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Abstract

In this paper, we study the representational
properties of numeration systems. We argue that
numeration systems are distributed representa-
tions—representations that are distributed
across the internal mind and the external envi-
ronment. We analyze number representations at
four levels: dimensionality, dimensional repre-
sentations, bases, and symbol representations.
The representational properties at these four
levels determine the representational efficien-
cies of numeration systems and the performance
of numeric tasks. From this hierarchical struc-
ture, we derive a cognitive taxonomy that can
classify most numeration systems.

Introduction

We all know that Arabic numerals are more effi-
cient than Roman numerals for calculation (e.g.,
73 x 27 is easier than LXXIII x XXVII), even
though they both represent the same entities—
numbers. This representational effect, the effect
that different representations of a common ab-
stract structure can cause different behaviors, is a
cognitive phenomenon. However, early studies
of numeration systems focused on their historical
and mathematical aspects (e.g., Flegg, 1983;
Ifrah, 1987). Recently, the cognitive properties
of numeration systems have been analyzed (e.g.,
Nickerson, 1988; Norman, in press; Zharig, 1992).
In this paper, we analyze number representa-
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tions under different numeration systems. From
this analysis, we derive a cognitive taxonomy
that can classify most of the numeration systems
that have been invented across the world. This
taxonomy is the basis for the study of the repre-
sentational effect of numeration systems.

Dimensionality of Numeration Systems

1D Systems

Numeration systems can be analyzed in terms of
their dimensions. One of the simplest ways to
represent numbers is to use stones: one stone for
one, two stones for two, and so on. This Stone-
Counting system has only one dimension: the
quantity of stones. The Body-Counting system
used by Torres islanders is another one dimen-
sional system, where the single dimension is rep-
resented by the positions of different body parts
(e.g., fingers, wrists, etc.). One dimensional sys-
tems are denoted as 1 D in this paper.

1x1 D Systems

Many numeration systems have two dimensions:
one base dimension and one power dimension.
The power dimension decomposes a number into
hierarchical groups on a base. The Arabic system
is a two dimensional system (Table 1) with a
base dimension represented by the shapes of the
ten digits (0, 1, 2, ..., 9) and a power dimension
represented by positions of the digits with a base
ten. For example, the middle 4 in 447 has value
4 on the base dimension and position 1 (counting
from the rightmost digit, starting from zero) on
the power dimension. The actual value it repre-
sents is forty (the product of its values on the
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base and power dimensions, i.e., 4x101).

The Greek system (Table 1) is a two dimen-
sional system with special properties. Its base
and power dimensions are represented by a single
physical dimension—shape (a one-to-two map-
ping), which can only be separated as two dimen-
sions in the mind. For example, the values on the
base and power dimensions of 1 (300) are 3 and
102, which can not be separated from the physi-
They must be

cal property

of the symbol "t".

separated in the mind. The separation of the

Table 1. 1X1D Numeration Systems

single physical dimension (shape) into a base
and a power dimension in the mind is required by
the Greek Multiplication Algorithm, which
needs to process the values on the base and power
dimensions separately (see Flegg, 1983).

Two dimensional systems are denoted as 1x1
D (basexpower). The structures and representa-
tions of six 1x1 D systems are shown in Table 1.

Systems Example (447) Base Base Dimension Power Dimension
Abstract T ajx! X aj X1
Arabic 447 10 aj = shape X! = position
4x102+4x101+7x100 01,249 . 104101 10V
Egyptian | 9999~~~A~mim | 10 aj = quantity x! = shape
4x102+4x101+7x100 The numbers of I's, N's,| | n 9
9's, etc. 100 100 102
Cretan O DDDteearre | 10 aj = quantity x1 = shape
4x102+4x101+7x100 The numbers of #'s|¢ @ W
®'s, /'s, etc. 100 101 102 ..
Greek vul 10 a; = shape x! = shape
4x102+4x101+7x100 & B Y 8 1 K. R wie P
1 2 3.9 1x101 2x101 3x101...9x10!
p o T penilN
1x102 2x102 3x102...9x102
Aztec $PPeccccoe 20 aj = quantity xi = shape
1x202+2x201+7x200 The numbers of @'s,| g P . 3R
Ps, ¥, etc. 200 201 202 ...
Chinese WE N+ 10 a; = shape x! = shape
4x102+4x101+7x100 - == 1 + B < 2
1 2 8 .9 100 102 103
Table 2. (1X1)X1D Numeration Systems
Systems Example (447) |Main|Sub-| Sub-base [Sub-power Dimension/Main Power Dimension
Base| base| Dimension
Abstract LI(bjjy))x! X y bij y) X1
[Babylonian * 60 | 10 |bjj = quantity y) = shape x! = position
f0x101+7x100)601 The numbers |Y = 10V, < = 10! . 60¢ 60! 60Y
+(2x101+7x100)600 of V's and <’y
FMayan o oo oo 20 | 5 |[bjj=quantity y) = shape x1 = position
f0x51+1x50)202 The numbers |e=5Y, _ =5! .. 204 200 20V
+(0x514+2x50)201 pf @'s and
+(1x51+2x50)200 —'s.
oman CCCXXXXVII 10 | 5 |bjj= quantity y) = shape x! = shape
FR (0x51+4x50)102 The numbers |1 =100x50 vV = 100x51 |1 = 50100 v = 59x101
+(0x51+4x50)101 pf I's, V's,  IX = 101x59 L = 10151 X = 59x101 V = 51x101
4+ (1x5142x50)100 X's, L's, etc.




(1x1)x1 D Systems

Some numeration systems have three dimensions:
one main power dimension, oné sub-base
dimension, and one sub-power dimension. The
sub-base and sub-power dimensions together form
the main base dimension. Let us consider a
Babylonian numeral (see Table 2):

WS = (0x101+7x100)x601+(2x101+7x100)x600
= 7x601+27x600 = 420 + 27 = 447

The main power dimension of the Babylonian
system is represented by positions with a base 60.

In the numeral shown above, <¥ (the right com-
ponent) is on position 0 (609), and ™ (the left

component) is on position 1 (601). The value of ¥
(the left component) on the main base dimension
is 7 (= 0x101+7x100). The actual value it repre-
sents is the product of its values on the main base
and main power dimensions: (0x101+7x100)x601
=420. The main base dimension is composed of a
sub-base dimension represented by quantity (the
numbers of Y’s and <Cs) and a sub-power dimen-
sion represented by shape (Y = 107 and < = 101)
with a base 10. For example, < can be decom-
posed as 2x101+7x100.

Similar to the Greek system, the sub-power
and the main power dimensions of the Roman
system (see Table 2) are represented by a single
physical dimension—shape. They are only sep-
arable in the mind.

Three dimensional systems are denoted as
(1x1)x1 D ((sub-basexsub-power)xmain-power).
The structures and representations of three
(1x1)x1 D systems are shown in Table 2.

The Hierarchical Structure

Based on the analysis of the dimensionality of
numeration systems, we can analyze number
representations at four levels. Each level has an
abstract structure that can be represented
differently. The different representations at
each level are isomorphic to each other in the
sense that they all have the same abstract struc-
ture at that particular level (Figure 1).

At the level of dimensionality, different
numeration systems can have different dimen-
sionalities: 1D, 1x1D, (1x1)x1D, and others.
However, they are all isomorphic to each other
at this level in the sense that they all represent
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the same entities—numbers.

At the level of dimensional representations,
isomorphic numeration systems have the same
dimensionality but different dimensional
representations. The physical properties used to
represent the dimensions of numeration systems
are usually quantity, position, and shape. For
example, the base and power dimensions of 1x1D
systems can be represented by shape and position
(Arabic system), shape and shape (Chinese sys-
tem), quantity and shape (Egyptian system), etc.

At the level of bases, isomorphic numeration
systems have the same dimensionality, same
dimensional representations, but different bases.
For example, both the Egyptian and the Aztec
systems are 1x1D systems, and the base and
power dimensions of both systems are represented
by quantity and shape. However, the base of the
Egyptian system is ten while that of the Aztec
system is twenty (see Table 1).

At the level of symbol representations,
isomorphic numeration systems have the same
abstract structures at the previous three levels.
However, different symbols are used. For exam-
ple, both the Egyptian and the Cretan systems

are 1X1D systems, the two dimensions of both
systems are represented by quantity and shape,
and both systems have the base ten. However, in

the Egyptian system, the symbols for 10°, 10,
and 10° are |, N, and 9, while in the Cretan sys-
tem, the corresponding symbols are ¢, @, and 7.

The Cognitive Taxonomy

The hierarchical structure of number repre-
sentations in Figure 1 is in fact a cognitive taxon-
omy of numeration systems that can classify nu-
meration systems. For example, the Egyptian
and Cretan systems are in the same group at the
level of symbol representations; the Mayan and
Ba'ylonian systems are in the same group at the
level of bases; the Arabic, Greek, Chinese,
Egyptian, Cretan, and Aztec systems are in the
same group at the level of dimensional represen-
tations; and all the systems in Figure 1 are in the
same group at the level of dimensionality.
Under this taxonomy, the lower the level at
which two systems are in the same group, the
more similar they are. For example, the
Egyptian and the Cretan systems are more simi-
lar than the Arabic and the Babylonian systems,
because the former two are in the same group



ABSTRACT
NUMBERS

Dimensionality

(1X1)X1D

Dimensional
Representations | © || @ SxP| |[SxS) | SxS| | Qxs Q<SP| | (QxSps
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Representations Body Stone Arabic Greek Chinese Egyptian Cretan Aztec Mayan Babylonian Roman

Figure 1. The hierarchical structure of number representations. At the level of dimensionality, different systems have
different dimensionalities. At the level of dimensional representations, the dimensions of different systems are
represented by different physical properties. P = Position, Q = Quantity, S = Shape. The two dimensions of the Greek
system ([SxS]) are represented in the mind and only separable in the mind. At the level of bases, different systems may
have different bases. At the level of symbol representations, different systems use different symbols.

at the level of symbol representations while the
latter two at the level of dimensionality.

This cognitive taxonomy was based on the
eleven systems in Tables 1 and 2. However, it can
be applied to other systems as well. Let us con-
sider a few more systems (see Ifrah, 1987, for de-
scriptions of these systems). At the level of sym-
bol representations, the Hebrew alphabetic sys-
tem is in the group as the Greek system, and the
Greek acrophonic, Dalmatian, and Etruscan sys-
tems are in the same group as the Roman system.
At the level of bases, the Chinese scientific sys-
tem is in the same group as the Mayan system.

In addition to written numeration systems,
this taxonomy can also classify many physical
systems. The following are a few examples from
Ifrah (1987). The Peruvian knotted string system
is a PxQ (base 10) system; the Chimpu (knotted
strings used by the Indians of Peru and Bolivia) is
a QxQ (base 10) system; the knotted string sys-
tem used by the German millers is a SxS (base 10)
system; the Roman counting board, the Chinese
abacus, and the Japanese Soroban are (QxP)xP
(main base 10 and sub-base 5) systems, and the
Russian abacus is a QxP (base 10) system.
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Factors of the Representational Effect

The factors of the representational effect of nu-
meration systems can be analyzed at the four
levels of number representations.

The level of dimensionality affects the effi-
ciency of information encoding. 1 D systems are
linear, while 1x1 D and (1x1)x1 D systems are
polynomial. Polynomial systems encode infor-
mation more efficiently than linear systems be-
cause the number of symbols needed to encode a
number in a polynomial system is proportional to
the logarithm of the number of symbols needed to
encode the same number in a linear system.

The level of dimensional representations is
crucial for the representational effect of numera-
tion systems. Next section analyzes the represen-
tational properties at this level in detail.

The level of bases is important for tasks in-
volving addition and manipulation tables: the
larger a base is, the larger the addition and mul-
tiplication tables and the harder they can be
memorized and used.

The level of symbol representations mainly
affects the reading and writing of symbols.
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Figure 2. The distributed representation of scale infor-
mation. The abstract representational space can be de-
composed into an internal and an external representa-
tional space. (A) A nominal scale represents a ratio
scale. The extra information of the ratio scale either
has to be represented in the internal representational
space or not represented at all. (B) A ratio scale repre-
sents a nominal scale. The extra information of the ratio
scale may cause misperception on the nominal scale. (C)
A ratio scale represents a ratio scale. This is an efficient
and accurate representation.

Dimensional Representations

Dimensional representations of numeration sys-
tems can dramatically affect the performance of
numeric tasks. In this section, we analyze the
distributed representation of scale information
and the separability of dimensions.

The Distributed Representation of Scale
Information

Every dimension is on a certain type of scale,
which is the abstract measurement property of
the dimension. Stevens (1946) identified four
major types of psychological scales: ratio, inter-

val, ordinal, and nominal. Each type has one or
more of the following properties (see Table 3):
category, magnitude, equal interval, and abso-
lute zero. Category refers to the property that
the instances on a scale can be distinguished from
each another. Magnitude refers to the property
that one instance on a scale can be judged greater
than, less than, or equal to another instance on
the same scale. Equal interval refers to the
property that the magnitude of an instance rep-
resented by a unit on the scale is the same regard-
less of where on the scale the unit falls. An abso-
lute zero is a value which indicates that nothing
at all of the property being represented exists.

Table 3. Properties of Psychological Scales

ratio |interval Jordinal | nominal
category yes yes yes yes
magnitude yes yes yes no
lequal internal yes yes no no
absolute zero yes no no no
lexample quantity | time [softness| shape
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From Table 3 we can see that the four types of
scales have an order of representational power:
ratio > interval > ordinal > nominal. A higher
scale possesses more information than a lower
scale. The scale information of a dimension can
be distributed across internal and external repre-
sentations (Figure 2; see Zhang, 1992; Zhang &
Norman, forthcoming). When a higher dimen-
sion is represented by a lower dimension (e.g., a
ratio dimension represented by a nominal dimen-
sion), the extra information of the higher dimen-
sion either has to be represented internally, or
not represented at all, because it is not embedded
in the physical properties of the lower dimen-
sion (Figure 2A). When a lower dimension is rep-
resented by a higher dimension (e.g., a nominal
dimension represented by a ratio dimension), the
extra information of the higher dimension may
cause misperception on the lower dimension
(Norman, in press; Figure 2B). Thus, in order for
a representation to be efficient and accurate, the
scale types of the represented and the represent-
ing dimensions should match (Figure 2C).

Quantity, position, and shape are the
physical dimensions used in most numeration sys-
tems. The dimensions of all 1 D systems and the
base and power dimensions of all multidimen-
sional systems are on ratio scales. These ratio
dimensions are represented externally by quan-
tity (ratio) and internally by shape (nominal),
and externally by ratio position (as in the Arabic
system) and internally by ordinal position (as in



the Body-Counting system). For example, for the
Arabic system, the power dimension is repre-
sented externally by position, and the base di-
mension is represented internally by shape. In
contrast, for the Egyptian system, the power di-
mension is represented internally by shape, and
the base dimension is represented externally by

quantity.

The Separability of Dimensions

Another major factor of dimensional repre-
sentations is whether the dimensions of a multi-
dimensional numeration system is externally
separable (see Garner, 1974, for a general discus-
sion on separable and integral dimensions). For
example, the shape (base dimension) and posi-
tion (power dimension) of each digit in an Arabic
numeral are externally separable (by perceptual
processes). For the Greek system, however, the
base and power dimensions are represented by a
single physical dimension (shape). They are
only separable in the mind with the participa-
tion of high-level cognitive processes.

Numeric Tasks

Whether the dimensions of numeration systems
are represented internally or externally and
whether they are externally separable can
greatly affect the difficulty of numeric tasks.

Zhang (1992) analyzed in detail the relation
between the format of dimensional representa-
tions and the difficulty of numeric tasks. For ex-
ample, the basic component in the polynomial
multiplication method for 1x1 D systems is the
multiplication of individual terms (ajx'xb yl)
which has five basic steps:

(1) Get powers of ajx' and b,yl ij

(2) Add powers: i +j = pj;;

(3) Get base values of ::1,xl and b)yl aj, b,,

(4) Multiply base values: a; X bj = bjj;

(5) Attach powers to the product of base

values: ajx'xbjy) = bjj x 10Pi,

Whether the mformation needed to execute a
step is internal or external is jointly determined
by whether the base and power dimensions are
externally separable and whether a dimension is
represented externally or internally. Internal in-
formation needs more cognitive processing than
external information. If the base and power di-
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mensions are not externally separable, then all
the five steps are internal (e.g., the Greek sys-
tem). For externally separable base and power
dimensions, if the power dimension is repre-
sented externally then Steps 1, 2, and 5 are exter-
nal, and if the base dimension is represented ex-
ternally then Step 3 is external. Step 4 is usually
internal because the multiplication table is usu-
ally memorized. For the Arabic system, Steps 1,
2, and 4 are external and Steps 3 is internal be-
cause its power dimension is external and its base
dimension is internal. Step 4 is also internal if an
internal multiplication table is used. From this
analysis we can see that the Arabic system is
more efficient than the Greek system for multi-
plication, because the former has three external
steps and the latter has no external steps.

Conclusion

Numbers are represented hierarchically at
four levels, the representational properties at
which determine the efficiencies of numeration
systems. This hierarchical structure is also a
cognitive taxonomy of numeration systems,
which can classify most numeration systems.
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