishes executing the last semaphore.
The semaphore recognition system in the cloud would recognize any change of gesture earlier
despite the delay from video streaming. The change in gesture would trigger HARI to send
the next semaphore command, which can be delivered to RCU before the end of the last
semaphore execution as well. Therefore, the next command would sit in RCU’s receiving
buffer until the end of the last motion, and the is executed immediately.

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 52

Figure 4.5: A Hybrid System Hide the Network Latency: A. Timing Diagrams of the Hybrid
System The diagram shows that, starting from the actual human gesture in Japan, the video
latency and latency of sending in a command after recognition are consecutive. The sum of
the two forms of latencies is marked in red. The total latency is hidden inside motion A,
but occurs before the start of motion B. B. Timing Comparison Robot semaphore execution
time is much higher than either the US-to-US network latency or the US-to-Japan network
latency.

Table 4.2: Network Latency Breakouts (ms)

Video Robot Command Total

Japan to US 400 108 508

US to US 98 31 129

4.4.5 Compared to a Local Full Gesture Imitation System

We also built a general gesture imitation system for Pepper using a 3D Kinect camera with
a local PC in ROS (see video: https://youtu.be/fPqF1xwqRcY. To compare this local general
gesture imitation system and our cloud-based semaphore mirroring system, we performed
semaphore mirroring using both systems.

The general gesture imitation system finishes a semaphore within 5-10 seconds which is
slower but close to the performance of our cloud-based system. However, it failed when the
human demonstrator drove Pepper into unreachiable areas in its arm. This failure cases
happens more often when the start and goal positions of the robot is far away, for example

https://youtu.be/fPqF1xwqRcY

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 53

from home to top, or when any of the cross positions are involved. In these cases, Pepper
would stuck in those places for a while and the user would need to find a way to drive the arm
out via demonstration. There are also times when the user drives two arms to collide to each
other, though this does not happen often during semaphore demonstrations. In contrast,
the cloud-based semaphore system never failed because the trajectory was generated from
an automatic path planning algorithm. The system checks for kinematic constrains and self
collisions during the generation. We will discuss the trade-offs between the two systems next.

4.5 Discussion and Future Work

Real-time visual perception with cloud computing is difficult, because the network bandwidth
requirement is very high compared to ASR and NLP. We showed that, with a private-LTE
network and a highly compressed video stream, we can achieve a 22-30 fps video streaming
rate even if we stream from Japan to the United States. This is faster than the cloud-based
gesture recognition rate–10-12 fps. This confirmed our hypothesis that the value of running a
more powerful AI service in the cloud would reduce the communication costs, as even better
and cheaper communication technologies, such as 5G LTE network, would become available
in the future.

In the HARI cloud-based hybrid system, discrete command is sent from the cloud and
the robot performs per-generated motion upon receiving the command. We only send a
semaphore command when there is a change in semaphore recognition, makes the communi-
cation highly compact. And as we illustrate in Fig. 5A, the hybrid system help hide network
latency during robot motion, making the human robot interaction responsive even if the
cloud server is far away.

There are, however, limitations of this hybrid, cloud based, gesture imitating system. It
can only imitate a discrete set of 2D gestures, semaphore, which is a sub-set of general human
gesture. It also require roboticist to program and generate these motions before-hands and
store them in the RCU, which can be labor intensive if more general gestures are needed.

As future work, we aim to make the semaphore mirroring system more general. It is
desirable to create discrete gesture segments from a large human activity database using
machine learning techniques, with obviates the needs for explicitly programming poses and
gestures by hand. Furthermore, it is important to explore human robot interaction rather
than gesture imitating.

CHAPTER 4. A CLOUD-EDGE HYBRID SYSTEM FOR HUMANOID GESTURE
IMITATION 54

Notes

This chapter has appeared in a peer-reviewed conference paper:

Nan Tian, Benjamin Kuo, Xinhe Ren, Michael Yu, Robert Zhang, Bill Huang, Ken Gold-
berg and Somayeh Sojoudi, A Cloud-Based Robust Semaphore Mirroring System for Social
Robots. CASE 2018.

55

Chapter 5

Mitigate Network Latency using
Motion Segmentation and Synthesis

5.1 Introduction

Cloud Robotics connects robots with limited computation power to the Cloud through the
Internet. It enables these distributed robots to access computation intense machine learning
(ML) modules in the Cloud. One important application of Cloud Robotics ML modules is
tele-operation via shared autonomy. It often requires a closed-loop controller to react to
human action feedbacks interactively in real-time.

Network latency is one major problem in Cloud Robotics and long-range tele-operations.
It is caused by propagation delays and network routings delays which can be highly vari-
able and unpredictable. This imposes challenges to build a reliable cloud-based real-time
closed-loop controller to tele-operate dynamic robots, because variable delays in the feed-
back communication can lead to uncontrollable oscillations, which are unsafe for human
rich environments. Further, an unpredictable lag in response to a human action can cause
counter-intuitive human robot interactions, which would lead to sub-optimal user experience.

One way to mitigate latency is to hide network latency inside robot motion executions.
To do that, we need an ML based closed-loop controller that can recognize and predict
where the tele-operator would go. Based on these predictions, the robotic controller should
synthesize and execute motion segments with similar characteristics. Such shared autonomy
system can help the remote robot move to intermediate or final targets on time, eliminating
network delays.

To demonstrate, we prototype a tele-operation system that enables a remote human
to draw handwritten letters using a dynamic robot. (1) We learn a dictionary of motion
segmentation HSMM models for each handwritten letter; (2) we share these models with
both the tele-operator interface and the robot edge controller; (3) the system remotely
command the robot to execute these segments in response to human demonstration using
HSMM; (4) the controller synthesize motion segments with linear quadratic tracker (LQT)

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 56

Figure 5.1: Intelligent Motion Segmentation and Synthesis System for Latency Mitigating:
(Top) The Cloud encodes GMM/HSMM models for handwritten letters. (Left) The Re-
mote tele-operator interface recognizes letters and motion segments based on user’s partial
demonstration, and send compact information to (Right) the Edge robotic controller where
segments of motion are executed in a way that reduces effects of network latency.

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 57

at the Edge, so that the robot controller can catch up to the remote human demonstrations
(Fig. 5.1 and Fig. 5.2).

Finally, we propose three different network latency mitigation protocols based on motion
segment recognition and synthesis results. We implement the first two protocols to compare
latency mitigation effects of the two protocols. The implementation of the third protocol is
in progress. Our code is open-source 1. We hope to build similar, closed-loop, interactive
Fog Robotic tele-operation systems in the future for general human motions.

5.2 Contribution

This paper makes three contributions:

1. Probabilistic learning-based motion segmentation using HSMM to encode hand-written
letters in the Cloud.

2. Generate synthetic motions at the Edge for stable, dynamic robot control.

3. Propose three network latency mitigation protocols that can anticipate and generate
motions interactively based on partial demonstrations from the Remote tele-operator
interface.

5.3 Related Work

Cloud, Edge, and Fog Robotics Cloud Robotics, introduced by James Kuffner in 2010
[75], refers to any robot or automation system that relies on either data or code from a
network to support its operation [65]. It can be used to provide powerful machine learning
systems for distributed robots. Network costs in the form of privacy, security latency, band-
width, and reliability present a challenge in Cloud Robotics [124]. Fog Robotics, a variant
of Cloud Robotics, has been introduced [45] and built [124] recently to bring cloud com-
puting resources closer to the robot to balance storage, compute and networking resources
between the Cloud and the Edge. A closed-loop Cloud-Edge hybrid controller was also built
to control a dynamic balancing robot [130].

Latency Mitigation is important as unpredictable network latency presents primary
challenge in building a closed-loop interactive robotic controller over the network. Network
controlled system (NCS) often encounters similar problems [146][143] [137], and the delays
were dealt with using predictive control and delay compensator. Previous work on intention
recognition showed that intend prediction can assist tele-operator to perform robotic ma-
nipulation task under various network conditions [121]. Further, network latency can hide

1Source code, datasets, and algorithms are available at https://github.com/ajaytanwani/generative
models public.

https://github.com/ajaytanwani/generative_models_public
https://github.com/ajaytanwani/generative_models_public

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 58

within robot motion execution in Cloud Robotics [98]. Motion synthesis using a generative
model [122] is needed to achieve latency mitigation for interactive tele-operations.

Motion Segmentation and Synthesis for robotics has been explored with dynamic
motion primitives (DMP) [93] [92], recurrent neural netorks (RNNs) [9], stochastic optimal
control [8], HSMM and LQT [121] for both 2D trajectories, 3D trajectories, and human
skeleton movements. These are a form of Learning from Demonstration (LfD), which learns
a policy, model, or mapping between state and actions, from examples demonstrated by a
teacher [4]. We differentiate our work by focusing on the latency mitigation protocol aspect
of tele-operation with shared autonomy using existing motion segmenation and synthesis
algorithms.

Tele-operation with Shared Autonomy can range from direct control to fully au-
tonomous system, with human supervisory control in the middle. The more autonomous
the tele-operation system is, the more tolerant it is against network delays [113]. Genera-
tive models such as HMM and HSMM has been used to build assisted tele-operation with
shared autonomy between human and robot [121]. Our system for motion segmentation and
synthesis fall into the supervisory control arena of the tele-operation spectrum.

Figure 5.2: Motion Segmentation based Latency Mitigation Protocol. (I) Circle vs. Square
This toy example shows the naive, undesired, and desired trajectories that can be generated
for our system. (II) Stationary Point Motion Segmentation Here we show that we can perform
motion segmentation by automatically detecting and grouping stationary way-points from
data. We can then execute these motion segments in order to perform tele-operation in
segments. (III) Latency Mitigation Protocol One: This illustrate our first latency mitigation
protocol where segments of motion are transmitted to the Edge. The robot controller can
in turn execute them in an elevated speed to eliminate network delays.

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 59

5.4 Problem Statement

Consider a teleoperator that controls a robot arm in a remote site. The teleoperator performs
a partial trajectory ξ comprising of datapoints ξt ∈ RD at time t,

ξ = {ξ1, ξ2, ..., ξt..., ξT} t ∈ 1, 2...t (5.1)

where ξt is a column vector of position, velocity, and acceleration, respectively, in 2D space,
so ξt = [~xt, ~̇xt, ~̈xt]

>.
We assume that the demonstration ξ comprises of the segments {zi}Di=1 ∈ Z to represent

the demonstrated trajectory
ξ = {z1T1

, z2T2
, ...zDTD

} (5.2)

where zDTD
is the Dth segment index with the duration of TD. More precisely, each motion

segment is
ξDTD

= ξDtD,tD+TD
(5.3)

where tD is the starting time of the segment, and ξDtD and ξDtD+TD
are the starting and ending

point of the Dth segment. We define starting points ξDtD as the way-points of trajectory.
For sake of clarity, we assume that the trajectory demonstration corresponds to a hand-

written letter l denoted as lξ. In the first stage, the objective is to learn models of motion
segments from teleoperator demonstrations. This is the encoding step. Subsequently dur-
ing the decoding step, the learned segments are used for recognizing the intention of the
teleoperator as writing a particular letter l from the partial demonstration sequence, and
subsequently synthesize the motion for letter l on the remote robot. We denote the generated
motion sequence on the robot with a hat as

lξ̂ =l ξ̂
1

T1
,l ξ̂

2

T2
, ...lξ̂

D

TD
l ∈ A,B,C, ..., Z (5.4)

With the above definitions, we frame the motion segmentation and synthesis for the
teleoperation task over the network:

1. The Cloud: learn models from data lξ to represent motion segments lξDTD
. Share the

learned models with both the Remote and Edge controllers.

2. The Remote: Recognize motion segments ID D and letter ID l from partial human
demonstrations ξ1,t, and send these high level command to the Edge.

3. The Edge: Given learned models, upon receiving D (segment ID), l (letter ID), and

T (execution duration), synthesize motion segments lξ̂
D

or trajectory lξ̂ so that the
robot can finish motion execution before the designated duration T .

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 60

5.5 Latency Mitigation Protocol I

Based on previous findings that robot motion executions can hide network latency [98], we
propose latency mitigation protocols for tele-operation using an intelligent motion segmen-
tation and synthesis system. Fig 5.2III presents the simplest form of this protocol. The
Remote controller recognizes which segment the tele-operator is performing, and predicts
where the intermediate target, or way-point of this segment is. The Remote controller sends
motion segments to the Edge robot controller to execute, with a delay that includes both
network latency and recognition delay. The Edge controller speeds up the motion execution
so that the robot can catch up to the human demonstration segment-by-segment. In the end,
the robot finishes the entire trajectory as if there were no delays in the network transmission.

We use a circle drawing example to illustrate why both motion segmentation and synthesis
are needed for tele-operation. (Fig 5.2 I) In the naive case, drawing a circle requires the
robot’s end-effector to follow a densely sampled circle trajectory. If the samples were sent
through network one-by-one, unpredictable variable delays could affect the circle drawing
significantly.

If we break the circle into four segments, and only send out intermediate target points,
the Edge controller would interpret the arcs as linear paths via interpolation, so that the
robot would move in a square instead of a circle. Further, if both the Remote and the Edge
share the shapes of these motion segments, the Edge can then fill in the gaps between way-
points to reproduce motions similar to the tele-operator’s. The shape information can either
be raw motion segments pre-stored at the Edge, or learned generative models that can help
the Edge synthesize motions.

5.6 Motion Segmentation with Stationary Point

Heuristics

To establish a motion segmentation base-line with handwritten letter demonstrations, we
first use well known minimum velocity and acceleration heuristics H [92] to automatically
identify stationary points xs.

xs ∈ {lξt | H u 0} where H = || ~̇xt||2 + || ~̈xt||2 (5.5)

We then perform K-means to group these stationary points into clusters i ∈ K with
centroid-means of µi. We then reassign cluster centroid IDs so that these IDs represent the
sequential order in the demonstrations. Motion segments can then be defined as trajectories
between adjacent clusters of stationary points.

ξ = {ξ1T1
, ξ2T2

, ...ξKTK
} where µi ∈ {µ1, µ2, ...µK} (5.6)

We then share the re-ordered k-mean clusters and example trajectories to both the Re-
mote and the Edge controllers, so that the Edge can replay pre-stored motion segments,

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 61

upon receiving the closest stationary point cluster recognized by the Remote based on below
equations

iID := argmin
i∈{1,...,K}

||xs − µi||2 (5.7)

Control sequence re-played with Protocol One are shown in Fig. 5.2II for letter “A” and all
letters in Fig. 5.7 I.

5.7 Probabilistic Motion Segmentation and Synthesis

With more advanced probabilistic generative models, not only can we perform motion seg-
mentation, we can also generate synthetic motions. We encode and decode hand-written
letter demonstrations with a HSMM in a probabilistic manner, and use LQT to synthesize
motions. This technique is more general and appropriate for our application than the motion
segmentation re-play base-line technique described in the last section.

5.7.1 Spatial Encoding/Decoding

We encode spatial information using Gaussian mixture model (GMM) so that each Gaussian
mixture represent a motion segment in the trajectory. Given eight handwritten sample
trajectories per letter represented by position and velocity ξt = [~xt; ~̇xt], we train a separate
GMM model to encode each letter in the alphabet.

P (ξt | θ) =
K∑
i=1

πiN(ξt, | µi,Σi) (5.8)

where P (ξt | θ) is the probability density function of sample point ξt conditioned on param-
eters θ = {πi, µi,Σi}Ki=1, a set of prior πi, mean µi, and covariance matrix Σi for each of the
K mixtures. The GMM are learned using Expectation-Maximization (EM) algorithms. The
resulting GMM mixture models for each letter is shown in Fig. 5.3 I and Fig. 5.7 I.

During decoding, given a sample ξi and the GMM for a single letter, we decide the sample
belong to which mixture zt = i using maximum log likelihood

izt := argmax
i∈{1,...K}

log
(
πiN(ξt | µi,Σi)

)
(5.9)

We can this to decode which motion segment the current demonstration sample ξt belong
to base on only spatial information.

5.7.2 Temporal Encoding/Decoding for Letter Recognition

In order to select which mixture component is required for motion generation, we need to
recognize which letter the tele-operator is performing based on partial trajectory demon-
strations. Therefore, we need to encode and decode both temporal and spatial information.

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 62

Figure 5.3: Trajectory generation with HSMM: (I) HSMM mixtures overlay on data We
learn a HSMM for each letter from eight trajectory samples per letter. (II) HSMM State
Probabilities of a given trajectory inferred through forward-backward Viberbi algorithm
Generated Trajectories: (III) from the same start positions (circle) as the original demon,
and (IV) from different start positions (circle) to show autonomy and robustness

We use both hidden semi-Markov model(HMM)(cite, Ajay) to encode and decode temporal
state sequences.

Gaussian mixtures are used as latent states zt = i in HMM at time t. During encoding,
the GMM-based HMM model parameterized by θ = {{ai,j}Kj=1,Πi, µi,Σi}i learns: (a) tran-
sition probabilities ai,j, (b) emission probabilities Πi, (c) mean µi and covariance Σi via EM
algorithm. Here, ai,j represents transition probabilities between the K Gaussians in GMM,
and i, j ∈ {1, ...K} are indexes of Gaussian mixtures.

We use the forward-backward Viterbi algorithm to decode the latent states from zt from
forward variable α = P (zt = i, ξ1...ξt | θ). The probability of a data point ξt to be in state

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 63

i at time t given the partial observation {ξ1...ξt} can be calculated as:

ht,i = P (zt | ξ1, ..., ξt) =
αt,i∑K
k=1 αt,k

(5.10)

where the forward variable α is

αt,i =
(K∑

j=1

αt−1,iaj,i
)
N(ξt | µi,Σi) (5.11)

HSMM generalized HMM by explicitly modeling an additional state duration probability
so that state transition depends on not only current state, but also on the elapsed time in
the current state. In HSMM, forward variable can be calculated:

αt,i =

min(smax,t−1)∑
s=1

K∑
j=1

αt−s,iaj,iN(s | µs
i ,Σ

s
i) (5.12)

where s represent state duration steps in HSMM. For more details, please refer to [120] and
[121].

To recognize the letter ID based on the available partial trajectory {ξ1, ..., ξt}, we apply
eq. (5.10) to all 26 HMMs with the parameters lθ where l ∈ {A,B, ...Z}. The HMM model
with the highest probabilities is selected as the letter that is being recognized based on
partial trajectory:

l := argmax
l∈{A,B,...Z}

P (zt | ξ1, ..., ξt; lθ) (5.13)

5.7.3 Motion Synthesis based on Predicted State Sequence

To synthesize new motion, we first compute future state sequence zt using the forward
variable at time t.

zt = {zt, ..., zT} = argmax
i

αt,i (5.14)

We then build a reference trajectory distribution N(µ̂t, Σ̂t) by assigning the predicted pa-
rameters µ̂t and Σ̂t at time t as the parameters µzt and Σzt for the predicted future states
zt. Samples at time t can be generated from this reference trajectory distribution:

ξ̂t ∼ N(µ̂t = µzt , Σ̂t = Σzt) where t ∈ {t...T} (5.15)

Finally, the Edge robot controller uses a linear quadratic tracking (LQT) to create a
synthesized trajectory for a dynamical robot system:

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 64

Figure 5.4: Interactive Recognition and Synthesis Trials: (Top) Uniformly Distributed Noise
Injected to position (left, σ = 2 cm) and velocity (left, σ = 20 cm/sample) of trajectory
“G” for benchmark trials. (Bottom) Synthesized Trajectory (red) based on letter recogni-
tions of partial noisy demonstrations with different length (black with green noise). Shorter
demonstration (left) cause more recognition failures, in this case, recognize the trajectory as
“E”. False recognition cause higher synthesis error. Longer partial demonstrations (right)
help reducing both recognition and synthesis errors during tele-operation. See demo video
https://youtu.be/fjlx5kXiMhc

ct(ξt, ut) =
T∑
t=1

(ξt − µ̂t)
>Q(ξt − µ̂t) + u>t Rtut (5.16)

s.t. ξ̇t = Aξt +But

for more details on LQT, refer to [120] and [121].

5.8 Modified Latency Mitigation Protocol II

Benchmarks of letter recognition and motion synthesis suggest that the motion recognition
at the Remote controller is not reliable initially, and could lead to large synthesis error (see
section VIII and Fig. 5.5I & II). We cannot expect to start latency mitigation from the very

https://youtu.be/fjlx5kXiMhc

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 65

beginning when the system is has low confidence of its prediction. Therefore, we modify
Protocol One into Protocol Two to make it more practical for real-life implementations.

In this new protocol (Fig. 5.5 III), during the initial period when the Remote controller
is not sure about which letter the tele-operator is demonstrating, the Edge controller follows
the exact trajectory of the tele-operator, with a delay of course. As soon as the Remote
controller recognizes and decides which letter is being draw, the Edge controller receives
the letter ID, and commits to drawing the recognized letter through motion synthesis. This
way, during the latency mitigation second phase, the Edge can catch up or surpass human
demonstration, so that it can reduce or eliminate network latencies.

A further modification of this protocol, we denote as Protocol Three, is also possible.
Illustrated in Fig. 5.6 left, the Edge controller in Protocol Three would synthesize and
execute motion in segments instead of finishing the entire motion all at once during the
second phase when the correct letter is recognized. Protocol Three can be more general, but
is not implemented in this work.

5.9 Experiments and Results

We use a handwritten letter dataset to train the HSMM generative model. The dataset con-
tains eight sample trajectories per letter in the alphabet. Each sample trajectory contains
200 sample points, each include 2D position in the range of -10 to 10 cm. By performing
differentiation and interpolation on the positions at neighboring points, we extract addi-
tional velocity and acceleration features that are needed to encode motion segmentation and
synthesis models. The same pre-processing is done on partial trajectories in decoding during
human demonstrations. During encoding, we successfully learn 26 HSMM models (one for
each letter), extract the state sequences, regenerate trajectories that have either the same
or different starting points as the original trajectory (Fig. 5.3).

5.9.1 Recognition vs. Synthesis Error

There are two different kinds of inferencing during decoding: (1) recognition of letter given
partial trajectory for HSMM model selection; (2) prediction of future state sequences so
that a trajectory can be generated using LQT. Each associates with the two phases in the
modified latency mitigation protocol–recognition and synthesis phase.

To quantitatively evaluate our system, we benchmark recognition and synthesis per-
formance on variable length trajectories with injected noise (Fig. 5.4). Given a partial
trajectory ξ1, t ending at time t, recognition error is defined as the number of wrong letter
recognition trials over total trials, whereas synthesis error is the average position L2 error
between the generated trajectory ξ̂t,T and the respective demonstration segment ξt,T from
time t to finish time T .

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 66

Figure 5.5: Recognize and Finish Latency Mitigation Protocol II: (I) Recognition (top) and
Synthesis (bottom) Errors vs. Length of Trajectory shows that both errors reduce dramat-
ically as demonstration progresses passing the 30% (red line) (II) Synthesis Error is much
lower when recognition is correct, suggesting that recognition error is the main contributor
to synthesis error. (III) Modified Latency Mitigation Protocol Two for handwritten letter
segmentation and regeneration, based on findings in (I) and (II). See video for a demon-
stration when the Edge controller finish executing the synthetic motion before the Remote
tele-operator https://youtu.be/fjlx5kXiMhc

Recognition Error = 1− NSuccess

NTotal

(5.17)

Synthesis Error =
||ξ̂t,T − ξt,T ||2

T − t
(5.18)

Note that the synthesis error is normalized by the number of time samples generated, which
accounts only part of the entire trajectory and has T−t sample points. This way, L2 distance
of each sample contribute equally to synthesis error, so that we can compare synthesis error
across partial trajectory generations with different lengths.

We conducted 10 trials per letter on partial trajectories with variable length (0− 100%)
injected with uniformly distributed random noise (variance σpos = 2 cm, σvel = 2 cm/sample,
Fig. 5.4 top). Fig. 5.4 (bottom) shows examples of generated trajectory based on correct
and wrong recognition results. In Fig. 5.5I, we plot both recognition and synthesis error of
all trials against the length of the partial trajectory shown to the system.

We observe that both recognition and synthesis drop dramatically around 30% trajectory
demonstration length. This suggests that recognition is not reliable for short trajectories with
30% length, and it becomes more reliable as the demonstration progresses (Fig. 5.4 bottom).

https://youtu.be/fjlx5kXiMhc

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 67

It also suggests a strong correlation between recognition and synthesis error, as, naturally,
synthesis error would grow dramatically if the letter recognition is wrong. We show that
recognition error contributes to the majority of the synthesis error in Fig. 5.5 II where the
synthesis errors of all the trials with correct and wrong recognitions are compared against
each other.

5.9.2 Latency Mitigation Effects

We want to observe how much latency the system can tolerate for the two latency protocols.
Protocol One with stationary point segmentation is used as base-line. Intuitively, Protocol
One can tolerate delays at most to a fraction of the length of segments. The length of the
four segments of the letter “A” are 63, 43, 81, 12 sample points. Assuming that the robot
can move twice as fast as the demonstrator, then the system can tolerate up to 31, 21,
40, and 6 sample points. Therefore it can mitigate up to 0.5, 0.3, 0.7, and 0.1 seconds of
delays respectively when a 60 Hz sample rate is assumed. Any delay that is lower than these
durations, unpredictable it might be, is going to be eliminated.

Protocol Two can tolerate even more delays as motion synthesis allow it to be autonomous
over the entire second phase of the protocol, after correct letter recognition. In the demo
video for Protocol Two (https://youtu.be/fjlx5kXiMhc), we show the interaction between the
Remote demonstrator and the Edge controller when drawing letter “G”, “H”, “B”, “P”, and
“K”. The synthesized trajectory is red during first phase, and it changes when the system
is not sure which letter it is early on in the demonstration. After recognize the letter with
high confidence, the Remote controller execute the motion at 2x speed, so that the robot
can finish the motion even before the tele-operator.

The second phase lasts 153, 107, 83, 61, and 127 samples for letters “G”, “H”, “B”, “P”,
and “K”, which lasts 2.6, 2.8, 1.4, 1.0, and 2.1 seconds. Half of that period, or 1.3, 1.4,
0.7, 0.5, and 1.0 seconds, can be used to mitigate latency. Protocol Two has more tolerance
against unpredictable latency than Protocol One, because it has longer autonomous motion.

To gain high confidence in letter recognition, we do use a 40 sample window (0.6 seconds)
during which all the recognition results have to be the same in order to enter the second
phase. Therefore, additional recognition delay is introduced to trade for the price to eliminate
network delays during the second phase. We believe that the benefit of eliminating not only
unpredictable network delays, but also potential instabilities in a dynamical system justified
paying the price of recognition delay.

5.10 Discussion and Future Work

We present an intelligent latency mitigation tele-operation system for handwritten letter
drawing. Motion segmentation and synthesis are used to reduce the effects of network latency
by hiding network delays inside generated synthetic motion segments. We use two different
algorithms to perform motion segmentaion based on either (1) stationary points heuristics

https://youtu.be/fjlx5kXiMhc

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 68

Figure 5.6: Possible Extension: A Behavior-based Hierarchical Latency Mitigation Protocol
III: (Left) Protocol Three that recognize both letters and motion segments (Right) Proposing
a future hierarchical GMM/HSMM that can recognize and generate longer motion segments
for the entire alphabet.

with K-means or (2) HSMM state sequences. The HSMM method is desirable as it can also
generate motion segments for motion synthesis. We further introduce and evaluate latency
mitigation communication protocols based on recognition and synthesis error benchmarked
under this intelligent system.

There are trade-offs, however, in this latency mitigation system. Although we reduce
the effect of unpredictable network latency on a dynamical system, we introduce recognition
delays into the system that further reduce the time period for robot controller to catch up
to the tele-operator. Therefore, longer motion segments are more desirable, because they
leave more room for the Remote to recognize the segment and for the Edge robot controller
to catch up. Under the current HSMM system, length of the segments are defined by state
sequence of Gaussian mixture. To maximize motion segmentation length, we should reduce
the number of Gaussian mixtures. However, there is a limit in doing so, because fewer
Gaussian mixtures may not be able to fully characterize the handwritten motion, therefore,
affect both recognition and synthesis error.

One way to maximize the motion segment length while keeping sufficient Gaussian mix-
tures for representation is to group neighboring Gaussian mixture states into a single segment.
This would require a new HSMM that recognize groups of GMM states based on the recog-
nition of the first GMM states in the mega-group, and then generates mega-segment. We
would need to hierarchically group Gaussian mixtures to represent mega-segments of the en-
tire dataset, so that a hierarchical HSMM can be recognized and regenerated mega-segments
based on a execution tree (Fig. 5.6 Right).

For example, in the letter set {B,C, P, S}, super-nodes {B,P} and {C, S} contain letters

CHAPTER 5. MITIGATE NETWORK LATENCY USING MOTION SEGMENTATION
AND SYNTHESIS 69

Figure 5.7: All Handwritten Letter Motion Segmentation using (I) Stationary Point Heuris-
tics and (II) Gaussian Mixture Models Clusters

that are similar in the drawing process. In such hierarchical HSMM model, when drawing
the letter B, the model should traverse top-to-bottom in the tree to command the Edge
controller to execute motion segment P first, the meta-segment shared by B and P . The
controller should then decide whether to finish drawing letter B with an additional motion
segment or not at super-node {B,P}, upon additional demonstration given by the tele-
operator. This hierarchical HSMM model is still work-in-progress. See our demo video for
intuition of hierarchical structures when drawing letter B and P .

Finally, our system is limited to tele-operation for 2D handwritten letter drawing, as
specific set of motions. HSMM is more general, and can encode and decode 3D motion
trajectories, both in end-effector space and joint space. [120] We plan to extend our work
into segment and reproduce human skeleton motions in 3D for interactive human-robot
imitation and interactions.

Notes

This chapter has appeared in a peer-reviewed conference paper:

Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi, Mitigating Network
Latency in Cloud-Based Teleoperation using Motion Segmentation and Synthesis. ICRA
2019.

70

Chapter 6

Discussion and Conclusion

6.1 Overview

In this thesis, we built a ‘hybrid’ Cloud-Edge Robotic system for pHRI applicaitons in
progressive steps. A final architecture for both teleoperation and proximate interactions
1.2. We explored how to use this system to support various robotic tasks, ranging from
graspings and manipulations to humanoid gesture based imitations, from teleoperations to
proximate interactions, from quansi-static to highly dynamic robotic tasks. We identified
that unpredictable network latencies were the main drawback of using such system on a global
scale. We then leveraged robotic learning to perform motion segmentation and synthesis to
mitigate such unpredictable network latencies in teleoperation.

6.2 Fluent Physical Human Robot Interactions

The key motivation of developing the ‘hybrid’ system under a joint Cloud-Edge controller is
to support fluent physical human robot interactions using Cloud Robotic services that are
powerful, modular, distributed, but heterogeneous in nature. The unpredictability of network
delays are caused by the heterogeneous computing environment in Cloud services. If not
managed, such delays can cause safety, stability, and controllability issues in dynamic robotic
control [38]. Chapter 5 of this thesis proposed one possible system to mitigate such network
latencies while controlling a dynamic robotic system to assist human teleoperation. It learns
human motion segments through data, and synthesize similar motion segments on the robot
upon receiving of discrete behavior based command. The robot execute the synthesized
motion faster than the demonstrator so that the network latencies can be mitigated.

This idea leverages the human motion dichotomy which suggests that all human motions
can be categorized into mean-based motions and functional motions [3]. Mean-based motions
convey a meaning whereas functional motions carry out tasks such as pickings and graspings.
We have implemented both class of motion–semaphore in Chapter 4 is an example of mean-
based motions, whereas objects pickups in Chapter 2 and 3 perform functional motions.

CHAPTER 6. DISCUSSION AND CONCLUSION 71

Under the framework of behavior-based robotics [5], we can extract a behavior graph
from mean-based motions and use this graph to organize and command functional motion
segments. Our work in Chapter 5 were limited to recognizing a single concept to drive multi-
ple dynamic motion primitives, primarily because the robotic task we selected, handwritten
letter, were relatively simple. Although such simplicity helped us to develop components of
network mitigation protocols, a more sophisticated robotic tasks, such as human gesture im-
itation [100], would help guiding future researches to build a general behavior-based ‘hybrid’
architecture. Such a system can organize motion primitives into behavior map automati-
cally, so that the Cloud can command complex functional motions using a behavior graph.
As one suggested in Figure 5.6, such hybrid system that can recognize multiple consecutive
behaviors and synthesize multiple motion segments can be build in the future.

At the Edge level, functional motion segments generated at the low level controller served
as fundamental building blocks to control dynamic robotic arms. They defined different
control laws to control robot arms that can be switched from one to another. Differ-
ent control framework can be used to synthesize functional motion segments, such as the
GMM/HSMM/LQT task parameter space formulation [121] we used and dynamic motion
primitives [118] others have used. Compliance and stability analysis are important aspects
of pHRIs and hybrid systems [38], and they should be done at the level of motion generators
in the future.

6.3 Recognition Delays and Delay Tolerance

Although we could mitigate network latencies through motion segmentation and synthesis,
we actually introduced additional recognition delays using the shared autonomy system
shown in 4.1. The recognition delays are hard to benchmark, yet, it imposes additional
timing costs associated with our Cloud-Edge hybrid system. In fact, recognition delays can be
significantly higher than even the global network delays. As shown in Figure 5.6, recognition
delay can be up to 1-2 seconds, or about 30% of the entire letter demonstration, whereas
the worst global network delays with video streams are only in the range of 0.5 second.
Fortunately, our system can tolerate every long delays because it can hide delays within the
motion execution. However, there is a limit were such mitigation fails, about 50% of the
motion segment execution, as the robot arm needs time to catchup to the demonstrators
before the end of each demonstrated motion segment.

As recognition delay dominates network delays, finding ways to minimize recognition
delays is an important aspect for future investigations. More contemporary motion recog-
nition frameworks using recurrent neural networks [29], variational auto-encoders [99], deep
reinforcement learning [81, 82], and meta-learning [33] may help to reduce recognition de-
lays, though they require significantly more data during training compared to GMM/HSMM
models. Further investigation on human gesture datasets with labeled segments is needed
to minimize and benchmark recognition delays for the Cloud-Edge hybrid system.

CHAPTER 6. DISCUSSION AND CONCLUSION 72

6.4 Perception in the Cloud or at the Edge

We have advocated hosting perception servers in the Cloud in this thesis. The advantages to
use the Cloud is modularity, maintainability, computational power, centralized controls, and
shared data and perception streams. Recent developments on neural network compression
[47, 86] and low power real-time perception systems [46, 145]seems to contradict the idea
that Cloud is the go-to-place to host complex perception services, as ARM based Edge
controllers could have significant computational power for a compressed neural network to
run in real-time [59].

We, however, believe that powerful neural network based model deployed at local edge
robots complements Cloud Robotics, especially within the hybrid Cloud-Edge architecture.
First, a good architecture should be capable of functionalities that can accommodate full
range of applications. A Cloud-Edge architecture accommodates both intelligent perceptions
and dynamic robotic controls, as shown in 3.2. Second, even as the Edge controller becomes
more powerful, a centralized cloud computing will always be more powerful and more efficient
than local Edge controllers to provide certain functionalities, for example, neural network
trainings, collect and host large amount of shared data, centralized and modularized con-
trol, shared global perception, and manage learned models to distributed agents. Finally, a
Cloud Robotic framework actually contains the Cloud and the Edge controllers as well as
the Internet connections in between. Not only does it provide access to the Cloud computa-
tion, it also provides means to long range communications that is critical for teleoperation
applications.

Improvement of the Edge controller can further enrich the capability of Cloud Robotics,
as more capable Cloud-Edge hybrid controllers can be built. For example, if a local neural
network on the robot can be used to process video streams into compact behavior repre-
sentations, such as semaphore, the Cloud controller can then use these representations to
control high level robotic behavior using a global graph neural network hosted in the Cloud.
Finally, the Cloud controller can perceive and learn from global representations collected
from all the robots without having to stream videos from the robots, hence, having a more
powerful and capable Edge controller will further increase the capacity and scalability of
Cloud Robotics. We look forward to a world filling with service robots that can make our
life easier, supported by Cloud Robotics.

73

Bibliography

[1] ABB YuMi Datasheet. ABB Group. 2015.

[2] Waleed Abdulla. Mask R-CNN for object detection and instance segmentation on
Keras and TensorFlow. https://github.com/matterport/Mask RCNN. 2017.

[3] Baris Akgun et al. “Trajectories and keyframes for kinesthetic teaching: A human-
robot interaction perspective”. In: Proceedings of the seventh annual ACM/IEEE
international conference on Human-Robot Interaction. 2012, pp. 391–398.

[4] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics
and autonomous systems 57.5 (2009), pp. 469–483.

[5] R Arkin. Behavior-Based Robotics/Cambridge, MA. 1998.

[6] Rajesh Arumugam et al. “DAvinCi: A cloud computing framework for service robots”.
In: Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE.
2010, pp. 3084–3089.

[7] Kostas Bekris et al. “Cloud automation: Precomputing roadmaps for flexible manip-
ulation”. In: IEEE Robotics & Automation Magazine 22.2 (2015), pp. 41–50.

[8] Daniel Berio, Sylvain Calinon, and Frederic Fol Leymarie. “Dynamic Graffiti Styli-
sation with Stochastic Optimal Control”. In: Proceedings of the 4th International
Conference on Movement Computing. ACM. 2017, p. 18.

[9] Daniel Berio et al. “Calligraphic stylisation learning with a physiologically plausi-
ble model of movement and recurrent neural networks”. In: Proceedings of the 4th
International Conference on Movement Computing. ACM. 2017, p. 25.

[10] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”. In: Sensor
Fusion IV: Control Paradigms and Data Structures. Vol. 1611. International Society
for Optics and Photonics. 1992, pp. 586–607.

[11] Antonio Bicchi and Vijay Kumar. “Robotic grasping and contact: A review”. In:
ICRA. Citeseer. 2000, pp. 348–353.

[12] A Birk et al. “Dexterous Underwater Manipulation from Distant Onshore Locations”.
In: IEEE Robotics and Automation Magazine ().

https://github.com/matterport/Mask_RCNN

BIBLIOGRAPHY 74

[13] Kanad K Biswas and Saurav Kumar Basu. “Gesture recognition using microsoft
kinect R©”. In: Automation, Robotics and Applications (ICARA), 2011 5th Interna-
tional Conference on. IEEE. 2011, pp. 100–103.

[14] Jeannette Bohg et al. “Data-driven grasp synthesis—a survey”. In: IEEE Transactions
on Robotics 30.2 (2014), pp. 289–309.

[15] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In:
Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
ACM. 2012, pp. 13–16.

[16] Cynthia Breazeal. “Social interactions in HRI: the robot view”. In: IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 34.2 (2004),
pp. 181–186.

[17] Cynthia Breazeal and Brian Scassellati. “Robots that imitate humans”. In: Trends in
cognitive sciences 6.11 (2002), pp. 481–487.

[18] GABRIEL Brown. “Ultra-reliable low-latency 5G for industrial automation”. In:
Heavy Reading white paper for Qualcomm (2018).

[19] Sylvain Calinon. “A tutorial on task-parameterized movement learning and retrieval”.
In: Intelligent Service Robotics 9.1 (2016), pp. 1–29.

[20] Sylvain Calinon, Florent Guenter, and Aude Billard. “Goal-directed imitation in a
humanoid robot”. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on. IEEE. 2005, pp. 299–304.

[21] Sylvain Calinon, Florent Guenter, and Aude Billard. “On learning, representing, and
generalizing a task in a humanoid robot”. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 37.2 (2007), pp. 286–298.

[22] Zhe Cao et al. “OpenPose: realtime multi-person 2D pose estimation using Part
Affinity Fields”. In: arXiv preprint arXiv:1812.08008. 2018.

[23] Zhe Cao et al. “Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields”.
In: CVPR. 2017.

[24] CatClifford. Look inside the hospital in China where coronavirus patients were treated
by robots. 2020. url: https://www.cnbc.com/2020/03/23/video-hospital-in-china-where-

covid-19-patients-treated-by-robots.html.

[25] François Chaumette and Seth Hutchinson. “Visual servo control. I. Basic approaches”.
In: IEEE Robotics & Automation Magazine 13.4 (2006), pp. 82–90.

[26] Sandeep Chinchali et al. “Network Offloading Policies for Cloud Robotics: a Learning-
based Approach”. In: arXiv preprint arXiv:1902.05703 (2019).

[27] Hao Dang and Peter K Allen. “Learning grasp stability”. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE. 2012, pp. 2392–2397.

https://www.cnbc.com/2020/03/23/video-hospital-in-china-where-covid-19-patients-treated-by-robots.html
https://www.cnbc.com/2020/03/23/video-hospital-in-china-where-covid-19-patients-treated-by-robots.html

BIBLIOGRAPHY 75

[28] Myron A Diftler et al. “Robonaut 2-the first humanoid robot in space”. In: Robotics
and Automation (ICRA), 2011 IEEE International Conference on. IEEE. 2011, pp. 2178–
2183.

[29] Yong Du, Wei Wang, and Liang Wang. “Hierarchical recurrent neural network for
skeleton based action recognition”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2015, pp. 1110–1118.

[30] Gabriele Ermacora, Stefano Rosa, and Antonio Toma. “Fly4SmartCity: A cloud
robotics service for smart city applications”. In: Journal of Ambient Intelligence and
Smart Environments 8.3 (2016), pp. 347–358.

[31] C. Ferrari and J. Canny. “Planning Optimal Grasps”. In: Proc. IEEE Int. Conference
on Robotics and Automation (ICRA)’92. 1992.

[32] Carlo Ferrari and John Canny. “Planning optimal grasps”. In: Robotics and Au-
tomation, 1992. Proceedings., 1992 IEEE International Conference on. IEEE. 1992,
pp. 2290–2295.

[33] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for
fast adaptation of deep networks”. In: Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70. JMLR. org. 2017, pp. 1126–1135.

[34] Chelsea Finn and Sergey Levine. “Deep visual foresight for planning robot motion”.
In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE.
2017, pp. 2786–2793.

[35] Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. “A survey of socially
interactive robots”. In: Robotics and autonomous systems 42.3-4 (2003), pp. 143–166.

[36] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1440–1448.

[37] Georgia Gkioxari, Ross Girshick, and Jitendra Malik. “Contextual action recognition
with r* cnn”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 1080–1088.

[38] Faik Goktas, Jonathan M Smith, and R Bajcsy. “Telerobotics over communication
networks”. In: Proceedings of the 36th IEEE Conference on Decision and Control.
Vol. 3. IEEE. 1997, pp. 2399–2404.

[39] K. Goldberg and R. Siegwart. Beyond Webcams: An Introduction to Online Robots.
MIT Press, 2002.

[40] Ken Goldberg. “Robots and the return to collaborative intelligence”. In: Nature Ma-
chine Intelligence 1.1 (2019), pp. 2–4.

[41] Ken Goldberg. The Robot in the Garden: Telerobotics and Telepistemology in the Age
of the Internet. Mit Press, 2001.

[42] Corey Goldfeder and Peter K Allen. “Data-driven grasping”. In: Autonomous Robots
31.1 (2011), pp. 1–20.

BIBLIOGRAPHY 76

[43] Michael A Goodrich and Alan C Schultz. “Human-robot interaction: a survey”. In:
Foundations and trends in human-computer interaction 1.3 (2007), pp. 203–275.

[44] Bruno Duarte Gouveia et al. “Computation sharing in distributed robotic systems: A
case study on SLAM”. In: IEEE Transactions on Automation Science and Engineering
12.2 (2015), pp. 410–422.

[45] SLK Chand Gudi et al. “Fog robotics: An introduction”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2017.

[46] Kaiyuan Guo et al. “From model to FPGA: Software-hardware co-design for efficient
neural network acceleration”. In: 2016 IEEE Hot Chips 28 Symposium (HCS). IEEE.
2016, pp. 1–27.

[47] Song Han, Huizi Mao, and William J Dally. “A deep neural network compression
pipeline: Pruning, quantization, huffman encoding”. In: arXiv preprint arXiv:1510.00149
10 (2015).

[48] Ioannis Havoutis and Sylvain Calinon. “Learning assistive teleoperation behaviors
from demonstration”. In: Safety, Security, and Rescue Robotics (SSRR), 2016 IEEE
International Symposium on. IEEE. 2016, pp. 258–263.

[49] Andrew J. Hawkins. Nuro is using delivery robots to help health care workers fighting
COVID-19. 2020. url: https://www.theverge.com/2020/4/22/21231466/nuro-delivery-

robot-health-care-workers-food-supplies-california.

[50] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 2961–2969.

[51] HEBI Robotics. url: https://www.hebirobotics.com/.

[52] Masato Hirose and Kenichi Ogawa. “Honda humanoid robots development”. In: Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 365.1850 (2007), pp. 11–19.

[53] Seth Hutchinson, Gregory D Hager, and Peter I Corke. “A tutorial on visual servo
control”. In: IEEE transactions on robotics and automation 12.5 (1996), pp. 651–670.

[54] IEEE Networked Robots Technical Committee. url: http://www-users.cs.umn.edu/
∼isler/tc/.

[55] F Iida, M Tabata, and F Hara. “Generating personality character in a Face Robot
through interaction with human”. In: 7th IEEE International Workshop on Robot and
Human Communication. 1998, pp. 481–486.

[56] M. Inaba. “Remote-brained robots”. In: Proc. International Joint Conference on Ar-
tificial Intelligence. 1997, pp. 1593–1606.

[57] Jan Prins Jeffrey Ichnowski and Ron Alterovitz. “Cloud based Motion Plan Compu-
tation for Power Constrained Robots”. In: 2016 Workshop on the Algorithmic Foun-
dations of Robotics. WAFR. 2016.

https://www.theverge.com/2020/4/22/21231466/nuro-delivery-robot-health-care-workers-food-supplies-california
https://www.theverge.com/2020/4/22/21231466/nuro-delivery-robot-health-care-workers-food-supplies-california
https://www.hebirobotics.com/
http://www-users.cs.umn.edu/~isler/tc/
http://www-users.cs.umn.edu/~isler/tc/
http://www.wafr.org/papers/WAFR_2016_paper_102.pdf

BIBLIOGRAPHY 77

[58] Edward Johns, Stefan Leutenegger, and Andrew J Davison. “Deep Learning a Grasp
Function for Grasping under Gripper Pose Uncertainty”. In: arXiv preprint arXiv:1608.02239
(2016).

[59] Sunggoo Jung et al. “Perception, guidance, and navigation for indoor autonomous
drone racing using deep learning”. In: IEEE Robotics and Automation Letters 3.3
(2018), pp. 2539–2544.

[60] Angjoo Kanazawa et al. “End-to-end Recovery of Human Shape and Pose”. In: Com-
puter Vision and Pattern Regognition (CVPR). 2018.

[61] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. “Leveraging big data for grasp
planning”. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2015, pp. 4304–4311.

[62] Roger P Karrer, Antonio Pescapé, and Thomas Huehn. “Challenges in second-generation
wireless mesh networks”. In: EURASIP Journal on Wireless Communications and
Networking 2008 (2008), pp. 1–10.

[63] Ajay Kattepur, Hemant Kumar Rath, and Anantha Simha. “A-priori estimation of
computation times in fog networked robotics”. In: 2017 IEEE International Confer-
ence on Edge Computing (EDGE). IEEE. 2017, pp. 9–16.

[64] B. Kehoe. “Cloud-based Methods and Architectures for Robot Grasping”. PhD thesis.
Univ. of California, Berkeley, 2014.

[65] Ben Kehoe et al. “A survey of research on cloud robotics and automation”. In: IEEE
Transactions on Automation Science and Engineering 12.2 (2015), pp. 398–409.

[66] Ben Kehoe et al. “Cloud-based robot grasping with the google object recognition
engine”. In: Robotics and Automation (ICRA), 2013 IEEE International Conference
on. IEEE. 2013, pp. 4263–4270.

[67] Ben Kehoe et al. “Cloud-based robot grasping with the google object recognition
engine”. In: Robotics and Automation (ICRA), 2013 IEEE International Conference
on. IEEE. 2013, pp. 4263–4270.

[68] J. Kim et al. “Physically based grasp quality evaluation under uncertainty”. In: Proc.
IEEE Int. Conference on Robotics and Automation (ICRA)’12. 2012.

[69] Junggon Kim et al. “Physically based grasp quality evaluation under pose uncer-
tainty”. In: IEEE Transactions on Robotics 29.6 (2013), pp. 1424–1439.

[70] Dan Krauth and Wabc. Coronavirus: NY nursing home deploys robot to combat
COVID-19. 2020. url: https://abc7ny.com/health/ny- nursing- home- deploys- robot-

to-combat-covid-19/6198936/.

[71] Sanjay Krishnan et al. “ActiveClean: interactive data cleaning for statistical model-
ing”. In: Proceedings of the VLDB Endowment 9.12 (2016), pp. 948–959.

https://abc7ny.com/health/ny-nursing-home-deploys-robot-to-combat-covid-19/6198936/
https://abc7ny.com/health/ny-nursing-home-deploys-robot-to-combat-covid-19/6198936/

BIBLIOGRAPHY 78

[72] Sanjay Krishnan et al. “Privateclean: Data cleaning and differential privacy”. In:
Proceedings of the 2016 International Conference on Management of Data. ACM.
2016, pp. 937–951.

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[74] John Kubiatowicz et al. “Secure Fog Robotics Using the Global Data Plane”. In: NSF
Proposal (2018).

[75] James J Kuffner et al. “Cloud-enabled robots”. In: IEEE-RAS international confer-
ence on humanoid robotics, Nashville, TN. 2010.

[76] Scott Kuindersma et al. “Optimization-based locomotion planning, estimation, and
control design for the atlas humanoid robot”. In: Autonomous Robots 40.3 (2016),
pp. 429–455.

[77] Michael Laskey et al. “Dart: Noise injection for robust imitation learning”. In: arXiv
preprint arXiv:1703.09327 (2017).

[78] Michael Laskey et al. “Multi-armed bandit models for 2D grasp planning with uncer-
tainty”. In: 2015 IEEE International Conference on Automation Science and Engi-
neering (CASE). IEEE. 2015, pp. 572–579.

[79] Michael Laskey et al. “Robot grasping in clutter: Using a hierarchy of supervisors for
learning from demonstrations”. In: 2016 IEEE International Conference on Automa-
tion Science and Engineering (CASE). IEEE. 2016, pp. 827–834.

[80] Alex X Lee, Sergey Levine, and Pieter Abbeel. “Learning visual servoing with deep
features and fitted q-iteration”. In: arXiv preprint arXiv:1703.11000 (2017).

[81] Sergey Levine and Pieter Abbeel. “Learning neural network policies with guided pol-
icy search under unknown dynamics”. In: Advances in Neural Information Processing
Systems. 2014, pp. 1071–1079.

[82] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection”. In: arXiv preprint arXiv:1603.02199 (2016).

[83] Pusong Li et al. “Dex-Net as a Service (DNaaS): A Cloud-Based Robust Robot Grasp
Planning System”. In: ().

[84] Rui Li et al. “Localization and manipulation of small parts using gelsight tactile sens-
ing”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2014, pp. 3988–3993.

[85] Changliu Liu and Masayoshi Tomizuka. “Robot safe interaction system for intelligent
industrial co-robots”. In: arXiv preprint arXiv:1808.03983 (2018).

[86] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. “Thinet: A filter level pruning method
for deep neural network compression”. In: Proceedings of the IEEE international con-
ference on computer vision. 2017, pp. 5058–5066.

BIBLIOGRAPHY 79

[87] John Lygeros, Claire Tomlin, and Shankar Sastry. “Hybrid systems: modeling, anal-
ysis and control”. In: preprint (1999).

[88] Jeffrey Mahler et al. “Dex-Net 1.0: A Cloud-Based Network of 3D Objects for Robust
Grasp Planning Using a Multi-Armed Bandit Model with Correlated Rewards”. In:
Proc. IEEE Int. Conference on Robotics and Automation (ICRA). 2016.

[89] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics”. In: arXiv preprint arXiv:1703.09312 (2017).

[90] Alessandro Manzi et al. “Design of a cloud robotic system to support senior citizens:
the KuBo experience”. In: Autonomous Robots (2016), pp. 1–11.

[91] Gerard T McKee and Paul S Schenker. “Networked robotics”. In: Sensor Fusion
and Decentralized Control in Robotic Systems III. Vol. 4196. International Society for
Optics and Photonics. 2000, pp. 197–209.

[92] Franziska Meier, Evangelos Theodorou, and Stefan Schaal. “Movement segmentation
and recognition for imitation learning”. In: Artificial Intelligence and Statistics. 2012,
pp. 761–769.

[93] Franziska Meier et al. “Movement segmentation using a primitive library”. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2011,
pp. 3407–3412.

[94] Giorgio Metta et al. “The iCub humanoid robot: an open platform for research in
embodied cognition”. In: Proceedings of the 8th workshop on performance metrics for
intelligent systems. ACM. 2008, pp. 50–56.

[95] Gajamohan Mohanarajah et al. “Rapyuta: A cloud robotics platform”. In: IEEE
Transactions on Automation Science and Engineering 12.2 (2015), pp. 481–493.

[96] Carla Mouradian et al. “A comprehensive survey on fog computing: State-of-the-art
and research challenges”. In: IEEE Communications Surveys & Tutorials 20.1 (2017),
pp. 416–464.

[97] Richard M Murray et al. A mathematical introduction to robotic manipulation. CRC
press, 1994.

[98] Xinhe Ren Michael Yu Robert Zhang Bill Huang Ken Goldberg Nan Tian Benjamin
Kuo and Somayeh Sojoudi. “A Cloud-Based Robust Semaphore Mirroring System for
Social Robots”. In: arXiv preprint arXiv:1703.09327 (2017).

[99] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. “A multimodal anomaly detector
for robot-assisted feeding using an lstm-based variational autoencoder”. In: IEEE
Robotics and Automation Letters 3.3 (2018), pp. 1544–1551.

[100] Xue Bin Peng et al. “Sfv: Reinforcement learning of physical skills from videos”. In:
ACM Transactions on Graphics (TOG) 37.6 (2018), pp. 1–14.

BIBLIOGRAPHY 80

[101] Kun Qian, Jie Niu, and Hong Yang. “Developing a gesture based remote human-
robot interaction system using Kinect”. In: International Journal of Smart Home 7.4
(2013).

[102] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[103] International Federation of Robotics. Executive Summary World Robotics 2017 Ser-
vice Robots. 2017 (accessed September 15, 2018). url: https://ifr.org/downloads/press/

Executive Summary WR Service Robots 2017.pdf.

[104] International Federation of Robotics. Introduction into Service Robots. 2016 (accessed
September 15, 2018). url: https://ifr.org/img/office/Service Robots 2016 Chapter 1 2.

pdf.

[105] SoftBank Robotics. “Nao www. ald. softbankrobotics. com/en/robots/nao”. In: Last
accessed 20 (2017).

[106] Softbank Robotics. “Pepper”. In: Softbank Robotics (2016).

[107] Robots replace Japanese students at graduation amid coronavirus. 2020. url: https:

//www.reuters.com/article/us-health-coronavirus- japan-remote-gradu/robots- replace-

japanese-students-at-graduation-amid-coronavirus-idUSKBN21P0XI.

[108] Robots Versus Wizards Chess Set. url: http://www.thingiverse.com/thing:351119.

[109] Ludovico Orlando Russo et al. “A Novel Cloud-Based Service Robotics Application
to Data Center Environmental Monitoring”. In: Sensors 16.8 (2016), p. 1255.

[110] Gildardo Sánchez and Jean-Claude Latombe. “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking”. In: Robotics Research. Springer,
2003, pp. 403–417.

[111] Azad Shademan, Amir-Massoud Farahmand, and Martin Jägersand. “Robust ja-
cobian estimation for uncalibrated visual servoing”. In: Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 5564–5569.

[112] A. Singh. “Benchmarks for Cloud Robotics”. PhD thesis. Univ. of California, Berke-
ley, 2016.

[113] D. Song, A. K. Tanwani, and K. Goldberg. “Networked-, Cloud- and Fog-Robotics”.
In: Robotics Goes MOOC. Ed. by B. Siciliano. Springer, 2019.

[114] Dezhen Song, Kenneth Y Goldberg, and Nak Young Chong. Networked Telerobots.
2008.

[115] Dezhen Song et al. “Networked-, cloud-and fog-robotics”. In: Springer (2019).

[116] Christopher Stanton, Anton Bogdanovych, and Edward Ratanasena. “Teleoperation
of a humanoid robot using full-body motion capture, example movements, and ma-
chine learning”. In: Proc. Australasian Conference on Robotics and Automation. 2012.

https://ifr.org/downloads/press/Executive_Summary_WR_Service_Robots_2017.pdf
https://ifr.org/downloads/press/Executive_Summary_WR_Service_Robots_2017.pdf
https://ifr.org/img/office/Service_Robots_2016_Chapter_1_2.pdf
https://ifr.org/img/office/Service_Robots_2016_Chapter_1_2.pdf
https://www.reuters.com/article/us-health-coronavirus-japan-remote-gradu/robots-replace-japanese-students-at-graduation-amid-coronavirus-idUSKBN21P0XI
https://www.reuters.com/article/us-health-coronavirus-japan-remote-gradu/robots-replace-japanese-students-at-graduation-amid-coronavirus-idUSKBN21P0XI
https://www.reuters.com/article/us-health-coronavirus-japan-remote-gradu/robots-replace-japanese-students-at-graduation-amid-coronavirus-idUSKBN21P0XI
http://www.thingiverse.com/thing:351119

BIBLIOGRAPHY 81

[117] Nick Statt. Boston Dynamics’ Spot robot is helping hospitals remotely treat coron-
avirus patients. 2020. url: https://www.theverge.com/2020/4/23/21231855/boston-

dynamics-spot-robot-covid-19-coronavirus-telemedicine.

[118] Freek Stulp, Evangelos A Theodorou, and Stefan Schaal. “Reinforcement learning
with sequences of motion primitives for robust manipulation”. In: IEEE Transactions
on robotics 28.6 (2012), pp. 1360–1370.

[119] Shenglong Tang et al. “Cloud Robotics: Insight and Outlook”. In: International Con-
ference on Industrial IoT Technologies and Applications. Springer. 2016, pp. 94–103.

[120] A. K. Tanwani. “Generative Models for Learning Robot Manipulation Skills from
Humans”. PhD thesis. Ecole Polytechnique Federale de Lausanne, Switzerland, 2018.

[121] A. K. Tanwani and S. Calinon. “A generative model for intention recognition and
manipulation assistance in teleoperation”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS. 2017, pp. 43–50. doi: 10.1109/IROS.2017.

8202136.

[122] A. K. Tanwani et al. Generalizing Robot Imitation Learning with Invariant Hidden
Semi-Markov Models. 2018. arXiv: 1811.07489 [cs.RO].

[123] Ajay Kumar Tanwani et al. “A fog robotics approach to deep robot learning: Ap-
plication to object recognition and grasp planning in surface decluttering”. In: 2019
International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 4559–
4566.

[124] Ajay Kumar Tanwani et al. “A Fog Robotics Approach to Deep Robot Learning:
Application to Object Recognition and Grasp Planning in Surface Decluttering”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2019.

[125] Peter Lane Taylor. Could ’Pandemic Drones’ Help Slow Coronavirus? Probably Not-
But COVID-19 Is A Boom For Business. 2020. url: https://www.forbes.com/sites/

petertaylor/2020/04/25/could-pandemic-drones-help-slow-coronavirus-probably-not-but-

covid-19-is-a-boom-for-business/.

[126] SoftBank Robotics Team. Deploy Autonomous Cleaning Robots to Fight COVID-19
in Healthcare Facilities. url: https://usblog.softbankrobotics.com/deploy-autonomous-

cleaning-robots-to-fight-covid-19-in-healthcare-facilities.

[127] Moritz Tenorth et al. “The roboearth language: Representing and exchanging knowl-
edge about actions, objects, and environments”. In: Robotics and Automation (ICRA),
2012 IEEE International Conference on. IEEE. 2012, pp. 1284–1289.

[128] Nan Tian et al. “A Cloud-Based Robust Semaphore Mirroring System for Social
Robots”. In: learning 12 (), p. 14.

[129] Nan Tian et al. “A cloud robot system using the dexterity network and berkeley
robotics and automation as a service (Brass)”. In: Robotics and Automation (ICRA),
2017 IEEE International Conference on. IEEE. 2017, pp. 1615–1622.

https://www.theverge.com/2020/4/23/21231855/boston-dynamics-spot-robot-covid-19-coronavirus-telemedicine
https://www.theverge.com/2020/4/23/21231855/boston-dynamics-spot-robot-covid-19-coronavirus-telemedicine
https://doi.org/10.1109/IROS.2017.8202136
https://doi.org/10.1109/IROS.2017.8202136
https://arxiv.org/abs/1811.07489
https://www.forbes.com/sites/petertaylor/2020/04/25/could-pandemic-drones-help-slow-coronavirus-probably-not-but-covid-19-is-a-boom-for-business/
https://www.forbes.com/sites/petertaylor/2020/04/25/could-pandemic-drones-help-slow-coronavirus-probably-not-but-covid-19-is-a-boom-for-business/
https://www.forbes.com/sites/petertaylor/2020/04/25/could-pandemic-drones-help-slow-coronavirus-probably-not-but-covid-19-is-a-boom-for-business/
https://usblog.softbankrobotics.com/deploy-autonomous-cleaning-robots-to-fight-covid-19-in-healthcare-facilities
https://usblog.softbankrobotics.com/deploy-autonomous-cleaning-robots-to-fight-covid-19-in-healthcare-facilities

BIBLIOGRAPHY 82

[130] Nan Tian et al. “A Fog Robotic System for Dynamic Visual Servoing”. In: arXiv
preprint arXiv:1809.06716 (2018).

[131] Josh Tobin et al. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on. IEEE. 2017, pp. 23–30.

[132] Roger Tsai. “A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses”. In: IEEE Journal on
Robotics and Automation 3.4 (1987), pp. 323–344.

[133] Axel Vick et al. “Robot control as a service—Towards cloud-based motion planning
and control for industrial robots”. In: Robot Motion and Control (RoMoCo), 2015
10th International Workshop on. IEEE. 2015, pp. 33–39.

[134] Markus Waibel et al. “A world wide web for robots”. In: IEEE Robotics & Automation
Magazine 18.2 (2011), pp. 69–82.

[135] Stefan Waldherr, Roseli Romero, and Sebastian Thrun. “A gesture based interface
for human-robot interaction”. In: Autonomous Robots 9.2 (2000), pp. 151–173.

[136] Chen Wang et al. “Densefusion: 6d object pose estimation by iterative dense fusion”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 3343–3352.

[137] HP Wang, Y Tian, and N Christov. “Event-triggered observer based control of net-
worked visual servoing control systems”. In: Journal of Control Engineering and Ap-
plied Informatics 16.1 (2014), pp. 22–30.

[138] LEEE Weiss, ARTHURC Sanderson, and CHARLESP Neuman. “Dynamic sensor-
based control of robots with visual feedback”. In: IEEE Journal on Robotics and
Automation 3.5 (1987), pp. 404–417.

[139] J. Weisz and P.K. Allen. “Pose error robust grasping from contact wrench space
metrics”. In: Proc. IEEE Int. Conference on Robotics and Automation (ICRA)’12.
2012.

[140] Jonathan Weisz and Peter K Allen. “Pose error robust grasping from contact wrench
space metrics”. In: Robotics and Automation (ICRA), 2012 IEEE International Con-
ference on. IEEE. 2012, pp. 557–562.

[141] What is RoboEarth? url: http://www.roboearth.org/what-is-roboearth.

[142] Jeff Wiegley, Anil Rao, and Ken Goldberg. “Computing a Statistical Distribution of
Stable Poses for a Polyhedron”. In: In 30th Annual Allerton Conf. on Communica-
tions, Control and Computing. 1992.

[143] Haiyan Wu et al. “Cloud-based networked visual servo control”. In: IEEE Transac-
tions on Industrial Electronics 60.2 (2013), pp. 554–566.

http://www.roboearth.org/what-is-roboearth

BIBLIOGRAPHY 83

[144] Wenzhen Yuan, Siyuan Dong, and Edward H Adelson. “Gelsight: High-resolution
robot tactile sensors for estimating geometry and force”. In: Sensors 17.12 (2017),
p. 2762.

[145] Chen Zhang et al. “Caffeine: Toward uniformed representation and acceleration for
deep convolutional neural networks”. In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 38.11 (2018), pp. 2072–2085.

[146] Wei Zhang, Michael S Branicky, and Stephen M Phillips. “Stability of networked
control systems”. In: IEEE Control Systems 21.1 (2001), pp. 84–99.

[147] Cezary Zieliński et al. “Reconfigurable control architecture for exploratory robots”. In:
Robot Motion and Control (RoMoCo), 2015 10th International Workshop on. IEEE.
2015, pp. 130–135.

	Contents
	List of Figures
	List of Tables
	Introduction
	Cloud Robotics for Service Robots
	Values of the Cloud Services Triumph Communication Costs
	Network Delays and Variability
	Physical Human Robot Interactions (pHRIs)
	Cloud-Edge `Hybrid' Dynamical Systems with Feedbacks
	Shared Autonomy with Robotic Learning
	Thesis Goals and Contributions
	Thesis Outline

	Cloud Robotics as a Service
	Introduction
	Related Work
	System Design
	Experiment and Result
	Discussion
	Additional Cloud Robotic Service Modules

	A Fog Robotic System for Dynamic Visual Servoing
	Introduction
	Contribution
	Related Work
	Self-Balancing Robot, Igor
	An Intelligent Fog Robotic Controller
	Dynamic Visual Servoing
	Experiments and Results
	Discussion and Future Works

	A Cloud-Edge Hybrid System for Humanoid Gesture Imitation
	Introduction
	Related Work
	System Design
	Experiments and Results
	Discussion and Future Work

	Mitigate Network Latency using Motion Segmentation and Synthesis
	Introduction
	Contribution
	Related Work
	Problem Statement
	Latency Mitigation Protocol I
	Motion Segmentation with Stationary Point Heuristics
	Probabilistic Motion Segmentation and Synthesis
	Modified Latency Mitigation Protocol II
	Experiments and Results
	Discussion and Future Work

	Discussion and Conclusion
	Overview
	Fluent Physical Human Robot Interactions
	Recognition Delays and Delay Tolerance
	Perception in the Cloud or at the Edge

	Bibliography

