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Abstract

As we act on the world around us, our eyes seek out objects we plan to interact with. A growing 

body of evidence suggests that overt visual attention selects objects in the environment that 

could be interacted with, even when the task precludes physical interaction. In previous work, 

objects that afford grasping interactions influenced attention when static scenes depicted reachable 

spaces, and attention was otherwise better explained by general informativeness. Because grasping 

is but one of many object interactions, previous work may have down-played the influence of 

object affordances on attention. The current study investigated the relationship between overt 

visual attention and object affordances versus broadly construed semantic information in scenes 

as speakers describe or memorize scenes. In addition to meaning and grasp maps—which capture 

informativeness and grasping object affordances in scenes, respectively—we introduce interact 

maps, which capture affordances more broadly. In a mixed-effects analysis of 5 eyetracking 

experiments, we found that meaning predicted fixated locations in a general description task and 

during scene memorization. Grasp maps marginally predicted fixated locations during action 

description for scenes that depicted reachable spaces only. Interact maps predicted fixated 

regions in description experiments alone. Our findings suggest observers allocate attention 

to scene regions that could be readily interacted with when talking about the scene, while 

general informativeness preferentially guides attention when the task does not encourage careful 

consideration of objects in the scene. The current study suggests that the influence of object 

affordances on visual attention in scenes is mediated by task demands.
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Open Practices Statement

The experiment and analyses reported here were not pre-registered. Data available on request.
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Introduction

Gaze behavior can speak volumes about an observer’s goals in the present moment 

(Henderson, 2017; Henderson et al., 2013) and how one may act on their environment 

in the immediate future (David-John et al., 2021; Hayhoe et al., 2003; Hayhoe & Ballard, 

2005; Hayhoe & Matthis, 2018; Pelz & Canosa, 2001; Sullivan et al., 2021). When planning 

physical actions with visual guidance, observers look at objects they intend to interact with 

(Hayhoe et al., 2003; Hayhoe & Ballard, 2005; Hayhoe & Matthis, 2018), and look ahead 

to objects involved in later segments of the action sequence (Pelz & Canosa, 2001; Sullivan 

et al., 2021). Beyond what fixations on objects reveal, gaze dynamics can be used to predict 

when an observer is about to interact with an object (David-John et al., 2021). This evidence 

suggests that visual attention is systematically deployed to objects in the environment in the 

moments leading up to an agent interacting with an object.

The interactions one could perform with an object influence visual attention even when 

observers are not actively planning to interact with the object. Gomez and Snow (2017) 

found that object affordances guide overt attention during a visual search task; furthermore, 

the influence of affordances on attention is stronger for physically present objects that 

are within reach as opposed to 2- or 3-D object representations displayed on a screen 

(Gomez et al., 2018). As observers learned the function or features of novel objects (e.g., 

as they learned new pulling affordances of a soap container on the ceiling), successfully 

learning the affordances of novel objects facilitated subsequent search behavior (Castelhano 

& Witherspoon, 2016). Taken together, the findings suggest a strong influence of object 

affordances on visual attention in scenes. In the current study, we investigated whether the 

aforementioned influence of affordances is driven by specific object affordances (the ability 

to be grasped or manipulated) or to affordances broadly defined (an object’s ability to be 

interacted with in any way).

The finding that visual attention orients to objects that afford interaction is consistent 

with cognitive guidance theory (Henderson et al., 2007). According to cognitive guidance 

theory, visual attention is not passively pulled to regions of the scene that stand out against 

their surroundings (as asserted by Itti and Koch, 2000; Parkhurst et al., 2002), but instead 

cognitive systems push visual attention to information-rich regions of the scene. Visual 

attention is allocated to informative objects in scenes moreso than to regions that contrast 

with surrounding areas in luminance, orientation, and other physical properties of the scene, 

as captured by image-computable saliency maps (Einhäuser et al., 2008; Nuthmann & 

Henderson, 2010), even when the information is not task-relevant (Hayes & Henderson, 

2019a; Shomstein et al., 2019) and when contrasts in physical salience are task-relevant 
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(Peacock et al., 2019a). In recent work, Henderson and Hayes (2017) developed a method to 

capture the spatial distribution of local semantic information in a scene using meaning maps, 

which were designed to be comparable to saliency maps. To construct the maps, raters were 

prompted to rate small patches taken from a real-world scene on the degree to which each 

patch was informative or recognizable. General informativeness as captured by meaning 

maps has been shown to account for variance in attention better than Graph-Based Visual 

Saliency maps (GBVS; Harel et al., 2006) while observers engaged in aesthetic judgment 

and memorization tasks (Henderson & Hayes, 2017, 2018; Rehrig, Hayes, et al., 2020), 

action and scene description tasks (Henderson et al., 2018; Rehrig, Peacock, et al., 2020), 

and free-viewing tasks (Peacock et al., 2019b). Furthermore, in a recognition memory task, 

observers were more likely to resample previously fixated regions in a scene when those 

regions were informative, as captured by meaning maps (Ramey et al., 2020). These findings 

indicate that semantic information in scenes guides visual attention, consistent with the 

cognitive guidance theory of overt visual attention.

Meaning maps have shown that the distribution of local semantic information—broadly 

defined—guides visual attention in a scene (Henderson & Hayes, 2017, 2018; Henderson et 

al., 2018; Peacock et al., 2019a, 2019b; Rehrig, Hayes, et al., 2020). While meaning maps 

have proven useful in demonstrating the relationship between scene semantics and visual 

attention, they were not intended to be a complete representation of semantic information in 

scenes, but instead were meant to serve as a starting point to quantify semantic information 

in scenes in a new way. As such, the rating instruction used to construct the original meaning 

maps was intentionally quite broad—to indicate how informative or recognizable the patch 

appeared to be, following Antes (1974) and Mackworth and Morandi (1967)—with the 

understanding that the features queried do not capture all of scene semantics. However, the 

mapping procedure is flexible in that the instructions can be modified to tap into raters’ 

conceptions of different types of information in the scene. In our previous work (Rehrig, 

Peacock, et al., 2020), we altered the rating instruction to investigate whether grasping 

affordances—the possible grasping interactions that could be performed with objects in the 

scene—predict visual attention when speakers describe actions that could be carried out in 

a scene. Our goal was not to develop a computational model that predicts viewer fixations 

perfectly, but rather to determine what kind of information in scenes is most relevant for 

the cognitive processes that give rise to overt attention during the action description task. To 

isolate what information is cognitively relevant, we measured different kinds of information 

to see what type of information predicted visual behavior best. We constructed physical 

saliency, meaning, and grasp maps, and correlated each map with an attention map derived 

from viewer fixations in three action description experiments. For typical real-world scenes, 

we found that meaning maps explained variance in attention maps best (consistent with 

Hayes and Henderson, 2019a; Henderson and Hayes, 2017; Henderson et al., 2018; Peacock 

et al., 2019a), but meaning and grasp maps explained comparable variance in attention when 

scenes instead depicted reachable spaces. The results suggest that general informativeness 

guides attention best overall, but grasping object affordances can guide attention as well as 

general semantic information does when graspable objects are shown within reach of the 

camera’s viewpoint—in other words, when the scene itself is conducive to grasping objects.
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In Rehrig, Peacock, et al. (2020), we found that both grasping object affordances and general 

informativeness guide visual attention in scenes that depict reachable spaces, contributing 

to the evidence that object affordances influence attention. However, it remains puzzling 

that the influence of object affordances on attention was weak for scenes that were not 

optimized for grasping, given that object affordances predicted attention well in other studies 

(Castelhano & Witherspoon, 2016; Gomez et al., 2018; Gomez & Snow, 2017). We suspect 

object affordances underperformed in Rehrig, Peacock, et al. (2020) due to the narrow 

way in which we defined them. Because we operationalized object affordances as grasping 

affordances specifically—a very narrow type of object affordance—grasp maps were likely 

unable to capture the influence of object affordances on attention broadly, and therefore 

our prior work may have underestimated the degree to which object affordances guide 

visual attention. Rather than mapping scenes to capture another specific variety of object 

affordance, in the current study we constructed interact maps to capture the degree to which 

any type of object interaction (e.g., grasping, sitting, watching, etc.) was possible in a scene. 

Once we constructed a broader measure of object affordances, we re-analyzed the fixation 

data to determine which of the three types of semantic information we quantified was best 

able to predict attended scene locations using a hierarchical logistic regression model that 

compared meaning, grasp, and interact map values to determine which features predicted the 

locations that were attended in the scene.

The current study expands on Rehrig, Peacock, et al. (2020) in several ways. First, we 

constructed interact maps for scenes in the Rehrig, Peacock, et al. (2020) data set to capture 

broadly-defined object affordances in a scene. Second, we constructed meaning, grasp, and 

interact maps for the 15 scenes that were not originally included in the Rehrig, Peacock, et 

al. (2020) analysis, doubling the number of scenes included in the Experiment 1 data set 

(N = 30 scenes). Third, to explore whether task goals mediate the influence of semantic 

information in the scene on attention, we analyzed eye movements in two additional data 

sets for which the task was not to describe the actions possible in a scene: an open-ended 

scene description task (Henderson et al., 2018; Experiment 4) and a scene memorization task 

(Rehrig, Hayes, et al., 2020; Experiment 5). The two additional data sets included the same 

scenes and the same number of subjects as Experiment 1 in Rehrig, Peacock, et al. (2020). 

Finally, we analyzed the data using a new approach inspired by Nuthmann et al. (2017) 

and developed by Hayes and Henderson (2021), which enabled us to examine fine-grained 

differences between regions that were selected for attention over other parts of the scene that 

were not fixated.

Nuthmann et al. (2017) developed a novel analysis approach that exploits two key 

assumptions about overt visual attention: 1) the regions of a scene that are prioritized for 

attention differ from regions that were not attended in ways that are quantifiable (e.g., using 

saliency maps) and 2) measurable differences between attended regions and unattended 

regions may explain why those regions were prioritized for attention over others (e.g., the 

presence of interesting objects). To that aim, Nuthmann et al. (2017) divided scenes into 

a pre-defined grid and assigned each square in the grid a value of 1 if any fixations fell 

within the square, or 0 if the square was not fixated, and conducted a logistic mixed-effects 

regression analysis with the average values for various saliency models and Euclidean 

distance from the center of the screen for each square in the grid as predictors in the 
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model. Hayes and Henderson (2021) expanded on Nuthmann et al. (2017)’s approach to 

obviate the need for a grid, instead measuring center proximity (inverted from Euclidean 

center distance) and feature values (in this case, semantic values for objects computed from 

ConceptNet) in a 3° diameter window approximating the size of the fovea around each 

fixation coordinate, as well as from randomly sampled locations that were not fixated.

In the current study, we implemented Hayes and Henderson’s (2021) analysis approach on 

fixation data from 5 eyetracking experiments previously reported in Henderson et al. (2018), 

Rehrig, Peacock, et al. (2020), and Rehrig, Hayes, et al. (2020). Our goal was to determine 

whether overt visual attention is guided by semantic information broadly construed, or by 

object affordances. To that aim, we assessed whether general informativeness, graspability, 

or interactability predicted visual attention across 3 different types of tasks: 1) action 

description, in which speakers describe the actions that could be carried out in a scene, 

2) scene description, in which speakers describe a scene however they like, and 3) scene 

memorization, in which observers study a scene in preparation for a later recognition 

memory task. Because image salience did not predict attention well in our previous work 

(Henderson et al., 2018; Rehrig, Peacock, et al., 2020; Rehrig, Hayes, et al., 2020), we 

instead focused only on three different operationalizations of semantic information in 

the new analysis: general informativeness, graspability, and interactability, as captured by 

meaning, grasp, and interact maps, respectively. Based on our previous work (Henderson 

et al., 2018; Rehrig, Peacock, et al., 2020; Rehrig, Hayes, et al., 2020), we expected 

meaning to predict fixated locations well overall across tasks. With respect to the action 

description experiments (1–3) specifically, we expected meaning map values to perform 

better than grasp map values in Experiments 1 and 2, and we expected both meaning and 

grasp map values to predict fixated locations well in Experiment 3 because the scenes 

depicted reachable spaces. If general object affordances as captured by interact maps predict 

attention better than the narrowly-defined grasping affordances, we expected interact map 

values to predict fixated locations better than grasp map values in all three action description 

experiments, and to perhaps rival general informativeness. If object affordances guide 

attention even when they are less task-relevant, but might still be mentioned in a description, 

we expect interact map values—and possibly grasp map values—to predict fixated locations 

when observers described scenes however they liked (Experiment 4). Likewise, if object 

affordances guide attention generally (as suggested by Gomez et al., 2018; Gomez and 

Snow, 2017), not just when the task is not explicitly linguistic in nature, then we similarly 

expect interact map and grasp map values to predict fixated locations well in a scene 

memorization task (Experiment 5).

Methods

Eyetracking Data Collection

Subjects—All subjects were undergraduate students enrolled at the University of 

California, Davis who participated in exchange for course credit. They spoke English 

as a first language, were at least 18 years old, and had normal or corrected-to-normal 

vision. They were naive to the purpose of the experiment and provided informed consent 

as approved by the University of California, Davis Institutional Review Board. Thirty-
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two subjects in Experiment 1 participated (2 excluded from analysis); 48 participated in 

Experiment 2 (8 excluded), 49 participated in Experiment 3 (9 excluded from analysis), 38 

participated in Experiment 4 (8 excluded), and 68 participated in Experiment 5 (8 excluded). 

Across experiments, subjects were excluded from analysis either because their eyes could 

not be tracked accurately, or due to errors caused by software, hardware, or because of 

experimenter error. In Experiment 5 only, 30 of the subjects completed a secondary task 

in addition to memorizing scenes. The secondary task was an articulatory suppression task 

in which subjects repeated a sequence of digits aloud while viewing the scene, which was 

intended to prevent subjects from using internal language to facilitate memorization of the 

scene. The original study showed no effect of articulatory suppression on the relationship 

between scene informativeness and attention (see Rehrig, Hayes, et al., 2020 for details). 

For the purpose of the current analysis, we chose to examine the control condition only (the 

scene memorization task with no secondary task) in order to draw a clean comparison with 

the description experiments that involved fewer changes in experimental parameters; data 

from 30 participants in the control condition were analyzed.

Stimuli—In all experiments, digitized and luminance-matched photographs of real-world 

scenes depicting indoor and outdoor environments were presented at 1024×768 resolution. 

There were 30 scenes presented in Experiments 1, 4, and 5, and 20 in Experiment 2 (15 of 

which were also presented in Experiment 1). In Experiment 3, 20 scenes were presented, 

15 of which were photographed by the first and third authors to depict reachable spaces. 

For those 15 scenes, the authors confirmed that objects in the foreground of the scene were 

within reach of the scene’s viewpoint. The remaining scenes were drawn from other studies: 

four from Xu et al. (2014) and one from Rehrig et al. (2021). Text was removed from each 

scene presented in Experiment 3 using the clone stamp and patch tools in Adobe Photoshop 

CS4. One scene in Experiment 2 showed people in the background of the image; faces were 

not present in the other 54 scenes. See Appendix for all 55 scenes and feature maps.

Apparatus—In all experiments, eye movements were recorded with an SR Research 

EyeLink 1000+ tower mount eyetracker (spatial resolution 0.01) at a sampling rate of 1000 

Hz. Head movements were minimized using a chin and forehead rest integrated with the 

eyetracker’s tower mount. Although viewing was binocular, eye movements were recorded 

from the right eye only. The experiment was controlled using SR Research Experiment 

Builder software. Audio was recorded digitally at a rate of 48 kHz using a Shure SM86 

cardioid condenser microphone.

In Experiments 1, 4, and 5, subjects sat 85 cm away from a 21” monitor such that scenes 

subtended approximately 27° × 20.5° visual angle, and audio was recorded digitally at a 

rate of 48 kHz using a Roland Rubix 22 USB audio interface and a Shure SM86 cardioid 

condenser microphone. In Experiments 2 and 3, subjects sat 83 cm away from a 24.5” 

monitor such that scenes subtended approximately 27° × 20.5° visual angle at a resolution 

of 1024×768 pixels, presented in 4:3 aspect ratio. For both Experiments 2 and 3, data were 

collected on two separate systems that were identical except that the operating system for the 

subject computer in one system was Windows 10, and Windows 7 on the other.
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Procedure—A calibration procedure was conducted at the beginning of each session to 

map eye position to screen coordinates. Successful calibration required an average error 

of less than 0.49° and a maximum error below 0.99°. Fixations and saccades were parsed 

with EyeLink’s standard algorithm using velocity and acceleration thresholds (30°/s and 

9500°/s2; SR Research, 2017).

After successful calibration, subjects received task instructions. In Experiments 1 and 2, the 

instructions were as follows: “In this experiment, you will see a series of scenes. In each 

scene, think of the average person. Describe what the average person would be inclined 

to do in the scene. You will have 30 seconds to respond.” In Experiment 3, subjects were 

instead instructed as follows: “In this experiment, you will see a series of scenes. For each 

scene, describe what you would do in the scene. You will have 30 seconds to respond.” In 

Experiment 4, subjects were instructed to describe scenes as follows: “In this experiment, 

you will see a series of scenes. You will have 30 seconds to describe the scene out loud.”. In 

Experiment 5, subjects were instructed to study a series of scenes for a later memory test. In 

each experiment, the instruction was followed by three practice trials that allowed subjects 

to familiarize themselves with the task and the duration of the response window. Subjects 

pressed any button on a button box to advance throughout the task.

The task instruction was repeated before subjects began the experimental block (Fig.1a). 

Within the block, each subject received a unique pseudo-random trial order that prevented 

two scenes of the same type (e.g., living room) from occurring consecutively. A trial 

proceeded as follows. First, a five-point fixation array was displayed to check calibration 

(Fig.1b). The subject fixated the center cross and the experimenter pressed a key to 

begin the trial if the fixation was stable, otherwise the experimenter reran the calibration 

procedure. The scene was then shown for a period of 30 seconds (Experiments 1–4) or 

12 seconds (Experiment 5), during which time eye-movements were recorded (Fig.1c). In 

Experiments 1–4, audio was also recorded during scene viewing. After the scene viewing 

period ended, subjects were instructed to press a button to proceed to the next trial (Fig.1d). 

The trial procedure repeated until all trials were complete (Experiments 1,4,&5 = 30 trials, 

Experiments 2 and 3 = 20 trials). In Experiment 5 only, subjects completed a recognition 

memory test comprised of the 30 scenes presented in the experiment and 30 image foils 

depicting similar scenes.

Eye movement data were imported offline into MATLAB using the Visual EDF2ASC tool 

packaged with SR Research DataViewer software. The first fixation was excluded from 

analysis, as were saccade outliers (amplitude > 20°).

Meaning, Grasp, and Interact Map Generation

We used the same meaning and grasp maps generated in all three experiments as described 

in Rehrig, Peacock, et al. (2020). We additionally mapped 15 scenes for informativeness 

and graspability, and mapped all 55 scenes for interactability. The mapping procedure was 

identical between the current study and Rehrig, Peacock, et al. (2020). In the interest of 

brevity, we describe details of the mapping procedure only for maps introduced in the 

current study.
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Meaning Maps—Meaning maps were generated using a contextualized rating procedure in 

which subjects viewed small circular patches drawn from the scene alongside a thumbnail 

image showing the full scene that included a green circle showing what region the patch 

came from (Peacock et al., 2019b). Each of the 15 scenes (1024×768 pixel) was decomposed 

into a series of partially overlapping circular patches at fine and coarse spatial scales 

(Fig.2b&c), resulting in 4,500 unique fine-scale patches (93 pixel diameter) and 1,620 

unique coarse-scale patches (217 pixel diameter), 6,120 patches in total.

Raters were 97 undergraduates enrolled at UC Davis who participated through Sona.1 

Students received credit toward a course requirement for participating. Subjects were at least 

18 years old, had normal or corrected-to-normal vision, and had normal color vision.

Each subject rated 300 random patches extracted from the 15 scenes, presented alongside a 

small (256 × 192 pixel) image of the scene for context. Subjects were instructed to rate how 

informative or recognizable each patch was using a 6-point Likert scale (‘very low’, ‘low’, 

‘somewhat low’, ‘somewhat high’, ‘high’, ‘very high’). Prior to rating patches, subjects were 

given two examples of low-meaning and two examples of high-meaning scene patches in 

the instructions to ensure that they understood the task. Scene-patch pairs were presented in 

random order.

Ten catch trials, which were easy for a human completing the task in good faith to answer 

correctly, were included in each survey to serve as an attention check. Each catch trial 

presented a unique catch patch to the subject to rate, which showed a blank surface drawn 

from the scene (usually a wall or ceiling; see Fig.3). As in the test trials, catch patches 

were presented alongside an image showing where in the scene the patch was drawn from 

so that subjects were not aware the trial was an attention check. If subjects complete the 

task in accordance with the examples provided in the task instructions, catch patches should 

be rated as low in meaning (a value of 1 or 2 on the Likert scale). To score catch trial 

performance, ratings of 2 or lower were considered correct responses, and ratings of 3 or 

higher were scored as incorrect. Ratings from 34 subjects who scored below 80% on the 

catch patches were excluded. Each unique patch was rated at least 3 times by 3 independent 

raters for a total of 18,360 ratings.

Meaning maps were generated from the ratings by averaging, smoothing, and combining the 

fine and coarse scale maps from the corresponding patch ratings. The ratings for each pixel 

at each scale in each scene were averaged, producing an average fine and coarse rating map 

for each scene. The fine and coarse maps were then averaged [(fine map + coarse map)/2]. 

This procedure was used for each scene. The final map was blurred using a Gaussian filter 

via the MATLAB function ‘imgaussfilt’ with a sigma of 10 (see Fig.2e for an example 

meaning map).

Grasp Maps—Grasp maps were constructed from ratings in the same manner as meaning 

maps, with the critical exception that subjects rated each patch on how ‘graspable’ the region 

of the scene shown in the patch was. In the instructions, we defined ‘graspability’ as how 

1More raters were used because we had to generate interact maps for 55 scenes, as opposed to only 15 scenes for the other map types.
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easily an object depicted in the patch could be picked up or manipulated by hand. If a patch 

contained more than one object or only part of an object, raters were instructed to use the 

object or entity that occupied the most space in the patch as the basis for their rating. The 

remainder of the procedure was identical to the one used to generate meaning maps.

Raters were 83 undergraduates enrolled at UC Davis who participated through Sona. 

Students received credit toward a course requirement for participating. Subjects were at 

least 18 years old, had normal or corrected-to-normal vision, and had normal color vision.

Each subject rated 300 random patches extracted from the 15 scenes, presented alongside 

a scene thumbnail for context. Subjects were instructed to rate how graspable each patch 

was using a 6-point Likert scale (‘very low’, ‘low’, ‘somewhat low’, ‘somewhat high’, 

‘high’, ‘very high’). Prior to rating patches, subjects were given two examples each of 

low-graspability and high-graspability scene patches in the instructions to ensure that they 

understood the task. Scene-patch pair presentation order was random. Ratings from 20 

subjects that scored below 80% on the catch patches were excluded. Each unique patch was 

rated at least 3 times by 3 independent raters for a total of 18,360 ratings.

Grasp maps were generated in the same manner as the meaning maps. Ratings were 

averaged, smoothed, and combined across scales. The ratings for each pixel at each scale in 

each scene were averaged, producing an average fine and coarse rating map for each scene. 

This procedure was used for each scene. An example grasp map can be seen in Fig.2f.

Interact Maps—Interact maps were constructed in the same manner as meaning and grasp 

maps, except subjects were asked to rate the region of the scene that was visible in each 

patch based on how ‘interactable’ it was. We defined ‘interactability’ as the extent to which 

the subject viewed what was shown as an object with which a human might interact. As in 

the grasp map generation procedure, subjects were again instructed to rate the object that 

occupied the majority of the patch.

Each of the 55 scenes (1024×768 pixel) was decomposed into a series of partially 

overlapping circular patches at fine and coarse spatial scales (Fig.2b&c), resulting in 16,500 

unique fine-scale patches (93 pixel diameter) and 5,940 unique coarse-scale patches (217 

pixel diameter), 22,440 patches in total.

Raters were 328 undergraduates enrolled at UC Davis who participated through Sona.1 

Students received credit toward a course requirement for participating. Subjects were at least 

18 years old, had normal or corrected-to-normal vision, and had normal color vision.

Each subject rated 300 random patches extracted from the 55 scenes, presented alongside 

a scene thumbnail for context. Subjects were instructed to rate how interactable each patch 

was using a 6-point Likert scale (‘very low’, ‘low’, ‘somewhat low’, ‘somewhat high’, 

‘high’, ‘very high’). Prior to rating patches, subjects were given two examples each of 

low-interactability and high-interactability scene patches in the instructions to ensure that 

they understood the task. Scene-patch pair presentation order was random. Ratings from 103 

subjects that scored below 80% on the catch patches were excluded. Each unique patch was 

rated at least 3 times by 3 independent raters (at least 67,320 ratings in total).
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Interact maps were generated in the same manner as the meaning and grasp maps. Ratings 

were averaged, smoothed, and combined across scales. This procedure was used for each 

scene. An example interact map is shown in Fig.2g.

Overall, the resulting meaning, grasp, and interact maps were correlated with one another; 

the correlation was particularly high for grasp and interact maps in Experiment 3 

MR2 = 0.72, SDR2 = 0.10  (Table 1).

Analysis—Following Nuthmann et al. (2017), we examined which features influenced 

visual attention by comparing the feature map values at locations in the scene that were 

fixated to those for locations that were not, operating on the assumption that differences 

between regions of the scene that were and were not fixated speak to what information is 

prioritized for attention. Rather than dividing the scene into a grid (as Nuthmann et al., 2017 

did), we elected to use the procedure developed by Hayes and Henderson (2021) to measure 

meaning, grasp, and interact map values in a window around each location, and compared 

the values for fixated locations to those of sampled locations in the scene that were not 

fixated.

Specifically, we conducted a logistic mixed-effects regression analysis in which the 

dependent variable was whether subjects fixated a location (1) or not (0). The dependent 

variable was defined as follows. For each subject and each trial, the x,y coordinates 

corresponding to the subject’s fixations were assigned a value of 1 (fixated). A number of 

locations that were not fixated equal to the number of fixated locations were then randomly 

sampled from all possible coordinates in the 1024×768 image using the ‘sample’ function 

from the ‘random’ module in Python 3. Locations that the subject fixated during that trial, 

or locations that fell within a 1.5° visual angle (56 pixel) radius around the fixated location, 

were excluded from the sample space. The randomly sampled coordinates were assigned a 

value of 0 (not fixated).

We accounted for center bias in our model (Tatler, 2007; Hayes and Henderson, 2019b) 

using the center proximity measure developed by Hayes and Henderson (2021). We 

calculated the inverted Euclidean distance between the center of the scene and each other 

pixel in the image and stored the value for each pixel in a 1024×768 matrix. The Euclidean 

distance was z-scored and inverted for ease of interpretation such that higher values indicate 

closer proximity to the center of the scene.

For each x,y coordinate pair, we then computed the mean feature and center proximity 

map values corresponding to a 3° visual angle (113 pixel) diameter window around the 

coordinate. We defined a mask for the region around the fixation using a 56 pixel radius. The 

mask was then used to extract an array of map values for the meaning, grasp, interact, and 

center proximity maps, and the mean of each array was stored as the average feature map 

values corresponding to the x,y coordinate under consideration.

A logistic mixed-effects model was constructed for each experiment’s data using the ‘glmer’ 

function of the ‘lme4’ package in R (Bates et al., 2015; R Core Team, 2021). Each model 

was maximally specified to include fixed effects of center proximity, meaning, grasp, 
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and interact, as well as interactions between each. Random intercepts and random slopes 

corresponding to fixed effects and their interactions were included in both random effect 

structures. To facilitate model convergence, all predictors were centered and scaled using 

the ‘scale’ function in base R prior to analysis, and random slopes and intercepts were 

uncorrelated. All models used the default optimizer (bobyqa). Random effects were included 

for subjects and items (scenes). Because the data sets in use are large, the maximum number 

of model iterations was increased to 100,000.

Results

Experiment 1

In Experiment 1, 30 subjects were asked to describe actions the average person could carry 

out in each of 30 real-world scenes. We predicted that object affordances as captured by 

interact and grasp maps would predict regions in the scene that were selected for attention 

as subjects described possible actions, because objects that can be interacted with are 

task-relevant.

Locations in the scene that were fixated were more informative on average (M = 3.05, SD = 

0.76) than randomly sampled locations (M = 2.62, SD = 0.77)(Fig.5a). Locations that were 

fixated also had higher grasp map values on average (M = 3.26, SD = 0.86) than randomly 

sampled locations that were not (M = 2.91, SD = 0.88). Interact map values were also higher 

on average for locations that were fixated (M = 3.16, SD = 0.89) than those that were not 

fixated (M = 2.74, SD = 0.90). Consistent with center bias, fixated locations had higher 

center proximity on average (M = 0.60, SD = 0.95) than randomly sampled locations that 

were not fixated (M = −0.28, SD = 0.89).

Consistent with the hypothesis that object affordances broadly influence visual attention, 

there was a simple main effect of interact such that subjects were more likely to fixate 

locations that had higher interact map values (β = 0.48, z = 4.40, p < .0001)(Table 2). 

Counter to our predictions, there was no simple main effect of meaning (β = 0.10, z = 1.14, 

p = 0.26). There was a reliable interaction between grasp and interact such that locations in 

the scene that had low interact map values were more likely to be fixated if they had high 

grasp map values (β = −0.17, z = −2.29, p = .02). The model revealed a simple main effect 

of center proximity such that subjects were more likely to fixate locations near the center 

of the image (β = 0.82, z = 13.67, p< .0001), consistent with center bias (Tatler, 2007). 

There was a reliable interaction between center proximity and meaning such that locations 

further from the screen center were more likely to be fixated if they had higher meaning map 

values (β = −0.15, z = −2.88, p = .004), and an opposite reliable interaction between center 

proximity and grasp such that locations further from the center of the scene were less likely 

to be fixated if they had high grasp map values (β = 0.17, z = 2.69, p = .007)(Fig.6). Finally, 

there was a marginal interaction between interact and center proximity such that regions of 

the scene in the periphery were marginally more likely to be fixated if they had high interact 

map values (β = −0.13, z = −1.91, p = .06). No other predictors were significant.

In sum, interact map values predicted fixated locations in the scene better than meaning or 

grasp, which were only influential in interactions which revealed that observers deviated 
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from the center of the image to pursue locations that were more informative or interactable, 

but not highly graspable. As expected, fixated locations were closer to the center of the 

image, reflecting center bias.

Experiment 2

In Experiment 2, we again asked 40 subjects to describe actions the average person could 

carry out in each of 20 real-world scenes, and once again we anticipated object affordances 

(as captured by grasp and interact maps) would predict the regions that were fixated in the 

scene.

As in Experiment 1, fixated locations had higher average meaning map values (M = 2.87, 

SD = 0.70) than randomly sampled locations that were not fixated (M = 2.51, SD = 0.73), 

and higher grasp map values (M = 3.52, SD = 0.79) than randomly sampled locations (M 
= 3.17, SD = 0.84). Consistent with our hypothesis and the results of Experiment 1, fixated 

locations in the scene had higher interact map values (M = 3.23, SD = 0.81), than those that 

were not fixated (M = 2.86, SD = 0.83). Finally, fixated locations were closer to the center of 

the image on average (M = 0.54, SD = 0.94) than locations that were sampled from parts of 

the scene that were not fixated (M = −0.27, SD = 0.90).

Consistent with Experiment 1, there was a simple main effect of interact such that subjects 

were more likely to fixate locations that had higher interact map values (β = 0.38, z = 2.67, 

p = 0.008)(Table 3). There was a reliable interaction between meaning and grasp such that 

locations with high meaning values were more likely to be fixated if they also had high 

grasp map values (β = 0.23, z = 2.63, p = 0.009)(Fig.7). The model revealed a simple main 

effect of center proximity reflecting center bias (β = 1.15, z = 8.47, p < .0001). There was a 

marginal interaction between meaning and center proximity such that locations further from 

the center of the image were marginally more likely to be fixated if they were informative (β 
= −0.19, z = −1.80, p = 0.07), and a marginal three-way interaction between grasp, interact, 

and center proximity such that regions close to the center of the image were marginally more 

likely to be fixated when they had low interact map values if they had high grasp map values 

(β = −0.21, z = −1.88, p = 0.06). No other predictors were significant.

Consistent with Experiment 1, interact map values predicted fixated locations in the scene, 

and meaning and grasp did not predict fixated locations well independently, though each 

had some influence in interactions. There was a significant effect of center bias such that 

fixated locations were closer to the center of the image, and there was a marginal interaction 

between center proximity, interact, and grasp such that regions in the center of the image 

that were low in interactability were more likely to be fixated if were high in graspability.

Experiment 3

In Experiment 3, we asked 40 subjects to describe actions that they personally would 

carry out in each of 20 real-world scenes, which depicted reachable spaces (Josephs & 

Konkle, 2020). We anticipated object affordances (as captured by grasp and interact maps) 

might predict the regions that were fixated in the scene more strongly than in the first two 

experiments because the task instruction was personalized and the scenes depicted spaces 

that afford object interactions particularly well.
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Fixated locations again had higher average meaning map values (M = 2.90, SD = 0.71) than 

sampled locations did (M = 2.51, SD = 0.75). Grasp map values were also higher on average 

for fixated locations (M = 3.40, SD = 0.77) than sampled locations (M = 2.93, SD = 0.88). 

Finally, fixated locations in the scene again had higher interact map values (M = 3.53, SD 
= 0.74), than randomly sampled locations that were not fixated did (M = 3.07, SD = 0.85). 

Once again, fixated locations were closer to the center of the image (M = 0.57, SD = 0.91) 

on average than randomly sampled locations were (M = −0.31, SD = 0.90).

Consistent with the previous two experiments, there was a simple main effect of interact 

such that subjects were more likely to fixate locations that had higher interact map values (β 
= 0.22, z = 2.53, p = 0.01)(Table 4). There was a marginal effect of grasp such that regions 

were marginally more likely to be fixated when they had higher grasp map values (β = 0.15, 

z = 1.67, p = 0.095). The model revealed a simple main effect of center proximity reflecting 

center bias (β = 1.02, z = 14.52, p< .0001). There was a reliable interaction between center 

proximity, meaning, and interact such that locations further from the center of the image 

were more likely to be fixated when both interact and meaning map values were high (β = 

−0.15, z = −2.36, p = 0.02), and a reliable interaction between center proximity, grasp, and 

interact such that locations in the periphery with low interact map values were more likely to 

be fixated if they had high grasp map values (Fig.8). No other predictors were significant.

In Experiment 3, interact map values again predicted fixated locations in the scene better 

than meaning or grasp, though grasp was a marginal independent predictor. There was again 

a reliable center bias on fixated locations, and there were reliable interactions between center 

proximity, meaning, and interact map values and center proximity, grasp, and interact map 

values.

Experiment 4

To determine whether the finding that interactability predicts fixated locations generalizes 

to a description task for which object interactions are less task-relevant, we applied the 

analysis performed on the action description tasks (Experiments 1–3) to fixation data from 

an open-ended description task (Henderson et al., 2018) that used the same 30 scenes 

presented in Experiment 1.

If object interactions guide attention in scenes even when actions are less task-relevant, we 

anticipate that the analysis will show a strong predictive relationship between interact map 

values and fixated locations; however, if interact map values predicted well in Experiments 

1–3 because object interactions were highly task relevant—but not generally more important 

than general informativeness for visual attention—we expect meaning map values to predict 

fixated locations better than interact map values.

The analysis was identical to that of Experiments 1–3, with the following exception: 

the maximal model produced singular fit, therefore the random slope that accounted for 

negligible variance (an interaction between center proximity, meaning, and grasp in the 

subject random effect) was pruned from the model (following Barr et al., 2013). The 

resulting model converged without error.
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When subjects described scenes however they liked, the average meaning map values were 

higher for fixated locations (M = 3.30, SD = 0.68) than sampled locations (M = 2.51, SD = 

0.73). Grasp map values were also higher on average for fixated (M = 3.48, SD = 0.83) as 

opposed to sampled locations (M = 2.81, SD = 0.85). Consistent with the action description 

experiments, fixated locations in the scene also had higher interact map values (M = 3.35, 

SD = 0.88) than randomly sampled locations that were not fixated (M = 2.66, SD = 0.86). 

Finally, fixated locations were, on average, closer to the center of the image (M = 0.53, SD = 

0.93) than randomly sampled locations were (M = −0.29, SD = 0.90).

As in the action description experiments, in the open-ended scene description task there was 

a simple main effect of interact such that subjects were more likely to fixate locations that 

had higher interact map values (β = 0.41, z = 2.66, p = 0.008)(Table 5). Counter to the action 

description tasks, there was a simple main effect of meaning such that subjects were more 

likely to fixate locations with higher meaning map values (β = 0.90, z = 7.70, p < .0001). As 

expected, the model revealed a simple main effect of center proximity reflecting center bias 

(β = 0.44, z = 4.08, p < .0001). There was a marginal interaction between center proximity, 

meaning, and grasp such that locations near the center of the scene were marginally more 

likely to be fixated if they had high grasp and meaning map values (β = .21, z = 1.93, p = 

0.05), and there was a reliable 4-way interaction between center proximity, meaning, grasp, 

and interact such that locations in the periphery of the scene that had high meaning map 

values, but lower grasp and interact map values, were more likely to be fixated (β = −0.20, z 
= −2.63, p = 0.009) (Fig.10). No other predictors were significant.

In Experiment 4, both interact and meaning map values predicted fixated locations in the 

scene, whereas grasp map values did not, and there was again a reliable center bias on 

fixated locations.

Experiment 5

To determine whether interactability predicts fixated locations well in a task that does not 

encourage the viewer to think about objects in the scenes and how they would interact 

with those objects, we applied the analysis performed in Experiments 1–4 to fixation data 

from a scene memorization task (Rehrig, Hayes, et al., 2020) that used the same 30 scenes 

presented in Experiments 1 and 4. In Experiment 5, 30 subjects memorized 30 real-world 

scenes for a period of 12 seconds each in preparation for a later recognition memory 

task. Following Rehrig, Hayes, et al. (2020), we expect general informativeness to predict 

fixated locations well. If the strong predictive relationship between object interactability and 

attention observed in Experiments 1–4 generalizes beyond language tasks, we additionally 

expect interact map values to predict fixated locations.

When subjects studied scenes for a later memorization task, the average meaning map values 

were higher for fixated locations (M = 3.34, SD = 0.69) than for randomly sampled locations 

that had not been fixated (M = 2.60, SD = 0.75). Grasp map values were also higher on 

average for fixated (M = 3.50, SD = 0.83) as opposed to sampled locations (M = 2.92, SD = 

0.87). Consistent with the scene description experiments, fixated locations in the scene also 

had higher interact map values (M = 3.31, SD = 0.91) than randomly sampled locations that 

were not fixated (M = 2.78, SD = 0.89). Finally, fixated locations were, on average, closer to 
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the center of the image (M = 0.49, SD = 1.02) than randomly sampled locations were (M = 

−0.14, SD = 0.94).

Unlike Experiments 1–3, but consistent with Experiment 4, in the scene memorization task 

there was a simple main effect of meaning: Subjects were more likely to fixate locations 

that had higher meaning map values (β = 1.49, z = 11.70, p< .0001)(Table 6). There was 

a reliable interaction between meaning and grasp such that locations that had low meaning 

map values were more likely to be fixated when the corresponding grasp map values were 

high (β = −0.23, z = −2.05, p = 0.04)(Fig.12). Consistent with all other experiments, the 

model revealed a simple main effect of center proximity reflecting center bias (β = 0.25, z = 

2.23, p < 0.03). No other predictors were significant.

In stark contrast to the previous experiments, of the three feature maps used, meaning map 

values were the only reliable independent predictor of fixated locations in Experiment 5, 

though there was a reliable interaction between meaning and grasp map values. Consistent 

with all of the previous experiments, there was a reliable effect of center bias on fixated 

locations.

General Discussion

In four data sets used in the current analysis, fixated locations were predicted by interact 

map values such that locations that were highly interactable were more likely to be fixated, 

consistent with the prediction that interactability could rival general informativeness in 

predicting overt visual attention, which follows from the hypothesis that object affordances 

influence attention in scenes. However, interact map values predicted fixated locations only 

for description tasks (Experiments 1–4), but failed to predict fixated locations when the task 

did not have an explicit language component (Experiment 5). When the task was not to 

describe the scene (scene memorization), only meaning map values predicted what locations 

in the scene were fixated. Partially consistent with Rehrig, Peacock, et al. (2020) and with 

our predictions, higher grasp map values marginally predicted fixated locations only when 

scenes depicted reachable spaces (Experiment 3), and otherwise grasp contributed to reliable 

interactions in all experiments. Counter to our predictions, meaning map values were not a 

significant predictor as a simple main effect in any of the action description experiments; 

however, general informativeness was influential in tasks for which object interactions were 

less task-relevant (Experiments 4&5).

Our findings for Experiments 1–4 suggest that object affordances broadly defined (as 

captured by interact maps) predict locations prioritized for visual attention in scenes during 

description tasks; however, in a task that did not encourage the viewer to think about 

objects in the scene or their interactions (Experiment 5), affordances as operationalized in 

the current study did not predict fixated locations. The aforementioned findings are difficult 

to reconcile with those in the literature that show an influence of object affordances on 

attention in visual search tasks (Castelhano & Witherspoon, 2016; Gomez et al., 2018; 

Gomez & Snow, 2017). One possible explanation put forth by Rehrig, Peacock, et al. 

(2020) is that prior work demonstrating a role of object affordances on attention in more 

traditional visual attention experiments (such as visual search; Castelhano and Witherspoon, 
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2016; Gomez et al., 2018; Gomez and Snow, 2017) may have been driven by other object-

related information (such as recognizabilty or informativeness) that was better captured by 

informativeness than general affordances in the current study. However, it might also be 

the case that the 2-dimensional nature of the task used in the current study was unable to 

speak to the role of object affordances in guiding attention to physically present objects as 

demonstrated by Gomez et al. (2018). We leave the challenging task of investigating whether 

attentional guidance is better explained by general informativeness or object affordances for 

3-dimensional or physically present objects to future work.

The influence of affordances on attention in the description tasks (Experiments 1–4) is 

consistent with literature implicating object affordances in language processing broadly 

(Borghi, 2012; Borghi & Riggio, 2009; Feven–Parsons & Goslin, 2018; Glenberg et al., 

2009; Glenberg & Kaschak, 2002; Grafton et al., 1997; Harpaintner et al., 2020; Kaschak 

& Glenberg, 2000; Martin, 2007). Neuroimaging studies have revealed motor activation 

associated with object-related cognitive processes (Martin, 2007), and specifically with 

language processes such as silently naming an object (Grafton et al., 1997), or making 

lexical decisions about action words (Harpaintner et al., 2020). A priming study showed 

an object’s semantics are not prioritized over its affordances when processing object names 

(Feven–Parsons & Goslin, 2018). Evidence from language comprehension suggests that 

we interpret sentences through human action (Glenberg et al., 2009; Glenberg & Kaschak, 

2002; Kaschak & Glenberg, 2000): for example, an object’s affordances can facilitate 

detection of the object’s name in sentences (Borghi, 2012; Borghi & Riggio, 2009). Studies 

of language-mediated visual attention suggest that, while listening to speech presented 

concurrent with scene viewing, observers attend to objects in a scene with affordances 

that are compatible with those of the events or objects mentioned (Altmann & Kamide, 

1999; Chambers et al., 2002; Chambers et al., 2004; Kako & Trueswell, 2000; Kamide et 

al., 2003), particularly when object affordances are task-relevant (Salverda et al., 2011). 

Altmann and Kamide (2007) argued that processes of language comprehension activate 

conceptual representations associated with a referent (such as an object or event), and, in 

turn, visual attention seeks out objects in the scene that have compatible object affordances. 

The results of the current study are compatible with the idea that the mediating effects 

of language on visual attention described by Altmann and Kamide (2007) may extend to 

language production tasks, and to the allocation of attention in real-world scenes. However, 

the current study cannot differentiate between the possibility that object affordances 

influenced attention in Experiments 1–4 because description tasks engage the language 

system, or because description tasks encourage the observer to think about objects in the 

scene and the interactions they afford more carefully than other tasks would. Future work 

will be needed to determine which of the two possibilities best explains the observed 

relationship between object affordances and visual attention.

It is worth noting that Experiments 1, 4, & 5 used the same stimuli and maps, and tested 

the same number of subjects, yet the influence of the types of semantic information we 

quantified in the current study (informativeness, graspability, and interactability) on attention 

differed in each. We attribute the difference to the observer’s task, which changed across 

the three experiments. When object affordances were most task relevant—as observers 

described the potential actions available to them in a scene—interactability predicted 
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attended locations better than meaning or graspability (Experiment 1), but when observers 

simply described what they saw, informativeness and interactability both guided attention 

(Experiment 4). Finally, when object affordances were least task-relevant, informativeness 

influenced visual attention and interactability did not (Experiment 5). The difference in 

findings dependent on the task instruction supports the idea that object affordances exert a 

greater influence on cognition when they are task-relevant (Ostarek & Huettig, 2019).

In the previous analysis using much of the same data, grasping affordances only explained 

variation in fixation density effectively when the scenes depicted reachable spaces, which 

led us to conclude that affordances guide attention for stimuli that are especially conducive 

to acting on the environment (Rehrig, Peacock, et al., 2020). In contrast, the present 

analysis revealed that object affordances broadly, as captured by interact maps, predicted 

fixated locations during the same action description experiments even in scenes that were 

less clearly conducive to interaction, including the scenes for which graspability did not 

explain attention well in the prior study. Consistent with Rehrig, Peacock, et al. (2020), 

grasping affordances—as captured by grasp maps—marginally predicted fixated locations 

when scenes depicted reachable spaces. Through comparing the results of the current 

analysis with those reported in Rehrig, Peacock, et al. (2020), we conclude that grasping 

affordances influence attention only when objects would be within reach (conducive to 

grasping), despite the fact that possible grasping interactions are task-relevant in all scenes, 

but object affordances more broadly exert a strong influence on attention when the possible 

actions in the scene are relevant to the speaker’s goals. These findings suggest that the 

possible grasping actions in an environment are only relevant to observers when the object 

is within reach and thus would be readily acted upon; however, an alternative explanation 

is simply that any highly constrained, specific affordance—be it grasping, lifting, sitting, 

etc.—would underperform in our model relative to a representation that captures a wide 

range of possible interactions with the environment. It is further possible that graspability 

would perform as well as, or perhaps better, than interactability in a task for which grasping 

interactions specifically were highly task-relevant—for example, if observers were asked to 

study a scene for the purpose of planning to sanitize objects in the scene, or to pack the 

items in the room for a move. We leave investigation of the latter possibility to future work.

Our findings further illustrate the flexibility and utility of the mapping procedure, originally 

developed to construct meaning maps, in capturing different types of semantic information 

in scenes (Henderson et al., 2021). The meaning, grasp, and interact maps used in the 

current study are all primarily derived from stored semantic representations of objects and 

scene categories that comprise semantic knowledge for scenes. Although each map taps 

semantic representations in a similar way, and the maps are correlated with one another, the 

fact that each differed in their ability to predict fixated locations across tasks indicates that 

the different maps tapped dissociable forms of semantic information, which suggests raters 

in the crowd-sourcing task were sensitive to variation in the instructions and followed them 

diligently.
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Conclusion

The current analysis investigated what type of semantic information guides attention in a 

scene. We conducted a novel analysis on existing data sets (Henderson et al., 2018; Rehrig, 

Peacock, et al., 2020; Rehrig, Hayes, et al., 2020) and determined which of three forms of 

semantic information best accounted for overt visual attention: (1) general informativeness, 

the informativeness or recognizability of scene regions, (2) graspability, the degree to which 

what is shown in a region can be grasped, and (3) interactability, the degree to which a 

scene region depicts objects that can be interacted with in any way. Of the forms of semantic 

information tested, interactability was the strongest predictor of locations speakers fixated 

across three action description experiments, suggesting that the actions objects in a scene 

afford exert a strong influence on attention during action descriptions, moreso than what 

the results originally reported in Rehrig, Peacock, et al. (2020) suggested. When speakers 

described scenes however they liked (Henderson et al., 2018), both interactability and 

informativeness predicted fixated locations; however, only informativeness predicted fixated 

locations when the task had no explicit language component (scene memorization; Rehrig, 

Hayes, et al., 2020). Consistent with Altmann and Kamide (2007), the results suggest 

that object affordances guide attention when the language system is engaged—to a greater 

degree than informativeness does, at least when affordances are especially task-relevant 

(Experiments 1–3; consistent with Salverda et al., 2011)—while informativeness guides 

attention when the task does not encourage observers to carefully consider the objects 

in the scene, and, by extension, the interactions those objects afford. More generally, the 

finding that different semantic aspects of a scene influence the allocation of visual attention 

differently depending on the viewer’s task offers additional, compelling evidence for the 

cognitive guidance theory of eye movement control (Henderson et al., 2007).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Scenes and feature maps unique to each experiment.

Experiment 1,4,&5 Scenes
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Experiment 2 Scenes

Experiment 3 Scenes
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Figure 1: 
Visualization of the trial procedure for each of the 3 eyetracking experiments. First, (a) 

task instructions were reiterated to subjects following the practice trials. (b) A five-point 

fixation array was used to gauge calibration quality. (c) A real-world scene was shown for 

30 seconds. Eye-movements were recorded for the duration of the viewing period in all 

experiments; audio was additionally recorded in Experiments 1–4. (d) Subjects pressed a 

button to initiate the next trial. After pressing the button, the trial procedure repeated (from 

b).

Rehrig et al. Page 24

Atten Percept Psychophys. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
(a-d) Feature map generation schematic. (a) Real-world scene. Raters saw the real-world 

scene and either a fine (inner) or coarse (outer) green circle indicating the origin of the 

scene patch under consideration. (b-c) Fine-scale (b) and coarse-scale (c) spatial grids used 

to create scene patches. (d) Examples of scene patches that were rated as low or high 

with respect to meaning, grasp, and interact. (e-g) Examples of meaning (e), grasp (f), and 

interact (g) maps for the scene shown in (a).
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Figure 3: 
Examples of fine- (a) and coarse-scale (b) catch patches that were included as attention 

checks.
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Figure 4: 
Visualization of analysis approach. (a) Real-world scene. (b) Scene overlaid with fixated 

(yellow) and randomly sampled (cyan) location coordinates. Circles illustrate the mask 

radius used to compute average feature map values around each fixated (cyan) or sampled 

(yellow) coordinate. (c) Center proximity map. (d-f) Meaning (d), grasp (e), and interact (f) 

maps for the scene shown in (a).
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Figure 5: 
Hybrid violin and box plots. Data for each of the three experiments is shown on separate 

rows. In each row, the left panel shows center proximity (green) both for sampled 

coordinates that were not fixated and for fixated locations (x-axis). The right panel shows 

the average grasp map values around the image coordinate (yellow-orange), average interact 

map values (violet), and average meaning map values (red), shown separately for locations 

that were randomly sampled and fixated locations (x-axis). Center proximity values and map 

values reflect z-values and Likert ratings (1–6), respectively. White points superimposed 

over the violins indicate the grand mean. On the box plots to the left of each violin, black 

horizontal lines correspond to the median, colored boxes indicate the 25% and 75% quartile 

boundaries, and black vertical lines show ± 1.5 IQR (the interquartile range).
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Figure 6: 
Estimated fixation probability (y-axis) for marginal and significant interactions for z-scored 

predictors in Experiment 1. Shaded regions indicate 95% confidence intervals. The top row 

shows the interactions of grasp (x-axis) with interact (lines) and meaning (x-axis) with 

center proximity (lines). The bottom row shows interactions of grasp (x-axis) and center 

proximity (lines) and interact (x-axis) and center proximity (lines).
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Figure 7: 
Estimated fixation probability (y-axis) for marginal and significant interactions for z-scored 

predictors in Experiment 2. Shaded regions indicate 95% confidence intervals. The top row 

shows 2-way interactions: meaning (x-axis) with center proximity (lines) and grasp (x-axis) 

with meaning (lines). The bottom row shows the 3-way interaction between grasp (x-axis), 

interact (lines), and center proximity (facets).
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Figure 8: 
Estimated fixation probability (y-axis) for significant 3-way interaction between z-scored 

predictors in Experiment 3: in the top row, grasp (x-axis), interact (lines), and center 

proximity (facets); in the bottom row, meaning (x-axis), interact (lines), and center proximity 

(facets). Shaded regions indicate 95% confidence intervals.
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Figure 9: 
Hybrid violin and box plots for predictors Experiment 4. The left panel shows center 

proximity (green) both for sampled coordinates that were not fixated and for fixated 

locations (x-axis). The right panel shows the average grasp map values around the image 

coordinate (yellow-orange), average interact map values (violet), and average meaning 

map values (red), shown separately for locations that were randomly sampled and fixated 

locations (x-axis). Center proximity values and map values reflect z-values and Likert 

ratings (1–6), respectively. White points superimposed over the violins indicate the grand 

mean. On the box plots to the left of each violin, black horizontal lines correspond to the 

median, colored boxes indicate the 25% and 75% quartile boundaries, and black vertical 

lines show ± 1.5 IQR (the interquartile range).

Rehrig et al. Page 32

Atten Percept Psychophys. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10: 
Estimated fixation probability (y-axis) for interactions between z-scored predictors in 

Experiment 4. The top figure illustrates a marginal three-way interaction between meaning 

(x-axis), grasp (lines) and center proximity (columns). The bottom figure visualizes a 

reliable four-way interaction between meaning (x-axis), grasp (lines), interact (rows) and 

center proximity (columns). Shaded regions indicate 95% confidence intervals.
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Figure 11: 
Hybrid violin and box plots for predictors Experiment 5. The left panel shows center 

proximity (green) both for sampled coordinates that were not fixated and for fixated 

locations (x-axis). The right panel shows the average grasp map values around the image 

coordinate (yellow-orange), average interact map values (violet), and average meaning 

map values (red), shown separately for locations that were randomly sampled and fixated 

locations (x-axis). Center proximity values and map values reflect z-values and Likert 

ratings (1–6), respectively. White points superimposed over the violins indicate the grand 

mean. On the box plots to the left of each violin, black horizontal lines correspond to the 

median, colored boxes indicate the 25% and 75% quartile boundaries, and black vertical 

lines show ± 1.5 IQR (the interquartile range).
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Figure 12: 
Estimated fixation probability (y-axis) for significant interaction between z-scored predictors 

in Experiment 5: grasp (x-axis) and meaning (lines). Shaded regions indicate 95% 

confidence intervals.
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Table 1:

Correlations (R2) Between Feature Maps

Correlation (R2)

Experiment Feature Maps M SD

1,4,&5 Meaning × Grasp 0.538 0.185

1,4,&5 Meaning × Interact 0.451 0.209

1,4,&5 Grasp × Interact 0.499 0.22

2 Meaning × Grasp 0.526 0.224

2 Meaning × Interact 0.496 0.222

2 Grasp × Interact 0.562 0.195

3 Meaning × Grasp 0.471 0.175

3 Meaning × Interact 0.469 0.182

3 Grasp × Interact 0.715 0.097
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Table 2:

Experiment 1 Logistic Mixed-Effects Model Output

Predictors

Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.004 0.09 0.05 0.96 0.10 0.44

Meaning 0.10 0.09 1.14 0.26 0.16 0.44

Grasp −0.07 0.09 −0.76 0.45 0.17 0.43

Interact 0.48 0.11 4.40 < .0001* 0.29 0.51

Meaning:Grasp −0.03 0.09 −0.37 0.71 0.15 0.43

Meaning:Interact 0.08 0.09 0.86 0.39 0.19 0.45

Grasp:Interact −0.17 0.08 −2.29 0.02* 0.13 0.37

Meaning:Grasp:Interact −0.05 0.05 −0.98 0.32 0.06 0.22

Center Proximity 0.82 0.06 13.67 < .0001* 0.22 0.21

Center Proximity:Meaning −0.15 0.05 −2.88 0.004* 0.09 0.24

Center Proximity:Grasp 0.17 0.06 2.69 0.007* 0.11 0.28

Center Proximity:Interact −0.13 0.07 −1.91
0.06

† 0.12 0.31

Center Proximity:Meaning:Interact −0.06 0.05 −1.20 0.23 0.06 0.21

Center Proximity:Grasp:Interact −0.02 0.07 −0.24 0.81 0.11 0.30

Center Proximity:Meaning:Grasp 0.09 0.06 1.57 0.12 0.07 0.28

Center Proximity:Meaning:Grasp:Interact 0.008 0.03 0.23 0.82 0.05 0.15

Note:

*
denotes a significant predictor or interaction,

†
denotes a marginal predictor or interaction.
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Table 3:

Experiment 2 Logistic Mixed-Effects Model Output

Predictors

Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.11 0.10 1.02 0.31 0.52 0.28

Meaning −0.007 0.14 −0.05 0.96 0.24 0.60

Grasp 0.10 0.10 0.98 0.33 0.17 0.42

Interact 0.38 0.14 2.67 0.008* 0.28 0.59

Meaning:Grasp 0.23 0.09 2.63 0.009* 0.20 0.41

Meaning:Interact 0.11 0.13 0.84 0.40 0.27 0.52

Grasp:Interact −0.18 0.11 −1.58 0.11 0.19 0.47

Meaning:Grasp:Interact −0.07 0.05 −1.23 0.22 0.10 0.22

Center Proximity 1.15 0.14 8.47 < .0001* 0.73 0.31

Center Proximity:Meaning −0.19 0.11 −1.80 0.07* 0.17 0.45

Center Proximity:Grasp 0.0009 0.11 0.008 0.99 0.18 0.43

Center Proximity:Interact −0.003 0.11 −0.03 0.97 0.16 0.45

Center Proximity:Meaning:Grasp 0.09 0.11 0.83 0.41 0.18 0.46

Center Proximity:Meaning:Interact 0.02 0.08 0.28 0.78 0.21 0.28

Center Proximity:Grasp:Interact −0.21 0.11 −1.88
0.06

† 0.24 0.45

Center Proximity:Meaning:Grasp:Interact 0.002 0.04 0.04 0.97 0.14 0.16

Note:

*
denotes a significant predictor or interaction,

†
denotes a marginal predictor or interaction.
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Table 4:

Experiment 3 Logistic Mixed-Effects Model Output

Predictors

Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.04 0.04 1.00 0.32 0.11 0.13

Meaning 0.01 0.07 0.16 0.88 0.25 0.27

Grasp 0.15 0.09 1.67
0.095

† 0.22 0.35

Interact 0.22 0.09 2.53 0.01* 0.19 0.35

Meaning:Grasp 0.12 0.11 1.16 0.25 0.12 0.45

Meaning:Interact 0.04 0.08 0.44 0.66 0.11 0.33

Grasp:Interact −0.09 0.10 −0.89 0.37 0.12 0.44

Meaning:Grasp:Interact −0.03 0.03 −1.11 0.27 0.08 0.10

Center Proximity 1.02 0.07 14.52 < .0001* 0.34 0.19

Center Proximity:Meaning −0.05 0.06 −0.93 0.35 0.11 0.22

Center Proximity:Grasp −0.11 0.08 −1.36 0.18 0.10 0.33

Center Proximity:Interact 0.002 0.08 0.03 0.98 0.11 0.35

Center Proximity:Meaning:Grasp 0.04 0.07 0.58 0.56 0.16 0.23

Center Proximity:Meaning:Interact −0.15 0.06 −2.36 0.02* 0.16 0.22

Center Proximity:Grasp:Interact 0.12 0.06 1.96 0.049* 0.12 0.23

Center Proximity:Meaning:Grasp:Interact 0.02 0.03 0.64 0.52 0.06 0.11

Note:

*
denotes a significant predictor or interaction,

†
denotes a marginal predictor or interaction.
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Table 5:

Experiment 4 Logistic Mixed-Effects Model Output

Predictors

Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.05 0.14 0.33 0.74 0.08 0.78

Meaning 0.90 0.12 7.70 < .0001* 0.19 0.59

Grasp 0.25 0.15 1.64 0.10 0.17 0.80

Interact 0.41 0.16 2.66 0.008* 0.39 0.74

Meaning:Grasp −0.07 0.12 −0.58 0.56 0.14 0.61

Meaning:Interact 0.07 0.13 0.54 0.59 0.17 0.65

Grasp:Interact −0.01 0.12 −0.09 0.93 0.11 0.60

Meaning:Grasp:Interact −0.05 0.09 −0.50 0.62 0.08 0.46

Center Proximity 0.44 0.11 4.08 < .0001* 0.28 0.50

Center Proximity:Meaning −0.18 0.12 −1.52 0.13 0.14 0.58

Center Proximity:Grasp 0.19 0.13 1.44 0.15 0.07 0.68

Center Proximity:Interact −0.04 0.12 −0.31 0.75 0.08 0.62

Center Proximity:Meaning:Grasp 0.21 0.11 1.93
0.05

† — 0.54

Center Proximity:Meaning:Interact −0.006 0.12 −0.05 0.96 0.04 0.64

Center Proximity:Grasp:Interact 0.07 0.09 0.76 0.45 0.07 0.44

Center Proximity:Meaning:Grasp:Interact −0.20 0.08 −1.63 0.009* 0.07 0.37

Note:

*
denotes a significant predictor or interaction,

†
denotes a marginal predictor or interaction.
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Table 6:

Experiment 5 Logistic Mixed-Effects Model Output

Predictors

Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept −0.24 0.12 −1.97 0.05 0.13 0.62

Meaning 1.49 0.13 11.70 < .0001* 0.09 0.64

Grasp 0.12 0.16 0.75 0.46 0.05 0.80

Interact −0.15 0.17 −0.92 0.36 0.12 0.87

Meaning:Grasp −0.23 0.11 −2.05 0.04* 0.06 0.53

Meaning:Interact 0.12 0.14 0.88 0.38 0.05 0.71

Grasp:Interact 0.14 0.15 0.94 0.35 0.03 0.75

Meaning:Grasp:Interact 0.04 0.08 0.54 0.59 0.05 0.37

Center Proximity 0.25 0.11 2.23 0.03* 0.36 0.46

Center Proximity:Meaning −0.06 0.13 −0.46 0.65 0.09 0.67

Center Proximity:Grasp 0.01 0.13 0.08 0.94 0.03 0.64

Center Proximity:Interact 0.07 0.13 0.56 0.57 0.08 0.64

Center Proximity:Meaning:Grasp −0.16 0.11 −1.50 0.13 0.05 0.52

Center Proximity:Meaning:Interact 0.11 0.13 0.82 0.41 0.08 0.67

Center Proximity:Grasp:Interact 0.02 0.09 0.22 0.82 0.05 0.42

Center Proximity:Meaning:Grasp:Interact −0.06 0.08 −0.72 0.47 0.04 0.40

Note:

*
denotes a significant predictor or interaction.
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