UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Modelling Physics Knowledge Acquisition in Children with Machine Learning

Permalink
https://escholarship.org/uc/item/0z09n6k§

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Authors

Neri, Filippo
Saitta, Lorenza
Tiberghien, Andree

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/0z09n6k8
https://escholarship.org
http://www.cdlib.org/

Modelling Physics Knowledge Acquisition in Children
with Machine Learning

Filippo Neri

Universita di Torino
Dipartimento di Informatica
Corso Svizzera 185

10149 Torino (Italy)
saitta@di.unito.it

Universita di Torino
Dipartimento di Informatica
Corso Svizzera 185

10149 Torino (Italy)

neri @di.unito.it

Abstract
A computational approach to the simulation of cognitive
modelling of children learning elementary physics is presented.
Goal of the simulation is to support the cognitive scientist's
investigation of learning in humans. The Machine Learning
system WHY, able to handle domain knowledge (including a
causal model of the domain), has been chosen as tool for the
simulation of the cognitive development. In this paper the focus
will be on knowledge representation schemes, useful to support

further modelling of conceptual change.

Introduction

Conceptual Change is a well known phenomenon in
developmental psychology and educational science [Carey,
1983; Tiberghien, 1989, 1994; Vosniadou & Brewer, 1992,
1994; Smith et al., 1992; Caravita & Halldén, 1994; Chi et
al., 1994; Vosniadou, 1994, 1995; Slotta & Chi, 1996].
Even though a quite large body of experimental findings has
been collected over the years, still no single definition of
conceptual change 1s universally accepted. In fact, a sound
explication of this notion would presuppose a precise
definition of “concepts”, a plausible hypothesis about their
internal representation, and an (at least approximate)
understanding of human learning mechanisms. In addition,
the strong interpersonal, intercultural and interdomain
differentiations, emerged in all the above aspects, suggest a
multifaced and complex network of underlying interrelated
phenomena, difficult to capture into a general theory.

To model human learning, Machine Learning (ML)
methods and systems are natural candidates to provide
computational modeling tools. In recent years, they have
been used so far in two contexts: either building student
models in a ITS environment [Sleeman et al., 1990; Baffes
& Mooney, 1996], or describing knowledge acquisition and
evolution [Klahr & Siegler, 1978, Sage & Langley, 1983;
Hardiman et al., 1984; Anderson et al., 1990; Shultz et al.,
1994; Schmidt & Ling, 1996]. Works in the first group try
to build up a picture of what a student knows on a specific
subject at a given moment, whereas works in the second
group take explicitly into account
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conceptual change and/or human learning mechanisms.
Further works that are of direct relevance concern
Qualitative Physics [Forbus & Gentner, 1986].

Most models of human learning presented so far in the
ML literature are based on excessively simplifying
assumptions. Basically, learning 1s reduced to a simple
classification task, performed on the basis of knowledge
consisting in a set of rules or a neural net. In fact, in the first
place, the heuristic knowledge that a person possesses in a
specific domain (substantially the one modelled in the ML
systems) is neither acquired nor used in isolation, but it is
embedded into, and biased by, a pre-existing deeper
knowledge structure [Murphy & Medin, 1985; Tiberghien,
1994; Vosniadou, 1994], which gives it its meaning. Several
education and cognitive scientists have clearly pointed out
that misconceptions and errors can be traced back to
conflicts between taught concepts and this deeper layer. The
deep knowledge, in fact, plays a substantial role in learning,
specifically in the understanding of concepts. This layer is
not necessarily modified by acquiring skill in solving
problems. For this reason, we keep, in our model, the two
layers separate, i.e., the heuristic knowledge and the
explanatory framework; this last, ignored in most ML
models of human learning, is the basis for supplying
explanations of phenomena.

In this paper a new approach to model human conceptual
change is presented. The modeling tool is the ML system
WHY, which acquires and revises a First Order Logic
theory by exploiting a causal model of the domain and a set
of examples [Saitta et al., 1993; Baroglio et al., 1994)]. The
overoall goal of the research is to model conceptual change
occurring in young students, acquiring basic concept in
Physics, specifically Heat and Temperature concepts
[Tiberghien, 1989, 1994]. In this paper we will concentrate
on the knowledge representation schemes, as details on
modelling changes in the knowledge can be found
elsewhere [Neri et al., 1996]. One of the main novelties,
with respect to previous models, is the differentiation
between the knowledge a student uses to answer questions
and to interpret experimental results, and an explanatory
framewaork, based on the notion of simple linear causality.
The computational model is grounded on an
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epistemological framework and previous experiments by
Tiberghien [1989, 1994].

We would like to underline that in no way we advocate
the presented logical knowledge representation scheme as
being the actual one used by humans. The representation is
only intended to be a description tool both understandable
by the experimenters and implementable as a program.

With particular reference to learn Physics, an
Epistemology of Physics is proposed by diSessa [1993]. The
main claim is that humans gradually acquire knowledge
elements, called phenomenological primitives (p-prims),
which constitute a large and complex knowledge system,
and for which diSessa advocates a connectionist
representation.

Vosniadou and co-workers (see, for instance, [Vosniadou,
1994, 1995; Vosniadou & Brewer, 1992, 1994]) present a
theoretical framework that hypothesizes that acquisition of
knowledge about the physical world is biased by a set of
fundamental constraints, called entrenched presuppositions.
An attempt to build a computational model of the day/night
cycle has been done in [Morik & Vosniadou, 1995].

An interesting theoretical framework for interpreting
Physics learning is Forbus and Gentner's Qualitative
Process and Structural Mapping theory [Forbus & Gentner,
1986]. The main claim of the proposal is about the centrality
of the notion of process, as a fundamental representation
construct.

In a number of papers, Chi and co-workers have tried to
explain why certain conceptual changes in Physics are so
difficult to induce whereas others are not (see, for instance,
[Chi et al., 1994; Slotta & Chi, 1996]). They hypothesize
that the learner has a cognitive model based on disjoint
(ontological) category trees. Chi brings evidence that
restructuring the interior of an ontology tree is more easily
accomplished than moving a concept across trees.

Finally, in [Tiberghien, 1994] a theoretical framework for
interpreting such difficulties has been proposed. The
framework has its foundation both in pedagogical studies
and in the epistemology of science and claims that, in
experimental sciences, questions are strongly linked to three
main factors: the theoretical background, the experimental
facts considered, and the explanations produced. In the
proposed theoretical framework, interpretation and
prediction in Physics imply a modeling process articulated
on three levels: “theory”, “model” and “experimental field”
of reference.

The Learning Context

The specific learning context considered in this paper is
the following: in three classes of the first and second year of
secondary school (12-13 year old students, 6-5th grades),
Physics teaching took place under controlled conditions, in
the sense that the teachers agreed to propose the same
teaching materials, experimentations and questions. Content
of the course were basic concepts and qualitative relations in
the domain of heat and temperature, including change of
state and heat transfer in everyday life situations.

Individual interviews before and after the set of teaching
sessions and an experimental task have been performed
with two students of each class. Written questionaries,
before and after teaching, have been filled by each student.
In this paper we want to describe how to model the
process of learning in individual students. A basic
assumption is that explanation of the observed phenomena
consists in finding causes and causal chains. Causality has
been acknowledged before as playing a crucial role in naive
Physics learning. [White & Frederiksen, 1987; Rozier,
1988]. Taking into account the age of the learner (12-13
years), Aristotelian causalities are used as reference. In
particular, material causality (used when students, for
instance, consider that wool heats “‘because it is wool”) and
efficient causality (involved when there is a change, for
example, when a battery lights a bulb) are considered here.

The Learning System WHY

WHY is a system that learns and revises a knowledge
base for classification problems using domain knowledge
and examples [Saitta et al., 1993; Baroglio et al., 1994]. The
domain knowledge consists of a causal model of the
domain, and a body of phenomenological theory, describing
the links between abstract concepts and their possible
manifestations in the world. A complex inference engine,
combining induction, deduction, abduction and prediction,
is the core of the system.

The causal model C provides explanations in terms of
causal chains among events, originating from “first” causes.
The phenomenological theory P contains the semantics of
the vocabulary terms, structural information about the
objects in the domain, ontologies, taxonomies, domain-
independent background knowledge, and, more importantly,
a set of rules aimed at describing the manifestations of
abstractly defined concepts in terms of properties, objects
and events in the specific domain of application. All the
knowledge structures share, in WHY, a First Order Logic
based language, whose atomic predicates are partitioned
into operational and nonoperational. Operational predicates
are observable, whereas nonoperational predicates are only
deducible.

The causal model C is represented as a directed, labelled
graph, as the one reported in Figure 2. The
phenomenological theory P is represented as a set of Horn
clauses, and the examples are represented as ground logical
formulas.

The goal of WHY is to acquire a knowledge base KB of
heuristic rules, sufficient to solve a set of problems in the
chosen domain. Moreover, the system gives causal
explanations of its decisions. It is important to clarify the
relations between the causal model C and the heuristic
knowledge base KB. The causal model could be used
directly to obtain answers/solutions to questions, as it is
done in diagnostic systems working from first principles
[Reiter, 1984]. However, causal reasoning is slow, and the
rules in KB act as shortcuts, compiled from C. On the other
hand, the fact that the rules are justified by C (being derived
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from it according to the method described in [Saitta et al.,
1993]) guarantees their validity and correcteness (obviously
with respect to that of C) and also allows explanations of the
given classification in terms of the deep knowledge. On the
other hand, KB and C may not be related at all, for instance
in the case that KB is not derived from C but is directly
“taught” by a teacher or acquired by the learner on a pure
empirical inductive basis. In this case, KB will give
unjustified classifications (correct or not), for which no
explanations exist with respect to C. Exploiting these
different types of relations between KB and C, all the
findings emerged in the experimentation with children
learning Physics can be modeled. In the interplay between
KB and C, the knowledge in P supplies the links between
the general principles stated in C and the concrete
experiments.

The heuristic knowledge base KB corresponds to the
compiled rules David normally uses to answer questions and
solve problems, when no explanation of his answers is
required; to give explanations, David shall exploit the causal
model. The heuristic rules, then, can be considered as the
predictors of the answers, when David is questioned about
possible outcomes of experiments. The causal model C is
used by David when an explanation is requested or when he
does not have yet a heuristic rule to answer a question.

An Example of Model Construction

In this section we will go through an example of using
WHY to model the knowledge of “David”, a 12 year old
student of 6th grade, exposed to the teaching course on heat
and temperature mentioned in Section 3. At this grade, the
specific content of teaching was mostly directed toward the
notion of change of state in Physics.

The data available from David's history, used to build up
the model, are the answers to two questionnaires and an
interview both before and after teaching. Moreover, the
answers to questions, the predictions of outcomes from
practical manipulations, and the given explanations during
each teaching session are available as well.

In order to use WHY to hypothesize David's mental
models, the task of answering a question or predicting an
experiment’s outcome has to be mapped on a discrimination
task, whose possible answers have been a-priori
individuated by the teacher. Moreover, each experiment or
question is represented as an example, conisting of two
parts: a description of the experimental setting, from the
point of view of the teacher, and a question. The correct
answer labels the example. According to the teaching
protocol, it is assumed that the students understand the
example descriptions. For the sake of exemplification, let us
consider a question, occurring in a questionnaire, reported in
Figure 1.

The first step in the modelling process is to set up the
vocabulary used in teaching. By analysing the whole
questionnaires and interviews, all the words relevant to the
specific Physics domain have been extracted and
transformed into atomic predicates of the language. Some of
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the predicates derived from the question in Figure | are
reported:

amount(x,u,t), different(u,v), gas-stove(x),

inside(x,y), not-boiling(x,t), on(x,y),

person(z), same-features(x,y), water(x), temp(x,T), ...
The complete vocabulary contains 95 words. For what
concerns the semantics of the predicates, 69 of them are
operational, i.e., their evaluation can be made directly on the
experimental setting. For instance, person(z) and temp(x,T)
are operational. Other predicates (precisely 26) are non-
operational, i.e. their truth value can be determined by
deduction. For instance, the rule

gas-stove(x) A ignited(x) = FLAME(x)

states that the predicate FLAME(x) can be asserted true on
x if x is an ignited gas-stove.
Professor Tournesol makes the following experiment: He
takes two saucepans A and B, pours water from a faucet
into them, and he also puts a thermometer inside each of
them.

The saucepans A and B are equal.

The thermometers are equal.

The two flames are equal and the saucepans are put on the
gas stoves at the same time.

The quantities of water in A and B are different.

After 3 minutes, the water in A and B does not boil yet.
Tintin reads the indication on the thermometers inside A: it
shows 50°C.

(1) Does the thermometer in B show a reading:

- Greater than 50°C __

- Equal to 50°C

- Less than 50°C

(2) Why ?

Figure 1 - Example of questions occurring in the
questionnaires.

Notice that for non-operational predicates, the semantics of
the same term for the teacher and for David can be different.
For instance, the two following rules:

TEMP(x,T) A greater(T,08]) = HOT(x) (Teacher)

feel-hot(x) = HOT(x) (David)
show that the teacher evaluates the hotness of an object x
according to its temperature, whereas David relies on his
tactile perception.

The second step consists in transforming all the questions
in examples for WHY. For instance, the question in Figure 1
is described as follows:

Example # 2 . Description
person(Tournesol) A person(Tintin) A saucepan(A) A
water(a) A on(A,ga) A thermometer(hy) A gas-stove(ga) A
ignited(gy) A to-put-inside(Tournesol hg,A) A
to-put-inside(Tournesol,a,A) A amount(a,small) A
temp(a, 20,initial) A not-boiling(a, initial) A
time-elapsed(a, short) A saucepan(B) A

. A time-elapsed(gp, short) A same-features(h, ,hp) A



thermom-reading(h,, 50, final)

Example # 2 : Decisions

{GREATER-THERMOM-READING(h, h,, final),
SAME-THERMOM-READING(hy, h,, final),
LOWER-THERMOM-READING (hy,h,, final)}

In the description of the example we may notice that the
quantities have been rendered in qualitative form, such as
“small” and “large” amounts of water, a “short” time period
(for 3 minutes), “initial” and “final” for the beginning and
ending times of the experimentation. Moreover, some
background information, which David and the teacher do
not need to say explicitly, are added for the system’s sake,
such as the fact that the room temperature is 20°C. The
predicate “same-feature(x,y)” denotes functional equality
between x and y without object identity.

In the decision part of the example the “classes” are
defined according to the alternative possible answers.

After building up the dictionary and describing the
examples, we have encoded, for reference, the teacher’s
phenomenological and causal theories. These bodies of
knowledge are not meant to describe all the knowledge the
teacher has in the field, but only the part that he/she decides
is relevant for teaching. Some rules belonging to the
teacher’s phenomenological theory P* are the following (the
complete theory contains 121 rules):

aluminum(x) = METAL(x)

METAL(x) = MATERIAL(x)

TEMP(x,T) A greater(T,01) = HOT(x)

gas-stove(x) A ignited(x) = FLAME(x)

electric-plate(x) A turned-on(x) = HEAT-SOURCE(x)

OBI(x) A HEAT-SOURCE(y) A CONTACT(x,y) =
= TO-HEAT(x,y)

SAME-TEMP(x,y)=THERMAL-EQUILIBRIUM(x,y)

full-of(x,y) = INSIDE(y,x)

CONTACT(x,y) & CONTACT(y,x)

A part of David’s causal model is reported in Figure 2.
The graph explains that the temperature of an object
increases if it is heated and its initial temperature is below
its boiling threshold. As we may notice, the model may be
critizised under many respects with respect to a complete
theory of heat transfer. However, it represents what the
teacher wants David to understand in this preliminary
course.

The Matter ontology of the teacher is reported in Figure
3. We notice that the teacher knows that an object has a
temperature value associated to it, and that a material has
characteristic temperatures associated to changes of state.

The teacher also uses a heuristic knowledge base KB*,
containing 23 rules, one of which is the following:
MATERIAL(x) A SOLID(x) A TO-HEAT(x) =

= MELTING(x)
Morever, the teacher knows the relations among all the
quantities appearing in the following heating process:

At

q AT
— | mc |—»

The teacher’s knowledge remains the same along the
whole teaching course. It is useful to model it both as a
reference for representing the teaching goal, and as a mean
to evaluate David’s progess toward a correct understanding
of the phenomena to which he is exposed.

The teacher’s knowledge can be considered “correct”,
from his/her point of view; in fact, the teacher him/herself
can validate it. On the contrary, David is unable to articulate
his models of the world, and his knowledge can then be only
guessed from his answer and explanations. For this reason,
it needs to be validated experimentally. From the data
available before teaching, an initial content can be
attributed to David’s Cg, Py and KB,

boiling-temp(x,T ) A less(T, Ty ) 5
Htime-elapsed(x, short) v time-elapsed(x, long) v
time-elapsed(x, very-long)]

Figure 2 - Part of the teacher’s causal model. Three
kinds of nodes occur in the graphs: causal nodes,
corresponding to processes or states related by cause-
effect relations, constraint nodes, attached to edges
and representing physical or structural properties of
objects, and context nodes, associated to causal nodes,
representing contextual conditions (concomitant
causes) referring to the environment.

The phenomenological theory P contains 94 rules, and is

not very different from the teacher’s one, except for the
semantics of some predicates, based on direct perception
instead of an objective measurement. For the sake of
comparison, in Figure 4 David’s Matter ontology tree is
reported. As we can see, David attributes to the objects the
properties of being cold, warm or hot, but he does not relate
them, at the beginning, with the object’s temperature.
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Moreover, David attributes the constance of temperature
during a change of state to a maximum allowed temperature
for the substance.

as Name
Is Sensibl e to
Hot objects

Is made of Matenal
Has Temperture
Has State

Has Amount
ends over Time

Has Meltung Tem pera wre
Has Bailing Temperature
ay Change Suie

Figure 3 - Teacher's ontology for Matter.

Has Name

Has Functon

Is made of Matenal

Can be Colel Warmi o Hou
IsSmsbleto s Aot
Bot dhjeds Existsin Time

May have Mavimum
Te mpe ral ure

Lead ———4—{"Has Md ing Temperature

Figure 4 - David’s ontology tree for Matter

In Figure 5, David's causal model Cqis reported. The
model is substantially different from the teacher’s one,
because it is mostly oriented to deducing effects on the basis
of the properties of the involved substances. Then, material
causation is underlying David’s explanations.

Also the heuristic knowledge base KB is rather different,
because David, in order to answer the questions, seems to
apply rules that can be paraphrased as follows:
“What is hot heats”
“What is cold cools”
“A greater cause has a greater effect”
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OBJ(x)
HEAT-SO

TO-HEAT(x,y) URCE(y)

TEMPINCREASE(x

waten x) A= won(x) .
- gold(x) A ~lead(x)

1\

TO-BOIL(x)

Figure 5 — David’s initial causal model.

For what concerns validation of the models, we have to
specify, first of all, that our aim is not that of making claims
about average or most common behaviours among childrens
that age, but to model the individual evolution of a single
student. That means that we do not need to apply the same
model to a statistically significant set of students, but, rather
we have to apply the same modelling process (possibly
yealding different models) to various students. In fact, with
respect to this modelling procedure, a model is “good” if it
is able to predict the answers of the modelled student to the
questions he/she is presented with. Then, if this match is
verified for a number of cases, there is suggested evidence
that the hypotheses underlying the modelling methodology
may be adequate for tracing individual knowledge
evolution, in this specific Physics’ area. In the analysed
cases, satisfying results have been obtained.

Conclusion

We have introduced a new way of interpreting learning
from the point of view of the learner's knowledge
acquisition in relation with teaching, in the domain of
Physics. The framework of our analysis is a specific type of
knowledge processing that we term "modelling”. It is a
relevant framework for analysis with respect to both the
learner's personal knowledge of a learner and the content of
Physics teaching. This approach allows two main types of
knowledge to be distinguished, in particular, the pragmatic
knowledge (heurisitc), put into play during problem solving,
and a deeper explanatory knowledge structure (causal), used
to give explanations and, in general, to get a better grasp of
the phenomena.

The eventual goal of the investigation is to come up with
a method for designing more effective teaching strategies.
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